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Abstract

In computer science, and also in philosophy, modal logics play an impor-
tant role in various areas. They can be used to model knowledge structures
among software-agents, behaviour of computer systems, or ontologies. They
also provide mathematical tools to perform reasoning in these models, e.g.,
to extract common knowledge of agents, check whether security-relevant
problems might occur when running a program, or to detect contradictions
in a set of terminological definitions. Intuitionistic or constructive proposi-
tional logic can be considered as a special kind of modal logic. Constructive
modal logics, as a combination of intuitionistic propositional logic and clas-
sical modal logics, describe a family of modal systems which are, compared
to the classical variant, more restrictive concerning the validity of formulas.

To prove validity of a statement formalized in such a logic, various reasoning
procedures (also called calculi) have been investigated. There are especially
many variants of sequent and tableau systems which can be used easily to
find proofs by applying given syntactical rules one after another. Sometimes
there are different possibilities to find a proof for the same formula within
the same calculus. It also happens that a bad choice of non-invertible rule
applications at the wrong time makes it impossible to finish the proof suc-
cessfully, although the formula is provable. For this reason, a normalization
of deductions in a calculus is desired. This restricts the possibilities to apply
rules arbitrarily and emphasizes the situations in which significant, non-
invertible rule applications are necessary. Such a normalization is enforced
in so-called focused sequent systems.

Another attempt to find a normalized calculus leads to dialogical logic, a
game-theoretic reasoning technique. Usually, two players, one proponent
and one opponent, argue about an assertion, expressed as a formula and
stated by the proponent at the beginning of the play. The kinds of arguments,
namely attacks and defences, are bound to special game rules. These are
designed in such a way that the proponent has a winning strategy in the
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game if and only if his initial statement is a valid formula. The dialogical
approach is very flexible as the game rules can be adjusted easily. Sets of
rules exist to perform reasoning in many different kinds of logic, however
proving soundness and completeness of dialogical calculi is complex and,
if at all, often only considered very roughly in the literature. The standard
two-player dialogues do not have much potential to enforce normalization
like focus sequent systems. However, it turns out that introducing further
proponent-players who fight against one opponent in a round-based setting
leads to a normalization as described above. The flexibility of two-player
games is largely preserved in multi-proponent dialogues. Other ordinary
sequent systems can easily be transferred into the dialectic setting to achieve
a normalization. Further, the round-based scheduling induces a method
to parallelize the reasoning process. Modifying the game rules makes it
possible to construct new intermediate or even more restrictive logics.

In this work, dialogical systems with multiple proponents are presented for
intuitionistic propositional logic and modal logics S4 and CS4. Starting with
the former one, it is shown that the normalization can be transferred easily
to both the latter systems. Informal game rules are introduced and, to make
them concrete and unambiguous, translated into the dialogical sequent-style
calculi DiaSeqI, DiaSeqS4, and DiaSeqCS4. An extra system for intuition-
istic logic, which guarantees termination in proof searches, even if the target
formula is not valid, is also provided. Soundness and completeness of all
these presented dialogical sequent calculi is proven formally, by showing
that it is always possible to translate derivations in the game-oriented ap-
proach into another sound and complete sequent system and vice versa.
Thereby, a new (ordinary) multi-conclusion sequent calculus for CS4 is intro-
duced for which adequateness is shown, too.

The multi-proponent dialogical systems of this work are compared to dif-
ferent sequent calculi and other dialogical attempts found in literature. A
comprehensive survey of such approaches is also part of this thesis.
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Zusammenfassung

Modallogiken spielen in verschiedenen Gebieten der Informatik und auch
in der Philosophie eine wichtige Rolle. Sie ermöglichen es, Wissensstruk-
turen von Softwareagenten, Verhalten von Computersystemen oder Begriff-
systeme (Ontologien) zu modellieren. Mithilfe mathematischer Werkzeu-
ge lassen sich Schlussfolgerungen in diesen Modellen ziehen, z.B. um ge-
meinschaftliches Wissen der Agenten zu extrahieren, um zu überprüfen, ob
sicherheitsrelevante Probleme beim Ausführen von Programmen auftreten
können, oder um Widersprüche in Begriffsdefinitionen aufzudecken. Intui-
tionistische oder konstruktive Aussagenlogik kann als eine spezielle Art von
Modallogik betrachtet werden. Eine mögliche Kombination aus intuitionisti-
scher Aussagenlogik und klassischer Modallogik stellt die Familie der kon-
struktiven Modallogiken dar, die im Vergleich zur klassischen Variante re-
striktiver bezüglich der Gültigkeit von Formeln sind.

Um die Gültigkeit einer in einer solchen Logik formalisierten Aussage zu
beweisen, wurden verschiedene Verfahren (auch Kalküle genannt) entwi-
ckelt, darunter etliche Varianten an Sequenzen- und Tableausystemen, mit
deren Hilfe die Beweissuche auf einfache Art und Weise durch die sukzessi-
ve Anwendung von syntaktischen Regeln ermöglicht wird. Manchmal gibt
es dabei mehrere Möglichkeiten, einen Beweis für die gleiche Formel in ein
und demselben Kalkül zu konstruieren. Es kann auch vorkommen, dass ei-
ne falsche Wahl bezüglich der Anwendung einer nicht invertierbaren Regel
zu einem falschen Zeitpunkt zum Scheitern des Beweises führt, obgleich die
entsprechende Formel beweisbar ist. Aus diesem Grund ist eine Normalisie-
rung von Deduktionen in einem Kalkül wünschenswert. Diese schränkt die
Möglichkeiten ein, Regeln in beliebiger Reihenfolge anzuwenden und hebt
Situationen heraus, in denen nicht-invertierbare Anwendungen notwendig
sind. Eine solche Normalisierung wird in den sogenannten Fokussierten Se-
quenzenkalkülen forciert.
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Der Gedanke der Normalisierung führt auch zur Dialogischen Logik, einem
spieltheoretischen Verfahren: Im Normalfall führen zwei Spieler, nämlich
ein Proponent und ein Opponent, eine Diskussion über eine als Formel
dargestellte Aussage, die der Proponent zu Beginn des Spiels äußert. Die
möglichen Argumentationsweisen (Angriffe und Verteidigungen) richten
sich dabei nach speziellen Spielregeln. Diese sind so gestaltet, dass der Pro-
ponent genau dann eine Gewinnstrategie hat, wenn seine initiale Äußerung
eine valide Formel ist. Der dialogische Ansatz ist sehr flexibel, da die Spiel-
regeln leicht angepasst werden können, um, wie in der Vergangenheit ge-
schehen, viele verschiedene Arten von Logiken zu bedienen. Korrektheit
und Vollständigkeit sind für diese dialogischen Kalküle jedoch schwer nach-
zuweisen und dieser Punkt wird in der Literatur oftmals nur sehr ober-
flächlich behandelt oder komplett außer Acht gelassen. Die gewöhnlichen
Zweispieler-Dialoge sind für Normalisierungen, wie sie in Fokussierten Se-
quenzenkalkülen realisiert werden, wenig geeignet. Werden jedoch weite-
re Proponenten eingeführt, welche sich dem Opponenten gemeinsam in ei-
ner rundenbasierten Umgebung stellen, so führt dies zu einer Normalisie-
rung wie sie oben beschrieben ist. Die Flexibilität der Zweispieler-Spiele
bleibt in den Multi-Proponenten-Dialogen weitestgehend erhalten. Ande-
re gewöhnliche Sequenzensysteme können auf einfache Art und Weise in
die dialektische Umgebung überführt werden, wodurch eine Normalisie-
rung erreicht wird. Des Weiteren weist der rundenbasierte Ablauf auf Mög-
lichkeiten zur Parallelisierung des Beweisverfahrens hin. Das Abändern der
Spielregeln ermöglicht es, neue intermediäre oder noch restriktivere Logiken
zu entwickeln.

In dieser Arbeit werden dialogische Systeme mit mehreren Proponenten für
intuitionistische Aussagenlogik und die Modallogiken S4 und CS4 vorge-
stellt. Beginnend mit der ersteren wird gezeigt, dass die Normalisierung
einfach auf die beiden letzteren Systeme übertragen werden kann. Informel-
le Spielregeln werden eingeführt und in die dialogischen Kalküle DiaSeqI,
DiaSeqS4 und DiaSeqCS4, welche eine ähnliche Struktur wie Sequenzen-
kalküle aufweisen, überführt. Damit werden die Regeln konkretisiert und
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von Mehrdeutigkeiten befreit. Ein weiteres System für intuitionistische Lo-
gik, welches die Terminierung der Beweissuche auch dann garantiert, wenn
die Zielformel nicht allgemeingültig ist, wird ebenfalls bereitgestellt. Kor-
rektheit und Vollständigkeit werden für all diese vorgestellten dialogischen
Sequenzenkalküle formell bewiesen, indem gezeigt wird, dass sich jede Her-
leitung im spielorientierten Ansatz in die eines anderen korrekten und voll-
ständigen Sequenzensystems überführen lässt, und umgekehrt. Nebenbei
wird ein neues (gewöhnliches) Multi-Conclusion-Sequenzenkalkül für CS4

vorgestellt, für das ebenfalls Korrektheit und Vollständigkeit nachgewiesen
wird.

Die Multi-Proponenten-Dialogsysteme dieser Arbeit werden mit verschiede-
nen Sequenzenkalkülen und anderen dialogischen Ansätzen aus der Litera-
tur verglichen. Eine umfassende Übersicht dieser Konzepte ist ebenfalls Teil
der vorliegenden Dissertation.
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1 Introduction

1.1 Motivation

1.1.1 Modal Logic

Propositional modal logics (in the following simply modal logics) provide a
flexible formalism to express complex statements in a way which is mostly
more compact and easier to interpret than an equivalent expression in first-
order predicate logic. The semantics are usually defined by way of Kripke
models consisting of possible worlds connected via binary relations, and a valu-
ation function. In computer science, modal logics have a great impact espe-
cially in knowledge representation, software verification, and type theory.
For example, formal knowledge representation in terms of ontologies is eas-
ily possible with description logics.1 There are also forms of modal know-
ledge representation languages for modelling the knowledge distribution
of independent software agents, e.g., to derive conclusions about common
knowledge. Temporal Logics [125, 121] (which are also modal logics) provide
possibilities to describe situations that are admissible or forbidden while
running an algorithm, and can therefore be used in software verification2.
Intuitionistic Logic, which is applied in theorem provers like Coq3, can be
interpreted as a special kind of modal logic as well. Security logics, e.g. the

1Description logics are closely related to modal logic. Several description logical systems
have counterparts in modal logic, e.g., the basic system ALC corresponds exactly to the
multi-modal logic Kn [133, 8].

2e.g., as it is the case in the SPIN model checker, c.f. [71].
3https://coq.inria.fr/
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1 Introduction

so-called BAN-logic [20], can be used to verify properties of authentication
protocols.

There are many extensions of modal logic which increase its expressiveness.
With hybrid logic, one can also make assertions about certain Kripke worlds
within formulas, which is not possible in standard modal logic. Propositional
Dynamic logic (PDL) is used to model control-flow structures of computer
programs. A special dynamic logic is public announcement logic4 (PAL) where
one can make assertions about situations in which certain states (worlds) are
not relevant anymore, i.e., where the underlying model is changed dynamic-
ally due to new information that is announced. This is especially useful when
one wants to analyse the distribution of knowledge after certain information
is made globally available.

Other variants are non-standard modal logics which are restricted concern-
ing the validity of formulas, e.g., the intuitionistic modal logics IK [55, 135]
and CK [110]. These are especially interesting with respect to type theory (as
for the variant CS4, e.g., see [36]) or when modelling incomplete or evolving
knowledge [111].

As deduction techniques in modal logic, several systems have been presen-
ted by various authors. A natural deduction calculus is proposed by Fitch
[56]. Since the publication of the Kripke semantics, a tableau calculus in-
troduced by Kripke [87] (based on the tableau system by Beth [11]) made it
possible to perform intuitive reasoning in the standard systems K, KT, KB,
S4, and S5. With modified Kripke semantics for intuitionistic or constructive
modal logics, other tableaux calculi were proposed such as a system for the
description logic cALC (which corresponds to multi-modal CK) by Scheele
[132].

The sequent system that goes back to Gentzen [60] has also been extended
in many ways for modal logic, some making explicit use of the underlying

4It goes back to Plaza [119].
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Kripke structure by labelling formulas (e.g. [145, 116]), others rejecting this
direction, often for philosophical reasons.

1.1.2 Dialogical Logic and Game Semantics

In many calculi different proofs can be found for the same formula. If the
reasoning procedure provides rules which are not invertible, it can also hap-
pen that applying adverse rules at the wrong time makes it impossible to
complete the proof successfully although the target formula is derivable.
Therefore, the normalization of a reasoning process is a reasonable aim
in order to reduce the number of possible proof attempts and to high-
light the situations in which delicate applications are executed. In this
work, to enforce such a normalization, we make use of a different approach
for reasoning procedures which are called game-theoretic semantics. One
such attempt, the dialogical logic, was introduced by Lorenzen and Lorenz
[100, 98, 103] for which modal extensions exist as well.

Game-theoretic reasoning procedures provide a different way of proving a
logical statement than the usual calculi. In general, two players argue about
the validity of a given formula: one player tries to verify a statement, the
other one wants to falsify it. In the game-theoretical system proposed by
Hintikka [70], a logical model is given and the players perform actions ac-
cording to the outer-most operators of the formula for which the truth value
shall be obtained. Both players have their own set of logical connectors for
which they are responsible, i.e., for which they may perform an action. The
truth values of atomic formulas are usually determined due to the underly-
ing model.

By contrast, in the dialogical games proposed by Lorenzen and Lorenz, the
players take turns one after another and the proof structure is rather argu-
mentative. Further, truth is usually not bound to a fixed model, i.e., de-
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rivations are usually model-independent.5 However, the so-called material
dialogues6 can also be played with an underlying model. Therefore, the dia-
logical approach can be seen as the more general one and so we put the focus
on this and do not consider Hintikka games in detail.

In dialogical logic, two players (called proponent P and opponent O) argue
about the validity of some formula/statement which is stated by P at the
beginning of the dialogue. The opponent attacks that statement, while P must
either defend himself against this attack or counter-attack it. The possible
moves depend on the underlying rules. One part of these rules (the particle
rules) refer to the syntax of the formula that is to be attacked/defended,
while others (the structural rules) describe possible game moves and winning
situations. Enforcing stronger restrictions concerning possible moves allows
us to change the semantics, e.g., from classical to intuitionistic logic. Then,
with a well-defined set of such rules, a winning-strategy for P corresponds
to a proof for the theorem stated by P at the beginning of the dialogue.

There have also been several attempts to use dialogues for classical modal
logics. The only such systems, for which there are adequateness proofs,
are—as far as I currently know—the systems introduced by Krabbe [83, 86]
and Clerbout [29, 30]. Other attempts have been suggested by various au-
thors, but usually without proofs (more in Chapter 2.4).

In general, dialogical logic provides an area of research which is not as well
explored as other conventional proof systems. However, it is a very interest-
ing topic of its own. Nowadays, distributed independent computer systems
or software agents work together to solve a shared problem and need to
communicate and exchange information making use of predefined proto-
cols. Dialogical logic could support this process by providing a framework
to convince the other system with facts in a persuasive way. This would in
fact be a contribution in the area of artificial intelligence.

5Hintikka calls Lorenzen-games indoor games with “verbal ’challenges’ and ’responses’ ”, while
his own system is rather ”related to the uses of logical symbols in finding out something about
the world” [70].

6introduced by Lorenz [99] as relative Dialogspiele.
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1.1 Motivation

In this work, we consider game semantics as deductive systems. Game-
theoretic accounts to proof theory provide a different view on reasoning
procedures and let us learn more about the underlying logic. For example,
Lorenzen came up with the idea of dialogues also to provide a different,
more intelligible justification for intuitionistic logic than Brouwer’s original
attempts [100, 101]. Also, the game-based/dialogical approaches have an-
other perspectives on the rules which do not only work on the syntactical
structure of the formulas like in most calculi. Instead, a set of game rules is
provided that puts restrictions on the players’ moves. Modifying these rules
even allows us to create new logics or improve proof search.

For example, the semantics of independence-friendly logic (IF) is defined in
terms of Hintikka games [106], and Abramsky [1] proposes semantics which
are the result of introducing more players than just one verifier and one
falsifier. Modifying underlying game rules (of Hintikka games or Lorenzen
dialogues) makes it possible to obtain reasoning procedures for different
kinds of logical systems, e.g., for relevance logic [128], linear logic [16] or
many-valued/fuzzy logic [52, 50]. Furthermore, there have been attempts to
adjust rules to obtain new sub-intuitionistic systems [143]. A theory defining
what reasonable modifications could be is provided in [2].

Concerning proof search, the proponent is the player who tries to show
validity of a certain formula, his hypothesis. This is done by finding a so-
called winning strategy, i.e., he has to find a sequence of moves that make
him win, no matter how the opponent behaves. It is possible to introduce
further game rules in order to lead the proponent in this searching process,
i.e., to prevent him in advance from performing wrong moves. For example,
Galmiche et al. [59] point out that a rule by Rahman and Keiff [127] limits the
number of repetitive moves P may do.7 Alama [3] tests some strategy pref-
erences for P and concludes that it is important not to make the restrictions

7Similar rule restrictions were already presented much earlier, most notable in the work
by Barth and Krabbe [10]. More on this follows in Chapter 2.3.4.
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too stringent, as this can result in a loss of completeness of the dialogical
calculus.

In this work we mainly investigate how dialogues can be used to do reason-
ing in modal logic and how they can be used to normalize sequent proofs.
In particular, we show that the normalization that results from the multi-
proponent dialogical interpretation of intuitionistic logic can be transferred
to the modal logics S4 and CS4.

1.2 Contribution

The main contributions of this thesis are:

• A new multi-proponent dialogical approach, which is used to do rea-
soning in intuitionistic (Chapter 3) and modal logic (Chapter 4), is de-
scribed. The presented systems comprise scheduling mechanisms that
lead to a normalization of proofs.

• A sequent-style system, which serves as a framework to formalise in-
formal dialogical rules, making them concrete, is introduced (Chapters
3.2, 4.1.2, and 4.2.1).

• Soundness and completeness of these sequent-style systems are shown
in terms of detailed constructive proofs. These induce an algorithm
to translate normalized derivations in dialogical sequent systems into
proofs of ordinary sequent calculi and vice versa (Chapters 3.3 and 4.3).

• As by-product, a new sound and complete ordinary multi-conclusion
sequent system for the constructive modal logic CS4 is introduced
(Chapter 2.2.2).

• A detailed survey on sequent systems and dialogical approaches found
in the literature is presented (Chapter 2) in order to contrast them with
the new multi-proponent approach.
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Dialogical systems which are used to do reasoning in modal logics are dis-
cussed and a new approach is presented in which the usual setting of one
proponent and one opponent is given up. Instead we let a syndicate of
proponents fight one opponent.

Such a system can be used to enforce a round-based scheduling in the proving
process. This leads to a new level of strategies which have not yet been
discussed in the literature and which results in a normalization of sequent
proofs: instead of analysing the behaviour of a single proponent player,
collective decisions among proponent agents are put into focus. These (and
only these) are significant for finding a proof in this new dialogical system.

The normalization of sequent proofs puts more restrictions on possibilities
for rule applications compared to what is possible in usual sequent sys-
tems. Those applications which are significant for the success of the proof
are treated separately, while the others can be performed arbitrarily without
having a difference in the result. This behaviour shows similarities to se-
quent systems with focus (Chapter 2.1.5), which also aim for a normalization
of proofs. However, the normalization process is different as the automated
scheduling differs. Due to the phase structure in the games it is possible to
parallelize the moves of proponent agents at certain points of the dialogue,
while the collective decisions are isolated in other phases. The proposed
scheduling process can therefore be seen as an attempt to implement the
reasoning procedure in a concurrent way, where each proponent player acts
independently of the others until some point in which they are all synchron-
ised to make a common decision. This paradigm shall be useful for further
investigations in agent-orient programming and concurrent systems.

Formal proofs for soundness and completeness (we use the term adequateness
to comprise both properties) of dialogical systems are quite rare in literature.
Sequent-style systems that interpret the dialogical rules in an unambiguous
way are presented in this work, which makes it possible to show adequate-
ness for all the described multi-proponent systems, i.e, it is formally shown
that these systems are both sound and complete and can be used as deduc-
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tion systems for intuitionistic propositional logic (IPL), S4, and CS4 accord-
ingly. A completely formalised proof for a dialogical S4-system is provided for
the first time.8 Additionally, a new adequate multi-conclusion sequent sys-
tem for CS4 is introduced. A dialogical approach for a constructive modal
logic, for which soundness and completeness is proven, is presented for the
first time. For the case of intuitionistic propositional logic we show formally
that it is possible to guarantee termination of the proof searching process
due to some additional game rules and without making use of ranks.9

The modal dialectics we consider here mainly deal with S4 and CS4, however
it is possible to modify the systems to make them suitable for K and KT.
Also other modal systems are thinkable. We concentrate here on S4 for three
simple reasons:

1. It provides reasonable semantics for dialectics.

2. In computer science it has a big scope of application such as model-
checking.

3. It can be used to simulate intuitionistic behaviour.

Regarding number 1, we refer to Krabbe’s idea of non-cumulative dialectics
[83, 86, 84]: the opponent is given the chance to withdraw commitments under
certain circumstances. This is a real-world application in terms of argu-
mentation theory.10 Concerning number 2, we refer to temporal logic [125,
121]. The relation between propositional intuitionistic logic and S4 is briefly
discussed in Section 1.5.3.

As it is strongly related to S4 and also of interest on its own, we start with
a multi-proponent system we use for reasoning in IPL in Chapter 3. Then
we construct the S4-approach from this (Chapter 4). As a strongly restricted

8Beside that of my own work in [139]. Note that there are other proofs for dialogical modal
systems in the literature, but these are rather informal or contain gaps.

9Ranks are one possibility to guarantee termination in dialogical logic. They are discussed
in Chapter 2.3.4.

10Details follow in Chapter 2.4.1.
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version of S4 we also consider a dialogue system for CS4 and provide an idea
of how the informal underlying game rules look like. These can be modified
to obtain reasoning procedures for intermediate modal logics.

Dialogues are discussed especially with respect to proof theory, i.e., the aim
is to find a reasoning procedure that makes use of features of Lorenzen
dialogues. Informal game rules are also presented to follow the tradition of
Lorenzen and Lorenz and to indicate possibilities to construct new logical
systems. However, we do not try to give a philosophical justification for the
reasonableness of these rules. Instead, they turn out to be quite complex
when used for constructive modal logic.

It is not clear whether the time complexity of the proposed dialogical se-
quent systems is better than that of ordinary sequent systems. It is rather
the aim of the work to provide a foundation in terms of the scheduling
mechanism which can be the basis for more efficient systems.

Outline

The rest of this chapter provides conventions and foundations, in particular
concerning intuitionistic and modal logic and logical deduction.

In Chapter 2 we discuss various sequent systems and dialogical approaches
for intuitionistic propositional logic and several propositional modal logics.
General similarities and differences between sequent systems and dialogues
are described.

A multi-proponent dialogical approach for intuitionistic propositional logic
is presented in Chapter 3. Informal game rules are proposed and trans-
lated into a sequent-style system. One variant which guarantees termina-
tion is also discussed. Adequateness of these systems is shown formally. In
Chapter 4 the rules are extended to establish sound and complete dialogical
systems for the modal logics S4 and CS4. All these systems are compared to
different sequent systems and dialectics of Chapter 2.
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The thesis concludes in Chapter 5 with a short summary and an outlook on
possible future work.

1.3 Conventions

In the following, the usual abbreviation “iff” is used for “if and only if ”. The
set of natural numbers N contains all non-negative integers, i.e., all positive
integers and 0.

1.3.1 Sequences, Sets, and Multi-Sets

We distinguish sets, sequences, and multi-sets as described in the following:

• Sets are defined as usual with the known operators union (∪), intersec-
tion (∩), difference (\), element (∈), subset (⊆), . . . . The power set of set Γ
is written P(Γ).

• In sequences or lists, the order of the elements is relevant and multiple
occurrences are possible which is not the case for sets.

• Multi-sets are an intermediate form in which an element may occur
several times, but the order of all elements is not relevant.

It is nowadays usual to use the comma ‘,’ in deduction systems as a symbol
for concatenation (sequences) or union (sets/multi-sets). For example, let us
assume that Γ and ∆ are multi-sets defined as Γ =df {P,Q} and ∆ =df {P,R}.
Then Γ ,∆ is the multi-set {P,Q,P,R}. We also use the comma to add single
elements to sequences, sets, and multi-sets, e.g., Γ ,R is an abbreviation of
Γ , {R} which indicates the (multi-)set {P,Q,R}. Table 1.1 shows the outcome
of using the comma for an exemplary assignment of Γ and ∆ for sequences,
sets, and multi-sets.
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sequence set multi-set

Γ (example) P,Q {P,Q} {P,Q}

∆ (example) P,R {P,R} {P,R}
Γ ,∆ P,Q,P,R {P,Q,R} {P,Q,P,R} = {P,P,Q,R}
Γ ,R,∆ P,Q,R,P,R {P,Q,R} {P,Q,R,P,R} = {P,P,Q,R,R}

Table 1.1: Comma-Convention for Sequences, Sets, and Multi-Sets

1.3.2 Variables

In general, we use different letters/symbols as variables for different math-
ematical structures.

• As variables representing arbitrary logical formulas (propositional, mo-
dal, or first-order formulas), we use both Roman capital letters and
Greek lowercase letters (A, B, C, . . . , φ, ϕ, ψ, . . . ).

• Propositional variables are usually represented by uppercase roman let-
ters P, Q, and R.

• We use Greek uppercase letters (Γ , ∆, Φ, Ψ, Θ, Λ) for sequences (lists),
sets and multi-sets of formulas.

• The Roman lowercase letters h, i, k,m, n, o are used for natural numbers,
and u, v, w for Kripke worlds (see Section 1.5).

• Concerning first-order logic, x, y and z refer to individual variables while
c and d are used for individual constants, and t, s, r for terms.

The arrow ‘→’ is used for binary relations of different kinds. If (a,b) ∈→, we
usually write a→ b.
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1.3.3 Syntax and Language

Propositional Language

The language of propositional logic is defined as follows:

A,B −→ ⊥ | (bottom/false)
P | (propositional variable)
A∧ B | (conjunction, “and”)
A∨ B | (disjunction, “or”)
A ⊃ B | (implication, “implies”)
¬A (negation, “not”)

The symbols ∧, ∨, ⊃, and ¬ can be read as indicated in the parentheses.
Propositional variables as formulas are called prime formulas (sometimes ab-
breviated as primes). Prime formulas and the constant ⊥ are atomic formulas.

Formula equivalence A ≡ B is not stated here explicitly, as we will barely
use it. Note that in general, A ≡ B equals to (A ⊃ B) ∧ (B ⊃ A) and
is therefore dispensable. Also, negation ¬A is redundant as it is equal to
A ⊃ ⊥. However, we keep it in our definition as it will occur in the different
systems we discuss in Chapters 2, 3, and 4.

The negation binds stronger than conjunction, disjunction, and implication,
which have an equal binding strength. Therefore, ¬A∧B is equal to (¬A)∧B,
but not equal to ¬(A∧ B).

In a conjunction A ∧ B, A and B are called the left and the right conjunct
respectively. Accordingly, in A∨B, they are the left and the right disjunct. In
an implication A ⊃ B, A is referred to as antecedent and B as consequent.

First-Order Language

The language of first-order logic (FOL) copes with relations instead of propos-
itional atoms and introduces terms and quantifiers:
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A,B −→ ⊥ | (bottom/false)
R(t1, . . . , tn) | (relation)
A∧ B | (conjunction, “and”)
A∨ B | (disjunction, “or”)
A ⊃ B | (implication, “implies”)
¬A | (negation, “not”)
∀xA | (universal quantifier, “for all”)
∃xA (existential quantifier, “there is”)

The quantifiers bind stronger than conjunction, disjunction, and implication,
but equally strong as negation. Usually, equality of terms is also considered
as an extra relation. This is not covered here.

For a formula or sub-formula that starts with a quantified variable (∀x A
or ∃x A), we say that all occurrences of x in A are called bound variables.
Variables in a formula which are not in a quantifier’s context (i.e., not written
directly after some quantifier) are called free variables or Eigenvariablen. For
any formula A of the first-order language, A[x/t] expresses the substitution
of variable x in A by term t, i.e., all free occurrences of x in A are replaced
by t.

Many calculi we consider in Chapter 2 refer to first-order logic and therefore
the syntax is given here. However, it is not of big importance in this work
and therefore we do not discuss its properties here in detail.

Modal Language

The language of propositional mono-modal logic is an extension of that of pro-
positional logic, where two further unary operators are introduced. The
additional construction rules are defined as follows:

A −→ 2A | (box modality, “necessarily”, “obligatory”, “always”,. . . )
3A (diamond modality, “possibly”, “permissibly”, “eventually”,. . . )
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The modal operators bind equally strong as negation and stronger than con-
junction, disjunction, and implication.

In the following, we mainly refer to mono-modal languages. However, multi-
modal variants are also usual, where 2 and 3 are replaced by [l] and 〈l〉 with
the label l being an element of a predefined index set I, also called modal
signature. The mono-modal language can be considered as a special case of
multi-modal logic where I is a singleton set.

Formulas and Subformulas

We define Form to be the set of all possible formulas of the propositional or
modal language defined above.11 Let Sub be a mapping

Form ⇒ P(Form) .

For any formula φ of Form the set of subformulas of φ, written Sub(φ), is
defined as follows:

Sub(P) =df {P} if P is an atomic formula. (1.1)

Sub(A⊗ B) =df {A⊗ B} ∪ Sub(A) ∪ Sub(B) for ⊗ ∈ {∧,∨,⊃} (1.2)

Sub(∇A) =df {∇A} ∪ Sub(A) for ∇ ∈ {2,3,¬} (1.3)

A formula is in negation normal form iff the negation operator ¬ occurs only
directly in front of prime formulas.

1.3.4 Rules and Deduction

In this work we discuss several deductive systems, especially sequent calculi
and dialogical proof systems. Such calculi operate on the syntax of given

11We do not need the set with respect to the first-order language, so we ignore it.
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formulas. They usually provide rules which define valid transformations
from given formulas (premises) to other formulas (conclusions). We make use
of the following notation which goes back to Gentzen [60]:

premises
conclusion

Simple examples for such rules are:

A∧ B
A

A∧ B
B

A B
A∧ B

A ⊃ B A
B

The first two examples show rules that transform A ∧ B to A and B respec-
tively. The third one can be used to compose A and B to A∧ B, i.e., one can
read it as “from A and B follows A∧B”. The last one is the famous rule called
modus ponens which states that from A ⊃ B and A follows B.

Premises and conclusions do not need to consist only of single formulas, but
can also have more complex structures, e.g., sequences or sets of formulas.
If the rules are correct, i.e., they interpret a given semantics in an adequate
way, sequences of such rule applications can be used to construct proofs for
the validity of formulas.

In the following, we use the terms (proof) system12, calculus, and decision pro-
cedure for the same thing: some data structure and a set of deduction rules
which can be applied in the structure to derive formulas in a syntactic way.
We usually require that the rules are sound and complete with respect to
the semantics of some predefined logic, although this is not always the case.
Informally, a system is sound iff it is not possible to derive false conclusions,
i.e., to derive formulas which are not valid according to the underlying se-
mantics. The system is complete iff every formula which is valid according
to the semantics can be derived in the system.

12The term system is also used in another context. We call modal logics like S4 sometimes
modal systems.
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1.3.5 Trees

We use deduction rules to build derivation trees. For any such tree, the terms
root and leaf are defined as usual. A tree t is either a leaf or it is a node n
having at least one child. All the children can be seen as roots of sub-trees
again.

t −→ n | (single node, leaf)
(n, t1, . . . , tm) (node n (root) with attached trees t1 to tm)

The height of a tree t is defined recursively as follows:

height(n) =df 1 if n is a node / leaf of tree. (1.4)

height((n, t1, . . . , tm)) =df 1+ max(height(t1), . . . , height(tm)) (1.5)

The variables t1 to tm represent the trees attached to the corresponding n.
The function max simply returns the highest number of a given list of num-
bers.

A path of tree t is a list of nodes from the root to one leaf. We define a
relation

Path ⊆ Tree × Node+

where Tree is a set containing all possible trees and Node+ indicates all pos-
sible lists of nodes of such trees.

Path(n,n) if n is a leaf.

Path((n, t1, . . . , tm), (k,Σ)) if k = n and Path(tl,Σ) for some tl ∈ {t1, . . . , tm}.
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IPL1 A ⊃ (B ⊃ A)
IPL2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
IPL3 A ⊃ (B ⊃ (A∧ B))
IPL4 (A∧ B) ⊃ A and (A∧ B) ⊃ B
IPL5 A ⊃ (A∨ B) and B ⊃ (A∨ B)
IPL6 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A∨ B) ⊃ C))
IPL7 ⊥ ⊃ A

Figure 1.1: Axioms of IPL

1.4 Intuitionistic Logic

As some variants of modal logic we discuss later follow intuitionism, we
have a short look on intuitionistic propositional logic (IPL). The syntax is the
same as that of classical propositional logic but semantics are more res-
trictive, i.e., there are less theorems in intuitionistic than in classical logic,
though every intuitionistic theorem is also a classical one.

The idea of intuitionism comes from L. E. J. Brouwer [18]. The logic was
formalized by Arend Heyting [69]. The key aspect of intuitionistic logic is
the rejection of the law of the excluded middle or tertium non datur A∨ ¬A.

IPL can be axiomatized with the axioms shown in Figure 1.113 together with
the deduction rule of modus ponens (MP):

A ⊃ B A MP
B

The axioms establish with the rule a deduction system which is called Hilbert
calculus. From these axioms it is possible to derive further tautologies.

13There are slightly different versions of axiomatizations for IPL. We refer to that of [39].
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A Hilbert deduction system for classical propositional logic (CPL) is obtained
by adding the axiom ¬¬A ⊃ A to those of Figure 1.1.

1.5 Classical and Constructive Modal Logic

1.5.1 Axioms of Classical Modal Logic

An early account to modern modal logic was given by C. I. Lewis who pro-
posed axioms for different systems called S1 to S5 (Appendix II of [95]).14

Systems S1 to S3 are now of minor interest and are said to be not normal as
they do not obey axiom K:

K 2(A ⊃ B) ⊃ (2A ⊃ 2B)

With this axiom, together with those of CPL, the MP-rule and the additional
deduction rule of necessitation (Nec) given as

A Nec
2A

a deduction system for the basic normal modal logic K is obtained which
can be used to derive its tautologies. To prove assertions that include the
3-operator, another axiom needs to be added, the axiom of duality:

(Dual) 2A ⊃ ¬3¬A and ¬3¬A ⊃ 2A

There are many other axioms that can be added to the set we have seen so
far. The most famous are:

T 2A ⊃ A
4 2A ⊃ 22A

D 2A ⊃ 3A

B A ⊃ 23A

5 3A ⊃ 23A

14For a detailed account to the history of modal logic since Lewis see Ballarin [9].
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Combining these with the rules MP and Nec leads to deduction systems for
different modal systems.

• Taking the axioms of CPL together with axioms (Dual), K, T, and 4,
leads to a system which is equal to Lewis’ S4.

• Taking the axioms of CPL together with axioms (Dual), K, T, 4, and 5;
or (Dual), K, T, 4, and B, leads to a system which is equal to Lewis’ S5.

1.5.2 Kripke Semantics for Classical Modal Logic

Semantics of modal logics are usually defined as Kripke structures named
after Saul Kripke who proposed them in 1963 [87]. These are also called
possible world semantics.

The set Var is defined to consist of propositional variables / prime formulas.
Let W be a set of possible worlds and→ ⊆ (W ×W) be an accessibility relation
over these worlds. Together they form a (Kripke) frame F = (W,→). For all
worlds w and u such that w→ u (also written (w,u) ∈→), we say that u is
a successor of w.

The valuation V is a function accepting a world and returning a set of pro-
positional variables which are assigned to hold in the world, i.e., which are
valid in the world.

V : W ⇒ P(Var)

The frame and valuation form together a (Kripke) model M = (F,V). Given a
model M = (W,→,V) and some world w ∈W of that model, the satisfaction
relation |= decides whether an arbitrary formula of the modal language is
valid in w:
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T reflexivity ∀w ∈W: w→ w
D seriality ∀w ∈W: ∃u ∈W: w→ u
B symmetry ∀w,u ∈W: if w→ u then u→ w
4 transitivity ∀w,u, v ∈W: if w→ u and u→ v then w→ v
5 euclidicity ∀w,u, v ∈W: if w→ u and w→ v then u→ v

Table 1.2: Frame axioms and accessibility relations

M,w |= P iff P ∈ V(w)

M,w |= ¬A iff M,w 6|= A
M,w |= A∧ B iff M,w |= A and M,w |= B

M,w |= A∨ B iff M,w |= A or M,w |= B

M,w |= A ⊃ B iff M,w 6|= A or M,w |= B

M,w |= 2A iff ∀u ∈W: if w→ u then M,u |= A

M,w |= 3A iff ∃u ∈W: w→ u and M,u |= A

Worlds w with M,w |= ⊥ do not exist by definition.

If a formula A is valid in all worlds of a model M, then A is said to be valid
in M, written M |= A. A formula A is valid in a frame F = (W,→), written
F |= A, iff for all valuations V it holds (W,→,V) |= A.

This defines the semantics of normal modal logic K. Accordingly, axiom K

holds in all models and all frames which are defined as described above. Ax-
iom T holds in a frame F = (W,→) iff→ is a reflexive relation, while axiom 4

expresses the property of transitivity, axiom D of seriality, axiom B symmetry,
and 5 euclidicity. These properties, their meanings and the correspondence
to the axioms are summarised in Table 1.2.

As the modal system S4 can be constructed as a combination of axioms K,
T, and 4, the corresponding frame structure is reflexive and transitive which
therefore establishes a preorder over→. S5-frames are additionally symmetric
(axiom B is added) and therefore the accessibility relation corresponds to
equivalence classes.
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1.5 Classical and Constructive Modal Logic

1.5.3 Kripke Semantics for Intuitionistic Propositional Logic

Gödel [63] observed that IPL formulas can be translated into formulas of
modal logic when obeying the S4-axioms.15 From this, Kripke [87] derived
semantics for IPL based on the possible worlds metaphor:

M,w |= P iff P ∈ V(w)

M,w |= A∧ B iff M,w |= A and M,w |= B

M,w |= A∨ B iff M,w |= A or M,w |= B

M,w |= ¬A iff ∀u ∈W: if w→ u then M,u 6|= A
M,w |= A ⊃ B iff ∀u ∈W: if w→ u then M,u 6|= A or M,u |= B

If M,w |= A then ∀u ∈ W such that w → u: M,u |= A. The accessibility
relation is reflexive and transitive. Note that the implication ⊃ and negation
¬ have a special status in the semantics as these have a certain impact on
other worlds.

1.5.4 Axioms of Intuitionistic and Constructive Modal Logic

There have been many attempts for intuitionistic modal logics. Differences
between several ideas with respect to specific features such as validity of
the duality axiom or certain other axioms are discussed exhaustively in
Simpson’s PhD thesis [135]. Here, we are only interested in proof-theoretic
features of intuitionistic modal logics and consider only two of these vari-
ants.

The first one is the IK-family which was introduced by Fischer-Servi [55]
and Plotkin and Stirling [120] and examined in detail by Simpson [135]. The
members of the other, even more restrictive CK-family are usually called

15Gödel uses the letter ‘B’ as modal operator for the German word beweisbar, which means
provable. It corresponds to the 2. For details see the note by Troelstra in [46], p.296–299.
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IK1 2(A ⊃ B) ⊃ (2A ⊃ 2B)
IK2 2(A ⊃ B) ⊃ (3A ⊃ 3B)
IK3 ¬3⊥
IK4 3(A∨ B) ⊃ (3A∨ 3B)
IK5 (3A ⊃ 2B) ⊃ 2(A ⊃ B)

Figure 1.2: Modal axioms of IK [120]

constructive modal logics to distinguish them from the intuitionistic IK-family
[149, 110, 13, 4].

Both families reject the duality of 2 and 3, i.e., the (Dual)-axiom is not valid
anymore. The propositional fragment16 of IK and CK corresponds to IPL

in each case. Because the 3-operator cannot be defined in terms of the
2 anymore, further axioms are necessary. Those for IK include all of IPL

plus these shown in Figure 1.2 proposed by Plotkin and Stirling. As Hilbert
deduction rules the known modus ponens and necessitation are used. Note that
Fischer-Servi proposed a different set of axioms with one more (redundant)
axiom before Plotkin and Stirling published their paper. These alternative
axioms correspond to the same modal system IK [120, 135].

The IK-axioms can be extended, inter alia by T, 4, D, B, and 5. However, as
most of these are only defined with respect to the 2-operator and the 3 is
not taken into account, variants need to be considered as well. For example,
in classical modal logic, the axiom 4 2A ⊃ 22A and the alternative axiom
4’ 33A ⊃ 3A are equivalent and as frame axioms they can both be used to
enforce transitivity of →. However, in the classical setting 4’ is redundant
due to the duality of 2 and 3 which is now given up. The intuitionistic
frame axioms corresponding to T, 4, D, B, and 5, are shown in Figure 1.3.

We obtain a modal system named IS4 when combining the axioms IK, T, T’,
4, and 4’. Adding 5 and 5’ leads to IS5 accordingly [135].

16i.e., where the syntax is restricted to formulas that do not contain any modal operators.
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1.5 Classical and Constructive Modal Logic

D 3>
T 2A ⊃ A T’ A ⊃ 3A
B 32A ⊃ A B’ A ⊃ 23A
4 2A ⊃ 22A 4’ 33A ⊃ 3A
5 32A ⊃ 2A 5’ 3A ⊃ 23A

Figure 1.3: Frame axioms of Intuitionistic Modal Logic [135]

The CK-family is even more restrictive. From the IK-axioms of Figure 1.2, IK3,
IK4, and IK5 are dropped [110]. So the only remaining axiom that concerns
the 3 is IK2. The intuitionistic frame axioms of Figure 1.3 can be used to
extend the CK-system accordingly, e.g., to obtain the modal systems CS4 and
CS5 (see Arisaka et al. [6]).

1.5.5 Kripke Semantics for Intuitionistic and Constructive Modal

Logic

Several semantics have been proposed for intuitionistic and constructive
modal logics, also different variants of Kripke semantics. We consider com-
binations of Kripke semantics for classical modal logic and for IPL, that use
two different kinds of relations.

Kripke Semantics for IK

The semantics for IK we present here was suggested by Plotkin and Stirling
[120]. The frame F is redefined as intuitionistic (Kripke) frame or Fischer Servi
Frame (as called by Grefe [64]) F = (W,→,�). The arrow → corresponds to
the accessibility relation of classical modal logic, while the refinement relation
� is the reflexive and transitive relation of the IPL Kripke semantics.
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The satisfaction relation |= for IK is defined as follows (c.f. [120]):

M,w |= P iff P ∈ V(w)

M,w |= A∧ B iff M,w |= A and M,w |= B

M,w |= A∨ B iff M,w |= A or M,w |= B

M,w |= ¬A iff ∀w ′ ∈W: if w � w ′ then M,w ′ 6|= A
M,w |= A ⊃ B iff ∀w ′ ∈W: if w � w ′ then M,w ′ 6|= A or M,w ′ |= B

M,w |= 2A iff ∀w ′,u ∈W: if w � w ′ and w ′ → u then M,u |= A

M,w |= 3A iff ∃u ∈W: w→ u and M,u |= A

Again, worlds w with M,w |= ⊥ do not exist [120]. As in the semantics of
IPL, if M,w |= A then M,w ′ |= A for all w ′ such that w � w ′. Further, the
following two additional frame properties hold in IK [120, 135]:

∀w,w ′,u ∈W : if w � w ′ and w→ u then ∃u ′ ∈W, such that w ′ → u ′ and u � u ′ (1.6)

∀w,u,u ′ ∈W : if w→ u and u � u ′ then ∃w ′ ∈W, such that w � w ′ and w ′ → u ′ (1.7)

Note that the operators ¬, ⊃, and 2 are stronger than the others due to their
influence on all worlds which are refinements (�-successors) of the current
one, i.e., all worlds w ′ such that w � w ′.

Kripke Semantics for CK

The semantics we consider here makes also use of the two different relation
types. It was first presented by Mendler and de Paiva [110].

M,w |= P iff P ∈ V(w)

M,w |= A∧ B iff M,w |= A and M,w |= B

M,w |= A∨ B iff M,w |= A or M,w |= B

M,w |= ¬A iff ∀w ′ ∈W: if w � w ′ then M,w ′ 6|= A
M,w |= A ⊃ B iff ∀w ′ ∈W: if w � w ′ then M,w ′ 6|= A or M,w ′ |= B

M,w |= 2A iff ∀w ′,u ∈W: if w � w ′ and w ′ → u then M,u |= A

M,w |= 3A iff ∀w ′ ∈W: if w � w ′ then ∃u ∈W: w ′ → u and M,u |= A
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1.5 Classical and Constructive Modal Logic

CK has the finite model property and is decidable [110]. By contrast to IK,
worlds w such that M,w |= ⊥ are possible and called fallible worlds. For
these, there are extra properties which are defined as follows [110]:17

∀M,w: if M,w |= ⊥ then

∀w ′ ∈W: if w→ w ′ or w � w ′ then M,w ′ |= ⊥ and (1.8)

∀P ∈ Var : M,w |= P (1.9)

Remember that axiom IK3 ¬3⊥ is not a theorem of CK. In IK it is automat-
ically valid as ⊥ holds in no world, but CK has these fallible worlds.18 The
3-operator is now also strong, as its truth influences all worlds w ′ which are
refinements of the current one, i.e., such that w � w ′. The first frame property
of IK (1.6) follows directly from this, the second property (1.7) is dropped.
These changes cause that axioms IK4 and IK5 are not tautologies of CK [132].

1.5.6 The S5-Cube

Different combinations of modal axioms lead to different systems. If we take
the modal system K and its axioms as foundation, we can simply add any
combination of T, 4, D, B, and 5 to obtain different modal systems, of which
KT4 corresponds to S4, and KT45 or KTB4 correspond to S5. The relation
between the different systems is usually illustrated as a cube as shown in
Figure 1.4. Many combinations do not appear there, as these can be defined
as other combinations which are shown, e.g., KB4 and KB5 describe the same
logic, as well as KT45, KTB4, and KT5.19

17Wijesekera [149] proposed Kripke semantics for a variant of CK before. Concerning the
axioms, IK3 is kept and only IK4 and IK5 are dropped. Alternative special Kripke
semantics for CS4 are proposed by Alechina et al. [4].

18see also [4, 110, 112, 132].
19The shown cube is based on that for the CK-family of [6]. A different one for the K-family

can for example be found in [26]. Note that in the literature (also in [6, 24]) the letter ‘K’
is often omitted as K is an axiom of all the shown systems.
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K

KD

KT

KB

KDB

KTB

K4

KD4

S4

K5

K45 KB5

KD5

KD45

S5

Figure 1.4: The S5-Cube

The same cube exists also for the IK-family. We simply prefix every modal
system of the S5-cube with an ‘I’ [24]. This we call the IS5-cube. Accordingly,
for the CK-family we prefix the systems with a ‘C’ and obtain the CS5-cube
[6].

In order to check the equality of two logical systems one can show that the combina-
tion of frame properties in one system implies the properties of the other one and vice
versa.
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2 Sequent Systems and Dialogues

In the first part of this chapter, we consider different sequent systems, espe-
cially for classical and intuitionistic propositional logic (Section 2.1), as well
as for several propositional modal logics (Section 2.2). There are different
approaches which all have their own flavours, advantages or disadvantages.
Dyckhoff [41] provides a historical overview of systems for intuitionistic pro-
positional logic. For our purpose, we concentrate on proof searching issues
and on systems which are relevant for the further progress of this work.
There are, inter alia, calculi that embed λ-terms, making use of the Curry-
Howard isomorphism, which we do not discuss here. We also introduce a
multi-conclusion calculus for the modal system CS4 (Section 2.2.2).

In the second part, we turn to dialogical games and have a look at histor-
ical approaches of differend kinds. Most of these systems are related to
intuitionistic and classical first-order logic. In Section 2.3 we focus on the
propositional fragment (although we also have a short look at the first-order
variants) and afterwards on several modal-logical approaches (Section 2.4).
Finally, in Section 2.5, we point out similarities of sequent systems and dia-
logical calculi concerning proof-searching strategies.
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2 Sequent Systems and Dialogues

2.1 Sequent Systems for Classical and Intuitionistic

Logic

2.1.1 Gentzen’s Systems LK and LJ

Sequent systems go back to Gerhard Gentzen. In [60] he presents the sys-
tems NJ and NK for natural deduction1, as well as the systems LJ and LK
which are usually called sequent systems. All four calculi are used to perform
deduction in first-order logic. NJ and LJ are intuitionistic variants of NK and
LK which are used for classical logic.

As Gentzen states in [60], his natural deduction techniques provide a formal
way of how a mathematical proof is usually done. LJ and LK are rather
introduced to make it possible to formulate and prove his Hauptsatz, namely
that it is possible to transform any formal proof to some normal form [60],
which is the result of an admissible technique for sequent calculi that is
nowadays widely known as cut elimination. Unless stated otherwise, for all
sequent systems we consider in the following, it has been shown that the cut
rules are dispensable with respect to completeness.

In Gentzen’s systems LJ and LK, every state of a proof can be expressed as a
sequent (that is where the name comes from) of the form

A1,A2, . . .An ⇒ B1,B2, . . .Bm ,

so in each sequent we have two sequences (or lists) of formulas separated
by the ⇒ symbol. The left sequence (the A’s) is called the antecedent of the
sequent, the right part (the B’s) is called succedent [81]. In fact, the gen-
eral sequent from above can be read as the implication: from

∧n
i=1Ai follows∨m

j=1 Bj, or to express it in words: the conjunction of all antecedent formulas
of a sequent implies the disjunction of all succedent formulas (of the sequent).

1He gave the natural deduction system the German name Kalkül des natürlichen Schließens.
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2.1 Sequent Systems for Classical and Intuitionistic Logic

We say that a sequent is derivable or valid, iff it is an axiom or it can be derived
due to rules which a sequent system provides. For any arbitrary formula A,
the sequent

A⇒ A

is derivable/valid. This sequent is called an axiom (Anfangssequenz [60]).

When we consider a sequent that is not an axiom, we have to apply rules2

to justify its validity. Applying such rules, one after another, leads to a
derivation of a sequent by constructing a sequent tree.

Gentzen distinguishes logical and structural rules. The former depend on
the outer-most operator of some formula. The formulas of antecedent and
succedent also refer to different sets of rules. We call rules for formulas of
the antecedent left-hand rules or antecedent rules and those for formulas of
the succedent right-hand rules or succedent rules. The differentiation between
these sets is necessary as they have other semantic meanings, namely the
antecedent sequents are interpreted as conjunctions and the succedent se-
quents as disjunctions. Structural rules are mainly used to add or remove
formulas to/from sequences or to exchange the order of formulas within a
sequence.

As in Chapter 1.3.4, a rule consists of zero, one or two (or sometimes even
more) premises which are in our case sequents written above a horizontal
line, and exactly one conclusion below the line. For example, there are two
rules for conjunction in the antecedent which look thus:

A, Γ ⇒ Θ

A∧ B, Γ ⇒ Θ

B, Γ ⇒ Θ

A∧ B, Γ ⇒ Θ

Both rules have one premise. The Greek letters Γ and Θ stand for arbitrary
(possibly empty) sequences of formulas. The sequence A, Γ is a sequence

2Gentzen [60]: Schlußfigurenschemata
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2 Sequent Systems and Dialogues

that starts with a formula A, which again stands for an arbitrary formula,
and is continued by sequence Γ (see also Chapter 1.3).

Rules can be interpreted as a deduction which says: if all premises are deriv-
able/valid, then the conclusion is derivable/valid as well. In the first case from
above, one could interpret the rule as: if A and the conjunction of all formulas
of Γ imply the disjunction of formulas of Θ, then A ∧ B and the conjunction of all
formulas of Γ imply the disjunction of formulas of Θ. To find a proof/deduction
for a sequent, one usually applies the rules backwards, i.e., from bottom to
top until one reaches axioms in all branches of the sequent tree. We say that
a sequent tree is closed iff axioms occur at all its leaves.

For the conjunction in the succedent, Gentzen provides only one sequent
rule with two premises:

Γ ⇒ Θ,A Γ ⇒ Θ,B

Γ ⇒ Θ,A∧ B

Note that in general, antecedent rules operate on the first formula of the
antecedent sequence and rules for the right-hand side on the last formula,
respectively. In the displayed rule, the last formulas of the succedents are
replaced (A and B are replaced by A ∧ B while Θ is left untouched). The
formulas A and B are usually called active formulas.3 The result A∧ B in the
conclusion is called principal formula, and all other formulas of Γ and Θ are
side formulas.

In the following, when we say that a rule is applied, we refer to the prin-
cipal formula and read the application from bottom to top. The application
then results in the premise sequent(s) if the rule is not applied in an axiom
sequent.

As structural rules Gentzen provides three pairs plus the cut-rule. These
are shown in Figure 2.1.4 He introduces two different sequent systems (LK

3We use the terms proposed in [142]. Kleene [81] called the active formulas side formulas,
while Troelstra and Schwichtenberg name the untouched formulas side formulas.

4We use other symbols here to keep consistency with respect to the systems we consider
later.
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Weakening

Γ ⇒ ∆
A, Γ ⇒ ∆

Γ ⇒ ∆
Γ ⇒ ∆,A

Contraction
A,A, Γ ⇒ ∆

A, Γ ⇒ ∆

Γ ⇒ ∆,A,A

Γ ⇒ ∆,A

Exchange

Γ ,A,B,Θ ⇒ ∆

Γ ,B,A,Θ ⇒ ∆

Γ ⇒ ∆,A,B,Λ

Γ ⇒ ∆,B,A,Λ

Cut
Γ ⇒ ∆,A A,Θ ⇒ Λ

Γ ,Θ ⇒ ∆,Λ

Figure 2.1: Structural Rules of Gentzen’s original sequent system

and LJ) that make it possible to derive statements, which are valid in the
corresponding logic (classical or intuitionistic first-order logic), syntactically.
This is simply done by applying the provided rules to obtain a sequent tree,
where in each of its leaves an axiom sequent occurs. He uses the same logical
and structural rules in both systems but puts a restriction to LJ on the meta
level to comply with the intuitionistic semantics (more on this follows in the
next section).

2.1.2 Getting Rid of Structural Rules

Based on Gentzen’s LK and LJ, Kleene [81] introduced system G3 consid-
ering sequences to be equal iff they are cognate to each other, i.e., iff they
simply contain the same formulas, no matter in which order. This makes
the structural rules (with the exception of Cut) dispensable [81] and actually
leads us to the use of multi-sets or sets instead of sequences.
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2 Sequent Systems and Dialogues

ax
P, Γ ⇒ ∆,P

⊥l⊥, Γ ⇒ ∆

A,B, Γ ⇒ ∆
∧l

A∧ B, Γ ⇒ ∆

Γ ⇒ ∆,A Γ ⇒ ∆,B
∧r

Γ ⇒ ∆,A∧ B

A, Γ ⇒ ∆ B, Γ ⇒ ∆
∨l

A∨ B, Γ ⇒ ∆

Γ ⇒ ∆,A,B
∨r

Γ ⇒ ∆,A∨ B

Γ ⇒ ∆,A B, Γ ⇒ ∆ ⊃l
A ⊃ B, Γ ⇒ ∆

A, Γ ⇒ ∆,B ⊃r
Γ ⇒ ∆,A ⊃ B

Γ ⇒ ∆,A
¬l

¬A, Γ ⇒ ∆

A, Γ ⇒ ∆
¬r

Γ ⇒ ∆,¬A

∀xA,A[x/t], Γ ⇒ ∆
∀l∀xA, Γ ⇒ ∆

Γ ⇒ ∆,A[x/y]
∀r

Γ ⇒ ∆,∀xA

A[x/y], Γ ⇒ ∆
∃l∃xA, Γ ⇒ ∆

Γ ⇒ ∆,A[x/t], ∃xA
∃r

Γ ⇒ ∆,∃xA

Figure 2.2: Rules of GCPC/G3c (c.f. [39, 142])

In the meantime, Ketonen [79] simplified some of Gentzen’s logical rules.
Combining both alternations leads to systems like GCPC and GHPC by
Dragalin [39] for classical and intuitionistic first-order logic respectively.
Based on these, Troelstra and Schwichtenberg [142] present G3c and G3i.
For each, soundness and completeness and the admissibility of cut-elimina-
tion5, which says that the cut-rule (Figure 2.1) is dispensable, are shown.
From now on, unless stated otherwise, we consider the Greek capital letters
Γ and ∆ as multi-sets of formulas instead of sequences.

The rules of GCPC/G3c
6 are shown in Figure 2.2. For the rules ∀r and ∃l

we have to make sure that the variable y does not occur as free variable
(Eigenvariable) in the conclusion (c.f. [60, 39, 142]). The letter t stands for an
arbitrary term. In the ax -rule P is an atomic formula.

5This corresponds to Gentzen’s Hauptsatz.
6The systems GCPC and G3c are equal. However, GHPC and G3i have different sets of

rules and are here considered separately.
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ax
P, Γ ⇒ P

⊥l⊥, Γ ⇒ A

A,B, Γ ⇒ C
∧l

A∧ B, Γ ⇒ C
Γ ⇒ A Γ ⇒ B

∧r
Γ ⇒ A∧ B

A, Γ ⇒ C B, Γ ⇒ C
∨l

A∨ B, Γ ⇒ C
Γ ⇒ A

∨r
Γ ⇒ A∨ B

Γ ⇒ B
∨r

Γ ⇒ A∨ B

A ⊃ B, Γ ⇒ A B, Γ ⇒ C ⊃l
A ⊃ B, Γ ⇒ C

A, Γ ⇒ B ⊃r
Γ ⇒ A ⊃ B

¬A, Γ ⇒ A
¬l

¬A, Γ ⇒ C

A, Γ ⇒ ⊥
¬r

Γ ⇒ ¬A

∀xA,A[x/t], Γ ⇒ C
∀l∀xA, Γ ⇒ C

Γ ⇒ A[x/y]
∀r

Γ ⇒ ∀xA

A[x/y], Γ ⇒ C
∃l∃xA, Γ ⇒ C

Γ ⇒ A[x/t]
∃r

Γ ⇒ ∃xA

Figure 2.3: Rules of G3i (c.f. [142])

So far, we have not made any distinction between LK and the intuitionistic
version LJ. The reason is that the difference cannot be found in the rules
themselves. Gentzen puts a restriction on a meta level: in every LJ sequent,
the succedent may only contain one or no formula [60]. Considering the
sequences as sets again, this leads us to system G3i, where this meta rule is
implemented directly.

The rules of G3i (in the variant we consider in the following) are displayed
in Figure 2.3. The restrictions for the free variables are the same as in G3c.
The differences are as follows:

• The succedent of all sequents contains exactly one formula. This means
that we need two different rules for ∨r, one for the left and one for the
right disjunct.

• Reading the rules from bottom to top, in rule ⊃l, A ⊃ B is kept in the
left premise. Accordingly, ¬A is kept in the premise of rule ¬l.
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Sequent systems in which the succedent contains at most one formula, like
G3i, are called single-conclusion sequent systems or single-conclusion calculi. By
contrast, if we permit more than one formula in the succedent, like in G3c,
we say that the sequent calculus is a multi-conclusion sequent system or multi-
conclusion calculus.

The requirement that the succedent of each sequent consists of only one
formula makes it impossible to derive non-intuitionistic tautologies like the
law of the excluded middle P ∨ ¬P:

⇒ P
∨r⇒ P ∨ ¬P

P ⇒ ⊥ ¬r⇒ ¬P
∨r⇒ P ∨ ¬P

Both of these derivations cannot be completed with a closing rule (ax or ⊥l).
The reason is that when constructing the tree (reading it from bottom to
top), resolving the ∨ forces us to drop one of the disjuncts which is needed
to obtain the axiom sequent finally. By contrast, in GCPC/G3c, we can keep
both disjuncts and the derivation closes:

ax
P ⇒ P ¬r⇒ P,¬P

∨r⇒ P ∨ ¬P

The second difference between G3i and G3c, namely keeping the prin-
cipal formula in the rules ⊃l and ¬l, is necessary to ensure completeness
of the proof system.7 If we kept the left contraction rule (Figure 2.1) as
non-dispensable, this measure would not be necessary, as it would be pos-
sible to duplicate formulas arbitrarily (reading the rules from bottom to top).
Therefore, we call the rules ⊃l, ¬l and ∀l of G3i duplication rules. The du-
plication is only necessary because information is lost when some of the
G3i-rules are applied, e.g., one disjunct is lost when we use ∨r. As such loss
of information is restricted in G3c, duplication is only necessary in ∀l and
∃r there.

7Note that negation is a special case of implication as ¬A can be written as A ⊃ ⊥.
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ax
¬(P ∨ ¬P),P ⇒ P

∨r
¬(P ∨ ¬P),P ⇒ P ∨ ¬P

¬l
¬(P ∨ ¬P),P ⇒ ⊥

¬r
¬(P ∨ ¬P)⇒ ¬P

∨r
¬(P ∨ ¬P)⇒ P ∨ ¬P

¬l
¬(P ∨ ¬P)⇒ ⊥

Figure 2.4: Necessity of duplication in G3i

An example (mentioned in [40]) which shows the necessity of this duplica-
tion is shown in Figure 2.4. As it can be seen, the derivation is not possible
if the principal formula ¬(P ∨ ¬P) is dropped from the premise of ¬l.

2.1.3 Multi-Conclusion Sequents for Intuitionistic Logic

In 1954, Maehara [104] introduced a multi-conclusion version L’J of LJ that
is actually based on LK, with the difference that the rules for ⊃r, ¬r and ∀r
are replaced by variants in which the succedents of the premises are empty
besides the active formulas. In other words, reading these rules from bottom
to top again, formulas are dropped when they are applied. We call these rules
critical [44] or non-invertible rules, while the others are called non-critical or
invertible rules. More details follow in Chapter 3.3.1.

Again, we consider a variant of L’J that gets along without the structural
rules. This we call G3i

m which is based on Dragalin’s GHPC [39].8 The rules
of G3i

m are the same as those of G3c with the exception that we replace
rules ⊃l, ¬l, ⊃r, ¬r and ∀r by those shown in Figure 2.5. G3i

m is a multi-
conclusion version of G3i. In the following chapters, we make use of G3i

m

at several points, so it has an important role in this work.

Duplication is needed again in ⊃l and ¬l (and ∀l as before). To apply the
rule ∀r, it must be ensured that y does not occur free in the conclusion [142].

8It is called m-G3i in [142] and LJmc in [44]. The difference to GHPC is explained below.
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A ⊃ B, Γ ⇒ ∆,A B, Γ ⇒ ∆ ⊃l
A ⊃ B, Γ ⇒ ∆

¬A, Γ ⇒ ∆,A
¬l

¬A, Γ ⇒ ∆

A, Γ ⇒ B ⊃r
Γ ⇒ ∆,A ⊃ B

A, Γ ⇒ ∅
¬r

Γ ⇒ ∆,¬A

Γ ⇒ A[x/y]
∀r

Γ ⇒ ∆,∀xA

Figure 2.5: Rules of G3i
m (c.f. [142])

The only difference to GHPC is the rule for ⊃l which differs from that of
G3i

m in the conclusion of the left premise. By contrast to ⊃l of G3i
m, this is

critical as well [39]:

A ⊃ B, Γ ⇒ A B, Γ ⇒ ∆ ⊃l
A ⊃ B, Γ ⇒ ∆

From now on we concentrate on propositional logic, because the main topic
of this work is propositional modal logic, in which the quantifiers do not
occur. Therefore, for the following sequent systems we do not consider the
rules ∀l, ∀r, ∃l or ∃r anymore. Also, because ¬A is equal to A ⊃ ⊥9 some of
the following calculi do not provide rules for the negation ¬.

2.1.4 Termination in Intuitionism

We already observed that the duplications in ⊃l and ¬l are necessary in
systems G3i and G3i

m for completeness. On the other hand, they are a prob-
lem: every non-duplicating rule (read from bottom to top) that is related to
a logical connective, decomposes a formula which means that after a certain
amount of rule applications, we finally obtain atomic formulas in the leaves
of a proof tree. However, the duplication rules keep the principal formula
in (at least) one premise which prevents the system to terminate when the
conclusion sequent is not valid.

9To verify this, we can use one of the systems from above to show that ¬A ⇒ A ⊃ ⊥ and
A ⊃ ⊥ ⇒ ¬A are both valid sequents.
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For example, let us consider Peirce’s Law ((P ⊃ Q) ⊃ P) ⊃ P. This for-
mula is a tautology in classical propositional logic, but not in intuitionistic.
Nevertheless, if we try to prove it in G3i

m, we obtain the following tree:

. . .
(P ⊃ Q) ⊃ P,P,P ⇒ Q ⊃r

(P ⊃ Q) ⊃ P,P ⇒ Q,P ⊃ Q P,P ⇒ Q
⊃l

(P ⊃ Q) ⊃ P,P ⇒ Q ⊃r
(P ⊃ Q) ⊃ P ⇒ P,P ⊃ Q ax

P ⇒ P
⊃l

(P ⊃ Q) ⊃ P ⇒ P ⊃r⇒ ((P ⊃ Q) ⊃ P) ⊃ P

At the position indicated by “. . . ” further rule applications of ⊃l are possible
which would not help us to reach an axiom sequent anyway. We say that
the proof does not terminate and therefore the systems G3i and G3i

m do not
guarantee termination.

If we have a closer look at the top left sequent of the tree, we see that actually
no new information is added compared to two levels below. We only have
one extra P in the antecedent. Although we could apply rules again and
again, we would not gain any new facts. We actually have some kind of loop
here which can be detected as recurrences within a tree [40]. However, if one
wants to implement an automated theorem prover based on these sequent
systems it will be helpful to have one that prevents such loops from the start
using special rules. But of course, completeness and soundness must be
preserved.

Implications in Detail

Dyckhoff [40] presents a variant of G3i he traces back to Vorob’ev [146] and
which has been rediscovered by Hudelmaier [74]. The rule ⊃l is replaced by
the four rules of Figure 2.6. Rule⊃l1 may only be applied if P is atomic. Note
that in this calculus negations ¬A are interpreted as implications A ⊃ ⊥.
This system is often called G4ip

10; in the following, we simply call it G4i.
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B,P, Γ ⇒ D ⊃l1 [P is atomic]
P ⊃ B,P, Γ ⇒ D

A ⊃ (B ⊃ C), Γ ⇒ D
⊃l2(A∧ B) ⊃ C, Γ ⇒ D

A ⊃ C,B ⊃ C, Γ ⇒ D ⊃l3(A∨ B) ⊃ C, Γ ⇒ D

B ⊃ C, Γ ⇒ A ⊃ B C, Γ ⇒ D ⊃l4(A ⊃ B) ⊃ C, Γ ⇒ D

Figure 2.6: Rules of G4i (c.f. [40])

If we try to prove Peirce’s Law in G4i, we obtain the following finite sequent
tree where no further rule applications are possible:

Q ⊃ P,P ⇒ Q ⊃r
Q ⊃ P ⇒ P ⊃ Q ax

P ⇒ P ⊃l4(P ⊃ Q) ⊃ P ⇒ P ⊃r⇒ ((P ⊃ Q) ⊃ P) ⊃ P

This is the only possible saturated11 G4i-tree for Peirce’s Law, if P and Q

are prime formulas. In G4i, termination is guaranteed [40]. From the proof-
searcher’s point of view, the rules do not only take the outer-most operator
of the principal formula into account, but consider also the structure of the
principal’s antecedent. So we have four possibilities for this structure: it can
be an atom (⊃l1), a conjunction (⊃l2), a disjunction (⊃l3), or an implication
(⊃l4). When it is not an atom, the active formulas are in general new impli-
cations, which are not subformulas of the principal. However all rules of the
other sequent systems considered so far have this subformula property which
is given up in G4i [33, 32].

Rule Restrictions

Another approach which guarantees termination in intuitionistic proposi-
tional logic, is given by Corsi and Tassi. Their system IG [32, 33] is based on
G3i

m, but has an additional rule named a fortiori:

10The p indicates that only propositional formulas are considered in the system.
11i.e., no further rule applications are possible.
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Γ ⇒ ∆,B
a.f

Γ ⇒ ∆,A ⊃ B

This does not replace ⊃r. Instead, meta-rules (or external restrictions12) make
clear in which case one may use ⊃r, a fortiori (a.f for short), or ⊃l to guar-
antee termination (adapted from [33]):

i) Rule ⊃r may only be used once with the same principal formula within
one path of the sequent tree.

ii) If a formula A ⊃ B is principal in the application of a.f in a sequent tree
t, then below this application in t, A ⊃ B is principal in an application
of ⊃r on the same path.

iii) If ⊃l is applied twice with the same principal A ⊃ B within one path
of a sequent tree, then there is an application of ⊃r on the same path
between these two ⊃l-applications.

If these rules are obeyed, the IG-derivation is called to be regular, or IGr-
derivation for short. Considering any implication A ⊃ B on any path of a
sequent tree from bottom to top, point i) ensures that ⊃r is only applied
once with A ⊃ B as principal. Together with point iii), we may have ⊃l a
limited number of times with the same principal. Trying to find a derivation
for Peirce’s Law in IGr leads to the following tree:

(P ⊃ Q) ⊃ P,P ⇒ Q,Q
a.f

(P ⊃ Q) ⊃ P,P ⇒ P ⊃ Q,Q P,P ⇒ Q
⊃l

(P ⊃ Q) ⊃ P,P ⇒ Q ⊃r
(P ⊃ Q) ⊃ P ⇒ P,P ⊃ Q ax

P ⇒ P
⊃l

(P ⊃ Q) ⊃ P ⇒ P ⊃r⇒ ((P ⊃ Q) ⊃ P) ⊃ P

The leaves of this tree are blocked, i.e., no further rules can be used above. The
reason is restriction iii): as there is no application of ⊃r above the second
(read from bottom to top) application of ⊃l on (P ⊃ Q) ⊃ P, we are not
12We say external because they are not implemented directly in the sequent rules.
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allowed to put another ⊃l with the same principal on top. Using ⊃r instead
of a.f is also not allowed because of restriction i). This is the only possible
saturated IGr-tree for Peirce’s law with P and Q being prime formulas.

IGr is sound and complete, and termination is guaranteed [32, 33]. The
sub-formula property is preserved. The idea of enforcing termination with
meta-rules suits game semantics well. In Chapter 3, we refer to IGr when
establishing our intuitionistic multi-proponent dialectics with termination
guarantee.

An earlier calculus which guarantees termination in a similar way as IGr,
is IPCRP

(∧,⊃) by Heuerding et al. [68] which makes use of a history set that is
extended in the left branch of ⊃l-applications. It is defined for the fragment
of propositional intuitionistic logic having only ∧ and ⊃ as logical connect-
ives. It was extended by Howe [73] to handle disjunctions (and negations) as
well.13 It features also two versions of the ⊃r-rule (where one can be seen as
a variant of a fortiori). Further restrictions are built into the rules themselves.
We consider a variant for the modal logic S4 in Section 2.2.3. Howe himself
also proposes an alternative approach making also use of history sets [72].
See [72, 73] for a detailed comparison.

Another such system making use of some history-like set is proposed by
Ferrari et al. [53]. In their work, there is only one left-hand rule and one
right-hand rule for implication but the former has three premises instead of
the usual two. The latter has two premises instead of one.

2.1.5 Focusing

It is often the case that one can find different derivations for the same se-
quent in one and the same system, simply by reordering some rule appli-
cations or having applications which are not expedient for the derivation.
For example, as we saw before, ⊃l can be applied infinitely often in G3i

13Howe calls the method the Swiss history [73].
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and G3i
m. To prevent such futile applications in proof searches, Andreoli

[5] introduced a technique for linear logic called focusing. There are several
adaptions for intuitionistic logic.

Focusing enforces a normalization of sequent proofs. In Chapters 3 and 4,
our aim will be to find normalized proofs with techniques of dialogical logic.
Focused proofs are therefore relevant in this work although their strategy
is different. Similarities and differences to multi-proponent dialectics are
discussed in Section 3.4.2.

Uniform Proofs

Uniform proofs [114] were created to define behaviour of inference machines
in logical programming languages and can be seen as early approaches of
focused sequent systems (e.g., c.f. [96]). An intuitionistic single-conclusion
sequent system is used as basis. Uniform proofs have the following restric-
tion: if the succedent formula of a sequent is not atomic then it is principal
of a rule application [114]. The result is that antecedent formulas can only
be principal if a right-hand rule cannot be applied.

However, this restriction is too strong and there is not a uniform proof for
every valid sequent, for example ⇒ (A∨ B) ⊃ (B∨A) cannot be derived
with a uniform proof. Because of this incompleteness we do not consider
uniform proofs further.

Isolating Critical Rule Applications

Searching for an isomorphism between special lambda-terms and proofs in
sequent systems, Herbelin [66] introduced a simple focused system LJT for
the fragment of intuitionistic logic having only the implication as possible
connective. In this single-conclusion system, the sequents have the form
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ax
Γ ;A⇒ A

Γ ,A;A⇒ B
Cont

Γ ,A;⇒ B

Γ ;⇒ A Γ ;B⇒ C ⊃l
Γ ;A ⊃ B⇒ C

Γ ,A;⇒ B ⊃r
Γ ;⇒ A ⊃ B

Figure 2.7: Rules of LJT (c.f. [66])

Γ ;⇒ C or Γ ;A⇒ C

i.e., it is possible to have a focused formula A in the antecedent which is
explicitly separated from Γ due to a semicolon. This formula is called stoup
[66].14 Before a rule can be applied on an implication of the antecedent, this
principal needs to be stored to the stoup with a special kind of contraction
rule (Cont). The rules of LJT are shown in Figure 2.7.

Later, Herbelin introduced a sequent system LJQ which is based on G3i but
has a restriction that says that above the left premise of ⊃l, only the rules ax ,
∧r, ∨r and ⊃r are allowed [67]. This external restriction is internalized in the
variants LJQ’ and LJQ∗ presented by Dyckhoff and Lengrand [42].

LJQ’ is a single-conclusion system in which two kinds of sequents are dis-
tinguished. The ordinary sequents have the usual form Γ ⇒ A with Γ being
a multi-set. Focus sequents simply have another implication arrow (→ in-
stead of ⇒). The new condition is that in a derivation tree, the conclusion
of left-hand rule applications must always be an ordinary sequent, while the
conclusion of right-hand rules and rule ax are always focus sequents. There
is also a special rule Der (for dereliction [42]) to transform an ordinary se-
quent into a focused one (read from bottom to top). The rules of LJQ’ are
displayed in Figure 2.8 (top). The sequent P ∨ Q → P ∨ Q is not derivable
in LJQ’ [42], because ∨l can only be applied on ordinary sequents, but not in
focus sequents. However, P ∨Q⇒ P ∨Q is derivable, of course.

14The term stoup in such a setting goes back to Girard [61] (c.f. [66]).
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LJQ’ (single-conclusion)

⊥l⊥, Γ ⇒ A
Γ → A

Der
Γ ⇒ A

ax
P, Γ → P

A ⊃ B, Γ → A B, Γ ⇒ C ⊃l
A ⊃ B, Γ ⇒ C

A, Γ ⇒ B ⊃r
Γ → A ⊃ B

A,B, Γ ⇒ C
∧l

A∧ B, Γ ⇒ C
Γ → A Γ → B

∧r
Γ → A∧ B

A, Γ ⇒ C B, Γ ⇒ C
∨l

A∨ B, Γ ⇒ C
Γ → A

∨r
Γ → A∨ B

Γ → B
∨r

Γ → A∨ B

LJQ∗ (multi-conclusion)

⊥l⊥, Γ ⇒ ∆
Γ → A;∆

Der
Γ ⇒ A,∆

ax
P, Γ → P;∆

A ⊃ B, Γ → A; ∅ B, Γ ⇒ ∆ ⊃l
A ⊃ B, Γ ⇒ ∆

A, Γ ⇒ B ⊃r
Γ → A ⊃ B;∆

A,B, Γ ⇒ ∆
∧l

A∧ B, Γ ⇒ ∆

Γ → A;∆ Γ → B;∆
∧r

Γ → A∧ B;∆

A, Γ ⇒ ∆ B, Γ ⇒ ∆
∨l

A∨ B, Γ ⇒ ∆

Γ ⇒ A,B,∆
∨r

Γ → A∨ B;∆

Figure 2.8: Rules of LJQ’ and LJQ∗ (c.f. [42])
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An important feature is that the left premise of ⊃l is a focus sequent which
makes it impossible to have left-hand rule applications directly above. By
contrast, the premise of ⊃r is an ordinary sequent again. The combination
of both ensures that we can have ⊃l twice with the same principal formula
(instance) on the same path of a proof tree only if there is an application of
⊃r in between.

Dyckhoff and Lengrand also present system LJQ∗ [42] as a multi-conclusion
variant of LJQ’ based on a system of the same name by Herbelin [67]. The fo-
cus sequents have now the form Γ → A;∆ where the formula A is separated
by the semicolon from ∆. Rules above such sequents must be right-hand
rules with A as principal. These focused formulas are also called stoup (this
time in the succedent). So changing from an ordinary sequent to a focus se-
quent (from bottom to top) requires to choose the right formula to put into
focus. Also note that the left premise of ⊃l has an empty succedent (besides
the stoup) which is similar to Dragalin’s ⊃l of GHPC [42]. For both systems
LJQ’ and LJQ∗, termination is not guaranteed, e.g., searching for a proof of
Peirce’s Law leads to the same problems as in G3i and G3i

m.

Focus with Polarities

Liang and Miller introduced a general version of focusing sequent systems
for intuitionistic and classical first-order logic [96, 97] which is based more
on Andreoli’s attempt for linear logic and which makes use of polarities as
in Girard’s work [61, 62]. Formulas can always be categorised according
to their outermost connective into different polarities. These then define in
which phase of the proof a rule can be applied to the formula.

In the following, we have a look at their system LJF for intuitionistic logic but
we consider only the propositional fragment to keep things simpler. In LJF
all formulas either have a positive or a negative polarity, which is assigned
according to the following rules [96]:
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• Prime formulas have an arbitrary polarity (either positive or negative),
but the assignment must be consistent, i.e., once chosen, the atoms with
the same name also have the same polarity.

• Positive formulas are positive primes (P+), >, ⊥, disjunctions (A ∨ B),
and positive conjunctions (A∧+ B).

• Negative formulas are negative primes (P−), implications (A ⊃ B), and
negative conjunctions (A∧− B).

Note that a negative polarity has nothing to do with negation. It is simply a
categorisation which is related to invertibility of rule applications.

In LJF, there are both positive and negative conjunctions. The different po-
larities increase flexibility so it is possible to embed other systems (like LJQ’)
into LJF. Concerning provability, it does not matter which polarities are as-
signed to the different conjunctions, but the choice has an impact on the
proof strategy, i.e., the structure of the proof tree. Therefore, for now we can
assign polarities to conjunctions in an arbitrary fashion [96].

Liang and Miller define four types of sequents with two types of focus [96].
We call formulas of [Γ ] or [C] focus candidates as a focus can be put on these
formulas in a sequent of type (ii):

(i) [Γ ],Θ −→ C

This sequent has no focus. C is either a formula C or a bracketed for-
mula [C]. In such a sequent, principals can be formulas of Θ or C if it
is not bracketed.

(ii) [Γ ] −→ [C]

This is a special variant of (i), where Θ is empty and C is bracketed. In
this sequent, a focus can be selected, i.e., put on a formula of Γ or on C.

(iii) [Γ ]
A−−→ [C]

The focus is set on formula A which originates from the antecedent of
some sequent below. A is the principal of the rule application above.
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(iv) [Γ ] −A→
The focus is set on formula A which originates from the succedent of
some sequent below. A is the principal of the rule application above.

The rules of LJF are shown in Figure 2.9. Formulas A+ and A− have positive
or negative polarities respectively. P+ and P− are prime formulas. D= must
be a formula of negative polarity or a prime formula of positive polarity,
whereas E# is a positive formula or a negative prime (c.f. [96]).

Rules I r and I l correspond to ax in G3i and are only applicable on atoms
which are in focus. Foci can be put on negative focus candidates in the ante-
cedent (F l), or on the positive focus candidate in the succedent (Fr). After
the polarity of the focused formula has changed, it can be taken out of focus
again (Rl, Rr). Unfocused formulas of the antecedent which are negative,
and positive prime formulas of the antecedent can become focus candidates
([ ]l). The same holds for positive formulas and negative primes of the suc-
cedent ([ ]r). As introduction rules, we have unfocused rules where the principal
is not in focus (⊥l, >l, ∧+l, ∧−r, ∨l, ⊃r), left-focus rules with a focused prin-
cipal that originates from some antecedent (sequent type (iii) from above;
∧−l, ⊃l), and right-focus rules with a focused principal originating from the
succedent (sequent type (iv) from above; >r, ∧+r, ∨r).

The following simple tree shows a derivation for Q ⊃ (P ⊃ (Q∧ P)) in LJF.
We give Q a positive polarity and P a negative one. The conjunction Q ∧ P

is considered to be positive. Other assignments of polarities are possible as
well but lead to other structures of the proof tree.
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Decision/Reaction Rules

[A−, Γ ]
A−

−−→ [C]
F l

[A−, Γ ] −→ [C]

[Γ ] −A+→
Fr

[Γ ] −→ [A+]

[Γ ],A+ −→ [C]
Rl

[Γ ]
A+

−−→ [C]

[Γ ] −→ A−

Rr
[Γ ] −A−→

[D=, Γ ],Θ −→ C
[ ]l

[Γ ],Θ,D= −→ C

[Γ ],Θ −→ [E#]
[ ]r

[Γ ],Θ −→ E#

Initial Rules

I r
[P+, Γ ] −P+→

I l
[Γ ]

P−−→ [P−]

Introduction Rules

⊥l
[Γ ],Θ,⊥ −→ C

[Γ ],Θ −→ C
>l

[Γ ],Θ,> −→ C
>r

[Γ ] −>→

[Γ ]
A−−→ [C]

∧−l
[Γ ]

A∧−B−−−→ [C]

[Γ ]
B−−→ [C]

∧−l
[Γ ]

A∧−B−−−→ [C]

[Γ ],Θ −→ A [Γ ],Θ −→ B
∧−r

[Γ ],Θ −→ A∧− B

[Γ ],Θ,A,B −→ C
∧+l

[Γ ],Θ,A∧+ B −→ C

[Γ ] −A→ [Γ ] −B→
∧+r

[Γ ] −A∧+B→

[Γ ],Θ,A −→ C [Γ ],Θ,B −→ C
∨l

[Γ ],Θ,A∨ B −→ C

[Γ ] −A→
∨r

[Γ ] −A∨B→
[Γ ] −B→

∨r
[Γ ] −A∨B→

[Γ ] −A→ [Γ ]
B−−→ [C]

⊃l
[Γ ]

A⊃B−−→ [C]

[Γ ],Θ,A −→ B ⊃r
[Γ ],Θ −→ A ⊃ B

Figure 2.9: Rules of LJF (c.f. [97]).
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I r
[Q+,P−] −Q+→

I l
[Q+,P−]

P−−→ P−
F l

[Q+,P−] −→ P−
Rr

[Q+,P−] −P−→
∧+r

[Q+,P−] −Q+∧+P−→
Fr

[Q+,P−] −→ [Q+ ∧+ P−]
[ ]r

[Q+,P−] −→ Q+ ∧+ P−
[ ]l

[Q+],P− −→ Q+ ∧+ P−
[ ]l

[ ],Q+,P− −→ Q+ ∧+ P− ⊃r
[ ],Q+ −→ P− ⊃ (Q+ ∧+ P−) ⊃r

[ ] −→ Q+ ⊃ (P− ⊃ (Q+ ∧+ P−))

Reading the proof from bottom to top, we first have to apply all rules until
every formula is bracketed, so we can set a focus. We start with rule ⊃r
being applied twice.15 Afterwards, every formula can be made a focus can-
didate ([ ]l, [ ]l, [ ]r) and we can set a focus. We set it on Q+ ∧+ P− (Fr). Note
that it would also be possible to choose P−, but this would make the proof
terminate without success as no rule could be applied above. Afterwards,
we apply ∧+r on the focused conjunction. The left branch is finished imme-
diately (I r), the right one is not, because the polarity of P− does not fit to the
initial rule. So the focus needs to be changed: it is taken from P−, which is
moved into the succedent (Rr), and put on P− of the antecedent (F l) which
finishes the proof.

This simple example demonstrates how LJF is used. Further examples can
be found in [96, 97]. As we see, the rules put strong restrictions on possible
applications which leads to a normalization of proofs that depends only on
the selection of polarities for atoms and conjunctions. However, an impor-
tant observation is that proof-relevant decisions are not only made when the
focus is selected, but also when rules ∧−l or ∨r are applied. Termination
is not guaranteed, because focus candidates of the antecedent stay focus
candidates, also after being put into focus. This also means that it is possible

15In the succedent, only positive formulas and negative atoms can be bracketed, but im-
plications are negative.
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I l
[A+ ∧− B−,A+]

B−

−→ [B−]
∧−l

[A+ ∧− B−,A+]
A+∧−B−

−−−−−→ [B−]
F l

[A+ ∧− B−,A+] −→ [B−]
[ ]l

[A+ ∧− B−],A+ −→ [B−]
Rl

[A+ ∧− B−]
A+

−−→ [B−]
∧−l

[A+ ∧− B−]
A+∧−B−

−−−−−→ [B−]
F l

[A+ ∧− B−] −→ [B−]
[ ]l, [ ]r

[ ],A+ ∧− B− −→ B−

I l
[A+ ∧− B−]

B−

−→ [B−]
∧−l

[A+ ∧− B−]
A+∧−B−

−−−−−→ [B−]
F l

[A+ ∧− B−] −→ [B−]
[ ]l, [ ]r

[ ],A+ ∧− B− −→ B−

Figure 2.10: LJF-Proofs with unnecessary rule applications (left) and without
(right)

to have rule applications in a proof tree which do not contribute to the proof
progress in a reasonable way as the two derivation trees in Figure 2.10 show.

LJF can be used to embed systems LJT, LJQ’ and uniform proofs by fixing
the polarities of the formulas in a specific way. Details are given in [96, 97].
The authors also present a variant of LJF for classical logic, called LKF.

More on Foci

Simmons [134] introduces an extension of LJF where the order of rule appli-
cations in parts with unfocused sequents is fixed, and with a different treat-
ment of atoms. Chaudhuri et al. [22] present a multi-focus sequent system
for the linear logic MALL. Here, it is possible to put more than one formula
into focus. A multi-focus system for classical first-order logic is proposed in
[23]. We do not discuss these here.

2.1.6 Hypersequents in Intuitionistic Logic

Avron [7] was the first to use hypersequents as reasoning systems for inter-
mediate logics. These are logics lying between classical and intuitionistic logics,
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i.e., in which the intuitionistic theorems hold but not necessarily all classical
ones. In this context, hypersequents calculi for intuitionistic propositional
logic have been proposed by Ciabattoni and Ferrari [27], and Fermüller [49].
In each node of the proof tree, instead of considering single sequents, we
operate on sequences of sequents. For intermediate logics we can then have
an interaction between these sequents of a hypersequent. Regarding intu-
itionistic logic, it is possible to duplicate a whole sequent before applying
a non-invertible rule and still keep book of the result. Calculi using hyper-
sequents are a useful tool for proof searches. In Section 2.3.5, we consider a
multi-proponent dialogical system which is based on them.

In general, hypersequents have the following form [7]:

Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | . . . | Γn ⇒ ∆n

so they are simply sequences of ordinary (sub-)sequents separated by ver-
tical bars, although we rather consider them here as (possibly empty) multi-
sets. As meta-variables representing arbitrary hypersequents, we use the
letters G and H.

If G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n and H = Γn+1 ⇒ ∆n+1 | . . . | Γm ⇒ ∆m, then
G | H is defined as Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n | Γn+1 ⇒ ∆n+1 | . . . | Γm ⇒ ∆m.

To operate on hypersequents, we need structural external rules which allow
us to duplicate sequents or drop them from a hypersequent. The structural
external rules are displayed in Figure 2.11 together with the logical rules of
the intuitionistic system HLI’ proposed by Fermüller [49].

We assume that the logical rules can be applied on any of the ordinary se-
quents, not only on the one written at the leftmost position of the hyper-
sequent. This calculus has the advantage that we can duplicate an ordinary
sequent and take out different decisions. For example, consider again the
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2.1 Sequent Systems for Classical and Intuitionistic Logic

External Structural Rules

G
EW

G | H

Γ ⇒ C | Γ ⇒ C | H
EC

Γ ⇒ C | H

Axioms

ax
A, Γ ⇒ A | H

⊥l⊥, Γ ⇒ C | H

Logical Rules

A,A∨ B, Γ ⇒ C | H B,A∨ B, Γ ⇒ C | H
∨l

A∨ B, Γ ⇒ C | H

Γ ⇒ A | H
∨r

Γ ⇒ A∨ B | H

Γ ⇒ B | H
∨r

Γ ⇒ A∨ B | H

A,A∧ B, Γ ⇒ C | H
∧l

A∧ B, Γ ⇒ C | H

B,A∧ B, Γ ⇒ C | H
∧l

A∧ B, Γ ⇒ C | H

Γ ⇒ A | H Γ ⇒ B | H
∧r

Γ ⇒ A∧ B | H

A ⊃ B, Γ ⇒ A | H B,A ⊃ B, Γ ⇒ C | H
⊃l

A ⊃ B, Γ ⇒ C | H

A, Γ ⇒ B | H ⊃r
Γ ⇒ A ⊃ B | H

Figure 2.11: Rules of HLI’ (c.f. [49])
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law of the excluded middle of classical logic A∨ ¬A which is not a theorem of
intuitionistic logic:16

⇒ A | A⇒ ⊥
¬r

⇒ A |⇒ ¬A
∨r (twice)⇒ A∨ ¬A |⇒ A∨ ¬A
EC⇒ A∨ ¬A

Reading the tree from bottom to top, we first duplicate the sequent with
the external contraction rule (EC ), because, as this is a single-conclusion
calculus, we have to decide whether to keep the left or the right disjunct
when using ∨r. Now we can look at both possibilities in parallel. As we are
soon not able to do anything in the left sequent, we can apply ¬r in the right
one which leads to a dead-end as well.

There are several ways to put these sub-sequents together again in order to
implement systems for different intermediate logics (e.g. c.f. [7, 28, 27]). To
do reasoning in classical logic, we simply need to add the following rule:17

Γ , Γ ′ ⇒ A | H
CL

Γ ⇒ ⊥ | Γ ′ ⇒ A | H

So if one sub-sequent has ⊥ as succedent, it can be combined with another
sub-sequent. This allows us to finish the derivation from above putting the
following on the top:

ax
A⇒ A

CL⇒ A | A⇒ ⊥

We consider such merging of sequents in the setting of dialogues briefly in
Section 2.3.5. Hypersequents play also an important role in modal logic.

16The example is adapted from [49].
17The rule is taken from [28]. In [27] and [49], more general versions are used.
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A sequent system which uses sequent lists instead of hypersequents is SIC
by Corsi and Tassi [33]. Instead of considering all individual sequents at the
same time, only the last one of the sequent list is taken into account, which
differs to hypersequents [33]. It makes use of the a fortiori rule and guar-
antees termination. Restrictions of IGr are directly implemented by using
special labels attached to formulas.

Nested sequents are an alternative to hypersequents where the nodes of the
derivation tree do not contain hypersequents but the sequents have a nested
structure. Fitting [58] provides such systems for both intuitionistic propo-
sitional and first-order logic. Lellmann [92] gives an alternative version, in
which sequents are nested linearly.

Both hypersequent and nested sequent calculi are also used to do reasoning
in modal logics. More on this follows in Section 2.2.5. Next we consider
various modal extensions of the propositional systems we examined so far,
starting with the simple, ordinary sequent structures.

2.2 Sequent Systems for Modal Logic

There are many sequent systems for modal logic as well. Early attempts like
that by Curry [35] and Ohnishi and Matsumoto [117, 118] were presented
before Kripke came up with his famous possible world semantics.

There are too many of these calculi to discuss all of them here. We consider
only a selection of systems in detail, which are relevant for our purposes.
In particular, we concentrate on sequent systems for the logics K, KT and
S4, and their intuitionistic/constructive variants. A survey of (unlabelled)
sequent calculi for normal modal logic can be found in [148] by Wansing.
A more recent, general survey of sequent systems for normal modal logics,
including Display calculus, is provided by Poggiolesi [123], which however
does not cover standard hypersequents or focused sequents, but also takes
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logics S5, GL and different combinations of axioms B, T and 4 into account.
The reader is referred to her book for a detailed overview on calculi for
classical modal logic.

2.2.1 Ordinary Modal Sequent Systems

First, we have a look at modal extensions of the systems discussed in Sec-
tions 2.1.1 to 2.1.3. Like Wansing [148] and Poggiolesi [123], we call these
ordinary sequent systems (not to mix up with ordinary sequents of focus cal-
culi): all sequents have the simple structure Γ ⇒ ∆ where Γ and ∆ are either
sequences, sets, or multi-sets of formulas.

An early extension of Gentzen’s LK for modal logic K was proposed by
Leivant [91] in 1981. He treats the sequences as sets and suggests to add a
single rule:

Γ ⇒ A
2I

2Γ ⇒ 2A

There is no left- or right-hand rule for 2, but only this introduction. The set
2Γ is defined as {2φ | φ ∈ Γ }. Accordingly, we use this notation for other
sequent systems hereinafter, also we let 3∆ be {3φ | φ ∈ ∆}. In the succedent
of Leivant’s rule, there is only a single formula both in the premise and in
the conclusion. Therefore, when we use this rule in proof search, we have
to make extensive use of the weakening rules, so that we have only boxed
formulas in the antecedent, before we apply 2I. There is no rule for 3.

Several years before, in 1957, Ohnishi and Matsumoto [117] presented rules
for logics S4 (of which the 2-rules were already proposed earlier by Curry
[34, 35]), T, and S5.18 Both left- and right-hand rules for 2 and 3 were
introduced to extend LK. The additional rules for KT are

18They use the name M for T and also propose rules for another modal system Q2 we do
not consider here at all. For the S5 version, cut elimination does not work [87].
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A, Γ ⇒ ∆
2l

2A, Γ ⇒ ∆
Γ ⇒ A 2r

2Γ ⇒ 2A
A ⇒ ∆

3l
3A ⇒ 3∆

Γ ⇒ ∆,A
3r

Γ ⇒ ∆,3A

and for S4 they are:

A, Γ ⇒ ∆
2l

2A, Γ ⇒ ∆
2Γ ⇒ A 2r
2Γ ⇒ 2A

A ⇒ 3∆
3l

3A ⇒ 3∆
Γ ⇒ ∆,A

3r
Γ ⇒ ∆,3A

Differences between KT and S4 occur in rules 2r and 3l. Their application
can be considered as changing the current world of the Kripke model. Note
that these rules are based on LK and not on G3c. The contraction and weak-
ening rules are required for certain derivations. Even worse, the systems are
not complete, as for example, ¬2¬A ⊃ 3A cannot be shown to be valid [87].

Fitting [57] proposes a variant based on his tableau system. When apply-
ing his sequent rules, formulas of the conclusion are somehow kept in the
premise, although he does not mention this explicitly. Contraction-free 2-
rules for K, KT and S4 can be found in [75], referring to [57]. These are as
follows:

Γ ⇒ A
2K

Γ ′,2Γ ⇒ ∆,2A
Γ ,2A,A⇒ ∆

2T
Γ ,2A⇒ ∆

2Γ ⇒ A
24

Γ ′,2Γ ⇒ ∆,2A

Note that Γ and Γ ′ are distinguished multi-sets. For modal logic K we use
only rule 2K, for KT we use both 2K and 2T, and for S4 we forget about
2K and use both 2T and 24 instead [75]. The rules 2K and 24 can be seen
as right-hand rules for 2, while 2T is then the left-hand rule. The logic K

therefore does not have a left-hand rule for 2. Analogous rules were already
proposed by Kanger [78] in 1957 for KT and S4 (without adequateness proofs
for the resulting systems).

Due to the duality of 2 and 3, i.e., 2ϕ ≡ ¬3¬ϕ and 3ϕ ≡ ¬2¬ϕ, we can
extend G3c by the rules shown in Figure 2.12 to obtain G3K for K, G3KT for
KT, and G3S4 for S4.

The rules of G3S4 are exactly the same as those of G3s presented by Troel-
stra and Schwichtenberg [142]. The admissibility of the 3-rules in G3K and
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G3K

Γ ⇒ ∆,A
2r

2Γ , Γ ′ ⇒ 3∆,∆ ′,2A

A, Γ ⇒ ∆
3l

3A,2Γ , Γ ′ ⇒ 3∆,∆ ′

G3KT

2A,A, Γ ⇒ ∆
2l

2A, Γ ⇒ ∆

Γ ⇒ ∆,A
2r

2Γ , Γ ′ ⇒ 3∆,∆ ′,2A

A, Γ ⇒ ∆
3l

3A,2Γ , Γ ′ ⇒ 3∆,∆ ′
Γ ⇒ ∆,3A,A

3r
Γ ⇒ ∆,3A

G3S4

2A,A, Γ ⇒ ∆
2l

2A, Γ ⇒ ∆

2Γ ⇒ 3∆,A
2r

2Γ , Γ ′ ⇒ 3∆,∆ ′,2A

A,2Γ ⇒ 3∆
3l

3A,2Γ , Γ ′ ⇒ 3∆,∆ ′
Γ ⇒ ∆,3A,A

3r
Γ ⇒ ∆,3A

Figure 2.12: Rules of G3K, G3KT and G3S4

G3KT can be shown easily due to the duality of the modal operators. Actu-
ally, these systems correspond to Fitting’s [57] analytic tableaux.

Note that in all three cases, the rules 2r and 3l are non-invertible, as some
formulas of the conclusions do not occur in the premises. Also, 2l and 3r

are duplication rules, because the principal formulas stay in the premises.

There are not many ordinary sequent systems for the intuitionistic modal
logical counterparts IK/CK, IKT/CKT or IS4/CS4. For CS4, a single-conclusion
system was created by Bierman and de Paiva [13]. We consider a slight
variant of it proposed by Kuznets et al. [88] who also prove soundness and
completeness of systems for CK, CKD (not considered here) and CKT.19 The
rules consist of those of system G3i plus the corresponding modal rules
displayed in Figure 2.13.

19They refer to the cut-elimination techniques presented by Lellmann and Pattinson [93].
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G3CK

Γ ⇒ A 2r
2Γ , Γ ′ ⇒ 2A

A, Γ ⇒ C
3l

3A,2Γ , Γ ′ ⇒ 3C

G3CKT

2A,A, Γ ⇒ C
2l

2A, Γ ⇒ C
Γ ⇒ A 2r

2Γ , Γ ′ ⇒ 2A
A, Γ ⇒ C

3l
3A,2Γ , Γ ′ ⇒ 3C

Γ ⇒ A 3r
Γ ⇒ 3A

G3CS4

2A,A, Γ ⇒ C
2l

2A, Γ ⇒ C
2Γ ⇒ A 2r

2Γ , Γ ′ ⇒ 2A
A,2Γ ⇒ 3C

3l
3A,2Γ , Γ ′ ⇒ 3C

Γ ⇒ A 3r
Γ ⇒ 3A

Figure 2.13: Rules of G3CK, G3CKT and G3CS4 (c.f. [88])

A striking feature is that in all 3-rules, the succedent of the conclusion must
be a 3-formula. The other rules are what we probably expect from an intu-
itionistic single-conclusion calculus.

For the modal systems IK, IKT and IS4, I was not able to find an ordinary se-
quent calculus in the literature. It seems that it is not easy or even impossible
to construct such systems, especially because of the IK5 axiom. Assume we
have a single-conclusion sequent system for IK and we try do derive the
corresponding formula:

???
3A ⊃ 2B⇒ 3A

ax
B,A⇒ B ⊃r
B⇒ A ⊃ B

2r
2B⇒ 2(A ⊃ B)

⊃l
3A ⊃ 2B⇒ 2(A ⊃ B) ⊃r⇒ (3A ⊃ 2B) ⊃ 2(A ⊃ B)

Of course, the left branch cannot be brought to an axiom. It is also no option
to apply 2l instead of ⊃l as this would cause that 3A ⊃ 2B is dropped from
the antecedent (change of Kripke world). Another possibility would be to
set up an ordinary multi-conclusion calculus which results in thus:
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???
3A ⊃ 2B⇒ 2(A ⊃ B),3A

ax
B,A⇒ B ⊃r
B⇒ A ⊃ B

2r
2B⇒ 2(A ⊃ B)

⊃l
3A ⊃ 2B⇒ 2(A ⊃ B) ⊃r⇒ (3A ⊃ 2B) ⊃ (2(A ⊃ B))

Now, of course it would be possible to apply 2r on top of the left branch
and keep the A of 3A. But then there is actually no difference to the
modal rules of G3K which would cause that 2 and 3 are dual (the sequent
⇒ ¬2¬A ⊃ 3A could be derived). The Kripke semantics of IK (p. 24) could
make us believe that 2r is a critical rule.20 But if we then apply it on top
of the left branch, the new premise would be ⇒ A ⊃ B for which there is
also no derivation. Simpson [135] solves the problem with labels (see Sec-
tion 2.2.4) but thereby leaves the area of ordinary sequent systems.

2.2.2 A Multi-Conclusion Sequent System for CS4

In this section, we introduce a cut-free multi-conclusion variant of G3iCS4.
The reason is that the multi-proponent dialogues we consider in Chapter 4
are related to multi-conclusion sequent systems and the adequateness of the
dialogical sequent system DiaSeqCS4, which we introduce in 4.2, is based
on this.

We call the following system G3iCS4m. The rules are displayed in Fig-
ure 2.14. Those of propositional logic are exactly the same as of G3i

m (Sec-
tion 2.1.3). The new rules are 2l, 2r, 3l, and 3r, of which only 2l is invert-
ible. Note that 3l can only be used when 3∆ is not empty.21 We show the
adequateness of G3iCS4m by proving that every G3iCS4m-derivation can be

20M,w |= 2A holds iff for all refinementsw ′ ofw, in all successors u ofw ′, it holds M,u |= A.
The reference to the refinements w ′ of w also occur for implication M,w |= A ⊃ B and
negation M,w, |= ¬A. For both (and only for these) the right-hand rule is critical in
G3i

m.
21This restriction is added here next to the premise in the rule. We do not consider it as a

premise in terms of derivation rules, but rather as an additional constraint.
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ax
P, Γ ⇒ ∆,P

⊥l⊥, Γ ⇒ ∆

A,B, Γ ⇒ ∆
∧l

A∧ B, Γ ⇒ ∆

Γ ⇒ ∆,A Γ ⇒ ∆,B
∧r

Γ ⇒ ∆,A∧ B

A, Γ ⇒ ∆ B, Γ ⇒ ∆
∨l

A∨ B, Γ ⇒ ∆

Γ ⇒ ∆,A,B
∨r

Γ ⇒ ∆,A∨ B

A ⊃ B, Γ ⇒ ∆,A B, Γ ⇒ ∆ ⊃l
A ⊃ B, Γ ⇒ ∆

A, Γ ⇒ B ⊃r
Γ ⇒ A ⊃ B

¬A, Γ ⇒ ∆,A
¬l

¬A, Γ ⇒ ∆
A, Γ ⇒ ∅

¬r
Γ ⇒ ∆,¬A

2A,A, Γ ⇒ ∆
2l

2A, Γ ⇒ ∆
2Γ ⇒ A 2r

2Γ , Γ ′ ⇒ 2A,∆

2Γ ,A⇒ 3∆ |3∆| > 1
3l

2Γ , Γ ′,3A⇒ 3∆,∆ ′
Γ ⇒ A 3r

Γ ⇒ 3A,∆

Figure 2.14: Rules of G3iCS4m

transformed into a G3CS4-derivation and vice-versa. Soundness and com-
pleteness of G3CS4 then imply soundness and completeness of G3iCS4m.

Definition 2.1 (Deducibility (G3CS4, G3iCS4m)). For an arbitrary G3CS4/
G3iCS4m sequent Γ ⇒ ∆ we write for some n ∈ N: 
Sn Γ ⇒ ∆ iff there is a
closed G3CS4-tree with Γ ⇒ ∆ as root sequent and which has a height h 6 n with
n ∈ N. We write 
Mn Γ ⇒ ∆ iff there is a closed G3iCS4m-tree with Γ ⇒ ∆ as root
sequent and which has a height h 6 n. We also say that Γ ⇒ ∆ is deducible in n
deductive steps, or that there is a derivation of height n for Γ ⇒ ∆.

The S in 
Sn refers to single-conclusion and the M to multi-conclusion.
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Lemma 2.1 (Admissibility of Weakening (G3CS4, G3iCS4m)22).
For all ϕ, Γ , ∆:

1. If 
Sn Γ ⇒ ∆ then 
Sn Γ ,ϕ⇒ ∆.

2. If 
Mn Γ ⇒ ∆ then 
Mn Γ ,ϕ⇒ ∆.

3. If 
Mn Γ ⇒ ∆ then 
Mn Γ ⇒ ϕ,∆.

The proof of this lemma is omitted here, as we discuss weakening in more
detail in Chapters 3.3.1, 4.3.2, and 4.3.3.

Theorem 2.1 (G3iCS4m Completeness). Every G3CS4 proof tree can be trans-
formed into a G3iCS4m proof tree.

Proof. We consider the G3CS4-derivation 
Sn Γ ⇒ Cwith Γ being an arbitrary
multi-set of formulas and C a single formula. We want to show that for some
m and for all ∆ it holds: 
Mm Γ ⇒ C,∆.

We perform an induction on n.

Base Case: n = 1 — The only rule which is used in the derivation is either
ax or ⊥l.

• If the rule is ax , the root sequent has the form Γ ,P ⇒ P. The rule ax

of G3iCS4m can also be used in the sequent Γ ,P ⇒ P,∆, so this is no
problem.

• The case of ⊥l works accordingly.

Inductive Step: Assume we have a G3CS4-derivation 
Sn+1 Γ ⇒ C. We have
to perform a case analysis on the rule which is applied in the root sequent,
i.e., the lowest rule application in the tree. We consider three cases here. The
others are handled similarly.

22The lemma is adapted from [39] and [142].
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1. Assume that C is a disjunction A∨ B with arbitrary formulas A and B.
Also assume that A ∨ B is the principal formula of the lowest rule ap-
plication. Then we have either 
Sn Γ ⇒ A or 
Sn Γ ⇒ B. By hypothesis,
we obtain 
Mm Γ ⇒ A,∆ (or with B instead of A respectively). Then by
weakening we achieve 
Mm Γ ⇒ A,B,∆. Now we append the application
of ∧r below and get 
Mm+1 Γ ⇒ A∧ B,∆ as root.

2. Assume that 
Sn+1 2Γ , Γ ′ ⇒ 2A and 2A is the principal. Then

Sn 2Γ ⇒ A. By hypothesis, we then get 
Mm 2Γ ⇒ A for ∆ = ∅. Ap-
pending 2r of G3iCS4m results in 
Mm+1 2Γ , Γ ′ ⇒ 2A,∆ for an arbitrary
∆.

3. Assume that 
Sn+1 2Γ , Γ ′,3A⇒ 3C and 3A is the principal of the low-
est rule application. We want to have 
Mm+1 2Γ , Γ ′,3A ⇒ 3C,∆. We
define 3∆ ′ as the part of ∆ which contains 3-formulas, and let ∆ ′′ be
the rest. Then from 
Sn 2Γ ,A⇒ 3C we get by hypothesis:

Mm 2Γ ,A⇒ 3C,3∆ ′ and adding 3l of G3iCS4m leads to

Mm+1 2Γ , Γ ′,3A⇒ 3C,3∆ ′,∆ ′′.

For the transformation from multi-conclusion to single-conclusion sequents
we adapt the technique by Maehara [104]. Assume that ∆ is the multi-set of
formulas δ1, δ2, . . . , δn. Then the disjunction over ∆, written

∨
∆, is defined as

δ1 ∨ δ2 ∨ · · ·∨ δn.

We also need an additional lemma.

Lemma 2.2 (Alternative Succedents in G3CS4). For any Γ , n, and formulas A
and B: if 
Sn Γ ⇒ A∨ B, then 
Sn Γ ⇒ A or 
Sn Γ ⇒ B.

Proof. By induction on n:

Base Case: n = 1 — In this case, the only rule application in the derivation
must be ⊥l, which can also be applied in Γ ⇒ A and Γ ⇒ B.
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Inductive Step: We consider the lowest rule application of the derivation
tree for 
Sn+1 Γ ⇒ A∨ B.

• If it is an application of ∧l, ∨l, or 2l, we can simply apply the hy-
pothesis on the premise of the application and append it afterwards
again.

• If it is an application of ⊃l on some formula C ⊃ D, then we have

Sn Γ ,C ⊃ D⇒ C and 
Sn Γ ,D⇒ A∨ B.
By hypothesis then 
Sn Γ ,D⇒ A or 
Sn Γ ,D⇒ B. Therefore, appending
⊃l again results in 
Sn+1 Γ ,C ⊃ D⇒ A or 
Sn+1 Γ ,C ⊃ D⇒ B.

• The case of a ¬l-application works accordingly.

• The only other possibility is an application of ∨r, but both thinkable
premises fulfil our target properties.

Theorem 2.2 (G3iCS4m Soundness). Every G3iCS4m proof tree can be trans-
formed into a G3CS4 proof tree.

Proof. What we have to show is that for any n, Γ , and ∆: 
Mn Γ ⇒ ∆ implies
for some m: 
Sm Γ ⇒

∨
∆. We do this by induction on n.

Base Case: n = 1 — We have two possibilities:

• The only rule application is ax in a sequent such that 
M1 Γ ,P ⇒ P,∆.
This corresponds to 
Sm Γ ,P ⇒ P ∨

∨
∆. There is obviously such a

derivation: we simply make use of ∨r and ax of G3CS4 and obtain the
following tree:

ax
Γ ,P ⇒ P

∨r
Γ ,P ⇒ P ∨

∨
∆

If P is not the left-most disjunct we simply make use of ∨r several times
until it is dissolved out of

∨
∆.
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• The only rule application is ⊥l. Then ⊥l can also be applied directly in
the sequent of G3CS4.

Inductive Step: We have a look at three cases:

1. Assume 
Mn+1 Γ ⇒ A∨ B,∆ with the lowest rule application being ∨r

applied on A ∨ B. Then 
Mn Γ ⇒ A,B,∆. By hypothesis, this corres-
ponds to 
Sm Γ ⇒ A∨ B∨

∨
∆. This is already what we were looking

for.23

2. Assume 
Mn+1 Γ ,A ⊃ B⇒ ∆ with the lowest rule application being ⊃l
applied on A ⊃ B. Then 
Mn Γ ,A ⊃ B⇒ A,∆ and 
Mn Γ ,B⇒ ∆. By
hypothesis then for some l and m: 
Sl Γ ,A ⊃ B⇒ A∨

∨
∆ and


Sm Γ ,B⇒
∨
∆. According to Lemma 2.2, the former leads us to two

cases: either 
Sl Γ ,A ⊃ B⇒ A or 
Sl Γ ,A ⊃ B⇒
∨
∆.

• If 
Sl Γ ,A ⊃ B⇒ A, then together with 
Sm Γ ,B⇒
∨
∆, we can use

⊃l to obtain Γ ,A ⊃ B⇒
∨
∆.

• If 
Sl Γ ,A ⊃ B⇒
∨
∆, we are already finished.

3. Assume 
Mn+1 2Γ , Γ ′,3A⇒ 3∆,∆ ′ and the lowest applied rule is 3l (on
3A). Then due to the premise we get 
Mn 2Γ ,A⇒ 3∆ with |3∆| > 1,
and by hypothesis 
Sm 2Γ ,A⇒

∨
3∆ for some m.

• If
∨
3∆ contains only a single disjunct, i.e., is some 3C, then we

can simply put 3l below and append
∨
∆ ′ with rule ∨r.

• If it contains more than one disjunct, we apply Lemma 2.2 (if ne-
cessary multiple times) and locate the one which is relevant for the
derivation. We call it 3E. Then it is again easy to build the root of
the G3CS4-derivation:

23Note that this requires that associativity of ‘∨’ is admissible in the succedent of any
G3CS4-sequent. However, using Lemma 2.2 makes it possible to show easily that

Sn Γ ⇒ A∨ (B∨ C) iff 
Sm Γ ⇒ (A∨ B)∨ C.
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ax⇒ Σ ; P,¬P,∆
⇒ Σ ; A,B,∆

∨⇒ Σ ; A∨ B,∆

⇒ Σ ; A,∆ ⇒ Σ ; B,∆
∧⇒ Σ ; A∧ B,∆

⇒ 3A,Σ ; A,∆
3⇒ Σ ; 3A,∆

⇒ ∅ ; A,Σ
2⇒ 3Σ ; 2A,∆

Figure 2.15: Rules of KTSU (c.f. [68])

. . .
2Γ ,A⇒ 3E

3l
2Γ , Γ ′,3A⇒ 3E

∨r (multiple times)
2Γ , Γ ′,3A⇒

∨
3∆

∨r (multiple times)
2Γ , Γ ′,3A⇒

∨
3∆∨

∨
∆ ′

2.2.3 Termination in Modal Proof Search

Like rule ⊃l in G3i, rules 2l and 3r of G3KT and G3S4 are duplication rules
which might cause non-termination when searching for a proof, because
these rules can be applied infinitely often on the same principal.

Heuerding et al. [68] provide single-sided sequent systems, i.e., the sequents’
antecedents are always empty. Formulas are only handled when they are in
negation normal form, which is no problem, as in classical modal logic it is
possible to translate every formula into negation normal form. The axiom
rule is then applied if there is a contradiction with respect to some atom
in the sequent. The authors use separate multi-sets Σ and H for keeping
book of certain formulas on which rules have already been applied [68]. The
following systems by Heuerding et al. are based on algorithmic approaches
by Ladner [89].

In system KTSU for the modal logic KT, H is not yet used. The rules (in our
altered notation) are displayed in Figure 2.15. In rule ax , P is an atom. The
only duplicating rule (3) adds the principal formula to Σ and prevents us
to apply this rule on the same formula again, until we use the 2-rule. This
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ax⇒ H ; Σ ; P,¬P,∆

⇒ H ; Σ ; A,B,∆
∨⇒ H ; Σ ; A∨ B,∆

⇒ H ; Σ ; A,∆ ⇒ H ; Σ ; B,∆
∧⇒ H ; Σ ; A∧ B,∆

⇒ ∅ ; 3A,Σ ; A,∆
30⇒ H ; Σ ; 3A,∆

⇒ H ; Σ ; A,∆
31⇒ H ; Σ ; 3A,∆

⇒ A,Θ,H ; Σ ; A,Σ
2⇒ H ; Σ ; 2A,2Θ,∆

Figure 2.16: Rules of KS4SU (c.f. [68])

corresponds to a world change in the Kripke model and moves the formulas
out of the separated multi-set (the prefixed 3’s removed). So a repetition is
also possible if it is done above the application of the non-invertible 2-rule,
which is however enough for KT to terminate the proof search [68].

For S4, things are not that easy, as an additional history (multi-)set is needed.
The rules for KS4SU are shown in Figure 2.16. The calculus has two rules for
3 and restrictions for rule applications are as follows (c.f. [68]):

• Rule 30 may only be applied if 3A 6∈ Σ.

• Rule 31 may only be applied if 3A ∈ Σ.

• Rule 2 may only be applied if A 6∈ H.

As before, rule 2 causes a world change in the Kripke model. It is the only
rule that extends the history H. The use of 30 empties the history, further
applications on the same principal (with 31) do not touch H. System KS4SU

is sound and complete and termination is guaranteed [68].

Howe [73] uses two separate history sets to set up a sequent system for the
2-fragment24 IS42 [12] of IS4/CS4.25 Another, more recent terminating se-
quent system for S4 is proposed by Fiorentini [54]. It deals with an extended

242-fragment means that the 3 is not considered to be part of the language, whereas the 2

and the propositional connectives are.
25Howe states that he considers IS4, but when the 3 is not taken into account as an admis-

sible operator, there is no difference between IS4 and CS4, as axioms IK2 to IK5 contain
3-formulas, and are therefore dropped anyway. The relevant axioms of IS42 are given
in [12].
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modal language (two extra modalities) and so-called cluster-sequents which
go beyond the scope of this work.

2.2.4 Labelled Modal Sequent Systems

Instead of dropping formulas from sequents when non-invertible rules are
applied, formulas can be equipped by labels, which refer to Kripke worlds,
in which the corresponding formulas shall hold. When the relations are
also added explicitly to the sequents, a single sequent can represent a whole
Kripke model.

One of the first labelled sequent systems for modal logics is presented by
Mints [115] for modal logics K, KT, K4, KB, KTB, S4, and S5. Instead of la-
belling single formulas, he considers several sequents at once, i.e., sequences
of labelled sequents. Whenever rule 2r is applied, a new sequent with a new
label, representing a new Kripke world, is added.

Viganò [145] made the relational structure explicit. He introduced relational
formulas of the form xRy, indicating the accessibility between two worlds x
and y via a relation R. A labelled sequent then has either the form Γ , ρ⇒ ∆

or ρ⇒ xRy, where Γ and ∆ are multi-sets of labelled formulas and ρ is
a multi-set of relational formulas. The second kind of sequent (relational
sequents) is only used to reason about the relational structure of the model
which is internally constructed. In Viganò’s sequent systems, the 2r rule
adds relational formulas to the sequents, while above 2l we need to give
reason that some relational formula can be derived. For these we then have
different possibilities according to the corresponding modal system’s frame
properties (which depend on the modal system) with additional rules. A cut
rule is not provided.

In [116] Negri presents similar rules without using relational sequents. In
this simplification, sequents have the form Γ ⇒ ∆ with Γ now containing
both labelled and relational formulas. In the following, we refer to Negri’s
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sequent calculi as G3Kl, G3KTl, and G3S4l. Several years before, Simpson
[135] introduced a labelled single-conclusion sequent calculus for IK with an
additional general rule that can be used to include different frame properties,
including reflexivity and transitivity.

Adding such labels to the syntax of formulas leads us to hybrid logics, for
which there are several sequent systems, e.g., proposed in [14, 17]. However,
hybrid logic is a topic of its own and we do not discuss it hereinafter.

Systems with labelled sequents are more flexible than the ordinary ones, as
one can cope with different frame properties using rules that are applied on
relational formulas. These rules can simply be added or removed to the basic
set, instead of replacing 2- and 3-rules as in ordinary sequents. Further, it
is possible to cope with modal logics like S5, for which there are only quite
complex or no adequate ordinary systems at all, in an easy way. As Negri
[116] states, all her rules are invertible, which is not the case for ordinary
systems.

2.2.5 Avoiding Explicit Relations

Hypersequents

Labelled systems as those we just considered, strongly rely on Kripke se-
mantics, which is seen as a problem by some authors.26 This is one of the
reasons why Avron [7] proposed a hypersequent system for S5. An earlier
approach was proposed in an abstract by Pottinger [124] for logics KT and
S4, where sequents consist of sequences instead of multi-sets.

Lahav [90] provides a method of how to transform frame properties to hy-
persequent rules, and thereby obtains calculi for a bunch of classical modal
logics, inter alia for K, KT and S4.

26A discussion on this topic can for example be found in [7], and Chapter 1.9 of [123].
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Nested Sequents

Another similar possibility to hide the relational Kripke structure is the usage
of nested sequents. These are often used as single-sided sequents, i.e., multi-
sets, that contain formulas and again other nested sequents. Due to this
structure, it is possible to map the frame of an underlying model without
the usage of labels or relational formulas.

Brünnler [19] provides a flexible system for the most common classical
modal logics, inter alia K, KT, S4, S5. . . , where every frame property has its
own rule. He states that for some combinations of frame properties his sys-
tem is not cut-free. Poggiolesi introduces independently the similar method
of tree-hypersequents for K, KD, K4, and KD4 [122], which she later extends for
all modal systems of the S5-cube (not cut-free for K5 and not complete for
KT5) [123].

Nested sequent systems for the intuitionistic modal logic IK with combina-
tions of the extensions D, T, B, 4, and 5 are presented by Straßburger [141]
and Marin and Straßburger [107]. All formulas of a single-sided nested
sequent either have an input polarity corresponding to left-hand formulas of
two-sided sequents, or an output polarity which can be seen as the right-hand
formula, of which there is only one in each sequent. So the system can be
considered as a single-conclusion calculus. It was later modified by Arisaka
et al. [6] for the logics of the CS5-cube.

An earlier approach for multi-modal CK, which can be interpreted as a spe-
cial case of nested sequents, is the multi-conclusion sequent calculus without
cut rule by Mendler and Scheele [112], based on the so-called 2-sequent cal-
culus by Masini [108]. Here, the antecedent and the succedent of a sequent
are departed into several sections, each representing another Kripke world.

Linear nested sequents for the classical modal logics of the S4-cube (S5-cube
without combinations of B or 5) plus combinations with 45 are provided by
Lellmann [92].
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Looking just one step ahead

It is worth to note Cerrato’s calculus [21] for all logics of the S5-cube, in
which formulas can be bracketed with [ ] and 〈 〉 to mark that all of them
([ ]) or one of them (〈 〉) is valid in a succeeding world. When all formulas
of a sequent are bracketed, further rules can then be used to move to there,
dropping all these brackets. Cut-elimination is only shown for the K-case.
A similar idea let Mendler and Scheele [111] introduce a calculus (without
cut-rule) for the constructive description logic cALC, a syntactic variant of
multi-modal CK.27

2.2.6 Focusing and Modal Logic

As for propositional intuitionistic logic and linear logic, there are also some
focusing attempts for modal logics.

Miller and Volpe [113] transform LKF (Section 2.1.5) to a single-sided fo-
cused sequent system LMF for logic K. They exploit the fact that modal
formulas can be translated to first-order formulas. The usage of this
standard translation has the side effect that negated relational atoms may oc-
cur in the sequents. Other (classical) modal systems can be obtained by
embedding rules which correspond to the frame properties [113].

Chaudhuri et al. present a focusing nested sequent calculus for the classical
modal logics of the S5-cube [25], as well as for the logics of the IS5-cube
[24] based on the calculus of [141]. Lellmann and Pimentel [94] provide a
focusing version of the linear nested sequents for classical modal logics [92]
mentioned above. However, I was not able to find a focusing calculus which
is based on ordinary modal sequent systems, the simplest kind of modal
sequent systems. Instead, those with focus found in literature make use

27The authors state that cALC is “related to” CK as the standard logic of description logic,
ALC, “is related to” K [111].
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of labels or nested sequents. Also, there is currently no focusing calculus
dealing with logics of the CK-family.

2.3 Lorenzen Dialogues as Proof Systems for Classical

and Intuitionistic Logic

It is now time to leave sequent systems and turn to dialogical games in
more detail. In this section we discuss dialogues which can be used as proof
systems for classical and intuitionistic logic. We consider several approaches
with different advantages and disadvantages. Some of them deal with first-
order logic, while others are restricted to propositional logic. The former is
of minor interest for this work, but these dialogues are the original ones and
also have some features which will be useful when we turn towards modal
logic in Section 2.4.

2.3.1 Preliminaries

Here, we only give informal definitions for dialogues to illustrate the idea of
the methodology and because in the literature the game rules are also often
defined informally. We do not want to prove validity or other properties
of the dialogical systems presented in this chapter. Later, when the multi-
proponent reasoning procedure is constructed in Chapters 3 and 4, we get
more concrete and formal. Different mathematical definitions for dialogues
and their rules can for example be found in [80, 47, 48, 143, 140].

Lorenzen first presented his ideas of dialogues in 1958 [100]. He argues
that using the logical connectives in a way that corresponds to some —as he
claims— natural meanings in a dialogue, leads to a proof system for intu-
itionistic logic [101]. At the beginning of a dialogue one of the two players,
the proponent P, states a hypothesis in terms of a formula. The other player
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who is called opponent O attacks this formula according to some predefined
rules. P may then defend against this attack with a new formula and the
game continues. Instead of defending, it is often also possible to counter-
attack a previous assertion of the attacking player.

A dialogical game or run is a sequence of moves, each performed by one
player. A move can be an attack, a defence, or the claim of the hypothesis.
Further, a move is either an assertion which is a formula of some language,
or a demand which we indicate with a question mark (?) and some additional
symbol specifying the type of attack.

An assertion stated by O is also called commitment or concession. Sometimes
we allow O to state one or more concessions before P claims the hypothesis.
These are called initial concessions and P can make use of them during the
game as if they were stated then.

A closed round as we consider it in this chapter for two-player dialogues,
consists of two moves, namely one attack and one defence against this at-
tack. A round in a game is open iff it consists of an attack but there is no
corresponding defence.

A p-strategy of a player p ∈ {O,P} is a function that defines the next move
of p in a given non-empty game. The move needs to comply with the game
rules. The strategy can therefore be seen as the player’s mind that leads him
through the game.

In general, a player wins a game, if the other one is not able to move any-
more. A p-strategy is a p-winning-strategy iff, when consecutively applied, it
makes p win the game, no matter what the other player’s moves are or will
be. So, if a player has a winning strategy, he is always capable to win the
game.

71



2 Sequent Systems and Dialogues

Assert A∧ B A∨ B A ⊃ B ¬A ∀xA ∃xA
Attack ?l ?r ?∨ A A ?t ?∃
Defence A B A B B — A[x/t] A[x/t]

Figure 2.17: Particle Rules for the First-Order Language based on [98]

2.3.2 D-Dialogues, E-Dialogues, and Ipse Dixisti for Validity

Lorenz [98] defined the game rules for systems we call (as Felscher [47])
D-dialogues in the following. He considers two separate sets: the particle
rules (allgemeine Spielregel28) define how to handle compound formulas local-
ly, while the structural rules (spezielle Spielregel29) concern the players’ asser-
tions globally [98], i.e., they define which player may move in which situation
and also when a game finishes and who the winner is.

Lorenz presents the particle rules for the first-order language in the form of
a table. Figure 2.17 shows the rules in a slightly modified notation to serve
our purpose. The letters A and B represent arbitrary first-order-formulas, x
is a variable and t is an object [98] or term [47, 48]. As before, we write A[x/t]
to express a substitution, where all occurrences of x in A are replaced by t.
The first line of the table shows possible assertions that can be stated by one
of the players. The second line defines how the other player can attack an
assertion of the form given in the first line, while the last line expresses how
to defend against the corresponding attack. The symbols ?∨, ?l, ?r, ?t, and ?∃

are the demands.

For example, if one player states a conjunction A∧B, then the other one can
attack it with one of the demands ?l or ?r, asking the first player to defend
either with the left or the right conjunct. The attacked player can then react

28German for general game rule. In [47, 48] the rules are named argumentation forms, in [10]
strip rules. We follow Lorenz’s later terminology and call them particle rules (German:
Partikelregeln) [99].

29German for special game rule. Also called Rahmenregel [99] (German: frame rule). We
follow Rahman and Keiff [127] and call them structural rules.
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to this with the defence by stating the corresponding part of the previous
assertion, i.e., with A or B respectively.

A disjunction A∨B can only be attacked with ?∨, while the defending player
may choose whether to defend with the left or the right disjunct. An impli-
cation A ⊃ B is attacked by stating the antecedent A and defended with the
consequent B. A negation ¬A is attacked directly due to the contrary state-
ment A. Such an attack cannot be defended. When a universal statement
∀xA is given, then the attacking player may choose an object/term t, which
must be used by the defender to give a concrete instance, i.e., by means of a
substitution of x with t. For the existential statement ∃xA the defender may
choose the object t for which he/she claims the assertion A.

In a variant of the particle rules, Felscher [47, 48] adds a player variable
to each statement indicating that the attacking and the defending player are
different and that the attacking player always attacks statements by the other
one.

D-Dialogues

When P is supposed to show general validity of his hypothesis, then the
following rule has to be obeyed (called characteristic rule, “charakteristische
Spielregel” [98]):

(D0) P may state a prime formula only if it was stated by O before.

Further, Lorenz proposes the following structural rules for intuitionistic dia-
logues (“effektive Spielregel”) [98]:30

(D1O) An assertion by P may be attacked once in any following move.

(D2P) An assertion by O may be attacked arbitrarily often in any following
move.

30As we do not rely on his terminology or definitions here, the rules are paraphrased to
simply give the main idea.
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(D3) A defence may take place once and only if all rounds after the corres-
ponding attack are closed.

Rule (D3) can also be seen as restriction, that players may only defend
against the last open attack, i.e., the last attack by the other player for which
there has been no defence yet [127]. As Felscher we call these rules D-rules
and dialogues obeying them D-dialogues (c.f. Felscher [47, 48]).

Also classical rules are presented, for which rule (D3) is replaced by the fol-
lowing [98]:

(D3O) O may defend an assertion only if all rounds after the corresponding
attack are closed.

(D3P) An assertion by P may be defended arbitrarily often in a following
move, once in an attack round if all rounds after the corresponding
attack are closed, or in any following defence round.

Here, attack rounds are the usual rounds consisting of an attack and a defence.
By contrast, a defence round consists of a single defence against an attack
which has already been defended before [98].

Later, Lorenz modifies the structural rules, making things more concrete.
He defines who is the winner of the game (the last one who can perform a
move), who begins, and so forth [99]. The particle rules are then included as
part of the structural rules. Lorenz also introduces ranks (Schranken) which
we discuss later in Section 2.3.4.

We have a look at a simple example which is often used in the literature
to show how dialogues work (first published in a similar way in [101]). It
shows that P does not have a winning strategy for the formula A ∨ ¬A

in intuitionistic dialogues. We assume that A is a propositional variable
and therefore a prime formula. Figure 2.18 shows a dialogue tableau for this
hypothesis. Different styles of such tableaux are proposed in the literature,
e.g., [101, 98, 10, 127]. Our variant is a table consisting of three columns. The
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O P

1 A∨ ¬A
2 [?, 1] ?∨ [!, 2] ¬A
3 [?, 2] A — —

Figure 2.18: The Excluded Middle in an intuitionistic dialogue

first contains the row numbers, the second moves performed by O, and the
last P’s moves. Each presented move (with the exception of the hypothesis)
consists of two parts. The right one is the player’s statement (assertion or
demand), the left one, written in square brackets [ ], indicates whether the
move is an attack (?) or a defence (!) and the row number to which the move
refers. For example [?, 1] in O’s move in row 2 means that it is an attack
against P’s move of row 1. P’s answer ¬A with [!, 2] means that it is a defence
against O’s attack which was performed in row 2.

The dialogue starts with P stating the hypothesis A ∨ ¬A in row 1. This is
attacked by O with the demand ?∨ which is in fact her only possibility to
react. P had the choice to defend with the left or the right disjunct, namely
A or ¬A. However, as he may only state prime formulas which were asserted
by O before (D0), A is not an option and therefore P must defend with ¬A.
O attacks this in row 3 stating the contradiction. P cannot defend against the
previous attack again (D3) and attacking prime formulas is also not possible.
Therefore, he has no possibility to move and loses. P has no winning strategy
which matches the fact that the law of the excluded middle is not valid in
intuitionistic logic.

If we replace the intuitionistic (D3) by the classical rules (D3P) and (D3O),
P may defend in row 3 against O’s attack of row 2 again. Now, as O stated A
in the meantime, P may defend with the left disjunct of the hypothesis A:

3 [?, 2] A [!, 2] A
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O cannot react to this as for her it is also not possible to attack prime formu-
las. We conclude that P has a winning strategy in the classical setting. Note
that from the argumentative perspective the intuitionistic structural rules are
more reasonable (c.f. [101]) as P should not have the right to withdraw a pre-
vious decision and make use of O’s commitments which she made because
of different assumptions.

It is quite clear that P and O have different rights and obligations and there-
fore the structural rules are asymmetric [98], whereas the particle rules are
the same for both players and therefore symmetric. Lorenz provides a proof
attempt that ought to show the equivalence of P-winning-strategies in games
obeying classical rules, and proofs in a classical sequent system31, i.e., he
tried to show for classical logic that if P has a winning strategy for some hy-
pothesis A, then there is a sequent derivation for ⇒ A, and vice versa. Such
a proof, provided that it is correct, would ensure soundness and complete-
ness of dialogues and make them usable as adequate calculus. However as
Kindt [80] points out, Lorenz’s proofs are only hints/indications, and some
of his claims are even wrong. There are other, different proof attempts con-
cerning D-dialogues with underlying first-order Logic, as well as variants
considering altered rules, e.g., [136, 80, 65, 109, 126, 127, 31]. However, these
are not important for our purposes as we go into another, more convenient
direction.

From D to E

In 1969 Lorenzen proposed a strong restriction for O in terms of the follow-
ing rule:

“The opponent may either attack the sentence asserted by the pro-
ponent in the preceding move or he may defend himself against
the attack of the proponent in the preceding move.”

(Lorenzen [102], p. 29)

31He defines an intermediate system between LK and G3
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This means that O always has to react immediately to P’s previous move.
Felscher calls this the E-rule. Adding it to the D-rules from above leads us
to the so-called E-dialogues [47, 48]. Felscher [47] shows that P-winning-
strategies in E-dialogues can be transformed to LJ-proofs and vice versa,
which corresponds to proving soundness and completeness of E-dialogues
as intuitionistic calculus. He also gives evidence that strategies in D-dialogues
can be transformed to strategies of E-dialogues which means that the E-rule
can be omitted without losing neither soundness nor completeness [47]. In
general, the E-rule is often used to restrict the number of possible moves in a
dialogue and to simplify the adequateness proof for dialogues as reasoning
procedure.

O’s Contradictions

Kamlah and Lorenzen [77] also discuss a variant of dialogues where the
characteristic rule (D0) is not implemented directly. P is simply not allowed
to attack prime formulas stated by O, however O may do it [77]. The new
winning rule (“Gewinnregel”) says that P wins if he has to defend a prime
formula O already stated before [77].

Barth and Krabbe [10] introduce the ipse dixisti! remark (“you said so your-
self!”) that allows P to win the game when O attacks a prime which is given
by herself.32 The authors also provide a rule that deals with uttered ⊥’s. The
absurdum dixisti remark (“you said something absurd!”) can be used to win the
game if the other player states a ⊥ [10].

Barth and Krabbe present in [10] a framework in terms of different sets of
structural rules. They also interpret P-winning-strategies as proofs in clas-
sical, intuitionistic and minimal logic, with variants of taking ⊥ into account

32First, the authors allow the ipse dixisti remark (hypothetically) for both players and also
for all kinds of assertions, i.e., also for compound formulas ([10], Def. 17, p. 68). But for
a dialogical game with P stating the only hypothesis, it makes sense to give only P the
right to use it ([10], p. 70). Finally, P may only use it when it refers to an atom ([10],
p. 142).
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O P

1 A∨ ¬A
2 [?, 1] ?∨ [!, 2] A
3 [?, 2] ?A [!, 2] ¬A
4 [?, 3] A [!, 3] !!

Figure 2.19: The law of the Excluded Middle with ipse dixisti

and not.33 Using their own rule set they state that the corresponding sys-
tems are equivalent to those by Lorenzen and Lorenz ([10], p.55), obviously
including the E-rule34.

Figure 2.19 shows a winning strategy for A ∨ ¬A in classical logic making
use of ipse dixisti. In this setting P is allowed to state A with his defence in
row 2. O may attack prime formulas now (only O may do so), asking P to
give reason for A. P then defends again against the previous attack (row 2)
defending with the right disjunct. As before, this is only possible in classical
dialectics, not in intuitionistic. O attacks with A. Answering to the attack
of row 3, where O asked P to explain A, P can now answer with you said so
yourself (ipse dixisti). We indicate this as !! and treat the move as a defence.35

O cannot react to this and loses the game.

The statement of ipse dixisti corresponds to the closure of a standard tableau
or the usage of the rule ax in a sequent system. Barth and Krabbe [10] also
introduced a sequent-style formalism for dialogical states which we consider
in the following section.

33They actually use the symbol Λ instead of ⊥ but with the same intended meaning.
34Indicated as rule “FD D7” in [10, Chapter 3]; see also remark in [48].
35Barth and Krabbe call the move a remark instead of a defence.
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2.3.3 Dialogue Sequents

According to Barth and Krabbe [10], a dialogue sequent is a tuple consisting of
six components36 (Π,Φ, T ,N,ϕ,Ψ), usually written in a more compact notion
as follows:

Π; [Φ]/T/Nϕ; [Ψ] .

• N indicates the player whose turn it is currently, i.e., N ∈ {P,O}.

• T is the current local thesis in intuitionistic dialogues, i.e., the last state-
ment by P which has been attacked but not yet been defended. For
classical dialogues, T is a set consisting of the current local thesis plus
all the previous local theses. The current local thesis can be empty,
indicated by ε.

• Π contains all of O’s concessions (assertions) in the current game/run.

• ϕ is either ε or the last assertion by P.

• Φ is a set consisting of the assertions O may state as defences.

• Ψ is a set consisting of the assertions P may state as defences.

We consider this dialogue sequent system with its rules the same way as the
systems of Section 2.1, i.e., we interpret Π, Φ, and Ψ as sets of formulas and
use the comma accordingly. Dialogues are therefore read from bottom to top.
The rules in Figure 2.20 are derived from the definitions and descriptions
for intuitionistic dialectics in [10, 85]. The resulting sequent-style system is
called CND, following the designation constructive-NOT dialectics in [10].

Every move in a dialogue corresponds to a transformation step from one
dialogue sequent to another one. A branching in a rule indicates two (or
more) possibilities of how to perform the move. Note that if we use this
calculus to show validity of a formula, we consider only one P-winning

36Some of the symbols Barth and Krabbe use are different but have the same meaning.
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O-moves: attacks

Π; [ ]/A∧ B/P ε; [A] Π; [ ]/A∧ B/P ε; [B]
O?∧

Π; [Φ]/T/O A∧ B; [Ψ]

Π; [ ]/A∨ B/P ε; [A,B]
O?∨

Π; [Φ]/T/O A∨ B; [Ψ]

A,Π; [ ]/A ⊃ B/P ε; [B]
O?⊃

Π; [Φ]/T/O A ⊃ B; [Ψ]

A,Π; [ ]/¬A/P ε; [ ]
O?¬

Π; [Φ]/T/O ¬A; [Ψ]

Π; [ ]/P/P ε; [ ]
Oa?

Π; [Φ]/T/O P; [Ψ]

P-moves: attacks

A∧ B,Π; [A]/T/O ϕ; [Ψ] A∧ B,Π; [B]/T/O ϕ; [Ψ]
P?∧

A∧ B,Π; [Φ]/T/P ϕ; [Ψ]

A∨ B,Π; [A,B]/T/O ϕ; [Ψ]
P?∨

A∨ B,Π; [Φ]/T/P ϕ; [Ψ]

¬A,Π; [ ]/T/O A; [Ψ]
P?¬

¬A,Π; [Φ]/T/P ϕ; [Ψ]

A ⊃ B,Π; [B]/T/O A; [Ψ]
P?⊃

A ⊃ B,Π; [Φ]/T/P ϕ; [Ψ]

P/O-moves: defences

A1, Γ ; [ ]/T/P ε; [Ψ] . . . An, Γ ; [ ]/T/P ε; [Ψ]
O!

Π; [A1, . . .An]/T/O ϕ; [Ψ]

Π; [ ]/ε/O A1; [ ] . . . Π; [ ]/ε/O An; [ ]
P!

Π; [Φ]/T/P ϕ; [A1, . . .An]

Ipse dixisti!
P,Π; [Φ]/P/P ϕ; [Ψ]

Figure 2.20: Rules of CND (adapted from [10])
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∅; [ ]/A/P ε; [ ]
O?a∅; [ ]/ε/O A; [ ]

A; [ ]/¬A/P ε; [ ]
O?¬∅; [ ]/ε/O ¬A; [ ]
P!∅; [ ]/A∨ ¬A/P ε; [A,¬A]

O?∨∅; [ ]/ε/O A∨ ¬A; [ ]

Figure 2.21: Excluded Middle in CND

strategy and therefore only one of the branches starting with P?∧ or P! needs
to be closed, i.e., end with the ipse dixisti remark.

The E-rule is implemented due to emptying [Φ] after O performs an attack
or a defence. Thereby ϕ always becomes ε when O defends. Both features
together force O to react to P’s last move every time.

Figure 2.21 shows a complete CND-tree with all possible strategies for the
hypothesis A∨ ¬A. It makes clear that P has no possibility to win and
therefore no winning strategy. The dialogue starts with A∨ ¬A as P’s last
assertion (ϕ). It is O’s turn who attacks it (O?∨). The formula becomes the
local thesis. P’s possibilities to defend are put into the square brackets on
the right side. When he defends, he may choose one of these and assert it
(ϕ). We consider both strategies: in the left branch he defends with A and
in the right one with ¬A.

• In the left branch O attacks the atom A (O?a) making it the current local
thesis. P has no possibility to react to this as there is no corresponding
rule and there is no concession by O which can be attacked or otherwise
made use of. P loses this branch/game.

• In the right branch O attacks the negation ¬A (O?¬) which also makes
it become the current local thesis. A is added to O’s concessions on the
left side of the sequent. However, there is nothing to defend for P and
as he may not attack prime formulas he loses this branch/game as well.

Barth and Krabbe also provide mechanical procedures of how to transform
dialogues to other calculi, which serves as a proof for a soundness theorem.
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O P

1 ¬¬(A∨ ¬A)
2 [?, 1] ¬(A∨ ¬A) [?, 2] A∨ ¬A
3 [?, 2] ?∨ [!, 3] ¬A
4 [?, 3] A [?, 2] A∨ ¬A
5 [?, 4] ?∨ [!, 5] A

Figure 2.22: Repetition in an intuitionistic dialogue

Completeness is shown in a similar way [10]. The system is extended for
first-order logic in Krabbe’s doctoral thesis [83]. Proofs are only sketched
there.

2.3.4 Termination

A problem regarding dialogical proof search occurs with respect to termi-
nation. The rules we have considered so far might force O to react only to
P’s last move (E-rule) which does not allow her to attack earlier statements
again and again. However, for P we do not have this restriction, and if we
introduced it, it would not lead to a complete deductive dialogical proof
system.

For example, if O states a conjunction A ∧ B, then P must have the right to
ask for both conjuncts with two separate moves. In intuitionistic dialogues
it is even necessary that P is allowed to attack the same implication or neg-
ation more than once. The problem is the same as for intuitionistic sequent
systems where we need the duplication (see Chapter 2.1.2). It gets even worse
when ∀ and ∃ are allowed as connectives, because in certain cases, P needs
to be able to instantiate the quantified formulas with different terms.
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Figure 2.22 shows an intuitionistic E-dialogue.37 Here, P attacks O’s state-
ment of row 2 twice: once in row 2 and once in row 4. Only because of
this repetition it is possible for him to win. Note that the ability of attacking
negations (and implication) more often than once corresponds to the duplic-
ation in rules ¬l and ⊃l of G3i.38 In the literature, there are two different
approaches to cope with this issue: ranks and structural preventing rules.

Ranks

Lorenz introduces the idea of attack ranks (Angriffsschranken) in [99]. Instead
of using the E-rule, he proposes that before the actual dialogue starts, each
player announces one rank in terms of natural numbers n andm. During the
dialogue, they are not allowed to attack the same statement more often than
n or m times respectively. This new rule replaces (D1O) and (D2P) of the
D-dialogues explained above in Section 2.3.2. If the players may only defend
against the last open attack, this measure should guarantee termination.

Clerbout, considering only classical first-order logic, does not distinguish
attacking or defending ranks, but instead speaks of repetition ranks [31]. Of
course, this cannot be done in intuitionistic dialogues, where the repetition
rank for defences must be fixed to one (no repetition). Clerbout also provides
procedures to translate his ranked dialogues for classical first-order logic to
tableaux and vice versa. These serve as proofs for soundness and complete-
ness.

In general, ranks can be seen as an elegant game-theoretic way to tackle non-
termination. However, for proof-searching purposes, they are probably not
the best choice, as many different repetition ranks might have to be taken
into account, and it is probably hard to say beforehand which are the right

37Allowing P to state primes before O did does not change the problem. The repetition is
still necessary.

38More on the relation between repetitions in dialogues and duplication in sequent systems
follows in Chapter 3.
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O P

1 ((P ⊃ Q) ⊃ P) ⊃ P
2 [?, 1] (P ⊃ Q) ⊃ P [!, 2] P
3 [?, 2] ?P [?, 2] P ⊃ Q
4 [?, 3] P [!, 4] Q
5 [?, 4] ?Q [?, 2] P ⊃ Q
6 [?, 5] P — —

Figure 2.23: Termination with F-Rules

ones to ensure that validity of a given formula cannot be proven in terms of
a P-winning-strategy.

Structural Preventing Rules

Krabbe [83] also suggests ranks in his outlook on first-order logic. However,
for propositional logic, he and Barth propose some informal structural rules
which are not implemented in their sequent system [10]. We call them F-rules
which are defined as follows:39

(F1) If a player can perform a counter-attack, he/she may not attack the
same statement by the other player again in the same manner, unless
the current local thesis changed in the meantime.

(F2) After O attacks a statement by P, P may not repeat a previous assertion
which was already attacked by O, unless in the meantime O made a
new concession she has not made before.

Attacking in “the same manner” means that the very same demand symbols
are used. For example ?l and ?r are different manners of attacking one
conjunction. Figure 2.23 shows an E-dialogue that obeys the F-rules and
with P being allowed to state atoms anytime. As hypothesis we use Peirce’s

39Paraphrased from [10, pp. 81, 85] as we use a different terminology. The names (F1) and
(F2) are chosen here to distinguish the rules from the D-rules and the E-rule.
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Law again. In row 5, P repeats the attack against O’s commitment of line 2.
He may not repeat it a second time in line 6 because it would be a counter-
attack while the local thesis has not changed (it is still P ⊃ Q) (F1). He may
also not defend with Q, because he already stated it in row 4 and O has not
made a new concession since then (F2). Therefore P is not able to move and
loses.

Barth and Krabbe show that in their dialogical system (i.e., with ipse
dixsiti), these rules together with the E-rule guarantee termination. Another
attempt to enforce finite games is a rule proposed by Rahman and Keiff. For
intuitionistic dialogues it says that P may only repeat a move (in the same
manner) after O introduces a new prime formula P can then make use of
[127].40 However, neither soundness nor completeness proofs are provided,
nor a proof which shows that termination is actually guaranteed.

2.3.5 Multi-Proponent Dialogues (Forking and Merging)

Fermüller and Ciabattoni [51] propose multi-proponent dialogues to cope
with intuitionistic and the intermediate Gödel-Dummett Logic. The approach
was later extended by Fermüller [49] for further intermediate logics. In the
following, we refer to these kinds of dialogues as multi-proponent dialectics
with forking and merging (MPDFM). They correspond to hyper-sequent sys-
tems. For intuitionistic logic, the appropriate sequent system is HLI’ [49]
(Section 2.1.6). The structural rules contain the E-rule. The proponent may
state prime formulas and wins either with ipse dixisti or absurdum dixisti.

The idea is that instead of one P, we can now have an army of P’s that
fights against O in a parallel way. Before performing an attack or a defence,
which are called internal moves, a single P may do an external move: with a
fork move, any proponent can duplicate himself at any time before an own
attack or defence. Each of these P’s then performs his own move towards

40Note that their dialogues do not allow ipse dixisti remarks and therefore P may only state
prime formulas when O committed herself to them before.
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O. When it is O’s turn, she has to react to all of the proponents’ previous
attacks and defences separately. O’s concessions towards the various P’s are
individual, i.e., if O states a formula A towards some agent Pi, then this
is invisible for all the other proponents Pk, so they cannot make use of it
[51, 49].

Another external move available to the proponents is cancel which removes
a P-player from the game [51]. Depending on the logic, the proponents have
also the ability to merge again. This means that they can communicate and
share the information O has provided towards them in terms of commit-
ments. Several proponents are thereby merged to one, collecting all of O’s
commitments towards the individual proponents [51, 49].

In intuitionistic MPDFM-dialogues merging is not allowed. In classical dia-
logues, two proponents may merge iff one of them stated ⊥. For other
intermediate logics there are other merging conditions [49].

To represent a dialogue state, Fermüller and Ciabattoni use sets of single-
conclusion sequents, called components, each representing a parallel game
with a different proponent.

{Π1 `1 C1, . . . ,Πn `n Cn }

Here, Πi contains all of O’s concessions towards Pi, and Ci is the last assertion
made by Pi. However, this is not enough to represent parallel game states,
so a state machine is introduced that indicates whose turn it is and what the
possibilities for the players are to move [51, 49]. A state of such a machine
must be assigned to each component of the sequent.

Note that the fork move corresponds to rule EC , cancel to EW , and classical
merge to rule CL of HLI’ [49]. Fermüller and Ciabattoni translate P-winning-
strategies to proofs in HLI’ and vice versa, to show soundness and complete-
ness of the multi-proponent dialogical systems with respect to the different

86



2.3 Lorenzen Dialogues as Proof Systems for Classical and Intuitionistic Logic

intermediate logics, including intuitionistic and classical propositional logic
[51, 49].

To summarise: in the dialogical setting proposed by Fermüller and
Ciabattoni, parallel games are considered. A proponent may fork arbitrar-
ily before performing an internal move. O’s concessions are not global, but
instead made only towards individual P’s. Instead of the dialogical sequent
system by Barth and Krabbe [10], the system presented here is closer to
a usual sequent system for which soundness and completeness are shown
(HLI’), but the MPDFM-sequents are not capable to represent complete dia-
logical states.

2.3.6 Material Dialogues and Hintikka Games

In material dialogues the proponent does not want to show general validity
for a given formula. Instead, a model is given in which a truth value is as-
signed to each propositional variable. Material dialogues were first presen-
ted by Lorenz [99] as relative Dialogspiele,41 and later also discussed extens-
ively by Krabbe [82, 83] and Barth and Krabbe [10]. Dialogue sequents (see
Section 2.3.3) for material dialogues are also provided in [10].

Note that material dialogues correspond to Hintikka games [70] with the
difference that in the dialogues, the players still take turn one after another,
while in Hintikka games the parties may move in a more jumbled way. A
detailed, rather philosophically oriented comparison between dialogues and
Hintikka games can be found in [131].

Although both material dialogues and Hintikka games are interesting topics
of their own, we do not consider them further, as we restrict ourselves to
dialogues we can use to prove general validity of formulas.

41literal translation: relative dialogue games
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Assert 2A
Attack ?2
Defence A

Figure 2.24: Particle Rule for modal logic (c.f. [102])

2.4 Lorenzen Dialogues as Proof Systems for Modal

Logic

2.4.1 Ordinary Modal Dialogues

Also for modal logics, several dialogical attempts have been proposed. We
first look at a type of dialogues we call ordinary. They are named this way
as they come along without designated contexts (like ordinary sequent sys-
tems) and with only the two usual players.

Early Attempts

The earliest dialogical approach dealing with modalities comes from Loren-
zen himself. He proposes a very simple particle rule [102] (Figure 2.24). As
structural rule he introduces the following defence rule:

“If the proponent defends a ∆-formula he may attack only the ∆-
formulae (the beginning ∆ deleted) put by the opponent before-
hand.”

(Lorenzen [102], p. 64)

Note that Lorenzen uses the symbol ∆ instead of 2 but with the same inten-
ded meaning.

According to Krabbe [83], the structural rule can be interpreted in a fallible
way. As example he states that P cannot defend 2A when O’s initial con-
cession is B ∧ 2A. Actually it is not completely clear what Lorenzen meant
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with his structural rule. It could also mean that after P defends against a
2-attack, he may only counter-attack O’s 2-formulas after his defence. Then
P would have a winning strategy for Krabbe’s example. However, if P’s de-
fence requires that only 2-formulas may be attacked by P, then this would
not allow him to attack the conjunction at all (see also [83], pp. 207, 208).

Lorenzen does not provide any proofs that his idea for modal dialogues
leads to sound or complete reasoning procedures. More on his work on
modal dialectics is summarised in Krabbe’s dissertation [83]. Here, we only
discuss the part which is relevant when we consider dialogues as reasoning
procedures.

Strict Commitments and Withdrawals

Krabbe [83, 86] suggests a different interpretation of the 2 than the usual
necessarily or obligatory. Instead, he introduces strictness levels. Each state-
ment can be assigned to a strictness class. These are related due to a strict
partial ordering indicating which assertions are stricter than others. An in-
dex i ∈ I is used to extend the modal operator and indicate the strictness
class. For simplification we assume that I is the set of natural numbers N
and that the class of i is stricter than the class of j iff i > j. The statements
then have the form 2i ϕ, where i ∈ N and ϕ is an arbitrary formula which
may again contain other boxes with indexes. If i = 0, 2i can be omitted [83],
i.e., 20 ϕ ≡ ϕ.

Krabbe’s idea is that O can withdraw earlier, weaker commitments whenever
P defends against a 2i -attack. The particle rule for 2i is the same as
Lorenzen’s (Figure 2.24), if we replace 2 by 2i . The structural rule is then as
follows:42

42As Krabbe uses a different terminology, the formulation is slightly adjusted.
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If P defends against an attack on 2i V with V , then “O shall have
a right to assume the neutral position to any or all concessions
that are not of the form 2j W”, where i 6 j, “immediately before
O attacks V .” (Krabbe [83], p. 224)

This means that if P’s statement starting with 2i was attacked and he de-
fends, then O can withdraw earlier concessions which are less strict than i.
These statements cannot be used by P for attacks or defences anymore, e.g.,
atoms which were available to perform an ipse-dixisti-move before can now
be withdrawn if they have not at least the same strictness level as i. Note
that the rules are placed on top of the system by Barth and Krabbe [10] and
that P may therefore state atoms which have not been stated by O before.

Here is a simple example:

O P

1 A ⊃21 A
2 [?, 1] A [!, 2] 21 A

3 [?, 2] ?2 [!, 3] A

So far, everything seems to be fine for P. Nevertheless, he has not yet won, as
in these rules O may attack prime formulas which P has to defend with ipse
dixisti. Further, as he has just defended against a 2i -attack, O may withdraw
all commitments with strictness level 0, namely the A of row 2. We indicate
the withdrawal by crossing out the concerned concession.

O P

1 A ⊃21 A
2 [?, 1] ��A [!, 2] 21 A

3 [?, 2] ?2 [!, 3] A

4 [?, 3] ?A — —

Now P cannot make use of this commitment and loses.
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Krabbe also provides an axiomatic system for the underlying logic [83]:

1. 2i (φ ⊃ ψ) ⊃ (2i φ ⊃2i ψ) (for each i ∈ N)
2. 2i φ ⊃2j φ (for each i, j ∈ N such that j < i)
3. 2i φ ⊃ φ (for each i ∈ N)
4. 2i φ ⊃2i 2i φ (for each i ∈ N)

Besides the deduction rule of modus ponens, the rule of necessitation is also
valid:

φ
Nec

2i φ

It is quite clear that we have here a multi-modal variant of S4. If we set I =
{0, 1}, we actually obtain the axioms of S4 [83]. A proof that shows adequacy
of the dialogical system with respect to the axiomatic system is sketched in
[86, 83]. Concerning termination, Krabbe also proposes an alternative variant
of rule (F2) (see p. 84):43

(F2S4)

a) After O attacks a statement by P, P may not repeat a previous as-
sertion which was already attacked by O, unless in the meantime
O made a new concession (not yet withdrawn) she has not made
before.

b) After P defended against an attack on 2i φ stating φ, he may not
defend with φ with the same particle rule again, unless O stated a
new, not yet withdrawn commitment 2j ψ such that i 6 j.

Krabbe also states that his system is suitable for intuitionistic dialectics [83].
However, note that there is no particle rule for the 3-operator (or an ad-
equate replacement). Therefore, as 3 can only be defined in terms of 2, the
present dialogical system in the current form cannot be used for IS4 or CS4.

43Paraphrased from [86, pp. 198, 199] as we use a different terminology.
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2.4.2 Multi-Opponent Dialogues

Multi-opponent dialogues were presented by Van Dun already in 1972 [144].
He suggests a coalition of opponents fighting one proponent. At the start of
a dialogue, P states his thesis as usual and a single opponent (his commu-
nication partner) can attack. P has to defend towards her. However, he could
have strengthened his hypothesis with a 2.

“[The] proponent may wish to strengthen his claim by inviting his
opponent to call in the help of a coalition-partner or co-player. If
he wishes to defend the formula a in this way, he can make his
intentions clear by prefixing the symbol L to the formula.”

(Van Dun [144], p. 126)

Note that Van Dun uses the letter L for 2. So when P states an assertion 2φ,
the opponent can delegate her problem to a coalition partner, i.e., another op-
ponent towards whom P has to defend with φ, changing P’s communication
partner. Van Dun gives a rather philosophical justification for his approach.

“[C]ommitment is usually the result of moral, contractual or even
legal obligations. Indeed, most of the time one is not committing
oneself — one is simply committed.” (Van Dun [144], p. 124)

The special thing is that every O-player is bound to her own commitments,
i.e., if one opponent O1 commits herself to an atom A, but another opponent
O2 does not, P cannot make use of the A when he is currently talking to O2.
The reason is that O2 could argue that he never claimed A and that she is
not responsible for O1’s concessions.

Roughly spoken, P’s communication partner is changed whenever any play-
er defends a 2 or a 3. However, a modal assertion by P has another semantic
meaning than a modal assertion by an O-agent.
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• If P states a modal assertion, the meaning can be interpreted as follows:

2φ I can give reason for φ towards all of your coalition partners.
You choose!

3φ I can give reason for φ towards at least one of your coalition partners.
I choose!

• If O states a modal assertion, the meaning can be interpreted as follows:

2φ All of my coalition partners are ready to commit themselves to φ.
You choose!

3φ At least one of my coalition partners is ready to commit herself to φ.
I choose!

So the player who attacks a 2 may choose P’s communication partner. For
the 3, the defender may choose P’s communication partner. Van Dun intro-
duces two particle rules for the 2 and two for the 3, i.e., the opponents use
other particle rules than the proponent. This asymmetry in particle rules is
an exception among dialogical systems.

Opponents are related due to a coalition relation which is usually reflexive.
New opponents are introduced by any of the present O-players who attacks a
2 or defends a 3. Then the freshly introduced opponent player is a coalition
partner of the one who called her in, so their connection is recorded in
the coalition relation. Note that the relation is not necessarily symmetric
which means that if O1 is a coalition partner of O2 it does not need to be the
case that O2 is also a coalition partner of O1. When P wants to change his
communication partner, he may only choose one who was introduced before
and who is a coalition partner of his current communication partner [144].

Actually, the opponents correspond to Kripke worlds and the coalition re-
lation to a frame structure which is reflexive.44 It is also possible to enforce

44Philosophically, it does not make sense that a player is not a coalition partner of herself
[144].
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that the coalition relation is transitive and symmetric which leads to modal
systems that seem to correspond to S4 and S5 [144]. However, Van Dun does
not prove that these dialogues implement a sound and complete reasoning
procedure for a formally defined modal logic.

2.4.3 Dialogue Contexts

The last type of modal dialectics we consider here are the two-player games
dealing with dialogue contexts. The idea can be traced back to an article
by Inhetveen [76] where the author presents early-stage work by Marijan
Marčinko who introduced dialogue levels45. Each assertion of a dialogue is
assigned to such a level.

Rückert and Rahman [130] later proposed the idea of dialogue contexts46

which are, from the technical point of view, more or less the same. The rules
are based on the D-dialogue setting by Lorenz. The contexts of the dialogues
are nested, i.e., any context has an arbitrary number of context successors.

At the beginning of a dialogue, P states his hypothesis in an initial context.
Attacks and defences happen in this context as long as only propositional
connectives are involved. If O attacks a 2 she may ask explicitly for another
context in which P has to defend. Thereby, O can introduce a new context
which is then a successor of the current one. If she attacks a 3, P may defend
in any existing context which is a successor. However, P may only defend
in contexts which were introduced by O before. When P attacks a 2 he may
decide accordingly in which O must defend. When P attacks a 3, O may
defend in any successor context and thereby introduce a new one [130].

By contrast to Van Dun’s approach, the particle rules are symmetric, i.e.,
they are the same for both players. Only O may introduce new contexts
which is defined due to a structural rule. The authors also propose different

45translated from German “Dialogebenen”
46translated from German “Dialogkontexte”
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levels of rights for P defining which contexts he may select when defending
a 3 or attacking a 2, e.g., a rule is proposed that allows P to stay in the
current context instead of changing it, or to select a context which is not a
direct successor, but instead the successor of a successor. The authors claim
that reasoning procedures for various classical modal systems, such as K, T,
B, S4, and S5, are obtained in this way.

From the proof-theoretic view, contexts are nothing else than Kripke worlds,
again connected in a frame structure which is constructed depending on the
underlying structural rules. So it sounds quite natural that the correspond-
ing modal systems are implemented in this way. However, like Lorenzen
and Van Dun, the authors do not provide any adequateness proofs.

In [29] Clerbout combines ranks47 with the approach by Rückert and
Rahman to guarantee termination. In his PhD thesis [30], he provides an
algorithm for transforming P-winning-strategies to tableau proofs and vice
versa, which serves as an adequateness proof regarding the modal systems
K and S5.

Rebuschi [129] claims that using Lorenz’s rules for intuitionistic logic instead
of classical logic within the setting by Rückert and Rahman might lead to a
dialogical reasoning system for IK. He also presents some examples but no
actual proof.

Another approach based on the work by Rückert and Rahman is a dialogical
system for the constructive description logic cALC, where the nesting of
the contexts is adjusted so that it corresponds to the Kripke semantics of
constructive modal logic. It is presented in my diploma thesis [137], but
does not contain adequateness proofs either. I improved the work later:
instead of considering all refinements in the Kripke structure as individual
contexts, the constructiveness can also be obtained by restricting P’s possible
moves [140].

47See Section 2.3.4 for details on ranks.
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2.5 Sequents and Dialogues – Common Features and

Differences

Lorenz [99] says that the usual calculi can be seen as monologues where one
player/agent tries to show validity of some formula applying different rules
step by step.48 However, it is quite obvious that sequent systems and dia-
logical games share many similarities concerning proof theory.

Considering a sequent Γ ⇒ ∆, Γ corresponds to concessions by O and ∆ to
the hypothesis/assertions by P. The relation becomes more obvious when
we look at the single-conclusion sequent calculus for intuitionistic logic, G3i

(rules on page 33). Here, ∆ contains at most one formula. This again can be
associated with the structural rule (D3) that allows P to defend only against
the last open attack, i.e., the attack on the statement that thereby becomes
the current local thesis as it is called by Barth and Krabbe [10], whereas in
classical dialogues he may defend against an earlier attack more often. P’s
decisions actually have an influence on the local thesis. For example, if A∨B

was stated by P and O attacks this, then P can defend with A or with B. The
other formula is lost as P may not repeat this defence. Therefore, the decision
might be highly significant for winning or losing the dialogue. Rule ∨r of
G3i is interpreted similarly when read from bottom to top:

Γ ⇒ A
∨r

Γ ⇒ A∨ B
Γ ⇒ B

∨r
Γ ⇒ A∨ B

In both cases, one disjunct is dropped and the information that it was present
is lost as well. Accordingly, once P decided to defend with B, he cannot
change his mind later and state A.

Barth and Krabbe also connect dialogues to sequents by introducing their
dialogical sequent systems that implement the rules directly. However, their
sequent structure is different to usual Gentzen sequents. Fermüller and
Ciabattoni make the relation between MPDFM-dialectics and hypersequents
48He calls such calculi entartete Dialoge, which literally means degenerated dialogues.
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explicit and use it to prove soundness and completeness of their dialogical
calculus. A cut rule for dialogues was proposed by Lorenz [99], the ap-
plication of this however cannot be eliminated [80]. The composition of
dialogues, which correspond to the application of a cut rule in a sequent
system, is investigated by Alama [2].

A big difference between (ordinary) sequent systems and dialogues is that
the latter have some scheduling mechanism which occurs due to the sub-
sequent moves performed by the parties. In particular, the restrictions con-
cerning repetitions, which are fixed in the structural rules, put a limit on
the possible moves. In ordinary sequent systems, rules can be applied on
the different formulas in any order in a more arbitrary way. However, in
this chapter we saw some exceptions, e.g., sequent systems that guarantee
termination of the proof search or the sequent systems with focus which
enforce a normalization of the proofs. In fact, Herbelin shows in his PhD-
thesis [67] that proofs of his sequent system LJQ (Section 2.1.5) correspond
to P-winning-strategies in E-dialogues, for the fragment of intuitionistic lo-
gic not containing disjunction. To include the ∨-operator, he also introduced
another variant of LJQ he calls LJQ* which is however different to the LJQ*
we considered in Section 2.1.5.

Anyway, the scheduling in D- and E-dialogues is limited as the players are
very free in their choices. Although they take turn one after another, P has
many possibilities (in D-dialogues O as well), as he can perform attacks on
all non-atomic commitments stated by O. Intuitionistic dialectics are usually
related to single-conclusion sequent systems, while multi-conclusion variants
are rather relevant for classical logics. In these classical dialectics, P has even
more possibilities to perform moves as the defence restriction is lifted. On
the other hand, for intuitionistic logic, multi-conclusion sequent calculi are
seen as the better alternative when searching for a proof (e.g., c.f. [44]) as
crucial decisions are postponed.

In the following, we investigate a method to restrict P further in his possi-
bilities to perform moves, but take advantage of multi-conclusion calculi for
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intuitionistic logic. The result is a multi-proponent approach of intuition-
istic and modal dialogical logic. In these systems scheduling becomes more
essential than in the dialectics presented so far.
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Intuitionistic Logic

In this chapter we introduce1 an approach of dialogical games for intuition-
istic propositional logic (IPL), which we call multi-proponent intuitionistic dia-
lectics (MPID for short). These dialogues shall be used for proof searches
in IPL. Like the dialectics presented in Chapter 2.3.5, we have not only one
opponent and one proponent as players, but instead a syndicate of proponent-
agents fighting one opponent. However, this system has many differences
to the one by Fermüller and Ciabattoni, that are discussed in detail in Sec-
tion 3.4.

In the following, we first consider the game rules for MPID and a variant
which enforces termination. Afterwards, in 3.2, we have a look at the dialo-
gical sequent-style systems DiaSeqI and DiaSeqI+ which implement these
game rules in a concrete way and which are used to prove soundness and
completeness of the dialogues when used as reasoning procedures for IPL.
These proofs are presented and explained in Section 3.3. At the end, we com-
pare DiaSeqI and DiaSeqI+ with sequent calculi and dialogical approaches
presented in Chapter 2.

1I already introduced parts (MPID and DiaSeqI) of this chapter in [138, 139]. The
proofs presented here go into more detail and adequateness of the terminating variant
(DiaSeqI+) is shown for the first time.
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Assert A∧ B A∨ B A ⊃ B ¬A ⊥ P
Attack ?L ?R ?∨ A A ?⊥ ?P
Defence A B A B B — — !!

Figure 3.1: Particle Rules for the propositional language based on [98, 10]
(c.f. [138, 139])

3.1 Game Rules

3.1.1 Without Termination Guarantee

As it is usually the case for dialogues, we distinguish two sets of game rules,
namely the particle rules and the structural rules (see Chapter 2.3.2 for details).

Our particle rules are actually the same of Figure 2.17 (p. 72), but without
those for the quantifiers ∀ and ∃, because we consider only propositional
logic here. Additionally, as we let the proponents state atoms and O attack
these (just like Barth and Krabbe [10]), we need a particle rule for prime
formulas as well. We also consider an extra rule for ⊥. Note that the ¬-rule
is then actually redundant, because ¬A ≡ A ⊃ ⊥, but nevertheless we offer
both options for historical reasons. The particle rules are displayed in Figure
3.1. We write P for an arbitrary prime formula and A and B for propositional
formulas. Double exclamation marks (!!) represent the ipse dixisti remark. We
do not have an absurdum dixisti but instead there is simply no possibility to
defend against a ⊥-attack.

We consider two parties. On the one hand, we have the single opponent O,
on the other hand the P-agents Propos =df {Pi | i ∈ N}.

The structural rules for MPID are as follows [139]:

I1 At the beginning of a dialogue, O states initial concessions and a single
P-agent states the hypothesis.
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I2 A round consists of a sequence of moves by O, followed by moves of all
active P-agents. A dialogue run is a sequence of such rounds. The first
round starts after the assertion of the hypothesis.

I3 If possible, all players are obliged to perform moves. A P-agent may
postpone a move until succeeding rounds if he is forced to react to a
critical attack (see rule I6), but commitments by O made with the crit-
ical attack are only conceded as soon as the critically attacked agent
reacts. Whenever a P-agent has several possibilities of how to react to
an O-move, new P-agents are introduced to take out these remaining
possibilities.

I4 A dialogue is won by the proponents iff the opponent cannot react to all
of the proponents’ moves of the previous round. The opponent wins iff
no P-agent can react to any of O’s statement of the same round (either
with an attack or a defence).

I5 Only O is allowed to attack prime formulas. P-agents may defend against
these attacks only if O has stated the prime formula herself towards a
P-agent who is not deactivated in the same round.

I6 Attacks on negations and implications are considered to be critical at-
tacks. Other attacks are non-critical.

I7 Whenever a P-agent reacts to a critical attack, all other active proponent
agents are immediately deactivated, i.e., they may not perform defences
or counter-attacks.

I8 A P-agent may repeat critical attacks on the same assertion only after
any P-agent reacted to a critical attack performed by O. Other repeti-
tions are not allowed.

Rules I6 to I8 are significant for intuitionism. I6 and I7 (in combination with
I3) put the necessary restrictions on the proponents which correspond to
the non-invertible rules (⊃r and ¬r) of multi-conclusion sequent calculi like
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O P0 P1 P2

1 (A∧ B) ⊃ (A ⊃ B)
2 [?, 1]0 A∧ B [!, 2] A ⊃ B [?, 2] ?l [?, 2] ?r

3 [?, 2]0 A [!, 3] B
[!, 2]1 A — —
[!, 2]2 B — —

4 [?, 3]0 ?B [!, 4] !! — — — —

Figure 3.2: A simple MPID-example

G3i
m. Rule I8 allows the P’s to repeat attacks on implications and negations

which correspond to the duplication rules (⊃l and ¬l) that are however
restricted here as well, as these repetitions may only be performed after a
P-agent reacted to a critical attack. Note that rule I6 refers to specific connec-
tives, namely ⊃ and ¬. This is quite unusual, as in the literature, structural
rules are normally independent of the particle rules and are therefore not to
be related to specific logical operators. However, we give up this convention
to ensure higher flexibility of our dialogical system. Later, we will change
the set of critical moves and thereby generate other dialectics for other logics.

The dialogical tableau of the first example is shown in Figure 3.2. In the
first row the initial proponent P0 states the hypothesis (A∧ B) ⊃ (A ⊃ B).
In row 2, O attacks this assertion (the 0 attached to the brackets is the pro-
ponent number O refers to). With her attack she states the antecedent of the
hypothesis. P0 can now either defend with the consequent or counter-attack
O’s commitment. He defends with the antecedent but calls in the new agents
P1 and P2 to perform the counter-attacks. There are two of these. One agent
asks for the left conjunct of O’s concession, the other one asks for the right
one. In the next round, O has to react to all of the proponents’ moves. She
attacks P0’s implication and defends against the attacks of P1 and P2 stating
the conjuncts towards them. P0 reacts with a defence stating the consequent
B. He is not allowed to counter-attack A, as only O may attack primes. That
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O P0 P1

1 A∨ ¬A

2 [?, 1]0 ?∨ [!, 2] A [!, 2] ¬A

3 [?, 2]0 ?A — —
[?, 2]1 A — —

Figure 3.3: The Excluded Middle in MPID

is also the reason why P1 and P2 cannot move now and miss that turn.2 In
the last round, O attacks P0’s B who answers that O stated it herself (towards
P2) which is enough to win the game, as O cannot react to this.

The second example (Figure 3.3) concerns again the law of the excluded
middle which is not valid in intuitionistic logic. The first attack by O is
defended by P0 with the left and by P1 with the right disjunct. Then O

attacks both in row 3. The attack against ¬A is critical. This means that if
P1 reacts to this, P0 is deactivated. On the other hand, O’s concession of A
towards P1 is not conceded until the agent reacts to this which means that
P0 cannot make use of it to perform an ipse dixisti defence. Also P1 cannot
react, as it is not possible for him to attack primes and the particle rules also
do not allow defences against ¬-attacks. No proponent is able to move and
therefore the opponent wins.

3.1.2 With Termination Guarantee

Rule I8 is not sufficient to guarantee termination in the intuitionistic case.
With Peirce’s Law we have again a counter-example.

Now we have a look at the sequent calculus IGr again (Chapter 2.1.4) which
fulfils our requirements. As the restrictions of a regular derivation are exactly

2Note that they are actually deactivated, but as they are not to defend or counter-attack,
this has actually no influence on them. They simply cannot move, because they are not
allowed to attack prime formulas.
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O P0 P1 P2

1 ((P ⊃ Q) ⊃ P) ⊃ P
2 [?, 1]0 (P ⊃ Q) ⊃ P [!, 2] P [?, 2] P ⊃ Q
3 [?, 2]0 ?P — %

[?, 2]1 P [!, 3] Q [?, 2] P ⊃ Q
4 [?, 3]1 ?Q — %

[?, 3]2 P [!, 4] Q

5 [?, 4]2 ?Q — —

Figure 3.4: Peirce’s Law in MPID with termination

what we need, we simply have to implement these in terms of a structural
rule. It would be rather hard to transfer G4i instead of IGr into the dialo-
gical setting because of the lack of the subformula property. Further, G4i is
a single-conclusion calculus, whereas IG has the multi-conclusion property
which fits better to the multi-proponent idea (as we will see later). The re-
strictions of IGr-derivations are also already provided as meta-rules which
makes it easy to translate these to a structural game rule. The other ap-
proaches mentioned in Chapter 2.1.4 are either more complicated or the
blocking mechanism is hidden within the rules and harder to extract.

This new rule is simply added to those on pages 100/101:

I9+ If a P-agent reacted to a critical attack against some assertion, then, if O
attacks an assertion she already attacked before, the P-agents may only
defend non-critically against this attack. A counter-attack is then not
possible. (c.f. [139])

This corresponds to the a fortiori rule of IGr. Rule I8 implements the other
restriction. The combination of both enforces termination (the proof is given
later in Section 3.3). Peirce’s Law is then no problem anymore as we see
in Figure 3.4. After the defence and the counter-attack by the proponent
agents in row 2, O attacks P0’s prime formula P and P1’s implication. The
latter is critical. As P0 cannot defend, the proponents decide to deactivate him
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(indicated with %). P1 continues with his defence. As this is a reaction to a
critical attack, an earlier critical attack against O may be repeated (I8). P2 is
introduced to do this, i.e., he counter-attacks O’s commitment of row 2 again.
Now in row 4, O attacks P1’s prime formula Q and P2’s implication, stating
P. Again, the latter one is critical and P1 is deactivated due to the lack of
other options. P2 defends withQ. Another attack against O’s commitment of
row 2 is not possible due to our new rule I9+. Finally, O attacks P2’s prime
formula and the last remaining P-agent has no possibility to answer this.
The opponent wins. If we allowed the proponents to repeat attacks against
O’s commitment of row 2, new proponents would be introduced again and
again, and the dialogue would never end.

3.2 The Systems DiaSeqI and DiaSeqI+

In this section we introduce the sequent-style calculus DiaSeqI that repre-
sents multi-agent dialogues for IPL. This calculus provides an adequate way
to define the players’ moving possibilities and displays various strategies.
Then we discuss a variant DiaSeqI+ for the first time, which enforces ter-
mination of the games.

3.2.1 Interpreting Dialogues in DiaSeqI

A proof in DiaSeqI has a similar structure as a proof in G3i
m (see

Chapter 2.1.3) but divides the proof flow in different sections. It is a tree
consisting of sequents. We have one single root at the bottom, which we call
the initial sequent or root sequent. At the top of each branch we have the leaves.

A sequent in DiaSeqI has the form Φ `X Ψ where Φ and Ψ are sets of signed
formulas and X ∈ {O,PN,PD}. The turnstile `X indicates the party whose turn
it is to move next, i.e. `O means that it is O’s turn whereas `PN and `PD are
used for the proponent agents.

105



3 Multi-Proponent Dialogues for Intuitionistic Logic

A signed formula includes (beside the formula) an announcer with an optional
mark above (a vertical bar, sometimes with a label L or R, or a tilde) and
sometimes an addressee:

Φ ⊆ {op : ϕ, op : ϕ, op
L : ϕ, op

R : ϕ, õp : ϕ | p ∈ Propos ,ϕ ∈ Form} (3.1)

Ψ ⊆ {p : ϕ, p : ϕ, pL : ϕ, pR : ϕ | p ∈ Propos ,ϕ ∈ Form} (3.2)

So every formula is assigned by the announcer label o (O) or p (a P-agent),
where the signed formulas announced by O are elements ofΦ and the others
of Ψ. Addressees are added to that label only in the case that the announcer
is O, because when the announcer is a proponent, then the addressee must
be O anyway. The addressee labels are written as subscript next to the an-
nouncer label. As mark, a line over the announcer label indicates that the
announced formula has been attacked but not yet defended. The tilde in
õp indicates that the formula is isolated to implement rule I8. These isolated
(or blocked) formulas form some kind of history set, similarly as in the work
by Heuerding et al. [68] (see Sections 2.1.4 and 2.2.3). More on that follows
later.

The rules of the DiaSeqI-calculus are given in Figure 3.5. We use the terms
rule application, premise, conclusion, active formula, principal formula, and side
formula as described in Chapter 2.1.1. Rule applications are read from bottom
to top. In a DiaSeqI-sequent s = Φ `X Ψ, we say that Φ is the antecedent of
s and Ψ the succedent of s. As the usual sequent trees, a DiaSeqI-proof is
called closed iff axiom rules are applied on all leaves. These are P!! and P?⊥.

Rules starting with O?/O! are attacks/defences performed by O, accordingly,
P?/P! are moves performed by the P-agents. We also have extra trigger rules
for negations and implications instead of defences.3 These rules are O∗¬,
O∗⊃ and P∗¬. Concerning the implication stated by O in O∗⊃, the rule in-
cludes the defence.

3Of course, there should not be a defence for negations anyway, but we need a process that
gives the other party the opportunity to decide to react to this formula and therefore we
need these triggering rules.
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o-rules

Φ `O Ψ, p : A ⊃ B
O?⊃

Φ `O Ψ, p : A ⊃ B
õp : A ⊃ B, Φ `O Ψ, p : A op : B, Φ `O Ψ

O∗⊃
op : A ⊃ B, Φ `O Ψ

Φ `O Ψ, pL : A∧ B Φ `O Ψ, pR : A∧ B
O?∧

Φ `O Ψ, p : A∧ B

Φ `O Ψ, p : A∨ B
O?∨

Φ `O Ψ, p : A∨ B

op : A, Φ `O Ψ
O!L

op
L : A∧ B, Φ `O Ψ

op : A, Φ `O Ψ op : B, Φ `O Ψ
O!∨

op : A∨ B, Φ `O Ψ

op : B, Φ `O Ψ
O!R

op
R : A∧ B, Φ `O Ψ

Φ `O Ψ, p : ¬A
O?¬

Φ `O Ψ, p : ¬A

õp : ¬A, Φ `O Ψ, p : A
O∗¬

op : ¬A, Φ `O Ψ

Φ `O Ψ, p : A
O?a

Φ `O Ψ, p : A

Φ `O Ψ
O?⊥

Φ `O Ψ, p : ⊥

Φ `PD Ψ
cO

Φ `O Ψ

only applicable if no other

rule application is possible

p-rules – decide phase

oq : A, Φδ `PN p : B
P!⊃

Φ `PD Ψ, p : A ⊃ B
op : A, Φδ `PN ∅

P∗¬
Φ `PD Ψ, p : ¬A

Φ `PN Ψ
PN

Φ `PD Ψ

Φδ =df (Φ \ {õp : ϕ | p ∈ Propos,ϕ ∈ Form}) ∪ {os : ϕ | õp : ϕ ∈ Φ,p ∈ Propos},
each s is a new P-agent.

p-rules – normal phase

op : A ⊃ B, Φ `PN Ψ
P?⊃

op : A ⊃ B, Φ `PN Ψ

op : ¬A, Φ `PN Ψ
P?¬

op : ¬A, Φ `PN Ψ

Φ `PN Ψ, p : A
P!L

Φ `PN Ψ, pL : A∧ B

op
L : A∧ B, oq

R : A∧ B, Φ `PN Ψ
P?∧

op : A∧ B, Φ `PN Ψ

Φ `PN Ψ, p : B
P!R

Φ `PN Ψ, pR : A∧ B

op : A∨ B, Φ `PN Ψ
P?∨

op : A∨ B, Φ `PN Ψ

Φ `PN Ψ, p : A, q : B
P!∨

Φ `PN Ψ, p : A∨ B

P!!
op : A, Φ `PN Ψ, r : A, Ψ

P?⊥
op : ⊥, Φ `PN Ψ, r : A

Φ `O Ψ
cP

Φ `PN Ψ

only applicable if no other

rule application is possible

q is a new P-agent in rules P!⊃, P?∧, and P!∨.
r is an arbitrary active P-agent in rules P!! and P?⊥.

Figure 3.5: Rules of DiaSeqI (c.f. [138, 139])
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Now assume that the proponents want to prove that an assertionϕ is valid in
IPL. We start with an initial sequent `O p0 : ϕ, so O starts the play. Whenever
she has a choice for several moves, a branching of the proof tree is cre-
ated, e.g., if O attacks a conjunction p : A∧ B then she can choose if she
wants to demand the left or the right conjunct, i.e., the next sequent contains
pL : A∧ B or pR : A∧ B. Note that with respect to usual sequent calculi
it might make more sense to establish the branching when A∧ B is decom-
posed, namely when the P-agent performs his move and states either the left
or the right disjunct. However, from the dialogical point of view, a branching
occurs when O has several possibilities to perform one move and therefore
we establish the branching with her attack.

Actually, the calculus could be simplified by removing all announcer labels
and keeping only the marks. It also works without the addressees at the left-
hand formulas. However, we keep all this extra information to highlight the
connection to the structural rules and the interaction between the opponent
and the unique proponent agents.

The turnstile `X of a sequent indicated the current phase of the round. This
can be changed with the rules cO, cP, PN and some critical rule applications
(see also Figure 3.6). The rules cO and cP can only be used if no other
application (from bottom to top) is possible. This is needed to implement
rule I3 which is significant for the scheduling mechanism.

As long as the turnstile is ‘`O’, O can perform attacks (mark agent-signed
formulas with bars) or defend against attacked o-signed formulas (remove
bars). As soon as there are no formulas with an attack mark left on the
left side of the turnstile, and every formula on the right side is marked
as attacked, no more rules can be applied with the exception of cO which
changes `O to `PD.

Then we are in the proponent decide phase where the P’s have to agree on how
to continue. They can either react to a critically attacked formula (P!⊃ or
P∗¬) and deactivate the other P-agents, or continue by switching directly
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`O

`PD

`PN

cO
O?,O!,O∗

P!⊃,P∗¬PN

P?,P!cP

Figure 3.6: Proof cycle in DiaSeqI (c.f. [138, 139])

to the normal phase with rule PN which means that the defence of critically
attacked formulas is delayed or abandoned. No matter what the decision
is, the turnstile changes to `PN and the normal phase is entered where the
remaining attacks can be defended and statements announced by O are at-
tacked. Finally, cP is applied and the whole cycle starts again as illustrated
in a state transition graph in Figure 3.6.

Theorem 3.1 (DiaSeqI Closure Property (c.f. [139])). A DiaSeqI-tree t is closed
iff P has a winning strategy, i.e., in all dialogue runs in which O takes a decision,
she finally loses according to rule I4.

Proof. We consider only an informal proof here, as the result should be quite
obvious.

(⇒) Each branch of t is closed either with P!! or P?⊥. Both are moves O

cannot react to. So considering the paths as dialogical runs, O is not able to
react to these moves and therefore loses.

(⇐) Due to rule I5, no P-agent may attack prime formulas. However, when
a P-agent attacks a formula, O is always able to defend or counter-attack. As
well, when the P-agent defends a formula without P!!, he thereby states a
formula which can be attacked by O, even if it is a prime formula. Note that
the trigger of a negation is the consequence of an attack and therefore does
not count as a move. So, as long as the P-agents perform moves which are
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P!!
op0 : A, op1 : A, op2 : B `PN p0 : B

cO, PN
op0 : A, op1 : A, op2 : B `O p0 : B

O?a
op0 : A, op1 : A, op2 : B `O p0 : B

cP
op0 : A, op1 : A, op2 : B `PN p0 : B

P!⊃
op1 : A, op2 : B `PD p0 : A ⊃ B

cO
op1 : A, op2 : B `O p0 : A ⊃ B

O!L, O!R
op1

L : A∧ B, op2
R : A∧ B `O p0 : A ⊃ B

O?⊃
op1

L : A∧ B, op2
R : A∧ B `O p0 : A ⊃ B

cP
op1

L : A∧ B, op2
R : A∧ B `PN p0 : A ⊃ B

P?∧
op1 : A∧ B `PN p0 : A ⊃ B

P!⊃`PD p0 : (A∧ B) ⊃ (A ⊃ B)
O?⊃`O p0 : (A∧ B) ⊃ (A ⊃ B)

Figure 3.7: A simple example of a DiaSeqI-proof

no defences of prime formulas or attacks against ⊥’s, O can still react to all
these moves of the previous round [139]. The only option for the proponents
to win the game is to close the tree.

Figure 3.7 shows the DiaSeqI-variant of the dialogue we have already looked
at in Figure 3.2 (p. 102). The procedure is the very same as that of the referred
example. The other examples of Section 3.1 can be constructed accordingly.

3.2.2 Enforcing Termination with DiaSeqI+

As discussed in Section 3.1.2, we can make the dialogues terminate in all
cases if we put some restrictions on P which we defined as rule I9+ (p. 104).
For this, we need to introduce an a fortiori-equivalent: a new, non-critical
defence for ⊃.

For simplification reasons, we omit rules for negation in DiaSeqI+. Remem-
ber that ¬A ≡ A ⊃ ⊥, so concerning completeness this is no problem. The
rules O?¬, P?¬, O∗¬, and P∗¬ are omitted. Instead, we add the non-critical
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Φ `PN Ψ, p : B
P!⊃+

Φ `PN Ψ, p : A ⊃ B

Figure 3.8: Non-critical defence in DiaSeqI+

defence of an implication (Figure 3.8). This is of course not enough, we still
need to implement the restriction of rule I9+. It would of course be possible
to extend the sequents of DiaSeqI+ by adding a history set or something sim-
ilar, e.g., in a way as done by Heuerding et al. [68] or Howe [73] (see again
Chapter 2.1.4).

However, we define meta-rules just as Corsi and Tassi [33]. In fact we can
simply adjust the rules of regular IG-derivations (see p. 39) as follows:

1. Rule P!⊃may only be used once with the same principal formula within
one path of the sequent tree.

2. If a formula A ⊃ B is principal in the application of P!⊃+ in a sequent
tree t, then below this application in the same path of t, A ⊃ B is prin-
cipal of an application of P!⊃.

The third rule of regular IG-derivations is already implemented due to the
blocking mechanism of DiaSeqI (I8). An alternative possibility is to use
the ˜ -mark on implications which were defended with P!⊃ and add the
restriction explicitly to P!⊃+, so that it is only allowed to apply it if A ⊃ B is
present and marked with a tilde.

3.3 Adequateness of DiaSeqI and DiaSeqI+

In the following, we prove adequateness, i.e., soundness and completeness, of
DiaSeqI and DiaSeqI+. This is done relying on the adequateness of G3i

m

(Chapter 2.1.3) and IGr (Chapter 2.1.4). Soundness and completeness of G3i
m

were first shown by Maehara [104] relying on Gentzen’s original sequent
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system4, and later by Dragalin [39]5 who makes use of the axiomatic system
of IPL (such procedures are also described in detail in [142]). Adequateness
of IGr is shown by Corsi and Tassi [32, 33].

Instead of making use of axioms or semantics, we show that it is always pos-
sible to convert DiaSeqI-proofs to G3i

m-proofs (soundness) and vice versa
(completeness). We do the same with DiaSeqI+ and IGr. Short versions of
the adequateness proofs for DiaSeqI were published in [138, 139].

3.3.1 Completeness of DiaSeqI

The transformation from G3i
m to DiaSeqI (and also from IGr to DiaSeqI+)

is not trivial. We first need to introduce some terminology. The G3i
m-

derivation needs be be transferred into some normal form by resorting rule
applications, i.e, permuting them. The approach has similarities to the nor-
malization proposed by Egly and Schmitt who translated G3i

m-derivations
to G3i-derivations [43, 44], i.e., the derivation tree is divided into several
parts which are tackled one after another. However, our transformation has
another aim and the parts/blocks are defined differently.

The transformation process is illustrated in Figure 3.9 and starts with an ar-
bitrary G3i

m-proof-tree which is made free of redundant rule applications.
All of its paths are divided into macro blocks (Definition 3.3). Ends of macro
blocks mark the application of a non-invertible rule or a closure. All macro
blocks are then saturated (Definition 3.6), i.e., non-invertible rule applica-
tions are added as far as possible. The saturated blocks consist of micro
blocks (Definition 3.4) which are then saturated as well (Definition 3.7). Mi-
cro blocks shall correspond to rounds in the dialogue, so after the saturation
the rule applications within these blocks can be rearranged to obtain the de-

4This uses sequences instead of multi-sets and has some other rules, so it is actually a
variant of G3i

m for which Maehara shows adequateness.
5Dragalin’s GHPC has another rule for ⊃l but the rest is the same as in G3i

m.
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G3i
m-

proof
macro-

saturation
micro-

saturation
rule-

movement
DiaSeqI-

proof

Figure 3.9: The transformation process from G3i
m to DiaSeqI

sired order. The DiaSeqI-tree can then be derived more or less easily from
this normalized G3i

m-proof.

Terminology

The following definitions refer to derivations in G3i
m and IG. They can there-

fore be seen as an extension of the definitions in Chapter 2.1.

A closed sequent tree is a proof for some implication which is represented
by the root sequent Γ ⇒ ∆. If there is such a tree, we say that Γ ⇒ ∆ is
deducible.

Definition 3.1 (Deducibility (G3i
m, IG)). In general, for an arbitrary G3i

m/IG-
sequent Γ ⇒ ∆ we write for some n ∈ N: 
n Γ ⇒ ∆ iff there is a closed G3i

m/IG-
tree with Γ ⇒ ∆ being the root sequent, which has a height h 6 n. We also say
that Γ ⇒ ∆ is deducible in n deductive steps, or there is a derivation of height
n for Γ ⇒ ∆.

To make a distinction between deducibility in G3i
m and IG, we write 
I

n for
deducibility in G3i

m and 
IG
n for that in IG. If it is not relevant whether G3i

m

or IG is used, we simply write 
n.

As mentioned in Chapter 2.1.3, when we talk about critical rules in G3i
m, we

refer to the rules ⊃r and ¬r which reduce the number of formulas on the
right-hand side of the sequent arrow ⇒. The other G3i

m-rules are called
non-critical rules. Accordingly, critical formulas are implications or negations
in intuitionistic logic. Rules ax and ⊥ax close the branches of a sequent tree
and are therefore called closing rules. All other rules are non-closing rules.
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Further, any sequent can be considered as a set of formula occurrences, i.e.,
formulas occur in sequents of a tree. Particularly, a formula ϕ occurs in a
sequent Φ⇒ Ψ in the left part (if ϕ ∈ Φ) or in the right part (ϕ ∈ Ψ). We call
the occurrence left-occurrence / left-hand formula or right-occurrence / right-hand
formula, respectively.

For any sequent tree t, read from bottom to top, on every branch we can find
a sequent s in which a formula ϕ occurs for the first time, e.g., as an active
formula, but it can also be the root sequent of t. We say that ϕ is introduced
in s.

Immediately after the application of a critical rule, implications and negations
in the antecedent of the sequent are said to be reinitialized with the applica-
tion of the critical rule.

If some formula ϕ is principal in some sequent of tree t then we can find
the sequent in which ϕ is introduced or reinitialized. If ϕ is reinitialized in t
below the rule application, then we call the occurrence of this reinitialization
the formula instance ϕ̂ of ϕ. Otherwise, the formula instance ϕ̂ is the occur-
rence of the introduced ϕ. The formula instance always refers to a certain
sequent in t, namely the sequent in which it is introduced or reinitialized. If
a formula instance ϕ̂ appears in a sequent Φ⇒ Ψ such that ϕ̂ ∈ Φ then it is
called a left instance. If ϕ̂ ∈ Ψ, it is a right instance.

Here is an example. Consider the following G3i
m-derivation-tree:

ax
A,B,C,C ⊃ D,E,D⇒ D

ax
A,B,C,C ⊃ D,E⇒ D,C ⊃l

A,B,C,C ⊃ D,E⇒ D ⊃r
A,B,C,C ⊃ D⇒ E ⊃ D

∧l
A∧ B,C,C ⊃ D⇒ E ⊃ D

The first (lowest) rule application is ∧l with principal formula A ∧ B. This
A ∧ B is the instance to which the application refers, as A ∧ B is introduced
with the root sequent. The same holds for the application of ⊃r: it refers to
the instance E ⊃ D of the root sequent, as it is introduced there. Now, as this
is a critical rule, all implications of the antecedent are reinitialized. Therefore,
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the instance the application of ⊃l refers to is not the implication C ⊃ D of
the root sequent, but instead the occurrence directly below the application,
as C ⊃ D was just reinitialized with ⊃r. The application of ax in the right
branch refers to two instances of C (one in the antecedent and one in the
succedent). The left one is the instance of C that occurs in the root sequent.
The right one is the instance which occurs directly below the application, as
it is introduced there with ⊃l.

In the following, when we talk about a rule application, we refer to a certain
rule (name) of some sequent calculus and an instance of a formula. The
sequent, in which the application occurs, is not necessarily the sequent in
which the formula is introduced or reinitialized but it is possible to trace
back the instance of the formula somewhere in the sequent tree. We consider
rule applications as pairs (r, ϕ̂) where r is a rule name and ϕ̂ is called the
principal formula instance. A rule application in some sequent tree either
results in one or two sequents written above the sequent in which the rule is
applied, or in an empty sequent. We usually refer to a rule application with
al = (r, ϕ̂) where l is some level of some branch in some tree.

The Normalization of G3im-Proofs

To prove completeness of DiaSeqI, we show that every proof in G3i
m can be

transformed into an equivalent proof in DiaSeqI. As G3i
m is complete, this

implies that DiaSeqI is complete as well. To achieve this translation, we
first have to transform the proof in G3i

m into a normal form that represents
a scheduled version of the proof, by moving rule applications from top to
bottom.

Definition 3.2 (Rule Application Dependence [138]). Given two applications
al = (rl, ϕ̂l) and am = (rm, ϕ̂m) of a derivation tree, we say that al depends di-
rectly on am, written al X am, iff both rl and rm are applied in the same path of
the tree and ϕ̂l is introduced with am or reinitialized with am.
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ax
¬A,B,¬(A ⊃ C),A⇒ A,C

¬l
¬A,B,¬(A ⊃ C),A⇒ C

∧l
¬A∧ B,¬(A ⊃ C),A⇒ C

⊃r
¬A∧ B,¬(A ⊃ C)⇒ A ⊃ C

¬l
¬A∧ B,¬(A ⊃ C)⇒

¬r
¬A∧ B⇒ ¬¬(A ⊃ C),C∨D

∨r
¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)

⊃r
⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

Figure 3.10: Macro and micro blocks in an G3i
m-proof (c.f. [139])

For applications al, am, and an, we say that al depends on an, written al ∝ an,
iff al X an, or al X am and am ∝ an, so ∝ is defined as the transitive closure
of X. If al does not depend on am, we say that al is independent of am, written
al 6∝ am.

Definition 3.3 (Macro Block).

• A macro block is a path of a sequent tree which contains only non-critical rule
applications.

• A macro-block is closed iff a closing rule is applied in it.

• The macro block height (MBH) of a derivation tree is the maximal number
of macro blocks from its root to its leaves.

So we can take any G3i
m/IGr-sequent-tree and divide its paths into several

sections, called macro blocks, each of these macro blocks is separated by the
application of a critical rule, namely ⊃r or ¬r.6 To indicate a certain macro
block of a path in a sequent tree, we refer to its level in the path, the macro
level. The lowest macro block has level 0.

6The concept of macro blocks has similarities to layers defined by Egly and Schmitt [44].
However, they follow another purpose and are defined in a different way: layers contain
whole sub-deductions and therefore several branches at once. Further, a layer requires
that sequents having at most one formula in the succedent may only occur in the leaves
of the layer, while the remaining sequents contain more formulas in the succedent.
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A macro block can be empty, i.e., contain no rule application. This happens
for example, if two critical rules are applied consecutively. Figure 3.10 shows
how a G3i

m-proof-tree is divided into macro blocks. The double lines indi-
cate the borders of the four blocks (we ignore the dashed line for now). The
applications of the critical rules are not part of the macro blocks, whereas
the axiom rule is part of the uppermost one.

Now it is possible to create so-called micro blocks within the macro blocks of
the sequent tree.

Definition 3.4 (Micro Block).

• A micro block is a section of a macro block that contains at least one rule ap-
plication, but all rule applications are non-critical and independent of the other
rule applications of the micro block. The first rule application that depends on
the application of another rule in some micro block is the start of a new one.

• A micro-block is closed iff a closing rule is applied in it.

• The micro block height (mbh) of a derivation tree is the maximal number of
micro blocks from its root to its leaves.

A macro block consists of zero or more micro blocks, each consisting of non-
critical rule applications. The lowest micro block of a macro block starts with
its lowest rule application and ends when the macro block ends or when a
rule is applied that depends on any of the rule applications in the micro
block.

When we consider again the proof tree of Figure 3.10, we see that the lowest
macro block contains no micro block, as there is no non-critical rule appli-
cation. The second and the third one each contains one micro block. The
top macro block consists of two micro blocks (the start of the second one is
indicated by a dashed line), as the application of ¬l depends on that of ∧l.

Now we have a structure we will make use of to obtain the desired form of
the proof tree that corresponds to the structure of a dialogue. When a macro
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block ends, the proponents react to a critical attack. The micro blocks are to
be used to simulate the round structure of the game.

In G3i
m and IGr, the contraction and weakening rules are missing. How-

ever, both are still admissible as we show next (we first look at weakening,
contraction is considered a bit later).

Lemma 3.1 (Admissibility of Weakening (G3i
m, IGr)7). For all ϕ, Γ , ∆:

1. If 
n Γ ⇒ ∆ then 
n Γ ,ϕ⇒ ∆.

2. If 
n Γ ⇒ ∆ then 
n Γ ⇒ ϕ,∆.

The derivations in the conclusions do not contain further rule applications than the
derivations in the conditions. The order of rule applications is preserved.

Proof by induction on n. Assume that 
n Γ ⇒ ∆.

Base Case: n = 1 — The only applied rule must be ax or ⊥ax . So the same
formula appears in both sequents or ⊥ is an element of Γ . In both cases,
adding a formula ϕ to one of the sides does not change this fact and no rule
application is added.

Inductive Step: Assume that 
n+1 Γ ⇒ ∆. We have to consider all kinds
of rule applications in the root sequent of the derivation. We look at two
examples.

• Assume we have the root sequent s = A ⊃ B, Γ ⇒ ∆. Then we have
some derivation tree t of height n+ 1:

— t1 —
Γ ,A ⊃ B⇒ A,∆

— t2 —
Γ ,B⇒ ∆ ⊃l

Γ ,A ⊃ B⇒ ∆

We can now weaken the sequents above s by hypotheses, so

n Γ ,A ⊃ B,ϕ⇒ A,∆ and 
n Γ ,B,ϕ⇒ ∆. We can also add the ϕ to

7The lemma is adapted from [39] and [142].
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the succedents, the argument is almost the same. The ⊃l-rule can then
be applied as well, by adding the ϕ to the antecedent (or succedent
respectively) of the root sequent.
Therefore, we have 
n+1 Γ ,A ⊃ B,ϕ⇒ ∆. As no extra rule applications
are necessary in t1 or t2, there is also no extra rule necessary in the
whole derivation.

• Assume we have 
n+1 Γ ⇒ A ⊃ B,∆ and the application of a critical
rule in the root sequent:

— t ′ —
Γ ,A⇒ B ⊃r

Γ ⇒ A ⊃ B,∆

Adding a ϕ to the succedent of the root sequent does not change any-
thing, as it is removed again with the application of ⊃r. Therefore,

n+1 Γ ⇒ A ⊃ B,ϕ,∆. When we add ϕ to the antecedent, we have to
apply the hypothesis again on the sequent above.

Lemma 3.2 (Inversion (G3i
m)8). For all ∆, Γ and formulas A and B:

1. If 
I
n Γ ,A∧ B⇒ ∆ then 
I

n Γ ,A,B⇒ ∆.

2. If 
I
n Γ ⇒ A∨ B,∆ then 
I

n Γ ⇒ A,B,∆.

3. If 
I
n Γ ,A∨ B⇒ ∆ then 
I

n Γ ,A⇒ ∆ and 
I
n Γ ,B⇒ ∆.

4. If 
I
n Γ ⇒ A∧ B,∆ then 
I

n Γ ⇒ A,∆ and 
I
n Γ ⇒ B,∆.

5. If 
I
n Γ ,A ⊃ B⇒ ∆ then 
I

n Γ ,A ⊃ B⇒ A,∆ and 
I
n Γ ,B⇒ ∆.

6. If 
I
n Γ ,¬A⇒ ∆ then 
I

n Γ ,¬A⇒ A,∆.

8The lemma and the proof are adapted from [142] and extended; see also Lemma 3.14 by
Dragalin [39].
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The derivations in the conclusions do not contain further rule applications in all
paths than the derivations in the conditions. The order of rule applications is pre-
served.

Proof by induction on n. We consider one of the cases (5). The others are
treated similarly.

Base Case: n = 1

Consider a sequent s = Γ ,A ⊃ B ⇒ ∆. A closing rule must be applied on
this. As closing rules are only applied on atoms, we conclude that either the
same prime formula appears in Γ and ∆, or a ⊥ occurs in Γ . In both cases,
the same closing rule can be applied in both sequents Γ ,A ⊃ B ⇒ A,∆ and
Γ ,B⇒ ∆. No further applications are necessary.

Inductive Step: For a derivation tree t of height n + 1, we consider the root
sequent s = Γ ,A ⊃ B⇒ ∆. If a rule is applied on A ⊃ B in s, we have:

— t1 —
Γ ,A ⊃ B⇒ A,∆

— t2 —
Γ ,B⇒ ∆ ⊃l

Γ ,A ⊃ B⇒ ∆

There are derivations with a maximal height of n for both sequents
Γ ,A ⊃ B⇒ A,∆ and Γ ,B⇒ ∆. No rule applications are added to t1 or t2.

However, if A ⊃ B is not the principal formula in s, we must have a closer
look and perform a case analysis on the rule that is applied there. We con-
sider two of them. The others are similar:

• ∧r: We have some C∧D in the succedent:

— t1 —
Γ ,A ⊃ B⇒ C,∆

— t2 —
Γ ,A ⊃ B⇒ D,∆

∧r
Γ ,A ⊃ B⇒ C∧D,∆

The sequents starting directly above the root sequent have a maximal
height of n, so by hypothesis we have
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– 
I
n Γ ,A ⊃ B⇒ A,C,∆

– 
I
n Γ ,B⇒ C,∆

– 
I
n Γ ,A ⊃ B⇒ A,D,∆

– 
I
n Γ ,B⇒ D,∆

without adding extra rule applications in t1 or t2. This is quite fine, be-
cause from the first and the third derivation we can conclude

I
n+1 Γ ,A ⊃ B⇒ C∧D,A,∆ and from the second and forth

I
n+1 Γ ,B⇒ C∧D,∆, simply by using rule ∧r on C ∧ D each time.

As this ∧r had been removed before we applied the hypothesis, we can
now add it again and we conclude that no extra rule applications are
necessary for the new derivations.

• ⊃r: a critical rule has to be treated a little bit differently.

— t1 —
Γ ,A ⊃ B,C⇒ D ⊃r

Γ ,A ⊃ B⇒ C ⊃ D,∆

We have to show that 
I
n+1 Γ ,A ⊃ B⇒ A,C ⊃ D,∆ and


I
n+1 Γ ,B⇒ C ⊃ D,∆. The second statement can again be shown by

the hypothesis applied on the premise. Then we get 
I
n Γ ,B,C⇒ D,

and with rule ⊃r we have 
I
n+1 Γ ,B⇒ C ⊃ D,∆. No extra rule applica-

tions are necessary.

The other case is even easier, as from 
I
n+1 Γ ,A ⊃ B⇒ C ⊃ D,∆ we

get directly 
I
n+1 Γ ,A ⊃ B⇒ A,C ⊃ D,∆ by weakening (without adding

more rule applications, Lemma 3.1).
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Lemma 3.3 (Admissibility of Contraction (G3i
m)9). For all ϕ, Γ , ∆:

1. If 
I
n Γ ,ϕ,ϕ⇒ ∆ then 
I

n Γ ,ϕ⇒ ∆.

2. If 
I
n Γ ⇒ ϕ,ϕ,∆ then 
I

n Γ ⇒ ϕ,∆.

The derivations in the conclusions do not contain further rule applications than the
derivations in the conditions. The order of rule applications is preserved.

Proof by induction on n.

Base Case: n = 1 — A closing rule must be used. If it is applied on ϕ,
then this can also be done if it occurs only once in the left or right part.
Otherwise, the closing is independent of ϕ and can therefore be achieved
directly.

Inductive Step: We consider a G3i
m-tree of height n with root sequent

s = Γ ,ϕ,ϕ⇒ ∆ or s ′ = Γ ⇒ ϕ,ϕ,∆, respectively. If no rule is applied on
ϕ in the root sequent, we apply the hypothesis on the tree(s) starting above
the root sequent.

We have a detailed look on three cases for ϕ. The others can be dealt with
in a similar way.

• ϕ = A∧ B, 
I
n+1 Γ ,A∧ B,A∧ B⇒ ∆

As a rule is applied on ϕ, we have the sequent Γ ,A,B,A∧B⇒ ∆ above
for which there must be a derivation with a maximal height of n. By
inversion (Lemma 3.2), there is also a G3i

m-tree for Γ ,A,B,A,B ⇒ ∆

with a maximal height of n, without further rule applications. We use
the hypothesis twice to show that 
I

n Γ ,A,B⇒ ∆. Therefore we have

I
n+1 Γ ,A∧ B⇒ ∆ after adding the omitted application of ∧l again. No

extra rule is applied.

9The lemma and proof are again adapted from Troelstra and Schwichtenberg [142] and
extended, dp-admissibility of contraction; see also Lemma 3.1.5 by Dragalin [39].
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• ϕ = A ⊃ B, 
I
n+1 Γ ,A ⊃ B,A ⊃ B⇒ ∆

Above the root sequent we have the sequents
s1 = Γ ,A ⊃ B,A ⊃ B⇒ A,∆ and s2 = Γ ,B,A ⊃ B⇒ ∆.

The case of s1 is easy, because it has a derivation height of n, and we
can therefore apply the hypothesis directly on A ⊃ B, which results in

I
n Γ ,A ⊃ B⇒ A,∆ without using further rule applications.

For s2 we use the inversion again (Lemma 3.2) to derive that

I
n Γ ,B,B,⇒ ∆. By hypothesis applied on B we then also have

I
n Γ ,B⇒ ∆. With rule ⊃l we combine both to 
I

n+1 Γ ,A ⊃ B⇒ ∆.

• ϕ = A ⊃ B, 
I
n+1 Γ ⇒ A ⊃ B,A ⊃ B,∆

Here, we consider the application of the critical rule ⊃r on one A ⊃ B.
In the premise, we have sequent s ′1 such that s ′1 = Γ ,A⇒ B. The other
implication vanishes and it is irrelevant, because there must be a deriva-
tion for s ′1 in n steps. Therefore 
I

n+1 Γ ⇒ A ⊃ B,∆ by rule ⊃r.

There are now special cases for which we make further observations. First
of all, for any propositional formula ϕ, we introduce a multi-set Υϕ called
disjunctive derivable set of ϕ:

Definition 3.5 (Disjunctive Derivable Set). Let ϕ be a propositional formula.
Then the multi-set Υ is a disjunctive derivable set of ϕ, written d∨(Υ,ϕ), iff for
any formulas A and B:

• Υ = {ϕ}, or

• ϕ = A∧ B and d∨(Υ,A) or d∨(Υ,B), or

• ϕ = A∨ B and Υ = ΥA,ΥB such that d∨(ΥA,A) and d∨(ΥB,B).

Lemma 3.4 (Generalized Right-Inversion). For any Γ , ∆, A, and n:
if 
I

n Γ ⇒ A,∆ then for all ΥA such that d∨(ΥA,A), we have 
I
n Γ ⇒ ΥA,∆
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without using further rule applications than for the derivations in the premises. The
order of rule applications is preserved.

Proof. Assume 
I
n Γ ⇒ A,∆. By structural induction on A:

Base Case: A is an atom. Then ΥA = {A}. This case is trivial.

Inductive Step: For any formulas A0 and A1:

• A = A0 ∨A1. Then there are two possibilities for ΥA:

– ΥA = {A}: trivial.

– ΥA = ΥA0
,ΥA1

with d∨(ΥA0
,A0) and d∨(ΥA1

,A1):
By inversion (Lemma 3.2), 
I

n Γ ⇒ A0,A1,∆ without further rule
applications. Then, by hypothesis, 
I

n Γ ⇒ ΥA0
,ΥA1

,∆.

• A = A0 ∧A1. Then there are three possibilities for ΥA:

– ΥA = {A}: trivial.

– ΥA = ΥA0
for d∨(ΥA0

,A0):
By inversion (Lemma 3.2), 
I

n Γ ⇒ A0,∆.
By hypothesis, 
I

n Γ ⇒ ΥA0
,∆.

– ΥA = ΥA1
for d∨(ΥA1

,A1): same procedure.

• For any other A we have ΥA = {A}, so we already finished.

In none of these cases, additional rule applications are necessary.

Lemma 3.5 (Dispensability of Duplication Rules (G3i
m)). For all Γ , ∆, A, n,

and all ΥA such that d∨(ΥA,A):

• if 
I
n Γ ,A ⊃ B⇒ ΥA,∆, then 
I

n Γ ,A ⊃ B⇒ ΥA,∆ without any rule ap-
plications of ⊃l on A ⊃ B in the macro blocks of level 0.
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• if 
I
n Γ ,¬A⇒ ΥA,∆, then 
I

n Γ ,¬A⇒ ΥA,∆ without any rule applications
of ¬l on ¬A in the macro blocks of level 0.

For the transformation, no further rule applications are necessary in any of the paths.
The order of rule applications is preserved.

Proof by induction on n.

Base Case: n = 1 — There is only one closing rule, so the rule application is
not necessary.

Inductive Step: We assume 
I
n+1 Γ ,A ⊃ B⇒ ΥA,∆. The case for the nega-

tion is very similar, so it is omitted here. We consider the sequent
Γ ,A ⊃ B⇒ ΥA,∆ to be the root of some derivation tree t ′.

• If the lowest application is critical, it is automatically the end of the
macro block and no transformation is necessary as the target require-
ment is already fulfilled.

• Else, if neither A ⊃ B, nor a formula of ΥA are the principals in this
sequent, we simply apply the hypothesis on the tree(s) starting above
and we are done.

• If a non-critical formula γ of ΥA is the principal in this sequent, we have

I
n+1 Γ ,A ⊃ B⇒ γ,Υ ′A,∆ with ΥA = γ,Υ ′A.

Then, due to the application on γ, we have active formulas ∆γ in the
premise, i.e., 
I

n Γ ,A ⊃ B⇒ ∆γ,Υ
′
A,∆.

Then by weakening (Lemma 3.1) 
I
n Γ ,A ⊃ B⇒ ∆γ,γ,Υ

′
A,∆ which is

the same as 
I
n Γ ,A ⊃ B⇒ ∆γ,ΥA,∆. Here we can apply the induction

hypothesis and everything is fine.

• If A ⊃ B is the principal, then we have 
I
n Γ ,A ⊃ B⇒ A,ΥA,∆. By

Lemma 3.4, we obtain 
I
n Γ ,A ⊃ B⇒ ΥA,ΥA,∆. Then contraction

(Lemma 3.3) can be applied on all formulas of ΥA, so we get

I
n Γ ,A ⊃ B⇒ ΥA,∆. Finally, we apply the hypothesis and realize that
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this derivation is possible without the application of ⊃l on A ⊃ B in the
macro blocks of level 0.

Let us consider a G3i
m-sequent-tree t that consists of some macro blocks.

Assume that a rule is applied in the same macro block of t on the same
formula instance more than once. The first of these applications might be
useful, but the others are redundant and can be omitted. To prove this, we
first show that the macro blocks of level 0 in every derivation can be made
redundance-free.

Lemma 3.6 (Rule Application Redundancy in Root Macro Blocks (G3i
m)). Let

t be a valid G3i
m-proof-tree. Then t can be transformed to a closed G3i

m-proof-tree
t ′ such that for all macro blocksM of level 0 in t ′, M is redundance-free. No further
rule applications are needed and the application orders are preserved.

Proof. Normally, we would have to consider all non-critical rules that can be
applied in a macro block. But in fact, when ∧l, ∨l, ∧r or ∨r is applied on
some formula, then this principal vanishes from the premises. In case it ap-
pears again later, the application on this refers to another formula instance.
The closing rules ax and ⊥ax are obviously also not interesting for this proof,
so everything left are the duplicating rules ⊃l and ¬l. The latter can be seen
as a special case of the former one. The arguments are very similar and we
concentrate on ⊃l.

Consider the derivation 
I
n Γ ⇒ ∆ of t. We prove the lemma by induction

on n.

Base Case: n = 1 — Only a closing rule is applied, so there is nothing to do
(no redundancy).

Inductive Step: We want to show that 
I
n+1 Γ ⇒ ∆ can be made redundance-

free in macro-level 0. Let ΓR ⊆ Γ be the set of formulas on which we have
redundant rule applications in any macro block of level 0 in t.
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• If the lowest rule application in t is a critical, nothing needs to be done,
as the lowest macro block is already redundance-free.

• If it is non-critical and done on a formula ψ ∈ Γ \ ΓR or ψ ∈ ∆, we can
simply apply the hypothesis on the sequents above and everything is
fine (we do not leave the macro block).

• Otherwise, the rule is applied on a formula γ ∈ ΓR. We assume that γ is
an implication A ⊃ B (as stated before, negations are handled similar-
ly). So for Γ ′ = Γ \ {γ}: 
I

n Γ
′,A ⊃ B⇒ A,∆ and 
I

n Γ
′,B⇒ ∆. Both de-

rivations can be made redundance-free in macro-level 0 by hypothesis,
so the latter is no problem. Concerning the former one, we conclude
that A ⊃ B is the only possible formula which can cause a redundancy
in macro-level 0. Further, as d∨({A},A), we can use Lemma 3.5 and
enforce that there is no application of ⊃l on this A ⊃ B in all macro
blocks of level 0. As no extra rule is needed to be applied there, this
will also cause no extra ⊃l-applications. So 
I

n+1 Γ ,A ⊃ B⇒ ∆ can be
built without redundant rule applications on A ⊃ B.

Lemma 3.7 (Rule Application Redundancy in G3i
m-Trees). Let t be a valid

G3i
m-proof-tree. Then t can be transformed to a closed G3i

m-proof-tree t ′ such that
all macro blocks of t ′ are redundance-free.

Proof. This can now be done quite easily with an induction on the macro
block height (MBH) h of t:

Base Case: h = 1 — We simply apply Lemma 3.6 and are done.

Inductive Step: Again, we apply Lemma 3.6 to make all macro blocks of
macro level 0 redundance-free and obtain t ′. Then we apply the hypothesis
on all trees that start in macro-level 1 of t ′ and everything is done.
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Definition 3.6 (Macro Block Saturation [139]). Let M be a macro block of an
G3i

m-proof-tree t. Then M is macro-saturated iff rules are applied on all formula
instances of M which are neither critical nor atomic.

What we want to achieve is that in every macro block we apply as many
non-critical rules as possible; duplication rules are of course applied only
once on the same principal instance. For the dialogue this means that the
proponents postpone reactions to critical attacks as long as possible.

Lemma 3.8 (Macro Block Saturation in G3i
m-Proof-Trees [139]). Let t be a

G3i
m-proof-tree. Then t can be transformed to be macro-saturated in such a way

that it is still a valid proof tree and without increasing its macro block height (MBH).

Proof. By induction on the MBH h of t:

Base Case: h = 1 — All macro blocks are closed.

We consider each sequent Γi ⇒ ∆i in which a closing rule is applied. Then
all non-atomic and non-critical formulas ϕ are collected from these and for
each we perform an induction on the structure of this ϕ to show that it can
be saturated until its atoms are reached or critical rules are needed to go
further. We define Γ ′i =df Γi \ {ϕ}. As an example we let ϕ be A ∧ B. Then

I
n Γ
′
i ,A∧ B⇒ ∆i. By inversion (Lemma 3.2), 
I

n Γ
′
i ,A,B⇒ ∆i, i.e., adding

an application of ∧l on A ∧ B does not harm the proof. The (inner) induc-
tion hypothesis can be applied on A and B to saturate the premise sequent
again until we reach only atoms or critical formulas. Once this is done, we
continue with the next ϕ which is not saturated in the leaf.

Inductive Step: Increasing the MBH means that there is at least one critical
rule application in at least one path of t. In general, t has the following
structure [139]:
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...
...

...
— t1 —

c1
Γ1 ⇒ ∆1

...
...

...
...

...
— t2 —

c2
Γ2 ⇒ ∆2

...
...

...
. . .

...
...

...
— tn —

cn
Γn ⇒ ∆n

...
...

...
ΓR ⇒ ∆R

The sequents Γi ⇒ ∆i (1 6 i 6 n) are the upper borders of the macro blocks
starting in the root sequent ΓR ⇒ ∆R, i.e., the macro blocks of macro-level 0.
The critical (or closing) rules applied there are labelled with ci. We can use
the hypothesis to saturate t1 to tn.

For each of the border sequents Γi ⇒ ∆i, we now do the same as in the
root case: we collect the non-critical non-atomic formulas γ of Γi ⇒ ∆i and
perform a structural induction on each γ. We make use of the inversion
property which adds a non-critical rule application to the border sequent.
The rest is done by the (internal) induction hypothesis which adds further
non-critical and non-closing applications as long as this is possible. Note
that by the inversion lemma (Lemma 3.2) no critical rules are added and the
existing ones stay on their paths. So the MBH remains the same.

Once we saturated one branch starting in ΓR ⇒ ∆R, we take the next border
sequent and so on, until all border sequents are saturated. Then we apply
the (outer) hypothesis to update the macro saturation in all macro blocks
starting above.

Figure 3.11 shows how the macro blocks of the derivation we saw before
are saturated. The underlined rule names indicate the applications that are
added. Now as the macro blocks are saturated, our next goal is to move the
rule applications to obtain the round structure of an MPID.

A rule swap is the exchange of two rule applications at two succeeding posi-
tions of the sequent tree. A rule movement consists of multiple swaps which
means that the application is moved step-wise towards the root of the tree.
Note that a rule movement possibly causes a modification of other paths.
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ax
¬A,B,¬(A ⊃ C),A⇒ A,C

¬l
¬A,B,¬(A ⊃ C),A⇒ C

∧l
¬A∧ B,¬(A ⊃ C),A⇒ C

⊃r
¬A∧ B,¬(A ⊃ C)⇒ A ⊃ C

¬l
¬A∧ B,¬(A ⊃ C)⇒

¬r
¬A∧ B⇒ ¬¬(A ⊃ C),C∨D

∨r
¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)

⊃r
⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

⇓
ax

¬A,B,¬(A ⊃ C),A⇒ A ⊃ C,A,C
¬l

¬A,C,¬(A ⊃ C),A⇒ A,C
¬l

¬A,B,¬(A ⊃ C),A⇒ C
⊃r

¬A,B,¬(A ⊃ C)⇒ A,A ⊃ C
¬l

¬A,B,¬(A ⊃ C)⇒ A ⊃ C
¬l

¬A,B,¬(A ⊃ C)⇒
¬r

¬A,B⇒ A,¬¬(A ⊃ C),C,D
¬l

¬A,B⇒ ¬¬(A ⊃ C),C,D
∧l

¬A∧ B⇒ ¬¬(A ⊃ C),C,D
∨r

¬A∧ B⇒ ¬¬(A ⊃ C),C∨D
∨r

¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)
⊃r

⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

Figure 3.11: Example of a macro saturation (c.f. [139])
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Lemma 3.9 (Independent Rule Movement in Macro-Saturated G3i
m-trees

[139]). Let t be a macro-saturated and redundance-free sequent tree with an
MBH of 1, and al = (r, ϕ̂) a rule application at level l in t. Suppose that for all rule
applications am with 0 6 m < l, al does not depend on am, i.e., al 6∝ am. Then t
can be transformed to t ′ for which

• al is moved downwards to the root, and

• the root sequent and the leaf sequents are the same as in t, and

• no rule application in t is added and none is removed, and

• the mbh and the MBH are the same as in t, and

• t ′ is also macro-saturated and redundance-free.

Proof. By induction on the total number of rule applications n in t:

Base Case: For n = 1 the movement is trivial, as there is no movement.

Inductive Step: We have to consider all combinations of non-closing, non-
critical rules and show that it is possible to move down the corresponding
rule application to the root. The relevant rules are ∨r, ∧r, ∨l, ∧l, ⊃l and ¬l.
We discuss three cases here, the others are very similar.

1. We combine ∨r with ∨r (this is one of the very simple cases). Consider
the following sequent tree, with r applied in some sequent of level l:

. . .
Γl+1 ⇒ C,D,∆l+1

∨r
Γl ⇒ C∨D,∆l . . . . . .

— u —
Γ1 ⇒ A,B,C∨D,∆1

∨r
Γ0 ⇒ A∨ B,C∨D,∆0

The letter u stands for a section of t. The indexes of Γ and ∆ indicate
the level in t. Obviously, Γ0 = Γ1, ∆0 = ∆1, Γl = Γl+1 and ∆l = ∆l+1. Due
to the rule application independence of ∨r in level l, C ∨D must also
be part of the sequents below level l.
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Let us omit the root sequent of t for a moment. This tree is still macro-
saturated. So by hypothesis, we can pull down this rule application to
the root, modifying u in between to u ′. After adding the original root
of t afterwards, we obtain the following tree:

. . . . . . . . .
— u ′ —

Γ2 ⇒ A,B,C,D,∆2
∨r

Γ1 ⇒ A,B,C∨D,∆1
∨r

Γ0 ⇒ A∨ B,C∨D,∆0

Here, Γ2 = Γ1 = Γ0 and ∆2 = ∆1 = ∆0. Neither the leaf sequents nor the
mbh or MBH have changed. Now we can simply exchange the two rule
applications on the bottom and the tree is still valid:

. . . . . . . . .
— u ′ —

Γ2 ⇒ A,B,C,D,∆2
∨r

Γ1 ⇒ A∨ B,C,D,∆1
∨r

Γ0 ⇒ A∨ B,C∨D,∆0

Everything above level 2 is not touched and therefore the leaves are not
changed. The MBH remains one, as no critical rule is added. Also the
mbh does not change by swapping two independent rule applications.
Macro-saturation is therefore also preserved.

2. And now for something more complicated: we combine the rules ∨r

and ∨l:
. . .

Γl+1 ⇒ C,D,∆l+1
∨r

Γl ⇒ C∨D,∆l . . . . . .
— u —

Γ1,A⇒ C∨D,∆1

— t# —
?

Γ1,B⇒ C∨D,∆1
∨l

Γ0,A∨ B⇒ C∨D,∆0

The tree t#, which is a result of an arbitrary rule application (indicated
as ‘?’), is unknown. Again, Γ0 = Γ1, ∆0 = ∆1, Γl = Γl+1, and ∆l = ∆l+1.

Because of the rule application independence, C∨D of level lmust also
be present in all levels below. When we omit the root sequent of t we
obtain two independent sequent trees, t1 and t2, which are both macro-
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saturated. And because they are macro-saturated, there must be an
application of ∨r on C∨D in t# (which is embedded in t2). Therefore,
we can apply the hypothesis both on t1 and t2, which moves the ∨r

down to the root respectively. Afterwards, we can put the resulting
t ′1 and t ′2 together by adding the sequent Γ0,A∨ B⇒ C∨D,∆0; again
with the application we omitted before. We obtain a tree which looks
thus:

. . . . . . . . .
— u ′ —

Γ2,A⇒ C,D,∆2
∨r

Γ1,A⇒ C∨D,∆1

— t#′ —
Γ2,B⇒ C,D,∆2

∨r
Γ1,B⇒ C∨D,∆1

∨l
Γ0,A∨ B⇒ C∨D,∆0

All displayed Γ ’s and ∆’s are equal. The desired properties are pre-
served (hypothesis). Now we simply swap the applications of ∨r with
the one of the root (∨l) and we get this:

. . . . . . . . .
— u ′ —

Γ2,A⇒ C,D,∆2

— t#′ —
Γ2,B⇒ C,D,∆2

∨l
Γ1,A∨ B⇒ C,D,∆1

∨r
Γ0,A∨ B⇒ C∨D,∆0

The sub-trees starting in level 2 are not changed and therefore the leaves
are not modified. The macro saturation and the block heights also re-
main the same, as only two rules in the lowest micro block are ex-
changed independently.

3. Now the last case we discuss here: the combination of ⊃l and ⊃l. The
procedure is almost the same: first we omit the root sequent
Γ0,A ⊃ B,C ⊃ D⇒ ∆0 of t, and obtain two different sequent trees t1
and t2. In both, there occurs an application of ⊃l on C ⊃ D:

. . .
Γl+1,A ⊃ B,C ⊃ D⇒ C,∆l+1

. . .
Γl+1,A ⊃ B,D⇒ ∆l+1 ⊃l

Γl,A ⊃ B,C ⊃ D⇒ ∆l . . .
— u1 —

Γ1,A ⊃ B,C ⊃ D⇒ A,∆1

t1
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t2

. . .
Γm+1,C ⊃ D⇒ C,∆m+1

. . .
Γm+1,D⇒ ∆m+1 ⊃l

Γm,C ⊃ D⇒ ∆m . . .
— u2 —

Γ1,C ⊃ D,B⇒ ∆1

The tree t2 is no problem: as t is macro-saturated, t2 must also be
macro-saturated, so we can apply the hypothesis to pull the application
of ⊃l on C ⊃ D down to its root.

However, as t was redundance-free, we will not find an application on
A ⊃ B in t1, which means that it is not macro-saturated. Nevertheless,
because t1 is redundance-free and there are no critical rule applications
in t1 (the MBH is 1), we can modify t1 temporarily. We simply drop
A ⊃ B from all antecedents Γi of t1. We call the result t−1 . This again
must be macro-saturated and redundance-free, so we can apply the
hypothesis to pull down the application of ⊃l on C ⊃ D to the root.
Once this is done, we add A ⊃ B to all antecedents of the resulting t−′1
and obtain t ′1.

Now we put t ′1 and t ′2 on the root sequent of t:

— u ′1 —
Γ2,A ⊃ B,C ⊃D⇒A,C,∆2

— u ′′1 —
Γ2,A ⊃ B,D⇒A,∆2 ⊃l

Γ1,A ⊃ B,C ⊃D⇒A,∆1

— u ′2 —
Γ2,C ⊃D,B⇒ C,∆2

— u ′′2 —
Γ2,D,B⇒ ∆2 ⊃l

Γ1,C ⊃D,B⇒ ∆1 ⊃l
Γ0,A ⊃ B,C ⊃D⇒ ∆0

Then the exchange is again easy.

— u ′1 —
Γ2,A ⊃ B,C ⊃D⇒A,C,∆2

— u ′2 —
Γ2,C ⊃D,B⇒ C,∆2 ⊃l

Γ1,A ⊃ B,C ⊃D⇒ C,∆1

— u ′′1 —
Γ2,A ⊃ B,D⇒A,∆2

— u ′′2 —
Γ2,B,D⇒ ∆2 ⊃l

Γ1,A ⊃ B,D⇒ ∆1 ⊃l
Γ0,A ⊃ B,C ⊃D⇒ ∆0

The leaves are reordered but actually not changed. As the whole parts
u ′1, u ′′1 , u ′2, and u ′′2 were macro-saturated and redundance-free before
the swap, they are still redundance-free and macro-saturated now. For
the same reason, the mbh does not change. No critical rule is involved,
so the MBH is still 1.
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So far, we know that we have some possibilities to move rule applications
from top to bottom. This allows us to start the normalization of a G3i

m-
sequent-tree. By Lemma 3.9 it is possible to move independent rule applic-
ations of one micro block into another micro block below. This makes it
possible to saturate micro blocks as well.

Definition 3.7 (Micro Block Saturation [139]). A micro block with Γ ⇒ ∆ as
root sequent is saturated iff non-critical and non-closing rules are applied on all
formulas γ of Γ and δ of ∆ for which γ is not atomic and δ is neither atomic nor
critical.
A sequent tree is micro-saturated iff all the micro blocks on all of its paths are
saturated.

To check saturation of a micro block, we have to look at the non-atomic for-
mulas in its root sequent and find out whether rules are applied in the micro
block on all these formulas (as long as the applications are independent and
non-critical).

Lemma 3.10 (Micro Block Saturation in G3i
m-Proof-Trees [139]). Let t be a

G3i
m-proof-tree of micro block height h. Then t can be transformed so that it is

micro-saturated, but still closed, and without increasing its micro block height h.

Proof. As preparation, we make t redundance-free (Lemma 3.7) and macro-
saturate it afterwards (Lemma 3.8). We perform an induction on the micro
block height (mbh) h of this prepared t.

Base Case: If h = 1 then there is one micro block in each path of t. For each
of these micro blocks, the enveloping macro block is saturated. Therefore
there is a rule application on each formula of the micro block’s root sequent.
This means that the micro block is already saturated.
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Inductive Step: Consider the proof tree t of mbh h+ 1.

...
...

...
— t1 —
Γ1 ⇒ ∆1

...
...

...
...

...
— t2 —
Γ2 ⇒ ∆2

...
...

...
. . .

...
...

...
— tn —
Γn ⇒ ∆n
...

...
...

ΓR ⇒ ∆R

The sequents Γi ⇒ ∆i for 1 6 i 6 n now mark the end of the micro blocks
that start in the root sequent ΓR ⇒ ∆R. We call this section of the tree smb. The
trees t1 to tn have a maximum mbh of h (at least one has an mbh of h, some of
them might be empty). By hypothesis, they can be micro-saturated without
increasing their mbh. For all these separated border sequents Γi ⇒ ∆i we do
the following:

We consider all formulas γ of ΓR which still occur in Γi without a rule appli-
cation on γ below. Such a γ causes the non-saturation of the micro block. So
for each of the γ’s we do the following:

As the enveloping macro block is saturated, there must be a rule application
on γ in the same macro block, but in some micro block above the one we
are just considering. However, as this application is independent of all rule
applications above Γi ⇒ ∆i, it can be moved to the level of the border sequent
(Lemma 3.9).

Here is an example:

...
...

— ti —
Γi,A∨ B⇒ ∆i

...
...

...
...

...
ΓR,A∨ B⇒ ∆R

=⇒
...

...

— t ′i —
Γi,A⇒ ∆i

— t ′′i —
Γi,B⇒ ∆i

∨l
Γi,A∨ B⇒ ∆i

...
...

...
...

...
ΓR,A∨ B⇒ ∆R

Then γ is saturated in the micro block and we can proceed with the next
γ. It is however possible that the number of parallel micro blocks in level 0
is increased, as it happens in the shown example. In this case we need to
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cope with the remaining γ’s in both branches. This is no problem, as the
transformation does not create new non-saturated formulas in ΓR.

Anyway, once every antecedent formula in question is saturated, we can do
the same with all non-critical and non-atomic δ’s of ∆R for which there is
no application below Γi ⇒ ∆i. Finally, the micro block is saturated. We
apply the hypothesis again to saturate all micro blocks above the border
sequent.

Figure 3.12 shows the micro saturation of the macro-saturated G3i
m-proof

we considered before. The dashed lines show the borders of micro blocks
within macro blocks. Note that the saturation reduces the number of micro
blocks in the second macro block (read from bottom to top).

From Normalized G3im-Proofs to DiaSeqI-Proofs

From now on, we call sections of G3i
m-sequent-trees, for which each path

has a micro block height of 1, single micro sections. If all the micro blocks of a
single micro section are saturated, it is a saturated single micro section.

Let us pause for a moment and have a look at the things we have achieved so
far. We can take any closed G3i

m-proof-tree t and make it redundance-free, i.e.,
we can remove repetitive rule applications on duplication formulas within
the same macro block. The resulting proof tree t ′ is still closed (Lemma
3.7). Next, we macro-saturate the tree to t ′′ (Lemma 3.8). Then we have the
non-critical and non-redundant rule applications on non-atomic formulas
in macro blocks as far as possible (Definition 3.6). We take t ′′ and micro-
saturate it (Lemma 3.10). This is how we obtain t ′′′. So, on every non-critical
and non-atomic formula of the root sequent of each micro block, a rule is
applied within this micro block (Definition 3.7).

Why have we done all that? Well, now we can move the rule applications
in all single block sequent sections of t ′′′ the way we want. We simply need
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ax
¬A,B,¬(A ⊃ C),A⇒ A ⊃ C,A,C

¬l
¬A,C,¬(A ⊃ C),A⇒ A,C

¬l
¬A,B,¬(A ⊃ C),A⇒ C

⊃r
¬A,B,¬(A ⊃ C)⇒ A,A ⊃ C

¬l
¬A,B,¬(A ⊃ C)⇒ A ⊃ C

¬l
¬A,B,¬(A ⊃ C)⇒

¬r
¬A,B⇒ A,¬¬(A ⊃ C),C,D

¬l
¬A,B⇒ ¬¬(A ⊃ C),C,D

∧l
¬A∧ B⇒ ¬¬(A ⊃ C),C,D

∨r
¬A∧ B⇒ ¬¬(A ⊃ C),C∨D

∨r
¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)

⊃r
⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

⇓
ax

¬A,B,¬(A ⊃ C),A⇒ A ⊃ C,A,C
¬l

¬A,B,¬(A ⊃ C),A⇒ A,C
¬l

¬A,B,¬(A ⊃ C),A⇒ C
⊃r

¬A,B,¬(A ⊃ C)⇒ A,A ⊃ C
¬l

¬A,B,¬(A ⊃ C)⇒ A ⊃ C
¬l

¬A,B,¬(A ⊃ C)⇒
¬r

¬A,B⇒ A,¬¬(A ⊃ C),C,D
¬l

¬A,B⇒ ¬¬(A ⊃ C),C,D
∨r

¬A,B⇒ ¬¬(A ⊃ C),C∨D
∧l

¬A∧ B⇒ ¬¬(A ⊃ C),C∨D
∨r

¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)
⊃r

⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

Figure 3.12: Example of a micro saturation (c.f. [139])
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to pull down the applications of the rules we want to have at the bottom,
then pull down those of the rules we want to have above and so on. The
sequents of the leaves do not change (Lemma 3.9), so there is nothing to
worry about. For the translation to DiaSeqI (which will follow soon), we
want the applications of right-hand side rules before the applications of the
left-hand side rules in every micro block. This corresponds to the defences
performed by the P-agents, followed by the defences by O.

Let us determine the required order of rule applications in all single block
sequent sections of t ′′′ as follows (on all paths read from bottom to top):

¬l ⊃l ∧l ∨l ∧r ∨r .

The problem is that if the dialogue does not start with a critical attack per-
formed by O, the order is different within the lowest macro blocks, so we
have to make a difference between the lowest macro blocks and everything
above. For the transformation we do not distinguish the different proponent
labels and therefore we also omit the addressees attached to the o. As men-
tioned before, this does not make a difference as they are only used to assign
the communication partners to each other. We also ignore the blocking with
the tilde (õ) as this issue is solved because our G3i

m-proofs are considered
to be redundance-free (Lemma 3.7).

Lemma 3.11 (Macro-Block Transformation (G3i
m)). Every redundance-free,

macro-saturated, and micro-saturated G3i
m-proof with root sequent ΓR ⇒ ∆R can be

transformed to a DiaSeqI-tree which is closed and which has a sequent ΦR `O ΨR
as root, where ΦR and ΨR contain the formulas of ΓR and ∆R respectively, augmen-
ted with labels (left-hand formulas with o, right-hand with p), and all non-atomic
formulas of ΦR are marked with an attacked-bar (o).

Note that the resulting tree is closed but not a completely valid DiaSeqI-
proof-tree, as the root sequent has a special form which is not desired (the
O-labels of non-atomic formulas are all marked as attacked). However we
need this intermediate DiaSeqI-tree which we call d.
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Proof by induction on the MBH h of t.

Base Case: h = 1 — If there is only one macro block then there is no critical
rule application in t. We perform another induction on the mbh j of t.

Base Case: j = 1 — As t is closed, there must be at least one micro
block including a closing rule. Because of the independence of all rule
applications in the micro block, the closing rule can be applied im-
mediately in the root sequent and the rest is obsolete. Therefore, we
construct d with the root sequent ΦR `O ΨR and append all possible
triggers, defences and attacks by O, followed by an application of cO
and PN. Finally, we add the ipse dixisti remark (P!!) which must be
possible as the atom was attacked by O before and it must be present
in ΦR because of the rule independence within the same micro block.
In the case that t is closed because of a ⊥ in ΓR, absurdum dixisti (P?⊥)
is stated by a P (remember that only non-atomic formulas in ΦR are
marked as attacked in the root).

Inductive Step: We take the lowest saturated single micro section of t
and use Lemma 3.9 to reorder the rule applications (¬l, ⊃l, ∧l, ∨l, ∧r,
∨r). Our t has the following form:

— t1 —
r1

Γ1 ⇒ ∆1

...
...

. . . . . .

— tn —
rn

Γn ⇒ ∆n
...

...
ΓR ⇒ ∆R

We assume that ri are the rules leading to the next micro blocks above
and Γi ⇒ ∆i are the last sequents of the single micro blocks starting in
ΓR ⇒ ∆R. We take the root sequent ΦR `O ΨR as in the base case and
add all possible trigger rules for O (corresponding to ¬l and ⊃l) and
the O-defending rules (corresponding to the remaining left rules). Then
we append all possible O-attacks followed by cO and PN in each branch
(there is no critical application in t). Afterwards, the P-defences follow
which correspond to right-hand rule applications of t. Finally, we add
the proponents’ attacks and cP to d. All branches of the height which
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correspond to one micro block are then done: every non-atomic for-
mula on the O-side is attacked and every formula on the P-side defen-
ded (no critical rule, so no delay), so we obtain again the formΦi `O Ψi.
We apply the (inner) induction hypothesis to cope with t1 to tn accord-
ingly.

Inductive Step: Now we have at least one critical rule application in t.
Again, we perform the induction on the mbh j of the lowest saturated macro
block section of t,10 to show that the macro block can be translated to an
equivalent block in DiaSeqI:

Base Case: j = 0 — If the mbh of the section is zero, then it consists of
a single empty macro block and the first rule application in t is critical.
Due to the saturation of the blocks, there is nothing to defend for O in
this micro block. Also note that only one branch can be involved. We
start d with our usual ΦR `O ΨR and add all possible attacks, includ-
ing the critical one, performed by O, followed by a cO. Then we add
the critical move by P (corresponding to ⊃r or ¬r), all possible attacks
which can then be performed by P, and finally cP.

Inductive Step: We do the same as in the outer base case. In the
saturated micro block section the desired order of rule applications is
enforced (same as in base case above) and we obtain the correspond-
ing structure of O-triggers, O-defences, and O-attacks followed by non-
critical P-defences, P-attacks, and cP. We then apply the (inner) induc-
tion hypothesis on all branches to transform further micro blocks.

Once the macro block is transformed, we simply apply the hypothesis on the
G3i

m-trees starting with the macro blocks in the next macro block level.

10The section of all saturated macro blocks of t with a macro block level of 0.
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Theorem 3.2 (DiaSeqI Completeness). Every closed G3i
m-proof-tree can be

transformed to a DiaSeqI-proof-tree.

Proof. Let t with MBH h be the G3i
m-proof we want to transform and d

the target DiaSeqI-poof-tree. We assume that t is redundance-free, macro-
saturated, and micro-saturated. If it is not, we apply our Lemmas 3.7, 3.8, and
3.10. We say that ΓR ⇒ ∆R is the root sequent of t. We consider two cases:

• h = 1 — If there is only one macro-block in each path then there is no
critical rule application in t. We perform an induction on the mbh j of
t, similarly as in the proof of Lemma 3.11:

Base Case: j = 1 — We construct d with a root sequent ΦR `O ΨR
where ΦR and ΨR correspond to the formulas of Γ and ∆, aug-
mented with labels o and p, respectively. We append all possible
attacks by O, followed by an application of cO and PN. Finally,
we add the ipse dixisti remark (P!!) which must be possible as
the atom was attacked before by O and it must be present in ΦR
because of the rule independence within the same micro block.

Inductive Step: We take the lowest saturated single micro section
of t and use Lemma 3.9 to reorder the rule applications, but this
time in another order (∨r, ∧r, ¬l, ⊃l, ∧l, ∨l). Then, as in the proof
of Lemma 3.11, we simply construct the root sequentΦR `O ΨR like
in the base case and add all possible attacks that can be performed
by O. We append cO and PN in each branch (there is no critical
application in t). Afterwards, the P-defences (which correspond to
right-hand rule applications of t) and the P-attacks follow. Then, in
all non-closed branches (in the closed ones, P defended with ipse
dixisti), we add cP to d, then the trigger-rules for O (correspond-
ing to ¬l and ⊃l) and O’s defending rules (corresponding to the
remaining left rules). We apply the (inner) induction hypothesis to
cope with all micro blocks above.
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• h > 1 — for the lowest macro-saturated section of t,11 we do almost the
same as for the case h = 0. Again, we perform the induction on the mbh
j of this section, to show that the macro block can be translated to an
equivalent block in DiaSeqI reaching a P-agent’s reaction to a critical
attack:

Base Case: j = 0 — If the mbh of the section is zero then it consists
of a single empty macro block and the first rule application in t is
critical. Note that only one branch can be involved. We start dwith
our usual ΦR `O ΨR and add all attacks, including the critical one,
performed by O, followed by a cO. Then we add the critical move
by P (corresponding to ⊃r or ¬r) and all possible attacks which can
then be performed by P. There is nothing remaining to defend for
P as other agents (if available) were deactivated. We then append
cP.

Inductive Step: In the saturated micro block section the desired
order of rule applications is enforced (same as in the case of h = 0)
and we obtain the corresponding structure of O-attacks followed
by non-critical P-defences, P-attacks, O-triggers, and O-defences. If
the micro block contains a closing rule, we do the same as in the
case of h = 0.

Now, in the leaves of our current d, all non-atomic statements by O are
attacked while the P-statements are not. So we take the sections of t
starting in macro block level 1 and apply Lemma 3.11. This is how we
obtain the desired structure for d.

To complete our continuous example we first need to perform the rearrange-
ment of the rule applications within the saturated micro blocks. As there is
no micro block in the lowest macro block, only the rule order of Lemma 3.11

11The section of all saturated macro blocks of t which have a macro block level of 0.
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ax
¬A,B,¬(A ⊃ C),A⇒ A ⊃ C,A,C

¬l
¬A,B,¬(A ⊃ C),A⇒ A,C

¬l
¬A,B,¬(A ⊃ C),A⇒ C

⊃r
¬A,B,¬(A ⊃ C)⇒ A,A ⊃ C

¬l
¬A,B,¬(A ⊃ C)⇒ A ⊃ C

¬l
¬A,B,¬(A ⊃ C)⇒

¬r
¬A,B⇒ A,¬¬(A ⊃ C),C,D

¬l
¬A,B⇒ ¬¬(A ⊃ C),C,D

∨r
¬A,B⇒ ¬¬(A ⊃ C),C∨D

∧l
¬A∧ B⇒ ¬¬(A ⊃ C),C∨D

∨r
¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)

⊃r
⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

⇓
ax

¬A,B,¬(A ⊃ C),A⇒ A ⊃ C,A,C
¬l

¬A,B,¬(A ⊃ C),A⇒ A,C
¬l

¬A,B,¬(A ⊃ C),A⇒ C
⊃r

¬A,B,¬(A ⊃ C)⇒ A,A ⊃ C
¬l

¬A,B,¬(A ⊃ C)⇒ A ⊃ C
¬l

¬A,B,¬(A ⊃ C)⇒
¬r

¬A,B⇒ A,¬¬(A ⊃ C),C,D
∨r

¬A,B⇒ A,¬¬(A ⊃ C),C∨D
¬l

¬A,B⇒ ¬¬(A ⊃ C),C∨D
∨r

¬A,B⇒ ¬¬(A ⊃ C)∨ (C∨D)
∧l

¬A∧ B⇒ ¬¬(A ⊃ C)∨ (C∨D)
⊃r

⇒ (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

Figure 3.13: Changing the order of rule applications (c.f. [139])

144



3.3 Adequateness of DiaSeqI and DiaSeqI+

PN,P !!
õ : ¬A, op2 : B, õ : ¬(A ⊃ C), op8 : A `PD p0 : C, p6 : A, p7 : A ⊃ C

O∗¬(×2),O?a(×2),O?⊃, cO
op6 : ¬A, op2 : B, op7 : ¬(A ⊃ C), op8 : A `O p0 : C

P!⊃,P?¬(×2), cP
õ : ¬A, op2 : B, õ : ¬(A ⊃ C) `PD p5 : A, p0 : A ⊃ C

O∗¬(×2),O?a,O?⊃, cO
op5 : ¬A, op2 : B, op0 : ¬(A ⊃ C) `O

P∗¬,P?¬(×2), cP
õ : ¬A, op2 : B `PD p0 : ¬¬(A ⊃ C), p3 : C, p4 : D, p1 : A

O?a(×2), cO
õ : ¬A, op2 : B `O p0 : ¬¬(A ⊃ C), p3 : C, p4 : D, p1 : A

P!∨, cP
õ : ¬A, op2 : B `PN p0 : ¬¬(A ⊃ C), p3 : C∨D, p1 : A

P?¬, cP,O∗¬,O?a,O?∨, cO,PN
op1 : ¬A, op2 : B `PN p0 : ¬¬(A ⊃ C), p3 : C∨D

P!∨
op1 : ¬A, op2 : B `PN p0 : ¬¬(A ⊃ C)∨ (C∨D)

O!∧(×2),O?∨, cO,PN
op1

L : ¬A∧ B, op2
R : ¬A∧ B `O p0 : ¬¬(A ⊃ C)∨ (C∨D)

P?∧, cP
op1 : ¬A∧ B `PN p0 : ¬¬(A ⊃ C)∨ (C∨D)

P!⊃
`PD p0 : (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

O?⊃, cO`O p0 : (¬A∧ B) ⊃ (¬¬(A ⊃ C)∨ (C∨D))

Figure 3.14: Constructed DiaSeqI-proof from micro-saturated G3i
m-proof

(c.f. [139])

is relevant. The old and the new G3i
m-proof are shown in Figure 3.13. The

resulting DiaSeqI-proof is displayed in Figure 3.14. The underlined rule
names correspond to those of the G3i

m-tree (now usually defences and trig-
gers). Doubled and dashed lines indicating the previous borders of macro
and micro blocks are adopted for illustrating purposes.

3.3.2 Completeness of DiaSeqI+

Now we adjust the completeness proof for DiaSeqI to make it fit for
DiaSeqI+. Our reference calculus is IG (Chapter 2.1.4). In the end, we only
consider regular IG-derivations (IGr-derivation) [33] with the restrictions we
discussed on page 39. As preparation we interpret these informal meta-rules
as follows:
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Definition 3.8 (IGr-derivations, c.f. [33]). In every IGr (regular IG) proof tree t
the following restrictions are obeyed for all formulas φ and ψ:

1. If there is an application al = (⊃r, φ̂) in t, then there is no am = (⊃r, ψ̂) on
the same path such that m < l and φ = ψ.

2. If there is an application al = (a.f , φ̂) in t, then there must also be an appli-
cation am = (⊃r, ψ̂) on the same path such that m < l and φ = ψ.

3. If there are two rule applications al = (⊃l, φ̂) and an = (⊃l, ψ̂) with φ = ψ

and n < l in the same path of t, then there must also be a critical application
am in the same path, such that n < m < l.

We divide the non-critical rules into two parts. The conventional rules are
∧l, ∨l, ⊃l, ∧r, and ∨r. Their applications are also called conventional. The
a fortiori rule and its application are now called unconventional. The rule ⊃r
is the only critical rule we consider now. For the sake of simplicity, we omit
negations (as they can be interpreted in terms of implications) and therefore
ignore the conventional rule ¬l and the critical ¬r.

In the following, we also refer to IG-derivations which are not completely
regular, but adapt only some of the corresponding properties:

Definition 3.9 (Semi-Regular IG-Derivation). Let t be an IG-proof-tree. Then t
is semi-regular iff the following holds in each of its paths: if there is an application
al = (⊃r, φ̂), then there is no other application am = (⊃r, ψ̂) in the same path such
that φ = ψ.

Weakening (Lemma 3.1) is also admissible in IG (no matter whether the de-
rivation is regular or not), i.e., the proof works without problems when we
take rule a.f into account. By contrast, inversion and contraction are a bit
more problematic. We do not discuss the details regarding contraction here,
as they are not relevant for our purpose.
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Lemma 3.12 (Inversion (IG)12). For all ∆, Γ and formulas A and B:

1. If 
IG
n Γ ,A∧ B⇒ ∆ then 
IG

n Γ ,A,B⇒ ∆.

2. If 
IG
n Γ ⇒ A∨ B,∆ then 
IG

n Γ ⇒ A,B,∆.

3. If 
IG
n Γ ,A∨ B⇒ ∆ then 
IG

n Γ ,A⇒ ∆ and 
IG
n Γ ,B⇒ ∆.

4. If 
IG
n Γ ⇒ A∧ B,∆ then 
IG

n Γ ⇒ A,∆ and 
IG
n Γ ⇒ B,∆.

5. If 
IG
n Γ ,A ⊃ B⇒ ∆ then 
IG

n Γ ,A ⊃ B⇒ A,∆ and 
IG
n Γ ,B⇒ ∆.

6. If 
IG
n Γ ⇒ A ⊃ B,∆ without any application of ⊃r on some A ⊃ B, then


IG
n Γ ⇒ B,∆.

The derivations in the conclusions do not contain further rule applications than the
derivations in the conditions. The order of rule applications is preserved.

Proof by induction on n. The new feature compared to the proof of Lemma
3.2 (p. 119) is item number 6 which states that a fortiori is invertible under
certain circumstances. Therefore, we discuss only this case here.

Base Case: n = 1 — Trivial as a closing rule can only be applied on atoms,
so this does not depend on A ⊃ B and also not on the corresponding B.

Inductive Step: We have 
IG
n+1 Γ ⇒ A ⊃ B,∆ without an application of ⊃r

on A ⊃ B. We have a look at the lowest rule application of the derivation
tree.

• If it is a conventional rule application, we can simply apply the hypo-
thesis on the premise(s) and add the rule application afterwards again.

• If it as an application of a fortiori on some C ⊃ D of ∆, we can also
apply the hypothesis on the premise and add the a fortiori again.

12see also Lemma 3.2 and [39, 142]; the lemma applies for all IG-derivations, not only
regular ones.
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• If it as an application of a fortiori on A ⊃ B, we are already done, as

IG
n Γ ⇒ B,∆ and therefore also 
IG

n+1 Γ ⇒ B,∆.

• If it is a critical rule application, then on some implication C ⊃ D of ∆.
We then have 
IG

n Γ ,C⇒ D. So the derivation does not have anything
to do with A ⊃ B, therefore we can replace it directly by B in the root
sequent.

In all cases, no further rule applications are necessary and the order of ap-
plications is preserved.

It is not necessary to care about redundancy as we did for G3i
m, because

IGr-proofs are by definition redundance-free (see Definition 3.8: number 3,
p. 146).

Macro-Saturation

Because the restriction that a fortiori may only be applied above correspond-
ing applications of ⊃r in regular derivations, we have to adjust the definition
of macro saturation a little bit:

Definition 3.10 (Macro Block Saturation (IG)). Let M be a macro block of an
IG-tree t. Then M is macro-saturated iff conventional rules are applied on all
formula instances in all sequents of M, wherever syntactically possible. Further,
for all implication formulas ϕ which occur in a succedent of a sequent in M: if
there is an application of ⊃r on some instance of ϕ below M, then there must be an
application of a fortiori on ϕ in M.
An IG-proof-tree is macro-saturated iff all its macro blocks are macro-saturated.

However, this is not everything: the problem is that in the macro saturation
as presented in the proof of Lemma 3.8 the saturation happens by using the
induction hypothesis from the leaves to the root of the derivation tree. In
IGr-derivations we cannot have applications of a fortiori in the macro blocks
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of macro level 0. Therefore, we introduce further definitions for macro sat-
uration.

Definition 3.11 (Macro Block Conventional Saturation (IG)). LetM be a macro
block of an IG-tree t. Then M is conventionally macro-saturated iff conventional
rules are applied on all formula instances in all sequents of M. An IG-proof-tree
t is conventionally macro-saturated iff all its macro blocks are conventionally
saturated.

The conventional macro block saturation corresponds to the macro block
saturation of G3i

m-trees (Definition 3.6, p. 128):

Lemma 3.13 (Macro Block Conventional Saturation of IG-Proof-Trees). Let t
be an IG-proof-tree. Then t can be transformed and made conventionally macro-
saturated, preserving validity of the proof tree and without increasing its macro
block height (MBH). No critical or unconventional rule application is added or re-
moved in any path.

Proof. The proof of Lemma 3.8 (p. 128) works here without changes. Appli-
cations of a fortiori are not added and not removed.

Definition 3.12 (Macro Block Semi-Saturation (IG)). Let S be a set of propo-
sitional formulas which are implications. An IG-tree t is macro-semi-saturated
with respect to S iff all its macro blocks are conventionally saturated and for each
ϕ ∈ S: if there is no critical rule application on a ϕ anywhere in t, then in all
macro blocks in which ϕ occurs in the succedent of a sequent, there is an application
of a fortiori on ϕ in this macro block.

Note that a semi-macro-saturated IG-tree is usually not regular, as we have
the usage of a fortiori-rules without any application of ⊃r.

Lemma 3.14 (Macro Block Semi-Saturation of IG-Proof-Trees). Let t be an
IG-proof-tree and S be an arbitrary finite set of implication formulas. Then t can
be transformed and made semi-macro-saturated with respect to S, preserving
validity of the proof tree and without increasing its macro block height (MBH).
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Proof. We prove this the same way as Lemmas 3.8 and 3.13. The difference is
that implications in succedents must also be taken into account when there
is no corresponding application of ⊃r in the path of t for all formulas of S.
However, this is no problem due to our new inversion (Lemma 3.12).

Lemma 3.15 (Full Macro Block Saturation of Semi-Regular IG-Proof-Trees).
Let t be the tree of a semi-regular IG-derivation (Definition 3.9). Then t can be
macro-saturated (Definition 3.10) preserving validity and without increasing its
MBH.

Proof. As preparation, the semi-regular t is conventionally macro-saturated
(Lemma 3.13). The proof is performed by induction on the MBH h of the
prepared t.

Base Case: h = 1 — There is no critical rule application in t, so it is sufficient
to saturate it conventionally, which is already done. Then it is also fully
saturated.

Inductive Step: The procedure is the same as usual: we increase h by ex-
tending the tree at the bottom:

— t1 — c1
Γ1 ⇒ ∆1

...
...

. . .
...

...
...

— tn — cn
Γn ⇒ ∆n

...
...

ΓR ⇒ ∆R

As we have seen now for several times, the sequents Γi ⇒ ∆i mark the bor-
ders to the next macro blocks starting at macro block level 1. By hypothesis,
all of the derivations ti can be macro-saturated completely. The rule ci is
applied on some implication A ⊃ B of ∆i. There is no other application of ci
on an occurrence of A ⊃ B in ti. So, ti is fully macro-saturated, but not yet
with respect to A ⊃ B. So we set S = {A ⊃ B} and apply Lemma 3.14 on ti.

Once we have done this with all derivations t1 to tn, we are already finished,
because the complete tree was conventionally saturated as preparation and
no critical rule occurs in the macro blocks starting in ΓR ⇒ ∆R.
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Micro-Saturation

Before we achieve the micro-saturation, we need a fourth form of macro block
saturation.

Definition 3.13 (Macro Block Cross-Saturation (IG)). Let S be a set of propo-
sitional formulas which are implications. An IG-tree t is macro-cross-saturated
with respect to S iff all its macro blocks are conventionally saturated and for each
ϕ ∈ S and macro block M in t: if ϕ occurs in some succedent in M, then there is
an application of a fortiori on ϕ in all macro blocks that start in the same sequent
as M and in which ϕ occurs.

The difference to macro-semi-saturation (Definition 3.12) is that in the latter
a fortiori must be applied on all implications in succedents only if there is no
application of ⊃r on the same formula in the whole tree. The cross-saturation
enforces that a fortiori is applied on all occurrences of the implication in all
parallel macro blocks.

The rule movement as described in Lemma 3.9 (p. 131) is quite easy in macro-
cross-saturated IG-trees. We reformulate Lemma 3.9 as follows:

Lemma 3.16 (Independent Rule Movement in Macro-Cross-Saturated IG-
trees). Let S be a set of formulas which are implications and t be an IG-sequent-
tree which is macro-cross-saturated with respect to S, and which has an MBH
of 1. Further, let al = (r,ϕ) be a conventional rule application or an application
with ϕ ∈ S. Suppose that for all rule applications am with 0 6 m < l, al does not
depend on am, i.e., al 6∝ am. Then t can be transformed to t ′ for which

• al is moved downwards to the root, and

• the root sequent and the leaf sequents are the same as in t, and

• no rule application is added and none is removed, and

• the mbh and the MBH are the same as in t, and

• t ′ is also macro-cross-saturated and redundance-free.
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Proof. The proof works the same way as the one for Lemma 3.9. We simply
take the a fortiori-rule into account as well. If al is an application of a fortiori ,
the corresponding formula must be in S and therefore in all other branches,
so we can pull it down each time. The swap at the bottom is possible with
all combinations of non-critical rule applications.

Now the micro-saturation: here, some adjustments are necessary as well.

Definition 3.14 (Micro Block Semi-Saturation (IG)). Let m be a micro block of
an IG-proof-tree t with Γ ⇒ ∆ as root sequent of m. Then m is semi-micro-
saturated with respect to S iff conventional rules are applied on all formulas γ of
Γ and δ of ∆ when syntactically possible, and a fortiori is applied on all implication
formulas in ∆ ∩ S.
An IG-tree is semi-micro-saturated iff all its micro blocks are semi-saturated.

Definition 3.15 (Micro Block Saturation (IG)). Let m be a micro block of an
IG-proof-tree t with Γ ⇒ ∆ as root sequent of m. Then m is micro-saturated iff
conventional rules are applied on all formulas γ of Γ and δ of ∆ whenever syntactic-
ally possible, and a fortiori is applied on all implication formulas δ ′ ∈ ∆, for which
there is an application of ⊃r on some instance of δ ′ below m.

We first enforce a semi-saturation in IG-proof-trees which are already macro-
saturated and macro-cross-saturated.

Lemma 3.17 (Micro Block Semi-Saturation in Macro-Saturated IG-Proof-
Trees). Let S be a set of formulas which are implications and t be an IG-proof-tree
which is macro-saturated, macro-cross-saturated with respect to S, and redundance-
free. Then t can be transformed to t ′ so that t ′ is an IG-proof-tree which is micro-
semi-saturated with respect to S, which has the same mbh and MBH as t, and
which is still macro-saturated and redundance-free. In all paths and macro blocks of
t ′ the same rule applications occur as in the paths and macro blocks of t.
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Proof by induction on the mbh h of t.

Base Case: h = 1 — Each path of t contains one micro block. The envelop-
ing macro block is saturated and macro-cross-saturated with respect to S.
Therefore, there is nothing to be done.

Inductive Step: We consider t with an mbh of h+ 1:

...
...

...
— t1 —
Γ1 ⇒ ∆1

...
...

...
...

...
— t2 —
Γ2 ⇒ ∆2

...
...

...
. . .

...
...

...
— tn —
Γn ⇒ ∆n
...

...
...

ΓR ⇒ ∆R

Again, the sequents Γi ⇒ ∆i for 1 6 i 6 n mark the end of the micro blocks
that start in the root sequent ΓR ⇒ ∆R. We call this section of the tree smb.
For each of the border sequents Γi ⇒ ∆i we do the following:

We collect all non-atomic formulas γ of ΓR and δ of ∆R which are still present
in Γi and ∆i, with the additional restriction that all δ which are implications
must also be in S, the others are ignored. We concentrate on these formulas
of ∆R which are still present in ∆i and which are also in S. The other cases
are handled as in the proof of Lemma 3.10.

As the enveloping macro block is macro-cross-saturated with respect to S,
the δ occurs in the macro block(s) above Γi ⇒ ∆i. We take ti and prune it at
its borders to the next macro blocks. In this resulting tree, the application of
a fortiori on δmust be independent of all applications below and therefore we
can pull it down to the root. Then the micro block of t that ended in Γi ⇒ ∆i

is extended by an application of a fortiori on δ which is now saturated in this
micro block. As no critical application is involved, the MBH does not change.
Further, because all rule applications are still present in all the macro blocks
and none is added, the tree is still macro-saturated and redundance-free. We
proceed with the next unsaturated formula accordingly.

153



3 Multi-Proponent Dialogues for Intuitionistic Logic

Finally, we apply the hypothesis to micro-semi-saturate everything above the
new border and we are done.

Lemma 3.18 (Full Micro Block Saturation of Semi-Regular IG-Proof-Trees).
Let t be the tree of a macro-saturated, redundance-free, and semi-regular IG-deriva-
tion. Then t can be micro-saturated preserving validity and macro saturation, and
without increasing its MBH. The rule applications in the various macro blocks re-
main the same, i.e., none is added and none is removed.

Proof. The structure of the proof is very similar to the one of Lemma 3.15:
we perform an induction on the MBH h of t.

Base Case: h = 1 — There is no critical rule application in t and it is macro-
cross-saturated with respect to S = ∅. It is sufficient to micro-semi-saturate t
with respect to S = ∅ (Lemma 3.17). Then it is also already fully saturated.

Inductive Step: h is increased in the usual way. The sequent Γi ⇒ ∆i is
the border to the next macro block starting in macro level 1 (see proof of
Lemma 3.15).

First of all, we micro-semi-saturate the whole t with respect to S = ∅. Note
that t is macro-cross-saturated with respect to ∅. Macro-saturation is pre-
served. The macro blocks of level 0 are then completely micro-saturated.

By hypothesis, all of the derivations ti can be micro-saturated completely,
which we do. The rule ci is applied on some implication A ⊃ B of ∆i, for
which ti is not necessarily micro-saturated. Macro-saturation is preserved.

Because the whole t is semi-regular (Definition 3.9), there is no other ap-
plication of ci on an occurrence of A ⊃ B in ti. As t is still (fully) macro-
saturated, in all macro blocks of ti in which A ⊃ B occurs in the succedent,
there is an application of a fortiori . Further, because all these blocks are
saturated, they are also macro-cross-saturated with respect to {A ⊃ B}. We
use Lemma 3.17 to micro-semi-saturate ti with respect to S = {A ⊃ B}. The
micro-semi-saturation with respect to the other implication formulas is pre-
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served, as well as the macro-saturation. The macro blocks that start in the
root of t are already finished (we did this at the beginning of the inductive
step).

From Normalized IGr-Proofs to DiaSeqI+-Proofs

It is almost accomplished! Our aim is to transform an IGr-proof (regular IG-
proof) into a DiaSeqI+-derivation. IGr-proofs are by definition redundance-
free and it is helpful that every regular IG-proof is also semi-regular, there-
fore we can apply Lemmas 3.15 and 3.18 (full macro-saturation and full
micro-saturation) without any problem and the result is still regular. So
what needs to be done is the resorting within the micro blocks.

Technically, an intermediate dialogical calculus is required which corres-
ponds to semi-regular IG-trees, because it is again not possible to perform
the induction on the MBH of IGr-proofs directly. However, in the end, things
work the same way as presented in Lemma 3.11 (p. 139). The a fortiori-rule
simply corresponds to P’s alternative defence P!⊃+ against attacks on im-
plications. It is a non-critical move and therefore the defence is assigned to
the PN-phase. In the lowest macro blocks of the semi-regular IG-proof-tree t,
in each micro block, the rules shall be ordered as (read from bottom to top)

∨r ∧r a.f ¬l ⊃l ∧l ∨l

because O starts with her attacks. In the macro blocks starting in macro level
1, we use the order

¬l ⊃l ∧l ∨l ∧r ∨r a.f .

Theorem 3.3 (DiaSeqI+ Completeness). Every closed IGr-proof tree can be
transformed to a DiaSeqI+-proof tree.
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Proof. Actually, we need a stronger assertion which transforms semi-regular
IG-proofs to proofs of an intermediate “semi-regular” DiaSeqI, which al-
lows proponents to defend in an a fortiori-way also without defending crit-
ically against a corresponding attack on an implication.

We do not discuss the proof here, as it works the same way as the proofs of
Lemma 3.11 (p. 139) and Theorem 3.2 (p. 142). Note that Lemma 3.16, as the
new version of Lemma 3.9, refers to macro-semi-saturated and macro-cross-
saturated proofs. It can however be used easily to move rule applications
within sections of the IGr-tree with an MBH of 1.

3.3.3 Soundness

Soundness is actually shown quite easily, as it is not a big problem to trans-
form DiaSeqI-proofs to G3i

m-proofs. The same holds for DiaSeqI+ and IGr.

Theorem 3.4 (DiaSeqI Soundness ([138, 139]). Every DiaSeqI-proof-tree can
be transformed to a G3i

m-proof-tree.

Proof. We only sketch the proof here as the procedure is quite obvious.

The G3i
m-proof is the result of removing the announcer labels off the signed

formulas and replacing the turnstiles `O, `PN, and `PD by the standard ⇒.
The rules that change the phases (cO, PN, cP) can therefore be omitted, as well
as the attacking moves as they only add the bars as sign of being attacked.
The only exception is rule O?∧ where a branching is involved, but more on
this later. So the moves which are relevant for the transformation are the
defences and triggers. These have the same behaviour as the rules of G3i

m.
We simply replace the O-defences and O-triggers by left-hand rules, and the
P-defences and P-triggers by right-hand rules. The moves P!! and P?⊥ are
translated to ax and ⊥l, respectively.

The only remaining problems are O?∧ and the corresponding defences P!L

and P!R. However, this is not difficult to solve either. Within a phase, moves
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(or rule applications) can be exchanged almost arbitrarily. There are excep-
tions regarding trigger rules but their movement is not necessary for our
purposes. An application of O?∧ that occurs in some O-phase can always be
moved directly below the cO that ends the phase, so the following form is
obtained:13

...
...

... cO
Φ `O pL : A∧ B, Ψ

...
...

... cO
Φ `O pR : A∧ B, Ψ

O?∧
Φ `O p : A∧ B, Ψ

...
...

...

All statements of Ψ are and none of Φ is attacked. Now we consider three
different cases:

1. In both branches p defends the ∧-attack in the next PN-phase.
Then in each of the branches there must be an application of PN above
the cO and there is no reaction to a critical attack in the decide phase.
Like O?∧ before, the defence can be moved freely in the proponents’
normal phase. We simply move it directly above the application on PN.
Then we obtain the following form:

...
...

...
Φ `PN p : A, Ψ

P!L
Φ `PN pL : A∧ B, Ψ

PN
Φ `PD pL : A∧ B, Ψ

cO
Φ `O pL : A∧ B, Ψ

...
...

...
Φ `PN p : B, Ψ

P!R
Φ `PN pR : A∧ B, Ψ

PN
Φ `PD pR : A∧ B, Ψ

cO
Φ `O pR : A∧ B, Ψ

O?∧
Φ `O p : A∧ B, Ψ

...
...

...

These DiaSeqI-rule-applications of the section displayed here can
simply be translated to an application of ∧r in G3i

m.

13We do not give details about the movement here, but the procedure is similar to the
movement of rule applications in G3i

m.
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2. Only in one of these branches p defends against the ∧-attack.
Then there are two possibilities for the other branch.

a) There is an occurrence of P!! or P?⊥ in the next PN-phase.

b) A reaction to a critical attack follows in the proponents’ decide
phase.

In both cases, in the branch in which P performs the ∧-attack, we can
simply move the application of P!L or P!R directly above PN:

...
...

...
Φ `PN p : A, Ψ

P!L
Φ `PN pL : A∧ B, Ψ

PN
Φ `PD pL : A∧ B, Ψ

cO
Φ `O pL : A∧ B, Ψ

...
...

...
Φ `PD pR : A∧ B, Ψ

cO
Φ `O pR : A∧ B, Ψ

O?∧
Φ `O p : A∧ B, Ψ

...
...

...

We translate this section to ∧r of G3i
m. Although (in the shown ex-

ample) p : B does not occur in the right branch, this is no problem, as
the closure is completely independent of B, as well as of A ∧ B: rules
ax/P!! can only be applied on prime formulas and in case of ⊃r/P!⊃
or ¬r/P∗¬, B vanishes anyway.

3. In both of these branches p does not defend against the ∧-attack.
There is also no problem to translate O’s attack to an application of ∧r
in the G3i

m-tree for the same reasons as described in the previous case.

Soundness for DiaSeqI+ is shown in the same way, but of course we translate
the DiaSeqI+-trees to IGr-trees. The rule P!⊃+ then corresponds to a fortiori

of IG/IGr. The meta-restrictions of DiaSeqI+ already correspond to the ones
of regular IG-derivations, as discussed in Section 3.2.2.

Theorem 3.5 (DiaSeqI+ Soundness). Every DiaSeqI+-proof tree can be trans-
formed to a regular IG-proof-tree.
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3.4 Summary and Comparison to other Systems

The purpose of our multi-proponent system is to have a game-theoretic de-
cision procedure for intuitionistic propositional logic. Instead of most of
the standard dialogical approaches there are not only two players in MPID,
namely one opponent and one proponent, but instead the initial proponent
stating the hypothesis is supported by further proponent agents. Together
they fight a single opponent. In this chapter we discussed this approach
in detail and considered an extension that enforces termination of the dia-
logues in all cases. The informal game rules were implemented in the formal
dialogical sequent systems DiaSeqI and DiaSeqI+. These were then used to
show that MPID can be used as a sound and complete decision procedure
for intuitionistic propositional logic. In the following we compare the multi-
proponent intuitionistic dialogues and the calculi DiaSeqI and DiaSeqI+

with different sequent calculi (especially those using a focus) and dialogical
systems.

3.4.1 Comparison to other Dialectic Systems

Concerning the different properties of the dialectics presented in Chap-
ter 2.3, one can say that MPID uses a variant of the E-rule because O is
always obliged to react to all moves of the previous round. Like in the
constructive dialectics by Barth and Krabbe, we make use of the ipse dixisti
remark. A difference is that in our case this remark is part of the particle
rules (!!), but this is not a profound change. The same thing is done with
the absurdum dixisti remark. We interpret it as a ⊥-attack against which one
cannot defend and which cannot be counter-attacked. However, the result is
the same. Allowing the proponents to state prime formulas that have not yet
been stated by O, and using a variant of the E-rule, makes it easier to show
soundness and completeness of MPID as calculus.
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We achieve termination without the usage of ranks because these are prob-
lematic with respect to proof searches (see Chapter 2.3.4). By contrast, we
restrict the proponents’ possibilities to repeat moves. A similar technique
was already proposed by Barth and Krabbe in terms of structural rules [10].
In our attempt, we tried to simplify the complex rules by introducing a non-
critical defence against attacks on implications. The idea is adapted from
Corsi’s a fortiori rule of sequent system IG [32, 33] (Chapter 2.1.4).

In the dialogue sequents by Barth and Krabbe [10], every rule application
corresponds exactly to one move performed by a player (see Chapter 2.3.3).
By contrast, in DiaSeqI and DiaSeqI+ we have additional rules, which are
needed for scheduling, e.g., cO, PN, and cP. There are also the trigger rules
O∗¬, O∗⊃, and P∗¬ which are necessary to add formulas to the sequents in
the right phase. One could criticize DiaSeqI because its rule applications do
not correspond exactly to the single moves of the dialogue tableau. However,
the proponents’ decision process when confronted with a critical attack, and
the fact that there are now many proponents, makes it harder and actually
unnecessary to put too much importance on this issue.

Now let us turn to the multi-proponent dialectics MPDFM by Fermüller and
Ciabattoni (Chapter 2.3.5). They implement proof systems for different in-
termediate propositional logics, whereas MPID is currently restricted to in-
tuitionistic logic. So we compare MPID only to the intuitionistic variant of
MPDFM. These are the main differences:

1. In MPDFM any P-agent can perform a fork-move anytime before per-
forming an internal move. In MPID a P-agent forks automatically when-
ever he has the possibility to perform different moves. This reduces the
flexibility, but on the other hand uncontrolled/inexpedient forking is
prevented.

2. In MPDFM O commits herself towards the different proponents with
different concessions, i.e, concessions towards a proponent P1 are only
visible and usable for P1 and not for any other agent P2. In MPID

160



3.4 Summary and Comparison to other Systems

O’s concessions towards any P-agent are globally available to all the
proponents, as long as the addressed proponent is not deactivated in
the same round.

3. MPDFM does not implement the concept of critical attacks, as there are
several concurrent dialogues and in each only one proponent acts. In
MPID, as O’s concessions are shared among all P-agents, an isolation is
necessary which deactivates proponents in certain cases.

4. The proponents in MPID have a global strategy, i.e., they have to decide
together in the decision phase which agent shall carry on and which
are deactivated. In MPDFM the P-agents are completely independent of
each other once they are introduced.14

Note that MPDFM and MPID pursue different aims. MPDFM provides calculi
for different intermediate logics and therefore gives the proponents the abil-
ity to merge again, i.e., to share their information. MPID is created only for
intuitionistic logic (although it can easily be modified to deal with classical
logic as well). We later extend it to cope with modal logics in which merging
does not play a role and the MPID-metaphor of isolation fits well.

3.4.2 Comparison to Intuitionistic Sequent Calculi

Technically, MPDFM follows the idea of single-conclusion hypersequents,
while MPID (with DiaSeqI and DiaSeqI+) is related to ordinary multi-
conclusion sequent systems. With respect to termination, DiaSeqI+ clearly
adapts the properties of regular derivation in IG which are also partly im-
plemented in DiaSeqI.

It is quite obvious that DiaSeqI and DiaSeqI+ enforce a scheduling in the
proof, i.e., one is less free to choose different rule applications as in

14This is not the case when super-intuitionistic (logics less restrictive than intuitionistic)
logics are considered, as then merging becomes relevant.
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standard sequent calculi. This shows similarities to focusing sequent sys-
tems as discussed in Chapter 2.1.5.15 The following comparison refers to
systems LJQ∗ (Figure 2.8, p. 43) and LJF (Figure 2.9, p. 47). System LJQ ′ is
the single-conclusion variant of LJQ∗ and therefore, for our purposes, not as
relevant as the latter.

Both LJQ∗ and LJF use different symbols to distinguish different kinds of
phases: in LJQ∗ these are two different arrows (⇒ and →) and in LJF there
are three different forms of sequents (−→, A−→, and −A →). In DiaSeqI
we use the three different turnstiles (`O, `PN, and `PD) for the scheduling
mechanism.

In both the focus systems and DiaSeqI, decisions have to be made at certain
points of the proving process, which are significant for success. In LJQ∗ it is
the choice of the formula which shall be put into the stoup with rule Der . In
LJF it is the selection of the focus with rules F l and Fr.

However, as mentioned before, relevant decisions are also made in LJF when
rules ∧−l or ∨r are used. By contrast, in DiaSeqI there are actually no other
choices than in the PD-phase. The rest is deterministic. Nevertheless, differ-
ent choices might lead to other successful proofs, i.e., P-winning strategies.
A P-agent’s defence against a critical attack (P!⊃) can be postponed to one
of the next rounds with PN. For example, consider the sections of DiaSeqI-
derivations shown in Figure 3.15. Both have the same initial situation. In
the left dialogue, the defence against the critical attack is postponed, in the
right one it is tackled immediately. Both P-strategies lead to the same result,
although the left one contains unnecessary moves. In Figure 2.10 (p. 49) we
see a similar situation in LJF: two derivations for the same sequent, one of
them with redundant rule applications. So in both systems, unnecessary
rule applications are possible.

15For this comparison the same features of DiaSeqI and DiaSeqI+ are relevant. Therefore
we do not mention every time that we also compare DiaSeqI+ with the focusing sequent
systems.
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P!!
op0 : A,op3 : B `PN p1 : A

cO, PN
op0 : A,op3 : B `O p1 : A

O?a
op0 : A,op3 : B `O p1 : A

cP
op0 : A,op3 : B `PN p1 : A

P!⊃
op0 : A `PD p1 : B ⊃ A, p2 : C

cO
op0 : A `O p1 : B ⊃ A, p2 : C

O?a
op0 : A `O p1 : B ⊃ A, p2 : C

cP
op0 : A `PN p1 : B ⊃ A, p2 : C

P!L
op0 : A `PN p1 : B ⊃ A, p2L : C∧D

PN
op0 : A `PD p1 : B ⊃ A, p2L : C∧D

...
...

...

P!!
op0 : A,op3 : B `PN p1 : A

cO, PN
op0 : A,op3 : B `O p1 : A

O?a
op0 : A,op3 : B `O p1 : A

cP
op0 : A,op3 : B `PN p1 : A

P!⊃
op0 : A `PD p1 : B ⊃ A, p2L : C∧D

...
...

...

Figure 3.15: Section of DiaSeqI-proof containing irrelevant moves

The scheduling mechanism in DiaSeqI works differently than in LJQ∗/LJF,
as the round structure does not exist in the latter ones: in DiaSeqI, rules
have to be applied on the left side, one on each formula, then on the right
side and so on. By contrast, once the focus is set in LJQ∗ or LJF, a sequence
of rule applications is performed on a formula and its active formulas, until
the focus is released. One can say that in DiaSeqI the scheduling is parallel,
while in the traditional focusing sequent systems it is sequential. Note that
this parallelisation could be used to implement DiaSeqI in a concurrent way.
This is left as future work.

The parallel scheduling forces us to perform rule applications which might
not be helpful. For example, in the DiaSeqI-sequent

op0 : (A∧D)∧ B, op2 : C ⊃ A `PN p1 : B

agent p2 is forced to attack C ⊃ A and p0 is going to introduce a colleague
so that both A ∧ D and B can be demanded. Many of such moves are not
helpful for the proponents to win, as here they only need the B. However,
this breadth-first search is actually a reasonable strategy when trying to find a
proof. Heuristics can be applied to restrict moves, e.g., by looking at the sub-
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3 Multi-Proponent Dialogues for Intuitionistic Logic

formulas and thereby checking whether it makes actually sense to introduce
further P-agents in certain situations.

A big advantage of MPID compared to focus calculi is its flexibility. It is
easy to translate non-invertible rules into proponent moves and put these
into the decision phase of the round cycle. Other logics can be adapted in
a straightforward way, as we do with modal logics in the following chapter.
In LJF the different polarities add an extra complexity which have an impact
on different rules. The lack of ordinary focused sequent systems for modal
logic can be seen as an indication that such systems cannot be established in
a direct way.
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4 Multi-Proponent Dialogues for

Modal Logic

In this chapter we investigate a multi-proponent approach for modal logics,
in particular for S4 and its constructive counterpart CS4. We call these dia-
lectics multi-proponent modal dialectics (S4/CS4) (MPMD/S4 and MPMD/CS4
for short). Alternative attempts for modal dialogues have been discussed
in Chapter 2.4. The system presented here1 is the first multi-proponent ap-
proach for modal logic. Further, to my current knowledge, the first com-
pletely formal adequateness proof for a dialogical system for the modal logic
S4, and the first for a dialogical system that implements a constructive modal
logic, are presented here.

In Section 4.1 we have a look at the game rules for the multi-proponent S4-
approach and the corresponding sequent system DiaSeqS4. These are based
on the rules of MPID and on DiaSeqI, respectively. In 4.2 we modify the
rules to obtain a system for CS4. Proofs for soundness and completeness of
both sequent-style calculi are presented in Section 4.3. The chapter closes
with a short summary and a comparison to other dialectic systems and se-
quent calculi.

1I already introduced MPMD/S4 in [139].
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4 Multi-Proponent Dialogues for Modal Logic

Assert 2A 3A
Attack ?2 ?3
Defence A A

Figure 4.1: Particle Rules for modal operators

4.1 Multi-Proponent Dialogues for S4

4.1.1 Game Rules

Semantically, we interpret the 2-modality in a similar way as Krabbe (see
Chapter 2.4.1) but without different strictness levels. As there is no obvi-
ous dialogical interpretation for the 3-modality and because of the duality
between 2 and 3 in classical and normal modal logics, we propose two
different sets of structural rules: one simplified that does not cope with the
3-operator, and one complete. The complete one is necessary, as later, when
we establish a system for CS4, the duality of 2 and 3 is given up and there-
fore the 3 must be handled as an independent logical operator.

Particle Rules

As particle rule for the 2 we adapt that proposed by Lorenzen (Chapter 2.4.1)
and adapt a 3-rule accordingly. The modal particle rules are shown in Fig-
ure 4.1 and are simply added to those of MPID (Figure 3.1, p. 100). There
is actually nothing special or surprising about these rules. Like Lorenzen
[102] and almost all of his successors, we define the properties about the
modalities in the structural rules.

Simplified Structural Rules

The simplified structural rules for MPMD/S4 without the 3-operator were
already presented in [139]. They are based on those of MPID (p. 100), but
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4.1 Multi-Proponent Dialogues for S4

implication and negation are not critical operators anymore. Instead, critical
attacks are only attacks on 2-statements. Like in Krabbe’s attempts [83, 86]
O may withdraw a commitment when a P-agent defends against a 2-attack.
We distinguish weak commitments and strong ones: strong commitments are
assertions by O prefixed by a 2. By contrast, weak commitments are all other
concessions by O.

The rules I1 to I4 and I8 of MPID (pp. 100, 101) are adapted without any
changes. Rules I5 to I7 are replaced by the following [139]:

S4-5 Only O is allowed to attack prime formulas. P-agents may defend against
these attacks only if O has stated the prime formula herself towards
a P-agent who is not deactivated in the same round and if O has not
withdrawn it.

S4-6 Attacks on 2 are considered to be critical attacks. Other attacks are
non-critical.

S4-7 Whenever a P-agent reacts to a critical attack, all other active proponent
agents are immediately deactivated, i.e., excluded from the rest of the
dialogue run. O may immediately withdraw all weak commitments she
made before in same the run.

As we see, these rules are very close to those of MPID. The set of critical
attacks is changed and the concept of withdrawals is introduced and con-
nected to these attacks. Deactivating is also a bit stricter, as the concerned
agents are excluded completely .

Complete Structural Rules

The structural rules which involve the 3 are more complex and considered
separately because there is currently no dialogical interpretation for the 3

that fits to the interpretation of the 2. We now call assertions starting with
a 3 hypothetical assertions. Hypothetical assertions stated by the opponent
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4 Multi-Proponent Dialogues for Modal Logic

are accordingly called hypothetical concessions. We choose these terms as they
give an idea of how the 3-operator can be interpreted semantically in a dia-
logical setting.2 We do not claim that this is the best choice but rather a
possible suggestion, as our focus lies on proof theory and not on philosoph-
ical issues or argumentation theory. Attacks against hypothetical assertions
are called co-critical attacks.

For the complete structural rules for MPMD/S4 we adapt again rules I1, I2
and I4 of MPID and rule S4-5 of the simplified rules. We have to adjust rules
I3, S4-6, S4-7, and I8 as follows:

S4-3∗ If possible, all players are obliged to perform moves. A P-agent may
postpone a move until succeeding rounds if he is forced to react to a
critical attack or to perform a co-critical attack. Whenever a P-agent has
several possibilities of how to react to an O-move, new P-agents are
introduced to take out these remaining possibilities.
When a proponent agent states a hypothetical assertion, he is protected
and stunned, i.e., he stays active but does not perform moves anymore.
Instead, reactions to the (co-critical) attacks towards him are performed
by new colleagues.3

S4-6∗ Attacks on 2 are considered to be critical attacks. Attacks on 3 are
considered to be co-critical attacks. Other attacks are non-critical.

S4-7∗ Whenever a P-agent reacts to a critical attack, all other non-protected
proponent agents are immediately deactivated, i.e., excluded from the
rest of the dialogue run. The remaining proponent agents miss their
turn in the round. O may immediately withdraw all weak commitments
she made before in the same run.

2In the alethic interpretation of the modal operators, 2 corresponds to necessarily and 3 to
possibly which we interpret here as hypothetically.

3In this variant of MPMD/S4, a P-agent can be either stunned and protected, or neither
stunned nor protected at the same time. For CS4 (Section 4.2.2) we need to distinguish
these properties.
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O P0 P1 P2

1 (3A ⊃ 2B) ⊃ 2(A ⊃ B)
2 [?, 1]0 (((

(((3A ⊃ 2B [!, 2] 2(A ⊃ B) [?, 2] 3A

3 [?, 2]0 ?2 [!, 3] A ⊃ B stunned
[?, 2]1 ?3 protected

4 [?, 3]0 A [!, 4] B
[?, 2]1 ?3 [!, 4] A

5 [?, 4]0 ?B — —
[?, 4]2 ?A [!, 5] !!

Figure 4.2: An example of an MPMD/S4-Dialogue

Whenever the opponent reacts to a co-critical attack, all non-protected
P-agents are immediately deactivated, i.e., excluded from the rest of the
dialogue run. O may immediately withdraw all weak commitments she
made before in the same run.

S4-8∗ A P-agent may repeat critical attacks on the same assertion only after
some P-agent reacted to a critical attack performed by O or O reacted to
a co-critical attack.
The opponent may repeat an attack against the same protected agent
only after some P-agent reacted to a critical attack performed by O or O

reacted to a co-critical attack.
Other repetitions are not allowed.

With the new concepts of hypothetical assertions, co-critical attacks, protected
and stunned agents, these rules are much more complex than the simplified
ones for which the 3-operator is not regarded. Figure 4.2 shows a dialogue
where the hypothesis is the IK5-axiom which is valid in classical K and there-
fore also in S4. Only one of O’s strategies is displayed (she counter-attacks
P1 in row 3).4 Actually, a new P-agent should defend here with A while P1
is stunned and protected, but this agent is deactivated immediately as P0

4The other run is won by the proponents as well.
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defends against a critical attack. O may then attack P1 again (row 4). This is
defended by P2 who eventually finished the game with ipse dixisti. Note that
O withdraws her implication of row 2 after P0 defends in row 3, although
this is not necessary as the proponents may only repeat critical attacks after
defending against a critical attack, and implications are not critically here.

4.1.2 The System DiaSeqS4

As we did in Section 3.2 for intuitionistic propositional logic, we now trans-
late the rules from above into a sequent system we call DiaSeqS4. To make
this as general as possible, we include the 3-operator and refer to the com-
plete set of structural rules, although it is not really relevant from the dialo-
gical point of view.5

The rules are displayed in Figure 4.3. Only the rules which differ from those
of DiaSeqI (Figure 3.5, p. 107) are shown. Note that P!⊃ and P∗¬ are not
critical anymore and therefore are now part of the normal phase. Further, du-
plication is not necessary for these connectives, so O∗⊃ and O∗¬ are changed
(the proponents’ attacks on implications and negations are not critical any-
more).

Attacks by O on 2 and 3 are straightforward. The delicate issues are P-
agents’ defences of 2 and attacks on 3, as these result in a change of the
world in the sense of Kripke. By contrast to DiaSeqI, these moves do not
lead to the normal phase, but instead end the party’s moves and let O start
the next turn (see Figure 4.4). If a P-agent defends with P!2, the other players
are deactivated and O withdraws her weak commitments (Φδ). When P

attacks with P?3, O defends directly.

5DiaSeqS4 was already presented in [139], but in a variant in which the simplified structural
rules are implemented, i.e., the 3-operator is not considered there, which also makes the
sequent-rules simpler.
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o-rules

Φ `O Ψ, p : A ⊃ B
O?⊃

Φ `O Ψ, p : A ⊃ B
Φ `O Ψ, p : A op : B, Φ `O Ψ

O∗⊃
op : A ⊃ B, Φ `O Ψ

Φ `O Ψ, p : ¬A
O?¬

Φ `O Ψ, p : ¬A

Φ `O Ψ, p : A
O∗¬

op : ¬A, Φ `O Ψ

Φ `O Ψ, p : 2A
O?2

Φ `O Ψ, p : 2A

Φ, õ : 2A, op : A `O Ψ
O!2

Φ, op : 2A, `O Ψ

Φ `O Ψ, p : 3A
O?3

Φ `O Ψ, p : 3A

Φδ, op : A `O Ψδ
O!3

Φ, op : 3A, `O Ψ

p-rules – decide phase

Φδ `O p : A, Ψδ
P!2

Φ `PD p : 2A, Ψ

op : 3A, Φ `O Ψ
P?3

op : 3A, Φ `PD Ψ

p-rules – normal phase

op : 2A, Φ `PN Ψ
P?2

op : 2A, Φ `PN Ψ

Φ `PN Ψ, p̃ : 3A, q : A
P!3

Φ `PN Ψ, p : 3A

oq : A, Φ `PN Ψ, p : B
P!⊃

Φ `PN Ψ, p : A ⊃ B
op : A, Φ `PN Ψ

P∗¬
Φ `PN Ψ, p : ¬A

Φδ =df {or : 2ϕ | r ∈ Propos,or : 2ϕ ∈ Φ} ∪ {or : 2ϕ | r ∈ Propos,or : 2ϕ ∈ Φ} ∪
{os : ϕ | õ : ϕ ∈ Φ}

every s is a new P-agent.

Ψδ =df {r : 3ϕ | r ∈ Propos, r̃ : 3ϕ ∈ Ψ or r : 3ϕ ∈ Ψ} ∪ {r : 3ϕ | r ∈ Propos, r : 3ϕ ∈ Ψ}

q is a new P-agent in rules P!3 and P!⊃.

Figure 4.3: Rules of DiaSeqS4
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`O

`PD

`PN

cO
O?,O!,O∗

P!2,P?3 PN

P?,P!

cP

Figure 4.4: The phases in DiaSeqS4

cO, PN, P!!
op3 : A `O op0 : B, p̃1 : 3A, p2 : A

O?a (×2)
op3 : A `O p0 : B, p̃1 : 3A, p2 : A

P!⊃, P!3, cP`PN p0 : A ⊃ B, p1 : 3A
O?⊃, cO, PN

`O p0 : A ⊃ B, p1 : 3A
P!2

`PD p0 : 2(A ⊃ B), p1 : 3A
O?3, cO`O p0 : 2(A ⊃ B), p1 : 3A

cO, PN, P!!
õ : 2B, op1 : B, op2 : A `O p0 : B

O!2, O?a
op1 : 2B, op2 : A `O p0 : B

P!⊃, cP
op1 : 2B `PN p0 : A ⊃ B

cO, PN, P?2
op1 : 2B `O p0 : A ⊃ B

cO, P!2, O?⊃
op1 : 2B `O p0 : 2(A ⊃ B)

O∗⊃, O?2
op1 : 3A ⊃ 2B `O p0 : 2(A ⊃ B)

O?⊃, cO, PN, P!⊃, P?⊃, cP`O p0 : (3A ⊃ 2B) ⊃ 2(A ⊃ B)

Figure 4.5: An example of a DiaSeqS4-proof

The duplication rules are now O!2 and P!3 which correspond to 2l and 3r

of G3S4 (Section 2.2.1). Note that the tilde is now also a possible marker
on the P-side. Therefore, we redefine the earlier definitions of Φ and Ψ as
follows:

Φ ⊆ {op : ϕ, op : ϕ, op
L : ϕ, op

R : ϕ, õp : ϕ | p ∈ Propos ,ϕ ∈ Form} (4.1)

Ψ ⊆ {p : ϕ, p : ϕ, pL : ϕ, pR : ϕ, p̃ : ϕ | p ∈ Propos ,ϕ ∈ Form} (4.2)

Figure 4.5 shows a DiaSeqS4-proof for the IK5-axiom. Note that there are
small differences to the tableau of Figure 4.2. The first corresponds to the
left path: when p0 defends 2(A ⊃ B) with P!2, p1 stays attacked and the
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defence is postponed to the next round. If we transferred the structural rules
directly, it would have been necessary to remove the bar and let O attack p1
again in the next round. In the end, it does not make a difference. Another
point is that O states A towards a new proponent p3 who does not appear in
the tableau. This is because of a technical issue and only becomes relevant
when O’s statement is counter-attacked.

Note that in this chapter, we only refer to mono-modal S4 and CS4. Multi-
modal variants in which the elements of the modal signature are independent
of each other, can be used here as well. This is simply done by replacing 2

and 3 by [l] and 〈l〉 in the corresponding rules O?2, O?3, O!2, O!3, P?2,
P?3, P!2, and P!3 (including Φδ and Ψδ).

4.2 Dialogues for Constructive S4

In this section we combine the features of MPID and DiaSeqI with those of
MPMD/S4 and DiaSeqS4, to obtain a dialectic system for the constructive
modal logic CS4. The structural rules of theses dialogues are very complex
and it is easier to start with DiaSeqS4 and modify it referring to the special
properties of G3iCS4m to obtain the adequate dialogical reasoning procedure
DiaSeqCS4. Once this is established, we derive the informal structural rules.

4.2.1 The System DiaSeqCS4

The sequent version of multi-proponent CS4-dialogues is adapted from
DiaSeqS4 and G3iCS4m. The latter is investigated in Chapter 2.2.2. The
rules of DiaSeqCS4 are displayed in Figure 4.6. The rules of ∧, ∨, and ⊥
are the same as in both DiaSeqI and DiaSeqS4, and therefore omitted in the
figure. The same holds for the rules cO, cP, and PN. There are no surprises
on the O-side: O∗⊃, O∗¬, and O!2 keep the attacked formula in Φ, as ⊃l,
¬l, and 2l of G3iCS4m are also duplication rules. As one might assume,
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o-rules

Φ `O Ψ, p : A ⊃ B
O?⊃

Φ `O Ψ, p : A ⊃ B
õp : A ⊃ B, Φ `O Ψ, p : A op : B, Φ `O Ψ

O∗⊃
op : A ⊃ B, Φ `O Ψ

Φ `O Ψ, p : ¬A
O?¬

Φ `O Ψ, p : ¬A

õp : ¬A, Φ `O Ψ, p : A
O∗¬

op : ¬A, Φ `O Ψ

Φ `O Ψ, p : 2A
O?2

Φ `O Ψ, p : 2A

Φ, õ : 2A, op : A `O Ψ
O!2

Φ, op : 2A, `O Ψ

Φ `O Ψ, p : 3A
O?3

Φ `O Ψ, p : 3A

Φε, op : A `O Ψε
O!3

Φ, op : 3A `O Ψ

p-rules – decide phase

oq : A, Φδ `O p : B
P!⊃

Φ `PD Ψ, p : A ⊃ B
op : A, Φδ `O ∅

P∗¬
Φ `PD Ψ, p : ¬A

Φε `O p : A
P!2

Φ `PD p : 2A, Ψ

op : 3A, Φ `O Ψ Ψε 6= ∅
P?3

op : 3A, Φ `PD Ψ

Φδ `O p : A
P!3

Φ `PD Ψ, p : 3A

p-rules – normal phase

op : 2A, Φ `PN Ψ
P?2

op : 2A, Φ `PN Ψ

Φδ =df (Φ \ {õp : ϕ | p ∈ Propos}) ∪ {os : ϕ | õp : ϕ ∈ Φ,p ∈ Propos},

Φε =df {os : 2ϕ | õ : 2ϕ ∈ Φ} ∪ {op : 2ϕ | p ∈ Propos,op : 2ϕ ∈ Φ} ∪
{op : 2ϕ | p ∈ Propos,op : 2ϕ ∈ Φ}

every s is a new P-agent.

Ψε =df {r : 3ϕ | r ∈ Propos, r̃ : 3ϕ ∈ Ψ or r : 3ϕ ∈ Ψ} ∪ {r : 3ϕ | r ∈ Propos, r : 3ϕ ∈ Ψ}

Figure 4.6: Rules of DiaSeqCS4
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...
...

...
P?⊃

op2 : 3A ⊃ 2B `PN p1 :A
O?a, cO, PN

op2 : 3A ⊃ 2B `O p1 :A
P!3

õ : 3A ⊃ 2B `PD p0 : 2(A ⊃ B), p1 : 3A
O?3, cO

õ : 3A ⊃ 2B `O p0 : 2(A ⊃ B), p1 : 3A

cO, PN, P!!
op3 : 2B, op1 : B, op2 :A `O p0 : B

P!⊃, O?a
õ : 2B, op1 : B, `PD p0 :A ⊃ B

cP, O!2, cO
op1 : 2B `PN p0 :A ⊃ B

O?⊃, cO, PN, P?2
op1 : 2B `O p0 :A ⊃ B

cO, P!2
op1 : 2B `O p0 : 2(A ⊃ B)

cP, O∗⊃
op1 : 3A ⊃ 2B `PN p0 : 2(A ⊃ B)

O?2, cO, PN, P?⊃
op1 : 3A ⊃ 2B `O p0 : 2(A ⊃ B)

O?⊃, cO, P!⊃
`O p0 : (3A ⊃ 2B) ⊃ 2(A ⊃ B)

Figure 4.7: The proponents losing in DiaSeqCS4

P!⊃ and P∗¬ are critical as in DiaSeqI, and P!2 and P?3 as in DiaSeqS4.
Additionally, P!3 counts as critical. In P?3 it is required that some active
P-agent’s last assertion was a 3-formula (corresponds to rule 3l in G3iCS4m).
By contrast to DiaSeqS4, all reactions to a critical attack remove all the other
P-agents.

Figure 4.7 shows the IK5-example again, but this time in DiaSeqCS4. In the
left branch, as P!3 performed by p1 is a reaction to a critical attack, p0 is
deactivated, which makes it impossible for the proponents to win the game.
Actually, the run will never terminate, as the proponents are allowed to
attack O’s implication again and again. Note that if p0 had defended instead
of p1, then p1 would have been deactivated as well. There is no protection
as compared to MPMD/S4.6

4.2.2 Game Rules

It is now time to have a look at the structural rules of MPMD/CS4. As
particle rules we use the same set as that of MPMD/S4.7 In CS4 the modal
operators 2 and 3 are independent of each other. Therefore, a simplified
version of structural rules as in MPMD/S4 is not possible, so the structural
rules for MPMD/CS4 are based on the complete version of MPMD/S4.

6There is some kind of protection which is however weaker than in MPMD/S4. More on
this will be discussed in the following section.

7See Figures 3.1 and 4.1 on pages 100 and 166.
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The rules are only given here for the sake of completeness. We are not inter-
ested in the philosophical interpretation or whether they make sense from
an argumentation-theoretic perspective. For this work the proof-theoretical
consequences of the scheduling are more important, which are however
more apparent in sequent-style counterpart.

The complete set of informal structural rules for MPMD/CS4 are as follows:

CS4-1 At the beginning of a dialogue, O states initial concessions and a single
P-agent states the hypothesis.

CS4-2 A round consists of a sequence of moves by O, followed by moves of
all active P-agents. A dialogue run is a sequence of such rounds. The
first round starts after the assertion of the hypothesis.

CS4-3 If possible, all players are obliged to perform moves. A P-agent may
postpone a move until succeeding rounds if he is forced to react to a
critical attack or to perform a co-critical attack. Statements by O made
with the critical attack are only conceded as soon as the critically at-
tacked agent reacts. Whenever a P-agent has several possibilities of
how to react to an O-move, new P-agents are introduced to take out
these remaining possibilities. When a proponent agent states a hypo-
thetical assertion, he is protected.8

CS4-4 A dialogue is won by the proponents iff the opponent cannot react
to all of the proponents’ moves of the previous round. The opponent
wins iff no P-agent can react to any of O’s statements of the same round
(either with an attack or a defence).

CS4-5 Only O is allowed to attack prime formulas. P-agents may defend
against these attacks only if O has stated the prime formula herself
towards a P-agent who is not deactivated in the same round and if O has
not withdrawn it.

8Note that the protection is necessary as in O!3 these agents are kept active while the
others are deactivated.
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CS4-6 Attacks on 2, 3, implications, and negations are considered to be
critical attacks. Attacks on 2 and 3 are strongly critical. Attacks on 3

are (additionally) considered to be co-critical attacks. Other attacks are
non-critical.9

CS4-7a Whenever a P-agent reacts to a critical attack, all other active pro-
ponent agents are immediately deactivated, i.e., they may not perform
defences or counter-attacks. The remaining proponent agents miss their
turn in the round. If the critical attack was strong, the deactivated
agents are excluded completely from the rest of the dialogue run and
O may immediately withdraw all weak commitments she made before in
the same run.
Whenever the opponent reacts to a co-critical attack, all non-protected
proponent agents are immediately deactivated and excluded from the
rest of the dialogue run. O may immediately withdraw all weak commit-
ments she made before in the same run.10

CS4-7b A P-agent may perform a co-critical attack only if there are active
protected P-agents.11

CS4-8 A P-agent may repeat critical attacks on the same, not yet withdrawn
assertion, only after any P-agent reacted to a critical attack performed
by O.
A P-agent may also repeat strongly critical attacks after O reacted to a
co-critical attack.
Other repetitions are not allowed.

In total, these structural rules are quite complex. The concept of stunned
P-agents is given up, instead we distinguish strongly critical attacks and critical

9Here, we consider attacks on 3 as critical as well. However, it is necessary to distinguish
attacks on modal operators (strongly critical) and those on the critical operators in the
sense of IPL (weakly critical).

10The new part of CS4-7a is the result of O!3, where non-protected P-agents are deactivated
and weak concessions are withdrawn. When a P-agent reacts to a critical attack, O may
only withdraw assertions if the attack was strongly critical.

11Rule CS4-7b corresponds to the restriction that Ψε must not be empty in P?3.
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attacking type MPID MPMD/S4
(simple)

MPMD/S4
(compl.) MPMD/CS4

(weak) critical attacks A ⊃ B, ¬A 2A 2A A ⊃ B, ¬A

strong critical attacks 2A, 3A

co-critical attacks 3A 3A

Table 4.1: Critical and co-critical attacks in the various systems

attacks. A new restriction for the proponents is introduced in terms of the
new rule CS4-7b. This is necessary so that they do not have a winning
strategy for ¬3⊥ which is not a theorem of CS4.

Because of the complexity of the rules, the most important differences be-
tween the presented dialogical systems are summarized in Tables 4.1 and 4.2.
To simplify some issues we introduce the term event. An event is triggered
when some P reacts to a critical attack. For MPMD/CS4 we need to distin-
guish strong and weak events.

Although the tables express again the complexity of the rules, they also re-
veal opportunities which have not yet been discovered, i.e., a combination
of the various rule features might lead us to new proof systems for different
logics. This offers a new perspective, as new possibilities become visible,
which were not apparent when looking at axioms, Kripke semantics or se-
quent rules. For example, one can change the set of weak critical attacks and
remove the negation, but keep the implication. One could also add operat-
ors to the set of co-critical attacks or change the conditions for stunned or
protected proponent-agents.

Besides this, we can also add further features. In the presented multi-
proponent systems all other P-agents are deactivated when one reacts to
a critical attack. It might be possible that the remaining P-agent is allowed
to save another one for the next rounds in certain circumstances.
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Property MPID MPMD/S4
(simple)

MPMD/S4
(compl.) MPMD/CS4

(weak) event
occurs when

P reacts to
critical attack

P reacts to
critical attack

P reacts to
critical attack or
O reacts to
co-critical attack

P reacts to weak
critical attack

strong event
occurs when

P reacts to
strong critical
attack or O
reacts to
co-critical attack

P-agents
deactivated
(kind of
deactivation
indicated in
brackets)

all others when
agent reacts to
critical attack
(no defences or
counter-attacks)

all others when
agent reacts to
critical attack
(excluded for
rest of game)

all others who
are not
protected when
P-agent causes
event; all
non-protected
P-agents when
O causes event
(excluded for
rest of game)

all others when
P-agent causes
event (weak: no
defences or
counter-attacks,
strong: excluded
completely); all
non-protected
P-agents when
O causes event
(excluded)

O withdraws
weak
commitments

event occurs event occurs strong event
occurs

requirement for
P to perform
co-critical
attacks

active P-agent
exists whose last
statement is 3A

P may postpone reaction to
critical attack

reaction to
critical attack

reaction to
critical attack
and co-critical
attack

reaction to
critical attack
and co-critical
attack

protected
P-agents

last statement
3A

last statement
3A

stunned
P-agents

protected
P-agents

O repeats
attacks never never

on stunned
agents after
event

never

P repeats critical attacks
after event

critical attacks
after event

critical attacks
after event

critical attacks
after event

Table 4.2: Comparison of Structural Rules of multi-proponent systems
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4 Multi-Proponent Dialogues for Modal Logic

4.3 Adequateness of Multi-Proponent S4-Dialogues

This section deals with soundness and completeness of DiaSeqS4 and
DiaSeqCS4. The proofs are based on these for DiaSeqI (Chapter 3.3). We
simply adjust some definitions and the proofs are extended in a straightfor-
ward manner.

4.3.1 Soundness

Soundness of DiaSeqS4 and DiaSeqCS4 is shown easily by transforming the
derivations of the systems to the corresponding sequent systems G3S4 and
G3iCS4m. For both dialogical calculi, the transformation works exactly as for
DiaSeqI as described in Chapter 3.3.3. The only issue that causes a bit of
rearrangement are again O’s attacks on conjunctions, but we deal with them
the same way as before.

Theorem 4.1 (DiaSeqS4/DiaSeqCS4 Soundness). Every DiaSeqS4-proof-tree
can be transformed to a G3S4-proof. Every DiaSeqCS4-proof-tree can be trans-
formed to a G3iCS4m-proof.

4.3.2 Completeness of DiaSeqS4

Our reference sequent system is G3S4 as presented in Chapter 2.2.1. The
rules are shown in Figure 2.12 (p. 56). The definitions of Chapter 3.3.1 (Sec-
tion “Terminology”) are adapted directly. Most of the lemmas and their
proofs can be reused, as well as the definitions of macro blocks, micro blocks,
and dependencies.

180



4.3 Adequateness of Multi-Proponent S4-Dialogues

Normalization of G3S4-Proofs

We start with the lemmas which lead us to non-redundancy. To avoid con-
fusion, we write 
S4

n to express deducibility in G3S4.

Lemma 4.1 (Admissibility of Weakening (G3S4)). For all ϕ, Γ , ∆:

1. If 
S4
n Γ ⇒ ∆ then 
S4

n Γ ,ϕ⇒ ∆.

2. If 
S4
n Γ ⇒ ∆ then 
n Γ ⇒ ϕ,∆.

The derivations in the conclusions do not contain further rule applications than the
derivations in the conditions. The order of the rule applications is preserved.

Proof. Straightforward: the base case is exactly the same as in the proof of
Lemma 3.1. For the inductive step, we have to consider the rules 2l, 3l, 2r,
and 3r as well. 2l and 3r are trivial, whereas 2r and 3l can technically be
treated similarly as the critical rule ⊃r of G3i

m, which is not critical here.

Lemma 4.2 (Inversion (G3S4)). For all ∆, Γ and formulas A and B:

1. If 
S4
n Γ ,A∧ B⇒ ∆ then 
S4

n Γ ,A,B⇒ ∆.

2. If 
S4
n Γ ⇒ A∨ B,∆ then 
S4

n Γ ⇒ A,B,∆.

3. If 
S4
n Γ ,A∨ B⇒ ∆ then 
S4

n Γ ,A⇒ ∆ and 
S4
n Γ ,B⇒ ∆.

4. If 
S4
n Γ ⇒ A∧ B,∆ then 
S4

n Γ ⇒ A,∆ and 
S4
n Γ ⇒ B,∆.

5. If 
S4
n Γ ,A ⊃ B⇒ ∆ then 
S4

n Γ ⇒ A,∆ and 
S4
n Γ ,B⇒ ∆.

6. If 
S4
n Γ ⇒ A ⊃ B,∆ then 
S4

n Γ ,A⇒ B,∆.

7. If 
S4
n Γ ,¬A⇒ ∆ then 
S4

n Γ ,¬A⇒ A,∆.

8. If 
S4
n Γ ⇒ ¬A,∆ then 
S4

n Γ ,A⇒ ∆.

9. If 
S4
n Γ ,2A⇒ ∆ then 
S4

n Γ ,2A,A⇒ ∆.

10. If 
S4
n Γ ⇒ 3A,∆ then 
S4

n Γ ⇒ 3A,A,∆.
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4 Multi-Proponent Dialogues for Modal Logic

The derivations in the conclusions do not contain further rule applications than the
derivations in the conditions. The order of rule applications is preserved.

Proof. Items 5 to 10 are different to those of Lemma 3.2. Items 5 to 8 are
standard (c.f. Troelstra and Schwichtenberg [142], duplication is not neces-
sary here). Items 9 and 10 follow directly by weakening (Lemma 4.1).

Note that the world-changing rules 2r and 3l are the only non-invertible/
critical ones.

Lemma 4.3 (Admissibility of Contraction (G3S4)). For all ϕ, Γ , ∆:

1. If 
S4
n Γ ,ϕ,ϕ⇒ ∆ then 
S4

n Γ ,ϕ⇒ ∆.

2. If 
S4
n Γ ⇒ ϕ,ϕ,∆ then 
S4

n Γ ⇒ ϕ,∆.

The derivations in the conclusions do not contain further rule applications than the
derivations in the conditions. The order of rule applications is preserved.

Proof by induction on n. Works the same way as the proof of Lemma 3.3.
Nevertheless, here is an example.

Assume that 
S4
n+1 Γ

′,2Γ ,3A,3A⇒ ∆ ′,3∆.

• If the lowest rule application a0 of the derivation tree is non-critical and
refers to a formula of Γ ′ or ∆ ′, we can use the hypothesis on the sequent
above and use a0 to obtain the deduction with only one 3A.

• If it is an application of 3l on 3A, we have 
S4
n 2Γ ,A⇒ 3∆. The same

result is obtained when it is applied in Γ ′,2Γ ,3A⇒ ∆ ′,3∆.

• We deal with 2r as lowest rule application the same way.
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4.3 Adequateness of Multi-Proponent S4-Dialogues

The disjunctive derivable set (Definition 3.5, p. 123) is not sufficient to show
that applications of duplication rules can be omitted when used more than
once in the same macro block. We need a more general structure.

Definition 4.1 (Non-Critically Derivable Set (G3S4)). Let ϕ be a formula of
propositional modal logic. The pair (χ+,χ−) is a left-derivable pair of multi-sets
for ϕ, written d+(χ+,χ−,ϕ) iff for any A and B:

• χ+ = {ϕ} and χ− = ∅ or

• ϕ = A∧ B and there are χ+A, χ+B , χ−A, and χ−B such that χ+ = χ+A,χ
+
B and

χ− = χ−A,χ
−
B with d+(χ+A,χ

−
A,A) and d+(χ+B ,χ

−
B ,B) or

• ϕ = A∨ B and either d+(χ+,χ−,A) or d+(χ+,χ−,B) or

• ϕ = A ⊃ B and either d−(χ+,χ−,A) or d+(χ+,χ−,B) or

• ϕ = ¬A and d−(χ+,χ−,A) or

• ϕ = 2A and there are χ+A and χ−A such that χ+ = 2A,χ+A and χ−A = χ− with
d+(χ+A,χ

−
A,A).

The pair (χ+,χ−) is a right-derivable pair of multi-sets for ϕ, written
d−(χ+,χ−,ϕ) iff for any A and B:

• χ+ = ∅ and χ− = {ϕ} or

• ϕ = A∧ B and either d−(χ+,χ−,A) or d−(χ+,χ−,B) or

• ϕ = A∨ B and there are χ+A, χ+B , χ−A, and χ−B such that χ+ = χ+A,χ
+
B and

χ− = χ−A,χ
−
B with d−(χ+A,χ

−
A,A) and d−(χ+B ,χ

−
B ,B) or

• ϕ = A ⊃ B and there are χ+A, χ+B , χ−A, and χ−B such that χ+ = χ+A,χ
+
B and

χ− = χ−A,χ
−
B with d+(χ+A,χ

−
A,A) and d−(χ+B ,χ

−
B ,B) or

• ϕ = ¬A and d+(χ+,χ−,A) or

• ϕ = 3A and there are χ+A and χ−A such that χ+A = χ+ and χ− = 3A,χ−A with
d−(χ+A,χ

−
A,A).
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4 Multi-Proponent Dialogues for Modal Logic

Lemma 4.4 (Generalized Inversion (G3S4)). For any Γ , ∆, A, and n:

• If 
S4
n Γ ,A⇒ ∆ then for all χ+A and χ−A such that d+(χ+A,χ

−
A,A):


S4
n Γ ,χ

+
A ⇒ χ−A,∆.

• If 
S4
n Γ ⇒ A,∆ then for all χ+A and χ−A such that d−(χ+A,χ

−
A,A):


S4
n Γ ,χ

+
A ⇒ χ−A,∆.

It is not necessary to use further rule applications than for the derivations in the
premises. The order of rule applications is preserved.

Proof by induction on the structure of ϕ.

Base Case: ϕ is an atom P. Assume we have 
S4
n Γ ,P ⇒ ∆. Then by Defini-

tion 4.1, the only possible assignment for χ+P and χ−P with d+ = (χ+P ,χ
−
P ,P) are

χ+P = {P} and χ−P = ∅. So we automatically obtain 
S4
n Γ ,χ

+
P ⇒ χ−P ,∆ without

doing anything. The same procedure applies for 
S4
n Γ ⇒ P,∆.

Inductive Step: We discuss only two cases here.

• ϕ = 2A in 
S4
n Γ ,2A⇒ ∆.

We consider arbitrary χ+ϕ and χ−ϕ such that d+(χ+ϕ,χ−ϕ,2A). By Defini-
tion 4.1, there are two possibilities.

1. χ+ϕ = {2A} and χ−ϕ = ∅. This case is dealt with as in the base case.

2. There are χ+A and χ−A such that χ+ϕ = 2A,χ+A, χ−ϕ = χ−A, and
d+(χ+A,χ

−
A,A).

By inversion (Lemma 4.2), we know 
S4
n Γ ,2A,A⇒ ∆. Then by

hypothesis, we also have 
S4
n Γ ,2A,χ+A ⇒ χ−A,∆ for all χ+A and χ−A

such that d+(χ+A,χ
−
A,A). So we select the χ+A and χ−A from above

and obtain 
S4
n Γ ,χ

+
ϕ ⇒ χ−ϕ,∆.
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4.3 Adequateness of Multi-Proponent S4-Dialogues

• ϕ = A ⊃ B in 
S4
n Γ ,A ⊃ B⇒ ∆. There are again two possibilities:

1. χ+ϕ = {A ⊃ B} and χ−ϕ = ∅.
This case is dealt with as in the base case.

2. Either d−(χ+ϕ,χ−ϕ,A) or d+(χ+ϕ,χ−ϕ,B).

– Case 1: by inversion we get 
S4
n Γ ⇒ A,∆.

Then by hypothesis: 
S4
n Γ ,χ

+
A ⇒ χ−A,∆ for all χ+A and χ−A such

that d−(χ+A,χ
−
A,A). Then we simply set χ+A = χ+ϕ and χ−A = χ−ϕ

and are done.

– Case 2: by inversion we get 
S4
n Γ ,B⇒ ∆.

Then by hypothesis: 
S4
n Γ ,χ

+
B ⇒ χ−B ,∆ for all χ+B and χ−B such

that d+(χ+B ,χ
−
B ,B). Then we simply set χ+B = χ+ϕ and χ−B = χ−ϕ

and are done.

Lemma 4.5 (Dispensability of Duplication Rules (G3S4)). For all Γ , ∆, A, n,
and all χ+A, χ−A:

• If d+(χ+A,χ
−
A,A) and 
S4

n Γ ,2A,χ+A ⇒ χ−A,∆ then 
S4
n Γ ,2A,χ+A ⇒ χ−A,∆

without any rule applications on 2A in macro blocks of level 0.

• If d−(χ+A,χ
−
A,A) and 
S4

n Γ ,χ
+
A ⇒ χ−A,3A,∆ then 
S4

n Γ ,χ
+
A ⇒ χ−A,3A,∆

without any rule applications on 3A in macro blocks of level 0.

For the transformation, no further rule applications are necessary on any of the
paths. The order of rule applications is preserved.

Proof by induction on n.

Base Case: n = 1 (trivial)

Inductive Step: We only consider the first part with 2A in the antecedent.
The other part with 3A in the succedent works accordingly.
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4 Multi-Proponent Dialogues for Modal Logic

We assume to have 
S4
n+1 Γ ,2A,χ+A ⇒ χ−A,∆ for arbitrary χ+A, χ−A such that

d+(χ+A,χ
−
A,A). Assume that there is a rule application of 2l on 2A some-

where in macro block level 0 in the derivation (otherwise there would not
be anything to do). We consider the rule application in the root of the deriv-
ation tree (which must be non-critical).

• Assume that neither 2A, nor a formula of χ+A or χ−A is principal of this
application. This cannot be a critical rule, so we can simply apply the
hypothesis on the premise(s) and append the application afterwards.

• Assume that a formula γ ∈ χ+A is principal.
Therefore, 
S4

n+1 Γ ,γ,χ
+
α ,2A⇒ χ−A,∆ with χ+A = γ,χ+α .

Then 
S4
n Γ ,χ

+
α , Γγ,2A⇒ χ−A,∆γ,∆ with Γγ and ∆γ containing the active

formulas of the rule application.
By weakening we get 
S4

n Γ ,χ
+
α ,γ, Γγ,2A⇒ χ−A,∆γ,∆ which corres-

ponds to 
S4
n Γ ,χ

+
A, Γγ,2A⇒ χ−A,∆γ,∆. Now we can apply the hypo-

thesis and append the omitted rule application again.

• The case where a δ ∈ χ−A is principal is handled almost the very same
way.

• Finally, if 2A is the principal formula, then 
S4
n Γ ,2A,A,χ+A ⇒ χ−A,∆.

By generalized inversion (Lemma 4.4) we get

S4
n Γ ,2A,χ+A,χ

+
A ⇒ χ−A,χ

−
A,∆. Then contraction on both sides leads us to


S4
n Γ ,2A,χ+A ⇒ χ−A,∆ on which we can apply the hypothesis and that’s

it.

Lemma 4.6 (Rule Application Redundancy in Root Macro Blocks (G3S4)).
Let t be a valid G3S4-proof-tree. Then t can be transformed to a closed G3S4-proof-
tree t ′ such that for all macro blocks M of level 0 in t ′, M is redundance-free. No
further rule applications are needed and the orders are preserved.
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4.3 Adequateness of Multi-Proponent S4-Dialogues

Proof. Consider t as the tree of derivation 
S4
n Γ ⇒ ∆. The lemma is proven

by induction on n.

Base Case: n = 1 (trivial)

Inductive Step: For 
S4
n+1 Γ ⇒ ∆ we want to show that there is an equivalent

derivation which is redundance-free in the macro blocks of level 0. We only
need to look at rules 2l and 3r, as these are the duplication rules of G3S4.

Consider the sets ΓR ⊆ Γ and ∆R ⊆ ∆ which contain all 2-formulas of Γ and
3-formulas of ∆ respectively, on which a redundant rule application occurs
somewhere in t in macro block level 0. Now we check the lowest rule ap-
plication a0 of t (i.e., in the root). This application is not critical (otherwise
nothing needs to be done).

• If a0 is an application on a formula γ ∈ Γ \ ΓR or δ ∈ ∆ \ ∆R, then we
simply apply the hypothesis on the premise(s) of a0 and append a0

again below.

• If a0 is an application on a γ ∈ ΓR then it is an application of 2l on some
γ = 2A. We define Γ ′ =df Γ \ {2A}. Then we have 
S4

n Γ
′,2A,A⇒ ∆.

The hypothesis makes this derivation redundance-free in macro level 0.

Now we define the multi-sets χ+A =df {A} and χ−A =df ∅. Obviously,
d+(χ+A,χ

−
A,A). Then 
S4

n Γ
′,2A,χ+A ⇒ χ−A,∆, and by dispensability

(Lemma 4.5) also without the usage of applications of 2l on 2A or
additional rule applications. Therefore, 
S4

n+1 Γ
′,2A⇒ ∆ without re-

dundant rule application in macro level 0.

• The case for a0 being an application on a δ ∈ ∆R is solved accordingly.

Lemma 3.7 and its proof (p. 127) can now be adapted directly so that every
G3S4-proof-tree can be made redundance-free.
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Lemma 4.7 (Rule Application Redundancy in G3S4-Trees). Let t be a valid
G3S4-proof-tree. Then t can be transformed to a closed G3S4-proof-tree t ′ such that
all macro blocks of t ′ are redundance-free.

Proof. Omitted due to similarity to proof of Lemma 3.7.

The next steps are the macro-saturation (Definition 3.6, p. 128) and the micro-
saturation (Definition 3.7, p. 135): it is quite nice that Lemmas 3.8, 3.9, and
3.10 (pp. 128, 131, 135) and their proofs can also be adapted directly when
taking the new non-redundancy and the rules of G3S4 into account. As the
proofs work the same way, they are not discussed here.

Lemma 4.8 (Macro Block Saturation in G3S4-Proof-Trees). Let t be a G3S4-
proof-tree. Then t can be transformed to be macro-saturated in such a way that it
is still a valid proof tree and without increasing its macro block height (MBH).

Lemma 4.9 (Independent Rule Movement in Macro-Saturated G3S4-Trees).
Let t be a macro-saturated and redundance-free sequent tree with an MBH of 1,
and al = (r, ϕ̂) a rule application at level l in t. Suppose that for all rule applica-
tions am with 0 6 m < l, al does not depend on am, i.e., al 6∝ am. Then t can be
transformed to t ′ for which

• al is moved downwards to the root, and

• the root sequent and the leaf sequents are the same as in t, and

• no rule application in t is added and none is removed, and

• the mbh and the MBH are the same as in t, and

• t ′ is also macro-saturated and redundance-free.

Lemma 4.10 (Micro Block Saturation in G3S4-Proof-Trees). Let t be a G3S4-
proof-tree of micro block height h. Then t can be transformed so that it is micro-
saturated, but still closed and without increasing its micro block height h.

188



4.3 Adequateness of Multi-Proponent S4-Dialogues

From Normalized G3S4-Proofs to DiaSeqS4-Proofs

So again, after making an arbitrary G3S4-proof redundance-free and after
macro-saturating and micro-saturating it, we can turn to the final part and
rearrange the order of rules in the single block sequent sections. For the
macro blocks that start in macro level 1, we use the following order (from
bottom to top):

∧r ∨r ⊃r ¬r 3r 2l ¬l ⊃l ∧l ∨l

Again, the macro blocks are separated at points where the proponents react
to a critical attack performed by O, or where one of them performs a co-
critical attack. The micro blocks are used to establish the dialogical round
structure. Things are now a bit different than for DiaSeqI, as now, after a
P-agent reacted to a critical attack or performed a co-critical attack in the
decision phase, it is O’s turn, which was not the case in DiaSeqI (compare
Figure 3.6, p. 109, with Figure 4.4, p. 172).

For the sake of simplicity, the different proponent labels are not distin-
guished. The blocking with the tilde (õ) is also ignored, because our G3S4-
proofs are considered to be redundance-free (Lemma 4.7).

Lemma 4.11 (Macro-Block Transformation (G3S4)). Every redundance-free,
macro-saturated, and micro-saturated G3S4-proof with root sequent ΓR ⇒ ∆R can be
transformed to a DiaSeqS4-tree which is closed and which has sequent ΦR `O Ψ ′R
as root, where ΦR and Ψ ′R contain the formulas of ΓR and ∆R augmented with labels
(left-hand formulas with o, right-hand with p). Any subset of Ψ ′R may be marked
with attacked-bars.

Proof. By induction on the MBH h of t. The argument is very similar to the
proofs of Lemma 3.11 and Theorem 3.2. We call the target DiaSeqS4-tree d.
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Base Case: h = 0 — We perform an inner induction on the mbh j of t.

Base Case: j = 1 — Either ΦR contains a ⊥ or Ψ ′R a prime formula
which causes a closure. In both cases, O can perform her attacks as far
as necessary, followed by cO and PN, and the ipse dixisti or absurdum
dixisti, respectively.

Inductive Step: We reorder the rule application of the lowest micro
block as determined above. We take the root ΦR `O Ψ ′R and

– append all possible attacks which can be performed by O on top,

– append cO and PN,

– append all defences/triggers which can be performed by the
P-agents (correspond to ∧r, ∨r, ⊃r, ¬r, and 3r of the G3S4-micro
block),

– append all attacks which can be performed by the P-agents,

– append cP, and

– append all defences/triggers by O (correspond to 2l, ¬l, ⊃l, ∧l,
and ∨l of the G3S4-micro block).

Afterwards, we apply the hypothesis on all trees starting in the next
micro block level.

Inductive Step: There is at least one critical rule application in t. Same
procedure: let us do an induction on the mbh j of t:

Base Case: j = 0 — The lowest rule application is a critical one. We
take the root ΦR `O Ψ ′R, add all possible attacks by O, followed by rule
cO. If the critical rule application is 3l, we add P?3, followed by O!3.
Else, if it is 2r, we simply add P!2. The resulting sequents have the
desired form to continue the transformation.
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Inductive Step: This is almost the same as in the (outer) base case. We
simply translate a round starting with O’s attacks and ending with O’s
defences. Then we apply the (inner) hypothesis.

Once the lowest macro blocks are translated, we can apply the (outer) hypo-
thesis to perform the others.

Theorem 4.2. Every closed G3S4-proof-tree can be transformed to a DiaSeqS4-
proof-tree.

Proof. This follows directly from Lemma 4.11 as special case.

4.3.3 Completeness of DiaSeqCS4

The transformation of G3iCS4m-derivations to DiaSeqCS4-derivations is left.
Many parts of the previous section can be adapted directly. Others need to
be modified slightly. In general, we refer to the lemmas of the previous sec-
tion and skip the proofs unless they vary substantially. Modified definitions
are given in detail. For the deducibility (with a maximal height of n) in
G3iCS4m we write 
CS4

n .

First, weakening (c.f. Lemma 4.1) is admissible in G3iCS4m (see also Lemma
2.1, p. 60). The inversion lemma needs to be modified, as fewer of the rules
are invertible, i.e., more rules are critical. These are ⊃r, ¬r, 2r, 3r, and 3l.

Lemma 4.12 (Inversion (G3iCS4m)). For all ∆, Γ and formulas A and B:

1. If 
CS4
n Γ ,A∧ B⇒ ∆ then 
CS4

n Γ ,A,B⇒ ∆.

2. If 
CS4
n Γ ⇒ A∨ B,∆ then 
CS4

n Γ ⇒ A,B,∆.

3. If 
CS4
n Γ ,A∨ B⇒ ∆ then 
CS4

n Γ ,A⇒ ∆ and 
CS4
n Γ ,B⇒ ∆.

4. If 
CS4
n Γ ⇒ A∧ B,∆ then 
CS4

n Γ ⇒ A,∆ and 
CS4
n Γ ⇒ B,∆.

5. If 
CS4
n Γ ,A ⊃ B⇒ ∆ then 
CS4

n Γ ,A ⊃ B⇒ A,∆ and 
CS4
n Γ ,B⇒ ∆.
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6. If 
CS4
n Γ ,¬A⇒ ∆ then 
CS4

n Γ ,¬A⇒ A,∆.

7. If 
CS4
n Γ ,2A⇒ ∆ then 
CS4

n Γ ,2A,A⇒ ∆.

The derivations in the conclusions do not contain further rule applications in all
paths than the derivations in the conditions. The order of rule applications is pre-
served.

Proof. For this, the critical rules must of course also be taken into account
when they are applied as lowest rules. However, the procedure is not differ-
ent to that of the G3S4-version (Lemma 4.2).

Contraction (c.f. Lemma 4.3) follows from inversion. As (compared to G3S4)
inversion is restricted, we also have to cut down the non-critically derivable
set.12

Definition 4.2 (Non-Critically Derivable Set (G3iCS4m)). Let ϕ be a formula of
propositional modal logic. The pair (χ+,χ−) is a left-derivable pair of multi-sets
for ϕ, written d+(χ+,χ−,ϕ) iff for any A and B:

• χ+ = {ϕ} and χ− = ∅ or

• ϕ = A∧ B and there are χ+A, χ+B , χ−A, and χ−B such that χ+ = χ+A,χ
+
B and

χ− = χ−A,χ
−
B with d+(χ+A,χ

−
A,A) and d+(χ+B ,χ

−
B ,B) or

• ϕ = A∨ B and either d+(χ+,χ−,A) or d+(χ+,χ−,B) or

• ϕ = A ⊃ B and either there is a χ+A such that
χ+ = A ⊃ B,χ+A and d−(χ+A,χ

−,A), or d+(χ+,χ−,B) or

• ϕ = ¬A and there is a χ+A such that χ+ = ¬A,χ+A and d−(χ+A,χ
−,A) or

• ϕ = 2A and there are χ+A and χ−A such that χ+ = 2A,χ+A and χ−A = χ− with
d+(χ+A,χ

−
A,A).

12The generalized inversion only holds for non-critical formulas, as with critical rule applic-
ations, formulas are dropped from the sequents.
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The pair (χ+,χ−) is a right-derivable pair of multi-sets for ϕ,
written d−(χ+,χ−,ϕ) iff for any A and B:

• χ+ = ∅ and χ− = {ϕ} or

• ϕ = A∧ B and either d−(χ+,χ−,A) or d−(χ+,χ−,B) or

• ϕ = A∨ B and there are χ+A, χ+B , χ−A, and χ−B such that χ+ = χ+A,χ
+
B and

χ− = χ−A,χ
−
B with d−(χ+A,χ

−
A,A) and d−(χ+B ,χ

−
B ,B).

With this adjusted definition, the generalized inversion can be shown for
G3iCS4m. The proof is easy and omitted here, as this is a restricted version
of Lemma 4.4 (Generalized Inversion (G3S4)).

Lemma 4.13 (Generalized Inversion (G3iCS4m)). For any Γ , ∆, A, and n:

• if 
CS4
n Γ ,A⇒ ∆ then for all χ+A and χ−A such that d+(χ+A,χ

−
A,A):


CS4
n Γ ,χ+A ⇒ χ−A,∆.

• if 
CS4
n Γ ⇒ A,∆ then for all χ+A and χ−A such that d−(χ+A,χ

−
A,A):


CS4
n Γ ,χ+A ⇒ χ−A,∆.

It is not necessary to use further rule applications than for the derivations in the
premises. The order of rule applications is preserved.

This is then used to show the dispensability of duplication rules.

Lemma 4.14 (Dispensability of Duplication Rules (G3iCS4m)). For all Γ , ∆, A,
n, and all χ+A, χ−A:

• if d−(χ+A,χ
−
A,A) and 
CS4

n Γ ,A ⊃ B,χ+A ⇒ χ−A,∆, then

CS4
n Γ ,A ⊃ B,χ+A ⇒ χ−A,∆ without any rule applications on A ⊃ B in macro

blocks of level 0.

• if d−(χ+A,χ
−
A,A) and 
CS4

n Γ ,¬A,χ+A ⇒ χ−A,∆, then 
CS4
n Γ ,¬A,χ+A ⇒ χ−A,∆

without any rule applications on ¬A in macro blocks of level 0.
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• if d+(χ+A,χ
−
A,A) and 
CS4

n Γ ,2A,χ+A ⇒ χ−A,∆, then 
CS4
n Γ ,2A,χ+A ⇒ χ−A,∆

without any rule applications on 2A in macro blocks of level 0.

For the transformation, no further rule applications are necessary on any of the
paths. The order of rule applications is preserved.

Proof. For details see the proof of Lemma 4.5, p. 185.

As for G3S4, we can now use this to show that any G3iCS4m-tree can be made
redundance-free.13 The rest, i.e., the macro block saturation, the rule movement,
and the micro block saturation are no problem and work as shown before.
Of course, the new issues with the G3iCS4m-rules need to be checked, but
actually, the differences are so small that they are not worth to be discussed
in detail at this point. Also the reordering and transformation process works
exactly as for DiaSeqS4. The main difference is that we have additional
critical rules, but these are independent of the structure of the micro blocks
within the macro blocks.

Theorem 4.3. Every closed G3iCS4m-proof-tree can be transformed to a
DiaSeqCS4-proof-tree.

4.4 Summary and Comparison to other Systems

In this chapter, multi-proponent dialogical calculi for the modal systems
S4 and CS4 have been investigated. For both, informal game rules and
sequent-style implementations have been presented. The structural rules
for MPMD/S4 come in two variants, one simple one, where the only modal
operator of the language is 2, and one complete one which also involves 3.
The latter is much more complex and the foundation for the structural rules
for MPMD/CS4. In these, distinctions between (weak and strong) critical at-

13Again, first the macro blocks of macro block level 0, and then globally.
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tacks and co-critical attacks, as well as between active, deactivated, stunned
and protected P-agents are necessary.

The rules of the sequent variants DiaSeqS4 and DiaSeqCS4 are clear and,
compared to the informal structural rules, easy to use. The dialogical se-
quent systems work like DiaSeqI of Chapter 3. Soundness and completeness
of DiaSeqS4 and DiaSeqCS4 have been shown by extending the adequate-
ness proofs for DiaSeqI. MPMD/CS4 is the first dialogical system for a
constructive (or intuitionistic) modal logic for which a formal adequateness
proof is provided.

As our systems do not make use of explicit contexts and only a single player
is part of the opponent party, the greatest similarities can be found in the
approach by Krabbe [83, 86] (see Chapter 2.4.1). Like him, we allow the pro-
ponent(s) to state prime formulas and the ipse dixisti remark. The distinction
of strong and weak commitments is also adapted, as well as O’s ability to
withdraw concessions.

However, the 3-operator is not involved in Krabbe’s work and, as men-
tioned, only one proponent agent plays in these games. Krabbe also added
the significance level as label to the 2, which we simplify to the mono-modal
version.

When we compare DiaSeqS4 and DiaSeqCS4 with different modal sequent
systems (discussed in Chapter 2.2), we detect similarities to ordinary sequent
systems, in particular G3S4 and G3iCS4m (Sections 2.2.1 and 2.2.2). In these,
formulas are dropped from the sequents whenever non-invertible rules are
applied, which corresponds to the critical moves in DiaSeqS4/DiaSeqCS4.
We refrain from using labels attached to formulas that indicate a context or
a Kripke world as done in G3S4l (Chapter 2.2.4) which is strongly related
to tableau calculi and reproduces Kripke models explicitly. We also do not
apply techniques of hypersequents or nested sequents in which these structures
are built more implicitly but are obviously still present (Chapter 2.2.5).
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The enforced round structure of the dialogical sequents has again similarities
to the principle of focus calculi. Modal focus calculi which are presented in
the literature are, to my current knowledge, only those which are mentioned
in Chapter 2.2.6. One of them [113] is based on first-order logic and works
on the explicit relations established by labels, the others are working on nes-
ted sequents [24, 25, 94]. There is currently no focusing system for ordinary
modal sequents which are more related to the multi-proponent dialogical
sequents. The reason is probably that they are considered to be less flexible
than the other approaches. Nevertheless, as ordinary sequents are very fun-
damental and there has been a lot of work on them since Gentzen, they are
still worth to be considered. Further differences of multi-proponent dialo-
gical sequents and focus sequents were already discussed in Chapter 3.4.2
and are not repeated here.
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Problems, Future Work

In this last chapter the key aspects of this work are summarised. Open
problems of MPID and MPMD and their sequent style interpretations are
discussed and different directions for future work are suggested.

5.1 Results

In this work we have investigated an account to proof search in modal logic
(in particular for the modal systems S4 and CS4) and intuitionistic proposi-
tional logic. The focus was set on propositional modal logic due to its rel-
evance and popularity in computer science. Most of the usual modal logics
are decidable, a big advantage compared to first-order predicate logic which
is on the other hand more expressive.

The presented approach is based on dialogical games in which a proponent
tries to defend the validity of a formula towards an opponent. In our at-
tempt further proponent-agents are introduced for support. This has two
effects. First, our calculus enforces a normalization of proofs, as the order of
steps/moves is restricted due to the game setting. From the game-theoretic
perspective this also implies that agents’ decisions which are significant for
winning or losing are not taken individually with every move, but instead as
a collective agreement of which the consequence usually is that some players
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leave the game. This new kind of dialogues allows the proponent players to
work separately and in parallel until a collective decision is made.

Soundness and completeness of the presented dialogical systems has been
shown by implementing the rules in terms of sequent calculi and by showing
their correspondence to known ordinary sequent systems. As by-product a
new cut-free ordinary multi-conclusion sequent system G3iCS4m was pre-
sented for which soundness and completeness were also shown due to its
equivalence to system G3CS4.

The multi-proponent dialogical systems were compared to different sequent
calculi, especially systems that make use of the focusing technique (also lead-
ing to normalization of proofs), and to different dialogical systems. Gentzen
sequent systems were also related to dialogues to emphasize common fea-
tures.

With this thesis I intend to present a foundation for a new proving technique
based both on multi-conclusion sequent systems and dialogues. There are
many open problems and much space for future work concerning different
problem areas. Some of them are discussed in the following.

5.2 Efficiency

MPID and MPMD with their sequent-style interpretations provide reasoning
techniques for IPL and modal logics S4 and CS4. The systems work with a
round-based scheduling technique that forces the parties to perform moves
whenever it is their turn. As we have seen in particular in the completeness
proof of DiaSeqI, some of these moves do not help in the proof searching
process as they are irrelevant.1 So one improvement would be to avoid such
irrelevant moves, possibly by considering methods which are able to predict

1This becomes obvious in the macro block saturation (Chapter 3.3.1). In many cases it is
stronger than actually necessary, e.g., shortcuts are possible when a P-agent reacts to a
critical attack earlier.
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that a move is unnecessary. This would strongly increase the efficiency of
searching for derivations.

Now, as the decision phase of DiaSeqI/DiaSeqS4/DiaSeqCS4-proofs is the
significant part for the proponents’ success, it is also possible to concentrate
on this phase and establish heuristics that help the P-agents to decide how
to behave in these situations, i.e., decide which of the proponents is the one
to react to a critical move or perform a co-critical attack.

Concerning implementation we have already pointed out that the propo-
nents, as long as they are not situated in the decision phase, are working
independently of each other, everyone only concentrating on what the op-
ponent states towards them. So each of the P-agents can work in parallel
with O until the next decide phase is reached. The dialectic reasoning pro-
cedures can therefore be implemented in a concurrent fashion where each
P-agent corresponds to a single process/thread which is synchronized with
the others in the decision phase.

It seems to be unlikely that the time complexity of DiaSeqI is better than that
of G3i

m, or the complexity of DiaSeqS4/DiaSeqCS4 is better than G3S4/
G3iCS4m. However, it is one aim of the work to provide a foundation in
terms of the scheduling mechanism which can be the basis of more efficient
systems.

5.3 Termination

Termination is guaranteed in our multi-proponent system DiaSeqI+ for IPL

based on the results by Corsi and Tassi [33] (Chapter 2.1.4). For systems
DiaSeqS4 and DiaSeqCS4 termination is not guaranteed as S4 and CS4

are more complex than IPL. To fill this gap one might adapt the ideas by
Heuerding et al. [68] (sequent system KS4SU) or Howe [72, 73] who also
provides a system for the 2-fragment of CS4 (Chapter 2.2.3). Another ap-
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proach would be to transfer the structural game rules proposed by Krabbe
[86] (see rule (F2S4) in Chapter 2.4.1). However, it is probably harder to find
a formal adequateness proof for a system that includes this rather informal
restriction.

An easier way to solve the problem of termination guarantee would be to
introduce ranks as Clerbout [29, 30] does for his modal dialectics (Chapter
2.4.3). As already mentioned, the idea of ranks is quite attractive from the
game-theoretic point of view, but facing the problems of proof search it is
rather inappropriate because it would be necessary to guess the correct ranks
beforehand.

5.4 Intermediate Systems and Extensions

In this work multi-proponent systems were introduced only for IPL and
modal systems S4 and CS4. We have not considered classical propositional
logic as a variant of MPID/DiaSeqI without critical attacks. Obviously, the
sequent calculus G3c serves as counterpart to show adequateness.

In Chapter 2.3.5 we discussed variants of multi-proponent dialectics
(MPDFM) by Fermüller and Ciabattoni for the propositional language. These
are not only used as reasoning procedures for intuitionistic and classical
logic, but also for intermediate logics like the Gödel-Dummett logic. The ad-
equate reasoning for the different semantics is accomplished by giving the
proponents different abilities of how to merge, i.e., share their information
[51, 49]. It would be interesting to find a set of rules in our multi-proponent
setting (MPID) that achieves the same. For example, it is thinkable to relax
the restriction that all other proponent agents are deactivated if one reacts
to a critical attack performed by O. Instead, one might allow two or three
proponents to continue the play.
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Accordingly, it is possible to modify the informal structural rules for
MPMD/S4 and MPMD/CS4: both modal systems S4 and CS4 have common
features, but CS4 is much more restrictive, i.e., has less theorems. When
we have a look at Table 4.2 (p. 179) again, we see that many modifica-
tions are possible. For example, one could change the set of moves caus-
ing weak/strong events and the effects, introduce further possibilities for
P-protections or O-withdrawals, or change the restrictions for P-agents to
perform co-critical attacks. In this way intermediate or even more restrictive
systems than CS4 can be obtained.

It seems that DiaSeqS4 can be modified easily to work also for other modal
systems like K, KT, or K4, for which there exist cut-free, ordinary sequent
systems. The proposed technique of macro and micro saturation should be
applicable there and also for the constructive variants.

As already mentioned in Chapter 2.2.1, no ordinary sequent systems for
the IK-family can be found in the literature. The reason seems to be the
IK5 axiom. In labelled sequents its derivation requires to travel forth and
back between Kripke worlds which is not possible once the formulas of the
previously visited world are dropped (see example on p. 57). Because of
this, our transformation technique to dialogue sequents cannot be applied
to obtain dialectic calculi for IK, IKT, IS4. . .

Labelled sequents can be simulated with dialogues using contexts like in
the work of Rückert and Rahman (Chapter 2.4.3) or as multi-opponent dia-
logues as proposed by Van Dun (Chapter 2.4.2). An interesting approach
would be to combine our multi-proponent system for IPL (MPID/DiaSeqI)
with Van Dun’s attempt to obtain multi-player (both multi-proponent and
multi-opponent) dialectics for intuitionistic modal logics. Each O-agent then
represents a Kripke world on the modal level while P-agents can be deacti-
vated to enforce intuitionism. Restrictions for the proponents must then also
be established to prevent them from changing their communication partners
arbitrarily.
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Blackburn [15] once proposed an attempt to use dialogues as reasoning pro-
cedure for hybrid logic. This also fits quite well to the idea of multi-opponent
dialogues: just consider the statement @iφ which simply means, if asserted
by some O-agent j, that her colleague, O-agent i, is ready to commit asser-
tion φ. Or if asserted by a P-agent and attacked by an O-agent, it results in a
change to another communication partner on the O-side.

Another idea is to build a reasoning system for public announcement logic
(PAL), a variant of dynamic logic that goes back to Plaza [119]. Van Dun’s
system might also be extended for this: as soon as new information is sud-
denly available, the argumentation partners have to react to this somehow.
In a tableau calculus proposed by De Vuyst [37], using a rule for a public
announcement formula [!ϕ]ψ2 means that one has to decide for every Kripke
world which is represented in the tableau, whether the statement ϕ holds
or not, and then remove the worlds in which ϕ does not hold. This fits our
game semantics very well, where agents have to decide whether they commit
themselves to the truth of an announced formula or not. However, things get
quite complex very quickly, as it can be seen in the rules of sequent systems
for PAL, e.g. as in [105].

5.5 Further Alternations and Applications

Original attempts by Lorenzen and Lorenz aimed at reasoning procedures
for intuitionistic first-order logic which was not the main subject here, as we
concentrated on propositional modal logic. The first-order language is also
interesting with respect to multi-proponent dialogues. Different proponent-
agents would be allowed to substitute bound variables with different
terms/objects.

A philosophical disadvantage of our sequential interpretation of dialogues
is that the moves are not mapped to sequent rules one by one. For example,

2If ϕ is announced publicly then this results in ψ.
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DiaSeqI (and also DiaSeqS4 and DiaSeqCS4) contains trigger rules (O∗¬,
O∗⊃, P∗¬) which do not correspond to dialogical moves but are instead
applied automatically when possible or necessary. The same holds for the
changing rules cO, cP and PN. To solve this issue, one could rebuild the dia-
logical sequent calculi to obtain systems in the style of Barth and Krabbe [10]
(Chapter 2.3.3) which interpret dialogical moves literally. A multi-proponent
variant does not yet exist in this style. Concerning game-theoretic calculi it
would also be interesting to examine multi-proponent material dialogues or
Hintikka games (see Chapter 2.3.6) for constructive modal logic in order to do
reasoning in predefined models.

In the literature, dialogical logic is rarely used for applications which are
neither philosophical nor proof-theoretical. However, there are argu-
mentation-theoretic approaches as researched by Barth and Krabbe [10] and
Walton and Krabbe [147]. In the work by Fach [45] dialogues are used as
foundation to build tutor systems for software usage.3 Alama [3] suggests
to use dialogues to implement a theorem prover. With the multi-proponent
approach, a new concept with new semantics is introduced that could lead
to ideas for further applications. The usage of Lorenzen dialogues for com-
munication of agents is currently not present in the literature.

3The tutor/system has some kind of contract with the user. The system helps to solve a
task, e.g., by showing the next step, if the user has achieved the requirements for solving
it. Fach relates this to some features of intuitionistic logic.
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a fortiori
IG, 38
SIC, 53

absurdum dixisti, 77
addressee, 106
adequateness

proof system, 7
announcer, 106

label, 106
antecedent, 12

sequent, 28, 106
assertion, 71

hypothetical, 167
strong, 167
weak, 167

attack, 72
co-critical, 168
critical, 101, 167, 168, 176
strongly critical, 177

axiom
CPL, 18
IPL, 17
modal (classical), 18
modal (constructive), 23
modal (intuitionistic), 22
sequent, 29

calculus, see system
child

tree, 16
classical propositional logic (CPL),

18

closure
macro-block, 116
micro block, 117
sequent tree, 30

coalition (opponents), 92
commitment, 71

hypothetical, 168
initial, 71
strong, 167
weak, 167

completeness, 15
DiaSeqCS4, 194
DiaSeqI, 142
DiaSeqI+, 155
DiaSeqS4, 191
G3iCS4m, 60

concession, see commitment
conclusion, 15

sequent, 29
conjunct, 12
consequent, 12
constructive logic, see intuitionistic

propositional logic
contraction

G3iCS4m, 192
G3i

m, 122
G3S4, 182

counter-attack, 71
cube

CS5, 26
IS5, 26
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S5, 25
cut elimination, 28

D-dialogue, 74
D-rules, 74
decide phase, 108
decision procedure, see system
deducibility

G3CS4, 59
G3iCS4m, 59
G3i

m, 113
IG, 113

defence, 72
demand, 72
derivability, 29
derivation

G3CS4, 59
G3iCS4m, 59
G3i

m, 113
IG, 113
regular (IG), 39
semi-regular, 146
sequent, 29

description logic, 1
ALC, 1
cALC, 69

dialogue
context, 94
D-dialogues, 72
E-dialogue, 77
material, 87
multi-opponent, 92
multi-proponent, see multi-

proponent dialectic
ordinary (modal), 88
run, 101
sequent (Barth/Krabbe), 79
tableau, 74
termination, 82, 103

disjunct, 12
disjunctive derivable set, 123

duality
2 and 3, 18

duplication
rule, 34, 56

E-dialogue, 77
E-rule, 77
Eigenvariable, 13
equality

first-order logic, 13
event

dialogue, 178
excluded middle, 34, 52

F-rules, 84
first-order logic (FOL), 12
focus

candidate, 45
intuitionistic, 40
modal, 69

Form, 14
formula

active, 30
atomic, 12
critical, 113
equivalence, 12
instance, 114
introduction, 114
prime, 12
principal, 30, 115
reinitialized, 114
relational, 66
signed, 106

frame F, see Kripke sematics→ frame

game
dialogue, 71
Hintikka, 3

Hauptsatz
Gentzen, 28

height
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tree, 16
Hilbert calculus, 17
Hintikka games, 3
hybrid logic, 67, 202
hypersequent, 49, 67
hypothesis

dialogues, 70

iff, 10
independence-friendly logic (IF), 5
initial concession, 71
intermediate logic, 49, 85
intuitionistic propositional logic (IPL),

17
inversion

G3iCS4m, 191
G3i

m, 119
G3S4, 181, 191
IG, 147

ipse dixisti, 77, 100

Kripke semantics, 19
accessibility relation, 19
fallible world, 25
Fischer Servi frame, 23
frame (classical), 19
frame (constructive), 24
frame (intuitionistic), 23
model, 19
refinement relation, 23
valuation, 19
worlds, 19

leaf, 16
left-derivable, 183, 192
linear logic, 41
local thesis, 79
loop, 37

macro block, 116
closure, 116
conventional saturation (IG), 149

cross-saturation (IG), 151
height, 116
level, 116
saturation (G3iCS4m), 194
saturation (G3i

m), 128
saturation (G3S4), 188
saturation (IG), 148
semi-saturation (IG), 149

macro saturation, see macro block
→ saturation

micro block, 117
closure, 117
height, 117
saturation (G3iCS4m), 194
saturation (G3i

m), 135
saturation (G3S4), 188
saturation (IG), 152
semi-saturation (IG), 152

micro saturation, see micro block
saturation

modal logic, 1
Kripke semantics, see Kripke

semantics
language, 13
model, 19
mono-modal, 14
multi-modal, 14
satisfaction relation, 19
semantics, see Kripke semantics

modal system
CK, 21, 23
CS4, 23
CS5, 23
CS5-cube, 26
IK, 21
IS4, 22
IS42, 65
IS5, 22
IS5-cube, 26
K, 18
S4, 19
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S5, 19
S5-cube, 25

model M, see Kripke sematics →
model

modus ponens, 15, 17
move, 71

!!, 100
attack, see attack
cancel, 86
defence, see defence
external, 85
fork, 85
internal, 85
merge, 86

multi-proponent dialectic
forking and merging (MPDFM),

85
intuitionistic (MPID), 99
modal (MPMD), 165

multi-set, 10

natural deduction, 28
natural number, 10
necessitation, 18
negation normal form, 14
nested sequent, 53, 68

linear, 53, 68
node

tree, 16
non-critically derivable set, 183, 192
normal phase, 109

opponent, 71

particle rule
first-order logic, 72
modal logic, 88
propositional, 100

party, 100
path

tree, 16
Peirce’s Law, 37

phase, 108
polarity

formula, 44
premise, 15

sequent, 29
proof system, see system
proof search, 30
proponent, 70
proponent agent, 100

deactivated, 101
protected, 168, 176
stunned, 168

Propos , 100
propositional logic, 12
public announcement logic (PAL), 2,

202

quantifier, 12

rank, 83
attack, 83
repetition, 83

redundancy
rule application, 126

reinitialization
formula, 114

right-derivable, 183, 193
root, 16
round

2-player dialogues, 71
multi-proponent dialogues, 101

rule
a fortiori, 38
absurdum dixisti, 77
application, 30, 115

redundant, 126
closing, 113
conventional, 146
critical, 35, 113
D-rules, 74
dependence, 115
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E-rule, 77
F-rules, 84
invertible, 35
ipse dixisti, 77
movement, 129
non-critical, 35
non-invertible, 35
particle, see particle rule
sequent, 29
strip, see particle rule
structural, see structural rule
swap, 129
trigger rule, 106

run
dialogue, 71

scheduling, 97
parallel, 163
sequential, 163

sequence, 10
sequent, 28

DiaSeqI, 105
dialogue, see dialogue→ sequent
focus, 42
hyper, 49, 67
lists, 53
merge, 52
nested, see nested sequent
ordinary, 42
relational, 66
tree-hypersequent, 68

sequent calculus
2-sequent, 68
labelled, 66
multi-conclusion, 34
ordinary, 54
single-conclusion, 34
single-sided, 64

sequent tree, 29
set, 10
signature

modal, 14
soundness, 15

DiaSeqCS4, 180
DiaSeqI, 156
DiaSeqI+, 158
DiaSeqS4, 180
G3iCS4m, 62

stoup, 42, 44
strategy, 71
strictness level, 89
structural rule

asymmetry, 76
first-order logic, 72
modal logic, 88
multi-proponent (CS4), 176
multi-proponent (IPL), 100
multi-proponent (S4), 166, 167

Sub, 14
subformula, 14

property, 38
substitution, 13, 72
succedent

sequent, 28, 106
successor

possible worlds, 19
system, 15

CND, 79
DiaSeqCS4, 173
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In computer science, modal logics play an important role in various areas, e.g., 
to model knowledge structures or ontologies.  Intuitionistic or constructive pro-
positional logic can be considered as a special kind of modal logic.  Constructive 
modal logics describe a restrictive family of modal systems.  To prove validity of a 
statement formalized in such logics, various reasoning procedures (calculi) have 
been investigated.  When searching for proofs, a normalization of deductions 
in a calculus is desired.  A new attempt to find a normalized calculus leads to 
dialogical logic, a game-theoretic reasoning technique.  Usually, two players, one 
proponent and one opponent, argue about an assertion, expressed as a formula 
and stated by the proponent at the beginning of the play.  The dialogical approach 
is very flexible as the game rules can be adjusted easily.  It turns out that intro-
ducing further proponent-players who fight one opponent in a round-based set-
ting leads to a normalization of proofs.  Ordinary sequent systems can easily be 
transferred into the dialectic setting to achieve that normalization.  Further, the 
round-based scheduling induces a method to parallelize the reasoning process.  
Modifying the game rules makes it possible to construct new
intermediate or even more restrictive logics.

In this work, multi-proponent dialogical systems are introduced and adequate-
ness proofs for rules that implement intuitionistic propositional logic and the 
modal systems S4 and CS4, are provided.  Similarities and differences to various 
sequent systems and dialogical approaches are investigated.
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