Options
Explainable AI for Tailored Electricity Consumption Feedback : An Experimental Evaluation of Visualizations
Wastensteiner, Jacqueline; Weiss, Tobias M.; Haag, Felix; u. a. (2021): Explainable AI for Tailored Electricity Consumption Feedback : An Experimental Evaluation of Visualizations, in: Bamberg: Otto-Friedrich-Universität, S. 1–19, doi: 10.20378/irb-49912.
Faculty/Chair:
Publisher Information:
Year of publication:
2021
Pages:
Source/Other editions:
29. European Conference on Information Systems (ECIS), 2021, Marrakesh: Morocco / Virtual: ECIS 2021 Research Paper Proceedings, AIS electronic library
Language:
English
DOI:
Abstract:
Machine learning (ML) methods can effectively analyse data, recognize patterns in them, and make high-quality predictions. Good predictions usually come along with “black-box” models that are unable to present the detected patterns in a human-readable way. Technical developments recently led to eXplainable Artificial Intelligence (XAI) techniques that aim to open such black-boxes and enable humans to gain new insights from detected patterns. We investigated the application of XAI in an area where specific insights can have a significant effect on consumer behaviour, namely electricity use. Knowing that specific feedback on individuals’ electricity consumption triggers resource conservation, we created five visualizations with ML and XAI methods from electricity consumption time series for highly personalized feedback, considering existing domain-specific design knowledge. Our experimental evaluation with 152 participants showed that humans can assimilate the pattern displayed by XAI visualizations, but such visualizations should follow known visualization patterns to be well-understood by users.
GND Keywords: ; ; ; ; ;
Intelligenter Zähler
Künstliche Intelligenz
Maschinelles Lernen
Visualisierung
Energieeinsparung
Rückmeldung
Keywords: ; ; ; ;
eXplainable Artificial Intelligence
Visualizations
Energy Conservation
Machine Learning
Feedback.
DDC Classification:
RVK Classification:
Peer Reviewed:
Yes:
International Distribution:
Yes:
Type:
Conferenceobject
Activation date:
June 16, 2021
Permalink
https://fis.uni-bamberg.de/handle/uniba/49912