Predictive Analytics for Energy Efficiency and Energy Retailing





Professorship/Faculty: Fakultät Wirtschaftsinformatik und Angewandte Informatik: Abschlussarbeiten ; Lehrstuhl für Wirtschaftsinformatik, insbesondere Energieeffiziente Systeme 
Author(s): Hopf, Konstantin  
Publisher Information: Bamberg : University of Bamberg Press
Year of publication: 2019
Pages / Size: XXVI, 251 Seiten : Illustrationen, Diagramme
ISBN: 978-3-86309-668-7
978-3-86309-669-4
Series ; Volume: Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg  ; 36
Supervisor(s): Staake, Thorsten
Source/Other editions: Parallel erschienen als Druckausg. in der University of Bamberg Press, 2019 (32,50 EUR)
Language(s): English
Remark: 
Dissertation, Otto-Friedrich-Universität Bamberg, 2019
Link to order the print version: http://www.uni-bamberg.de/ubp/
DOI: 10.20378/irbo-54833
Licence: Creative Commons - CC BY - Attribution 4.0 International 
URN: urn:nbn:de:bvb:473-opus4-548335
Document Type: Doctoralthesis
Abstract: 
Digitization causes large amounts of data in organizations (e.g., transaction data from business processes, communication data, sensor data). Besides, a large number of data sources are emerging online and can be freely used. Firms are looking for ways to commercialize this increasing amount of data and research aims to better understand the data value creation process. The present dissertation answers five central research questions in this context and examines how machine learning (ML) can be used to create value from data, using case studies from energy retailing and energy efficiency. First, a systematic literature review gives an overview of firm internal and external data sources for potential analyses. Second, the importance of human cognition, theory, and expert knowledge in effective data preparation for ML is demonstrated. Third, current ML algorithms and variable selection methods are empirically compared using industry data sets. Implications for theory and practice are identified. Finally, the successful use of the information gained through ML is exemplified through case studies where increased energy efficiency, customer value, and service quality can demonstrate economic, environmental, and social value. Thus, this empirical work contributes to the so far rather conceptual discussion on value creation from big data in information systems research.
SWD Keywords: Maschinelles Lernen ; Prognose ; Statistisches Verfahren ; Energie
Keywords: Predictive Analytics, Machine Learning, Data Value Creation Process, Energy Retailing, Ambient Data
DDC Classification: 004 Computer science 
330 Economics 
RVK Classification: ST 515   
URI: https://fis.uni-bamberg.de/handle/uniba/45617
Release Date: 22. May 2019

File SizeFormat  
SWIAI36HopfKonstantin_Dissopusse_A3a.pdf4.94 MBAdobe PDFView/Open