Options
Latent-variable modeling of ordinal outcomes in language data analysis
Sönning, Lukas; Krug, Manfred; Vetter, Fabian; u. a. (2024): Latent-variable modeling of ordinal outcomes in language data analysis. Center for Open Science doi: 10.31219/osf.io/jhv6b.
Faculty/Professorship:
Author:
Publisher Information:
Year of publication:
2024
Pages:
Language:
English
Abstract:
In empirical work, ordinal variables are typically analyzed using means based on numeric scores assigned to categories. While this strategy has met with justified criticism in the methodological literature, it also generates simple and informative data summaries, a standard often not met by statistically more adequate procedures. Motivated by a survey of how ordered variables are dealt with in language research, we draw attention to an un(der)used latent-variable approach to ordinal data modeling, an alternative perspective on the most widely used form of ordered regression, the cumulative model. Since the latent-variable approach is not mentioned in statistical textbooks for linguists and does not feature in any of the studies in our survey, we believe it is worthwhile to promote its benefits. To this end, we draw on questionnaire-based preference ratings by speakers of Maltese English, who indicated on a 5-point scale which of two synonymous expressions (e.g. package-parcel) they (tend to) use. We demonstrate that a latent-variable analysis affords nuanced and interpretable data summaries that can be visualized effectively, while at the same time avoiding limitations inherent in mean response models (e.g. distortions induced by floor and ceiling effects). The online supplementary materials include a tutorial for its implementation in R.
GND Keywords: ; ; ;
Korpus, Linguistik
Latente Variable
Statistische Analyse
R, Programm
Keywords:
Latent-variable modeling
DDC Classification:
RVK Classification:
Type:
Preprint
published:
February 9, 2024
Versioning
Question on publication
Permalink
https://fis.uni-bamberg.de/handle/uniba/93359