Fokianos, KonstantinosKonstantinosFokianosLeucht, AnneAnneLeucht0000-0003-3295-723XNeumann, Michael H.Michael H.Neumann2023-02-032023-02-032022https://fis.uni-bamberg.de/handle/uniba/55002We consider a general monotone regression estimation where we allow for independent and dependent regressors. We propose a modifcation of the classical isotonic least squares estimator and establish its rate of convergence for the integrated L1-loss function. Themethodology captures the shape of the data without assuming additivity or a parametricform for the regression function. Furthermore, the degree of smoothing is chosen automatically and no auxiliary tuning is required for the theoretical analysis. Some simulations and two real data illustrations complement the study of the proposed estimator.engIsotonic least squares estimationmultivariate isotonic regression330On Integrated L1 Convergence Rate of an Isotonic Regression Estimator for Multivariate Observationspreprinturn:nbn:de:bvb:473-irb-550020