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Summary

Panel data are collected over several time periods for the same units and hence allow for
modelling both latent heterogeneity and dynamics. Since in a dynamic setup, the dependent
variable also appears as an explanatory variable in later periods, missing values lead to
substantial loss of information and the possibility of inefficient estimation. For linear dy-
namic panel models with fixed or random effects, we suggest a Bayesian approach to deal
with missing values. The Gibbs sampling scheme providing a sample from the posterior
distribution is thereby augmented by draws from the full conditional distribution of the
missing values. While the full conditional distribution for missing values in the dependent
variable is implied by the model setup, we incorporate a flexible non-parametric approx-
imation to the full conditional posterior distribution of missing values in the explaining
variables. Also, we provide accurate non-nested model comparison in terms of the marginal
likelihood from the resulting hybrid Gibbs sampling output. The properties and possible
efficiency gains of the suggested approach are illustrated by means of a simulation study
and an empirical application using a macroeconomic panel data set.

Key words: data augmentation; dynamic linear panel regression; marginal likelihood; missing
values.

1. Introduction

Linear dynamic panel regression models are workhorse tools in economics and the
social sciences. Depending on the specification of latent heterogeneity, established estimation
routines in form of generalised methods of moments, instrumental variable or maximum
likelihood estimators are available (see, e.g. Arellano & Bond 1991; Arellano & Bover 1995;
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Blundell & Bond 1998; Everaert 2013; Hsiao 2014). Note that these estimation approaches
are all based on variable transformations, for example within transformations or difference
operations, which apply to linear model setups only. Popular software implementations are
also available. For non-linear model frameworks, random effects models requiring simulation-
based estimation approaches (see, e.g. Richard & Zhang 2007; Liesenfeld & Richard 2010;
Mesters & Koopman 2014; Mesters, van der Geest & Bijleveld 2016) are typically used, as
fixed effects specifications cause the occurrence of identification problems. Also Bayesian
estimation of linear dynamic panel regression models incorporating latent heterogeneity at
different degrees is discussed within the literature (Hsiao & Pesaran 2008; Liu et al. 2016).

However, these estimation approaches are typically discussed for completely observed,
yet possibly unbalanced, data sets. That is, the set of variables per individual has to be
observed in consecutive time periods, where the number of time periods may differ across
the individuals. This requirement is often not met in empirical application. Instead, missing
values may occur at any time period for any variable due to nonresponse in surveyed data.
Also, even in macroeconomic data sets obtained from administrative data sources, typically
not all considered variables are available for the same set of time periods. This might be, for
example due to changes in national accounting standards. Hence, as not all macroeconomic
aggregates are subject to subsequent revisions, missing values occur for some time periods in
some variables. As a missing value in the dependent variable affects at least two time periods
in the dynamic context, the typical strategy suggested by Arellano & Bond (1991) to restrict
the data set to those individuals and periods where information is completely available, may
cause a higher information loss compared to the static context. Indeed, strategies for the
efficient handling of the information loss resulting from missing values (see for an introduction
Little & Rubin 2002) are almost absent from the literature on dynamic panel models. An
exception is given by Millimet & McDonough (2016), who correct for incomplete data in
a linear dynamic framework including individual-specific effects. However, their approach
deals with missing values within the explaining variables only.

This article suggests a Bayesian estimation approach to handle missing values in the
context of linear lagged dependent variable models of order one with latent individual-
and time-specific heterogeneity captured by fixed or random effects. The approach can
handle any unbalanced panel data pattern. As we develop our estimation approach in a
Bayesian framework, conjugate prior distributions are chosen for the model parameters
and Markov Chain Monte Carlo (MCMC) methods (see e.g. Geweke 1989), namely Gibbs
Sampling (e.g. Geman & Geman 1984; Gelfand & Smith 1990) are at hand to provide
the approximations of the corresponding posterior densities. To correct for the non-response
within the dynamic response variable, we derive the full conditional distribution of the missing
values as implied by the model setup and augment the sampler accordingly (Tanner & Wong
1987; Li 1988). Our data augmentation approach secures the identifiability of the necessary
full conditional distributions and profits from the properties of the normal distribution. To
handle incomplete covariate data, we consider non-parametric approximations of the full
conditional distributions of the missing values provided by classification and regression trees
(CART) (Burgette & Reiter 2010). This is in line with non-parametric prior distributions
for the missing values in the covariates.

Comparison of the different non-nested model specifications incorporating latent hetero-
geneity at different degrees is straightforward in terms of Bayes factors (Jeffreys 1961; Kass
& Raftery 1995; Frühwirth-Schnatter 2004; Frühwirth-Schnatter & Kaufmann 2008) and
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hence a further conceptual advantage of the Bayesian estimation approach. Typical model
selection devices such as information-based criteria are not readily available for missing
data problems in the panel context, but require substantial numerical calculation efforts (see
e.g. Ibrahim, Zhu & Tang 2008). Calculation of information criteria is based on the log-
likelihood, which is often obtainable for special missing data problems by use of excessive
numerical or analytical integration. Due to that, we extend the Bayesian approach of Chib
(1995) towards dynamic linear regression models with missing values to compute marginal
likelihoods.

The accuracy of our approach in terms of parameter estimation and model comparison is
evaluated by means of a simulation study and an empirical application for a macroeconomic
panel data set. The results show an increase of efficiency regarding the parameter estimation
for our data augmentation scheme in comparison to complete case estimations both in the
simulations and the empirical application. Additionally, the marginal likelihood computa-
tions allow for precise model decisions under various data generating processes within the
simulation study. Thus, our non-nested evaluation approach provides reliable model selec-
tions, even for incomplete data situations. Alternatives to our suggested data augmentation
approach are available within the literature (for multiple imputation by chained equations,
see Van Buuren et al. 2015). In contrast, alternatives for non-nested model comparison based
on posterior predictive assessment (see Gelman, Meng & Stern 1996) are typically based
on ad hoc assumptions regarding the partitioning of the data utilised for the estimation and
prediction. An extensive comparison is, however, beyond the scope of the paper.

The remainder of this paper is organised as follows. Section 2 provides the suggested
linear dynamic panel model, the choice of conjugate prior distributions, and the resulting
full conditional posterior densities in detail. In Section 3, we develop our data augmentation
method and the calculation of the marginal likelihood. Section 4 evaluates the performance
of the suggested approach by means of a simulation study and an empirical illustration.
Section 5 concludes.

2. Model formulation and estimation

For a set of individuals enumerated by i=1,…,N and a set of periods enumerated by
t=1,…,T , yi,t denotes the continuous dependent variable. To start, consider a completely
observed balanced panel structure. Thus, a dynamic linear model for the response variable
yi,t is then given by

yi,t = ci +at +�+Xi,tβ +�yi,t−11(t>1)+Xi,1δ1(t=1)+ "i,t . (1)

Here 1(·) denotes the indicator function and "i,t is a normally distributed error term with
expectation zero and period-specific variance �2

t , whereas ci and at represent either fixed
or random individual- and time-specific effects. For the random effects specification, we
assume all individual-specific effects to be normally and independently identically distributed
with mean zero and variance �2

c , while all time-specific random effects are by assumption
also normally and independently distributed with mean zero and variance �2

a. � denotes
the global intercept, Xi,t is a 1 ×K vector of observable explanatory variables, and β

is the corresponding K × 1 parameter vector. � denotes a scalar to specify the dynamic
relationship between yi,t and yi,t−1. Parameters β and ρ are assumed to be homogeneous
across all individuals and periods, whereas δ captures deviations in the regression relation
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in the initial period. The unconditional model allows for handling missing values also in
the initial period (see Section 3), where the suggested approach remains feasible in case of
a conditional model setup.

To simplify calculation, denote y= [y1,1, y1,2,…, yN ,T ]� as the NT × 1 vector of the
response variable. Let the vectors c= [c1, c2,…, cN ]�, which is N ×1, and the T ×1 vector
a= [a1,a2,…,aT ]�, and thereby h= [c�, a�]� summarise all individual- and time-specific
effects in a (N +T )×1 column vector. Let Dc= IN ⊗ ιT×1, where IN is the identity matrix
of dimension N , ιT×1 is a column vector of ones of length T , and ⊗ denotes the Kronecker
product. Let Da=1N×1 ⊗ IT , where 1N×1 is a column vector of ones of length N and IT is
the identity matrix of dimension T . Summarise D= [Dc,Da] as the NT × (N +T ) indicator
matrix to control for the fixed or random effects intercepts. The global constant, as well as
the terms Xi,tβ, �yi,t−1, and Xi,1δ are summarised as Zi,tγ , where Zi,t = [1,Xi,t , yi,t−1, 0] for
t �=1 and Zi,1 = [1,Xi,1, 0,Xi,1] is 1× (2K +1), γ = [�, β�, �, ��]� is (2K +2)×1, whereas
Z= [Z�

1,1,Z�
1,2,…,Z�

N ,T ]� and X= [X�
1,1,X�

1,2,…,X�
N ,T ]� denote NT × (2K + 2) or NT ×K

matrices of covariate information for all individuals and periods. With ε= ["1,1, "1,2,…, "N ,T ]�

and �=diag[�2]⊗ IN with σ 2 = [�2
1, �2

2,…, �2
T ]� denoting the NT ×NT diagonal covariance

matrix, the model stated in (1) in matrix notation is now given by

y=Dh+Zγ +ε and ε ∼N(0NT×1, �), (2)

where for the random effects specification, we have h ∼N (0(N+T )×1, �h), with 0(N+T )×1

expectation null vector of length (N +T ) and �h=diag[�2
c ιN×1, �2

aιT×1] as (N +T )× (N +T )
covariance matrix of the random effects.

Collecting all structural model parameters into the vectors θFE and θRE for the fixed
and random effects model, respectively, the corresponding joint density of all observations
for the fixed effects model with therefore 2K +T +N +T structural parameters summarised
in θFE = [γ , �2,h�]� and the N th individual- and the T th time-specific effect each set to
zero due to model identification, is given as

f (y|θFE,X)= (2�)−
NT
2 |�|−0.5 exp

{
−1

2

(
y−Dh−Zγ

)�
�−1

(
y−Dh−Zγ

)}
. (3)

The joint density of all observations for the random effects specification is likewise given
by

f (y|θRE,X)=
∫

f (y,h|θRE,X) dh=
∫

f (y|θRE,X,h)f (h|θRE) dh, (4)

where f (y|θRE,X,h) has the same functional form as the density provided in (3), the 2K +
4+T structural parameters θRE = [γ �, �2, �2

c , �2
a]�, and f (h|θRE) is given as a multivariate

normal distribution with mean zero and covariance �h.
From a Bayesian perspective, the main interest lies in the posterior distributions of the

structural model parameters. We assume mutually independent conjugate prior distributions,
that is multivariate normal and inverse gamma. A Gibbs sampler (e.g. Geman & Geman 1984;
Gelfand & Smith 1990; Casella & George 1992) generates a random sample of the joint
posterior distribution. Thus, we drawM values iteratively, form=1,…,M , from the respective
full conditional distributions of the considered parameter blocks. The corresponding full
conditional posterior distributions are presented in the supplementary material.
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3. Missing values and model comparison

Next, the suggested data augmentation approach for estimation and handling of missing
values is discussed. We assume the missing data mechanism to be ignorable (see, e.g.
Little & Rubin 2002). The device of data augmentation is especially suited to deal with
missing data problems, as augmenting the missing values into the parameter vector allows for
handling all other model quantities as in the case of completely observed data. In addition,
data augmentation within the Bayesian framework constitutes an estimation routine where
no combining rules are required to provide valid estimators and corresponding variances.
Furthermore, we describe the approximation of the marginal likelihood allowing for model
comparison.

3.1. Missing values in the dynamic panel context

To deal with missing values, the Gibbs sampler is augmented to include draws from
the corresponding full conditional distributions, whose functional forms are in principle the
same for the fixed as for the random effects specification. Thus, the discussion will be based
on the fixed effects specification. To handle missing values in each iteration m=1,…,M , let
y(m) = [yobs, ymis,(m)] denote the dependent variable with missing values completed by draws
from their corresponding full conditional distributions, with superscripts mis and obs indicating
missing and observed values respectively. X(m) = [Xobs,Xmis,(m)] denotes the corresponding
set of completed regressors. Given an initialisation θ

(0)
FE, y(0), and X(0), we obtain the following

iterative procedure.

Step I Sample θ
(m)
FE from f (θFE|y(m−1),X(m−1)).

Step II Sample ymis,(m) from f (ymis|yobs, θ (m)
FE ,X(m−1)).

Step III Sample Xmis,(m) from f (Xmis|y(m), θ (m)
FE ,Xobs).

In each of the three steps, sampling from the indicated distribution is performed in
terms of sampling from a corresponding set of full conditional distributions. The sampling
performed within step I is facilitated by use of the set of full conditional distributions
outlined in the supplementary material (section A). The full conditional distributions and
corresponding draws involved in step II are obtained as follows. Formulate the joint density
given in (3) as the conditional density of the second until the last period given the initial
observations for the fixed effects model, that is,

f (y|θFE,X)=
N∏
i=1

f (yi,2:T |θFE,Xi,2:T , yi,1)f (yi,1|θFE,Xi,1). (5)

The formulation allows to derive the full conditional distribution of the observations
for an individual i in the initial period as a normal distribution with expectation �yi, 1 and
variance �2

yi, 1
, where

�2
yi, 1

= 1
1
�2

1
+ �2

�2
2

and �yi, 1 =�2
yi, 1

(
ci +a1 +Zi,1γ

�2
1

+ �(yi,2 − ci −a2 −�−Xi,2β)

�2
2

)
.

To sample missing values in periods 2 to T , we obtain from (5) that the (T −1) obser-
vations of a particular individual are, conditioned on the initial period, normally distributed
with expectation vector μyi,2:T

= [�yi, 2 ,…, �yi,T ]� of length T −1×1, where
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�yi, t =�t−1yi,1 +
t−2∑
j=0

�j(ci +at−j +�+Xi,t−jβ), for t=2,…,T ,

and corresponding covariance matrix �yi,2:T
of dimension (T −1)× (T −1) denoted as

�yi,2:T
=

⎛
⎜⎜⎜⎝

�2
yi, 2

�yi, 2,yi,3 · · · �yi, 2,yi,T

�2
yi, 3

�yi, 3,yi,T

. . .
...

�2
yi,T

⎞
⎟⎟⎟⎠,

with variances and covariances given as

�2
yi, t =

t−2∑
j=0

�2j�2
t−j, and �yi, t ,yi,t+s =�s�2

yi, t , for s=0,…,T − t and 2� t�T .

Given that the individuals are, conditioning on the fixed or random effects, mutually in-
dependent, draws of the missing values for each individual can be obtained by utilising
the multivariate normal distribution properties. The conditional distribution of the missing
values in yi,2:T , that is ymis

i,2:T conditional on yobs
i,2:T , is hence given as a multivariate nor-

mal distribution with expectation and covariance �mis
yi,2:T

+�ymis
i,2:T ,yobs

i,2:T
�−1
yobs
i,2:T

(yobs
i,2:T −�obs

yi,2:T
) and

�ymis
i,2:T

−�ymis
i,2:T ,yobs

i,2:T
�−1
yobs
i,2:T

�yobs
i,2:T ,ymis

i,2:T
. The superscripts mis and obs indicate those cells of �yi,2:T

and �yi,2:T
corresponding to the missing values and observed values respectively. Furthermore,

�ymis
i,2:T ,yobs

i,2:T
denotes the covariance rows and columns of the missing and observed values of

�yi,2:T
. Note that this set of full conditional distributions is implied by the unconditional

model setup given in (1), where an explicit model for the initial period is formulated. An
unconditional model approach requires additional parameters to be specified for the initial
period. However, at the same time, the formulation enables an increased estimation accu-
racy. This trade-off depends on the overall missing pattern of all variables. Thus, for some
missing patterns, estimation conditional on the initial period may be favourable. However,
the handling of missing values in y in period 2 to T in the context of a conditional modelling
approach is the same as discussed above and may still enhance the estimation accuracy in
combination with handling of missing values in X.

With regard to step III , referring to data situations with missing values also occur-
ring in the remaining covariates, that is X= [Xmis,Xobs], we suggest to implement non-
parametric approximations for the full conditional distributions of missing values that is
f (Xmis|y, θFE,Xobs). These can be provided in form of classification and sequential regres-
sion trees (CART), see Burgette & Reiter (2010). Thus, consider the set of full conditional
distributions f (Xmis

k |y−Dh−�y−1,X\k ) for k =1,…,K , where X\k denotes the set of iter-
atively completed covariate variables except variable k, and y−1 denotes the vector of the
lagged dependent variable. It is a major advantage of the data augmentation approach that
the complete latent structure enters the approximation of the full conditional distribution of
missing values most efficiently. Note that an adaption towards time or individual specific full
conditional distributions of the missing variables is possible by adjusting the conditioning
quantities by time- or individual-specific subsets. Sampling from the implied full conditional
distributions is then performed using the Bayesian bootstrap (Rubin 1981). We favour this
approach as it has shown to be highly capable of dealing with discrete and possible non-
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542 BAYESIAN LINEAR MODELS WITH MISSING VALUES

linear relationships among the variables (Doove, van Buuren & Dusseldorp 2014). In terms
of assumed prior distributions, the considered non-parametric approximations are compatible
with non-parametric prior distributions implied by the observed values. Further details are
provided in the supplementary material.

3.2. Model evaluation via the marginal likelihood

As the comparison of non-nested model specifications is often of analytical interest,
Bayes factors (see, e.g. for a general introduction Kass & Raftery 1995) are the choice at
hand. The implied marginal likelihoods incorporate two competitive properties of models,
parsimony and fit to the data. Note that the well-known and popular Bayesian information
criterion (BIC) according to Schwarz (1978) is consistent only under fulfilment of certain
regularity conditions (Kass & Raftery 1995). For an approximation of the marginal likelihood
by the BIC, see Ando (2010), we require that the prior information of the model parameters
can be ignored due to a sufficiently large number of observations compared to the amount of
model parameters (Raftery 1995). However, this condition is probably unfulfilled in case of
the fixed effects specification, as a growing number of observations directly yield a growing
number of prior distributions due to the amount of parameters. Throughout the paper, we
will assume two alternative model specifications a priori to be equally likely. The calculation
of the Bayes factor hence corresponds to the computation of the marginal likelihoods, that
is the normalising constant of the posterior density given as

f (y|X)= f (y|θ ,X)f (θ |X)

f (θ |y,X)
. (6)

Chib (1995) and Chib & Jeliazkov (2001) suggest to approximate the natural logarithm of the
marginal likelihood via the decomposition ln f̂ (y|X)= ln f (y|θ̃ ,X)+ ln f (θ̃ |X)− ln f̂ (θ̃ |y,X),
where θ̃ is chosen as a point within the highest density region, typically the posterior estimate,
to enhance the numerical accuracy of the approximation. Furthermore, ln f (y|θ̃ ,X) denotes
the logarithm of the likelihood, and ln f̂ (θ̃ |y,X) is the posterior distribution including its
normalising constant which can be approximated via recursively shortened Gibbs sequences.

To calculate the marginal likelihood in case of missing values in the covariates, we treat

them in the sense of latent variables as discussed by Chib (1995). By denoting X̃= [Xobs, X̃mis
],

this alters the approximation in case of the fixed effects model into

ln f̂ (yobs|Xobs)= ln f (yobs|θ̃FE, X̃) + ln f (θ̃FE, X̃mis|Xobs)

− ln f̂ (θ̃FE, X̃mis|yobs,Xobs),
(7)

and for the random effects model into

ln f̂ (yobs|Xobs)= ln f (yobs|θ̃RE, X̃, h̃) + ln f (θ̃RE, X̃mis
, h̃|Xobs)

− ln f̂ (θ̃RE, X̃mis
, h̃|yobs,Xobs),

(8)

hence indicating that the random effects can also be conceptualised as latent variables. Note

that in case of continuous covariates, X̃mis
denotes the posterior mean of the M drawn missing

values. For ordered variables, we suggest to compute medians. For categorical variables,
calculations of modes from the MCMC output are appropriate. As the functional form of
the fixed effects log-likelihood from (7) is the same as that of the augmented log-likelihood
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function of the random effects model given in (8), further illustrations concerning the
log-likelihood evaluations will be based on the fixed effects specification. When missing
values occur in the dependent variable y, we in fact have to calculate

f (yobs|θ̃FE, X̃)=
∫

f (yobs, ymis|θ̃FE, X̃)dymis =
∫

f (yobs, ymis
2:T , ymis

1 |θ̃FE, X̃) dymis
1 dymis

2:T .

For this purpose, we first integrate the missing values of the initial period ymis
1 . The resulting

integrand takes the form of a normal distribution. The corresponding expectations do not
depend on missing values in the lagged dependent variable, and thus, allow for an analytical
solution due to the properties of the multivariate normal distribution. This is in contrast to
a formulation of the joint density as implied by (3), where the dependent variables of all
periods, and thus, potentially missing values are components of the expectations of subsequent
periods. In order to check the numerical accuracy of the approach of Chib (1995) in this
context, we randomly pick out one of the before deletion data sets generated within the
simulation study below and calculate the log marginal likelihood both by an analytical and a
10 times repetition of the numerical integration for the random effects model, with the latter
procedure requiring the evaluation of the prior and posterior as proposed by Chib (1995).
The results show a mean difference not until the third decimal place.

For the involved prior evaluations, we calculate the prior ordinates at θ̃FE, θ̃RE, and

X̃mis
respectively, given the corresponding prior distributions. As the prior of the random

effects formulation decomposes into

ln f (θ̃RE, X̃mis
, h̃|Xobs)= ln f (θ̃RE)+ ln f (X̃mis|Xobs)+ ln f (h̃|θ̃RE),

the distribution of the latent individual- and time-specific intercepts. which is given as a
multivariate normal distribution with mean zero and variance �̃h as implied by �̃2

c and
�̃2
a, is evaluated at h̃. To evaluate the posterior parts of (7) and (8), we perform shortened

Gibbs samplers for each structural parameter block as described in Chib (1995). In case
of random effects, we apply additional shortened Gibbs sequences for both latent quantity
blocks and evaluate the full conditional densities given the generated moments from the two
reduced samplers at c̃ and ã, respectively. Finally, we perform runs of shortened MCMC
sequences for the missing covariates given all other structural and, in case of random effects,
latent quantities. To assess the corresponding posterior density ordinates, we calculate the
ordinates of the Gaussian kernel densities in case of continuous and the empirical frequency
distributions in case of discrete variables within each iteration of CART. The average over
the iterated ordinates implies the estimated missing values posterior density ordinates.

4. Evaluation

The evaluation focuses on highlighting the estimation accuracy gains of our data aug-
mentation approach. The estimation routines have been implemented in R (R Core Team
2017). All computer code necessary for the simulation study and empirical application are
available from the authors upon request. Using simulated data generated as outlined below,
we first assess in Section 4.1 the relative performance of the suggested approach when miss-
ing values occur at different degrees. Within a benchmark scenario, completely observed
data is considered (Scenario I ). Within a second scenario, we erase entries of the dependent
variable (Scenario II ), and within a third scenario, observations of one of the covariates
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544 BAYESIAN LINEAR MODELS WITH MISSING VALUES

are additionally deleted (Scenario III ). All scenarios are subject to complete cases analyses
and estimations via data augmentation. The performance is assessed via coverage rates, root
mean squared errors (RMSE), and biases. In a next step, we compare the suggested approach
to a classical estimation routine available in the literature (Section 4.2). Finally, Section 4.3
provides an illustrative empirical comparison between a classical estimation routine and our
new data augmentation approach.

We use the following data generating process employed within the three scenarios. We
generate 500 data sets for both the fixed and random effects specifications given the model
formulation of (1). We set N =50 but differentiate between a sample with T =5 and a sample
with T =20. The covariates Xi,t = [X1,i,t ,X2,i,t ,X3,i,t] are drawn from a trivariate normal dis-
tribution with expectation vector �Xi,t = (0, 0, 0) and correlations rX1, i, t ,X2,i,t =0.35, rX1, i, t ,X3,i,t =
rX2, i, t ,X3,i,t = 0.5, where, next to the first two variables, the categorical variable implied by
1(X3,i,t <−1)+21(−1�X3,i,t �1)+31(X3,i,t >1) is used as a regressor. The corresponding
regression coefficients are set to [�, β�, ��]= [−1.630, 4.900, 4.528, 1.437, 0, 0, 0]. We con-
sider two settings concerning the dynamic dependence via assuming �= 0.2 and �= 0.8.
Error terms are normally distributed with mean zero and period-specific variances drawn
from a continuous uniform distribution with bounds [0.5; 4]. Fixed effects are generated
from a probability density function given as

f (c, a)=
N−1∏
i=1

|ci|
100

1[−10,10](ci)
T−1∏
t=1

|at|
100

1[−10,10](at).

Both the N -th individual- and T -th time-specific fixed effect are set to zero to solve the
identification issue. Random effects are drawn from a normal distribution with expectation
zero and variances �2

c =�2
a = 0.75. For Scenario II , we consider the following missing at

random mechanism related to X2,i,t ,

Pr(yit is missing)= 1

1+ exp{2−2.5X2,i,t} , i=1,…,N , t=1,…,T .

This mechanism implies that around 25% of the entries of the dependent and thus lagged
dependent variable are missing. For Scenario III , we additionally consider a missing mech-
anism for X3,i,t conditional on X1,i,t . Thus, X3,i,t is missing if FU (Ui,t)>0.9, where FU (Ui,t)
denotes the empirical distribution function of the random variable

Ui,t = 1

1+ exp{0.2�i,tX1,i,t}+ 	i,t
, i=1,…,N , t=1,…,T ,

with �i,t and 	i,t being both standard normally distributed. Thus, exactly 10% of the variable
is set to be missing.

4.1. Simulation results

This subsection assesses the relative performance of the suggested approach, when
missing values are considered at different degrees. Details on the employed prior and MCMC
setup are provided in the supplementary material (section C). We examine each data set
by fixed and random effects analysis models both with our data augmentation scheme and
complete case analyses for Scenarios II and III . Note that estimation is performed under
the restriction �= 0 as the relative performance of the suggested approach is of interest.
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Discussion of simulation results focus on the setting with �=0.2. The corresponding results
are provided in Tables 1–3. Results for �=0.8 are provided in the supplementary material
(section D in Tables 6–8) and are in line with results for �=0.2. Differences are highlighted
after discussing the results for �=0.2.

Table 1 provides the coverage rates of the mean parameters that is the rate of cases where
the true value of a parameter is located within the 95% highest posterior density region interval,
and the ratios of how often the fixed effects and random effects specification is chosen as the
favoured analysis model respectively. To provide a benchmark, we calculate the BIC according
to and the log marginal likelihood to compare the specifications for Scenario I and check both
for congruence in terms of model decision. Therefore, we integrate the random effects of the
joint density given in (4) analytically. As the approximation of the log marginal likelihood
described in Section 3.2 allows to evaluate models in the event of missing values, we use our
approach to compare the fixed and random effects specifications for Scenarios II and III . While
the BIC could be obtained for the fixed effects model with missing values only in the dependent
variable, the log-likelihood of the random effects specification required for model comparison
involves excessive integration. To check for efficiency gains of our data augmentation approach
compared to the complete cases estimators, Table 2 provides the respective RMSEs of the
parameters.Additionally, Table 3 provides the respective biases of the parameter estimators.

If we consider the fixed effects model as the true data generating process (DGP), the
results for the fixed effects analyses model including data augmentation show coverages at
the nominal 95%-level for each parameter for both the small and large sample sizes (left
half of Table 1). Note that the coverage rate at nominal 95%-level based on 500 replications
approximately ranges in the interval 0.95±1.96

√
0.95×0.05=500. The parameter estimate

corresponding to the covariate with missing values, that is β̃3, shows in Scenario III slightly
lower but still satisfying rates (0.924 for the small sample; 0.912 for the large sample).
Table 2 demonstrates the advantages of our data augmentation approach in terms of RMSEs.
For example, the RMSEs of the small sample analyses of Scenario III decrease between
around 20% (for 
̃1 with data augmentation 0.583; complete case 0.721) and more than 40%
(for �̃ with data augmentation 0.017; complete case 0.029). The large sample setup supports
these findings as we observe increased efficiencies of up to more than 30% (for �̃ with data
augmentation: 0.006; complete case 0.009) for Scenario III . Considering a random effects
specification as the DGP, the fixed effects analysis model results in lower coverage rates
for the intercept and the dynamic component, while for the remaining parameters we again
observe rates of around the nominal 95% (left half of Table 1). The corresponding complete
case estimates reveal similar coverage rates but again tend to higher RMSEs except for the
intercept (Table 2). Applying random effects analysis models with data augmentation (right
half of Tables 1 and 2) yields, apart from the intercepts if a small sample size and a fixed
effects DGP setup is chosen, coverage rates near the nominal 95%-level. Table 8 provides
corresponding biases, where results indicate overall modest biases. The data augmentation
procedure tends to achieve remarkably higher efficiencies compared to the complete case
estimates, independent of the data generating process and the sample size.

The model decisions for Scenario I that is before deletion, in terms of both the BIC and
the log marginal likelihood point in the same direction. Assuming a fixed effects model as
the DGP, both key figures favour the fixed effects analysis model (Table 1) in 100%, as the
random effects analysis specification is unable to cope with the high extent of not normally
distributed latent heterogeneity. To check both model selection criteria for sensitivity in terms
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of prior uncertainty, we perform an additional analysis of a randomly chosen small sample
size data set with fixed effects DGP of Scenario I , now with all multivariate normal prior
variances set to 100. The resulting log marginal likelihoods mark the random effects model as
the superior specification. As the resulting log-likelihoods just changed negligibly, the fixed
effects model remains the favoured specification in terms of the BIC. This contradiction in
model selections clarifies the higher sensitivity of the marginal likelihood to prior uncertainty
compared to the BIC. For the small sample sizes, in Scenarios II and III the rates remain
at 99.8% and 98.8%, respectively, and are congruent with the decisions for Scenario I . For
the large samples, the rates amount to 100% and 99.6% and hence only differ slightly from
those of the small samples. In contrast, if we assume a random effects model as the DGP, the
random effects specification is almost always in favour (Table 1), both deciding according
to the BIC and the log marginal likelihood for Scenario I . This is due to the penalisation
of the non-parsimonious number of parameters of the fixed effects model, as the latent
heterogeneity is sufficiently captured by the random effects estimators. An exception for this
is the large samples, as the random effects specification is the model of choice in 92.6%. In
case of missing values, the random effects model is chosen as the favourable specification
in 100% of the cases both for Scenarios II and III . Thus, according to our model evaluation
criteria, the choice of analysis model predominantly coincides with the underlying data
generating process, thus yielding reliable model selections.

The estimations for the DGPs with �=0.8 indicate equivalent results in terms of coverage
rates, RMSEs, biases and model decisions. However, biases and RMSEs are slightly higher.
Given small sample sizes, the coverage rates of the fixed effects model estimations of around
0.91 for all three scenarios (see Table 6) point at a Nickell bias (Nickell 1981; Hsiao, Hashem
Pesaran & Kamil Tahmiscioglu 2002), diminishing for a growing T , as the large sample
results reveal. The efficiency of the data augmentation approach remains higher than for
the complete case estimators. Again, the coverage rates of the intercept and the dynamic
component decrease if the DGP is determined by random effects. The random effects analyses
yield high coverage rates for both sample sizes, as long as the data are also generated due
to a random effects specification. If the degree of latent heterogeneity is due to the fixed
effects DGP and thus not in line with the random effects specification, we obtain lower
coverage rates for the intercepts both for the small and large sample size. Also the model
evaluation criteria altogether indicate similar model selection rates as for �=0.2.

4.2. Comparison to classical estimation

To further investigate the efficiency of our suggested methods, Table 4 provides a
comparison of our procedure to the classical estimation approach developed by Arellano
& Bond (1991), For this comparison, we generated additional 500 data sets due to the
fixed effects model specification with only taking individual- but no time-specific latent
heterogeneity into account. Also, we consider the situation with �=0.8 and, thus, stronger
serial dependence and a homoscedastic variance scenario. The homoscedastic variance is
implied via a single draw from the uniform distribution used in the heteroscedastic case.
The parameter setting is given as before, whereas the MCMC and prior settings are as given
in the supplementary material (Section C). Accordingly, the Arellano–Bond estimator is
based on differences as well as orthogonal deviations, where we also refer to robust standard
errors. Furthermore, we consider T =5, as this mimics a typical situation in application and
yields slightly reduced computation times. Furthermore, we specified a continuous regressor
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Table 4. Simulated data with individual-specific fixed effects as true data generating process with
homoscedastic and heteroscedastic variance structure. Analysis with fixed effects model with data
augmentation and Arellano–Bond type estimator. Results for the Arellano–Bond type estimator are
reported for first difference instruments and orthogonal deviations. Results obtained using robust
standard errors are given in parenthesis. Coverage rates, root mean squared errors of mean estimates,
and biases of mean estimates for Scenarios I , II and III with �=0.8, N =50, and T =5.

Homoscedasticity Heteroscedasticity

I II III I II III

Coverage rates Coverage rates

Fixed effects - data 
̃1 0.934 0.954 0.950 0.928 0.918 0.928
augmentation


̃2 0.950 0.946 0.948 0.946 0.952 0.972

̃3 0.928 0.942 0.942 0.938 0.942 0.926
�̃ 0.946 0.954 0.966 0.934 0.944 0.948

Arellano-Bond - 
̃1 0.946 0.944 0.946 0.958 (0.948) 0.942 (0.928) 0.938 (0.924)
differencing


̃2 0.956 0.942 0.936 0.956 (0.944) 0.936 (0.922) 0.928 (0.904)

̃3 0.936 0.944 0.922 0.964 (0.950) 0.952 (0.910) 0.964 (0.926)
�̃ 0.952 0.946 0.934 0.962 (0.974) 0.950 (0.958) 0.968 (0.958)

Arellano-Bond - 
̃1 0.950 0.962 0.952 0.970 (0.954) 0.942 (0.918) 0.952 (0.926)
orthogonal


̃2 0.960 0.950 0.938 0.962 (0.944) 0.944 (0.930) 0.946 (0.922)

̃3 0.938 0.956 0.922 0.956 (0.950) 0.952 (0.918) 0.956 (0.922)
�̃ 0.976 0.978 0.964 0.976 (0.970) 0.968 (0.956) 0.982 (0.964)

Homoscedasticity Heteroscedasticity

I II III I II III

Root mean squared errors Root mean squared errors

Fixed effects - data augmentation 
̃1 0.172 0.203 0.214 0.173 0.221 0.227

̃2 0.166 0.224 0.227 0.166 0.217 0.220

̃3 0.188 0.227 0.239 0.186 0.230 0.234
�̃ 0.012 0.013 0.013 0.011 0.013 0.013

Arellano-Bond - differencing 
̃1 0.263 0.345 0.407 0.272 0.405 0.456

̃2 0.246 0.399 0.451 0.264 0.444 0.499

̃3 0.217 0.347 0.396 0.224 0.354 0.372
�̃ 0.063 0.077 0.090 0.076 0.103 0.107

Arellano-Bond - orthogonal 
̃1 0.235 0.302 0.376 0.233 0.364 0.425

̃2 0.219 0.344 0.410 0.234 0.387 0.463

̃3 0.203 0.306 0.377 0.212 0.329 0.370
�̃ 0.064 0.071 0.085 0.074 0.092 0.102

Homoscedasticity Heteroscedasticity

I II III I II III

Biases of mean estimates Biases of mean estimates

Fixed effects - data 
̃1 0.013 0.014 0.037 0.000 −0.004 0.022
data augmentation


̃2 −0.006 −0.008 0.018 −0.001 −0.001 0.024

(Continued)
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Table 4. (Continued)


̃3 −0.007 −0.003 −0.071 0.004 0.007 −0.065
�̃ −0.001 −0.001 −0.001 0.001 0.001 0.001

Arellano-Bond - differencing 
̃1 −0.001 −0.004 −0.016 −0.027 −0.071 −0.086

̃2 −0.013 0.006 −0.010 −0.028 −0.039 −0.047

̃3 −0.016 −0.024 −0.028 −0.006 −0.009 −0.024
�̃ −0.008 −0.010 −0.017 −0.011 −0.019 −0.030

Arellano-Bond - orthogonal 
̃1 −0.003 −3.4e−5 −0.016 −0.018 −0.037 −0.061

̃2 −0.013 0.006 −0.008 −0.021 −0.028 −0.034

̃3 −0.011 −0.015 −0.011 −0.007 −0.008 −0.029
�̃ −0.007 −0.009 −0.016 −0.010 −0.016 −0.028

Notes: Arellano-Bond type one-step estimators calculated in STATA 15 (StataCorp 2017) using
command xtabond2 and options robust or orthogonal, see Roodman (2006).

X3,i,t instead of the ordered categorical variable from above in order to simplify the param-
eterisation and interpretation without the necessity of recoding. The data sets are generated
with �=0. However, the data augmentation estimation is not performed under this restriction.
For comparison, we report results on 
 and � only.

In the case of homoscedastic error variances (left half of Table 4), the Arellano–Bond
estimates show satisfying coverage rates, efficiencies and biases compared to our suggested
approach. However, the insertion of missing values (Scenarios II and III ) highlights the
efficiency of our approach, as RMSEs for the data augmentation approach just worsen sparsely
in contrast to the Arellano–Bond estimates. The results reveal that the use of orthogonal
deviations is beneficial in the considered case with substantial serial dependence, as the bias
is reduced further. However, the bias reduction does not outperform the positive effects on
efficiency in terms of RMSEs arising from handling the missing values via data augmentation.
This impression is confirmed if period-specific error variances are additionally taken into
account. When comparing the RMSEs, it should be taken into account that the suggested
unconditional model formulation considers not only additional N observations, but also
includes K +2, that is K +1, more parameters in the heteroscedastic and homoscedastic case
respectively. The differences in the RMSEs are not solely driven by this additional information,
but generally by the extra information available for estimation via data augmentation. Data
augmentation allows to consider information from entities [yit ,Zit] having missing values
in single variables.

4.3. Empirical illustration

In our empirical illustration, we analyse the current account balance dynamics of the
35 OECD member states and China from 1991 until 2015, comparing our data augmentation
approach to a complete case estimation. We use the World Development Indicators provided
by the World Bank (The World Bank 2017) and regress the current account balance (percent
of the GDP) on its previous year’s outcome, adding the covariates foreign direct investment
in net flows, the annual GDP growth in percent, GDP per capita (constant 2010 in 1000
U.S. dollars) and trade (percent of GDP), each lagged of order one to account for possible
inconsistencies due to endogeneity problems (see e.g. Chinn & Prasad 2003; Aßmann 2012).
We decide for 1992 as the initial period of the dependent variable, following the general
model structure of (1), to mitigate the effects of structural change occurring after 1990. The
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prior specifications and starting values are chosen the same as in our simulation studies.
For the empirical illustration 40,000 draws after a burn-in phase of 10,000 iterations have
been found sufficient to ensure convergence. For completeness, the estimation results with
regard to the variance and latent heterogeneity parameters are provided in Tables 9 and 10.

As Table 5 also contains the rates of missing values of each variable, the complete case
estimations yield a loss of 86 and thus about 10% of the 864 country-period observations at
hand, resulting in 778 observations for which all variables are available. As the Arellano–
Bond approach conditions on the initial period, 828 observations are available for estimation.
The number of observations is further reduced as 111 missings occur over all variables,
where the used STATA 15 implementation does not check for overlap in the periods and
units with missing values. The results illustrate the increase of efficiency for both model
types due to the data augmentation approach, as we obtain smaller standard deviations for all
slope and dynamic component parameters compared to the complete case analyses. Hence,
the 90% highest posterior density region estimated by the data augmentation approach for
GDP per capita does not contain zero. In contrast, the corresponding 90% highest posterior
density region estimated by the complete case analysis does include zero. An increase
in the level of influence is also obtained for the life expectancy parameters, as for the
data augmentation the 90% highest posterior density region of the fixed effects estimator
does not incorporate zero, while for the complete case estimator the effect does not differ
from zero at any conventional level. Furthermore, the data augmentation estimator for the
random effects model exceeds the 95% highest posterior density region, while the complete
case estimator reaches the 90% level. The Arellano–Bond estimates are in line with the
obtained estimates of the Bayesian approach. The estimated confidence intervals of the two
estimation approaches are overlapping and no substantial differences are revealed. However,
the efficiency gains documented in the simulation studies also show off in the estimated
standard deviations, which are smaller for the Bayesian approach. We are aware that this
comparison may be criticised given the different conceptual frameworks of the two estimation
approaches.

To complete the discussion of estimation results, the random effects specification is
according to the log marginal likelihood the preferred model specification with −1947.330
compared to −2047.714 for the random and fixed effect specification respectively. The
robustness of this model selection with regard to prior variance has been checked and
confirmed via changing variance parameter of the considered prior distribution of γ , c, and
a from 50 to 10 and 100. This is in line with the moderate heterogeneity in variance as well
as individual and time specific effects documented in Tables 8 and 9.

5. Conclusion and outlook

This paper provides a Bayesian estimation approach to deal with missing values in linear
dynamic panel models incorporating individual- and time-specific heterogeneity. The set of
full conditional distributions used to sample from the corresponding posterior distribution
is thereby augmented with the full conditional posterior distribution of the missing values
in the dependent variable. Likewise, to handle also incomplete data in the covariates via
data augmentation, classification and sequential regression trees are used to provide non-
parametric approximations for the corresponding full conditional distributions. This way to
model the full conditional distributions of missing values offers a flexible yet parsimonious
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handling of relationships among the variables and latent structures. However, as pointed out
by a reviewer, parametric models for the missing covariate values could also be considered.

Next to estimation, the paper extends the approach of Chib (1995) to calculate the
marginal likelihood in order to provide non-nested model comparisons in case of incomplete
data in the linear dynamic panel context. As simulations reveal, the suggested procedure offers
both, efficiency gains in parameter estimation and reliable model selection. Comparison with
the Arellano–Bond estimator yields that in some missing data situations neglect of missing
values seems worse than neglect of unbiased instrument variable estimation. The empirical
analysis exemplifies the wide field of applicability of the suggested approach and confirms the
improved estimation efficiency. The efficiency gains stem from the additional information that
can be exploited when augmenting the missing values. Augmenting the missing values allows
for consideration of entities [yit ,Zit] that show missing values in single variables and would
otherwise be dismissed. This extends also to the suggested unconditional modelling approach
allowing to consider initial period observations of the dependent variable. Augmentation
seems to improve the efficiency in situations where the extra information is not set off by
the extra parameters involved in the set of full conditional distributions of missing values.
Moreover, the calculation of the log marginal likelihood allows for model selection.

Furthermore, the suggested approach is not limited to linear dynamic panel regressions
and the set of full conditional distributions for missing values discussed in this paper, as the
sampling scheme could handle other models as well and any valid alternative to model the full
conditional distributions of missing values. Another extension could focus on polychotomous
response variables via an additional augmentation step (Albert & Chib 1993; Geweke &
Keane 2001), thus opening a wider range of application fields. Extending the approach
towards specifications where the latent individual-specific heterogeneity is also captured
via the slope parameters and lagged-dependent variable models of higher order could be
considered. Also possibilities to combine the instrument estimation and data augmentation
approach may be addressed in future research.

Supporting information

Additional Supporting Information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs

Data S1. Supplementary materials
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