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Abstract 
Machine learning (ML) methods can effectively analyse data, recognize patterns in them, and make 
high-quality predictions. Good predictions usually come along with “black-box” models that are unable 
to present the detected patterns in a human-readable way. Technical developments recently led to 
eXplainable Artificial Intelligence (XAI) techniques that aim to open such black-boxes and enable 
humans to gain new insights from detected patterns. We investigated the application of XAI in an area 
where specific insights can have a significant effect on consumer behaviour, namely electricity use. 
Knowing that specific feedback on individuals’ electricity consumption triggers resource conservation, 
we created five visualizations with ML and XAI methods from electricity consumption time series for 
highly personalized feedback, considering existing domain-specific design knowledge. Our 
experimental evaluation with 152 participants showed that humans can assimilate the pattern displayed 
by XAI visualizations, but such visualizations should follow known visualization patterns to be well-
understood by users. 

Keywords: eXplainable Artificial Intelligence (XAI), Visualizations, Energy conservation, Machine 
learning, Feedback. 

1 Motivation 
Many outstanding applications of machine learning (ML)—a core technology of artificial intelligence 
(AI)— documented in the literature focus on their superiority in making predictions about unseen data 
or future events. Cancer detection from radiological images (McKinney et al., 2020) and fraud detection 
(Abbasi et al., 2012) are often cited examples for tasks in which ML reaches human levels or partly 
outperforms humans. Such applications relate to the use of AI to automate tasks in a wide range of 
industries (Coombs et al., 2020). We owe the performance of these AI applications to ML models that 
are becoming increasingly complex and difficult for humans to understand. Such ML models are often 
black-boxes, which come at the price of low interpretability (Dourish, 2016; Faraj et al., 2018). The 
opposite of these models are transparent ones, having lower capabilities to generalize from data (Barredo 
Arrieta et al., 2020). Motivated by this tension, a recent field of research in the area of ML has put forth 
eXplainable AI (XAI) approaches that make complex black-box models interpretable to humans, 
without lowering their predictive power (Miller, 2019). These approaches are promising, not only for 
applications where it is necessary to make algorithmic judgement interpretable to humans (e.g., for legal 
or ethical decisions), but also for applications where AI is employed to provide more insights to 
humans—uncover patterns in data, not only making predictions—enabling more informed human 
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decisions. Therefore, XAI supports the use of AI to augment work (Grønsund and Aanestad, 2020; 
Raisch and Krakowski, 2020) instead of replacing humans (Frey and Osborne, 2017).  
Current XAI approaches, however, are criticized for (i) focusing too heavily on technical aspects or data 
perspectives of developers and (ii) including few aspects of social sciences and human-computer 
interaction (Abdul et al., 2018; Miller, 2019). Existing XAI studies have also often focused on content, 
less on the interface design of explanations (Cheng et al., 2019). Literature also points to a lack of XAI 
user studies (Adadi and Berrada, 2018; Nourani et al., 2019). Similarly, recent calls from information 
systems research motivate empirical studies on the application of AI in organizations, not only to 
automate but to augment human labour (Coombs et al., 2020; Lyytinen et al., 2020; Rai et al., 2019). 
Time series are common data structures that ML and XAI methods can process. Time is an important 
dimension of data analysis and time series data becomes more present, as digitization increases the 
proliferation of sensors and smart devices, which capture more data with timestamps. An area that could 
particularly benefit from uncovering and visualizing hidden patterns in time series data is residential 
energy consumption. Behavioural research demonstrates that specific feedback on consumers’ energy 
consumption—tailored to individuals—leads to sustainable behaviour and, thus, can trigger significant 
energy savings (Brülisauer et al., 2020; Tiefenbeck et al., 2016). Deployed on a large scale, behavioural 
feedback interventions can play an essential role in lowering the energy demand, thus reducing the 
human carbon footprint. Although increasing amounts of data is available in the residential energy 
context (e.g., because of smart metering infrastructures), helpful behavioural recommendations are hard 
to extract from the data on a large scale. Advanced data processing and modelling techniques are 
therefore warranted to make undesired human behaviour salient, and to guide people towards better 
action. We believe that XAI can be of reasonable help in this regard and selected this case study for our 
research project. The context of this study is also well suited to put forth XAI visualisations, because 
plenty of time series data is available that contains complex patterns, which may be not easily to 
recognize by humans but for ML. Thus, we examine the following research question:  

How well do XAI visualizations of electricity consumption time series data, created based 
on design knowledge from XAI and feedback research, perform in terms of 
comprehensibility of humans and user preferences?  

We created five XAI visualizations based on the current technological state as well as design knowledge 
from the XAI and feedback literature. In a user experiment with 152 participants, we evaluated these 
visualizations in isolation, using reading and memorization tasks, and in comparison, using a conjoint 
experiment. Our results show that XAI can provide insights into electricity consumption time series data 
that can be assimilated by humans. We also found that standard XAI visualizations should be adjusted 
to foster comprehensibility by humans. These results underline the need for further investigating XAI-
based human-AI interfaces and tailored consumption feedback, as we outline in our discussion. 
This paper proceeds with a review of the recent literature around XAI and automated feedback on 
residential electricity use. Thereafter, we describe our research approach, our case selection, and the 
design and implementation of XAI visualizations. Section 5 describes our experimental evaluation and 
our findings. We finish this paper with a discussion and formulate implications for future research.  

2 Related work 
The discourse on XAI technology takes place primarily in the field of computer science, where it has 
led to advances in the technological basis. Nevertheless, it would benefit from social science research 
(Miller, 2019) and business perspectives (Satell and Sutton, 2019). This is a type of contribution that 
lies at the core of the information systems research tradition, because this field purses a sociotechnical 
perspective (Sarker et al., 2019). Lyyttinen et al. (2020) and Rai et al. (2019) underline the need for such 
research to better understand the successful integration of AI in workplaces.  
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2.1 XAI in information systems research 
So far, information systems research has conceptualized the possibilities of XAI to enable personalized 
explanations of ML models (Schneider and Handali, 2019) and the compliance with recommendations 
that stem from AI (Kühl et al., 2019). Wanner et al. (2020) provide a literature review and outline a plan 
for a user study to investigate the willingness of users to dispense the accuracy of model prediction in 
favour of better explanations. Our work adds to this (so far conceptual) research an empirical 
investigation on the application of AI in the context of energy feedback. Thereby, we draw on the 
literature from XAI and feedback on energy consumption. We briefly summarize both areas below. 

2.2 XAI technology 
XAI is a very active field of research and technological development. This becomes visible in several 
comprehensive literature review articles on that topic, which provide taxonomies of current XAI 
approaches (e.g., Adadi and Berrada, 2018; Anjomshoae et al., 2019; Barredo Arrieta et al., 2020). 
Explanatory methods can be classified according to several criteria, namely their compatibility (model-
specific vs. model-agnostic), the degree of interpretability (local vs. global), and whether ML models 
are directly interpretable (intrinsic) or require methods that analyse ML models after training (post-hoc). 
We concentrate on model-agnostic methods, which are mostly applied post-hoc and are pluggable on 
any ML model, which makes them independent of a particular class of ML algorithms. Within these 
group of model-agnostic methods, we focus on feature attribution methods that estimate the impact of 
features on predictions on a local level (i.e., the impact of each feature on each individual predicted 
instance). In the case of time-series prediction models, this capability allows to estimate the contribution 
of individual time periods for a given outcome. In this category, we focus on two methods that recent 
works (Slack et al., 2020) perceive as very relevant: 

- Deep Shapley Additive exPlanations (SHAP) was introduced by Lundberg and Lee (2017) and 
uses concepts from game theory for the predictor variable importance estimation. 

- Local Interpretable Model-Agnostic Explanations (LIME) introduces variations in the dataset 
(i.e., perturbation) and estimates how these affect the predictions of the black-box model by 
using a human-interpretable model, like linear regression (Ribeiro et al., 2016).  

Research has carried out comparisons of these methods (Alvarez Melis and Jaakkola, 2018; Schlegel et 
al., 2019) using datasets from several domains. We have built upon these procedures and evaluated both 
XAI methods in our study.  
Literature from the area of human computer interaction points to the importance of user studies to 
evaluate XAI visualizations (Abdul et al., 2018) and suggests to assess these visualizations with 
respective metrics on the comprehensibility and user preferences. Current XAI visualizations are, for 
example, criticized for being complex, target primarily ML-experts, and neglect a user perspective that 
would foster the understanding of the visualizations (Abdul et al., 2020; Kaur et al., 2020). Mohseni et 
al. (2020) develop a framework with design guidelines and evaluation methods to support the iterative 
design and evaluation loop of XAI visualizations. 

2.3 Automated consumer feedback on electricity consumption 
Feedback has received much attention in research and practice, because such behavioural intervention 
helps humans to overcome biases in their decision-making, thus it has the power to change human 
behaviour for the good (Allcott and Mullainathan, 2010). Feedback can lead to pro-ecologic behaviour 
(Klöckner, 2013) and can reduce energy use in the residential sector (Fischer, 2008; Karjalainen, 2011; 
Lu et al., 2016; Weiss et al., 2016) at comparable low cost (Benartzi et al., 2017). Behavioural research 
demonstrates that specific feedback to consumers, tailored to individuals, can lead to significant energy 
savings (Brülisauer et al., 2020; Tiefenbeck et al., 2016).  
A major obstacle in realizing such tailored feedback in practice lies in missing data when generating 
personalized messages or visualizations on scale (Hopf, 2019, p. 147; Tiefenbeck, 2017). Collecting 
such data in surveys or with energy audits is costly. To overcome this problem, research has analysed 
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electricity consumption time series data of private households with ML to extract the necessary 
information. One literature branch—the topic of non-intrusive appliances load monitoring—analyses 
consumption data of high frequencies (usually more than one measurement per minute) with the goal to 
detect single appliances (Hart, 1992; Zeifman and Roth, 2011), but such fine-grained data is usually not 
available in many households. Another branch of literature develops ML methods to detect more general 
household characteristics of residential households (Albert and Rajagopal, 2013; Beckel et al., 2014; 
Hopf, 2019; Hopf et al., 2018; Weigert et al., 2020). These approaches provide more viable aid to carry 
out feedback campaigns to many energy consumers. Results show, for example, that households with a 
single occupant can be identified with up to 81% accuracy, the type of the cooking facility with up to 
87%, and certain heating systems with up to 85%. Models with high predictive performance in these 
works belong to the category of black-box models. Although extracted information about household 
characteristics is helpful to make feedback more specific, energy experts still must formulate energy 
saving recommendations based on predicted data. XAI has a high potential to overcome this drawback. 

3 Research approach 
Our study developed and evaluated XAI visualizations. Based on these artefacts, our objective was to 
generalize experiences that contribute to the current debate on how to create effective XAI 
visualizations. Our research approach followed the guidelines of design science research in information 
systems (Hevner et al., 2004; Peffers et al., 2007). More precisely, we took up the Ivari’s (2015) second 
strategy to conduct design science research, that solves a specific problem (i.e., tailored feedback based 
on XAI) by building concrete IT artefacts in a specific context. From that we distil knowledge to address 
a class of problem (i.e., human-understandable visualizations of patterns in time-series data). 
Our design and evaluation efforts draw on two research areas, each of which brings substantial literature: 
We combined a technical perspective (i.e., XAI) and a domain perspective (i.e., feedback on electricity 
consumption) while pursuing our research, as we illustrate in Figure 1. We describe the first step (case 
selection and problem definition) and the second step (requirement elicitation and definition of design 
features) in this section, the technical implementation and their experimental evaluation in the following.  

 
Figure 1. Research approach. 

3.1 Case selection and problem definition 
ML applications require a sufficient amount of training data that consists of—in the case of predictive 
models—several predictor variables and ground truth data on the variable that should be predicted. 
Earlier works that analysed electricity consumption time series data (15-min or 30-min smart meter data) 
with ML for predicting household characteristics to support consumption feedback used datasets from 
North America (Albert and Rajagopal, 2013), Ireland (Beckel et al., 2014; Wang et al., 2018) and 
Switzerland (Hopf, 2019; Hopf et al., 2018). The largest dataset, which is also publicly available, stems 
from a smart meter trial from the Commission for Energy Regulation (2011) in Ireland and covers 30-
minute smart meter electricity consumption data on 76 weeks (July 2009 – December 2010) and survey 
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data for 4,232 households. The dataset also contains information on household characteristics (“ground 
truth data”). We selected this dataset for our study because it was the largest available dataset. 
We reviewed the survey data and selected those variables on household characteristics that (i) are related 
to energy-intense activities, (ii) could potentially help to develop XAI electricity consumption feedback, 
and (iii) could be detected with a comparably good predictive performance in earlier household 
characteristics prediction studies. We thus selected: Electric cooking (yes, no), Presence at home during 
typical days (yes, no), and Electric water heating (yes, no). For each of the household characteristics, 
we trained ML models that predicted the respective variable. We applied XAI to visualize the times of 
electricity use that the ML algorithm detected as relevant, to generate informative visualizations for 
electricity consumption feedback. Details on the implementations and performance results follow in 
Section 4. 

3.2 Design of XAI visualizations for feedback on electricity consumption 
We conducted a comprehensive literature review in which we identified 8 requirement categories for 
XAI visualizations and 17 requirement categories for electricity consumption feedback (details on this 
review and the detailed list of design requirements and features are listed in the Appendix). Based on 
this design knowledge, we developed five basic XAI visualizations. Each visualization can fulfil the 
design requirements to a certain degree. Figure 2 shows an example of each type of visualization.  

 
(a) SHAP diagram 

 
(b) Bar diagram 

 
(c) Line diagram 

 
(d) Polar diagram 

 
(e) Generated text 

Figure 2. XAI visualizations evaluated in our experiment. 

The first diagram is a standard visualization of the SHAP approach. We included this to represent a 
state-of-the-art visualization of XAI. Then, we adopted four illustrations that follow recommendations 
of the energy feedback literature. A line diagram and a bar diagram, which are the most frequent 
visualizations of electricity consumption feedback (Herrmann et al., 2018). Both tie in with the natural 
analogy of taking electricity consumption data from left to right using a timeline. We also considered a 
polar diagram that links to a clock analogy where 24 hours of consumption data are displayed in a circle. 
Although users seem to perceive the line and bar diagram more positively and understand them better 
than the polar diagram (Flora and Banerjee, 2014), we wanted to evaluate to what extent the additional 
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information from XAI on a clock analogy is understood by users. All diagrams contained a highlight in 
blue that indicated the period which was particularly relevant for the ML model decision to classify the 
household as the respective class (e.g., electric cooking). Finally, we considered a basic text description 
of the most relevant information from the ML models as a form of non-visualization. 

4 Technical implementation  
Our technical implementation1 that generated the electricity feedback artefacts consisted of two steps, 
as Figure 3 illustrates. In Step A, we created a ML prediction model that was trained to predict an energy 
consumption related variable for each household. We are not primarily interested in the predictions of 
this model, rather in the patterns that this model detects in the electricity consumption data. The analyses 
we did were to verify that our implementation follows the current state-of-the-art in ML modelling. Step 
B then applied XAI methods to extract and visualize times of electricity use that the ML model found 
relevant. We compared the two XAI methods and selected the most suitable one. The description of our 
technical implementation focuses on essential aspects to understand the generated feedback element 
artefacts due to the focus of this paper and the limited space available. 

 
Figure 3. Overview technical implementation and the comparisons of the ML algorithms (A) 

and the XAI methods (B). 

4.1 ML model implementation and comparison 
We considered three ML algorithms for the time series classification task. First, Random Forest 
(Breiman, 2001), an ensemble learner that combines multiple uncorrelated decision trees to obtain a 
well performing prediction in many real-world applications (Fernández-Delgado et al., 2014). Second, 
convolutional neural network (CNN), an approach from the field of deep learning. Previous studies 
found that CNN and Random Forest could detect household characteristics from electricity consumption 
smart meter data with good performance (Hopf, 2019; Wang et al., 2018), Third, the InceptionTime 
classifier (Ismail Fawaz et al., 2020, 2019), which combines an ensemble of five CNNs in that it 
parallelizes the convolutional layers. Ismail Fawaz et al. (2019) demonstrate that their approach achieves 
higher stability and prediction accuracy on time series data than other state-of-the-art classifiers. As an 
input, CNN and InceptionTime took each week of electricity consumption time series data together with 
labels for the respective household. Both algorithms can directly process image representations of time 
series data. For Random Forest, we follow earlier studies and extracted 93 predictor variables from the 
time series to reduce the dimensionality (Beckel et al., 2014; Hopf et al., 2018). 
We compared the three ML algorithms regarding their predictive performance for the three selected 
dependent variables and list the results together with statistics on the original data in Table 1. As 
performance metrics, we used accuracy (ACC), which is the percentage of correctly classified 
observations in the test sample, and the area under the receiver operating characteristic curve (AUC). 
Both metrics are well-known for ML model evaluation (Hastie et al., 2009). Whereas ACC is easy to 

 

 
1 The source code of our implementation is available at https://gitlab.rz.uni-bamberg.de/eesys-public/household-classification-
explainable-ai  for further use. 

https://gitlab.rz.uni-bamberg.de/eesys-public/household-classification-explainable-ai
https://gitlab.rz.uni-bamberg.de/eesys-public/household-classification-explainable-ai
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interpret, its values are biased by the class distributions. Therefore, ACC results of different variables 
cannot be compared. AUC can be used as an unbiased estimate of the predictive performance (Fawcett, 
2006). For the performance evaluation, we follow good practices of ML evaluation and apply 10-fold 
cross-validation (Hastie et al., 2009) with a random allocation of the samples to the ten folds.  

Variable 
Sample size Relative Freq.  

positive class 
InceptionTime CNN Random Forest 

Households Num. weeks ACC AUC ACC AUC ACC AUC 
Electric cooking 4,232  114,455 69.91% 0.72 0.67 0.72 0.61 0.70 0.69 
Presence at home during the day 1,310 27,949 56.95% 0.78 0.73 0.76 0.66 0.77 0.74 
Electric water heating 4,232  138,044 80.63% 0.63 0.62 0.60 0.59 0.62 0.63 

Table 1. Statistics and predictive performance of both ML algorithms for the three considered 
dependent variables. 

We took a conservative modelling approach and changed the standard parameters of the algorithms with 
only a few variations to avoid bad configuration at chance2. More extensive optimization of hyper-
parameters can certainly improve our results. Thus, the performance results lie within those of earlier 
studies, which used the same data set for the predictions of the cooking facility and achieved ACC 
between 0.69 and 0.71 with different non-deep-learning ML algorithms (Beckel et al., 2014), and 
between 0.739 and 0.766 (Wang et al., 2018), using CNN-based approaches. Wang et al. (2018), for 
example, used hyper-parameter tuning to optimize their performance.  

4.2 Implementation and comparison of the XAI methods 
To extract human-comprehensible visualizations from InceptionTime (the best performing prediction 
model in our analysis), we applied the XAI approaches SHAP and LIME. Both methods estimate the 
importance of certain predictor variables on the level of individual observations. In our case, each 
approach estimated which time span was particularly (ir)relevant to classify a household as electric 
cooking or not electric cooking. We compare both methods according to their faithfulness and stability, 
as suggested by Alvares Melis and Jaakkola (2018) and describe the evaluation procedures below. 
Faithfulness: “Interpretability methods should … generate meaningful explanations … [even in the case 
of] local perturbations of the input … adding minimal [amount of] noise to the input” (Alvarez Melis 
and Jaakkola, 2018, p. 7). To operationalize this criterion, we adopted Schlegel et al.’s (2019) approach 
and modified the time series input data, by blurring values of predictor variables that were identified by 
the XAI methods to be most relevant for the model3. When the predictor variables are truly relevant for 
the prediction, the outcome should change considerably with such a data modification. We measured 
the relative amount of prediction changes after having modified 50 randomly chosen households (see 
Table 2). 

Stability:  This approach measured the ability of an XAI method to determine similar predictor variables 
for similar classifications. In doing so, we exploited the property of the time series data and the presence 
of daily routines of humans like, e.g., cooking during the same times of the day. We measured how often 
the ML model considered the same time of the day on different days as important for the model. We 
computed this frequency using a random selection of 50 households and weeks (see Table 2). 
Based on the empirical analyses, we finally selected the variable electric cooking with the InceptionTime 
predictor and the SHAP explainer for our further study. The reasons were that these models showed a 

 

 
2 Our instance of InceptionTime used the parameters: Max. kernel size: 40, Depth: 6, Num. kernels: 32, Batch size: 64, Use 
Bottleneck: true, Use residual: true. For numeric parameters, we tested three alternatives, for the binary parameters both values. 
We selected the best performing setting based on AUC on a 20% sample of the data. Calculations for InceptionTime ran on 
Python Keras 2.2.4. For Random Forest, ntree=100 was used. The computations ran on Python using scikit-learn 0.19.1. 
3 The replacement was the deviation of the consumption measurement from the average consumption of the household in the 
opposite direction, as a zero consumption or negative consumption could be recognized by the ML algorithm as a special case. 
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comparable high predictive performance, and that the variable provided the most reasonable feedback 
(advice to energy users based on electric cooking allowed for more actionable insights than based on 
other variables). Furthermore, the stability and faithfulness for this variable were comparably high. 

 Faithfulness  
(relative number of predicted changes) 

Stability 
(relative number of non-unique time stamps) 

 SHAP LIME SHAP LIME 
Presence 0.24 0.22 0.32 0.28 
Water heating 0.38 0.26 0.35 0.31 
Cooking 0.3 0.24 0.42 0.35 

Table 2.  Comparison of the two XAI methods LIME and SHAP for the three selected household 
characteristics regarding the criteria faithfulness and stability. 

5 Experimental evaluation of the five visualizations 
We conducted an experimental evaluation of the five obtained visualizations. The experiment was 
carried out as an online survey and had two phases: The first phase focused on the isolated evaluation 
of each visualization. We collected subjective (self-reported) and behavioural measures to evaluate the 
visualizations. In the second phase of the experiment, we used a choice-based conjoint to measure user 
preferences on the visualizations. Before the experiments started, we asked for sociodemographic 
variables. In total, the online experiment took 17:16 minutes on average (13:30 minutes standard 
deviation). 

5.1 Sample description 
We promoted the survey among students of our institution and used several online channels to attract 
participants outside of the university context. Our sample is balanced regarding the gender (51.32% 
female, 48.68% male, 0% diverse / not given), but it has a bias towards younger participants with higher 
education (82.9% are younger than 35; in the German population, only 36.7% are in this age category), 
likely because many participants were students from the university. However, the share of participants 
which were employed (not marginally employed) is 44.1% which is similar to the share of employed 
citizen and civil servants in Germany, which is 45.0% (DESTATIS, 2020, p. 39). Participants lived more 
frequently in rented homes (69.1%) than the population (48.9%), according to Eurostat (2020), but the 
number of people living in the households was similar to the German average (r(3) = .96, p = .011). 

5.2 First phase: Isolated evaluation of the visualizations 
The first phase of the experiment evaluated the comprehensibility of the five electricity feedback 
visualizations (see Figure 2). We first describe the experimental setup and then analyse the results. 

5.2.1 Experimental setup 
We carried out four reading and memory tasks with the participants, each time with one randomly 
selected visualization out of the five that we generated. Each participant saw each visualization only 
once. Reading and memory tasks are common for evaluating XAI visualizations (Abdul et al., 2020). 
We instructed participants to study (and memorize) the energy feedback illustration and informed them 
that the illustration would not be shown when answering subsequent questions. In total, we collected 
eight variables in the first part of the experiment (see Table 3).  

The memorization task measured their objective understanding (Abdul et al., 2020; Cheng et al., 2019). 
For that, we asked them to rate three statements regarding the visualization as correct or incorrect. The 
statements had comparable length (Yan and Tourangeau, 2008) and were randomly selected from three 
preformulated sets of statements to avoid memory effects in the series of tasks. Each of the three 
statement sets consisted of two correct and two incorrect statements. The sets covered the topics (1) 
electricity consumption at specific times, (2) the prediction made by machine learning, and (3) the model 
explanation. Participants could also select an “I don’t know” alternative for each statement. After the 
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memorization task, participants indicated their mental effort for completing the task (Paas et al., 2008) 
on a seven point Likert scale. Finally, they indicated their subjective understanding of the visualization 
(Cheng et al., 2019) in terms of a German school grade from “1” (best) to “6” (insufficient). All used 
survey instruments can be requested from the authors. In addition to the self-reported data, we measured 
the reading and completion time of the tasks to collect objective behavioural data. In the online system, 
backward navigation was disabled, i.e., after the participants have seen the visualization and accessed 
the page with the follow-up questions, they could no longer see the visualization. In this way we ensured 
that participants had to answer the questions from their memory.  

5.2.2 Statistical analysis and results 
We analysed the results of the first experiment with an ordinary least squares linear regression. For each 
evaluation metric that we collected during the first phase of our experiment, we estimated one model 
(see results in Table 4). The models follow the specification 𝑌𝑌𝑖𝑖  =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑖𝑖  +  𝛽𝛽2 ∗ 𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖  +
 𝛽𝛽3 ∗ 𝐸𝐸𝐸𝐸𝑢𝑢𝑖𝑖  + 𝜖𝜖𝑖𝑖. Y was the dependent variable (see Table 3, variables 1-6) that we collected in one of 
the four memorization experiments that each participant completed. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is a categorical variable 
related to the visualization that was displayed to the participant. We used a dummy-encoding to represent 

Variable Description Values 
Mean (Std. dev.) 

or frequency 
1 ReadingTime The time (in seconds) each participant spent on reading the visualization. 

We compute the natural logarithm from the measurements to reduce the 
positive skew of the empirical distribution. 

ℝ+ 3.47 (0.69) 

2 AnswerTime The time (in seconds) each participant spent on answering the questions 
for the visualization. We also computed the natural logarithm. 

ℝ+ 3.13 (0.63) 

3 MemTaskRight Number of correct answers in the memorization task.  [0,3] ∈ ℕ  2.05 (0.89) 
4 MemTaskDontKnow Number of “I don’t know” answers in the memorization task. [0,3] ∈ ℕ  
5 MentalEffort Self-reported mental effort during completing the recall experiments, on 

a seven-point Likert scale. 
[1,7] ∈ ℕ 3.67 (1.38) 

6 SchoolGrade Self-reported school grade participants estimated on their result on the 
recall tasks. 

[1,6] ∈ ℕ 3.91 (1.19) 

7 Age The age reported by survey participants. ℝ+ 30.2 (10.6) 
8 Education This binary variable state whether the study participant gained a general 

qualification for university entrance in Germany or a lower education 
degree. 

high school 
diploma 

0.875 (n=133) 

other 0.125 (n=19) 

Table 3.  Overview of variables raised in the experiment and used in the statistical analysis. 

 
 ReadingTime AnswerTime MemTaskRight MemTaskDontKnow MentalEffort SchoolGrade 
(Intercept) 3.51  *** 2.80 *** 1.72  *** 0.60  *** 3.31 *** 3.37 *** 
 (0.15)  (0.14)  (0.18)  (0.16)  (0.26)  (0.25)  
VisualLine 0.07  0.08  0.34  ** -0.26 * 0.44 * -0.37 * 
 (0.09)  (0.08)  (0.12)  (0.10)  (0.17)  (0.15)  
VisualBar -0.02  0.08  0.20  -0.13  0.32  -0.20  
 (0.09)  (0.08)  (0.12)  (0.11)  (0.18)  (0.16)  
VisualPolar 0.18  0.11  0.06  -0.05  0.29  -0.04  
 (0.10)  (0.09)  (0.13)  (0.12)  (0.19)  (0.17)  
VisualText -0.14  0.15 * 0.19  -0.25 * 0.54 *** -0.36 * 
 (0.08)  (0.07)  (0.11)  (0.10)  (0.16)  (0.14)  
Age 0.01 * 0.02  *** 0.01 * -0.00  0.00  0.00  
 (0.00)  (0.00)  (0.00)  (0.00)  (0.01)  (0.00)  
EduHIGH -0.27 ** -0.26  ** -0.05  0.05  0.00  -0.21  
 (0.10)  (0.09)  (0.11)  (0.10)  (0.15)  (0.15)  
R^2 0.06  0.11  0.03  0.02  0.02  0.02  
Adj. R^2 0.05  0.10  0.02  0.01  0.01  0.01  
Num. obs. 608  608  608  608  608  608  
Asterisks indicate statistical significance (*** 𝑝𝑝 < 0.001; ** 𝑝𝑝 < 0.01; * 𝑝𝑝 < 0.05), standard errors are in parentheses 

Table 4. Statistical evaluation of the first experimental phase. 
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the five different visualizations and choose SHAP as the reference level, given that it is the state-of-the-
art visualization from the chosen XAI approach. 𝐴𝐴𝐴𝐴𝐴𝐴 is a numeric variable of the participants’ age in 
years and 𝐸𝐸𝐸𝐸𝐸𝐸 is a dummy variable with the value 1 for high school diploma and 0 for a lower degree. 
We used robust standard errors (White, 1980; Zeileis, 2004) and checked for homoscedasticity of the 
errors 𝜖𝜖.  
In general, the reading and answer times of the different visualizations display little difference. 
Considering the other metrics, the SHAP illustration does not perform well. All other visualizations lead 
to higher task performance (number of right answers and number of responses with “I don’t know”). 
For the line chart and the text display, the differences are statistically significant. This performance is 
confirmed by the subjective ratings with the school grade (lower numbers means better results). 
Interestingly, the mental effort for the SHAP illustration was reported lower than for the others, likely 
because of more “I don’t know” answers. 

5.3 Second phase: Choice-based conjoint 
The conjoint experiment allowed us to estimate user preferences regarding the visualizations. The 
method originates from marketing research and is increasingly used in information systems research, 
particularly to evaluate the design of information systems, as Naous & Legner (2017) found in their 
literature review. We follow Naous & Legner’s (2017) framework of conducting conjoint experiments 
in that we conducted a choice-based conjoint (CBC) in which the study participants had to choose 
between two alternative feedback elements. 

5.3.1 Experimental setup 
Our main interest in this experiment phase was to find out which visualization the study participants 
preferred. Following recommendations for conducting conjoint experiments (Backhaus et al., 2015; 
Naous and Legner, 2017), we tried to make the choice options more realistic and at the same time 
implement further design requirements in the field of energy feedback. Specifically, we varied the 
visualizations with an additional explanatory text, energy saving tips and a chatbot frame. The energy 
saving tip was included because earlier literature from energy feedback underlined the relevance of such 
feedback devices. We considered two variants of tips (Vasseur et al., 2019): A curtailment tip (CMT) 
that suggests thinking about a repetitive, habitual change to reduce its electricity consumption, and an 
efficiency tip (ET) that recommends lowering the household’s electricity demand by making a one-time 
investment. In total, the variations of the presented choices varied in four stimuli (visualization types, 
existence of explanatory text, type of energy saving tip, and chatbot). We used a full profile approach 
in which all possible combinations of the stimuli (5 ⋅ 2 ⋅ 2 ⋅ 2 = 40 variants in total) were considered. 
From all possible combinations, five choice sets were created for each study participant. Each choice 
set contained two randomly drawn variants together with a non-option as a third choice. The none-option 
makes the choice experiment more realistic (Vermeulen et al., 2008), because forced choice situations 
are avoided (Backhaus et al., 2015, p. 181). 

5.3.2 Statistical analysis and results 
To evaluate the conjoint experiment, we estimate a logistic regression with maximum-likelihood method 
to model the choices. The model has the specification 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) = �1 + exp�−𝑥𝑥𝑖𝑖⊤𝜷𝜷��

−1 with the linear 
predictor 𝑥𝑥𝑖𝑖⊤𝜷𝜷 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑖𝑖 + 𝛽𝛽2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽3 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖 + 𝛽𝛽4 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖 + 𝛽𝛽5 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑖𝑖 + 𝜖𝜖𝑖𝑖. 
𝑌𝑌 is the dependent variable that indicates whether an option was selected. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is a categorical 
variable with the visualization that was displayed to the participant. The existence of an explainable text 
was a separate characteristic and represented with the variable 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. Further characteristics are if the 
visualization was embedded in a chatbot environment (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and the type of energy saving tip was 
displayed (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). As usual in conjoint analyses, model the stimuli variables with effect-encoding. Only 
the variable (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) that specifies the no-option is encoded as a dummy (Vermeulen et al., 2008).  
Table 5 shows the estimated model (the column Estimate contains the log odds) details together with 
the odds ratios. Users preferred the Line and the Bar visualization, given that both have an odds ratio of 
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2.64 and 2.7 respectively, which means that the chance of selection for these visualizations is 2.64 (2.7) 
times more likely than for the others. The SHAP illustration, which is the response category in the 
regression analysis, must be computed by summarizing all other estimates, has only an odds ratio of 
0.29, so participants strongly prefer the line or bar visualization instead of the SHAP illustration. 
 Estimate Std. Error z-value p-value  Odds ratio 
VisualNo -0.42 (0.11) -3.862 <0.001 *** 0.66 
VisualLine 0.97 (0.12) 8.242 <0.001 *** 2.64 
VisualBar 0.99 (0.11) 8.772 <0.001 *** 2.70 
VisualPolar -0.32 (0.11) -2.943 0.003 ** 0.73 
VisualSHAP      0.29 
Text_No -0.10 (0.06) -1.752 0.080  0.91 
Chatbot_No 0.03 (0.06) 0.550 0.582  1.03 
Tip_CM 0.18 (0.06) 3.179 0.015 ** 1.20 
None -1.66 (0.10) -16.630 <0.001 *** 0.19 
AIC 2498.82 

Asterisks indicate statistical significance  
(*** 𝑝𝑝 < 0.001; ** 𝑝𝑝 < 0.01; * 𝑝𝑝 < 0.05),  

standard errors are in parentheses 

BIC 2544.56 
Log Likelihood -1241.41 
Deviance 2482.82 
Num. obs. 2247 

Table 5. Logistic regression results of the conjoint analysis. 

6 Discussion and Research Implications 
Our experimental evaluation led to two findings that we outline in Table 6. This section discusses them, 
names limitations, and formulates the implications as well as future research needs for the field of 
electricity consumption feedback and human-AI interfaces.  

Finding Implication for consumption 
feedback 

Implication for human-AI interfaces 

XAI technology can be used to 
develop tailored electricity 
consumption feedback for end-users 

- New class of feedback elements 
based on XAI that display novel 
patterns in the data  

- Feedback can be more tailored to 
individuals 

- XAI can be a support to realize 
augmented reality, where humans 
are supported by ML 

- Novel visualizations highlight 
patterns in time series data 

The SHAP visualization has not 
performed well in comparison to 
others (especially the line diagram) 

- Integrate XAI elements into 
existing feedback elements 

- (Re-)align the design of human-AI 
interfaces with known standards 
(e.g., time series visualization) 

Table 6. Overview to findings and implications from our study. 

6.1 Summary of the major findings 
Our experiment provides two important findings: First, our study demonstrated that XAI technology can 
help to develop tailored electricity consumption feedback. Our experiments showed that users can 
assimilate novel insights from time series data with them. The artifacts created in this study realize many 
requirements of XAI or feedback visualizations from earlier research. Our study further demonstrated 
that XAI-based electricity consumption feedback can constitute a new class of feedback, which can also 
be transferred to other domains (e.g., heating, anticipatory driving). Second, the SHAP diagram, a state-
or-the-art visualisation in XAI, did not perform well compared to the other tested visualizations. The 
line visualization, in particular, performed better in both phases of the experiment. We suppose that this 
is due to two reasons: a) Given the natural analogy that depicts time series data on a timeline from left 
to right, this illustration might be easier to comprehend by humans; b) it leverages already known 
elements can help non-expert users (i.e., without prior domain-knowledge) to make sense of unfamiliar 
visualizations (Lee et al., 2016). The text, generated by XAI, had a better comprehensibility by 
participants but was less preferred in the conjoint experiment. From the second finding we conclude that 
results of XAI should be integrated into visualizations that follow known standards to foster receptivity 
by humans. 
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6.2 Limitations 
Our study is one of the early investigations of XAI applications in information systems research and, to 
the best of our knowledge, the first application of state-of-the-art XAI technology in the area of 
residential electricity consumption to develop tailored feedback for consumers. Given this novelty and 
the broad scope of the study, we identified four limitations. First, a common problem in XAI evaluation 
is that ground truth for the explanations—obtained by ML—is missing. Gathering such data would be 
expensive, but this would significantly help to improve the approaches. Second, we could not clearly 
identify whether the variance in performance of the visualizations results from the visualization itself or 
if it results from the fact that detected pattern are not fully clear to the user. We had to make 
simplifications in our experiment, for example, we could not capture all potential user preferences (e.g., 
colour preferences, aesthetic design), and—due to the already long online survey—we have not 
controlled for graph literacy, which is recommended by Abdul et al. (2020). In addition, we did not 
control for energy literacy, while prior knowledge may have an impact on how users make sense of the 
presented visualizations (Herrmann et al., 2018; Quintal et al., 2016). Third, energy consumption related 
statements that we could generate from the available dataset (i.e., electric cooking) had only limited 
relevance in practice, because feedback on the cooking type, or activities related to cooking are hard to 
change behaviours. Future research could collect data on human activities that have more actionable 
impact on the consumption behaviour (e.g., standby consumption of appliances or old devices). Fourth, 
the experimental evaluation only considers SHAP based XAI visualizations. We focused on SHAP 
because it performed best in terms of stability and faithfulness for the case at hand. Nevertheless, future 
research could involve additional visualizations based on other XAI methods such as LIME.  

6.3 Future research 
Considering the two major findings and the three limitations of our study, we identify the following five 
areas for future research. 
First, the patterns that are detected by ML and visualized by XAI should be validated with respect to 
their meaningfulness— separately to the visualization. Future studies could either investigate this with 
ground truth data, for example, collecting data on the true pattern of electric cooking in our case (e.g., 
with interviews, household surveys, or energy audits). Studies could also approach this using synthetic 
data where the pattern are known upfront, as for example Tonekaboni et al. (2020) did.  
Second, the visualization variants should be evaluated independent of the meaningfulness of the detected 
pattern. Here, our experimental setting can be replicated using visualization of pattern that are known 
to be correct. This can reduce variance in the collected variables and should follow Abdul et al. (2020).  
Third, the efficacy of electricity consumption feedback should be validated in field trials that measure 
the true conservation of resources. Future studies can, for example, use earlier studies from electricity 
(Allcott, 2011) and water consumption feedback (Tiefenbeck et al., 2016) as a blueprint to evaluate the 
novel XAI-based feedback visualizations.  
Fourth, several other methods for time series data processing and XAI exist, which are steadily improved 
and novel ones suggested. Our research design can be extended with alternative technical approaches. 
Fifth, further research could focus on feedback elements that show what type of activity contributes how 
much to the overall electricity consumption. The new XAI explanations could be embedded in 
interactive energy feedback displays that already depict the main energy consuming appliances in 
specific time-of-use frames (Costanza et al., 2012). 

7 Conclusion  
Our study evaluated five visualizations generated by current ML and XAI methods to give consumers 
feedback on their electricity consumption. We selected residential electricity consumption as our study 
context because reducing energy demand is a societal challenge. Yet, the energy consumption context 
is also an interesting study site from an information systems perspective, because extensive time series 
data is available, which contains complex patterns that may not be easy to recognize by humans. Given 
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the recent calls for empirical research to get a better understanding on how to integrate AI in human 
workplaces (Lyytinen et al., 2020; Rai et al., 2019), and the importance of AI technology to support 
humans by augmenting reality rather than replacing humans by AI (Raisch and Krakowski, 2020), our 
study demonstrated the power of XAI methods in human-AI interface design and highlights areas of 
further research and development. 

8 Appendix: Requirements and design features for XAI-based 
feedback on electricity consumption 

We reviewed the related research fields to identify design requirements for XAI-based feedback on 
electricity consumption. As a starting point, we chose five XAI literature review articles (Abdul et al., 
2018; Adadi and Berrada, 2018; Anjomshoae et al., 2019; Miller, 2019; Mohseni et al., 2020) and 
articles that summarize general feedback research (Cianci et al., 2010; Mumm and Mutlu, 2011; van 
Duijvenvoorde et al., 2008), pro-ecological behaviour (Klöckner, 2013), energy consumption feedback 
(Lu et al., 2016), and electricity feedback (Benartzi et al., 2017; Fischer, 2008; Karjalainen, 2011; Weiss 
et al., 2016). With these articles, we conducted a forward and backward search (we reviewed all 
references in the review articles and all citations of them in Google Scholar) in order to complete our 
picture on the topics. In total, we reviewed the metadata of 869 referenced articles in the XAI papers 
(376 in the electricity feedback papers) and 1,124 articles that cited these papers (2,870 for feedback). 
In this review, we selected papers that contained requirements for the design of novel feedback elements. 
In the end, we found ten additional articles for XAI visualizations and 16 additional articles for feedback 
regarding electricity use in addition to those that we used as the starting point of our review. We list the 
identified requirements and their realization in the visualizations in Table 7.  

Category Requirement named in literature 
XAI visualizations Tips Chat

-bot LD BD PD SHD TX CMT ET 
1. Requirements for XAI visualizations 
1.1. Information content Why / why not explanations       

   

Display of few representative instances for why /    
   why not explanations 

     
   

Details about causal relations (selective  
   explanations) 

     
   

Input variable information (value and relevance of  
   the variables) 

     
   

No display of accuracy information      
   

No possibilities to modify the model in the case  
   of high accuracy 

     
   

1.2. User interface Combination of text and image elements          
Adequate degree of user interaction      

  
 

2. Requirements for electricity consumption feedback 
2.1. Information content Data source (actually measured el. consumption)        

 

Unit of measurement (kWh cost)        
 

Relation to time of usage        
 

Granularity related to activities        
 

Historical comparison with previous time units      
   

Descriptive, normative comparison with the average         
 

Individualized energy saving tips        
 

2.2 Multimodal feedback Combination of feedback types        
 

2.3. Specific formats Bar diagram for historical comparison      
   

Bar diagram for normative comparison        
 

Grading scale for injunctive normative comparison        
 

2.4. Colour usage Use of diagram colours that are preferred by users  
   (e.g., traffic light indicators) 

       
 

Colours that activate associations (e.g., red, green)        
 

Colours without associations (e.g., black, white)        
 

Text colours (black text on white background)        
 

2.5. Interaction design Evaluative feedback         
Interaction with virtual agent         

LD: line diagram, BD: bar diagram, PD: polar diagram, SHD: SHAP diagram, TX: text, CMT: curtailment tip, ET: efficiency tip 

Table 7. Requirements for XAI and electricity consumption feedback; symbols indicate their 
realization (“” realized, “” partly realized, “” not realized) to what extent our 
visualizations. 



XAI for electricity consumption feedback 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 14 

References 
Abbasi, A., Albrecht, C., Vance, A., Hansen, J., 2012. Metafraud: A Meta-Learning Framework for 

Detecting Financial Fraud. MIS Q. 36, 1293-A12. 

Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M., 2018. Trends and Trajectories for 
Explainable, Accountable and Intelligible Systems: An HCI Research Agenda, in: Proceedings 
of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18. Association 
for Computing Machinery, New York, NY, USA, pp. 1–18. 
https://doi.org/10.1145/3173574.3174156 

Abdul, A., von der Weth, C., Kankanhalli, M., Lim, B.Y., 2020. COGAM: Measuring and Moderating 
Cognitive Load in Machine Learning Model Explanations, in: Proceedings of the 2020 CHI 
Conference on Human Factors in Computing Systems, CHI ’20. Association for Computing 
Machinery, New York, NY, USA, pp. 1–14. https://doi.org/10.1145/3313831.3376615 

Adadi, A., Berrada, M., 2018. Peeking Inside the Black-Box: A Survey on Explainable Artificial 
Intelligence (XAI). IEEE Access 6, 52138–52160. 
https://doi.org/10.1109/ACCESS.2018.2870052 

Albert, A., Rajagopal, R., 2013. Smart Meter Driven Segmentation: What Your Consumption Says 
About You. IEEE Trans. Power Syst. 28, 4019–4030. 

Allcott, H., 2011. Social norms and energy conservation. J. Public Econ., Special Issue: The Role of 
Firms in Tax Systems 95, 1082–1095. https://doi.org/10.1016/j.jpubeco.2011.03.003 

Allcott, H., Mullainathan, S., 2010. Behavior and energy policy. Science 327, 1204–1205. 

Alvarez Melis, D., Jaakkola, T., 2018. Towards Robust Interpretability with Self-Explaining Neural 
Networks, in: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, 
R. (Eds.), Advances in Neural Information Processing Systems 31. Curran Associates, Inc., pp. 
7775–7784. 

Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K., 2019. Explainable Agents and Robots: Results 
from a Systematic Literature Review, in: Proceedings of the 18th International Conference on 
Autonomous Agents and MultiAgent Systems (AAMAS) 2019. Montreal, Canada, p. 13. 

Backhaus, K., Erichson, B., Weiber, R., 2015. Auswahlbasierte Conjoint- Analyse, in: Backhaus, K., 
Erichson, B., Weiber, R. (Eds.), Fortgeschrittene Multivariate Analysemethoden: Eine 
anwendungsorientierte Einführung. Springer, Berlin, Heidelberg, pp. 175–292. 
https://doi.org/10.1007/978-3-662-46087-0_5 

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., 
Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., Herrera, F., 2020. Explainable Artificial 
Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. 
Inf. Fusion 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012 

Beckel, C., Sadamori, L., Staake, T., Santini, S., 2014. Revealing household characteristics from smart 
meter data. Energy 78, 397–410. 

Benartzi, S., Beshears, J., Milkman, K.L., Sunstein, C.R., Thaler, R.H., Shankar, M., Tucker-Ray, W., 
Congdon, W.J., Galing, S., 2017. Should Governments Invest More in Nudging? Psychol. Sci. 
28, 1041–1055. https://doi.org/10.1177/0956797617702501 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 

Brülisauer, M., Goette, L., Jiang, Z., Schmitz, J., Schubert, R., 2020. Appliance-specific feedback and 
social comparisons: Evidence from a field experiment on energy conservation. Energy Policy 
145, 111742. https://doi.org/10.1016/j.enpol.2020.111742 



XAI for electricity consumption feedback 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 15 

Cheng, H.-F., Wang, R., Zhang, Z., O’Connell, F., Gray, T., Harper, F.M., Zhu, H., 2019. Explaining 
Decision-Making Algorithms through UI: Strategies to Help Non-Expert Stakeholders, in: 
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems  - CHI ’19. 
Presented at the the 2019 CHI Conference, ACM Press, Glasgow, Scotland Uk, pp. 1–12. 
https://doi.org/10.1145/3290605.3300789 

Cianci, A.M., Schaubroeck, J.M., McGill, G.A., 2010. Achievement Goals, Feedback, and Task 
Performance. Hum. Perform. 23, 131–154. https://doi.org/10.1080/08959281003621687 

Commission for Energy Regulation, 2011. Electricity Smart Metering Customer Behaviour Trials 
(CBT) Findings Report (Information Paper No. CER11080a). 

Coombs, C., Hislop, D., Taneva, S.K., Barnard, S., 2020. The strategic impacts of Intelligent 
Automation for knowledge and service work: An interdisciplinary review. J. Strateg. Inf. Syst. 
101600. https://doi.org/10.1016/j.jsis.2020.101600 

Costanza, E., Ramchurn, S.D., Jennings, N.R., 2012. Understanding domestic energy consumption 
through interactive visualisation: a field study, in: Proceedings of the 2012 ACM Conference 
on Ubiquitous Computing, UbiComp ’12. Association for Computing Machinery, New York, 
NY, USA, pp. 216–225. https://doi.org/10.1145/2370216.2370251 

DESTATIS, 2020. Bevölkerung und Erwerbstätigkeit - Haushalte und Familien Ergebnisse des 
Mikrozensus (No. 2010300197004), Fachserie 1, Reihe 3. German Federal Statistical Office. 

Dourish, P., 2016. Algorithms and their others: Algorithmic culture in context. Big Data Soc. 3, 
205395171666512. https://doi.org/10.1177/2053951716665128 

Eurostat, 2020. Distribution of the population by housing ownership, household type and income group 
- EU-SILC survey (Statistical data), Income and living conditions (ilc). Eurostat, the statistical 
office of the European Union, Brussels, Belgium. 

Faraj, S., Pachidi, S., Sayegh, K., 2018. Working and organizing in the age of the learning algorithm. 
Inf. Organ. 28, 62–70. https://doi.org/10.1016/j.infoandorg.2018.02.005 

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874. 

Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 2014. Do we need hundreds of classifiers 
to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181. 

Fischer, C., 2008. Feedback on household electricity consumption: a tool for saving energy? Energy 
Effic. 1, 79–104. 

Flora, J.A., Banerjee, B., 2014. Energy Graph Feedback: Attention, Cognition and Behavior Intentions, 
in: Marcus, A. (Ed.), Design, User Experience, and Usability. User Experience Design for 
Everyday Life Applications and Services, Lecture Notes in Computer Science. Springer 
International Publishing, Cham, pp. 520–529. https://doi.org/10.1007/978-3-319-07635-5_50 

Frey, C.B., Osborne, M.A., 2017. The future of employment: How susceptible are jobs to 
computerisation? Technol. Forecast. Soc. Change 114, 254–280. 
https://doi.org/10.1016/j.techfore.2016.08.019 

Grønsund, T., Aanestad, M., 2020. Augmenting the algorithm: Emerging human-in-the-loop work 
configurations. J. Strateg. Inf. Syst. 101614. https://doi.org/10.1016/j.jsis.2020.101614 

Hart, G.W., 1992. Nonintrusive appliance load monitoring. Proc. IEEE 80, 1870–1891. 
https://doi.org/10.1109/5.192069 

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning, Springer Series in 
Statistics. Springer, New York, NY. 



XAI for electricity consumption feedback 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 16 

Herrmann, M.R., Brumby, D.P., Oreszczyn, T., 2018. Watts your usage? A field study of householders’ 
literacy for residential electricity data. Energy Effic. 11, 1703–1719. 
https://doi.org/10.1007/s12053-017-9555-y 

Hevner, A.R., March, S.T., Park, T., Ram, S., 2004. Design Science in Information Systems Research. 
MIS Q. 28, 75–105. 

Hopf, K., 2019. Predictive Analytics for Energy Efficiency and Energy Retailing, 1st ed, Contributions 
of the Faculty Information Systems and Applied Computer Sciences of the Otto-Friedrich-
University Bamberg. University of Bamberg, Bamberg. 

Hopf, K., Sodenkamp, M., Staake, T., 2018. Enhancing energy efficiency in the residential sector with 
smart meter data analytics. Electron. Mark. 28. https://doi.org/10.1007/s12525-018-0290-9 

Iivari, J., 2015. Distinguishing and contrasting two strategies for design science research. Eur. J. Inf. 
Syst. 24, 107–115. https://doi.org/10.1057/ejis.2013.35 

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A., 2019. Deep learning for time 
series classification: a review. Data Min. Knowl. Discov. 33, 917–963. 
https://doi.org/10.1007/s10618-019-00619-1 

Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber, J., Webb, G.I., 
Idoumghar, L., Muller, P.-A., Petitjean, F., 2020. InceptionTime: Finding AlexNet for time 
series classification. Data Min. Knowl. Discov. 34, 1936–1962. https://doi.org/10.1007/s10618-
020-00710-y 

Karjalainen, S., 2011. Consumer preferences for feedback on household electricity consumption. Energy 
Build. 43, 458–467. https://doi.org/10.1016/j.enbuild.2010.10.010 

Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J., 2020. Interpreting 
Interpretability: Understanding Data Scientists’ Use of Interpretability Tools for Machine 
Learning, in: Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems. Presented at the CHI ’20: CHI Conference on Human Factors in Computing Systems, 
ACM, Honolulu HI USA, pp. 1–14. https://doi.org/10.1145/3313831.3376219 

Klöckner, C.A., 2013. A comprehensive model of the psychology of environmental behaviour—A meta-
analysis. Glob. Environ. Change 23, 1028–1038. 
https://doi.org/10.1016/j.gloenvcha.2013.05.014 

Kühl, N., Lobana, J., Meske, C., 2019. Do you comply with AI? — Personalized explanations of learning 
algorithms and their impact on employees’ compliance behavior, in: ICIS 2019 Paper-a-Thon. 
Presented at the 40th International Conference on Information Systems (ICIS), AIS electronic 
library, Munich, Germany. 

Lee, S., Kim, S., Hung, Y., Lam, H., Kang, Y., Yi, J.S., 2016. How do People Make Sense of Unfamiliar 
Visualizations?: A Grounded Model of Novice’s Information Visualization Sensemaking. IEEE 
Trans. Vis. Comput. Graph. 22, 499–508. https://doi.org/10.1109/TVCG.2015.2467195 

Lu, S., Ham, J., Midden, C., 2016. The influence of color association strength and consistency on ease 
of processing of ambient lighting feedback. J. Environ. Psychol. 47, 204–212. 
https://doi.org/10.1016/j.jenvp.2016.06.005 

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions, in: Proceedings 
of the 31st International Conference on Neural Information Processing Systems, NIPS’17. 
Curran Associates Inc., Red Hook, NY, USA, pp. 4768–4777. 

Lyytinen, K., Nickerson, J.V., King, J.L., 2020. Metahuman systems = humans + machines that learn. 
J. Inf. Technol. 0268396220915917. https://doi.org/10.1177/0268396220915917 



XAI for electricity consumption feedback 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 17 

McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, 
M., Corrado, G.C., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F.J., Halling-Brown, 
M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C.J., King, D., Ledsam, J.R., 
Melnick, D., Mostofi, H., Peng, L., Reicher, J.J., Romera-Paredes, B., Sidebottom, R., 
Suleyman, M., Tse, D., Young, K.C., Fauw, J.D., Shetty, S., 2020. International evaluation of 
an AI system for breast cancer screening. Nature 577, 89–94. https://doi.org/10.1038/s41586-
019-1799-6 

Miller, T., 2019. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 
267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007 

Mohseni, S., Zarei, N., Ragan, E.D., 2020. A Multidisciplinary Survey and Framework for Design and 
Evaluation of Explainable AI Systems. ArXiv181111839 Cs. 

Mumm, J., Mutlu, B., 2011. Designing motivational agents: The role of praise, social comparison, and 
embodiment in computer feedback. Comput. Hum. Behav. 27, 1643–1650. 
https://doi.org/10.1016/j.chb.2011.02.002 

Naous, D., Legner, C., 2017. Leveraging Market Research Techniques in IS – A Review of Conjoint 
Analysis in IS Research, in: ICIS 2017 Proceedings. Presented at the 38. International 
Conference on Information Systems (ICIS), AIS electronic library, Seoul, South Korea. 

Nourani, M., Kabir, S., Mohseni, S., Ragan, E.D., 2019. The Effects of Meaningful and Meaningless 
Explanations on Trust and Perceived System Accuracy in Intelligent Systems, in: Proceedings 
of the 33rd AAAI Conference on Artificial Intelli-Gence. Presented at the 33rd AAAI 
Conference on Artificial Intelli-gence, AAAI Press, Paolo Alto, pp. 97–105. 

Paas, F., Ayres, P., Pachman, M., 2008. Assessment of cognitive load in multimedia learning. Recent 
Innov. Educ. Technol. Facil. Stud. Learn. Inf. Age Publ. Inc Charlotte NC 11–35. 

Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S., 2007. A Design Science Research 
Methodology for Information Systems Research. J. Manag. Inf. Syst. 24, 45–77. 
https://doi.org/10.2753/MIS0742-1222240302 

Quintal, F., Jorge, C., Nisi, V., Nunes, N., 2016. Watt-I-See: A Tangible Visualization of Energy, in: 
Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI ’16. 
Association for Computing Machinery, New York, NY, USA, pp. 120–127. 
https://doi.org/10.1145/2909132.2909270 

Rai, A., Constantinides, P., Sarker, S., 2019. Editor’s Comments:  Next-Generation Digital Platforms:  
Toward Human–AI Hybrids. Manag. Inf. Syst. Q. 43, iii–ix. 

Raisch, S., Krakowski, S., 2020. Artificial Intelligence and Management: The Automation-
Augmentation Paradox. Acad. Manage. Rev. https://doi.org/10.5465/2018.0072 

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “Why Should I Trust You?”: Explaining the Predictions of 
Any Classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, KDD ’16. Association for Computing Machinery, New 
York, NY, USA, pp. 1135–1144. https://doi.org/10.1145/2939672.2939778 

Sarker, S., Chatterjee, S., Xiao, X., Elbanna, A., 2019. The Sociotechnical Axis of Cohesion for the IS 
Discipline:  Its Historical Legacy and its Continued Relevance. Manag. Inf. Syst. Q. 43, 695–
719. 

Satell, G., Sutton, J., 2019. We Need AI That Is Explainable, Auditable, and Transparent. Harv. Bus. 
Rev. Digit. Artic. 2–5. 

Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A., 2019. Towards A Rigorous Evaluation 
Of XAI Methods On Time Series, in: 2019 IEEE/CVF International Conference on Computer 
Vision Workshop (ICCVW). Presented at the 2019 IEEE/CVF International Conference on 



XAI for electricity consumption feedback 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 18 

Computer Vision Workshop (ICCVW), pp. 4197–4201. 
https://doi.org/10.1109/ICCVW.2019.00516 

Schneider, J., Handali, J., 2019. Personalized Explanation for Machine Learning: A Conceptualization, 
in: ECIS 2019 Research Papers. Presented at the 27th European Conference on Information 
Systems (ECIS), AIS electronic library, Stockholm & Upsala, Sweden. 

Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H., 2020. Fooling LIME and SHAP: Adversarial 
Attacks on Post hoc Explanation Methods, in: Proceedings of the AAAI/ACM Conference on 
AI, Ethics, and Society, AIES ’20. Association for Computing Machinery, New York, NY, 
USA, pp. 180–186. https://doi.org/10.1145/3375627.3375830 

Tiefenbeck, V., 2017. Bring behaviour into the digital transformation. Nat. Energy 2, 17085. 
https://doi.org/10.1038/nenergy.2017.85 

Tiefenbeck, V., Goette, L., Degen, K., Tasic, V., Fleisch, E., Lalive, R., Staake, T., 2016. Overcoming 
Salience Bias: How Real-Time Feedback Fosters Resource Conservation. Manag. Sci. 
https://doi.org/10.1287/mnsc.2016.2646 

Tonekaboni, S., Joshi, S., Campbell, K., Duvenaud, D., Goldenberg, A., 2020. What went wrong and 
when? Instance-wise Feature Importance for Time-series Models, in: Proceedings of the 34th 
Conference on Neural Information Processing Systems (NeurIPS 2020). Presented at the 34th 
Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada. 

van Duijvenvoorde, A.C.K., Zanolie, K., Rombouts, S.A.R.B., Raijmakers, M.E.J., Crone, E.A., 2008. 
Evaluating the Negative or Valuing the Positive? Neural Mechanisms Supporting Feedback-
Based Learning across Development. J. Neurosci. 28, 9495–9503. 
https://doi.org/10.1523/JNEUROSCI.1485-08.2008 

Vasseur, V., Marique, A.-F., Udalov, V., 2019. A Conceptual Framework to Understand Households’ 
Energy Consumption. Energies 12, 4250. https://doi.org/10.3390/en12224250 

Vermeulen, B., Goos, P., Vandebroek, M., 2008. Models and optimal designs for conjoint choice 
experiments including a no-choice option. Int. J. Res. Mark. 25, 94–103. 
https://doi.org/10.1016/j.ijresmar.2007.12.004 

Wang, Y., Chen, Q., Gan, D., Yang, J., Kirschen, D.S., Kang, C., 2018. Deep Learning-Based Socio-
demographic Information Identification from Smart Meter Data. IEEE Trans. Smart Grid PP, 
1–1. https://doi.org/10.1109/TSG.2018.2805723 

Wanner, J., Herm, L.-V., Janiesch, C., 2020. How Much Is the Black Box? The Value of Explainability 
in Machine Learning Models, in: ECIS 2020 Research-in-Progress Papers. Presented at the 28th 
European Conference on Information Systems (ECIS), AIS electronic library. 

Weigert, A., Hopf, K., Weinig, N., Staake, T., 2020. Detection of heat pumps from smart meter and 
open data. Energy Inform. 3, 21. https://doi.org/10.1186/s42162-020-00124-6 

Weiss, T., Diesing, M., Krause, M., Heinrich, K., Hilbert, A., 2016. Effective Visualizations of Energy 
Consumption in a Feedback System – A Conjoint Measurement Study, in: Abramowicz, W., 
Alt, R., Franczyk, B. (Eds.), Business Information Systems, Lecture Notes in Business 
Information Processing. Springer International Publishing, Cham, pp. 55–66. 
https://doi.org/10.1007/978-3-319-39426-8_5 

White, H., 1980. A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test 
forHeteroskedasticity. Econometrica 817–383. 

Yan, T., Tourangeau, R., 2008. Fast times and easy questions: the effects of age, experience and question 
complexity on web survey response times. Appl. Cogn. Psychol. 22, 51–68. 
https://doi.org/10.1002/acp.1331 



XAI for electricity consumption feedback 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 19 

Zeifman, M., Roth, K., 2011. Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans. 
Consum. Electron. 76–84. https://doi.org/10.1109/TCE.2011.5735484 

Zeileis, A., 2004. Econometric Computing with HC and HAC Covariance Matrix Estimators. J. Stat. 
Softw. 11, 1–17. https://doi.org/10.18637/jss.v011.i10 

 


	Abstract
	1 Motivation
	2 Related work
	2.1 XAI in information systems research
	2.2 XAI technology
	2.3 Automated consumer feedback on electricity consumption

	3 Research approach
	3.1 Case selection and problem definition
	3.2 Design of XAI visualizations for feedback on electricity consumption

	4 Technical implementation
	4.1 ML model implementation and comparison
	4.2 Implementation and comparison of the XAI methods

	5 Experimental evaluation of the five visualizations
	5.1 Sample description
	5.2 First phase: Isolated evaluation of the visualizations
	5.2.1 Experimental setup
	5.2.2 Statistical analysis and results

	5.3 Second phase: Choice-based conjoint
	5.3.1 Experimental setup
	5.3.2 Statistical analysis and results


	6 Discussion and Research Implications
	6.1 Summary of the major findings
	6.2 Limitations
	6.3 Future research

	7 Conclusion
	8 Appendix: Requirements and design features for XAI-based feedback on electricity consumption
	References




