Bayesian estimation and model comparison for linear dynamic panel models with missing values




Faculty/Professorship: Survey Statistics and Data Analysis ; Statistics and Econometrics  
Author(s): Aßmann, Christian  ; Preising, Marcel
Publisher Information: Bamberg : Otto-Friedrich-Universität
Year of publication: 2022
Pages: 536-557
Source/Other editions: Australian & New Zealand Journal of Statistics, 62 (2020), 4, S. 536-557 - ISSN: 1467-842X
is version of: 10.1111/anzs.12316
Year of first publication: 2020
Language(s): English
Licence: Creative Commons - CC BY-NC - Attribution - NonCommercial 4.0 International 
URN: urn:nbn:de:bvb:473-irb-549624
Abstract: 
Panel data are collected over several time periods for the same units and hence allow for modelling both latent heterogeneity and dynamics. Since in a dynamic setup, the dependent variable also appears as an explanatory variable in later periods, missing values lead to substantial loss of information and the possibility of inefficient estimation. For linear dynamic panel models with fixed or random effects, we suggest a Bayesian approach to deal with missing values. The Gibbs sampling scheme providing a sample from the posterior distribution is thereby augmented by draws from the full conditional distribution of the missing values. While the full conditional distribution for missing values in the dependent variable is implied by the model setup, we incorporate a flexible non-parametric approximation to the full conditional posterior distribution of missing values in the explaining variables. Also, we provide accurate non-nested model comparison in terms of the marginal likelihood from the resulting hybrid Gibbs sampling output. The properties and possible efficiency gains of the suggested approach are illustrated by means of a simulation study and an empirical application using a macroeconomic panel data set.
GND Keywords: Bayes-Verfahren; Lineare Regression; Dynamische Modellierung; Panelverfahren; Fehlende Daten
Keywords: data augmentation, dynamic linear panel regression, marginal likelihood, missing values
DDC Classification: 330 Economics  
RVK Classification: QH 233   
Type: Article
URI: https://fis.uni-bamberg.de/handle/uniba/54962
Release Date: 8. August 2022
Project: Ein Bayesianischer Modellrahmen für die Auswertung von Daten aus Iängsschnittlichen Large-scale Assessments

File SizeFormat  
fisba54962.pdf232.97 kBPDFView/Open