Matyas, ChristianChristianMatyas2019-09-192014-05-152014978-3-86309-204-7978-3-86309-205-4https://fis.uni-bamberg.de/handle/uniba/2671Zugl.: Bamberg, Univ., Diss., 2013Mobile Geräte werden immer häufiger mit Sensoren zur Bestimmung der eigenen Position ausgestattet, zum Beispiel mit GPS. Mit Hilfe der Ortsinformationen dieser Sensoren können beispielsweise moderne Bildmanagementanwendungen digitale Fotos automatisch nach geografischen Regionen gruppieren oder passende Schlagworte generieren. Dies führt unter anderem zu einer besseren Suchbarkeit dieser digitalen Daten. Grundsätzlich geben Ortsinformationen in digitalen Fotos nicht nur Hinweise auf das Foto selbst, sondern machen auch sichtbar, welche geografischen Entscheidungen der Fotograf bei deren Erstellung getroffen hat. Diese Arbeit nutzt diese Entscheidungen für die Berechnung von weiteren Empfehlungen für den Nutzer, beispielsweise einer Bildmanagementanwendung. Ein konkreter Anwendungsfall lautet folgendermaßen: Einem Nutzer sollen für eine frei wählbare geographische Region (z.B. einer Stadt), mehrere Bilder empfohlen werden, die zum einen typisch für diese Region sind, zum anderen aber auch für ihn persönlich interessant sein könnten. Um diese geografischen Mehr-Objekt-Empfehlungen zu berechnen, wurde ein neuartiger Algorithmus entwickelt, der zunächst die Ortsinformationen aller Nutzer zu einem geografischen Modell bündelt. Auf Grundlage dieser prototypischen Konzeptualisierung von einzelnen Regionen, können dann typische Bilder empfohlen werden. Weiterhin werden diese geografischen Modelle in einem zweiten Schritt für die zusätzliche Gewichtung der einzelnen geografischen Entscheidungen der Nutzer verwendet, um über den Ansatz eines kollaborativen Filters zu einer persönlichen Empfehlung zu gelangen. Dazu wurden mehrere Verfahren entwickelt und miteinander verglichen. Diese Arbeit ist im Rahmen des europäischen Projektes Tripod entstanden, für das der entwickelte geografische Empfehlungsalgorithmus als Softwaremodul prototypisch implementiert wurde. Damit wurden die Empfehlungen mit Hilfe von georeferenzierten Bildern evaluiert, die auf den Online-Galerien Panoramio.com und Flickr.de veröffentlicht wurden. Durch die Auswertung der geografischen Informationen und der daraus berechneten Ortsmodelle, ließen sich deutlich präzisere Empfehlungen vorschlagen, als mit anderen bekannten Empfehlungsverfahren.deu-004Geografische Empfehlungssystemedoctoralthesisurn:nbn:de:bvb:473-opus4-60852