KriMI: A Multiple Imputation Approach for Preserving Spatial Dependencies - Imputation of Regional Price Indices using the Example of Bavaria





Professorship/Faculty: Statistics and Econometrics  
Authors: Bleninger, Sara
Publisher Information: Bamberg : University of Bamberg Press
Year of publication: 2017
Pages / Size: 270 Seiten : Diagramme, Karten
ISBN: 978-3-86309-523-9
978-3-86309-524-6
Series ; Volume: Schriften aus der Fakultät Sozial- und Wirtschaftswissenschaften der Otto-Friedrich-Universität Bamberg  ; 33
Supervisor(s): Rässler, Susanne
Source/Other editions: Parallel erschienen als Druckausg. in der University of Bamberg Press, 2017 (22,50 EUR)
Language(s): English
Remark: 
Dissertation, Otto-Friedrich-Universität Bamberg, 2017
Link to order the print version: http://www.uni-bamberg.de/ubp/
DOI: 10.20378/irbo-50298
Licence: German Act on Copyright 
URN: urn:nbn:de:bvb:473-opus4-502980
Document Type: Doctoralthesis
Abstract: 
Multiple imputation is a method to handle the problem of missing values in a dataset. As it accounts for the uncertainty brought in by the missing data, it is possible to conduct reliable statistical tests after this method has been implemented.
Kriging uses neighbourhood effects to predict values of unobserved regions. It can be seen as an imputation technique. The unobserved regions are missing data points, and the kriging predictions are the imputations. Due to the fact of being a single imputation technique, no proper statistical inferences are possible after filling the dataset.
If spatially dependent data face the problem of missing data and a proper statistical inference is needed, a modelling of the spatial correlation in the multiple imputation model is needed. Here this is prevailed by implementing kriging in the model used for multiple imputation. We call the resulting method KriMI.
The exact problem can be found when looking at regional price levels in Bavaria. The Bavarian State Office for Statistics surveys the prices which are needed to compute the price index only in a few regions. The prices of the unobserved regions are treated as missing data.
SWD Keywords: Bayern ; Preisindex ; Kriging ; Fehlende Daten ; Räumliche Statistik
Keywords: multiple imputation, kriging, spatial dependencies, regional prices, price index
DDC Classification: 310 Statistics 
RVK Classification: QH 235   
URI: https://fis.uni-bamberg.de/handle/uniba/42645
Release Date: 25. October 2017

File SizeFormat  
SSOWI33BleningerDissopusse_A3a.pdf14.02 MBAdobe PDFView/Open