Wegge, MaximilianMaximilianWeggeTroiano, EnricaEnricaTroianoOberlaender, Laura Ana MariaLaura Ana MariaOberlaenderKlinger, RomanRomanKlinger0000-0002-2014-66192024-03-072024-03-072022https://fis.uni-bamberg.de/handle/uniba/93881Emotion classification in NLP assigns emotions to texts, such as sentences or paragraphs. With texts like “I felt guilty when he cried”, focusing on the sentence level disregards the standpoint of each participant in the situation: the writer (“I”) and the other entity (“he”) could in fact have different affective states. The emotions of different entities have been considered only partially in emotion semantic role labeling, a task that relates semantic roles to emotion cue words. Proposing a related task, we narrow the focus on the experiencers of events, and assign an emotion (if any holds) to each of them. To this end, we represent each emotion both categorically and with appraisal variables, as a psychological access to explaining why a person develops a particular emotion. On an event description corpus, our experiencer-aware models of emotions and appraisals outperform the experiencer-agnostic baselines, showing that disregarding event participants is an oversimplification for the emotion detection task.engEmotion004Experiencer-Specific Emotion and Appraisal Predictionconferenceobject10.18653/v1/2022.nlpcss-1.3https://aclanthology.org/2022.nlpcss-1.3