
BAMBERGER BEITRÄGE

ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK

ISSN 0937-3349

Nr. 98

A Generalised Theory of Interface Automata,

Component Compatibility and Error

Sascha Fendrich Gerald Lüttgen

March 2016

FAKULTÄT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITÄT BAMBERG

A Generalised Theory of Interface Automata,
Component Compatibility and Error

Sascha Fendrich Gerald Lüttgen

March 2016

Abstract Interface theories allow systems designers to reason about the compos-
ability and compatibility of concurrent system components. Such theories often
extend both de Alfaro and Henzinger’s Interface Automata and Larsen’s Modal
Transition Systems, which leads, however, to several issues that are undesirable
in practice: an unintuitive treatment of specified unwanted behaviour, a binary
compatibility concept that does not scale to multi-component assemblies, and
compatibility guarantees that are insufficient for software product lines.

In this paper we show that communication mismatches are central to all these
problems and, thus, the ability to represent such errors semantically is an im-
portant feature of an interface theory. Accordingly, we present the error-aware
interface theory EMIA, where the above shortcomings are remedied by introduc-
ing explicit fatal error states. In addition, we prove via a Galois insertion that
EMIA is a conservative generalisation of the established MIA (Modal Interface
Automata) theory.

This technical report is a long version of [13]. Research has been supported by the
DFG (German Research Foundation) under grant LU-1748/3-1.

2

3

1 Introduction

Today’s software systems are increasingly composed from off-the-shelf components.
Hence, software developers desire to detect incompatibilities between components
early. This is supported by interface theories [10, 11, 2, 5, 6, 8, 18, 21, 22],
which may serve as specification theories for component-based design [11, 2, 7,
16], software product lines [18], web services [4] and the Internet of Things [20].
Interface theories may also be employed as contract languages or behavioural type
theories when transitioning from software design to implementation [1, 14].

Many interface theories [2, 5, 18, 21, 22] extend de Alfaro and Henzinger’s Inter-
face Automata (IA) [10, 11] and Larsen’sModal Transition Systems (MTS) [17, 19].
In order to express compatibility assumptions of components on the communica-
tion behaviour of their environment, IA divides the action alphabet of an interface
into input (‘?’), output (‘!’) and an internal action τ . A communication mismatch,
or error, arises between parallelly composed components P and Q, if P may issue
an output a! while Q is not ready to receive the input a? in its current state.
Orthogonally, MTS permits one to specify required and optional behaviour. Tak-
ing stepwise decisions on the optional behaviour allows for a component-based,
incremental design, which is supported by a compositional refinement preorder.

Unfortunately, interface theories combining IA and MTS have several issues
that impact their practical use. Issue (A): Forbidden inputs are preserved by
the resp. refinement preorder but are widely ignored by parallel composition, such
that behaviour that is forbidden in one component may be re-introduced in the
composed system if another component defies this prohibition. This unintuitive
treatment of communication mismatches and, in particular, unwanted behaviour,
is dangerous for safety-critical applications. Issue (B): Pairwise binary compati-
bility of multiple components does not guarantee their overall compatibility when
being considered as a multi-component assembly, and vice versa, even if parallel
composition is associative. To address this, Hennicker and Knapp [15] have in-
troduced assembly theories that extend interface theories by a separate level of
assemblies where multi-component compatibility is checked. However, these as-
semblies have to be re-interpreted as interfaces to be of further use. Issue (C):
Optional behaviour, modelled via may-transitions as in MTS, may be employed
to express variability inherent in software product lines. In current interface theo-
ries, two product families may be considered compatible only if all products of one
family are compatible with all products of the other. However, one would prefer a
more detailed set of guarantees, such that one may distinguish if all, some or none
of the product lines’ products are compatible [18]. Issue (D): MTS and MTS-
based interface theories have some subtle differences wrt. modalities, resulting in
different composition concepts: in MTS, components unanimously agree on transi-
tions of their composition; in interface theories, an error arises if the components’

4 2 MOTIVATING EXAMPLE

requirements do not match. Each theory makes a global choice of a composition
concept, which is tightly bound to a respective compatibility notion and does not
allow one to mix different compatibility and composition concepts that are suitable
for the application at hand.

This paper shows that communication mismatches are central to Issues (A)–
(D) above. Hence, the ability to represent such errors semantically is an important
feature that is missing in current interface theories. We illustrate this in Sec. 2
by an example wrt. Issue (A). In Sec. 3 we present our interface theory Error-
aware Modal Interface Automata (EMIA), for which we remedy Issues (A)–(D)
by making communication mismatches explicit in form of fatal error states and
by employing an error-aware refinement preorder. In contrast, current interface
theories [10, 11, 2, 5, 6, 8, 18, 21, 22] remove such information about the causes
and possible resolutions of communication mismatches. As is typical for interface
theories, EMIA also includes conjunction and disjunction operators, which en-
ables systems designers to employ both operational and declarative aspects within
a specification. In Sec. 4 we show that a Galois insertion [9] renders our refined
semantics a conservative extension of the arguably most general interface the-
ory to date, MIA (Modal Interface Automata) [5]. Sec. 5 revisits the example
of Sec. 2 in terms of EMIA, and discusses the role of fatal error states in solv-
ing Issues (A)–(D). The resulting specification theory tightly integrates Modal
Transition Systems, interface theories, and assembly theories and allows systems
designers to combine the different composition concepts of these theories within a
single interface specification.

2 Motivating Example

In this section we discuss compatibility problems of current interface theories by
means of an illustrative example highlighting Issue (A). Consider a driving assis-
tance system that enables a car to drive into and out of a garage autonomously.
Such a system must communicate with the garage in order to make it open and
close its door. In Fig. 1 we show specifications G and C of the garage’s and the
car’s interfaces, resp. Starting in state g0, the garage is ready to receive a passage
request (rqstPass?). After such a request, the garage opens its door (openDoor!),
waits for a car driving in or out (drive?) and, finally, closes the door (closeDoor!)
again. The car starts in state c0 waiting for a user’s request (rqstCar?). Upon
receiving such a request, the car requests passage from the garage (rqstPass!) and
then drives into or out of the garage (drive!), reaching state c0 again.

Specifications G and C have a communication mismatch due to the drive!-
transition at state c2 and the fact that no drive?-transition is specified at state
g1. Hence, in the parallel product G⊗C shown in Fig. 2 (left), state ⟨g1, c2⟩ is

5

G:

g0 g1

g2g3

rqstPass?

op
en
D
o
or
!

drive?

cl
os
eD

o
or
!

C:

c0 c1

c2

rqstCar?

rq
st
P
as
s!drive!

Figure 1: Example of a driving assistant system including a garage G and a car
C.

G⊗C:

⟨g0, c0⟩ ⟨g0, c1⟩

⟨g1, c2⟩

⟨g3, c0⟩

⟨g2, c2⟩

rqstCar?

rq
st
P
as
s!

openDoor!

drive!

closeDoor!

G ∥C (IA):

⟨g0, c0⟩

G ∥C (MIA):

⟨g0, c0⟩

u

rq
st
C
ar
?

Figure 2: Parallel product in IA or MIA (left), and parallel composition in IA
(middle) and MIA (right) of the components depicted in Fig. 1.

considered illegal. In pessimistic theories, e.g., [2, 21], the parallel composition
of G and C is undefined, because the illegal state ⟨g1, c2⟩ is reachable from the
initial state ⟨g0, c0⟩. Optimistic theories, e.g., [10, 11, 5, 6, 8, 18, 21, 22], assume a
helpful environment that tries to steer away from communication mismatches by
controlling the composed system via its input transitions. A state is optimistically
illegal if a communication mismatch is reachable via uncontrollable actions, i.e.,
output- or τ -transitions. Parallel composition G ∥C is obtained from G⊗C by
removing all illegal states. In our example, state ⟨g1, c2⟩ is illegal, just as state
⟨g0, c1⟩ from which ⟨g1, c2⟩ is reachable by an output (rqstPass!). This pruning
leaves a single state ⟨g0, c0⟩ with no transitions; all other states are unreachable.
The rqstCar?-transition at state ⟨g0, c0⟩, which would allow one to reach illegal
states when triggered by the environment, is also removed. However, in order to
ensure compositionality of refinement, rqstCar? must be permitted with arbitrary
behaviour afterwards (cf. [5]); IA-based refinement [10, 11, 21] allows this implic-

6 3 ERROR-AWARE MODAL INTERFACE AUTOMATA

itly for all unspecified inputs (Fig. 2, middle). In MTS-based interface theories,
where unspecified transitions represent forbidden behaviour, compositionality is
achieved by replacing pruned behaviour by an explicit optional transition to a
special, universally refinable state u (Fig. 2, right) [5].

Due to this possibility of introducing arbitrary behaviour in case of a com-
munication mismatch, stepwise refinement may re-introduce behaviour that has
previously been removed because it provoked the mismatch. Hence, optimistic
theories accept a car driving into or out of the garage before the door is opened
as a valid implementation of G ∥C. This contradicts G’s sensible constraint that
driving in or out is only permitted after the door has been opened, i.e., the mean-
ing of a car crashing into the door can simply be ‘refined’ to not being an error.
In other words, the assumptions and guarantees expressible in current interface
theories are insufficient for expressing unwanted behaviour.

Bujtor and Vogler [6] have shown that keeping or removing illegal states on a
purely syntactic level are equivalent for IA wrt. preserving compatibility. In this
spirit, current interface theories [10, 11, 2, 5, 6, 18, 21, 22] eliminate erroneous be-
haviour either by regarding it as undefined (pessimistic) or by pruning (optimistic);
all errors are treated semantically equivalent. Due to this equivalence, theories
combining IA and MTS cannot remove illegal states completely but must replace
them by a special, arbitrarily refinable behaviour as mentioned above. However,
because optional transitions (i.e., may-transitions) and disjunctive transitions al-
low for underspecification in MTS-based interface theories, one may distinguish
potential errors that can be resolved by a suitable refinement from actual, unre-
solvable errors that arise when an output is required and the corresponding input
is forbidden. That is, specifications based on MTS contain more information wrt.
compatibility, which we make explicit in EMIA. EMIA guarantees that compatible
specifications have only compatible implementations, potential errors have both
compatible and erroneous implementations, and actual errors have only erroneous
implementations (cf. Sec. 5, Issue (C)).

3 Error-aware Modal Interface Automata

Our interface theory Error-aware Modal Interface Automata (EMIA), which we
present in this section, is equipped with a parallel composition operator modelling
concurrency and communication, a conjunction operator permitting the specifica-
tion of a component from different perspectives, and a compositional refinement
preorder enabling the substitution of an interface by a more concrete version. In
addition to these standard requirements on interface theories, EMIA solves Is-
sues (A)–(D) of Sec. 1. We achieve this by introducing fatal error states, which
represent unresolvable incompatibilities between interfaces. This enables EMIA to

7

deal with errors on a semantic level, since forbidden behaviour can be modelled
by input transitions leading to a fatal error state.

Definition 1 (Error-aware Modal Interface Automata). An Error-aware Modal
Interface Automaton (EMIA) is a tuple P := (SP , IP , OP ,−→P , P , S

0
P , DP),

where SP is the set of states, IP , OP are the disjoint alphabets of input and output
actions not including the silent action τ (we define AP := IP ∪ OP and ΩP :=
OP ∪ {τ}), −→P ⊆ SP × (AP ∪ {τ}) × P(SP) is the disjunctive must-transition
relation (P denotes the power set operator), P ⊆ SP × (AP ∪ {τ})× SP is the
may-transition relation, S0

P ⊆ SP is the set of initial states, and DP ⊆ SP is the
set of fatal error states. We also adopt syntactic consistency from MTS, i.e., for
all α ∈ AP ∪ {τ} and p

α−→ P ′, we have ∀p′ ∈P. p
α

p′.

Our definition of weak transitions is adopted from the one in MIA [5]:

Definition 2 (Weak Transition Relations). Let P be an EMIA. We define weak
must- and may-transition relations, =⇒ and resp., as the smallest relations

satisfying the following conditions, where we use P ′ α̂
=⇒ P ′′ as a shorthand for

∀p ∈ P ′ ∃Pp. p
α̂

=⇒ Pp and P ′′ =
⋃

p∈P ′ Pp:

WT1. p
ϵ

=⇒ {p} for all p ∈ P ,

WT2. p
τ−→ P ′ and P ′ α̂

=⇒ P ′′ implies p
α̂

=⇒ P ′′,
WT3. p

a−→ P ′ and P ′ ϵ
=⇒ P ′′ implies p

a
=⇒ P ′′,

WT4. p
ϵ

p,
WT5. p

ϵ
p′′

τ
p′ implies p

ϵ
p′,

WT6. p
ϵ

p′′
α

p′′′
ϵ

p′ implies p
α

p′.

We write
a→ ϵ⇒ for transitions that are built up according to Case WT3 and call

them trailing-weak must-transitions. Similarly,
a ϵ

stands for trailing-weak
may-transitions.

Our error-aware modal refinement preorder ⊑EA corresponds to standard modal
refinement from MTS [17, 19] but reflects and preserves fatal error states. Intu-
itively, P ⊑EA Q for an implementation P and a specification Q, enforces that
P ’s may-transitions are permitted by Q while for any of Q’s disjunctive must-
transitions at least one of the branches is implemented by P .

In contrast to DMTS [19], we require that all branches of a disjunctive tran-
sition have the same label and call this restricted formalism dMTS. This is suf-
ficient for our purposes and does away with technical complications of parallel
composition in the presence of τ -transitions. The usual way of defining parallel
composition on DMTS, e.g., as is done in [3], is by unfolding each disjunctive
must-transition into its set of possible implementation variants, i.e., selections of

8 3 ERROR-AWARE MODAL INTERFACE AUTOMATA

transition branches. The parallel composition of two components is then obtained
by forming all pairwise products of the components’ implementation variants. The
unfolding operation corresponds to a transformation of a conjunctive normal form
into a disjunctive normal form and is, thus, only a change of representation. How-
ever, in order to define weak transitions in the unfolded representation, one has
to unfold the τ -closure of each transition. If τ -loops are involved, this may re-
sult in an infinite unfolding—even in case of finite DMTS—because a different
implementation may be chosen in each iteration of the loop.

Definition 3 (Error-aware Modal Refinement). Let P and Q be EMIAs with equal
alphabets, i.e., IP = IQ and OP = OQ. A relation R ⊆ SP × SQ is an error-aware
modal refinement relation (EA-refinement) if, for all ⟨p, q⟩ ∈ R \ (DP ×DQ), the
following conditions hold:

R1. p ̸∈ DP and q ̸∈ DQ,

R2. q
i−→ Q′ implies ∃P ′. p

i→ ϵ⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. ⟨p′, q′⟩ ∈ R,
R3. q

ω−→ Q′ implies ∃P ′. p
ω

=⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. ⟨p′, q′⟩ ∈ R,

R4. p
i

p′ implies ∃q′. q i ϵ
q′ and ⟨p′, q′⟩ ∈ R,

R5. p
ω

p′ implies ∃q′. q ω
q′ and ⟨p′, q′⟩ ∈ R.

We write p ⊑EA q if there is an EA-refinement R with ⟨p, q⟩ ∈ R, and P ⊑EA Q
if, for each p ∈ S0

P , there is a q ∈ S0
Q with p ⊑EA q. If p ⊑EA q and q ⊑EA p, we

employ the symbol p ⊒⊑EA q, and similar for EMIAs P,Q.

The refinement relation ⊑EA is reflexive and transitive and, hence, a preorder.
Moreover, we have p ∈ DP iff q ∈ DQ for all ⟨p, q⟩ ∈ R due to R1. Optional
input-transitions, which may be refined to required or forbidden behaviour, are
expressed as a disjunctive must-transition containing a fatal error state in its set
of target states. For example, optional a?-transitions from a state p0 to states p1

and p2 are modelled as p0
a?−→ {p1, p2, p3} for some fatal error state p3 ∈ DP .

IA’s parallel composition operator synchronises input and output transitions
to τ -transitions. In contrast, we define a multicast parallel composition, where an
output can synchronise with multiple input transitions, as in MI [22] and MIA [5].
We leave out MIA’s separate hiding due to space constraints.

Definition 4 (Parallel Composition). Let P and Q be EMIAs. We call P and Q
composable if OP ∩ OQ = ∅. If P and Q are composable, the multicast parallel
composition P ∥Q is defined by SP ∥Q := SP × SQ, IP ∥Q := (IP ∪ IQ) \ OP ∥Q,
OP ∥Q := OP ∪OQ, S

0
P ∥Q := S0

P × S0
Q, DP ∥Q := (DP × SQ) ∪ (SP ×DQ), and the

transition relations are given by the following rules:

P1. ⟨p, q⟩ α−→ P ′ × {q}
if p

α−→ P ′ and α ̸∈ AQ,

9

P2. ⟨p, q⟩ α−→ {p} ×Q′

if α ̸∈ AP and q
α−→ Q′,

P3. ⟨p, q⟩ a−→ P ′ ×Q′

if p
a−→ P ′ and q

a−→ Q′ for some a ∈ AP ∩ AQ.

P4. ⟨p, q⟩ α ⟨p′, q⟩ if p
α

p′ and α ̸∈ AQ,

P5. ⟨p, q⟩ α ⟨p, q′⟩ if α ̸∈ AP and q
α

q′,
P6. ⟨p, q⟩ a ⟨p′, q′⟩

if p
a

p′ and q
a

q′ for some a ∈ AP ∩ AQ.

We also write p ∥ q for ⟨p, q⟩.

IA-based interface theories usually define a communication mismatch for p at q
as a situation where an action a ∈ OP ∩ IQ is permitted at p and not required
at q. In EMIA, such a situation is modelled with the help of an a?-must-transition
from q to a target set Q′ that includes some fatal error state q′ ∈ DQ, as explained
above. Parallel composition is associative and commutative. Further, ⊑EA is a
precongruence wrt. ∥:

Proposition 5 (Compositionality). If P1, P2, Q are EMIAs s.t. P1 ⊑EA P2 and
P2, Q are composable, then P1 and Q are composable and P1 ∥Q ⊑EA P2 ∥Q.

Proof. We write IP , OP and AP for the equal alphabets of P1 and P2. Composabil-
ity is trivial. We show that R := {⟨p1 ∥ q, p2 ∥ q⟩ | p1 ⊑EA p2} is an EA-refinement
relation. For ⟨p1 ∥ q, p2 ∥ q⟩ ∈ R, we consider the following cases:

R1 p1 ∥ q ̸∈ DP1 ∥Q iff (by Def. 4) p1 ̸∈ DP1 , q ̸∈ DQ iff (by p1 ⊑EA p2) p2 ̸∈ DP2 ,
q ̸∈ DQ iff (by Def. 4) p2 ∥ q ̸∈ DP2 ∥Q.

R2 Let p1 ∥ q
i−→ R due to one of P1, P2 or P3:

P1 R = P ′
1 × {q} for some transition p1

i−→ P ′
1. For each p′1 ∈ P ′

1, there

is, due to syntactic consistency, a p1
i

p′1 and, by p1 ⊑EA p2, a

p2
i ϵ

p′2 s.t. p′1 ⊑EA p′2. Thus, we have ⟨p′1 ∥ q, p′2 ∥ q⟩ ∈ R, and P4

implies p2 ∥ q
i ϵ

p′2 ∥ q.

P2 R = {p1} ×Q′ for some q
i−→ Q′. By P2 we have p2 ∥ q

i−→ {p2} ×Q′,
and p1 ⊑EA p2 implies ⟨p1 ∥ q′, p2 ∥ q′⟩ ∈ R for all q′ ∈ Q′.

P3 R = P ′
1 ×Q′ due to p1

i−→ P ′
1 and q

i−→ Q′. The argument is similar to
that of Case P1, where P4 is replaced by P6.

R3 Analogous to R2.

R4 Let p1 ∥ q
i

p′1 ∥ q′ due to one of the rules P4, P5 or P6:

10 3 ERROR-AWARE MODAL INTERFACE AUTOMATA

P4 q′ = q for a transition p1
i

p′1. By p1 ⊑EA p2, there is a p2
i ϵ

p′2
such that p′1 ⊑EA p′2. Thus, we have ⟨p′1 ∥ q, p′2 ∥ q⟩ ∈ R, and P4 implies

p2 ∥ q
i ϵ

p′2 ∥ q.

P5 p′1 = p1 for some q
i

q′. By P5 we have p2 ∥ q
i

p2 ∥ q′ and p1 ⊑EA p2
implies ⟨p1 ∥ q′, p2 ∥ q′⟩ ∈ R, for all q′ ∈ Q′.

P6 R = P ′
1 ×Q′ due to p1

i
P ′
1 and q

i
Q′. The argument is similar to

that of case P4, where the application of P4 is replaced by P6.

R5 Analogous to R4.

Perspective-based specification is concerned with specifying a system component
from separate perspectives s.t. the component satisfies each of these perspective
specifications; for example, each requirement for a component might describe a
perspective. The component’s overall specification is the most general specification
refining all perspective specifications, i.e., it is the greatest lower bound wrt. the
refinement preorder. This conjunction operator is defined in two stages:

Definition 6 (Conjunctive Product). Let P , Q be EMIAs with equal alphabets.
The conjunctive product of P and Q is P &Q := (SP &Q, I, O,−→P &Q, P &Q

, S0
P &Q, DP &Q) with SP &Q := SP × SQ, S

0
P &Q := S0

P × S0
Q, DP &Q := DP ×DQ,

and the transition relations are given by the following rules:

C1. ⟨p, q⟩ i−→ {⟨p′, q′⟩ | p′ ∈ P ′, q
i ϵ

q′}
if p

i−→ P ′ and q
i ϵ

,

C2. ⟨p, q⟩ i−→ {⟨p′, q′⟩ | p i ϵ
p′, q′ ∈ Q′}

if p
i ϵ

and q
i−→ Q′,

C3. ⟨p, q⟩ ω−→ {⟨p′, q′⟩ | p′ ∈ P ′, q
ω

q′} if p
ω−→ P ′ and q

ω
,

C4. ⟨p, q⟩ ω−→ {⟨p′, q′⟩ | p ω
p′, q′ ∈ Q′} if p

ω
and q

ω−→ Q′,

C5. ⟨p, q⟩ i ⟨p′, q′⟩ if p
i ϵ

p′ and q
i ϵ

q′,
C6. ⟨p, q⟩ ω ⟨p′, q′⟩ if p

ω
p′ and p

ω
q′,

C7. ⟨p, q⟩ τ ⟨p′, q⟩ if p
τ

p′,
C8. ⟨p, q⟩ τ ⟨p, q′⟩ if q

τ
q′.

A state ⟨p, q⟩ of P &Q is a candidate for refining both p and q. Because ⟨p, q⟩
cannot simultaneously require and forbid the same action a or be at once fatal and
non-fatal, some states p and q do not have a common refinement. In such cases,
⟨p, q⟩ is called inconsistent and has to be removed from the candidates, including
the removal of all states that require transitions leading to inconsistent states.

Definition 7 (Conjunction). The set F ⊆ SP &Q of logically inconsistent states
is defined as the smallest set satisfying the following rules:

11

F1. ⟨p, q⟩ ∈ (DP × (SQ \DQ)) ∪ ((SP \DP)×DQ)
implies ⟨p, q⟩ ∈ F ,

F2. ⟨p, q⟩ ̸∈ DP &Q, p
i−→ and q ̸ i implies ⟨p, q⟩ ∈ F ,

F3. ⟨p, q⟩ ̸∈ DP &Q, p ̸ i and q
i−→ implies ⟨p, q⟩ ∈ F ,

F4. ⟨p, q⟩ ̸∈ DP &Q, p
ω−→ and q ̸ω implies ⟨p, q⟩ ∈ F ,

F5. ⟨p, q⟩ ̸∈ DP &Q, p ̸ω and q
ω−→ implies ⟨p, q⟩ ∈ F ,

F6. ⟨p, q⟩ α−→ R and R ⊆ F implies ⟨p, q⟩ ∈ F .

The conjunction P ∧Q is obtained from P &Q by deleting all states in F . This
deletes all transitions exiting deleted states and removes all deleted states from
targets of must-transitions. If S0

P ∧Q = ∅, then P and Q are called inconsistent.

Fatal states are excluded in Rules F2 through F5 because we do not care about
consistency for fatal error states. Note that the states in D and F are different in
nature: D-states represent states with possible but unwanted behaviour. F -states
represent contradictory specifications that are impossible to implement. It is easy
to show the following lemma:

Lemma 8. Let P and Q be EMIAs and R ⊆ SP ×SQ an EA-refinement relation.
For all ⟨p, q⟩ ∈ R, we have p ∈ DP iff q ∈ DQ.

Proof. Lemma 8 is a direct consequence of Def. 1.

In order to prove that conjunction is the greatest lower bound wrt. the refinement
preorder ⊑EA, we need the notion of a witness along the lines of [5]:

Definition 9 (Witness). Let P and Q be EMIAs with equal alphabets. A set
W ⊆ SP ×SQ is a witness of P &Q if, for all ⟨p, q⟩ ∈ W , the following conditions
hold:

W1. p ∈ DP iff q ∈ DQ,

W2. p
o−→P implies q

o
Q or q ∈ DQ,

W3. q
o−→Q implies p

o
P or p ∈ DP ,

W4. p
i−→P implies q

i ϵ
Q or q ∈ DQ,

W5. q
i−→Q implies p

i ϵ
P or p ∈ DP ,

W6. ⟨p, q⟩ α−→ R′ implies R′ ∩W ̸= ∅ or ⟨p, q⟩ ∈ DP &Q.

Lemma 10 (Concrete Witness [5]). Let P , Q, R be EMIAs with equal alphabets.

1. For any witness W of P &Q, we have W ∩ F = ∅.
2. The set W := {⟨p, q⟩ ∈ SP ×SQ | ∃r∈SR. r ⊑EA p and r ⊑EA q} is a witness

of P &Q.

12 3 ERROR-AWARE MODAL INTERFACE AUTOMATA

Proof. Claim 1 is obvious, so we only prove Claim 2:

W1 By Lemma 8 we get p ∈ DP iff r ∈ DR iff q ∈ DQ.

W2 If q ∈ DQ, then W1 applies and there is nothing to show. Let p
o−→. By

r ⊑EA p, there is a transition r
o−→ and, by syntactic consistency and r ⊑EA

q, a q
o

.

W3 Symmetrically to W2.

W4 Analogous to W2 when replacing
o−→ and

o
with

i−→ and
i ϵ

, resp.

W5 Symmetrically to W4.

W6 Let ⟨p, q⟩ ∈ W due to r s.t. ⟨p, q⟩ ω−→ R′ because of C3. By r ⊑EA p, there
is a matching r

ω
=⇒R R′. For all r′ ∈ R′, by syntactic consistency, we have a

transition r
ω

R r′, such that r ⊑EA q implies the existence of a transition
q

ω
Q q′ with r′ ⊑EA q′. Hence, there is a ⟨p′, q′⟩ ∈ R′ ∩W due to r′. The

case of inputs is shown analogously.

Proposition 11 (∧ is And). If P and Q are EMIAs with equal alphabets, then
(i) ∃R.R ⊑EA P and R ⊑EA Q iff P and Q are consistent. Further, if P and Q
are consistent, then, for any R, (ii) R ⊑EA P and R ⊑EA Q iff R ⊑EA P ∧Q.

Proof. (i) “⇒′′ follows from Lemma 10.
(i), (ii) “⇐”: Let R ⊑EA P ∧Q. We prove that R := {⟨r, p⟩ | ∃q. r ⊑EA

p∧ q} is an EA-refinement relation. Then, we may conclude (i) “⇐” by choosing
S0
R :=

{
r ∈ SR

⏐⏐ ∃p∧ q ∈ S0
P ∧Q. ⟨r, p∧ q⟩ ∈ R

}
. Let ⟨r, p⟩ ∈ R due to q. The

proof follows closely the lines of [5] and proceeds as follows:

R1 If r ∈ DR, then p∧ q ∈ DP ∧Q; thus, p ∈ DP .

R2, R3 Let p
α−→ P ′, then we have q

α
and p∧ q

α−→ {p′ ∧ q′ | p′ ∈ P ′,
q

α
Q q′, p′ ∧ q′ defined}. By r′ ⊑EA p′ ∧ q′ we get a matching r

α−→R R′,

i.e., ∀r′ ∈R′ ∃p′ ∈P ′. ⟨r′, p′⟩ ∈ R. (In case of inputs,
α

must be replaced
by

α ϵ
.)

R4, R5 Let r
α

r′. By r ⊑EA p∧ q, there is a p∧ q
α

p′ ∧ q′ such that
r′ ⊑EA p′ ∧ q′; thus, ⟨r′, p′⟩ ∈ R due to q′. (In case of inputs,

α
must be

replaced by
α ϵ

.)

(ii) “⇒”: We show that R := {⟨r, p∧ q⟩ | r ⊑EA p and r ⊑EA q} is an EA-
refinement relation.

13

R1 Obvious.

R2, R3, R4, R5 As above, the proof closely follows the lines of [5].

As a standard category theoretic result, Prop. 11 implies that ∧ is associative:

Corollary 12 (Associativity of ∧). Conjunction is strongly associative, i.e., for
all EMIAs P , Q, and R, if one of P ∧ (Q∧R) and (P ∧Q)∧R is defined, then
both are defined and P ∧ (Q∧R) ⊒⊑EA (P ∧Q)∧R.

We close this section with a remark on alphabet extension. Refinement, conjunc-
tion and disjunction are defined for EMIAs with equal alphabets. When it comes
to perspective-based specification, it is of interest to consider EMIAs with different
alphabets [5]. Following the lines of MI and MIA, the operations on EMIAs can be
lifted to different alphabets by extending the alphabets of the operands by their
mutually foreign actions. When extending the alphabet of a specification, the least
possible assumptions should be made on a new action a, while the same specifica-
tion wrt. known actions should hold before and after a. This can be achieved by
adding an optional a-loop to each state. For output actions this is straightforward,
but the exact meaning of optional input transitions depends on the desired com-
position concept (cf. Sec. 1, Issue (D)). Therefore, a separate alphabet extension
operator has to be defined for unanimous, broadcast and error-sensitive parallel
composition. Alternatively, a localised extension combining different composition
concepts is also possible. Besides this, there is nothing surprising to expect from
alphabet extension, and we leave out the formal definition here for brevity.

4 Relation to other Interface Theories

The majority of IA-based interface theories prune errors. Therefore, it is impor-
tant to investigate the relation between such error-pruning interface theories and
our non-pruning EMIA theory. We do this for MIA [5] because it is the most gen-
eral IA-based interface theory to date in that it is nondeterministic rather than
deterministic and optimistic rather than pessimistic, thus subsuming MI [22] and
MIO [2] (wrt. strong compatibility), resp. We establish here a Galois insertion be-
tween MIA and EMIA, i.e., a Galois connection ⟨γ, α⟩ for which α ◦ γ = idMIA [9]
(up to ⊒⊑MIA). Recall that states from which a communication mismatch is reach-
able via output- or τ -transitions are called illegal. Intuitively, α abstracts from
EMIAs by considering all illegal states to be equivalent, and γ concretises MIAs
as EMIAs without any loss of information. Note that γ is different from the error-
completion presented in [23] that is motivated by algorithmic considerations only.
Error-completion preserves an interface’s semantics when replacing missing inputs

14 4 RELATION TO OTHER INTERFACE THEORIES

by transitions to an error state. In contrast, EMIA refines the semantics of MIA
by retaining error states.

Definition 13 (MIA [5]). Modal Interface Automata (MIA) are defined like
EMIAs (cf. Def. 1), except that, instead of DP , there is a universal state uP

that is only permitted as target of input may-transitions.

An important difference between fatal error states and uP is revealed in the differ-
ent notion of refinement. While EMIA employs a variant of modal refinement [19]
that preserves and reflects fatal error states, MIA adopts (ordinary) modal re-
finement in general but provides the possibility to employ IA-refinement where
necessary. This is achieved by state uP , which may be refined arbitrarily.

Definition 14 (MIA-Refinement [5]). Let P and Q be MIAs with equal alphabets.
A relation R ⊆ SP ×SQ is a MIA-refinement relation if, for all ⟨p, q⟩ ∈ R\ (SP ×
{uQ}), the rules of Def. 3 hold when replacing R1 by: MR1. p ̸= uP .

Parallel composition of MIAs is defined through reachability of illegal states:

Definition 15 (Backward Closure). Let P be a MIA or EMIA and S ⊆ SP . The
Ω-backward closure of S in P is the smallest set bclΩP (S) ⊆ SP s.t. S ⊆ bclΩP (S)
and, for all ω ∈ ΩP and p′ ∈ bclΩP (S), if p

ω
p′, then p ∈ bclΩP (S).

Definition 16 (MIA-Parallel Composition [5]). For composable MIAs P and Q,
the parallel product P ⊗Q is defined by ignoring fatal error states in Def. 4. We
say that there is a communication mismatch for p at q, in symbols mis(p, q), if
there is an a ∈ OP ∩ IQ with p

a
and q ̸ a . The set of illegal states is defined

as EP ⊗Q := bclΩP ⊗Q({⟨p, q⟩ | mis(p, q) or mis(q, p)}∪ (SP ×{uQ})∪ ({uP}×SQ)).
The parallel composition P ∥Q is the MIA given by the state set SP ∥Q := (SP ⊗Q\
EP ⊗Q) ∪ {uP ∥Q}, the alphabets IP ∥Q := IP ⊗Q and OP ∥Q := OP ⊗Q, and the
transition relations obtained from P ⊗Q by replacing all i?-transitions of states

⟨p, q⟩ having an i?-transition to EP ⊗Q by a transition ⟨p, q⟩ i
uP ∥Q. If S

0
P ⊗Q ⊆

EP ⊗Q, then S0
P ∥Q := {uP ∥Q}, else S0

P ∥Q := S0
P ⊗Q \ EP ⊗Q.

The set bclΩP (DP) \ DP of an EMIA P corresponds roughly to the set of illegal
states in IA, EIO, MI and MIA. In contrast to these theories, EMIA requires one
to match transitions of such states during refinement. The resulting refinement
relation is comparable to other refinement preorders for error-free interfaces, but
is more detailed for erroneous ones. Indeed, MIA can be seen as an abstraction of
EMIA, where all states in bclΩP (DP) \DP are deemed equivalent (cf. Thm. 26).

Definition 17 (MIA-Conjunction [5]). Let P and Q be MIAs with equal alphabets.
The MIA-conjunctive product is defined by ignoring fatal error states in Def. 6
and adding the following rules for u:

15

CE1. ⟨p, uQ⟩
α−→ P ′ × {uQ}

if p
α−→ P ′,

CE2. ⟨uP , q⟩
α−→ {uP} ×Q′

if q
α−→ Q′,

CE3. ⟨p, uQ⟩
α ⟨p′, uQ⟩ if p

α
p′,

CE4. ⟨uP , q⟩
α ⟨uP , q

′⟩ if q
α

q′.

The MIA-conjunction is obtained from the MIA-conjunctive product by pruning
logically inconsistent states according to Rules F2 through F6 of Def. 7.

An input i forbidden at state p is modelled as a missing transition in MIA and,
equivalently, as an i-must-transition from p to a fatal error state in EMIA. Hence,
a MIA’s behaviour can be modelled by an EMIA where non-fatal states are input-
enabled. We write EMIA′ for the collection of such EMIAs.

The Galois insertion between MIA and EMIA consists of a concretisation
γ : MIA → EMIA′ and an abstraction α : EMIA′ → MIA s.t. ⟨γ, α⟩ is a Galois
connection and (α ◦ γ)(Q) ⊒⊑MIA Q. The main idea behind α is to consider the
states bclΩP (DP) \ DP as equivalent, thus, yielding equivalence classes of EMIAs;
α assigns a MIA to each of these equivalence classes. Vice versa, γ assigns to each
MIA the disjunction of an equivalence class of EMIAs.

Definition 18 (Abstraction Function from EMIA′ to MIA). Let P ∈ EMIA′ and
CP := bclΩP (DP) \DP . The MIA-abstraction of P is the MIA α(P) := (Sα(P), IP ,
OP ,−→α(P), α(P), S

0
α(P), uα(P)) with state sets Sα(P) := (SP \(CP∪DP))∪̇{uα(P)}

and S0
α(P) := S0

P ∩Sα(P). The transitions of α(P) are obtained from P by replacing

all i?-transitions leading from a state p to states in CP by p
i?

uα(P). The kernel
equivalence ≡α ⊆ EMIA′×EMIA′, which is defined by P ≡α Q iff α(P) ⊒⊑MIA α(Q)
and has equivalence classes [P]α, yields a canonical bijection ᾱ : EMIA′/≡α → MIA.

Lemma 19 (Monotonicity of α). The map α defined in Def. 18 is monotonic.

Proof. Let R be an EA-refinement relation between EMIAs P and Q. We show
that the relation Rα := (R ∩ (SαP × SαQ)) ∪ (SαP × {uαQ}) is a MIA-refinement
relation between αP and αQ. Let ⟨p, q⟩ ∈ Rα. In case q = uαQ, the definition
of MIA-refinement is trivially satisfied, so we can assume q ̸= uαQ. Hence, by
definition of Rα, we also have ⟨p, q⟩ ∈ R and may distinguish the following cases:

MR1 ⟨p, q⟩ ∈ R implies p ̸= uαP as universal states do not occur in EMIA.

R2 Let q
i−→αQ Q′

α due to some q
i−→Q Q′. Due to the replacement of transitions

to CQ in Def. 18, we know that Q′
α = Q′ and that none of these target states

is in CQ or DQ. By ⟨p, q⟩ ∈ R, there is a p
i→ ϵ⇒P P ′ such that P ′ matches

Q′. With the same argument as before, we may conclude that P ′
α := P ′

matches Q′
α.

16 4 RELATION TO OTHER INTERFACE THEORIES

R3 Analogous to R2, where
i→ ϵ⇒ is replaced by

ω
=⇒.

R4 Let p
i

αP p′. If p′ ̸= uαP , then p
i

P p′ and, due to ⟨p, q⟩ ∈ R, there is a

q
i ϵ

Q q′ such that ⟨p′, q′⟩ ∈ R. There are two cases:

1. ∃q′′ ∈CQ. q
i

Q q′′: By definition of α we have CQ ∩ SαQ = ∅; thus,
q′′ ̸∈ SαQ. Hence, it follows from q ∈ SαQ that q

i
Q uαQ by definition

of α, and ⟨p′, uαQ⟩ ∈ Rα is obvious.

2. ∀q′′ ∈CQ. q ̸ i Qq
′′: The definition of α implies q′ ∈ SαQ and q

i ϵ
αQ

q′. Therefore, ⟨p′, q′⟩ ∈ Rα.

If p′ = uαP , then there is a p′′ ∈ CP with p
i

P p′′. By ⟨p, q⟩ ∈ R, there

exists a q′′ ∈ CQ such that q
i ϵ

Q q′′ and ⟨p′′, q′′⟩ ∈ R. Thus, q
i

uαQ,
and ⟨uαP , uαQ⟩ ∈ Rα is trivial.

R5 Analogous to R4 with
i ϵ

and
i

replaced by
ω

and
ω
, resp., and where

we always have p′ ̸= uαP and only Case 2 applies (otherwise, we would have
q ∈ CQ).

Lemma 20 (α is Homomorphic wrt. ∥). The mapping α defined in Def. 18 is
homomorphic wrt. parallel composition, i.e., α(P ∥Q) ⊒⊑MIA α(P) ∥α(Q).

Proof. First, observe that α(P ∥Q) and α(P) ∥α(Q) have the same state set S :=
Sα(P ∥Q) = Sα(P) ∥α(Q) because the same pruning operation is used in α and in
MIA’s parallel composition operator (see also [5, 6]).

“⊑MIA”: We show that the relation R := idS ∪ (Sα(P ∥Q) × {uα(P) ∥α(Q)}) is a
MIA-refinement relation. Let ⟨s, t⟩ ∈ R. If t = uα(P) ∥α(Q), there is nothing to
show. Thus, we assume s = t and distinguish the following cases:

MR1 From s = t ̸= uα(P) ∥α(Q) one directly concludes s ̸= uα(P) ∥α(Q).

R2 Let s = ⟨p, q⟩ ∈ Sα(P ∥Q). A transition ⟨p, q⟩ i−→α(P) ∥α(Q) S
′ is due to one of

the rules P1, P2 or P3:

P1 S ′ = P ′ × {q} for some p
i−→α(P) P ′ and i ̸∈ Aα(Q): because this

transition has neither been pruned nor replaced by a may-transition to
uα(P) ∥α(Q), the same transition also exists in α(P ∥Q).

P2 S ′ = {p} ×Q′ for some q
i−→α(Q) Q

′ and i ̸∈ Aα(P): Analogous to P1.

P3 S ′ = P ′ ×Q′ for some p
i−→α(P) P

′ and q
i−→α(Q) Q

′: Similar to P1.

R3 Analogous to R2.

17

R4 Let ⟨p, q⟩ i
α(P ∥Q) s

′′. In case s′′ = uα(P) ∥α(Q), then this transition is due to

a replacement of a transition ⟨p, q⟩ i
α(P ∥Q) s

′ by uα(P) ∥α(Q). In case s′′ ̸=
uα(P) ∥α(Q), by choosing s′ := s′′, we also have a transition ⟨p, q⟩ i

α(P ∥Q) s
′.

In both cases, this transition is due to one of the rules P4 through P6, which
all result in a similar line of argument. In case of P4 we have s′ = ⟨p′, q⟩,
p

i
α(P) p

′ and a ̸∈ AQ. By the definition of α, there must be a p′′ such

that p
i

P p′′. By P4, ⟨p, q⟩ i
P ∥Q ⟨p′′, q⟩ and, thus, also ⟨p, q⟩ i

α(P ∥Q)

⟨p′′, q⟩.

R5 Analogous to R4.

Direction “⊒MIA” can be shown dually.

In order to define the concretisation function γ we need a disjunction operator:

Definition 21 (Disjunction). For a family of EMIAs P := (Pj)j∈J with equal
alphabets, we define the disjunction of P as the following EMIA:⋁

j∈J Pj := (
⋃̇

j∈JSPj
, I, O,

⋃̇
j∈J −→Pj

,
⋃̇

j∈J Pj
,
⋃̇

j∈JS
0
Pj
,
⋃̇

j∈JDPj
).

Proposition 22 (∨ is Or). If Pj, for j ∈ J , and R are EMIAs with equal alphabets,
then

⋁
j∈J Pj ⊑EA R iff Pj ⊑EA R for all j ∈ J .

Proof. Let Pj (j ∈ J) and R be EMIAs with equal alphabets and w.l.o.g. disjoint
state sets Sj and SR, and let Pj ⊑EA R due to EA-refinement relationRj. Because,
in general, the union of EA-refinement relations is an EA-refinement relation,
(
⋃

j∈J Rj) ∪ RQ is an EA-refinement relation, too. Vice versa, if
⋁

j∈J Pj ⊑EA R
due to an EA-refinement relation R, then, for any j ∈ J , Rj := R ∩ (Sj × SR) is
a suitable EA-refinement relation showing Pj ⊑EA R.

Disjunction on MIAs is defined analogously by ignoring fatal error states and
replacing uP and uQ by uP ∨Q. Obviously, α is homomorphic wrt. disjunction.

Definition 23 (Concretisation Function from MIA to EMIA′). The concretisation
function γ : MIA → EMIA′ is defined as γ(P) :=

⋁
ᾱ−1(P).

Lemma 24 (Monotonicity of γ). The map γ defined in Def. 23 is monotonic.

Proof. Let P ⊑MIA Q be MIAs. By ∀P ′ ∈ ᾱ−1(P) ∃Q′ ∈ ᾱ−1(Q). P ′ ⊑EA Q′ we
conclude

⋁
ᾱ−1(P) ⊑EA

⋁
ᾱ−1(Q), i.e., γ(P) ⊑EA γ(Q).

Lemma 25. Let P and Q be MIAs. Then, γ(P ∥Q) ⊒EA γ(P) ∥ γ(Q).

Proof. “⊒EA”: By Thm. 26 and Lemma 20 we derive this chain of inequalities:
γ(P) ∥ γ(Q) ⊑EA (γ ◦ α)(γ(P) ∥ γ(Q)) ⊒⊑EA γ((α ◦ γ)(P) ∥(α ◦ γ)(Q)) ⊒⊑EA

γ(P ∥Q).

18 4 RELATION TO OTHER INTERFACE THEORIES

P :

p0

p1

∗

a?

a?b!

α(P):

p0

u

a?

Q:

q0

∗

a?

α(Q):

q0

P ∧Q = α(P ∧Q):

∅

α(P)∧α(Q):

⟨p0, q0⟩

Figure 3: Example of EMIAs P , Q with α(P ∧Q) ̸⊒MIA α(P)∧α(Q).

The monotonicity of the mappings α and γ defined in Defs. 18 and 23 is key to
the proof of our main result that α and γ form a Galois insertion:

Theorem 26 (Galois Insertion). The maps α : EMIA′ → MIA and γ : MIA →
EMIA′ defined in Defs. 18 and 23 form a Galois insertion between MIA and EMIA′

up to ⊒⊑MIA, i.e., P ⊑EA γ(Q) iff α(P) ⊑MIA Q and (α ◦ γ)(Q) ⊒⊑MIA Q.

Proof. First, we show that α ◦ γ = idMIA (up to ⊒⊑MIA):

(α ◦ γ)(Q) = α
(⋁

ᾱ−1(Q)
)

(by Def. 23)

⊒⊑MIA

⋁{
α(Q′)

⏐⏐ Q′ ∈ ᾱ−1(Q)
}

(by homomorphicity of α)

⊒⊑MIA

⋁
{Q} (by definition of ᾱ−1)

⊒⊑MIA Q.

Second, we prove that γ ◦ α is extensive: From P ∈ ᾱ−1(α(P)) and Def. 23 we
conclude P ⊑EA

⋁
ᾱ−1(α(P)) = (γ ◦ α)(P). Third, we show that α and γ form

a Galois connection, i.e., P ⊑EA γ(Q) iff α(P) ⊑MIA Q. Direction “⇒” holds
due to α ◦ γ = idMIA and the monotonicity of α: P ⊑EA γ(Q) ⇒ α(P) ⊑MIA

(α ◦ γ)(Q) ⊒⊑MIA Q. Direction “⇐” follows from the monotonicity of γ, the ex-
tensivity of γ ◦α and the transitivity of ⊑EA by the following chain of implications:
α(P) ⊑MIA Q ⇒ (γ ◦ α)(P) ⊑EA γ(Q) ⇒ P ⊑EA γ(Q).

The map α is not homomorphic wrt. conjunction: α(P ∧Q) ⊑MIA α(P)∧α(Q)
holds for P,Q ∈ EMIA′ because α is monotonic. However, the converse direction
“⊒MIA” does not hold in general, because MIA’s replacement of illegal states by
u—which must be reproduced by α—is a non-continuous operation. An example
of EMIAs P and Q with α(P ∧Q) ̸⊒MIA α(P)∧α(Q) is shown in Fig 3. State p1
of specification P is in CP due to the b!-transition. Therefore, α prunes p1 and

19

G′:

g0 g1

g2g3

∗

rqstPass?

op
en
D
o
or
!

drive?

cl
os
eD

o
or
!

dr
iv
e?

drive?

dr
iv
e?

G′ ∥C:

⟨g0, c0⟩ ⟨g0, c1⟩

⟨g1, c2⟩

∗⟨g3, c0⟩

⟨g2, c2⟩

rqstCar?

rq
st
P
as
s!

openDoor!
drive!

closeDoor!

drive!

α(G′ ∥C):

⟨g0, c0⟩

u

rq
st
C
ar
?

Figure 4: Driving assistant system in EMIA and its Galois abstraction.

replaces it by a universal state u in α(P). The conjunction P ∧Q is inconsistent
because P ’s regular state p1 is conjoined with Q’s fatal error state ∗, and the
a?-must transition propagates this inconsistency back to the initial state. In the
abstract setting, both the error and the inconsistency are avoided resulting in a
regular and consistent initial state that is trivially refined by P ∧Q.

The discontinuity of α also makes γ non-homomorphic wrt. parallel composi-
tion; however, γ satisfies the inequality γ(P ∥Q) ⊒EA γ(P) ∥ γ(Q) for MIAs P,Q.

5 Discussion

In this section we illustrate how the fatal error states employed in EMIA solve
Issues (A)–(D) presented in Sec. 1. In particular, we establish that EMIA treats
unwanted behaviour more intuitively (Issue (A)), that EMIA, in contrast to MIA,
is an assembly theory (Issue (B)), that EMIA provides better support for specifying
product families (Issue (C)), and that EMIA unifies the composition concepts of
MTS and interface theories (Issue (D)). We do this mostly along the example of
Sec. 2 and also use this example to demonstrate the Galois abstraction from EMIA
to MIA.

Issue (A)

In EMIA, the garage’s constraint that a car shall not drive in or out in state g1
would be specified by a drive?-transition to a fatal error state ∗, which represents
an unresolvable error as is illustrated in specification G′ in Fig. 4. In the resulting
parallel composition G′ ∥C, also shown in Fig. 4, driving in or out too early in
state ⟨g1, c2⟩, when the door is still closed, leads to the fatal error state ∗, where
the car crashes into the door. This information is not removed and cannot be
redefined to not being an accident by refining G′ ∥C. Keeping this information

20 5 DISCUSSION

C ′:

c0 c1

c2c3

rqstCar?

rq
st
P
as
s!

openDoor?

d
ri
ve
!

U :

u0

u1

rq
st
C
ar
!

V :

v0

D:

d0 d1

d2d3

rqstCar?

rq
st
P
as
s!

openDoor?

d
ri
ve
!

go
?

W :

w0

w1

rq
st
C
ar
!

go
!

Figure 5: Corrected car C ′, user interfaces U, V, and product families D and W.

is essential for pinning down the location and the cause of the error within the
specification. Because G′ forbids action drive? between rqstPass? and openDoor!
but allows drive? after openDoor!, we can infer that specification C must be aware
of action openDoor! in order to be compatible with G′. This way, a software design
tool based on EMIA can propose possible specification changes to the designer.
For example, the tool may propose to add action openDoor? to the car’s alphabet
and to insert an openDoor?-transition between rqstPass! and drive!, so as to avoid
the fatal error state ∗ that is reachable from ⟨g1, c2⟩. The resulting specification is
shown as C ′ in Fig 5.

Galois abstraction:

Fig. 4 (right) illustrates the abstraction function α of the Galois insertion between
MIA and EMIA. We have CG′ ∥C := bclΩG′ ∥C(DG′ ∥C) \DG′ ∥C = {⟨g1, c2⟩, ⟨g0, c1⟩}
(cf. Sec. 4). The rqstCar?-must-transition at ⟨g0, c0⟩ leading to CG′ ∥C is replaced
by a rqstCar?-may-transition to uα(G′ ∥C). Due to α being a homomorphism wrt.
∥, this result corresponds exactly to the MIA shown in Fig. 2 (right).

Issue (B)

When adding the specification of a simple user interface, shown as U in Fig. 5, as a
third component to the specifications G and C of Fig. 1, the three components G,
C and U are pairwise optimistically compatible. However, the composed system
G ∥C ∥U is incompatible, because the mismatch for action drive! is reachable from
the initial state ⟨g0, c0, u0⟩. In other words, MIA is not by itself an assembly theory.
A different but related problem arises in pessimistic theories: the user interface
specification V in Fig. 5 promises to never request a car. The components G
and C are pessimistically incompatible and (G ∥C) ∥V is undefined. However,
G ∥ (C ∥V) is a perfectly valid composition.

21

To lift their interface theory MIO to an assembly theory, Hennicker and Knapp
propose an enrichment EMIO of MIO by error states similar to our fatal errors [15].
However, they do not develop EMIO into a full interface theory: EMIOs are
only employed to describe the result of a multi-component parallel composition
and to check the communication safety of such an assembly. In addition, refine-
ment is lifted to assemblies by providing an error-preserving refinement relation
for EMIOs, which is similar to EA-refinement. However, no further operations
like parallel composition or conjunction are defined for assemblies; instead, EMIO
forms a second layer on top of MIO, and an EMIO is re-interpreted as MIO via
an encapsulation function that removes all error-information. In contrast to this
loose integration, EMIA provides a uniform and tight integration of interfaces and
assemblies by directly including its canonical assembly theory in the sense of [15].
In particular, EMIA does not need two separate refinement relations for interfaces
and assemblies.

Translating the above examples of assemblies with U and V into EMIA, the
composition G′ ∥C ∥U resembles G′ ∥C (Fig. 4), except that action rqstCar is an
output instead of an input. Further, (G′ ∥C) ∥V and G′ ∥ (C ∥V) are equivalent
in EMIA. In both examples, compatibility is checked via reachability of fatal error
states. However, it is up to the system designer to decide which error behaviour
yields an incompatibility, i.e., compatibility is not necessarily a global concept as
is the case for optimistic and pessimistic compatibility.

In order to establish the above results, we recap the definition of assembly
theory by Hennicker and Knapp [15], with the following difference: in Hennicker
and Knapp’s definition of an interface theory, an interface cannot contain errors
by itself and, thus, a single interface is always communication safe. EMIA addi-
tionally allows one to specify erroneous interfaces, which should not be considered
communication safe. Therefore, we introduce a communication safety predicate on
interfaces and generalise Conds. A1 and A3 below accordingly.

Definition 27 (Assembly Theory [15]). Let I := (I, cs, ∥,⊑) be an interface
theory, where I is a collection of interfaces, cs ⊆ I is a communication safety
predicate, ∥ is a (binary) parallel composition operator, and ⊑ is the refinement
preorder. A tuple A := (A, cs, φ,⪯) consisting of a collection of assemblies
A := {⟨Ik⟩k∈K | 0 < |K| < ∞ and Ik, Il ∈ I composable for k ̸= l}, a com-
munication safety predicate cs ⊆ A, a partial encapsulation operation φ : A ⇀ I
and an assembly refinement relation ⪯ ⊆ A×A is called an assembly theory over
I if, for all A,B,A1, . . . , An, B1, . . . , Bn ∈ A and I, J ∈ I, we have:

A1. cs(⟨I⟩) iff cs(I),
A2. if cs(A), then φ(A) is defined,
A3. if φ(⟨I⟩) is defined, then φ(⟨I⟩) = I,
A4. ⪯ is reflexive and transitive,

22 5 DISCUSSION

A5. I ⊑ J implies ⟨I⟩ ⪯ ⟨J⟩,
A6. if A = A1∪̇ . . . ∪̇An and cs(Ak) for k = 1, . . . , n,

then ⟨φ(A1), . . . , φ(An)⟩ ∈ A,
A7. if A = A1∪̇ . . . ∪̇An, cs(Ak) for k = 1, . . . , n and cs(⟨φ(A1), . . . , φ(An)⟩),

then φ(A) = φ(⟨φ(A1), . . . , φ(An)⟩),
A8. if A ⪯ B and cs(B), then cs(A),
A9. if A ⪯ B and cs(B), then φ(A) ⊑ φ(B),
A10. if A = A1∪̇ . . . ∪̇An, B = B1∪̇ . . . ∪̇Bn, cs(⟨φ(B1), . . . φ(Bn)⟩), as well as

cs(Bk) and Ak ⪯ Bk for k = 1, . . . , n, then A ⪯ B.

Intuitively, the encapsulation φ(A) of an assembly A represents the composition of
A’s components as an interface. Therefore, an assembly theory is called canonical
if there is a strong correspondence between φ and ∥. We write

∏
k∈K for the

generalisation of ∥ to assemblies.

Definition 28 (Canonical Assembly Theory [15]). An assembly theory is called
canonical if the following conditions hold:

1. cs(⟨Ik⟩k∈K) iff, for all l ∈ K, Il and
∏

k∈K\{l} Ik are compatible,

2. φ(⟨Ik⟩k∈K) =
∏

k∈K⟨Ik⟩ if cs(⟨Ik⟩k∈K), and undefined otherwise.

It is straightforward to define a canonical assembly theory over EMIA:

Definition 29 (Assembly Theory over EMIA). Let IEMIA := (EMIA, cs, ∥,⊑EA)
with cs(I) iff S0

I ∩ bclΩI (DI) = ∅. We define AEMIA := (A, cs, φ,⪯) with A :=
{⟨Ik⟩k∈K | 0 < |K| < ∞ and Ik, Il ∈ EMIA composable for k ̸= l}, cs(A) iff
S0
φ(A) ∩ bclΩφ(A)(Dφ(A)) = ∅, φ(⟨I⟩) := I and φ(⟨I1, . . . , In⟩) := I1 ∥ . . . ∥ In, and

A ⪯ B iff φ(A) ⊑EA φ(B).

Showing that AEMIA is an assembly theory is easy:

Lemma 30. AEMIA is an assembly theory over IEMIA.

Proof. A1 holds by definition. A2 is trivial because φ is defined for all assemblies.
A3 holds by definition. A4 is trivial because ⊑EA is reflexive and transitive. A5
holds by definition. A6 and A7 are trivial due to the associativity of EMIA parallel
composition. A8 holds by definition of ⊑EA. A9 holds by definition of ⪯. A10
holds due to the compositionality of ⊑EA.

AEMIA obviously satisfies the first condition of Def. 28. It almost satisfies the
second condition, except that instead of being undefined in the ‘otherwise’-branch,
an erroneous interface results from the composition. We can either artificially
set such a result to undefined in order to match the definition exactly or argue

23

D′ ∥W : ⟨d0, w0⟩ ⟨d1, w1⟩

⟨d2, w1⟩⟨d3, w1⟩⟨d0, w1⟩

∗

rqstCar!

rqstPass!

openDoor?drive!

go!
go!

Figure 6: Composition of product lines D′ and W in EMIA.

that undefinedness is only necessary here because interface theories in [15] do not
support the specification of erroneous interfaces (and, thus, one may change the
definition accordingly). In both cases we have:

Theorem 31 (Assembly Theory). EMIA induces a canonical assembly theory.

Because ϕ directly corresponds to ∥ and ⪯ to ⊑EA, IEMIA directly includes AEMIA.
Because encapsulation directly corresponds to ∥ and the assembly refinement pre-
order to ⊑EA, EMIA directly includes its canonical assembly theory.

Issue (C)

Consider specifications D and W of a car and a user interface product family, resp.,
both of which are shown in Fig. 5. These specifications allow product variations of
a car and a user interface, which enable drivers to initiate the automatic driving
assistance manually (go!), e.g., when parking in a different garage that is not
equipped with an automatic door opener. Obviously, a user interface that provides
this feature is incompatible with a car that does not, i.e., although some product
combinations of D and W are compatible, some of them are not. Hence, D and W
are incompatible, and no information that might help finding compatible product
combinations is provided in current interface theories (see also the discussion about
actual and potential errors in Sec. 2). In EMIA, the optional go?-transition at state
d0 would be modelled as a disjunctive go?-must-transition from d0 to {d3, ∗}, for
a fatal error state ∗. We refer to this specification as D′. The specified error
information is still present in the parallel composition of D′ and W, so that one
may derive additional conditions on the go-transitions. These conditions result
in compatible refinements of D′ and W, which describe compatible sub-families
of the original product families. For example, refining the optional go?-transition
into a mandatory one in D′, or removing the optional go!-transition in W; both
result in appropriate restrictions to sub-families. The necessary error information
is present in the EMIA parallel composition of D′ and W (cf. Fig. 6).

24 6 CONCLUSIONS

Issue (D)

MTS and interface theories combining IA with MTS share many aspects of the
modality semantics wrt. refinement. However, the meaning of may- and must-
modalities differs wrt. parallel composition. Required and forbidden actions never
cause an error in a parallel composition in MTS: either all components unanimously
agree on implementing an action, or the action is forbidden in the composed sys-
tem. The possibility to disagree on transitions enables an environment to control
all transitions of an MTS, such that they may be interpreted as input-transitions
from an interface theoretic view. However, the MTS parallel composition does
not directly scale to output actions, because these cannot be controlled by the
environment. Consequently, previous interface theories have adopted an IA-like
error-aware parallel composition that is tightly bound to a global compatibility
concept. In contrast, EMIA’s explicit error representation allows for a local de-
scription of compatibility that is independent of composition. Thus, EMIA unifies
unanimous and error-aware parallel composition, i.e., it permits the mixing of
these composition concepts within a specification. As an aside, note that EMIA
collapses to MTS when considering input actions only.

6 Conclusions

Our interface theory EMIA is a uniformly integrated specification framework that
is applicable at different levels of abstraction, e.g., component-based design, prod-
uct line specification and programming with behavioural types. EMIA bridges the
gaps between MTS [19], interface theories [10, 11, 2, 5, 6, 8, 18, 21, 22] and as-
sembly theories [15]. It is based on a concept of error-awareness, whereby EMIA’s
refinement preorder reflects and preserves fatal error states. While recent interface
theories [5, 22] considered the problem of how to enforce required behaviour, our
finer-grained error semantics also solves the dual and previously open problem of
how to forbid unwanted behaviour.

We proved that EMIA is related to the IA-based interface theory MIA [5] via
a Galois insertion, rendering MIA into an abstraction of EMIA. In the abstract
theory, errors may be considered as models of unknown behaviour for which no
guarantees can be made, while in EMIA errors model unwanted behaviour for
which we know that it must not be implemented. This difference between EMIA
and related interface theories can be captured in a more concise way when consid-
ering error states axiomatically. In related theories [5, 22], an error state e satisfies
the laws e ∥ q = e, meaning that a composed system is in an erroneous state if a
component is, and e ⊑ p ⇒ p = e, meaning that an error cannot be introduced
when refining an ordinary state. In EMIA, the additional law p ⊑ e ⇒ p = e is

REFERENCES 25

satisfied, i.e., refining cannot redefine an erroneous situation to be non-erroneous.
Regarding future work we intend to add alphabet extension and quotienting,

and wish to capture differences and commonalities of different interface theories
via axiomatisations. We also plan to implement EMIA in a formal methods tool,
e.g., Mica [7], the MIO-Workbench [2] or MoTraS [16], and to adapt EMIA as a
behavioural type theory for the Go Programming Language [14]. Such tools would
enable us to evaluate EMIA on larger, more realistic examples, e.g., the docking
system studied in the context of IA in [12].

Acknowledgements. We are grateful to Ferenc Bujtor, Walter Vogler and the
anonymous reviewers for their helpful suggestions.

References

[1] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and
A. Wasowski. Moving from specifications to contracts in component-based
design. In Fundamental Approaches to Software Engineering (FASE), volume
7212 of LNCS, pages 43–58. Springer, 2012.

[2] S. S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker. On weak modal com-
patibility, refinement, and the MIO Workbench. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 6015 of LNCS,
pages 175–189. Springer, 2010.

[3] N. Beneš, I. Černa, and Křetíınský. Disjunctive modal transition systems and
generalized ltl model checking. Technical Report FIMU-RS-2010-12, Faculty
of Informatics, Masaryk University Brno, 2010.

[4] Dirk Beyer, Arindam Chakrabarti, Thomas A. Henzinger, and Sanjit A. Se-
shia. An application of web-service interfaces. In Intl. Conf. on Web Services
(ICWS), pages 831–838. IEEE, 2007.

[5] F. Bujtor, S. Fendrich, G. Lüttgen, and W. Vogler. Nondeterministic modal
interfaces. In Theory and Practice of Computer Science (SOFSEM), volume
8939 of LNCS, pages 152–163. Springer, 2015. An extended version of this
paper, with a corrected definition of weak refinement, has been submitted to
the TCS journal.

[6] F. Bujtor and W. Vogler. Error-pruning in interface automata. In Theory
and Practice of Computer Science (SOFSEM), volume 8327 of LNCS, pages
162–173. Springer, 2014.

26 REFERENCES

[7] B. Caillaud. Mica: A modal interface compositional analysis library, 2011.
online, accessed 2 Dec. 2015.

[8] T. Chen, C. Chilton, B. Jonsson, and M. Z. Kwiatkowska. A compositional
specification theory for component behaviours. In Programming Languages
and Systems (ESOP), volume 7211 of LNCS, pages 148–168. Springer, 2012.

[9] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages (POPL), pages 238–252. ACM, 1977.

[10] L. de Alfaro and T. A. Henzinger. Interface automata. In Foundations of
Software Engineering (FSE), pages 109–120. ACM, 2001.

[11] L. de Alfaro and T. A. Henzinger. Interface-based design. In Engineering
Theories of Software-Intensive Systems, volume 195 of NATO Science, pages
83–104. Springer, 2005.

[12] M. Emmi, D. Giannakopoulou, and C. S. Păsăreanu. Assume-guarantee ver-
ification for interface automata. In Formal Methods (FM), volume 5014 of
LNCS, pages 116–131. Springer, 2008.

[13] S. Fendrich and G. Lüttgen. A generalised theory of interface automata,
component compatibility and error. In Integrated Formal Methods (iFM),
LNCS. Springer, 2016.

[14] Johannes Gareis. Prototypical Integration of the Modal Interface Automata
Theory in Google Go. Master’s thesis, Bamberg University, Germany, 2015.

[15] R. Hennicker and A. Knapp. Moving from interface theories to assembly
theories. Acta Informatica, 52(2-3):235–268, 2015.

[16] Jan Křet́ınský and Salomon Sickert. MoTraS: A tool for modal transition
systems and their extensions. In Automated Technology for Verification and
Analysis (ATVA), volume 8172 of LNCS, pages 487–491. Springer, 2013.

[17] K. G. Larsen. Modal specifications. In Automatic Verification Methods for
Finite State Systems, volume 407 of LNCS, pages 232–246. Springer, 1989.

[18] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface
and product line theories. In Programming Languages and Systems (ESOP),
volume 4421 of LNCS, pages 64–79. Springer, 2007.

[19] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems.
In Logic in Computer Scienc (LICS), pages 108–117. IEEE, 1990.

REFERENCES 27

[20] Marten Lohstroh and Edward A. Lee. An interface theory for the Internet of
Things. In Software Engineering and Formal Methods (SEFM), volume 9276
of LNCS, pages 20–34. Springer, 2015.

[21] G. Lüttgen, W. Vogler, and S. Fendrich. Richer interface automata with
optimistic and pessimistic compatibility. Acta Informatica, 52(4-5):305–336,
2015.

[22] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and
R. Passerone. A modal interface theory for component-based design. Fund.
Inform., 108(1-2):119–149, 2011.

[23] S. Tripakis, C. Stergiou, M. Broy, and E. A. Lee. Error-completion in interface
theories. In Model Checking Software (SPIN), volume 7976 of LNCS, pages
358–375. Springer, 2013.

Bamberger Beiträge zur Wirtschaftsinformatik

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell in
das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st

edition, June 1994

Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2nd edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichteten
Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für verteilte
Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Management
dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz J.,
Schmidt G., and Shaw M., Volume I, Springer 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer 1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Knowledge
and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems
Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Generation
Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel, July,
1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint in:
Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems, April
2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-Szenarien.
February 2007 (out of print)

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: out of print

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer, Guido Wirtz: Applying Business Process Management
Systems – A Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer, Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled B2B
Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schönberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel, Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mühlberg und Gerald Lüttgen: Symbolic Object Code Analysis.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

Nr. 86 (2010) Werner Zirkel, Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation – ein Best Practice Ansatz. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 86, Bamberg University,
August 2010. ISSN 0937-3349.

Nr. 87 (2010) Johannes Schwalb, Andreas Schönberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

Nr. 88 (2011) Jörg Lenhard: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
88, Bamberg University, March 2011. ISSN 0937-3349.

Nr. 89 (2011) Andreas Henrich, Christoph Schlieder, Ute Schmid [eds.]: Visibility in Information
Spaces and in Geographic Environments – Post-Proceedings of the KI’11
Workshop. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 89, Bamberg University, December 2011. ISSN 0937-3349.

Nr. 90 (2012) Simon Harrer, Jörg Lenhard: Betsy - A BPEL Engine Test System. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90, Bamberg
University, July 2012. ISSN 0937-3349.

Nr. 91 (2013) Michael Mendler, Stephan Scheele: On the Computational Interpretation of CKn
for Contextual Information Processing - Ancillary Material. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik Nr. 91, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 92 (2013) Matthias Geiger: BPMN 2.0 Process Model Serialization Constraints. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 92, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 93 (2014) Cedric Röck, Simon Harrer: Literature Survey of Performance Benchmarking
Approaches of BPEL Engines. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 93, Bamberg University, May 2014. ISSN 0937-3349.

Nr. 94 (2014) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Grounding Synchronous Deterministic Concurrency in Sequential Programming.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
94, Bamberg University, August 2014. ISSN 0937-3349.

Nr. 95 (2014) Michael Mendler, Bruno Bodin, Partha S Roop, Jia Jie Wang: WCRT for
Synchronous Programs: Studying the Tick Alignment Problem. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 95, Bamberg
University, August 2014. ISSN 0937-3349.

Nr. 96 (2015) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Denotational Fixed-Point Semantics for Constructive Scheduling of Synchronous
Concurrency. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 96, Bamberg University, April 2015. ISSN 0937-3349.

Nr. 97 (2015) Thomas Benker: Konzeption einer Komponentenarchitektur für prozessorientierte
OLTP- & OLAP-Anwendungssysteme. Bamberger Beiträge zur Wirtschafts-
informatik und Angewandten Informatik Nr. 97, Bamberg University, Oktober
2015. ISSN 0937-3349.

Nr. 98 (2016) Sascha Fendrich, Gerald Lüttgen: A Generalised Theory of Interface Automata,
Component Compatibility and Error. Bamberger Beiträge zur Wirtschaftsinfor-
matik und Angewandten Informatik Nr. 98, Bamberg University, March 2016.
ISSN 0937-3349.

	Introduction
	Motivating Example
	Error-aware Modal Interface Automata
	Relation to other Interface Theories
	Discussion
	Conclusions

