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Chapter 1

Introduction

National Statistical Institutes (NSIs) like the U.S. Census Bureau or the Ger-

man Federal Statistical Office gather valuable information on many different

aspects of the society. Broad access to this information is desirable to stimulate

research in official statistics. However, most data obtained by the institutes

are collected under the pledge of privacy and thus the natural interest of en-

abling as much research as possible with the collected data has to stand back

behind the confidentiality guaranteed to the survey respondent. But not only

legal aspects are relevant when considering disseminating data to the public.

Respondents that feel their privacy is at risk might be less willing to provide

sensitive information, might give incorrect answers or might even refuse to par-

ticipate completely – with devastating consequences for the quality of the data

collected (Lane, 2007). Traditionally, this meant that access to the data was

strictly limited to researchers working for the NSI. With the increasing demand

for access to the data on the micro-level from external researchers, accelerated

by the improvements in computer technology, agencies started looking for pos-

sibilities to disseminate data that provide a high level of data quality while

still guaranteeing confidentiality for the participating units.

Over the years a broad literature on statistical disclosure limitation (SDL)

techniques for microdata evolved (see Bill Winkler’s famous list of microdata

confidentiality references in the Appendix A.1). These techniques can be di-

vided into two main categories: Approaches that protect the data by reducing

the amount of information contained in the released file through coarsening

of the data and approaches classified as data perturbation methods that try

to maintain most of the originally collected information but protect the data

1



2 CHAPTER 1. INTRODUCTION

by changing some of the values on the micro level. Information reducing ap-

proaches protect the data by

• categorizing continuous variables : Building categories from the underly-

ing continuous variables and reporting only in which category the unit

falls, for example building age groups in five year intervals.

• top coding : Setting values above a certain threshold equal to the thresh-

old, for example reporting the income for all individuals with income

above 100,000 as ”100,000+”

• coarsening categorical variables : Coarsening to a reduced number of cat-

egories, for example instead of providing information on the state level,

only reporting whether a respondent lives in West or East Germany.

• dropping variables : Dropping some variables that are considered too

sensitive (e.g. HIV-status) or are not enough protected by any of the

above methods.

There is a vast literature on data perturbation methods and discussing all

approaches including possible modifications is beyond the scope of this intro-

duction. A detailed overview is given in the handbook on statistical disclosure

control (Center of Excellence for Statistical Disclosure Control, 2009) issued

by members of the CENEX-SDC project funded by Eurostat. A good refer-

ence for recent developments are the proceedings from the biannual conference

Privacy in Statistical Databases (Springer LNCS 3050, 4302, 5262).

While the first methods developed in the eighties like swapping and adding

noise manly focused on disclosure protection and preserved only some univari-

ate statistics like the population mean and the variance of a single variable,

more sophisticated methods emerged in recent years. But these sophisticated

methods often require different complicated adjustments for each estimate to

get unbiased results, preserve only certain statistics like the vector of the means

or the variance-covariance matrix, or are valid only under specific distributional

assumptions like multivariate normality that are unrealistic for real datasets.

Besides, most statistical agencies still only apply standard methods mainly be-

cause of their easy of implementation. Winkler (2007b) shows the devastating

consequences on data quality for many of these easy to implement procedures

while others fail to achieve their primary goal: protecting the data adequately.
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Since many of the proposed data perturbation methods significantly reduce

data quality and it is often impossible for the researcher using the perturbed

data to judge, if the results are still at least approximately valid, there is

a common mistrust among researchers against these methods. Still, strict

legal requirements in many countries often force agencies to perturb their data

before release, even though they know that data quality can be heavily affected.

The situation is a little different in Germany where the required disclosure pro-

tection for datasets only used for scientific purposes, so called scientific use files

is lower than for datasets that are available to anybody (public use files). For

scientific use files, the German Federal Law on Statistics enables the release of

de facto anonymous microdata. ”Factual anonymity means that the data can

be allocated to the respondent or party concerned only by employing an exces-

sive amount of time, expenses and manpower” (Knoche, 1993). The concept of

factual anonymity takes into account a rational thinking intruder, who calcu-

lates the costs and benefits of the re-identification of the data. Because factual

anonymity depends on several conditions and is not further defined by law, it

is necessary to estimate the costs and benefits of a re-identification for every

dataset with a realistic scenario. Disseminating scientific use files under this

law is much easier than under the usual requirement that a re-identification of

a single unit should be impossible under any circumstance. For this reason the

scientific use files available in Germany traditionally are protected using only a

mixture of the non perturbative methods described above. Nevertheless, there

is a common agreement that the dissemination of microdata on businesses is

not possible using only non perturbative methods, since the risk of disclosure

is much higher for these data than it is for microdata on individuals for several

reasons:

• The underlying population is much smaller for businesses than it is for

individuals.

• Variables like turnover or establishment size have very skewed distribu-

tions that make the identification of single units in the dataset very easy.

• There is a lot of information about businesses in the public domain al-

ready. This information can be used to identify records in the released

dataset.

• The benefit from identifying a unit in an establishment survey might be
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higher for a potential attacker than the benefit of identifying a unit in a

household survey.

• In most business surveys the probability of inclusion is very high for large

businesses (often close to 1) so there is no additional privacy protection

from sampling for these units.

Since only few variables like turnover, region, and industry code are necessary

to identify many businesses, no data on enterprizes were disseminated for many

years. In 2002 a joint project of the German Federal Statistical Office, several

Statistical Offices of the Länder and the Institute for Applied Economic Re-

search started investigating the possibilities of generating scientific use files for

these data applying data perturbative methods for the first time in Germany.

They came to the result that using these methods a release is possible and

disseminated several survey datasets protected by either adding multiplicative

noise or microaggregation (Statistisches Bundesamt, 2005). With the long his-

tory of releasing only unperturbed data, it is not surprising that acceptance

of these datasets was rather limited in the following years. Many users of

these data tend to believe the collected data is the direct truth and ignore all

the additional uncertainty and possible bias introduced on the collection stage

by measurement errors, coding mistakes, bad sampling design and especially

steadily increasing nonresponse rates that make the implicit assumption of a

missingness pattern that is missing completely at random (Rubin, 1987) of

complete case analysis more and more questionable. The additional bias in-

troduced by the perturbation method might be dwarfed by the bias already

inherent in the data due to these facts. But also the selected perturbation

methods might be a reason for the limited acceptance. Winkler (2007b) il-

lustrates the negative consequences of univariate microaggregation, namely

on correlations and although correction factors for estimations based on data

perturbed by multiplicative noise are illustrated in the German Handbuch zur

Anonymisierung wirtschaftsstatistischer Mikrodaten (Statistisches Bundesamt,

2005) for the linear model and the SIMEX Method (Lechner and Pohlmeier,

2005) can be used for nonlinear models, both are difficult to compute and

are applicable only under some additional assumptions. The Handbuch shows

that the SIMEX method produces biased results for a probit regression us-

ing simulated data. A further disadvantage the two methods share with most

data perturbative methods is that logical constraints between variables are not



5

preserved.

This illustrates the common dilemma for data disseminating agencies: Fulfill-

ing only one goal – no risk of disclosure or high data quality – is straightforward;

release data generated completely at random or release the original unchanged

data. In both cases at least one party will be unhappy about the results, but

balancing the two goals is extremely difficult. A dataset that guarantees the

confidentiality of the respondent but is not accepted by the research commu-

nity due to data quality concerns is of little value and the question arises, if

the high costs in time and money to produce these datasets are justified.

A new approach to address the trade-off between data utility and disclosure

risk overcoming the problems discussed above was proposed by Rubin (1993):

The release of multiply imputed synthetic datasets. Specifically, he proposed

that agencies (i) randomly and independently sample units from the sampling

frame to comprise each synthetic dataset, (ii) impute unknown data values for

units in the synthetic samples using models fit with the original survey data,

and (iii) release multiple versions of these datasets to the public. These are

called fully synthetic datasets.

However, the quality of this method strongly depends on the accuracy of the

model used to impute the ”missing” values. If the model doesn’t include all

the relationships between the variables that are of interest to the analyst or if

the joint distribution of the variables is misspecified, results from the synthetic

datasets can be biased. Furthermore, specifying a model that considers all the

skip patterns and constraints between the variables in a large dataset can be

cumbersome if not impossible. To overcome these problems, a related approach

suggested by Little (1993) replaces observed values with imputed values only

for variables that bear a high risk of disclosure or for variables that contain

especially sensitive information, leaving the rest of the data unchanged. This

approach, discussed as generating partially synthetic datasets in the literature,

has been adopted for some datasets in the US (Abowd and Woodcock, 2001,

2004; Kennickell, 1997; Abowd et al., 2006).

The aim of this book is to give the reader a detailed introduction to the dif-

ferent approaches to generating multiply imputed synthetic datasets (MISD)

by combining the theory with illustrative examples using a real dataset, the

German IAB Establishment Panel. We start by giving an overview of the

history on synthetic datasets and discussing the major advantages of this ap-

proach compared to other perturbation methods. Since the method is based on
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the ideas of multiple imputation (Rubin, 1978), the next chapter recapitulates

its basic concepts originally proposed to impute values missing due to nonre-

sponse. Advantages and disadvantages of the two major imputation strategies

(joint modeling and fully conditional specification (FCS)) are also addressed.

The Chapters 5-8 on different synthetic data generation approaches are all or-

ganized in the same manner. First, the general ideas of the specific approach

are discussed, then the point and variance estimates that provide valid infer-

ences in this context are presented. Each section concludes with an extensive

application to a real dataset. Since all applications are based on the German

IAB Establishment Panel, this dataset is introduced in a separate chapter at

the beginning of the main part of the book (Chapter 4). The discussed data

generation approaches include generating fully synthetic datasets (Chapter 5),

generating partially synthetic datasets (Chapter 6), and generating synthetic

datasets when the original data is subject to nonresponse (Chapter 7).

Chapter 8 contains an extension to the standard synthetic data generation to

better address the trade-off between data utility and disclosure risk: Imputa-

tion in two stages, where variables that drive the disclosure risk are imputed

less often than others. Since in general data quality and disclosure risk both

increase with the number of imputations, defining a different number of impu-

tations for different variables can lead to datasets that maintain the desired

data quality with reduced risk of disclosure. In this chapter, the new com-

bining procedures that are necessary for the point and variance estimate are

presented for fully and partially synthetic datasets and the IAB Establishment

Panel is used to illustrate the impact of the number of imputations on the data

quality and the disclosure risk and to show the possible advantage of using a

two stage imputation approach. The book concludes with a glimpse into the

future of synthetic datasets, discussing the potentials and possible obstacles of

the approach and ways to address the concerns of data users and their under-

standable discomfort with using data that doesn’t consist only of the originally

collected values.



Chapter 2

Background on Multiply

Imputed Synthetic Datasets

2.1 The history of multiply imputed synthetic

datasets

In 1993 the Journal of Official Statistics published a special issue on data confi-

dentiality. Two articles in this volume lay the fundament for the development

of multiply imputed synthetic datasets (MISD). In his discussion Statistical

Disclosure Limitation Rubin suggested for the first time to generate synthetic

datasets based on his ideas of multiple imputation for missing values (Rubin,

1987). He proposed to treat all the observations from the sampling frame that

are not part of the sample as missing data and to impute them according to the

multiple imputation framework. Afterwards, several simple random samples

from these fully imputed datasets should be released to the public. Because

the released dataset does not contain any real data, disclosure of sensitive in-

formation is very difficult. On the other hand, if the imputation models are

selected carefully and the predictive power of the models is high, most of the

information contained in the original data will be preserved. This approach is

now called generating fully synthetic datasets in the literature.

In the same issue Little suggested a closely related approach that is also based

on the idea of replacing sensitive information by multiple imputation. The

major difference is that only part of the data is replaced. These could be

either some sensitive variables like income or turnover or key variables like

age, place of birth, and sex that could be jointly used to identify a single unit

7



8 CHAPTER 2. BACKGROUND ON MISD

in the dataset. With this approach, now called generating partially synthetic

datasets, it is not mandatory to replace all units for one variable. The re-

placement can be tailored only to the records at risk. It might be sufficient

for example to replace the income only for units with a yearly income above

100,000 EUR to protect the data. This method guarantees that only those

records that need to be protected are altered. Leaving unchanged values in

the dataset will generally lead to higher data quality, but releasing unchanged

values obviously poses a higher risk of disclosure.

In 1994 Fienberg suggested generating synthetic datasets by bootstrapping

from a ”smoothed” estimate of the empirical cumulative density function of

the survey data. This approach was further developed for categorical data in

Fienberg et al. (1998). 10 years after the initial proposal the complete the-

ory for deriving valid inferences from multiply imputed synthetic datasets was

presented for the first time. Raghunathan et al. (2003) illustrated, why the

standard combining procedures for multiple imputation (Rubin, 1987) are not

valid in this context and developed the correct procedures for fully synthetic

datasets. The procedures for partially synthetic datasets were presented by

Reiter (2003). One year earlier Liu and Little suggested the selective multiple

imputation of key variables (SMIKe), replacing a set of sensitive and nonsensi-

tive cases by multiple draws from their posterior predictive distribution under

a general location model.

Reiter also demonstrated the validity of the fully synthetic combining proce-

dures under different sampling scenarios (Reiter, 2002), derived the combining

procedures when using multiple imputation for missing data and for disclo-

sure avoidance simultaneously (Reiter, 2004), developed significance tests for

multi-component estimands in the synthetic data context (Reiter, 2005c), pro-

vided an empirical example for fully synthetic datasets (Reiter, 2005b) and

presented a non parametric imputation method based on CART models to

generate synthetic data (Reiter, 2005d). Recent work includes suggestions

for the adjustment of survey weights (Mitra and Reiter, 2006), selecting the

number of imputations when using multiple imputation for missing data and

disclosure control (Reiter, 2008b), measuring the risk of identity disclosure

for partially synthetic datasets (Reiter and Mitra, 2009; Drechsler and Reiter,

2008), and a two stage imputation strategy to better address the trade off

between data utility and disclosure risk (Reiter and Drechsler, 2010). A new

imputation strategy based on kernel density estimation for variables with very
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skewed or even multi-modal distributions has been suggested by Woodcock

and Benedetto (2009), while Winkler (2007a) proposed the use of different

EM-Algorithms to generate synthetic data subject to convex constraints. The

attractive features of synthetic datasets are further discussed by Fienberg and

Makov (1998); Abowd and Lane (2004); Little et al. (2004); An and Little

(2007) and Domingo-Ferrer et al. (2009).

It took several years before the ground braking ideas proposed in 1993 were

ever applied to any real dataset. The U.S. Federal Reserve Board was the first

agency to protect data in its Survey of Consumer Finances by replacing mone-

tary values at high risk of disclosure with multiple imputations, releasing a mix-

ture of these imputed values and the unreplaced, collected values (Kennickell,

1997). Abowd and Woodcock (2001) illustrated the possibilities of protecting

longitudinal, linked datasets with data from the French National Institute of

Statistics and Economic Studies (INSEE). A very successful implementation of

a partially synthetic dataset is the data used behind On the Map, illustrating

commuting patterns, i.e. where people live and work, for the entire U.S. via

maps available to the public on the web (http://lehdmap.did.census.gov/).

Since the point of origin (where people live) is already in the public domain,

only the destination points are synthesized. Machanavajjhala et al. (2008) de-

veloped a sophisticated synthesizer that maximizes the level of data protection

based on the ideas of differential privacy (Dwork, 2006) while still guaranteeing

a very high level of data utility. The most ambitious synthetic data project

up to date is the generation of a public use file for the Survey of Income and

Programm Participation (SIPP) funded by the U.S. Census Bureau and the

Social Security Administration (SSA). The variables from the SIPP are com-

bined with selected variables from the International Revenue Service’s (IRS)

lifetime earnings data, and the SSA’s individual benefit data. Almost all of

the approximately 625 variables contained in this longitudinal, linked dataset

were synthesized. In 2007, four years after the start of the project a beta

version of the file was released to the public (www.sipp.census.gov/sipp/synth

data.html). Abowd et al. (2006) summarize the steps involved in creating this

public use file and provide a detailed disclosure risk and data utility evaluation

that indicates that confidentiality is guaranteed while data utility is high for

many estimates of interest.

The Census Bureau also protects the identities of people in group quarters (e.g.,

prisons, shelters) in the public use files of the American Communities Survey by
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replacing demographic data for people at high disclosure risk with imputations.

Partially synthetic, public use datasets are in the development stage in the U.S.

for the Longitudinal Business Database, the Longitudinal Employer-Household

Dynamics survey, and the American Communities Survey veterans and full

sample data. Recently a statement by the American Statistical Association on

data access and personal privacy explicitly mentioned distributing synthetic

datasets as an appropriate method of disclosure control (http://www.amstat.

org/news/statementondataaccess.cfm).

Outside the U.S. the ideas for generating multiply imputed synthetic dataset

have been ignored for many years except for some small simulation studies at

ISTAT in Italy (Polettini, 2003; Franconi and Stander, 2002, 2003; Polettini

et al., 2002). They suggest generating model based synthetic datasets. The

main difference to the methods described in this book is that they do not

propose multiple imputation and therefore do not correct for the additional

variance from imputation. In 2006 the German Institute for Employment

Research launched a research project to generate synthetic datasets of its lon-

gitudinal establishment survey for release as a scientific use file. In the first

phase of the project the fully and partially synthetic approach were tested on a

subset of the data (Drechsler et al., 2008b,a). Drechsler et al. (2008a) also dis-

cuss the advantages and disadvantages of the two approaches in terms of data

utility and disclosure risk. Since the evaluations during the first stage of the

project indicated that the dataset could be sufficiently protected by the partial

synthetic approach, the second stage of the project focused on the generation

of a partially synthetic dataset for the complete last wave of the survey. The

release of this dataset, the first outside the U.S., is planned for spring 2010.

The growing interest in synthetic datasets in Europe is also documented by

the report on synthetic data files requested by Eurostat 2008 and published by

Domingo-Ferrer et al. (2009). Outside Europe statistical agencies in Australia,

Canada, and New Zealand (Graham and Penny, 2005; Graham et al., 2009)

also are investigating the approach.
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2.2 Advantages of multiply imputed synthetic

datasets compared to other SDC methods

Generally the aim of this approach is to preserve the joint distribution of

the data. Most data perturbation methods either preserve only univariate

statistics or only some predefined multivariate statistics like the mean and the

variance-covariance matrix in previously defined subgroups. However, most

of these methods for statistical disclosure control (SDC) are used to generate

datasets for public release on the microdata level and it is impossible to an-

ticipate all analyses potential users will perform with the data. For example

one analyst might remove some outliers before running her regressions and

it is completely unclear what the effects of SDC methods that only preserve

statistics in predefined subsets of the data will be for this reduced dataset.

Besides, for some analyses it might be desirable to preserve more than just the

first two moments of the distribution, e.g., maintain interaction and nonlinear

effects.

Furthermore, many SDC methods are only applicable either to categorical vari-

ables or to continuous variables. This means that often a combination of dif-

ferent techniques is required to fully protect a dataset before release. Methods

based on multiple imputation on the other hand can be applied to categorical

and continuous variables likewise rendering the use of different methods that

might require different adjustments by the data analyst unnecessary.

For fully synthetic datasets the actual disclosure risk is further reduced, since

the synthetic data is generated for new samples from the population and the

intruder never knows, if a unit in the released data was actually included in

the original data. Partially synthetic datasets on the other hand have the

advantage that the synthesis can be tailored specifically to the records at risk.

For some datasets it might only be necessary to synthesize certain subsets

of the dataset. Obviously, the decision which records will remain unchanged

is a delicate task and a careful disclosure risk evaluation is necessary in this

context.

On the other hand, as with any perturbation method, limited data utility is a

problem of synthetic data. Only the statistical properties explicitly captured

by the model used by the data protector are preserved. A logical question

at this point is why not directly publish the statistics one wants to preserve

rather than release a synthetic micro dataset. Possible defenses against this
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argument are:

• Synthetic data are normally generated by using more information on

the original data than is specified in the model whose preservation is

guaranteed by the data protector releasing the synthetic data.

• As a consequence of the above, synthetic data may offer utility beyond

the models they explicitly preserve.

• It is impossible to anticipate all possible statistics an analyst might be

interested in. So access to the micro dataset should be granted.

• Not all users of a public use file will have a sound background in statistics.

Some of the users might only be interested in some descriptive statistics

and won’t be able to generate the results if only the parameters are

provided.

• The imputation models in most applications can be very complex, be-

cause different models are fitted for every variable and often for different

subsets of the dataset. This might lead to hundreds of parameters just

for one variable. Thus, it is much more convenient even for the skilled

user of the data to have the synthesized dataset available.

• The most important reason for not releasing the parameters is that the

parameters themselves could be disclosive in some occasions. For that

reason, only some general statements about the generation of the public

use file should be released. For example, these general statements could

provide information, which variables where included in the imputation

model, but not the exact parameters. So the user can judge if her analysis

would be covered by the imputation model, but she will not be able to

use the parameters to disclose any confidential information.

But the most important advantage is that imputation based synthetic data

can tackle many real data problems, other SDC methods cannot handle:

First, most of the data collected by agencies are subject to nonresponse and

besides the fact that missing data can lead to biased estimates if not treated

correctly by the analyst, many SDC methods can not be applied to SDC

methods containing missing values. Since generating multiply imputed syn-

thetic datasets is based on the ideas of multiple imputation for handling item
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nonresponse in surveys, it is straight forward to impute missing values before

generating synthetic datasets. Reiter (2004) developed methods for simulta-

neous use of multiple imputation for missing data and disclosure limitation.

Second, model based imputation procedures offer more flexibility if certain

constraints need to be preserved in the data. For example non-negativity

constraints and linear constraints like total number of employees ≥ number

of part time employees can be directly incorporated on the model building

stage. Almost all SDC methods fail to preserve linear constraints unless the

exact same perturbation is applied to all variables for one unit, which in turn

significantly increases the risk of disclosure.

Third, skip patterns, e.g. a battery of questions are only asked if they are

applicable, are very common in surveys. Especially, if the skip patterns are hi-

erarchical, it is very difficult to guarantee that perturbed values are consistent

with these patterns. With the fully conditional specification approach (see

also Section 3.2.2) that sequentially imputes one variable at a time by defin-

ing conditional distributions to draw from, it is possible to generate synthetic

datasets that are consistent with all these rules.

Lastly, as Reiter (2008a) points out, the MI approach can be relatively trans-

parent to the public analyst. Meta-data about the imputation models can be

released and the analyst can judge based on this information if the analysis

he or she seeks to perform will give valid results with the synthetic data. For

other SDC approaches it is very difficult to decide, how much a particular

analysis has been distorted.
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Chapter 3

Multiple Imputation for

Nonresponse1

For many datasets, especially for non mandatory surveys, missing data are a

common problem. Deleting units that are not fully observed, using only the

remaining units is a popular, easy to implement approach in this case. This

can possibly lead to severe bias if the strong assumption of a missing pattern

that is completely at random (MCAR) is not fulfilled (see for example Rubin

(1987)). Imputing the missing values can overcome this problem. However,

ad hoc methods like, e.g., mean imputation can destroy the correlation be-

tween the variables. Furthermore, imputing missing values only once (single

imputation) generally doesn’t account for the fact that the imputed values

are only estimates for the true values. After the imputation process, they are

often treated like truly observed values leading to an underestimation of the

variance in the data and by this to p-values that are too significant. Multiple

imputation was suggested by Rubin (1978) to overcome these problems.

3.1 The concept of multiple imputation

Multiple imputation, introduced by Rubin (1978) and discussed in detail in

Rubin (1987; 2004), is an approach that retains the advantages of imputation

while allowing the uncertainty due to imputation to be directly assessed. With

multiple imputation, the missing values in a dataset are replaced by m > 1

simulated versions, generated according to a probability distribution for the

1Most of this chapter is taken from Drechsler and Rässler (2008) and Drechsler (2009).

15
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true values given the observed data. More precisely, let Yobs be the observed

and Ymis the missing part of a dataset Y , with Y = (Ymis, Yobs), then miss-

ing values are drawn from the Bayesian posterior predictive distribution of

(Ymis|Yobs), or an approximation thereof. Typically, m is small, such as m = 5.

Each of the imputed (and thus completed) datasets is first analyzed by stan-

dard methods designed for complete data; the results of the m analyses are

then combined to produce estimates, confidence intervals, and test statistics

that reflect the missing-data uncertainty properly. In this chapter, we discuss

analysis with scalar parameters only, for multidimensional quantities see Little

and Rubin (2002), Section 10.2.

To understand the procedure of analyzing multiply imputed datasets, think of

an analyst interested in an unknown scalar parameter Q, where Q could be,

e.g. the population mean or a regression coefficient in a linear regression.

Inferences for this parameter for datasets with no missing values usually are

based on a point estimate q , a variance estimate u, and a normal or Student’s

t reference distribution. For analysis of the imputed datasets, let qi and ui

for i = 1, 2, ...m be the point and variance estimates achieved from each of

the m completed datasets. To get a final estimate over all imputations, these

estimates have to be combined using the combining rules first described by

Rubin (1978).

For the point estimate, the final estimate simply is the average of the m

point estimates q̄m = 1
m

∑m
i=1 qi. Its variance is estimated by T = ūm +

(1 + m−1)bm, where ūm = 1
m

∑m
i=1 ui is the ”within-imputation” variance,

bm = 1
m−1

∑m
i=1(qi − q̄m)2 is the ”between-imputation” variance, and the fac-

tor (1 + m−1) reflects the fact that only a finite number of completed-data

estimates qi are averaged together to obtain the final point estimate. The

quantity γ̂ = (1 + m−1)bm/T estimates the fraction of information about Q

that is missing due to nonresponse.

Inferences from multiply imputed data are based on q̄m , T , and a Student’s

t reference distribution. Thus, for example, interval estimates for Q have

the form q̄m ± t(1 − α/2)
√

T , where t(1 − α/2) is the (1 − α/2) quantile of

the t distribution. Rubin and Schenker (1986) provide the approximate value

νRS = (m − 1)γ̂−2 for the degrees of freedom of the t distribution, under the

assumption that with complete data, a normal reference distribution would

have been appropriate. Barnard and Rubin (1999) relax the assumption of

Rubin and Schenker (1986) to allow for a t reference distribution with complete
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data, and suggest the value νBR = (ν−1
RS + ν̂−1

obs)
−1 for the degrees of freedom in

the multiple-imputation analysis, where ν̂obs = (1−γ̂)(νcom)(νcom+1)/(νcom+3)

and νcom denotes the complete-data degrees of freedom.

3.2 Two general approaches to generate im-

putations for missing values

Over the years, two different methods emerged to generate draws from

P (Ymis|Yobs): joint modeling and fully conditional specification (FCS), often

also referred to as sequential regression multivariate imputation (SRMI) or

chained equations. The first assumes that the data follow a specific distri-

bution, e.g. a multivariate normal distribution. Under this assumption a

parametric multivariate density P (Y |θ) can be specified with θ representing

parameters from the assumed underlying distribution. Within the Bayesian

framework, this distribution can be used to generate draws from (Ymis|Yobs).

Methods to create multivariate imputations using this approach have been

described in detail by Schafer (1997a), e.g., for the multivariate normal, the

log-linear, and the general location model.

FCS on the other hand does not require an explicit assumption for the joint

distribution of the dataset. Instead, conditional distributions P (Yj|Y−j, θj) are

specified for each variable separately. Thus imputations are based on univariate

distributions allowing for different models for each variable. Missing values in

Yj can be imputed for example by a linear or a logistic regression of Yj on Y−j,

depending on the scales of measurement of Yj, where Y−j denotes all columns

of Y excluding Yj. The process of iteratively drawing from the conditional

distributions can be viewed as a Gibbs sampler that will converge to draws

from the theoretical joint distribution of the data if this joint distribution

exists.

3.2.1 Joint modeling

In general, it will not be possible to specify P (Ymis|Yobs) directly. Note

however, that we can write

P (Ymis|Yobs) =

∫
P (Ymis, θ|Yobs)dθ =

∫
P (Ymis|Yobs, θ)P (θ|Yobs)dθ (3.1)
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Given this equation, imputations can be generated in two steps:

1. Generate random draws for the parameter θ from its observed-data pos-

terior distribution P (θ|Yobs) given the observed values.

2. Generate random draws for Ymis from its conditional predictive distribu-

tion P (Ymis|Yobs, θ) given the actual parameter θ from step 1.

With joint modeling the second step usually is straight forward. The distribu-

tion of (Ymis|Yobs, θ) can be obtained from the underlying model. For example

a multivariate normal density can be assumed for the complete data. But

the first step usually requires Markov Chain Monte Carlo techniques, since

the observed-data posterior distribution for (θ|Yobs) seldom follows standard

distributions, especially if the missing pattern is not monotone. Therefore,

often simple random draws from the complete-data posterior f(θ|Yobs, Ymis)

are performed. This means that even for joint modeling convergence of the

Markov Chain has to be monitored and it is not guaranteed that it will ever

converge. Though the probability of non-convergence might be much lower in

this context than with FCS, it is still possible and Schafer (1997a) provides

examples where the necessary stationary distribution can never be obtained.

3.2.2 Fully conditional specification (FCS)

With FCS the problem of drawing from a k-variate distribution is replaced by

drawing k times from much easier to derive univariate distributions. Every

variable in the dataset is treated separately using a regression model suitable

for that specific variable. Thus, continuous variables can be imputed using a

normal model, binary variables can be imputed with a logit model and so on.

Here, we can specify P (θ|Yobs) directly and no iterations are necessary, because

we don’t have to draw from possibly awkward multivariate distributions. For

example, if we want to impute a continuous variable Y , we can assume Y |X ∼
N(µ, σ2), where X denotes all variables that are used as explanatory variables

for the imputation. The two step imputation approach described above can

now be applied as follows:

Let n be the number of observations in the observed part of Y . Let k be

the number of regressors to be included in the regression. Let σ̂2 and β̂ be

the variance and the beta-coefficient estimates obtained from ordinary leased

square regressions using only the observed data. Finally, let Xobs be the
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matrix of regressors for the observed part of Y and Xmis be the matrix of

regressors for the fraction of the data where Y is missing. Imputed values for

Ymis can now be generated using the following algorithm:

Step 1: Draw new values for θ = (σ2, β) from P (θ|Yobs), i.e.,

• draw σ2|X ∼ (Yobs −Xobsβ̂)′(Yobs −Xobsβ̂)χ−2
n−k,

• draw β|σ2, X ∼ N(β̂, (X ′
obsXobs)

−1σ2).

Step 2: Draw new values for Ymis from P (Ymis|Yobs, θ), i.e.,

• draw Ymis|β, σ2, X ∼ N(Xmisβ, σ2).

Note that we are drawing new values for the parameters directly from the

observed-data posterior distributions. This means, we don’t need Markov

Chain Monte Carlo techniques to obtain new values from the complete-data

posterior distribution of the parameters. However, there are more variables

with missing data. Thus, we generate new values for Ymis by drawing from

P (Ymis|β, σ2, X) and the matrix of regressors X might contain imputed values

from an earlier imputation step. These values have to be updated now, based

on the new information in our recently imputed variable Y . Hence, we have

to sample iteratively from the fully conditional distribution for every variable

in the dataset. This iterative procedure essentially can be seen as a Gibbs

sampler for which the iterative draws will converge to draws from the joint

distribution, if the joint distribution exists.

In a more detailed notation, for multivariate Y , let Yj|Y−j be the distribution

of Yj conditioned on all rows of Y except Yj and θj be the parameter specifying

the distribution of Yj|Y−j. If Y consists of k rows, and each Yj is univariate,

then the tth iteration of the method consists of the following successive draws:

θ
(t)
1 ∼ P (θ1|Y obs

1 , Y
(t−1)
2 , ..., Y

(t−1)
k )

Y
(t)
1 ∼ P (Y mis

1 |Y (t−1)
2 , ..., Y

(t−1)
k , θ

(t)
1 )

...

θ
(t)
k ∼ P (θk|Y obs

k , Y
(t)
1 , Y

(t)
2 , ..., Y

(t)
k−1)

Y
(t)
k ∼ P (Y mis

k |Y (t)
1 , ..., Y

(t)
k−1, θ

(t)
k )

Since imputations are generated sequentially variable by variable, this ap-

proach is also called sequential regression multivariate imputation (SRMI,
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Raghunathan et al. (2001)). The sampler will converge to the desired joint

distribution of (Ymis|Yobs), but only if this joint distribution really exists. In

practice it is often impossible to verify this, thus its existence is implicitly as-

sumed. This is problematic, since it will always be possible to draw from the

conditional distributions and we will not get any hint that the Gibbs sampler

actually never converges.

3.2.3 Pros and cons of joint modeling and FCS

In general, imputing missing values by joint modeling is faster and the im-

putation algorithms are simpler to implement. Furthermore, if the underlying

joint distribution can be specified correctly, joint modeling will guarantee valid

results with the imputed dataset. However, empirical data will seldom follow a

standard multivariate distribution, especially if they consist of a mix of numer-

ical and categorical variables. Besides, FCS provides a flexible tool to account

for bounds, interactions, skip patterns or constraints between different vari-

ables (see Section 3.3). It will be very difficult to handle these restrictions that

are very common in survey data by joint modeling. In practice the imputation

task is often centralized at the methodological department of the statistical

agency and imputation experts will fill in missing values for all the surveys

conducted by the agency. Imputed datasets that don’t fulfill simple restric-

tions like non-negativity or other logical constraints will never be accepted

by subject matter analysts from other departments. Thus, preserving these

constraints is a central element of the imputation task.

Overall, joint modeling will be preferable, if only a limited number of variables

need to be imputed, no restrictions have to be maintained and the joint dis-

tribution can be approximated reasonably well with a standard multivariate

distribution. For more complex imputation tasks only fully conditional spec-

ification will enable the imputer to preserve constraints inherent in the data.

In this case, convergence of the Gibbs sampler should be carefully monitored.

A simple way to detect problems with the iterative imputation procedure, is

to store the mean of every imputed variable for every iteration of the Gibbs

sampler. A plot of the imputed means over the iterations can indicate if there

is only the expected random variation between the iterations or if there is a

trend between the iterations indicating problems with the model. Of course

no observable trend over the iterations is only a necessary and not a sufficient
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condition for convergence, since the monitored estimates can stay stable for

hundreds of iterations before drifting off to infinity. Nevertheless, this is a

straightforward method to identify flawed imputation models. More complex

methods to monitor convergence are discussed in Arnold et al. (1999).

3.3 Real data problems and possible ways to

handle them

The basic concept of multiple imputation is straightforward to apply and mul-

tiple imputation software like IVEware in SAS (Raghunathan et al., 2002),

mice (Van Buuren and Oudshoorn, 2000) and mi (Su et al., 2009) in R, ice in

Stata (Royston, 2005) (for FCS), and the stand alone packages NORM, CAT,

MIX, and PAN (Schafer, 1997b)(for joint modeling) further reduce the mod-

eling burden for the imputer. However, simply applying standard imputation

procedures to real data can lead to biased or inconsistent imputations. Several

additional aspects have to be considered in practice, when imputing real data.

Unfortunately most of the standard software with the positive exceptions of

IVEware and the new mi package in R can only handle some of these aspects:

3.3.1 Imputation of skewed continuous variables

One problem that especially arises when modeling business data is that most

of the continuous variables like turnover or number of employees are heavily

skewed. To control for this skewness, we suggest to transform each continu-

ous variable by taking the cubic root before the imputation. We prefer the

cubic root transformation over the log transformation that is often used in the

economic literature to model skewed variables like turnover, because the cubic

root transformation is less sensitive to deviations between the imputed and

the original values in the right tail of the distribution. Since the slope of the

exponential function increases exponentially whereas the slope of f(x) = x3

increases only quadratically, a small deviation in the right tail of the imputed

transformed variable has more severe consequences after backtransformation

for the log transformed variable than for the variable transformed by taking

the cubic root.
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3.3.2 Imputation of semi-continuous variables

Another problem with modeling continuous variables that often arises in sur-

veys, is the fact that many of these variables in fact are semi-continuous, i.e.

they have a spike at one point of the distribution, but the remaining distri-

bution can be seen as a continuous variable. For most variables, this spike

will occur at zero. To give an example, in our dataset the establishments are

asked how many of their employees obtained a college degree. Most of the

small establishments do not require such high skilled workers. In this case, we

suggest to adopt the two step imputation approach proposed by Raghunathan

et al. (2001): In the first step we impute whether the missing value is zero or

not. For that, missing values are imputed using a logit model with outcome 1

for all units with a positive value for that variable. In the second step a stan-

dard linear model is applied only to the units with observed positive values

to predict the actual value for the units with a predicted positive outcome in

step one. All values for units with outcome zero in step one are set to zero.

3.3.3 Imputation under non-negativity constraints

Many survey variables can never be negative in reality. This has to be consid-

ered during the imputation process. A simple way to achieve this goal is to

redraw from the imputation model for those units with imputed values that

are negative until all values fulfill the non-negativity constraint. In practice,

usually an upper bound z has to be defined for the number of redraws for one

unit, since it is possible that the probability to draw a positive value for this

unit from the defined model is very low. The value for this unit is set to zero,

if z draws from the model never produced a positive value. However, there is

a caveat with this approach. Redrawing from the model for negative values is

equivalent to drawing from a truncated distribution. If the truncation point

is not at the very far end of the distribution, i.e. the model is misspecified,

even simple descriptive analyses like the mean of the imputed variable will

significantly differ from the true value of the complete data. For this reason,

this approach can only be applied, if the probability to draw negative values

from the specified model is very low and we only want to prevent that some

very unlikely unrealistic values are imputed. If the fraction of units that would

have to be corrected with this approach is too high, the model needs to be re-

vised. Usually it is helpful to define different models for different subgroups of
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the data. To overcome the problem of generating too many negative values, a

separate model for the units with small values should be defined.

3.3.4 Imputation under linear constraints

In many surveys the outcome of one variable by definition has to be equal

to or above the outcome of another variable. For example, the total number

of employees always has to be at least as high as the number of part-time

employees. When imputing missing values in this situation, Schenker et al.

(2006) suggest the following approach: Variables that define a subgroup of

another variable are always expressed as a proportion, i.e. all values for the

subgroup variable are divided by the total before the imputation and thus

are bounded between zero and one. A logit transformation of the variables

guarantees that the variables will have values in the full range ]−∞,∞[ again.

Missing values for these transformed variables can be imputed with a standard

imputation approach based on linear regressions. After the imputation all

values are transformed back to get proportions again and finally all values are

multiplied with the totals to get back the absolute values. To avoid problems

on the bounds of the proportions, we suggest setting proportions greater than

0.999999 to 0.999999 before the logit transformation and to use the two step

imputation approach described in Section 3.3.2 to determine zero values.

3.3.5 Skip patterns

Skip patterns, e.g. a battery of questions are only asked if they are applicable,

are very common in surveys. Although it is obvious that they are necessary

and can significantly reduce the response burden for the survey participant,

they are a nightmare for anybody involved in data editing and imputation or

statistical disclosure control. Especially, if the skip patterns are hierarchical,

it is very difficult to guarantee that imputed values are consistent with these

patterns. With fully conditional specification, it is straightforward to gener-

ate imputed datasets that are consistent with all these rules. The two step

approach described in Section 3.3.2 can be applied to decide if the questions

under consideration are applicable. Values are imputed only for the units se-

lected in step one. Nevertheless, correctly implementing all filtering rules is a

labor intensive task that can be more cumbersome than defining good imputa-

tion models. Furthermore, the filtering can lead to variables that are answered
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by only a small fraction of the respondents and it can be difficult to develop

good models based on a small number of observations.



Chapter 4

The IAB Establishment Panel

Since the establishment survey of the German Institute for Employment Re-

search (IAB) is used throughout this book to illustrate the different aspects

of multiply imputed synthetic datasets, a short introduction to this dataset

should prelude the body of this book.

The IAB Establishment Panel1 is based on the German employment register

aggregated via the establishment number as of 30 June of each year. The ba-

sis of the register, the German Social Security Data (GSSD) is the integrated

notification procedure for the health, pension and unemployment insurances,

which was introduced in January 1973. This procedure requires employers to

notify the social security agencies about all employees covered by social secu-

rity. As by definition the German Social Security Data only include employees

covered by social security - civil servants and unpaid family workers for exam-

ple are not included - approx. 80% of the German workforce are represented.

However, the degree of coverage varies considerably across the occupations and

the industries.

Since the register only contains information on employees covered by social

security, the panel includes establishments with at least one employee covered

by social security. The sample is drawn using a stratified sampling design. The

stratification cells are defined by ten classes for the size of the establishment,

16 classes for the region2, and 17 classes for the industry.3 These cells are also

1The approach and structure of the establishment panel are described for example by
Fischer et al. (2008) and Kölling (2000).

2Before 2006 the stratification by region contained 17 classes since two separate classes
were used for East and West Germany.

3Between 2000 and 2004 20 industry classes were used, before 2000 the sample was

25
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used for weighting and extrapolation of the sample. The survey is conducted

by interviewers from TNS Infratest Sozialforschung. For the first wave, 4,265

establishments were interviewed in West Germany in the third quarter of 1993.

Since then the Establishment Panel has been conducted annually - since 1996

with over 4,700 establishments in East Germany in addition. In the wave 2008

more than 16,000 establishments participated in the survey. The response

rate of units that have been interviewed repeatedly is over 80%. Each year,

the panel is accompanied by supplementary samples and follow-up samples to

include new or reviving establishments and to compensate for panel mortal-

ity. The questionnaire contains a set of core questions that are asked annually

with detailed information about employment development, business policy, vo-

cational training, personnel structure and personnel movements, investments,

wages & salaries and adherence to collective agreements. Information on fur-

ther training, working time, public funding and innovations is asked every

other year. Changing additional questions relevant for the current political

debate complete the survey.

Considered one of most important business surveys in Germany, there is high

demand for access to these data from external researchers. Because of the

sensitive nature of the data, researchers desiring direct access to the data

have to work on site at the IAB. Alternatively, researchers can submit code

for statistical analyses to the IAB research data center, whose staff run the

code on the data and send the results to the researchers. To help researchers

develop code, the IAB provides access to a publicly available ”dummy dataset”

with the same structure as the Establishment Panel. The dummy dataset

comprises random numbers that only mirror the variable type and the range

of the variable without attempts to preserve the joint distributional properties

of the variables in the original data. The consequence is that analysis code

developed using the dummy dataset often will not run on the original data and

it can happen that the code has to be send back to the researcher for revisions

several times. For all analyses done with the genuine data, researchers can

publicize their analyses only after IAB staff check for potential violations of

confidentiality.

Releasing scientific use files of the Establishment Panel would allow more re-

searchers to access the data with fewer burdens, stimulating research on Ger-

man business data. It also would free up staff time from running code and

stratified by 16 industry classes.
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conducting confidentiality checks. Because there are so many sensitive vari-

ables in the dataset, standard disclosure limitation methods like swapping or

microaggregation would have to be applied with high intensity, which would

severely compromise the utility of the released data. Therefore, the IAB de-

cided to develop synthetic data. The first release of a synthetic dataset from

the wave 2007 of the panel is planned for spring 2010.



28 CHAPTER 4. THE IAB ESTABLISHMENT PANEL



Chapter 5

Fully synthetic datasets1

In 1993, Rubin suggested to create fully synthetic datasets based on the mul-

tiple imputation framework. His idea was to treat all units in the population

that have not been selected in the sample as missing data, impute them ac-

cording to the multiple imputation approach and draw simple random samples

from these imputed populations for release to the public. Most surveys are

conducted using complex sampling designs. Releasing simple random samples

simplifies research for the potential user of the data, since the design doesn’t

have to be incorporated in the model. It is not necessary however to release

simple random samples. If a complex design is used, the analyst accounts for

the design in the within variance ui, i = 1, ..., m.

For illustration, think of a dataset of size n, sampled from a population of

size N . Suppose further, the imputer has information about some variables

X for the whole population, for example from census records, and only the

information from the survey respondents for the remaining variables Y . Let

Yinc be the observed part of the population and Yexc the nonsampled units of

Y . For simplicity, assume that there are no item-missing data in the observed

dataset. The approach also applies if there are missing data. The synthetic

datasets can be generated in two steps: First, construct m imputed synthetic

populations by drawing Yexc m times independently from the posterior predic-

tive distribution f(Yexc|X,Yinc) for the N − n unobserved values of Y . If the

released data should contain no real data for Y , all N values can be drawn from

this distribution. Second, take simple random samples from these populations

1Most of this chapter is taken from Drechsler et al. (2008b) and Drechsler and Reiter
(2009).
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and release them to the public. The second step is necessary as it might not be

feasible to release m whole populations for the simple matter of data-size. In

practice, it is not mandatory to generate complete populations. The imputer

can make random draws from X in a first step and only impute values of Y for

the drawn X. The analysis of the m simulated datasets follows the same lines

as the analysis after multiple imputation (MI) for missing values in regular

datasets as described in Section 3.1.

5.1 Inference for fully synthetic datasets

To understand the procedure of analyzing fully synthetic datasets, think of

an analyst interested in an unknown scalar parameter Q, where Q could be,

e.g., the mean of a variable, the correlation coefficient between two variables,

or a regression coefficient in a linear regression. Inferences for this parameter

for datasets with no missing values usually are based on a point estimate q,

an estimate for the variance of q, u and a normal or Student’s t reference

distribution. For analysis of the imputed datasets, let qi and ui for i = 1, ..., m

be the point and variance estimates for each of the m completed datasets. The

following quantities are needed for inferences for scalar Q:

q̄m =
m∑

i=1

qi/m (5.1)

bm =
m∑

i=1

(qi − q̄m)2/(m− 1) (5.2)

ūm =
m∑

i=1

ui/m . (5.3)

The analyst then can use q̄m to estimate Q and

Tf = (1 + m−1)bm − ūm (5.4)

to estimate the variance of q̄m. The difference in the variance estimate com-

pared to the variance estimate for standard multiple imputation (see Section

3.1) is due to the additional sampling from the synthetic units for fully syn-

thetic datasets. Hence, the variance bm between the datasets already reflects

the variance within each imputation. When n is large, inferences for scalar Q

can be based on t-distributions with degrees of freedom νf = (m−1)(1−r−1
m )2,
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where rm = ((1 + m−1)bm/ūm). Derivations of these methods are presented

in Raghunathan et al. (2003). Extensions for multivariate Q are presented

in Reiter (2005c).

A disadvantage of this variance estimate is that it can become negative. For

that reason, Reiter (2002) suggests a slightly modified variance estimator that

is always positive: T ∗
f = max(0, Tf ) + δ(nsyn

n
ūm) , where δ = 1 if Tf < 0,

and δ = 0 otherwise. Here, nsyn is the number of observations in the released

datasets sampled from the synthetic population.

5.2 Data utility for fully synthetic datasets

It is important to quantify the analytic usefulness of the synthetic datasets.

Existing utility measures are of two types: (i) comparisons of broad differences

between the original and released data, and (ii) comparisons of differences in

specific models between the original and released data. Broad difference mea-

sures essentially quantify some statistical distance between the distributions

of the original and released data, for example a Kullback-Leibler or Hellinger

distance. As the distance between the distributions grows, the overall quality

of the released data generally drops.

A very useful measure for specific estimands is the interval overlap measure

of Karr et al. (2006). For any estimand, we first compute the 95% confidence

intervals for the estimand from the synthetic data, (Ls, Us), and from the col-

lected data, (Lo, Uo). Then, we compute the intersection of these two intervals,

(Li, Ui). The utility measure is

I =
Ui − Li

2(Uo − Lo)
+

Ui − Li

2(Us − Ls)
. (5.5)

When the intervals are nearly identical, corresponding to high utility, I ≈
1. When the intervals do not overlap, corresponding to low utility, I = 0.

The second term in (5.5) is included to differentiate between intervals with

(Ui − Li)/(Uo − Lo) = 1 but different lengths. For example, for two synthetic

data intervals that fully contain the collected data interval, the measure I

favors the shorter interval. The synthesis is successful if we obtain large values

of I for many estimands. To compute one number summaries of utility, we can

average the values of I over all estimands. This utility measure provides more

information than a simple comparison of the two point estimates from the
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different datasets because it also considers the standard error of the estimate.

Estimates with large standard errors might still have a high confidence interval

overlap and by this a high data utility even if their point estimates differ

considerably from each other, because the confidence intervals will increase

with the standard error of the estimate. For more details on this method see

Karr et al. (2006).

There do not exist published broad utility measures that account for all m syn-

thetic datasets. The U.S. Census Bureau has adapted an approach described

by Woo et al. (2009) which is based on how well one can discriminate between

the original and disclosure protected data. In this approach, the agency stacks

the original and synthetic datasets in one file and estimates probabilities of be-

ing “assigned” to the original data conditional on all variables in the dataset.

When the probabilities are close to 0.5 for all records in the original and syn-

thetic data, the distributions of the variables are similar—this fact comes from

the literature on propensity scores (Rosenbaum and Rubin, 1983)—so that

the synthetic data have high utility. This approach is especially useful as a

diagnostic for deficiencies in the synthesis methods (variables with significant

coefficients in the logistic regression have different distributions in the original

and synthetic data).

5.3 Disclosure risk for fully synthetic datasets

In general, the disclosure risk for fully synthetic datasets is very low, since all

values are synthetic values. Still, it is not necessarily zero: For example in

most establishment surveys the probability of inclusion depends on the size of

the establishment and sometimes can be close to 1 for the largest establish-

ments. Since the released synthetic samples will have to be stratified, too to

take advantage of the efficiency gained by stratification, the additional pro-

tection offered in the fully synthetic approach by drawing new samples from

the sampling frame can be very modest for larger establishments. A possible

intruder can be confident that large establishments in the released synthetic

data represent establishments that were also included in the original survey.

The same argument holds for the release of synthetic census data.

Besides this actual risk of disclosure the perceived risk of disclosure also needs

to be considered. The released data might look like the data from a potential

survey respondent an intruder was looking for. And once the intruder thinks,
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he identified a single respondent and the estimates are reasonable close to the

true values for that unit, it is no longer important that the data are all made

up. The potential respondent will feel that his privacy is at risk. Nevertheless

the disclosure risk in general will be very low since the imputation models

would have to be almost perfect and the intruder faces the problem that he

never knows (i) if the imputed values are anywhere near the true values and

(ii) if the target record is included in one of the different synthetic samples.

For this reason the theory on disclosure risk for fully synthetic datasets is far

less developed than the theory for partially synthetic datasets (see Section 6.3).

Only recently Abowd and Vilhuber (2008) proposed some measures based on

the ideas of differential privacy from the computer science literature. To under-

stand the concept of differential privacy, we need some further definitions. Let

Drel be the released dataset. Let N be the hypothetic population –unknown to

the intruder– from which Drel was supposedly generated. According to Dwork

(2006) ε-differential privacy is fulfilled if

max

∣∣∣∣ln
(

Pr(Drel|N1)

Pr(Drel|N2)

)∣∣∣∣ ≤ ε (5.6)

where ε is a predefined threshold and the maximum is taken over all N1, N2

that only differ in a single row. The basic idea is that if the ratio is too large,

the intruder gains too much information from the released data, since it is

far more likely that Drel was generated from N1 and not from N2. The data

releasing agency can decide which level of ε it is willing to accept. Abowd and

Vilhuber (2008) show that this definition of disclosure risk is closely related

to the risk of inferential disclosure from the SDC literature that measures the

risk by the information gain about a single respondent from the released data

compared to the a priori information before the release. The paper also il-

lustrates that synthesizing categorical variables under a Multinomial-Dirichlet

model can fulfill the requirements of ε-differential privacy.

The definition of ε-differential privacy is very appealing since it can be defined

ex ante – the agency only needs to select an SDC method that can guaran-

tee ε-differential privacy – and the agency can also select the level of privacy

guaranteed by defining ε. Still, the measure is based on the very strong as-

sumption that the intruder knows all records in the dataset except one and

measures how much information the intruder can reveal about this one record.

To keep this information low, strong requirements for the SDC method are

necessary, namely that the transition matrix between the observed and the
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released data doesn’t contain any zeros, i.e. any point in the outcome space of

a variable must be reachable with positive probability from any given observed

value through the transition function between the original and the disclosure

protected data implicitly specified by the SDC method. For many datasets

this would mean that some very unlikely or even unrealistic events must be

reachable with positive probability. Thus, the gain in data protection can

come at a very high price in terms of data quality. For this reason Machanava-

jjhala et al. (2008) defined (ε, δ)-probabilistic differential privacy, where 1− δ

is the probability that (5.6) holds. This measure has been developed for the

Multinomial-Dirichlet model. Further research is necessary to investigate the

applicability of this approach to other synthesis models.

5.4 Application of the fully synthetic ap-

proach to the IAB Establishment Panel

To generate fully synthetic datasets for the IAB Establishment Panel, we need

information from the sampling frame of the Establishment Panel. We obtain

this information by aggregating the German Social Security Data (GSSD) to

the establishment level. From this aggregated dataset, we can sample new

records that provide the basis for the generation of the synthetic datasets. As

noted earlier, the German Social Security Data contains information on all

employees covered by social security. The notifications of the GSSD include

for every employee, among other things, the workplace and the establishment

identification number. By aggregating records with the same establishment

identification number it is possible to generate establishment information from

the GSSD. As we use the 1997 wave of the IAB Establishment Panel for our

analysis, data are taken and aggregated from the GSSD for June, 30th 1997 (see

Figure 5.2 for all characteristics used). We use the establishment identification

number again to match the aggregated establishment characteristics from the

GSSD with the IAB Establishment Panel.

In this simulation, we only impute values for a set of variables from the 1997

wave of the IAB Establishment Panel. As it is not feasible to impute values for

the millions of establishments contained in the German Social Security Data

for 1997, we sample from this frame, using the same sampling design as for

the IAB Establishment Panel: Stratification by establishment size, region and
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industry. Every stratum contains the same number of units as the observed

data from the 1997 wave of the Establishment Panel.

Due to panel mortality a supplementary sample has to be drawn for the IAB

Establishment Panel every year. In the 1997 wave, this supplementary sample

primarily consisted of newly founded establishments because in that year the

questionnaire had a focus on establishment births. Therefore, start-ups are

overrepresented in the sample. Arguably, answers from these establishments

differ systematically from the answers provided by establishments existing for

several years. Drawing a new sample without taking this oversampling into

account could lead to a sample after imputation that differs substantially from

that in the Establishment Panel.

For simplicity reasons, we define establishments not included in the German

Social Security Data before July 1995 as new establishments and delete them

from the sampling frame and the Establishment Panel. For the 1997 wave of

the Establishment Panel, this means a reduction from 8,850 to 7,610 observa-

tions.

Merging the GSSD and the IAB Establishment Panel using the establishment

identification number reveals that 278 units from the panel are not included

in the GSSD. 2 These units are also omitted leading to a final sample of 7,332

observations. Furthermore, we have to verify that the stratum parameters size,

industry and region match in both datasets. Merging indicates that there are

some differences between the two records. If the datasets differ, values from

the GSSD are adopted.

Cross tabulation of the stratum parameters for the 7,332 observations in our

sample provides a matrix containing the number of observations for each stra-

tum. Now, a new dataset can be generated easily by drawing establishments

from the German Social Security Data according to this matrix.

After matching, every dataset is structured as follows: Let N be the total

number of units in the newly generated dataset, that is the number of units

in the new sample ns plus the number of units in the panel np, N = ns + np.

Let X be the matrix of variables with information for all observations in N .

Then X consists of the variables establishment size (from the GSSD), region

and industry and the other variables added from the German Social Security

2There are several possible reasons for this, e.g. re-organization of the firm leading to
new establishment identification numbers, coding errors, or delays in the notifications for
an establishment in the GSSD.



36 CHAPTER 5. FULLY SYNTHETIC DATASETS

 

missing data 

data from the 
new sample 

data from the IAB  
Establishment Panel 

Yexc 

Yinc 

 

X 

Figure 5.1: The fully synthetic approach for the IAB Establishment Panel.

Data. Note that the variable establishment size is included in both, the GSSD

and the establishment panel. These two variables need not necessarily be

identical, since they are reported at different points in time. However, we

use the establishment size from the GSSD as a very strong predictor when

synthesizing the establishment size in the establishment panel. Let Y be the

selected variables from the Establishment Panel, with Y = (Yinc, Yexc), where

Yinc are the observed values from the Establishment Panel and Yexc are the

hypothetic missing data for the newly drawn values in X (see Figure 5.1).

Now, values for the missing data can be imputed as outlined in Chapter 3 by

drawing Yexc from the posterior predictive distribution f(Yexc|X,Yinc) for the

N − np unobserved values of Y . After the imputation procedure, all observa-

tions from the GSSD and all originally observed values from the establishment

panel are omitted and only the imputed values for the panel are released. Re-

sults from an analysis on these released data can be compared with the results

achieved with the real data.

5.4.1 The imputation procedure

For this simulation, we only generate 10 synthetic datasets. Previous research

has shown that releasing large numbers of fully synthetic datasets improves

synthetic data inferences (Reiter, 2005b). The usual advice from multiple

imputation for missing data - release five multiply-imputed datasets - tends

not to work well for fully synthetic data because the fractions of ”missing”

information are large. Drechsler et al. (2008b) obtain higher analytic valid-

ity by generating 100 fully synthetic datasets using the two stage imputation

approach described in Chapter 8.

To generate the synthetic datasets we use the SRMI approach (see Section

3.2.2) as implemented in the software IVEware (Raghunathan et al., 2002).
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Since most of the continuous variables like establishment size are heavily

skewed, these variables are transformed by taking the cubic root before impu-

tation to get rid of the skewness. In general, all variables are used as predictors

in the imputation models in hopes of reducing problems from uncongeniality

(Meng, 1994). Uncongeniality refers to the situation when the model used by

the analyst of the data differs from the model used for the imputation. This

can lead to biased results, if the analyst’s model is more complex than the

imputation model and the imputation model omitted important relationships

present in the original data. Since the true data generating model is usually

unknown and an imputation model that is more complex than the true model

only causes some loss in efficiency, the standard imputation strategy should

be to include as many variables as possible in the imputation model (Little

and Raghunathan (1997)). In the multinomial logit model for the categorical

variables some explanatory variables are dropped for multicollinearity reasons.

For the imputation procedure we use 26 variables from the GSSD and reduce

the number of panel variables to be imputed to 48 to avoid multicollinearity

problems (Figure 5.2 provides a broad description of the information contained

in these variables).

5.4.2 Measuring the data utility

To evaluate the quality of the synthetic data, we compare analytic results

achieved with the original data with results from the synthetic data. Basis

is an analysis by Thomas Zwick: ”Continuing Vocational Training Forms and

Establishment Productivity in Germany” published in the German Economic

Review, Vol. 6(2), pp. 155-184 in 2005. Since this analysis is used for validity

evaluations in several chapters of the book, we provide a detailed description

here.

Zwick analyses the productivity effects of different continuing vocational train-

ing forms in Germany. He argues that vocational training is one of the most

important measures to gain and keep productivity in a firm. For his analysis

he uses the waves 1997 to 2001 from the IAB Establishment Panel.

In 1997 and 1999 the Establishment Panel included the following additional

question that was asked if the establishment did support continuous voca-

tional training in the first part of 1997 or 1999 respectively: ”For which of

the following internal or external measures were employees exempted from
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- number of employees in June 1996 

- qualification of the employees

- number of temporary employees

- number of agency workers

- working week (full-time and overtime)

- the firm‘s commitment to collective agreements

- existence of a works council

- turnover, advance performance and export share

- investment total

- overall wage bill in June 1997

- technological status

- age of the establishment

- legal form and corporate position

- overall company-economic situation

- reorganisation measures

- company further training activities

- additional information on new foundations

Information contained in the German 

Social Security Data (from 1997)

Available for all German establishments with at 

least one employee covered by social security

Information contained in the IAB 

Establishment Panel (wave 1997)

Available for establishments in the survey

Covered in both datasets�
establishment number, branch and size�
location of the establishment�
number of employees in June 1997

- number of full-time and part-time employees

- short-time employment

- mean of the employees age

- mean of wages from full-time employees

- mean of wages from all employees

- occupation

- schooling and training

- number of employees by gender

- number of German employees

 

Figure 5.2: Included variables from the IAB Establishment Panel and the

German Social Security Data.

work or were costs completely or partly taken over by the establishment?”

Possible answers were: formal internal training, formal external training, sem-

inars and talks, training on the job, participation at seminars and talks, job

rotation, self-induced learning, quality circles, and additional continuous voca-

tional training. Zwick examines the productivity effects of these training forms

and demonstrates that formal external training, formal internal training and

quality circles do have a positive impact on productivity. Especially for formal

external courses the productivity effect can be measured even two years after

the training.

To detect why some firms offer vocational training and others not, Zwick runs

a probit regression using the 1997 wave of the establishment panel. In the

regression, Zwick uses two variables (investment in IT and the codetermination

of the employees) that are only included in the 1998 wave of the establishment

panel. Moreover, he excludes some observations based on information from

other years. As we impute only the 1997 wave eliminating newly founded

establishments, we have to rerun the regression, using all observations except
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Table 5.1: Results from the vocational training regression for one stage full
synthesis.

original
data

synthetic
data

CI
overlap

Redundancies expected 0.253∗∗∗ 0.293∗∗∗ 0.848
Many emp. exp. on maternity leave 0.262∗∗ 0.240 0.770
High qualification need exp. 0.646∗∗∗ 0.601∗∗∗ 0.227
Appr. tr. react. on skill shortages 0.113∗ 0.149∗ 0.930
Training react. on skill shortages 0.540∗∗∗ 0.532∗∗∗ 0.620
Establishment size 20-199 0.684∗∗∗ 0.649∗∗∗ 0.857
Establishment size 200-499 1.352∗∗∗ 1.215∗∗∗ 0.457
Establishment size 500-999 1.346∗∗∗ 1.404∗∗∗ 0.382
Establishment size 1000 + 1.955∗∗∗ 1.753∗∗∗ 0.932
Share of qualified employees 0.787∗∗∗ 0.812∗∗∗ 0.437
State-of-the-art tech. equipment 0.171∗∗∗ 0.186∗∗∗ 0.712
Collective wage agreement 0.255∗∗∗ 0.293∗∗∗ 0.901
Apprenticeship training 0.490∗∗∗ 0.423∗∗∗ 0.534

industry, East Germany dummies Yes

Notes: ∗∗∗ Significant at the 0.1% level,∗∗ Significant at the 1% level,
∗ Significant at the 5% level

Source: IAB Establishment Panel 1997 without newly founded establishments and
establishments not represented in the GSSD; regression according to Zwick (2005)

for newly founded establishments and deleting the two variables which are not

part of the 1997 wave. We find that the results from the adjusted regression

differ only slightly from the original regression. All the variables significant

in Zwick’s analysis are still significant. Only for the variable high number of

maternity leaves expected, the significance level decreases from 1% to 5%.

For his analysis, Zwick runs the regression only on units with no missing val-

ues for the regression variables, losing all the information on establishments

that did not respond to all variables used. This might lead to biased esti-

mates if the assumption of a missing pattern that is completely at random

(see for example Rubin (1987)) does not hold. For that reason, we compare

the regression results from the synthetic datasets that by definition have no

missing values, with the results, Zwick would have achieved if he would have

run his regression on a dataset with all the missing values multiply imputed.

Comparing results from Zwick‘s regression run on the original data and on
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the synthetic data are presented in Table 5.1. The last column of the table

measures data utility by looking at the overlap between the confidence inter-

vals for the estimates from the original data and the confidence intervals for

the estimates from the synthetic data as described in Section 5.2. All vari-

ables in the regression except for the industry dummies that are part of the

sampling design are synthesized. Since all imputation models (except for some

categorical variables) are based on all variables in the dataset, the imputation

model for the vocational training variable contains all the variables that are

used in the regression. All estimates are close to the estimates from the real

data and except for the variable high number of maternity leaves expected, that

is not significant on any given significance level in the synthetic data, remain

significant on the same level when using the synthetic data. The confidence in-

terval overlap is high for most estimates, but it drops below 50% for four of the

thirteen variables. Only for the dummy variable that indicates establishments

with 200 to 499 employees and the dummy variable for establishments with

more than 1,000 employees the absolute deviation between the estimates from

the two datasets is higher than 0.1 (0.138 and 0.202 respectively). Obviously

Zwick would have come nearly to the same conclusions in his analysis, if he

would have used the synthetic data instead of the real data. See Drechsler

et al. (2008b) for a two stage imputation approach that could further improve

the quality of the synthetic data.

These results indicate that valid statistical inferences can be achieved using

the synthetic datasets, but is the confidentiality of the survey respondents

guaranteed? In our case disclosure of potentially sensitive information can be

possible, when the following two conditions are fulfilled:

1. An establishment is included in the original dataset and in at least one

of the newly drawn samples.

2. The original values and the imputed values for this establishment are

nearly the same.

5.4.3 Assessing the disclosure risk

To determine the disclosure risk in our setting, we assume that the intruder

would search for records that appear in more than one of the 10 new samples.

Since the intruder doesn’t know, if any establishment in the synthetic datasets
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Table 5.2: How many records are sampled how often in the new samples?

Occurrence in sample(s) number of records percentage

1 45,553 82.75%
2 5,600 10.17%
3 1,805 3.28%
4 873 1.59%
5 507 0.92%
6 320 0.58%
7 164 0.30%
8 99 0.18%
9 45 0.08%
10 86 0.16%

Total 55,052 100%

is also included in the original dataset, he may use the probability of inclusion

in the synthetic datasets as an estimator for the probability that this record

is also included in the original survey. For example, if an establishment is

included in all 10 new samples, the probability that this establishment is also

included in the original sample will be very high, since we use the original

sampling design for the 10 new samples.

Table 5.2 displays how often different records occur in the synthetic samples.

Overall 55,052 establishments are sampled in the synthetic datasets. The vast

majority are sampled only once or twice. Only roughly 7% of the establish-

ments are sampled at least three times and less than 1% are sampled more

than six times. But even if the intruder is able to identify records that are

sampled more than once, which in itself is a difficult task, since almost all

values are imputed and thus differ from sample to sample, he or she can not

be sure whether this record really is included in the original survey. Table 5.3

displays how often the records from the original survey actually occur in the

synthetic samples. 61.0 percent of the establishments included in the original

survey do not occur in any of the 10 new drawn samples. 14.9 percent are

contained in one of the 10 samples while only 5.5 percent can be found more

than five times. Larger establishments have a higher probability of inclusion in

the original survey (for some of the cells of the stratification matrix this prob-

ability is close to one). Since we use the same sampling design for drawing

new establishments for our synthetic datasets, this means that larger estab-
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Table 5.3: Establishments from the IAB Establishment Panel that also occur
in at least one of the new samples.

Occurrence in sample(s) number of records percentage

None 4,469 61.0%
1 1,091 14.9%
2 535 7.3%
3 362 4.9%
4 275 3.8%
5 199 2.7%
6 144 2.0%
7 89 1.2%
8 53 0.7%
9 32 0.4%
10 83 1.1%

Total 7,332 100%

lishments also have a higher probability to be included in the original survey

and in at least one of the new samples. Keeping that in mind, having only

25% of establishments between 200-999 employees and 49% of establishments

with 1000+ employees in at least one of the new samples is a very good result

in terms of data confidentiality (see Figure 5.3).

Comparing Table 5.2 and 5.3 we can see that only for the records that occur

in all 10 datasets the probability that these records are also included in the

original survey is very high. 96.5% (83 of the 86 records) of the establishments

are contained in the original survey. But this probability decreases quickly. It

is 71.1%, 53.5% and 54.3% for establishments that occur in 9, 8 and 7 samples

respectively For establishments that occur less than 7 times, the probability is

always lower than 50%.

But even if a record is correctly identified, the intruder will only benefit from

the identification, if the imputed values of these establishments are close to

the original ones. The second step of our evaluation therefore takes a closer

look at the establishments from the survey that appear at least once in the

newly drawn samples. Using only these establishments the differences between

original and imputed values can be detected. For each synthetic record that

is also included in the original survey, we compare the imputed value to the

true value. Binary variables tend to have a matching rate between 60 per-
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Figure 5.3: Occurrence of establishments already included in the original sur-
vey by establishment size.

cent and 90 percent, i.e. for 60 to 90 percent of these synthetic records the

imputed binary value is the same as the true value from the survey. Multiple

response questions with few categories show a high rate of identical answers in

the total item block, too. But with an increase in the number of categories this

rate decreases rapidly. For example, for an imputed multiple response variable

consisting of 4 categories, the probability of having the same values for all 4

categories is about 57 percent. This probability decreases to about 6 percent

if the number of categories increases to 13 (see Figure 5.4).

Imputed numeric variables always differ more or less from the original value. To

evaluate the uncertainty for an intruder wanting to identify an establishment

using the imputed data, we examine the variable establishment size for the 83

establishments that appear in all 10 datasets. The average relative difference

between the imputed and the original values is 21%. A plot of the distribution

of the relative difference for each record in each synthetic dataset shows that

there are outliers for which the imputed values are two, three or even four

times higher than the original ones (see Figure 5.5). Thus, for an intruder who

wants to identify an establishment using his knowledge of the true size of the

establishment, the imputed variable establishment size will hardly be of any

use.

Summing up the second step, we find that for establishments, which are repre-
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Figure 5.4: Distribution of the matching rates for different multiple response

questions.

 

Figure 5.5: Histogram of the relative difference between original and imputed
values for the variable establishment size.

sented in both datasets, up to 90 percent of some imputed binary variables are

identical to the original values. But just one binary variable won’t be sufficient

to identify a single establishment. Using more binary variables, the risk of iden-

tical values will decrease quickly. If, for example, we assume the intruder needs

five binary variables for identification and the variables are independently dis-

tributed, the risk will be 0.95 = 0.59. Still, this only holds, if the establishment

she or he is looking for is really included in the synthetic data which is very

unlikely to begin with. Normally an intruder needs variables with more infor-

mation than just two categories for a successful re-identification. But as shown

for the variable establishment size, the chance of identifying an establishment

by combining information from numeric and categorical variables is very low.
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These results together with the results for the data utility in Section 5.4.2

indicate that a release of the described subset of the data would be possible.

Of course the data utility for different estimates should be evaluated in detail

for different kinds of estimates before an actual release.
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Chapter 6

Partially Synthetic Datasets1

As of this writing, no agency adopted the fully synthetic approach discussed

in the previous chapter, but some agencies have adopted a variant of Rubin’s

original approach, suggested by Little (1993): release datasets comprising the

units originally surveyed with some collected values, such as sensitive values or

values of key identifiers, replaced with multiple imputations. These are called

partially synthetic datasets. For example, the U.S. Federal Reserve Board pro-

tects data in the Survey of Consumer Finances by replacing large monetary

values with multiple imputations (Kennickell (1997)). In 2007 the U.S. Cen-

sus Bureau released a partially synthetic, public use file for the Survey of

Income and Program Participation (SIPP) that includes imputed values of so-

cial security benefits information and dozens of other highly sensitive variables

(www.sipp.census.gov/sipp/synth\_data.html). The Census Bureau also

protects the identities of people in group quarters (e.g., prisons, shelters) in the

public use files of the American Communities Survey by replacing demographic

data for people at high disclosure risk with imputations. Partially synthetic,

public use datasets are in the development stage in the U.S. for the Longi-

tudinal Business Database, the Longitudinal Employer-Household Dynamics

survey, and the American Communities Survey veterans and full sample data.

1Most of this chapter is taken from Drechsler et al. (2008a) and Drechsler and Reiter
(2008).

47
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6.1 Inference for partially synthetic datasets

Following Reiter (2003, 2004), let Zj = 1 if unit j is selected to have any of

its observed data replaced, and let Zj = 0 otherwise. Let Z = (Z1, . . . , Zs),

where s is the number of records in the observed data. Let Y = (Yrep, Ynrep)

be the data collected in the original survey, where Yrep includes all values to be

replaced with multiple imputations and Ynrep includes all values not replaced

with imputations. Let Y
(i)
rep be the replacement values for Yrep in synthetic

dataset i. Each Y
(i)
rep is generated by simulating values from the posterior

predictive distribution f(Y
(i)
rep|Y, Z), or some close approximation to the distri-

bution such as those of Raghunathan et al. (2001). The agency repeats the

process m times, creating D(i) = (Ynrep, Y
(i)
rep) for i = 1, . . . , m, and releases

D = {D(1), . . . , D(m)} to the public.

To get valid inferences, secondary data users can use the combining rules pre-

sented by Reiter (2003). Let Q be an estimand, such as a population mean or

regression coefficient. Suppose that, given the original data, the analyst would

estimate Q with some point estimator q and the variance of q with some esti-

mator u. Let q(i) and u(i) be the values of q and u in synthetic dataset D(i),

for i = 1, ..., m. The analyst computes q(i) and u(i) by acting as if each D(i) is

the genuine data. The following quantities are needed for inferences for scalar

Q:

q̄m =
m∑

i=1

qi/m (6.1)

bm =
m∑

i=1

(qi − q̄m)2/(m− 1) (6.2)

ūm =
m∑

i=1

ui/m . (6.3)

The analyst then can use q̄m to estimate Q and

Tp = bm/m + ūm (6.4)

to estimate the variance of q̄m.

Similar to the variance estimator for multiple imputation of missing data,

bm/m is the correction factor for the additional variance due to using a finite

number of imputations. However, the additional bm, necessary in the missing

data context, is not necessary here, since ūm already captures the variance of
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Q given the observed data. This is different in the missing data case, where

ūm is the variance of Q given the completed data and ū + bm is the variance

of Q given the observed data.

When n is large, inferences for scalar Q can be based on t-distributions with

degrees of freedom νm = (m−1)(1+r−1
m )2, where rm = (m−1bm/ūm). Methods

for multivariate inferences are developed in Reiter (2005c). The variance esti-

mate Tp can never be negative, so no adjustments are necessary for partially

synthetic datasets.

6.2 Data utility for partially synthetic

datasets

To evaluate the data utility of partially synthetic datasets, we can use the same

methods as for fully synthetic datasets. Namely, measuring the confidence

interval overlap between confidence intervals obtained from the synthetic data

and confidence intervals obtained from the original data or measuring how well

one can discriminate between the original and the synthetic data based on the

ideas of propensity score matching. See Section 5.2 for details.

6.3 Disclosure risk for partially synthetic

datasets

The disclosure risk is higher for partially synthetic datasets than it is for fully

synthetic datasets, especially if the intruder knows that some unit participated

in the survey, since true values remain in the dataset and imputed values

are generated only for the survey participants and not for the whole popula-

tion. Thus for partially synthetic datasets assessing the risk of disclosure is an

equally important evaluation step as assessing the data utility. It is essential

that the agency identifies and synthesizes all variables that bear a risk of dis-

closure. A conservative approach would be, to also impute all variables that

contain the most sensitive information. Once the synthetic data is generated,

careful checks are necessary to evaluate the disclosure risk for these datasets.

Only if the datasets proof to be useful both in terms of data utility and in

terms of disclosure risk, a release should be considered.
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As noted above, the risk of disclosure significantly increases, if the intruder

knows, who participated in a survey. Thus, it is important to distinguish

between a scenario, in which the intruder knows that the target she is looking

for is in the data and a scenario, in which the intruder has some external

information, but does not know, whether any of the targets she is looking

for, actually is included in the survey. For most surveys the latter case will

be a more realistic assumption, but there might be situations in which it

is publicly known who participated in a survey or the agency might want

to release a complete synthetic population. We therefore start by presenting

methods to evaluate the disclosure risk under the conservative assumption that

the intruder has full information about survey participation and afterwards

discuss necessary extensions to account for the additional sampling uncertainty,

if the intruder does not have any response knowledge. Both methods only

evaluate the risk of identification disclosure, i.e. the risk that a unit is correctly

identified in the released data. Methods to evaluate the risk of inferential

disclosure, i.e. the amount of additional information an intruder might obtain

about a unit for which he or she already knows that it participated in the

survey, still need to be developed for partially synthetic datasets. The concept

of differential privacy described in Section 5.3 might be useful in this context.

Future research is still needed on this topic.

6.3.1 Ignoring the uncertainty from sampling

To evaluate disclosure risks if the intruder knows which units are included in

the released data, we can compute probabilities of identification by following

the approach of Reiter and Mitra (2009). Related approaches are described

by Duncan and Lambert (1989), Fienberg et al. (1997), and Reiter (2005a).

Roughly, in this approach we mimic the behavior of an ill-intentioned user

of the released data who possesses the true values of the quasi-identifiers for

selected target records (or even the entire database). To illustrate, suppose

the malicious user has a vector of information, t, on a particular target unit in

the population corresponding to a unit in the m released simulated datasets,

D = {D(1), . . . , D(m)}. Let t0 be the unique identifier (e.g., establishment

name) of the target, and let dj0 be the (not released) unique identifier for

record j in D, where j = 1, . . . , s. Let M be any information released about

the simulation models.
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The malicious user’s goal is to match unit j in D to the target when dj0 = t0,

and not to match when dj0 6= t0 for any j ∈ D. Let J be a random variable

that equals j when dj0 = t0 for j ∈ D and equals s + 1 when dj0 = t0 for some

j 6∈ D. The malicious user thus seeks to calculate the Pr(J = j|t,D, M) for

j = 1, . . . , s+1. She then would decide whether or not any of the identification

probabilities for j = 1, . . . , s are large enough to declare an identification. Note

that in this scenario Pr(J = s+1|t,D, M) = 0 because the intruder knows that

the target record she is looking for is included in the released data. Because

the malicious user does not know the actual values in Yrep, she should integrate

over its possible values when computing the match probabilities. Hence, for

each record in D we compute

Pr(J = j|t,D,M) =

∫
Pr(J = j|t,D, Yrep, M)Pr(Yrep|t,D,M)dYrep. (6.5)

This construction suggests a Monte Carlo approach to estimating each Pr(J =

j|t,D,M). First, sample a value of Yrep from Pr(Yrep|t,D,M). Let Y new rep-

resent one set of simulated values. Second, compute Pr(J = j|t,D, Yrep =

Y new,M) using exact or, for continuous synthesized variables, distance-based

matching assuming Y new are collected values. This two-step process is iterated

R times, where ideally R is large, and (1) is estimated as the average of the

resultant R values of Pr(J = j|t,D, Yrep = Y new, M). When M has no infor-

mation, the malicious user can treat the simulated values as plausible draws

of Yrep.

To illustrate, suppose that region and employee size are the only quasi-

identifiers in a survey of establishments. A malicious user seeks to identify

an establishment in a particular region of the country with 125 employees.

The malicious user knows that this establishment is in the sample. Suppose

that the agency releases m datasets after simulating only employment size,

without releasing information about the imputation model. In each D(i), the

malicious user would search for all establishments matching the target on re-

gion and having synthetic employee size within some interval around 125, say

110 to 140. The agency selects the intervals for employment size based on

its best guess of the amount of uncertainty that intruders would be willing

to tolerate when estimating true employee sizes. Let N (i) be the number of

records in D(i) that meet these criteria. When no establishments with all of

those characteristics are in D(i), set N (i) equal to the number of establishments
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in the region, i.e., match on all non-simulated quasi-identifiers. For any j,

Pr(J = j|t,D,M) = (1/m)
∑

i

(1/N (i))(Y new,i
j = t), (6.6)

where (Y new,i
j = t) = 1 when record j is among the N (i) matches in D(i) and

equals zero otherwise. Similar computations arise when simulating region and

employee size: the malicious user exactly matches on the simulated values of

region and distance-based matches on employee size to compute the probabil-

ities.

Following Reiter (2005a), we quantify disclosure risk with summaries of

these identification probabilities. It is reasonable to assume that the mali-

cious user selects as a match for t the record j with the highest value of

Pr(J = j|t,D,M), if a unique maximum exists. We consider three risk mea-

sures: the expected match risk, the true match risk, and the false match rate.

To calculate these, we need some further definitions. Let cj be the number

of records in the dataset with the highest match probability for the target tj

for j = 1, ..., s; let Ij = 1 if the true match is among the cj units and Ij = 0

otherwise. Let Kj = 1 when cjIj = 1 and Kj = 0 otherwise. The expected

match risk can now be defined as
∑

j (1/cj)Ij. When Ij = 1 and cj > 1, the

contribution of unit j to the expected match risk reflects the intruder ran-

domly guessing at the correct match from the cj candidates. The true match

risk equals
∑

j Kj. Finally, let Fj = 1 when cj(1 − Ij) = 1 and Fj = 0 oth-

erwise; and, let s equal the number of records with cj = 1. The false match

rate equals
∑

Fj/s. It is important to note that these summary statistics are

helpful to summarize the overall disclosure risk for the complete data, but the

real advantage of the suggested measures is the fact that the identification

probabilities are calculated on the record level. This enables disclosure risk

evaluations for specified subgroups of the data. In some situations only a few

records in the dataset might be correctly identified, but all identified records

belong to the same subgroup. In this case, the overall measure that indicates

a low disclosure risk might be misleading since the risk of disclosure e.g. for

the largest establishments in the dataset might still be very high.

6.3.2 Accounting for the uncertainty from sampling

If the intruder does not know, if the target, he or she is looking for participated

in the survey, the fact that the survey usually only comprises a sample of the
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population adds an additional layer of protection to the released data. In this

case we can use the extensions to the measures described above suggested by

Drechsler and Reiter (2008). We simply have to replace Nt,i in (6.6) with

Ft, the number of records in the population that match the target on region

and establishment size in the above example. When the intruder and the

agency do not know Ft, it can be estimated using the approach in Elamir and

Skinner (2006), which assumes that the population counts follow an all-two-

way-interactions log-linear model. The agency can determine the estimated

counts, F̂t, by fitting this log-linear model with Dobs. Alternatively, since Dobs

is in general not available to intruders, the agency can fit a log-linear model

with each Di, resulting in the estimates F̂t,i for i = 1, . . . , m. We note that in

this scenario Pr(J = s + 1|t,D,M) = 1−∑s
j=1 Pr(J = j|t,D, M).

For some target records, the value of Nt,i might exceed Ft (or F̂t if it is used).

It should not exceed F̂t,i, since F̂t,i is required to be at least as large as Nt,i.

For such cases, we presume that the intruder sets Pr(J = s + 1|t,D,M) = 0

and picks one of the matching records at random. To account for this case, we

can re-write (6.5) for j = 1, . . . , s as

Pr(J = j|t,D,M) = (1/m)
∑

i

min (1/Ft, 1/Nt,i) (Y new
ij = t) . (6.7)

We can use the three summary statistics of the identification probabilities

described in Section 6.3.1, with the important difference that we also have

to consider Pr(J = s + 1|t,D, M), the probability for a match outside the

sample. In many cases this will be the highest match rate. It is reasonable to

assume that the intruder does not match whenever Pr(J = s+1|t,D,M) is the

maximum probability for the target. If this assumption is considered to strong,

the data disseminating agency can define a threshold γ and assume that the

intruder matches to the released data only when Pr(J = s + 1|t,D,M) ≤ γ,

where 0 ≤ γ ≤ 1.

6.4 Application of the partially synthetic ap-

proach to the IAB Establishment Panel

To achieve results that can be compared to the results in Section 5.4, we

use the same subset of variables from the wave 1997 as in the fully synthetic

application (see Section 5.4 for a description of the variables selected).
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For the partially synthetic datasets, we replace only two variables (the number

of employees and the industry, coded in 16 categories) with synthetic values,

since these are the only two variables that might lead to disclosure in the

analyses we use to evaluate the data utility of the synthetic datasets. If we

intended to release the complete data to the public, some other variables would

have to be synthesized, too. Identifying all the variables that provide a poten-

tial disclosure risk is an important and labour intensive task. Nevertheless, the

two variables mentioned above definitely impose a high risk of disclosure, since

they are easily available in public databases and especially large firms can be

identified without difficulty using only these two variables. We define a multi-

nomial logit model for the imputation of the industry code and a linear model

stratified by four establishment size classes defined by quartiles for the number

of employees. For the partially synthetic datasets, we use the same number of

variables in the imputation model as in the fully synthetic data example (26

from the German Social Security Data (GSSD)), 48 from the establishment

panel), but the original sample is used and no additional samples are drawn

from the GSSD. We generate the same number of synthetic datasets, but the

modeling is performed using own coding in R.

6.4.1 Measuring the data utility

For an evaluation of the utility of the partially synthetic data, we compare

analytic results achieved with the original data with results from the synthetic

data. The regression results in Table 6.1 are again based on the analysis by

Zwick (2005) described in detail in Section 5.4.2.2

All estimates are very close to the estimates from the real data and except for

the variables many employees expected on maternity leave and apprenticeship

training reaction on skill shortages for which the significance level increases

from 1% to 0.1% and from 5% to 1% respectively, remain significant on the

same level when using the synthetic data. With an average of 0.925 over all 13

estimates, the confidence interval overlap is very high. Only the effect of the

largest establishment size class is slightly underestimated leading to a reduced

2For simplicity, we impute all missing values first and treat one fully imputed dataset as
the original data. Since missing rates are low for all variables used in the regression, results
for the original data only change in the third digit compared to the results in Table 5.1.
See Chapter 7 on how to correctly generate synthetic datasets from data that is subject to
nonresponse.
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Table 6.1: Results from the vocational training regression for one stage partial
synthesis.

original
data

synthetic
data

CI
overlap

Redundancies expected 0.250∗∗∗ 0.259∗∗∗ 0.956
Many emp. exp. on maternity leave 0.267∗∗ 0.316∗∗∗ 0.869
High qualification need exp. 0.648∗∗∗ 0.653∗∗∗ 0.982
Appr. tr. react. on skill shortages 0.115∗ 0.121∗∗ 0.969
Training react. on skill shortages 0.539∗∗∗ 0.547∗∗∗ 0.962
Establishment size 20-199 0.682∗∗∗ 0.695∗∗∗ 0.920
Establishment size 200-499 1.350∗∗∗ 1.335∗∗∗ 0.936
Establishment size 500-999 1.344∗∗∗ 1.344∗∗∗ 0.994
Establishment size 1000 + 1.956∗∗∗ 1.754∗∗∗ 0.685
Share of qualified employees 0.789∗∗∗ 0.803∗∗∗ 0.948
State-of-the-art tech. equipment 0.170∗∗∗ 0.175∗∗∗ 0.962
Collective wage agreement 0.257∗∗∗ 0.275∗∗∗ 0.894
Apprenticeship training 0.488∗∗∗ 0.496∗∗∗ 0.953

industry, East Germany dummies Yes

Notes: ∗∗∗ Significant at the 0.1% level,∗∗ Significant at the 1% level,
∗ Significant at the 5% level

Source: IAB Establishment Panel 1997 without newly founded establishments and
establishments not represented in the GSSD; regression according to Zwick (2005)

overlap of 0.685. For all other estimates, the overlap is above 0.85, indicating

a very high quality of the synthetic data. Obviously Zwick would have come

to the same conclusions in his analysis, if he would have used the partially

synthetic data instead of the real data.

6.4.2 Assessing the disclosure risk

To evaluate the risk of disclosure we apply the disclosure risk measures de-

scribed in Section 6.3.1, i.e. we assume, the intruder knows, who participated

in the survey. We further assume, the intruder knows the true values for the

number of employees and industry. This is a conservative scenario but gives,

in some sense, an upper bound on the risk for this level of intruder knowledge.

For an application of the disclosure risk measures without response knowl-

edge, see Section 7.4.4. Intruders might also know other variables on the file,
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in which case the agency may need to synthesize them as well. The intruder

computes probabilities using the approach outlined in Section 6.3.1. We as-

sume that the agency does not reveal the synthesis model to the public, so that

the only information in M is that establishment size and industry were synthe-

sized. For a given target t, records from each D(i) must meet two criteria to be

possible matches. First, the record’s synthetic industry code exactly matches

the target’s true industry code. Second, the record’s synthetic number of em-

ployees lies within an agency-defined interval around the target’s true number

of employees. Acting as the agency, we define the interval as follows. We

divide the true number of employees (transformed by taking the cubic root)

into twenty quantiles and calculate the standard deviation of the number of

employees within each quantile. The interval is te±sds, where te is the target’s

true value and sds is the standard deviation of the quantile in which the true

value falls. When there are no synthetic records that fulfill both matching

criteria, the intruder matches only on the industry code. We use 20 quantiles

because this is the largest number of groups that guarantees at least some vari-

ation within each group. Using a larger number of quantiles results in groups

with only one value of employment, which forces exact matching for targets

in those quantiles. On the other hand, using a small number of quantiles does

not differentiate adequately between small and large establishments. For small

establishments, we want the potential matches to deviate only slightly from

the original values. For large establishments, we accept higher deviations.

Given this matching scenario the expected match risk and the true match risk

both would be 139, i.e. the intruder would get 139 true correct single matches

from the 7,332 records in her target file. The false match rate would be 98.1%.

There is no obvious common pattern for the identified records. Neither for the

region nor for the industry the distribution of the identified records differs sig-

nificantly from the distribution in the underlying data. The identified records

consist of very small and very large establishments. However, as one might

expect, the actual risk of disclosure depends on establishment size. While only

1.38% of the establishments with less than 100 employees are identified, this

rate increases to 1.87% for establishments with 100-1,000 employees and to

5.21% for establishments with more than 1,000 employees. Considering the

fact that the intruder matches on 7,332 records and never knows which of the

7,330 single matches she obtains actually are correct matches the risk is very

moderate. Especially since these measures are based on the very conservative
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assumptions that (i) the intruder knows who participated in the survey and

(ii) has exact information on the industry code and the establishment size for

all the survey participants. If the agency deems the risk of disclosure still too

high, it might broaden the industry codes or suppress this information com-

pletely in the released file. Another possibility would be to use less detailed

models for the large establishments to ensure a higher level of perturbation

for these records. As an alternative, the agency might consider releasing fully

synthetic datasets instead.

6.5 Pros and cons of fully and partially syn-

thetic datasets

Obviously there are advantages and disadvantages for both, the partially and

the fully synthetic approach. The fully synthetic approach provides are very

high level of disclosure protection rendering the identification of single units in

the released data almost impossible. Partially synthetic datasets can not offer

such a high level of protection per se, since true values remain in the data and

synthetic values are only generated for units that participated in the survey.

This means that evaluating the disclosure risk is an equally important step as

evaluating the data quality for partially synthetic datasets.

Nevertheless, partially synthetic datasets have the important advantage that

in general the data utility will be higher, since only for some variables the

true values have to be replaced with imputed values, so by definition the joint

distribution for all the unchanged variables will be exactly the same as in the

original dataset. The quality of the synthetic datasets will highly depend on

the quality of the underlying models and for some variables it will be very hard

to define good models, especially if logical constraints and skip patterns should

be preserved. But if these variables do not contain any sensitive information

or information that might help identify single respondents, why bother to find

these models? Why bother to perturb these variables first place? Furthermore,

the risk of biased imputations will increase with the number of variables that

are imputed, if the SRMI approach (see Section 3.2.2) is used for imputations.

For, if one of the variables is imputed based on a bad model, the biased im-

puted values for that variable could be the basis for the imputation of another

variable and this variable again could be used for the imputation of another
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one and so on. So a small bias could increase to a really problematic bias over

the imputation process. A comparison of the results in Sections 5.4.2 and 6.4.1

underline these thoughts. The partially synthetic datasets provide higher data

quality in terms of lower deviation from the true estimates and higher confi-

dence interval overlap between estimates from the original data and estimates

from the synthetic data almost for all estimates. Still, this increase of data

utility comes at the price of an increase in the risk of disclosure. Although the

disclosure risk for fully synthetic datasets might not be zero, the disclosure risk

will definitely be higher if true values remain in the dataset and the released

data is based only on survey participants. Thus, it is important to make sure

that all variables that might lead to disclosure are imputed in a way that confi-

dentiality is guaranteed. This means that a variety of disclosure risk checks are

necessary before the data can be released, but this is a problem common to all

perturbation methods that are based only on the information from the survey

respondents. Agencies willing to release synthetic public use files will have to

consider carefully, which approach suites best for their datasets. If the data

consists only of all small number of variables and imputation models are easy

to set up, the agencies might consider releasing fully synthetic datasets, since

these datasets will provide the highest confidentiality protection, but if there

are many variables in the data considered for release and the data contain a

lot of skip patterns, logical constraints and questions that are asked only to

a small subgroup of survey respondents, the agencies might be better off to

release partially synthetic datasets and include a detailed disclosure risk study

in their evaluation of the quality of the datasets considered for release.



Chapter 7

Multiple Imputation for

Nonresponse and Statistical

Disclosure Control

Most if not all surveys are subject to item nonresponse and even registers can

contain missing values, if implausible values are set to missing during the data

editing process. Since the generation of partially synthetic datasets is based on

the ideas of multiple imputation, it is reasonable to use the approach to impute

missing values and generate synthetic values simultaneously. The imputation

of missing values is not an issue for fully synthetic datasets, since the original

data is only used for model building.

At a first glance, it seems logical, to impute missing values and generate syn-

thetic values in one step, using the same model from the originally observed

values. However, as Reiter (2004) points out, this can lead to biased imputa-

tions, if only a subset of the data, e.g. the income for units with income above

$100, 000, should be replaced with synthetic values, but the imputation model

for the missing values is based on the entire dataset. To allow for different

models, Reiter (2004) suggests imputation in two stages. On the first stage,

all missing values are imputed m times using the standard multiple imputation

approach for nonresponse (see Chapter 3). On the second stage, all values that

need to be replaced are synthesized r times in every first stage nest leading to

a total of M = m ∗ r datasets that are released to the public. Each released

dataset includes a label indicating from which first stage imputed dataset it

was generated.

59
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7.1 Inference for partially synthetic datasets

when the original data is subject to non-

response

The two stage imputation described above generates two sources of variabil-

ity. The first, when missing values are imputed, the second, when sensitive or

identifying variables are replaced with synthetic values. Neither the combining

rules for the imputation of missing values described in Section 3.1 nor the com-

bining rules for partially synthetic datasets described in Section 6.1 correctly

reflect these two sources of variability. Reiter (2004) derived the combining

rules necessary to obtain valid inferences in this two stage setting:

Again, let Q be an estimand, such as a population mean or regression coef-

ficient. Suppose that, given the original data, the analyst would estimate Q

with some point estimator q and the variance of q with some estimator u. Let

q
(l)
i and u

(l)
i be the values of q and u in synthetic dataset D

(l)
i , for l = 1, ..., m

and i = 1, ..., r. The analyst computes q
(l)
i and u

(l)
i by acting as if each D

(l)
i is

the genuine data. The following quantities are needed for inferences for scalar

Q:

q̄M =
m∑

l=1

r∑
i=1

q
(l)
i /(mr) =

m∑

l=1

q̄(l)/m (7.1)

b̄M =
m∑

l=1

r∑
i=1

(q
(l)
i − q̄(l))2/m(r − 1) =

m∑

l=1

b(l)/m (7.2)

BM =
m∑

l=1

(q̄(l) − q̄M)2/(m− 1) (7.3)

ūM =
m∑

i=1

r∑
i=1

u
(l)
i /(mr) . (7.4)

The analyst then can use q̄M to estimate Q and

TM = (1 + 1/m)BM − b̄M/r + ūM (7.5)

to estimate the variance of q̄M .

When n is large, inferences for scalar Q can be based on t-distributions with

degrees of freedom

νM =

(
((1 + 1/m)BM)2

(m− 1)T 2
M

+
(b̄M/r)2

m(r − 1)T 2
M

)−1

(7.6)
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Methods for multivariate inferences are developed in Kinney and Reiter (2010).

Similar to the variance estimate for fully synthetic datasets, TM can become

negative, since b̄M/r is subtracted. In this case Reiter (2008b) suggests to use

the conservative variance estimator T adj
M = (1+1/m)Bm + ūM . This estimator

is equivalent to the variance estimator for multiple imputation for missing

data. Consequently the degrees of freedom is given by:

νadj
M = (m− 1)(1 + mūM/((m + 1)BM))2 (7.7)

Generally negative variances can be avoided by increasing m and r.

7.2 Data utility and disclosure risk

To evaluate the data utility in this setting, we can use the same measures as for

fully synthetic or partially synthetic datasets. Namely, measuring the confi-

dence interval overlap between confidence intervals obtained from the synthetic

data and confidence intervals obtained from the original data or measuring how

well one can discriminate between the original and the synthetic data based on

the ideas of propensity score matching (see Section 5.2). The difference to the

standard one stage synthesis is that we compare the synthetic datasets with

the datasets imputed on stage one.

For disclosure risk evaluations the disclosure risk measures described in Sec-

tion 6.3 can be used. Depending on the scenario, measures that assume the

intruder knows who participated in a survey (see Section 6.3.1) or measures

that consider the additional uncertainty from sampling (see Section 6.3.2) can

be applied.

7.3 Multiple imputation of the missing values

in the IAB Establishment Panel1

In the remainder of this chapter, we describe all the steps that were necessary

to generate a scientific use file of the wave 2007 of the IAB Establishment

Panel that will be released in fall 2009. We start by illustrating the extensive

imputation task required to impute all missing values in the dataset. We briefly

1Most of this section is taken from Drechsler (2009).
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discuss, how we selected the variables to be synthesized. We also describe the

synthesis process and the models we implemented for the synthesis. Finally,

we present results from the data utility and disclosure risk evaluations that we

preformed before the actual release.

7.3.1 The imputation task

Most of the 284 variables included in the wave 2007 of the panel are subject

to nonresponse. Only 26 variables are fully observed. However, missing rates

vary considerably between variables and are modest for most variables. 65.8%

of the variables have missing rates below 1%, 20.4% of the variables have miss-

ing rates between 1% and 2%, 15.1% rates between 2% and 5% and only 12

variables have missing rates above 5%. The five variables with missing rates

above 10% are subsidies for investment and material expenses (13.6%), pay-

roll (14.4%), intermediate inputs as proportion of turnover (17.4%), turnover

in the last fiscal year (18.6%), and number of workers who left the establish-

ment due to restructuring measures (37.5%). Obviously, the variables with

the highest missing rates contain information that is either difficult to provide

like number of workers who left the establishment due to restructuring mea-

sures or considered sensitive like turnover in the last fiscal year. The variable

number of workers who left the establishment due to restructuring measures is

only applicable to 626 establishments in the dataset, who declared they had

restructuring measures in the last year. Of these 626 only 391 establishments

provided information on the number of workers that left the establishment due

to these measures. Clearly, it is often difficult to tailor exactly which workers

left as a result of the measures and which left for other reasons. This might

be the reason for the high missing rates. The low number of observed values

is also problematic for the modeling task, so this variable should be used with

caution in the imputed dataset.

7.3.2 Imputation models

Since the dataset contains a mixture of categorical variables and continuous

variables with skewed distributions and a variety of often hierarchical skip

patterns and logical constraints, it is impossible to apply the joint modeling

approach described in Section 3.2.1. We apply the fully conditional specifica-

tion approach described in Section 3.2.2, iteratively imputing one variable at
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a time, conditioning on the other variables available in the dataset. For the

imputation we basically rely on three different imputation models. The linear

model for the continuous variables, the logit model for binary variables and

the multinomial logit for categorical variables with more than two categories.

Multiple imputation procedures for these models are described in Raghunathan

et al. (2001). In general, all variables that don’t contain any structural miss-

ings are used as predictors in the imputation models in hopes of reducing

problems from uncongeniality (Meng, 1994). In the multinomial logit model

for the categorical variables the number of explanatory variables is limited to

30 variables found by stepwise regression to speed up the imputation process.

To improve the quality of the imputation we define several separate models

for the variables with high missing rates like turnover or payroll. Independent

models are fit for East and West Germany and for different establishment size

classes.

All continuous variables are subject to non-negativity constraints and the out-

come of many variables is further restricted by linear constraints. To com-

plicate the imputation process most variables have huge spikes at zero and

as mentioned before the filtering rules are often hierarchical. Simply applying

standard imputation procedures can lead to biased or inconsistent imputations

in this context. We therefore have to rely on a mixture of the adjustments pre-

sented in Section 3.3. Since the package mi was not available at the beginning

of this project and other standard packages could not deal with all these prob-

lems or did not allow detailed model specification, we use own coding in R for

the imputation routines to generate m = 5 datasets.

7.3.3 Evaluating the quality of the imputations

It is more difficult to evaluate the quality of the imputations for missing values

than evaluating the quality of the imputations for statistical disclosure control

(SDC). With the latter, we can simply compare any statistic obtained from the

protected data with the same statistic obtained from the original data, since

we have the exact information what the correct outcome should be. Methods

for evaluating the data quality of synthetic datasets are described in Section

5.2. When imputing missing values, this information by definition is not avail-

able and the assumption that the response mechanism is ignorable (Rubin,

1987), necessary for obtaining valid imputations if the response mechanism is
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not modeled directly, can not be tested with the observed data. A response

mechanism is considered ignorable, if, given that the sampling mechanism is

ignorable, the response probability only depends on the observed information.2

If these conditions are fulfilled, the missing data is said to be missing at ran-

dom (MAR) and imputation models only need to be based on the observed

information. As a special case, the missing data is said to be missing com-

pletely at random (MCAR), if the response mechanism does not depend on

the data (observed or unobserved), which implies that the distribution of the

observed data and the distribution of the missing data are identical. If the

above requirements are not fulfilled, the missing data is said to be missing not

at random (MNAR) and the response mechanism needs to be modeled explic-

itly. Little and Rubin (2002) provide examples for non-ignorable missing-data

models.

As noted before, it is not possible to check, if the missing data is MAR with

the observed data. But even if the MAR assumption can not be tested, this

does not mean, the imputer can not test the quality of his or her imputations

at all. Abayomi et al. (2008) suggest several ways of evaluating model based

imputation procedures. Basically their ideas can be divided in two categories:

On the one hand, the imputed data can be checked for reasonability. Simple

distributional and outlier checks can be evaluated by subject matter experts

for each variable to avoid implausible imputed values like a turnover of $ 10

million for a small establishment in the social sector. On the other hand, since

imputations usually are model based, the fit of these models can and indeed

should be evaluated. Abayomi et al. (2008) label the former as external diag-

nostic techniques, since the imputations are evaluated using outside knowledge

and the latter internal diagnostic techniques, since they evaluate the modeling

based on model fit without the need of external information.

To automate the external diagnostics to some extent, Abayomi et al. (2008)

suggest to use the Kolmogorov Smirnoff test to flag any imputations for which

the distribution of the imputed values significantly differs from the distribution

of the observed values. Of course a significant difference in the distributions

does not necessarily indicate problems with the imputation. Indeed, if the

2The additional requirement that the sampling mechanism is also ignorable (Rubin,
1987), i.e. the sampling probability only depends on observed data, is usually fulfilled
in scientific surveys. The stratified sampling design of the IAB Establishment Panel also
satisfies this requirement.
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missing data mechanism is MAR, but not MCAR we would expect the two

distributions to differ. The test is only intended to decrease the number of

variables that need to be checked manually implicitly assuming that no signifi-

cant difference between the original and the imputed data indicates no problem

with the imputation model.

However, we are skeptical about this automated selection method, since the

test is sensitive to the sample size, so the chance of rejecting the null hypothesis

will be lower for variables with lower missing rates and variables that are

answered only by a subset of the respondents. Furthermore it is unclear what

significance level to choose and as noted above, rejection of the null hypothesis

does not necessarily indicate an imputation problem, but not rejecting the null

hypothesis is not a guarantee that we found a good imputation model either.

However, this is implicitly assumed by this procedure.

For the continuous variables, we searched for possible flaws in the imputations

by plotting the distributions for the original and imputed values for every

variable. We checked, if any notable differences between these distributions

can be justified by differences in the distributions of the covariates. Figure

7.1 displays the distributions for two representative variables based on kernel

density estimation. Original values are represented with a solid line, imputed

values with a dashed line. Both variables are reported on the log-scale. The left

variable (payroll) represents a candidate that we did not investigate further,

since the distributions almost match exactly. The right variable (number of

participants in further education (NB.PFE)) is an example for a variable for

which we tried to understand the difference between the distribution of the

observed values and the distribution of the imputed values before accepting

the imputation model.

Obviously, most of the imputed values for the variable NB.PFE are larger than

the observed values for this variable. To understand this difference, we exam-

ined the dependence between the missing rate and the establishment size. In

Table 7.1 we present the percentage of missing units in 10 establishment size

classes defined by quantiles and the mean of NB.PFE within these quantiles.

The missing rates are low up to the sixth establishment size class. Beyond

that point the missing rates increase significantly with every class. The av-

erage number of further education participants increases steadily with every

establishment size class with largest increases in the second half of the table.

With these results in mind, it is not surprising that the imputed values for
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Figure 7.1: Observed (solid line) and imputed (dashed line) data for payroll

and number of participants in further education (NB.PFE). Both variables are

reported on the log-scale.

that variable are often larger than the observed values.

We inspected several continuous variables by comparing the distributions of

the observed and imputed values in our dataset and did not find any differences

in the distributions that could not be explained by the missingness pattern.

However, these comparisons are only meaningful, if enough observations are

imputed. Otherwise the distributions between observed data and imputed data

might look completely different, only because using kernel density estimation

to produce a smooth distribution graph is not appropriate in this context.

For this reason we restricted the density comparisons to variables with more

then 200 imputed values above zero. For the remaining variables we plotted

histograms to check for differences between the observed and imputed values

and to detect univariate outliers in the imputed data.

We also investigated if any weighted imputed value for any variable lay above

the maximum weighted observed value for that variable. Again, this would

not necessarily be problematic, but we did not want to produce any unrealistic

influential outliers. However, we did not find any weighted imputed value that

was higher than the maximum of its weighted observed counterpart.

For the internal diagnostics, we used three graphics to evaluate the model fit:

A Normal Q-Q plot, a plot of the residuals from the regression against the

fitted values and a binned residual plot (Gelman and Hill, 2006). The Normal

Q-Q plot indicates if the assumption of a normal distribution for the resid-
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Table 7.1: Missing rates and means per quantile for NB.PRE.

est. size
quantile

missing
rate in %

mean(NB.PFE)
per quantile

1 0.09 1.61
2 0.00 2.49
3 0.57 3.02
4 0.36 4.48
5 0.44 6.09
6 0.37 9.53
7 0.85 15.48
8 1.16 26.44
9 3.18 56.39
10 6.66 194.09

uals is justified by plotting the theoretical quantiles of a normal distribution

against the empirical quantiles of the residuals. The residual plot visualizes

any unwanted dependencies between the fitted values and the residuals. The

binned resdiual plot plots the average fitted value against the average residual

within predefined bins. This is especially helpful for categorical variables since

the output of a simple residual plot is difficult to interpret if the outcome is

discrete.

Figure 7.2 again provides an example of one model (one of the models for the

variable turnover) that we did not inspect any further and one model (for

the variable number of participants in further education with college degree

(NB.PFE.COL)), for which we checked the model for necessary adjustments.

For both variables the assumption that the residuals are more or less normally

distributed seems to be justified. For the variable turnover, the two residual

plots further confirm the quality of the model. Only a small amount of residuals

fall outside of the grey dotted 95% confidence bands for the residual plot and

non of the averaged residuals falls outside the grey 95% confidence bands for

the binned residuals. This is different for NB.PFE.COL. Although still most

of the points are inside the 95% confidence bands, we see a clear relationship

between the fitted values and the residuals for the small values and the binned

residuals for these small values all fall outside the confidence bands. However,

this phenomenon can be explained if we inspect the variable further. Most

establishments don’t have any participants in further training with college
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Figure 7.2: Model checks for turnover and number of participants in further

education with college degree.

degree and we fitted the model only to the 3,426 units that reported to have at

least one participant. 648 of these units report that they had only 1 participant,

leading to a spike at 1 in the original data. Since we simply fit a linear

model to the observed data, the almost vertical line in the residual plot is not

surprising. It contains all the residuals for all the units with only 1 participant

in the original data. The binned residual plot indicates that the small fitted

values sometimes severely underestimate the original values. The reason for

this again is the fact that the original data is truncated at 1 whereas the

fitted values are predictions from a standard linear model that would even

allow negative fitted values, since we computed the fitted values before the

adjustments for non-negativity described in Section 3.3.3. The consequence is

a slight overestimation for the larger fitted values.

We found similar patterns in some other variables that had huge spikes at 1.
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We could have tried to model the data with a truncated distribution or we

could have applied the semi-continuous approach described in Section 3.3.2 to

model the spike at 1 separately, but since we expect that the non-negativity

adjustments reduce this effect, we decided to avoid making the already complex

modeling task even more difficult.

Missing rates are substantially lower for the categorical variables. Only 59

out of the close to 200 categorical variables in the dataset have missing rates

above 1% and we limited our evaluation to these variables. We compared the

relative number of responses in each category for the observed and the imputed

values and flagged a variable for closer inspection, if the relative number of

responses in one imputed category differed more than 20% from the relative

number in the observed category. We further limited our search to categories

that contained at least 25 units, since small changes in categories with less

units would lead to significant changes in the relative differences for these

categories. All 15 variables that were flagged by this procedure had a missing

rate below 5% and the differences between the imputed and original response

rates could be explained by the missingness pattern for all of them. We select

one variable here to illustrate the significant differences between observed and

imputed values that can arise from a missingness pattern that is definitely

not missing completely at random. The variable under consideration asks

for the expectations about the investment in 2007 compared to 2006. Table

7.2 provides some summary statistics for this variable. We find a substantial

difference for the second and the third category, if we simply compare the

observed response rates (column 1) with the imputed response rates (column

2). But the missing rate is only 0.2% for this variable for units with investments

in 2006 but soars to 10.5% for units without investments in 2006. Thus, the

response rates across categories for the imputed values will be influenced by

the expectations for those units that had no investments in 2006 (column 4)

even though only 12.9% of the participants who planned investments for 2007

reported no investments in 2006. These response rates differ completely from

the response rates for units that reported investments in 2006 (column 3).

Thus, the percentage of establishments that expect an increase in investments

is significantly larger in the imputed data than it is in the original data.

For categorical data the Normal Q-Q plot is not appropriate as an internal

diagnostic tool and the residual plot is difficult to interpret if the outcome is

discrete. Therefore, we only examined the binned residual plots for the 59
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Table 7.2: Expectations for the investments in 2007 (response rates in % for
each category).

category obs.
data

imp.
data

obs. units with
investment 2006

obs. units without
investment 2006

will stay the same 36.57 37.96 41.33 0.59
increase expected 38.79 57.66 30.74 99.41
decrease expected 20.33 0.73 23.05 0.00
don’t know yet 4.31 3.65 4.88 0.00

categorical variables with missing rates above 1%. All plots indicate a good

model fit. We move all graphics to the Appendix A.2 for brevity.

To check for possible problems with the iterative imputation procedure, we

stored the mean for several continuous variables after every imputation round.

We did not find any inherent trend for the imputed means for any of the vari-

ables. Of course, this is no guarantee for convergence. A possible strategy to

measure the convergence of the algorithm is implemented in the new mi pack-

age by Su et al. (2009) following the ideas in Gelman et al. (2004). If different

imputation chains are run to generate the m imputations, convergence can be

monitored by calculating the variance of a given estimate of interest ψ (Su et al.

(2009) use the mean and the standard deviation of each variable) within and

between different imputation chains. Let ψij denote the estimate obtained at

iteration i, i = 1, ..., T in chain j, j = 1, ..., m. The between-sequence variance

B and the average within-sequence variance W can be calculated as:

B =
T

m− 1

m∑
j=1

(ψ̄.j − ψ̄..)
2, where ψ̄.j =

1

T

T∑
i=1

ψij, ψ̄.. =
1

m

m∑
j=1

ψ̄.j

W =
1

m

m∑
j=1

s2
j , where s2

j =
1

T − 1

T∑
i=1

(ψij − ψ̄.j)
2.

Gelman et al. (2004), p.297 suggest that convergence can be assumed if

R̂ =

√
(1− 1/T )W + 1/T ∗B

W
(7.8)

is less than 1.1. We did not monitor this measure in our imputation routines.
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7.4 Generating synthetic datasets from the

multiply imputed IAB Establishment

Panel

Once all missing values in the original data have been imputed, we can begin

with the actual synthesis. The first and crucial step in the synthesis process is

to decide which variables need to be synthesized and whether it is necessary

to synthesize all records in the dataset. In general agencies can decide if they

only want to select key variables for synthesis or if they also want to synthesize

some of the sensitive variables. Key variables are those variables that could be

used for re-identification purposes, i.e. variables for which the intruder knows

the true values for some target records from external databases like business

or credit information databases. Sensitive variables are all those variables

that contain information that a survey respondent would not be willing to

provide to the general public. In theory there is often no need to synthesize

sensitive variables that are not considered key variables. If all key variables are

sufficiently protected it will not be possible to link any record in the dataset

to a specific respondent. Synthesizing sensitive variables is a conservative

approach that might be justified since the amount of data available in external

databases might increase over time, so records that are considered save now

might be at risk later. It also helps to convince survey respondents that their

information is sufficiently protected.

In our project we decided to synthesize a combination of both variable types.

Obviously key variables like establishment size, region and industry code need

to be protected, since a combination of the three variables would enable the

intruder to identify most of the larger establishments, but we also synthesized

the most sensitive variables in the dataset like turnover or amount of subsidies

received from the government. Almost all numerical and some of the categorical

variables are synthesized.

In many datasets it is sufficient to alter only the subset of records that are

actually at risk. These records can be found by cross tabulating the key vari-

ables. Only those records in cross tabulation cells with cell counts below an

agency defined threshold might need protection. The selective multiple impu-

tation of keys (SMIKE, Liu and Little (2002)) approach aims in that direction.

In our application it might have been sufficient to synthesize values only for
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the larger establishments since the sampling uncertainty and the similarities of

the small establishments will make re-identification very difficult. Besides, ar-

guably intruders will only be interested to identify some larger establishments.

However, we decided to synthesize all records since, given the large amount

of information contained in the dataset (close to 300 variables), all records

are sampling uniques arguably even population uniques. Of course only a few

variables in the dataset can be considered key variables, but once the dataset

is released, a survey respondent might try to identify herself in the released

dataset. Since the respondent knows all the answers she provided, it will be

easy for her to find herself in the dataset. If she realizes that her record is

included completely unchanged, she will feel that her privacy is at risk, even if

an intruder that will not have the same background information will never be

able to identify this respondent. To drive down this perceived risk we decided

to synthesize all 15,644 records in the dataset.

7.4.1 The synthesis task

For the synthesis we use the sequential regression multivariate imputation

approach (SRMI, Raghunathan et al. (2001)) with linear regression models

for the continuous variables and logit models for the binary variables (See

Section 3.3 for details on how to adjust these methods for skip patterns and

logical constraints). Since we always replace all records with synthetic values

and leave some of the variables unchanged, we do not have to iterate between

the imputations like in standard SRMI for missing values. For illustration

let Y1, ..., Y3 be some sensitive variables in a dataset selected for replacement

and let X be all variables that remain unchanged in the released dataset. To

generate valid synthetic datasets, we need to draw replacement values from

the joint distribution f(Y1, Y2, Y3|X). Note that we can write this distribution

as f(Y1, Y2, Y3|X) = f(Y1|X)f(Y2|Y1, X)f(Y3|Y1, Y2, X).

Thus, we start our synthesis by drawing new values for Y1 from an imputation

model that only conditions on the unchanged variables X. Next, we built

a model for Y2 conditioning on the originally observed values of X and Y1.

However, we use the imputed values of Y1 when drawing new values for Y2. Fi-

nally, we built a model for Y3 conditioning on all variables in the original data.

New values for Y3 are drawn using the imputed values of Y1 and Y2. This ap-

proach, originally proposed in the missing data context for so called monotone
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missingness pattern (Rubin (1987), Chapter 5.4), speeds up the imputation

process, because we do not need to iterate before and between the imputa-

tions to guarantee convergence to the joint distribution and independence of

the draws respectively.

Since all records are replaced with imputed values in our synthesis, develop-

ing good models is essential. All variables that don’t contain any structural

missings are used as predictors in the imputation models in hopes of reducing

problems from uncongeniality (Meng, 1994). For the synthesis we use several

imputation models for every variable whenever possible. Different models are

defined for West and East Germany and for different establishment size classes

defined by quantiles. Depending on the number of observations that could be

used for the modeling, we define up to 8 different regression models. We do not

use the multinomial logit model for the synthesis of the polytomous variables

since we already experienced problems with this approach when imputing the

missing values in the dataset. For the synthesis we do not want to limit our

imputation models to some 30 explanatory variables. Furthermore, we also

have to synthesize variables with a large number of categories like region (16

categories) and industry code (41 categories). The multinomial model would

hardly ever converge for these variables.

The standard approach for a model based imputation of categorical variables

with many categories is the multinomal/Dirichlet approach (see for example

Abowd et al. (2006)). The disadvantage of this approach is that covariates can

not be incorporated in the model directly. In general, a different model is fit for

a large number of subcategories of the data defined by cross-classifying some of

the covariates to preserve the conditional distributions in the defined classes.

This approach is impractical if the number of observations in a survey is low,

because the number of observations will be too low to define suitable models

in every subclass for which the marginal distribution should be preserved. For

this reason we follow a different strategy when synthesizing the categorical

variables in our dataset. We generate synthetic values using CART models as

suggested by Reiter (2005d).

CART models are a flexible tool for estimating the conditional distribution

of a univariate outcome given multivariate predictors. Essentially, the CART

model partitions the predictor space so that subsets of units formed by the

partitions have relatively homogeneous outcomes. The partitions are found by

recursive binary splits of the predictors. The series of splits can be effectively
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represented by a tree structure, with leaves corresponding to the subsets of

units.

CART models also can be used to generate partially synthetic data (Reiter,

2005d). To illustrate the approach, let us assume that we only want to syn-

thesize three categorical variables: region, industry code, and legal form. To

generate synthetic datasets for these three variables we proceed as follows.

Using the original data Dobs we fit a tree of region on all other variables that

don’t contain any structural missings except industry code and legal form.3

Label this tree Y(R). We require a minimum of five records in each leaf of

the tree and do not prune it; see Reiter (2005d) for discussion of pruning and

minimum leaf size. Let LRw be the wth leaf in Y(R), and let Y LRw

(R) be the nLRw

values of Y(R) in leaf LRw. In each LRw in the tree, we generate a new set

of values by drawing from Y LRw

(R) using the Bayesian bootstrap (Rubin, 1981).

These sampled values are the replacement imputations for the nLRw
units that

belong to LRw. Repeating the Bayesian bootstrap in each leaf of the region

tree results in the ith set of synthetic regions, Y(R)rep,i.

Imputations are next made for the industry code. Using Dobs, we fit the tree,

Y(I), with all variables except legal form as predictors. To maintain consistency

with Y(R)rep,i, units’ leaves in Y(I) are located using Y(R)rep,i. Occasionally, some

units may have combinations of values that do not belong to one of the leaves of

Y(I). For these units, we search up the tree until we find a node that contains

the combination, then treat that node as if it were the unit’s leaf. Once

each unit’s leaf is located, values of Y(I)rep,i are generated using the Bayesian

bootstrap. Imputing legal form follows the same process: we fit the tree Y(L)

using all variables that don’t contain any structural missings as predictors,

place each unit in the leaves of Y(L) based on their synthesized values of region

and industry code, and sample new legal forms using the Bayesian bootstrap.

We generate r = 5 datasets for every imputed dataset, i.e. m∗r = 25 synthetic

datasets will be released. Reiter (2008b) elaborates on the number of impu-

tations on stage one and two when using multiple imputation for nonresponse

and disclosure control simultaneously. He suggests to set m > r, especially if

the fraction of missing information is large, to reduce variance from estimating

3To improve the data quality we actually grow several trees for different subsets of the
data. The subsets are defined by West and East Germany and by up to 25 different es-
tablishment size classes defined by quantiles. To simplify the notation, we illustrate the
approach assuming that only one tree is fit for each variable.
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missing values. But this approach will increase the risk of negative variance

estimates since b̄M will increase relative to BM .

In our dataset only 12 variables (out of more than 300) have missing rates

above 5%. On the other hand, we always synthesize 100% of the records. In

his simulations Reiter (2008b) does not find a significant reduction in variance

with increasing m compared to r for 100% synthesis paired with low missing

rates. On the other hand, the risk of negative variance estimates increases

significantly. From these results, we conclude that it would be better to set

m = r in our case.

7.4.2 Measuring the data utility

We evaluate the data utility of the generated datasets by comparing analytic

results achieved with the original (fully imputed) data4 with results from the

synthetic data. To provide realistic analyses, we use two regressions suggested

by colleagues at the IAB, who regularly use the panel for applied analyses. The

probit regression displayed in Tables 7.3 and 7.4 is adapted from a regression

originally based on a different wave of the establishment panel. The dependent

variable indicates if an establishment employs part-time employees. The 19

explanatory variables include among others dummies for the establishment

size, whether the establishment expects changes in the number of employees,

and information on the personnel structure. Since there are still differences

within Germany, the results are computed for West Germany (Table 7.3) and

East Germany (Table 7.4) separately.

Both regressions clearly demonstrate the good data quality. All point estimates

from the synthetic data are close to the point estimates from the original

data and the confidence interval overlap (See Section 5.2) is higher than 90%

for most estimates with an average of 90% for West Germany and 93% for

East Germany. We also report the z-scores for all regressions, because some

researchers are concerned that synthetic datasets will provide valid results for

the significant variables, but might provide less acurate results for variables

with lower z-scores. From the results it is obvious that this is not true. We also

note that the z-scores from the synthetic data are very close to the z-scores

from the original data. This is an important result, since model selections are

4For convenience, we will refer to the dataset with all missing values multiply imputed
as the original data from here on.
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Table 7.3: Regression results from a probit regression of part time-employees
(yes/no) on 19 explanatory variables in West Germany. For the CI length
ratio the CI length of the original datasets is in the denominator.

original
data

synth.
data

CI
over-
lap

z-
score
org.

z-
score

syn

CI
length
ratio

Intercept -0.809 -0.752 0.87 -7.23 -6.85 0.99
5-10 employees 0.443 0.437 0.97 8.52 7.99 1.06
10-20 employees 0.658 0.636 0.90 11.03 10.88 0.98
20-50 employees 0.797 0.785 0.95 13.02 12.36 1.04
100-200 employees 0.892 0.908 0.96 9.23 9.48 0.99
200-500 employees 1.131 1.125 0.99 9.99 9.87 1.01
>500 employees 1.668 1.641 0.97 8.22 8.33 0.97
growth in employment exp. 0.010 0.006 0.98 0.18 0.12 0.99
decrease in emp. expected 0.087 0.100 0.96 1.11 1.27 1.00
share of female workers 1.449 1.366 0.73 17.63 18.71 0.89
sh. of emp. with uni. degree 0.319 0.368 0.91 2.18 2.59 0.97
sh. of low qualified workers 1.123 1.148 0.93 12.17 11.87 1.05
sh. of temporary employees -0.327 -0.138 0.75 -1.74 -0.71 1.05
share of agency workers -0.746 -0.856 0.88 -3.09 -4.24 0.84
empl. in the last 6 mths 0.394 0.369 0.87 8.33 7.82 1.00
dismissal in the last 6 mths 0.294 0.279 0.92 6.38 6.03 1.00
foreign ownership -0.113 -0.117 0.99 -1.33 -1.38 0.99
good/very good profitability 0.029 0.033 0.98 0.72 0.82 0.99
salary above coll. wage agr. 0.020 0.031 0.95 0.35 0.54 0.99
collective wage agreement 0.016 0.007 0.95 0.31 0.13 0.97

often based on significance levels. The last column reports the 95% confidence

interval length ratio with the confidence interval length of the original data

in the denominator. Since the multiple imputation procedure for generating

synthetic datasets correctly reflects the uncertainty in the imputation models,

it can happen that the confidence intervals from the synthetic datasets are

much wider an thus less efficient than the confidence intervals from the original

data. We find that only for the variable share of low qualified workers in Table

7.4 the confidence interval length is increased by 19%. For all other estimands

the intervals are never increased more than 7%.

The second regression is an ordered probit regression with the expected em-

ployment trend in three categories (increase, no change, decrease) as the de-
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Table 7.4: Regression results from a probit regression of part time-employees
(yes/no) on 19 explanatory variables in East Germany. For the CI length ratio
the CI length of the original datasets is in the denominator.

original
data

synth.
data

CI
over-
lap

z-
score
org.

z-
score

syn

CI
length
ratio

Intercept -0.712 -0.742 0.93 -6.42 -7.21 0.93
5-10 employees 0.266 0.257 0.96 4.81 4.53 1.03
10-20 employees 0.416 0.399 0.93 6.94 6.76 0.99
20-50 employees 0.542 0.532 0.96 9.18 8.72 1.04
100-200 employees 0.757 0.808 0.86 8.02 8.47 1.01
200-500 employees 0.971 1.013 0.91 8.25 8.57 1.00
>500 employees 1.401 1.422 0.98 5.69 5.66 1.02
growth in employment exp. -0.041 -0.040 1.00 -0.73 -0.73 1.00
decrease in emp. expected 0.035 0.040 0.98 0.44 0.50 1.00
share of female workers 1.006 1.041 0.88 12.63 14.93 0.88
sh. of emp. with uni. degree 0.221 0.197 0.95 1.86 1.76 0.95
sh. of low qualified workers 0.976 1.042 0.87 8.44 7.84 1.19
sh. of temporary employees -0.049 0.049 0.84 -0.31 0.34 0.91
share of agency workers -0.176 -0.232 0.94 -0.73 -1.08 0.89
empl. in the last 6 mths 0.230 0.210 0.89 4.95 4.55 1.00
dismissal in the last 6 mths 0.301 0.295 0.97 6.43 6.35 0.99
foreign ownership -0.176 -0.176 1.00 -1.83 -1.84 1.00
good/very good profitability 0.097 0.097 1.00 2.35 2.37 1.00
salary above coll. wage agr. 0.080 0.086 0.98 1.04 1.10 1.01
collective wage agreement 0.097 0.069 0.86 1.87 1.36 0.98

pendent variable. In the regression, we use 39 explanatory variables and the

industry dummies as covariates. Again the analysis is computed for West Ger-

many and East Germany separately. Figure 7.3 contains a plot of the original

point estimates against the synthetic point estimates and a boxplot for the

confidence interval overlap and the confidence interval length ratio. All graphs

are based on the 78 estimates from the two regressions. Most of the point esti-

mates in the first graph are close to the 45 degree line indicating that the point

estimates from the synthetic data are very close to the point estimates from

the original data. But even if the point estimates differ, we find that the data

utility measured by the confidence interval overlap is high. The measure never

drops below 61% and the median overlap is 92.7%. Thus, even though some
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Figure 7.3: Ordered probit regression of expected employment trend on 39

explanatory variables and industry dummies.

estimates are a little off the 45 degree line, the results are close to the original

results since these coefficients are estimated with a high standard error. The

boxplot of the confidence interval length ratio indicates that we do not loose

much efficiency by using the synthetic data instead of the original data. The

confidence interval never increases by more than 5% compared to the original

data.
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Figure 7.4: Original point estimates against synthetic point estimates for the

overall mean and the means in subgroups defined by establishment size class,

industry code and region.

Not all users of the data will be interested in multivariate regression anal-

ysis. For this reason we also included an evaluation of the data utility for

descriptive statistics. For this, we compare the unweighted5 overall mean and

the unweighted mean in different subgroups for all continuous variables in the

dataset. The subgroups are defined by establishment size (10 categories, de-

fined by quantiles), industry code (17 categories) and region (16 categories).

We do not investigate any cross classifications since the cell sizes would be too

small to obtain meaningful results. We also limit our evaluation to cells with

at least 200 observations above zero for the same reason. This leads to a final

number of 2,170 estimates. Figure 7.4 again presents the plots of the estimates

from the original fully imputed datasets against the synthetic estimates. For

readability the plots are divided in four parts depending on the original value

of the mean ([0; 10], (10; 100], (100; 1000], (1000;∞)). We find that most of the

synthetic estimates are close to their original counterparts. Only few estimates

differ significantly from the original values. Figure 7.5 contains box plots for

the confidence interval overlap. The results for each stratifying variable and

5We use the unweighted mean, because the weights were still under development when
we performed this evaluation.
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Figure 7.5: Box plots of CI overlaps for all continuous variables for the overall

mean and the means in all subgroups defined by different stratifying variables.

the overall mean are reported separately. The median overlap is always higher

than 75% indicating a very good overall quality of the data. Not surprisingly

the overall mean (based on 92 estimates) provides the best results, with an

overlap that never falls below 60% and a median overlap above 90%. The

results for the means in different establishment size classes (based on 552 es-

timates) and the means for different industry codes (based on 720 estimates)

are good for most of the estimates with a median overlap of 78.5% and 75.5%

respectively, but for a small number of estimates (6.2% and 3.3% of the es-

timands respectively) the overlap is actually zero. The results are better for

the region. The median overlap (based on 806 estimates) is 85.3%, the overlap

never falls below 34% and only 3 estimates have an overlap below 50%.
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7.4.3 Caveats in the use of synthetic datasets

Despite these very promising results, it would be overly optimistic to assume

that synthetic datasets will provide results of similar quality for any potential

analysis. It is crucial that the potential user of the data knows which analysis

might provide valid results and for which analysis she might have to apply for

direct access to the data at the research data center. To enable the user to

make these decisions it is very important that additional information about

the imputation models is released in combination with the synthetic data. For

example the IAB could release information about which explanatory variables

were used in the imputation models for each variable.

To give an example for which the synthetic data would not give valid results,

we run a probit regression with the same explanatory variables as in Table

7.3 but we replace the dependent variable with an employment trend variable

that equals 1 if the number of employees covered by social security increases

between 2006 and 2007 and is 0 otherwise. We don’t claim that this is a useful

applied analysis, it only helps to illustrate that users should be careful when

fitting models with dependent variables derived from two or more variables.

Table 7.5 provides the results for this regression and it is obvious that they are

by no means close to the results given above in terms of data quality. 6 of the

20 estimates actually have no confidence interval overlap at all and the point

estimates and z-scores often differ substantially from the original estimates.

So the question arises, what is the reason for the poor performance of the

synthetic datasets for this regression? To understand the problem, we first

compare the number of employees covered by social security 2006 and 2007

between the original data and the synthetic data. Figure 7.6 presents QQ-

plots of the original values against the synthetic values. The first two graphs

present the plots for the two variables and the last plot depicts the QQ-plot

for the difference in the number of employees between 2006 and 2007. We find

that the synthesis model did a very good job in capturing the distribution of

the variables for 2006 and 2007, the quantiles are more or less identical. The

distribution of the difference between the number of employees covered by

social security between 2006 and 2007 is also well preserved. If we would run

a simple linear regression with the same covariates but with the difference in

employment as the dependent variable, the average confidence interval overlap

would be 75%, a significant improve compared to 42% for the results in Table

7.5.
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Table 7.5: Regression results from a probit regression of employment trend
(increase/no increase) on 19 explanatory variables in West Germany. For the
CI length ratio the CI length of the original datasets is in the denominator.

original
data

synth.
data

CI
over-
lap

z-
score
org.

z-
score

syn

CI
length
ratio

Intercept -1.396 -0.978 0.05 -11.99 -9.28 0.92
5-10 employees 0.130 0.354 0.00 2.61 7.75 0.92
10-20 employees 0.316 0.495 0.05 6.19 11.19 0.87
20-50 employees 0.355 0.541 0.05 7.33 10.93 1.06
100-200 employees 0.366 0.351 0.94 5.69 6.09 0.91
200-500 employees 0.475 0.347 0.48 7.29 5.80 0.92
>500 employees 0.375 0.472 0.66 5.06 6.58 0.99
growth in employment exp. 0.374 0.148 0.00 9.29 3.59 1.05
decrease in emp. expected -0.376 -0.020 0.00 -6.16 -0.38 0.86
share of female workers -0.140 -0.054 0.67 -2.09 -0.84 1.00
sh. of emp. with uni. degree 0.229 0.199 0.91 1.94 2.05 0.83
sh. of low qualified workers -0.043 -0.004 0.84 -0.68 -0.07 0.97
sh. of temporary employees 0.434 0.226 0.62 3.25 1.60 1.07
share of agency workers 0.058 0.013 0.69 0.94 0.08 2.61
empl. in the last 6 mths 0.948 0.368 0.00 24.94 11.60 0.84
dismissal in the last 6 mths -0.172 -0.030 0.00 -4.42 -0.97 0.81
foreign ownership -0.165 -0.113 0.79 -2.60 -1.90 0.98
good/very good profitability 0.248 0.100 0.00 7.69 3.35 0.93
salary above coll. wage agr. 0.039 0.033 0.96 0.87 0.81 0.91
collective wage agreement 0.003 0.063 0.62 0.06 1.72 0.85

The actual problem stems from the fact that there is not much variation be-

tween the employment numbers 2006 and 2007. In the original dataset 5,376 of

the 15,644 establishments report no change in employment numbers and more

than 90% of the establishments report change rates of ±5%. It can easily hap-

pen that in the original data, an establishment reported an increase from 30 to

31 employees, but in the synthetic data this establishment might have imputed

values of 30 in both years or maybe 29 in the second year. Thus, the actual

number is estimated very well and even the predicted difference is very close,

but this record will change from an establishment with positive employment

trend to an establishment with no change or even negative employment trend.

The opposite is likely to occur as well: A record with a small negative employ-
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Figure 7.6: QQ-plots for the number of employees covered by social security

2006 and 2007 and the employment trend between the two years.

ment trend might end up with a positive employment trend. If this happens

for many records, which is to be expected, since changes are very small for

most records in the original dataset, the binary variable for employment trend

will assign ones to a completely different subset of records. It is not surpris-

ing that results from the synthetic data will be different from the results in

the original data in this case. It is important that users are made aware of

this problem that is likely to occur, if the user derives her variable of interest

from two or more variables in the dataset and small changes in the underlying

variables can have huge impacts on the derived variable. On a side note, this

problem is not limited to multiply imputed synthetic datasets. In fact, most

if not all standard perturbative SDC methods like swapping, adding noise or

micro aggregation will lead to similar problems.
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7.4.4 Assessing the disclosure risk

It is unlikely that an intruder has detailed information about who participated

in the survey, thus using the actual true data from the survey for the disclosure

risk calculations is an unrealistic conservative scenario. For this reason we

apply the disclosure risk measures described in Section 6.3.2 that account for

the additional uncertainty from sampling.

To obtain a set of target records for which the intruder has some knowledge

from external databases that she uses to identify units in the survey, we sample

new records from the sampling frame of the survey, the German Social Security

Data (GSSD). We sample from this frame, using the same sampling design as

for the IAB Establishment Panel: Stratification by establishment size, region

and industry code. Merging the stratification matrix from the panel to the

stratification matrix of the GSSD reveals that there are 14 stratification cells

with positive entries in the panel matrix that are empty in the GSSD matrix.

This is a result of the fact that some establishments don’t provide answers

only for their own entity. They erroneously provide the numbers for the whole

concern they belong to instead. By doing so, the establishment might move

to another stratification cell that is empty in the original sampling frame. We

remove these 14 entries from the stratification matrix of the survey. For the

same reason it is possible that some panel cells contain more records than

the corresponding GSSD cell. If this happens, we sample all records in this

GSSD cell. Overall this leads to a reduction from 15,644 establishments in the

original data to 15,624 records in the target sample.

Merging the GSSD and the IAB Establishment Panel using the establishment

identification number, we find that 1,360 units from the panel are not included

in the GSSD.6 As a consequence, these records will never appear in the target

sample. Since more than 93% of these records are establishments with less than

100 employees, only 4 of them have between 1,000-5,000 employees and non

has more than 5,000 employees, we are not concerned that we underestimate

the disclosure risk by excluding these records from the target sample.

We find that 917 records from the target sample are also included in the original

sample. Table 7.6 displays the percentage of records from the original dataset

6There are several possible reasons for this, e.g. re-organization of the firm leading to
new establishment identification numbers, coding errors, or delays in the notifications for
an establishment in the GSSD.
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Table 7.6: Probabilities to be included in the target sample and in the original
sample depending on establishment size.

establishment size class probability(%)

1-4 employees 0.91
5-9 employees 1.62
10-19 employees 2.87
20-49 employees 4.10
50-99 employees 6.55
100-199 employees 11.39
200-499 employees 16.69
500-999 employees 20.48
1000-4999 employees 31.89
>=5000 employees 39.39

that are also included in the target sample for different establishment size

classes. As expected, this probability increases with the establishment size.

For establishments with less than 100 employees the probability is always less

then 10% whereas large establishments with more than 5,000 employees are

included in both samples with a probability close to 40%.

For the disclosure scenario we assume, the intruder has information on region,

industry code (in 17 categories) and establishment size (measured by the num-

ber of employees covered by social security) for her target records and uses this

information to identify units in the survey. We further assume that she would

consider any record in the synthetic datasets a potential match for a specific

target record, if it fulfills two criteria: First, the record’s synthetic industry

code and region exactly matches the target’s true industry code and region.

Second, the record’s synthetic number of employees lies within a defined in-

terval around the target’s number of employees. To define these intervals, we

divide the number of employees by the 10 stratification classes for establish-

ment size and calculate the standard deviation within each size class. The

interval is te ±
√

sds, where te is the target’s true value and sds is standard

deviation of the size class in which the true value falls. We investigated several

other intervals, e.g. using the standard deviation directly or defining the in-

tervals by 10-20 establishment size classes as we did in the example in Section

6.4.2 instead of using the stratification classes. However, we found that the

criteria above led to the highest risk of disclosure.
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7.4.4.1 Log-linear modeling to estimate the number of matches in

the population

In general, the intruder will not know the number of records Ft that fulfill

the matching criteria in the population to estimate the matching probabil-

ities given in (6.7). One way to estimate the population counts from the

released samples was suggested by Elamir and Skinner (2006). We apply this

approach to our data assuming that the population counts follow an all-two-

way-interactions log-linear model. To simplify the computation, we use the

original sample to fit the log-linear model instead of fitting a log-linear model

to each synthetic dataset separately. Arguably, this will slightly increase the

estimated risk, but we don’t expect much difference in the results.

To fit the log-linear model, we need to cross tabulate the three matching dimen-

sions region, industry code and establishment size in the sample. To obtain the

correct number of establishment size matches, we need to identify all records

that fulfill the establishment size match criterium in the survey sample for

each integer value of establishment size in the target sample. This leads to

a 16x17x1102 dimensional table to which we fit an all-two-way-interactions

log-linear model. To calculate F̂t, we need the sampling probabilities for each

entry in this table. We obtain these probabilities by dividing the stratification

matrix from the original sample by the stratification matrix from the GSSD.

We assign the same probability to all establishment size values that fall into the

same stratification cell. Again, an intruder will not know the exact sampling

probabilities because she can only estimate the stratification matrix of the orig-

inal sample from the synthetic samples, but arguably it is possible to obtain

information about the number of establishments in Germany by region times

industry times establishment size class. Since the stratification matrix from

the synthetic samples will not differ very much from the matrix of the original

sample, the estimated sampling probabilities might be reasonably close to the

true sampling estimates. In any case, using the true sampling probabilities

provides and upper bound for the disclosure risk.

Since we can actually compute the true Ft from the GSSD, we are able to eval-

uate, how well we can estimate the true population counts with the log-linear

modeling approach. In Table 7.7 and Figure 7.7 we compare the estimated

F̂t with the true Ft. In Table 7.7 we compute the average F̂t and Ft for the

target records in the 10 establishment size stratification classes. The average
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Table 7.7: Average Ft and F̂t for different establishment size classes.

establishment size class mean(F̂t) mean(Ft)

1-4 employees 6467.66 6685.90
5-9 employees 1661.49 1737.89
10-19 employees 408.78 440.85
20-49 employees 161.98 179.01
50-99 employees 47.07 52.60
100-199 employees 17.91 22.89
200-499 employees 8.06 9.23
500-999 employees 2.17 2.88
1000-4999 employees 1.51 2.03
>=5000 employees 1.00 1.11

estimated population count slightly underestimates the true counts but nev-

ertheless is always very close to the average true population count. In Figure

7.7 we plot F̂t against Ft for each record in the target sample. The left graph

presents the results for all establishments, the right graph is limited to estab-

lishments with more than 100 employees. We find that the log-linear modeling

approach performs very well even on the record level.

7.4.4.2 Results from the disclosure risk evaluations

To estimate the actual risk of disclosure, we use the summary statistics pre-

sented in Section 6.3.1 accounting for the uncertainty from sampling as de-

scribed in Section 6.3.2. These statistics are presented in Table 7.8. Notice

that using F̂t instead of Ft gives almost similar results. In both cases, we

find that the disclosure risk is very low. Overall only about 150 of the 15,624

records in the target sample are matched correctly and the false match rate is

98.8%. We evaluate the disclosure risk in different establishment size classes

and find that the percentage of true matches increase with the establishment

size, but never exceeds 7%. We also investigate, if the risks increase, if the

intruder only matches, when the average match probability exceeds a prede-

fined threshold γ. Table 7.9 lists the false match rate and the number of true

matches for different threshold values using Ft (there is almost no difference

in the results if we use F̂t instead). The false match rates continually decrease

to almost 80% at γ ≤ 0.5. Further reducing γ leads to no improvements in
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Figure 7.7: Plots of Ft against F̂t for all establishments and for establishments

with more than 100 employees.

terms of the false match rate. Only for γ ≤ 0.1 the rate drops to 66.7%. On

the same time, the number of true matches continuously decreases until no

true match is found at a threshold of γ = 0. Since the intruder never knows,

which matches actually are true matches, these results indicate that the data

seems to be well protected at least under the given assumptions about the

information an intruder can gather in her target data.

Table 7.8: Disclosure risk summaries for the synthetic establishment panel
wave 2007.

mean(F̂t) mean(Ft)

expected match risk 162.34 160.92
true match risk 152 150
false match rate (%) 98.75 98.76

7.4.4.3 Disclosure risk for large establishments

Even though the results in the last section indicate a low risk of disclosure,

large establishments might still be at risk because these establishments might

be identifiable by matching on establishment size alone. Since a potential

intruder will know that region and industry code have been synthesized, she

might match only on establishment size for large establishments and ignore
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Table 7.9: False match rate and true match risk for different levels of γ.

γ false match rate true match risk

1 98.76 150
0.9 94.42 97
0.8 91.47 59
0.7 88.72 38
0.6 84.57 27
0.5 81.91 17
0.4 84.62 8
0.3 82.14 5
0.2 85.71 2
0.1 66.67 1
0.0 - 0

that region and industry code are different between the target record and the

found match in the synthetic data.

To quantify the risk from this approach, we evaluate two disclosure risk sce-

narios. In the first scenario, the intruder ranks all synthetic datasets by es-

tablishment size and considers the mode of the ranks for one unit across the

synthetic datasets as the true rank of this unit. She than links that unit to the

unit with the same rank in her target dataset. The second scenario assumes

that the intruder performs a simple nearest neighbor matching between the

records in her target data and the records in the synthetic samples using the

establishment size variable.

Since the largest establishments are sampled with probability close to 1,

we tread the original sample as the target sample from which the intruder

knows the true reported establishment size. This is still conservative, since

the reported establishment size might differ from the size reported in other

databases, but it is not unlikely that the intruder well get reasonable close

estimates of the true establishment size for large establishments in Germany.

Table 7.10 provides the results for the largest 25 establishments. The average

match rate in column three is the percentage of times the declared match from

the nearest neighbor matching approach actually is the true match across the

25 synthetic datasets. Obviously the largest establishments face a very high

risk of disclosure in both scenarios. The mode of the ranks in the synthetic

datasets is almost always the same as the rank in the original sample and the
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nearest neighbor matching approach will lead to correct matches for most of

the datasets. If the intruder would also pick the mode of declared matches as

Table 7.10: Mode of the establishment size rank and average match rate for
large establishments.

original
rank

mode of
synthetic ranks

Average
match rate

1 1 0.96
2 2 0.72
3 3 1.00
4 4 1.00
5 5 1.00
6 6 0.88
7 7 0.64
8 8 0.56
9 9 0.44

10 10 0.32
11 11 0.84
12 12 0.56
13 13 0.56
14 14 0.68
15 15 0.76
16 17 0.56
17 18 0.48
18 16 0.00
19 19 0.56
20 20 0.04
21 22 0.44
22 23 0.72
23 21 0.00
24 24 0.40
25 25 0.28

the correct match, she would be right for 21 of the 25 establishments. Clearly,

there is a need to further protect the largest establishments in the dataset.
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7.4.4.4 Additional protection for the largest establishments in the

survey

A simple strategy to better protect large establishments would be, to reduce the

quality of the imputation model for establishment size for example by dropping

explanatory variables from the imputation model until a predefined criterium

of variability between the imputations is met. However, since we would have to

drop the variables with the highest explanatory power to significantly increase

the variablity, important relationships between the variables would not be

reflected in the released data leading to uncongeniality problems if the analyst’s

model differs from the imputation model. It is also not an option to use other

SDL techniques since methods like noise addition would have to be applied on a

very high level and other methods like data swapping and micro aggregation are

well known to have severe negative consequences for data quality in the upper

tail of the distribution. We therefore decided to inflate the variance of the beta

coefficients in the imputation model instead. Remember that the imputation

process always consists of two steps: In the first step, new parameters for

the imputation model are drawn from their posterior distribution given the

observed data. In the second step, new values for the variable to be imputed are

drawn from the posterior predictive distribution given the parameters drawn

in step one. For the standard linear model this means that step one consists of

drawing new values of σ2 and β from their posterior distributions. We decided

to protect records at risk by inflating the variance of β in the underlying

imputation models. We inflate the variance by drawing new values of β from:

β|σ2 ∼ N(β̂, ασ2(X ′X)−1) (7.9)

where α is the variance inflation factor, β̂ and X are the regression coefficients

and the explanatory variables from the underlying imputation model, and σ2 is

the new value of the variance drawn from its posterior distribution. Of course,

imputation under this variance inflated model is not proper in Rubin’s sense

(see Rubin (1987), pp. 118–119), so we conducted a small simulation study

to evaluate the impact of different levels of α on the validity of the results

from a frequentist perspective. In our simulation, reported in the Appendix

A.3, we found almost no impact on coverage rates. Even when synthesizing

all records with α = 1, 000, the coverage rate for the 95% confidence interval

never dropped below 90% and was close to the nominal 95% for most of the

estimates of interest. The most notable consequence is that we loose efficiency
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since the between imputation variance increases linearly with α. But since we

only want to replace some records at risk, we are not concerned that this will

have huge impacts on data utility.

To apply the variance inflation approach, we need to define which records we

consider to be at risk. We define a record to be at risk, if one of the two

following conditions is fulfilled:

1. The standard deviation of the establishment size rank across the syn-

thetic datasets for the record is less than 2.

2. The mode of the declared matches in the nearest neighbor matching

scenario is the correct match.

The threshold value for the standard deviation of the ranks is chosen somewhat

arbitrarily. Defining justifiable threshold rules is an area for future research.

To keep the negative impacts of this procedure at a minimum, we developed an

iterative replacement algorithm. For a given level of α, all records that fulfill

one of the above criteria are replaced by new draws from the variance inflated

imputation model. Records that still are at risk after 10 rounds of repeatedly

drawing from this model are replaced by draws from a model with the next

higher level of α. In our application, we set the levels arbitrarily to α =

(10; 100; 1, 000). Developing methods to derive useful levels of α is an area of

future research. Overall we replace 79 records in our dataset by this procedure.

Less than 10 are replaced by draws from imputation models with α ≥ 100.

Evaluating the disclosure risk for large establishments again, we find that the

mode of the establishment size rank in the synthetic datasets is equal to the

rank in the original data for only 12 of the largest 100 establishments. Since

the intruder never knows, if her match is correct and it is also unlikely that the

intruder will know the original rank beyond the largest 20 establishments in

the survey, the data is well protected for these kind of attacks. For the nearest

neighbor matching scenario, we guaranteed that the mode of the declared

matches is never the correct match. We also find that no record is identified

correctly in more than 5 of the 25 datasets. These results together with the

results in Section 7.4.4 and the promising results on data utility in Section

7.4.2 demonstrate that our dataset is ready for release.



Chapter 8

A Two Stage Imputation

Procedure to Balance the

Risk-Utility-Trade-Off1

There has been little discussion in the literature on how many multiply-

imputed datasets an agency should release. From the perspective of the sec-

ondary data analyst, a large number of datasets is desirable. The additional

variance introduced by the imputation decreases with the number of released

datasets. For example, Reiter (2003) finds nearly a 100% increase in variance of

regression coefficients when going from fifty to two partially synthetic datasets.

From the perspective of the agency, a small number of datasets is desirable.

The information available to ill-intentioned users seeking to identify individ-

uals in the released datasets increases with the number of released datasets.

Thus, agencies considering the release of partially synthetic data generally are

confronted with a trade off between disclosure risk and data utility.

The empirical investigations presented in Section 8.3 indicate that increasing

m results in both higher data utility and higher risk of disclosures. In this

chapter, we present an alternative synthesis approach that can maintain high

utility while reducing disclosure risks. The basic idea behind this approach

is to impute variables that drive the disclosure risk only a few times and

other variables many times. This can be accomplished by generating data

in two stages, as described by Reiter and Drechsler (2010). In general, two

1Most of this chapter is taken from Drechsler and Reiter (2009) and Reiter and Drechsler
(2010).

93
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stage and one stage approaches require similar amounts of modeling efforts;

however, in some settings, the two stage approach can reduce computational

burdens associated with generating synthetic data and thereby speed up the

process; see (Reiter and Drechsler, 2010) for further discussion of this point.

The two stage imputation procedure is applicable to both, partially and fully

synthetic datasets. In the next sections, we present the combining rules to

obtain valid inferences for both approaches and provide an application of the

two stage partially synthetic approach to illustrate the potential benefits of

this procedure.

8.1 Inference for synthetic datasets generated

in two stages

For a finite population of size N , let Il = 1 if unit l is included in the survey,

and Il = 0 otherwise, where l = 1, . . . , N . Let I = (I1, . . . , IN), and let the

sample size s =
∑

Il. Let X be the N ×d matrix of sampling design variables,

e.g. stratum or cluster indicators or size measures. We assume that X is known

approximately for the entire population, for example from census records or

the sampling frame(s). Let Y be the N × p matrix of survey data for the

population. Let Yinc = (Yobs, Ymis) be the s × p sub-matrix of Y for all units

with Il = 1, where Yobs is the portion of Yinc that is observed, and Ymis is the

portion of Yinc that is missing due to nonresponse. Let R be an N × p matrix

of indicators such that Rlk = 1 if the response for unit l to item k is recorded,

and Rlk = 0 otherwise. The observed data is thus Dobs = (X, Yobs, I, R).

8.1.1 Fully synthetic data

Let Ya be the values simulated in stage 1, and let Yb be the values simulated in

stage 2. The agency seeks to release fewer replications of Ya than of Yb, yet do

so in a way that enables the analyst of the data to obtain valid inferences with

standard complete data methods. To do so, the agency generates synthetic

datasets in a three-step process. First, the agency fills in the unobserved values

of Ya by drawing values from f(Ya | Dobs), creating a partially completed popu-

lation. This is repeated independently m times to obtain Y
(i)
a , for i = 1, . . . , m.

Second, in each partially completed population defined by nest i, the agency



8.1. INFERENCE FOR TWO STAGE SYNTHETIC DATA 95

generates the unobserved values of Yb by drawing from f(Yb | Dobs, Y
(i)
a ), thus

completing the rest of the population values. This is repeated independently

r times for each nest to obtain Y
(i,j)
b for i = 1, . . . , m and j = 1, . . . , r. The

result is M = mr completed populations, P (i,j) = (Dobs, Y
(i)
a , Y

(i,j)
b ), where

i = 1, . . . , m and j = 1, . . . , r. Third, the agency takes a simple random sam-

ple of size nsyn from each completed population P (i,j) to obtain D(i,j). These

M samples, Dsyn = {D(i,j) : i = 1, . . . ,m; j = 1, . . . , r}, are released to the

public. Each released D(i,j) includes a label indicating its value of i, i.e. an

indicator for its nest.

The agency can sample from each P (i,j) using designs other than simple ran-

dom samples, such as the stratified sampling in the IAB Establishment Panel

synthesis. A complex design can improve efficiency and ensure adequate rep-

resentation of important sub-populations for analyses. When synthetic data

are generated using complex samples, analysts should account for the design

in inferences, for example with survey-weighted estimates. One advantage of

simple random samples is that analysts can make inferences with techniques

appropriate for simple random samples.

The agency could simulate Y for all N units, thereby avoiding the release of

actual values of Y . In practice, it is not necessary to generate completed-data

populations for constructing the D(i,j); the agency need only generate values

of Y for units in the synthetic samples. The formulation of completing the

population, then sampling from it, aids in deriving inferential methods.

Let Q be the estimand of interest, such as a population mean or a regression

coefficient. For all (i, j), let q(i,j) be the estimate of Q, and let u(i,j) be the

estimate of the variance associated with q(i,j). The q(i,j) and u(i,j) are computed

based on the design used to sample from P (i,j). Note that when nsyn = N , the

u(i,j) = 0.
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The following quantities are necessary for inferences

q̄(i)
r =

r∑
j=1

q(i,j)/r (8.1)

q̄M =
m∑

i=1

q̄(i)
r /m =

r∑
j=1

m∑
i=1

q(i,j)/mr (8.2)

bM =
m∑

i=1

(q̄(i)
r − q̄M)2/(m− 1) (8.3)

w(i)
r =

r∑
j=1

(q(i,j) − q̄(i)
r )2/(r − 1) (8.4)

ūM =
r∑

j=1

m∑
i=1

u(i,j)/mr (8.5)

The analyst then can use q̄M to estimate Q and

T2st,f = (1 + m−1)bM + (1− 1/r)w̄M − ūM (8.6)

to estimate the variance of q̄M , where w̄M =
∑m

i=1 w
(i)
r /m. Inferences can be

based on a t-distribution with degrees of freedom

ν2st,f =

(
((1 + 1/m)bM)2

(m− 1)T 2
2st,f

+
((1− 1/r)w̄M)2

(m(r − 1))T 2
2st,f

)−1

.

Derivations of these methods are presented in Reiter and Drechsler (2010). It

is possible that T2st,f < 0, particularly for small values of m and r. Generally,

negative values of T2st,f can be avoided by making nsyn or m and r large.

To adjust for negative variances, one approach is to use the always positive

variance estimator, T ∗
2st,f = T2st,f + λūM , where λ = 1 when T2st,f ≤ 0 and

λ = 0 when T2st,f > 0. When T2st,f < 0, using ν2st,f is overly conservative, since

T ∗
2st,f tends to be conservative when λ = 1. To avoid excessively wide intervals,

analysts can base inferences on t-distributions with degrees of freedom ν∗2st,f =

ν2st,f + λ∞.

8.1.2 Partially synthetic data

We assume that Yinc = Yobs, i.e., there is no missing data. Methods for handling

missing data and one stage of partial synthesis simultaneously are presented in
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Chapter 7. Developing two stage imputation methods for data that is subject

to nonresponse is an area for future research.

The agency generates the partially synthetic data in two stages. Let Y
(i)
a

be the values imputed in the first stage in nest i, where i = 1, . . . ,m. Let

Y
(i,j)
b be the values imputed in the second stage in dataset j in nest i, where

j = 1, . . . , r. Let Ynrep be the values of Yobs that are not replaced with

synthetic data and hence are released as is. Let Za,l = 1 if unit l, for

l = 1, . . . , s, is selected to have any of its first-stage data replaced, and let

Za,l = 0 otherwise. Let Zb,l be defined similarly for the second-stage values.

Let Z = (Za,1, . . . , Za,s, Zb,1, . . . , Zb,s).

To create Y
(i)
a for those records with Za,l = 1, first the agency draws from

f(Ya | Dobs, Z), conditioning only on values not in Yb. Second, in each nest, the

agency generates Y
(i,j)
b for those records with Zb,l = 1 by drawing from f(Y

(i,j)
b |

Dobs, Z, Y
(i)
a ). Each synthetic data set D(i,j) = (X,Y

(i)
a , Y

(i,j)
b , Ynrep, I, Z). The

entire collection of M = mr datasets, Dsyn = {D(i,j), i = 1, . . . , m; j =

1, . . . , r}, with labels indicating the nests, is released to the public.

To obtain inferences from nested partially synthetic data, we assume the ana-

lyst acts as if each D(i,j) is a sample according to the original design. Unlike in

fully synthetic data, there is no intermediate step of completing populations.

The analyst again can use q̄M to estimate Q and

T2st,p = ūM + bM/m. (8.7)

to estimate the variance of q̄M . Inferences can be based on a t-distribution

with degrees of freedom ν2st,p = (m− 1)(1 + mūM/bM)2. Derivations of these

methods are presented in Reiter and Drechsler (2010). We note that T2st,p > 0

always holds, so that negative variance estimates do not arise in two-stage

partial synthesis.

8.2 Data utility and disclosure risk

To evaluate the data utility and disclosure risk, we can apply the same methods

as with standard one stage synthesis. We refer to Section 5.2 for possible data

utility measures and to Section 5.3 and Section 6.3 for possible disclosure risk

evaluations.
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8.3 Application of the two stage approach to

the IAB Establishment Panel

To assess the impact of different numbers of imputations, we first evaluate the

trade-off between risk and utility as a function of m for standard one stage

imputation. We then compare the results with results achievable with the

proposed two stage imputation approach.

For this simulation study, we synthesize two variables in the IAB Establish-

ment Panel for 1997: the number of employees and the industry coded in 16

categories. For both variables, all 7,332 observations are replaced by imputed

values. Employment size and industry code are high risk variables since (i)

they are easily available in other databases and (ii) the distribution for the

number of employees is heavily skewed. Imputations are based on linear mod-

els with more than 100 explanatory variables for the number of employees and

on a multinomial logit model with more than 80 explanatory variables for the

industry. We use large numbers of predictors in hopes of reducing problems

from uncongeniality (Meng, 1994). Some variables for the multinomial logit

model are dropped for multicollinearity reasons.

8.3.1 Data utility for the panel from one stage synthesis

We investigate data utility for some descriptive statistics and a probit re-

gression. The descriptive statistics are the (unweighted) average number of

employees by industry; they are based solely on the two variables we synthe-

sized. The probit regression, which originally appeared in an article by Zwick

(2005), is used in various places throughout the book, see Section 5.4.2 for a

detailed description.

Tables 8.1 – 8.4 display point estimates and the interval overlap measures

for different values of m. For most parameters, increasing m moves point

estimates closer to their values in the original data and increases the overlaps

in the confidence intervals. Increasing m = 3 to m = 10 results in the largest

increase in data utility, as the average confidence interval overlap over all 31

parameters in Table 8.3 and Table 8.4 increases from 0.828 to 0.867. Increasing

m = 50 to m = 100 does not have much impact on data utility.

Each entry in Table 8.1 – 8.4 results from one replication of a partially synthetic

data release strategy. To evaluate the variability across different replications,
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Table 8.1: Average number of employees by industry for one stage synthesis.

original data m=3 m=10 m=50 m=100

Industry 1 71.5 84.2 84.2 82.6 82.4
Industry 2 839.1 919.4 851.2 870.2 852.9
Industry 3 681.1 557.7 574.5 594.4 593.1
Industry 4 642.9 639.9 644.8 643.5 649.6
Industry 5 174.5 179.8 176.0 183.5 187.4
Industry 6 108.9 132.4 121.8 120.8 120.7
Industry 7 117.1 111.6 112.9 117.1 119.6
Industry 8 548.7 455.3 504.3 514.2 513.0
Industry 9 700.7 676.9 689.4 711.8 713.4
Industry 10 547.0 402.4 490.3 499.3 487.7
Industry 11 118.6 142.7 130.2 132.1 131.0
Industry 12 424.3 405.6 414.9 424.5 425.2
Industry 13 516.7 526.1 549.1 550.2 551.9
Industry 14 128.1 185.8 167.1 160.0 159.0
Industry 15 162.0 292.8 233.4 221.9 238.1
Industry 16 510.8 452.8 449.9 441.5 439.3

we repeated each simulation ten times. Table 8.5 presents the average con-

fidence interval overlap over all 31 estimands for the ten simulations. The

variation in the overlap measures decreases with m. This is because the vari-

ability in q̄m and Tm decreases with m, so that results stabilize as m gets large.

We believe most analysts would prefer to have stable results across different

realizations of the synthesis and hence favor large values of m.

8.3.2 Disclosure risk for the panel from one stage syn-

thesis

To assess the disclosure risk, we assume that the intruder knows which es-

tablishments are included in the survey and the true values for the number

of employees and industry, i.e. we assume the intruder scenario described in

Section 6.3.1. This is a conservative scenario but gives, in some sense, an up-

per bound on the risk for this level of intruder knowledge. Intruders might

also know other variables on the file, in which case the agency may need to

synthesize them as well.

The intruder computes probabilities using the approach outlined in Section
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Table 8.2: Results from the vocational training regression for one stage partial
synthesis revisited.

original
data

m=3 m=10 m=50 m=100

Intercept -1.319 -1.323 -1.322 -1.323 -1.324
Redundancies expected 0.253 0.268 0.262 0.264 0.264
Many emp. exp. on mat. leave 0.262 0.334 0.316 0.312 0.314
High qualification need exp. 0.646 0.636 0.640 0.640 0.639
Appr. tr. react. on skill short. 0.113 0.098 0.106 0.110 0.112
Training react. on skill short. 0.540 0.529 0.538 0.542 0.543
Establishment size 20-199 0.684 0.718 0.709 0.705 0.701
Establishment size 200-499 1.352 1.363 1.333 1.339 1.343
Establishment size 500-999 1.346 1.315 1.386 1.377 1.367
Establishment size 1000 + 1.955 1.782 1.800 1.778 1.776
Share of qualified employees 0.787 0.787 0.788 0.784 0.785
State-of-the-art tech. equipment 0.171 0.183 0.178 0.174 0.174
Collective wage agreement 0.255 0.268 0.264 0.267 0.268
Apprenticeship training 0.490 0.501 0.510 0.507 0.507
East Germany 0.058 0.038 0.033 0.042 0.044

6.3.1. We assume that the agency does not reveal the synthesis model to the

public, so that the only information in M is that employee size and industry

were synthesized. For a given target t, records from each D(i) must meet

two criteria to be possible matches. First, the record’s synthetic industry

code exactly matches the target’s true industry code. Second, the record’s

synthetic number of employees lies within an agency-defined interval around

the target’s true number of employees. Acting as the agency, we define the

interval as follows. We divide the cubic root of the true number of employees

into twenty quantiles and calculate the standard deviation of the number of

employees within each quantile. The interval is te±sds, where te is the target’s

true value and sds is the standard deviation of the quantile in which the true

value falls. When there are no synthetic records that fulfill both matching

criteria, the intruder matches only on the industry code.

We use 20 quantiles because this is the largest number of groups that guaran-

tees some variation within each group. Using more than 20 quantiles results

in groups with only one value of employment, which forces exact matching

for targets in those quantiles. On the other hand, using a small number of
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Table 8.3: Confidence interval overlap for the average number of employees for
one stage synthesis.

m=3 m=10 m=50 m=100

Industry 1 0.778 0.770 0.777 0.782
Industry 2 0.844 0.893 0.853 0.874
Industry 3 0.730 0.776 0.797 0.800
Industry 4 0.983 0.992 0.995 0.971
Industry 5 0.920 0.935 0.863 0.817
Industry 6 0.605 0.749 0.764 0.767
Industry 7 0.809 0.820 0.863 0.876
Industry 8 0.692 0.862 0.894 0.890
Industry 9 0.926 0.966 0.968 0.963
Industry 10 0.660 0.876 0.897 0.871
Industry 11 0.609 0.804 0.773 0.792
Industry 12 0.903 0.912 0.916 0.918
Industry 13 0.946 0.814 0.809 0.799
Industry 14 0.408 0.589 0.655 0.664
Industry 15 0.586 0.639 0.654 0.638
Industry 16 0.666 0.645 0.583 0.566

Average 0.754 0.815 0.816 0.812

quantiles does not differentiate adequately between small and large establish-

ments. For small establishments, we want the potential matches to deviate

only slightly from the original values. For large establishments, we accept

higher deviations.

We studied the impact of using different numbers of groups for m = 50. We

found a substantial increase in the risks of identifications, especially for the

small establishments, when going from exact matching to five quantiles. Be-

tween five and twenty quantiles, the disclosure risk doesn’t change dramati-

cally. For more than twenty quantiles, the number of identifications starts to

decline again.

Table 8.6 displays the average true matching risk and expected matching risk

over the ten simulation runs used in Table 8.5. Since the largest establishments

are usually considered as the records most at risk of identification, we also

include the risk measures for the largest 25 establishments in parentheses.

There is clear evidence that a higher number of imputations leads to a higher

risk of disclosure, especially for the largest establishments. This is because,
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Table 8.4: Confidence interval overlap for the vocational training regression
for one stage synthesis.

m=3 m=10 m=50 m=100

Intercept 0.987 0.989 0.986 0.984
Redundancies expected 0.931 0.958 0.946 0.948
Many emp. exp. on maternity leave 0.808 0.856 0.867 0.861
High qualification need exp. 0.965 0.977 0.978 0.976
Appr. tr. react. on skill shortages 0.928 0.964 0.984 0.996
Training react. on skill shortages 0.946 0.989 0.989 0.982
Establishment size 20-199 0.802 0.856 0.879 0.902
Establishment size 200-499 0.934 0.939 0.935 0.933
Establishment size 500-999 0.926 0.907 0.928 0.953
Establishment size 1000 + 0.731 0.763 0.727 0.723
Share of qualified employees 0.995 0.997 0.989 0.993
State-of-the-art tech. equipment 0.919 0.953 0.976 0.977
Collective wage agreement 0.926 0.952 0.934 0.927
Apprenticeship training 0.937 0.883 0.899 0.899
East Germany 0.872 0.840 0.899 0.912

Average 0.907 0.922 0.928 0.931

as m increases, the intruder has more information to estimate the distribution

that generated the synthetic data. It is arguable that the gains in utility, at

least for these estimands, are not worth the increases in disclosure risks.

The establishments that are correctly identified vary across the 10 replicates.

For example, for m = 50, the total number of identified records over all 10

replicates is 614. Of these records, 319 are identified in only one simulation, 45

are identified in more than five simulations, and only 10 records are identified

in all 10 replications. For m = 10, no records are identified more than seven

times.

The risks are not large on an absolute scale. For example, with m = 10,

we anticipate that the intruder could identify only 83 establishments out of

7,332. This assumes that the intruder already knows the establishment size

and industry classification code and also has response knowledge, i.e. he knows

which establishments participated in the survey. Furthermore, the intruder

will not know how many of the unique matches (i.e. cj = 1) actually are true

matches.

We also investigated the disclosure risk for different subdomains for m = 50.
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Table 8.5: Average confidence interval overlap for all 31 estimands for ten
independent simulations of one stage synthesis.

m=3 m=10 m=50 m=100

Simulation 1 0.828 0.867 0.870 0.870
Simulation 2 0.864 0.869 0.869 0.874
Simulation 3 0.858 0.866 0.873 0.868
Simulation 4 0.881 0.861 0.874 0.871
Simulation 5 0.872 0.865 0.866 0.875
Simulation 6 0.845 0.862 0.869 0.865
Simulation 7 0.849 0.851 0.871 0.873
Simulation 8 0.841 0.862 0.871 0.873
Simulation 9 0.841 0.877 0.873 0.872
Simulation 10 0.861 0.865 0.874 0.867

Average 0.854 0.865 0.871 0.871

Four of the sixteen industry categories had less than 200 units in the survey.

For these categories, the percentage of identified records ranged between 5%

and almost 10%. For the remaining categories, the percentage of correct iden-

tifications never went beyond 2.3%. If these risks are too high, the agency

could collapse some of the industry categories.

The percentage of identified establishments was close to 5% for the largest

decile of establishment size and never went beyond 2.5% for all the other

deciles. The identification risk is higher for the top 25 establishments, but

still moderate. When m = 3 only two of these establishments are correctly

identified; this increases to seven establishments with m = 100. The intruder

also makes many errors when declaring matches for these establishments. In

fact, the false match rate for these top establishments is 87% for m = 3, 77%

for m = 10, and approximately 70% for m = 50 and m = 100. None of the

top 10 establishments are identified in all ten simulations.

The largest establishment’s size is reduced by at least 10% in all synthetic

datasets. We note that this can be viewed as reduction in data utility, since

the tail is not accurate at extreme values. It may be possible to improve

tail behavior with more tailored synthesis models, such as CART approaches

(Reiter, 2005d).

As noted previously, these risk computations are in some ways conservative.

First, they presume that the intruder knows which records are in the survey.
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Table 8.6: Averages of disclosure risk measures over ten simulations of one
stage synthesis. Measures for the 25 largest establishments are reported in
parentheses.

m=3 m=10 m=50 m=100

Expected match risk 67.8 (3.2) 94.8 (5.2) 126.9 (6.9) 142.5 (7.1)
True match risk 35.2 (2.0) 82.5 (4.9) 126.1 (6.8) 142.4 (7.1)

This is not likely to be true, since most establishments are sampled with proba-

bility less than one. However, large establishments are sampled with certainty,

so that the risk calculations presented here apply for those records. Drechsler

and Reiter (2008) show how to adjust the identification disclosure probabilities

for intruder uncertainty due to sampling. In their application, the true match

rate is 6% when the intruder knows which records are in the sample, and only

1% when the intruder does not know which records are in the sample. Second,

the risk measurements presume that the intruder has precise information on

establishment size and industry code. In Germany, it is not likely that intrud-

ers will know the sizes of all establishments in the survey, because there is no

public information on small establishments. However, intruders can obtain size

and industry type for large companies from public databases. They also can

purchase large private databases on establishments, although the quality of

these databases for record linkage on employee size is uncertain. Thus, except

for possibly the largest establishments, the risk measures here could overstate

the probabilities of identification.

8.3.3 Results for the two stage imputation approach

For the two stage imputation, we impute the industry in stage one and the

number of employees in stage two. Exchanging the order of the imputation

does not materially impact the results. We consider different values of m and

r. We run ten simulations for each setting and present the average estimates

over these ten simulations.

Table 8.7 displays the average confidence interval overlap for all 31 parameters

and the two disclosure risk measures for the different settings. As with one

stage synthesis, there is not much difference in the data utility measures for

different M , although there is a slight increase when going from M = 9 to
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Table 8.7: Average CI overlap and match risk for two stage synthesis based on
ten simulations. Match risk for largest 25 establishments is in parentheses.

m,r Avg. overlap Expected match risk True match risk

m=3,r=3 0.867 83.1 (4.0) 67.6 (3.4)
m=3,r=16 0.868 98.0 (4.1) 91.8 (4.0)
m=3,r=33 0.870 99.8 (3.8) 96.3 (3.8)
m=5,r=10 0.869 106.1 (4.6) 101.2 (4.4)
m=10,r=5 0.875 113.8 (5.0) 109.4 (5.0)
m=16,r=3 0.874 119.9 (5.2) 116.4 (5.2)

M ≈ 50. The two stage results with M = 9 (average overlap of .867) are

slightly better than the one stage results with m = 10 (average overlap of

.865). The two stage results with M ≈ 50 are approximately on the same level

or slightly above the one stage results for m = 50 (average overlap of .871).

The improvements in data utility when using the two stage approach are ar-

guably minor, but the reduction in disclosure risks is more noticeable. The

measures are always substantially lower for the two stage approach compared

to the one stage approach with approximately the same number of synthetic

datasets. For example, releasing two stage synthetic data with M = 9 carries

an average true match risk of 67 (3.4 for the top 25 establishments), whereas

releasing one stage synthetic data with m = 10 has a true match risk of 82

(4.9). Risks are lower for M ≈ 50 as compared to one stage with m = 50

as well. Additionally, for the top 25 establishments, the percentage of unique

matches that are true matches is lower for the two stage approach. When

M = 9, this percentage is 17% for the two stage approach compared to around

23% for one stage synthetic data with m = 10. When M ≈ 50, this percentage

varied between 18% and 22%, whereas it is around 30% for one stage synthetic

data with m = 50.

The two stage methods have lower disclosure risks at any given total number

of released datasets because they provide fewer pieces of data about industry

codes. This effect is evident in the two stage results with M ≈ 50. The risks

increase monotonically with the number of imputations dedicated to the first

stage.
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Chapter 9

Chances and Obstacles for

Multiply Imputed Synthetic

Datasets

The main focus of the first statistical disclosure limitation (SDL) techniques

proposed in the literature was on providing sufficient disclosure protection.

At that time, agencies paid only little attention to the negative impacts of

these approaches on data utility. Over the years more and more sophisticated

methods evolved. However, these methods also became more complicated to

implement and often required correction methods difficult to apply for non

standard analysis. For these reasons most agencies still tend to rely on stan-

dard, easy to implement SDL techniques like data swapping or noise addition

although it has been repeatedly shown that these methods can have severe

negative consequences on data utility and may even fail to fulfill their primary

goal - to protect the data sufficiently (see for example Winkler (2007b)).

Generating multiply imputed synthetic datasets is a promising alternative.

With this approach the user doesn’t have to learn complicated adjustments

that might differ depending on the kind of analysis the user wants to perform.

Instead he can use the simple and straightforward to calculate combining rules

presented in this book. With any synthetic data approach that is based on

multiple imputation, the point estimate is simply the average of the point es-

timates calculated for every dataset and its variance is estimated by a simple

combination of the estimated variance within each dataset and the variance of

the point estimates between the dataset. Furthermore, it is possible with syn-
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thetic datasets to account for many real data problems like skip patterns and

logical constraints (see Section 3.3 for details). Most standard SDL techniques

can not deal with these problems. Besides, it is very easy to address missing

data problems and confidentiality problems at the same time when generating

partially synthetic datasets. Since both problems can be handled by multiple

imputation, it is reasonable to impute missing values first and then generate

synthetic datasets from the multiply imputed datasets as described in Chapter

7. This will actually increase the value of the generated datasets since the fully

imputed, not synthesized datasets could be used by other researchers inside

the agency that otherwise might not be able to adjust their analyses to account

for the missing values properly.

However, most research on generating synthetic data, especially with real data

applications, dates back no more than 5 years, so it is not surprising that at

the current stage there are some obstacles for this approach that still need to

be addressed. First and foremost, many agencies complain that developing

synthetic datasets for complex surveys is too labor intensive, takes to long

and requires experts that are familiar with the data on the one hand, but also

need detailed knowledge in Bayesian statistics and excellent modeling skills to

generate synthetic data with a high level of data utility. Many small agencies

cannot afford to fund research on synthetic data for several month or even

years. Other agencies are reluctant to invest into a new data disseminating

strategy before the usefulness of this strategy has been clearly demonstrated.

This may change with the release of high quality synthetic data in the U.S.

and in Germany. Besides, a new version of the multiple imputation software

IVEware (Raghunathan et al., 2002) for generating synthetic datasets is under

development at the University of Michigan. This software will allow researchers

without a sound background in modeling and Bayesian statistics to develop

synthetic data. Another promising approach that might speed up the synthetic

data generation is the use of non parametric imputation methods like CART

(Reiter, 2005d). With this approach, the modeling is mostly automatic, the

researcher only needs to define the minimum number of records in each leave

and a threshold value for the homogeneity criterion below which no splits

should occur. This can significantly simplify the modeling task. Evaluating to

what extend the synthesis can be automated and testing the feasibility of this

approach for complex datasets with skip patterns and logical constraints is an

area for future research.
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But it is not only the agencies that are concerned about this new data dis-

seminating strategy. Many potential users of the released data are skeptical

about the approach, too. They insist that they would only work with the

original data, ignoring the fact that unrestricted access to the original data is

not an option in many cases. It is important that users understand that they

should focus on the potential benefits of this approach relative to other SDC

methods instead of comparing the approach with unrestricted access. They

also tend to see the original data as the true data ignoring other sources of

uncertainty and potential bias like nonresponse, undercoverage, reporting or

coding errors, etc. that might dwarf the additional bias potentially introduced

by the synthesis. Furthermore, a common misconception is that the synthetic

data will only provide valid results, if the imputation model and the analysts

model match exactly. This is not true. If the imputation model contains more

information than the analysts model, the results will still be valid albeit with

a reduced efficiency. But even if the imputation model does not contain all

the variables that are included in the analysts model, this does not necessarily

mean that the results will be biased. In fact, if one variable is omitted from the

imputation, the model implicitly assumes conditional independence between

the dependent variable and this variable. Now, if the imputation model is

already based on hundreds of variables, the assumption of conditional inde-

pendence given all the other variables might be appropriate. In this case, the

analyst would obtain valid results with the released data, even if some of the

information in her model was not included in the imputation model.

Still, it would be misleading to praise the synthetic data approach as the

panacea for data dissemination. It is simply impossible to generate a dataset

with any kind of statistical disclosure limitation technique that provides valid

results for any potential analysis while at the same time guaranteeing 100% dis-

closure protection. The synthetic data reflect only those relationships included

in the data generation models. When the models fail to reflect accurately cer-

tain relationships, analysts’ inferences also will not reflect those relationships.

Similarly, incorrect distributional assumptions built into the models will be

passed on to the users’ analyses. In practice, this dependence means that

some analyses cannot be performed accurately, and that agencies need to re-

lease information that helps analysts decide whether or not the synthetic data

are reliable for their analyses. For example, agencies might include summaries

of the posterior distributions of parameters in the data generation models as
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attachments to public releases of data. Or, they might include generic state-

ments that describe the imputation models, such as “Main effects for age, sex,

and race are included in the imputation models for education.” This trans-

parency also is a benefit of the synthetic data approach: analysts are given

indications of which analyses can be reliably performed with the synthetic

data. Analysts who desire finer detail than afforded by the imputations may

have to apply for special access to the observed data.

To overcome the scepticism against synthetic data, agencies can also offer some

incentives to work with the synthetic data. For example, both, the research

team at Cornell and the research team at the IAB independently decided to

offer the guarantee that for an initial phase any research that is performed on

the synthetic data will also be run on the original data and the results from

the original data will be sent back to the researcher after checks for potential

confidentiality violations. This is a very strong incentive since researchers do

not have to apply for access to the research data center but still can be sure

that they will finally get the results from the original data. At the same time,

they can compare the results from the original data with the results from the

synthetic data and if they repeatedly find out that the results actually do not

differ very much, they hopefully give up some of their reservations against the

use of synthetic data over time.

Finally, researchers tend to be reluctant to use new methods until they are

implemented in standard statistical software and results are easily obtainable

using standard commands. For example, the use of multiple imputation has

significantly increased since routines to multiply impute missing values and to

analyze the imputed data are readily available in all major statistical software

packages like Stata, SAS or R. We suggest that agencies work with academic

researchers and software developers to write software routines that implement

the combining rules necessary to obtain valid results for the different synthetic

data approaches.

The interest in synthetic data is ever growing and many seemingly insurmount-

able obstacles have been overcome in the last few years. There are still some

efforts necessary to make the concept a universal, widely accepted, and easy

to implement approach, but the first releases of partially synthetic datasets in

the US and in Germany demonstrate that the approach successfully managed

the critical step from a pure theoretical concept to practical implementation.

Nevertheless, plenty of room remains for future research in this area that will
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further improve the feasibility of this approach. With the continuous pro-

liferation of publicly available databases and improvements in record linkage

technologies releasing synthetic datasets might soon be the only reasonable

strategy to balance the trade-off between disclosure risk and data utility when

disseminating data collected under the pledge of privacy to the public.
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A.2 Binned residual plots to evaluate the im-

putations for the categorical variables

Figures A.1-A.7 present the binned residual plots for all 59 categorical variables

with missing rates ≥ 1%. For variables with more than two categories, we

present a graph for each category (the first category is always defined as the

reference category in the multinomial imputation model).1
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Figure A.1: Binned residual plots for the categorical variables with missing

rates above 1%.

1For readability, we use the internal labeling for the variables. A detailed description of
all variables can be obtained from the author upon request.
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Figure A.2: Binned residual plots for the categorical variables with missing

rates above 1%.
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Figure A.3: Binned residual plots for the categorical variables with missing

rates above 1%.
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Figure A.4: Binned residual plots for the categorical variables with missing

rates above 1%.
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Figure A.5: Binned residual plots for the categorical variables with missing

rates above 1%.
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Figure A.6: Binned residual plots for the categorical variables with missing

rates above 1%.
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Figure A.7: Binned residual plots for the categorical variables with missing

rates above 1%.
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A.3 Simulation study for the variance inflated

imputation model

Here we present results from a small simulation study that we conducted to

evaluate the impact on data quality for the variance inflated imputation model

described in Section 7.4.4.4. For the simulation, we generate a population of

N = 1, 000, 000 records comprising three variables, Y1, . . . , Y3, drawn from

N(0, Σ), where Σ has variances equal to one and correlations ranging from 0.3

to 0.7. From this population we repeatedly draw simple random samples of

size s = 10, 000 and treat these samples as the originally observed samples

Dobs. For the synthesis we replace values of Y3 for all records in Dobs. We

generate replacement values by sampling from the posterior predictive distri-

bution, f(Y3|Dobs), using parameter values drawn from the variance inflated

posterior distribution given in (7.9) with different levels of the variance infla-

tion factor α. For comparison, we also generate synthetic datasets with Y1

omitted from the imputation model to illustrate the negative consequences of

dropping explanatory variables from the models to obtain a higher level of

data protection. In analogy with our real data application, we generate m = 5

synthetic datasets for any one iteration of the simulation design. We obtain

inferences for 4 quantities in each simulation run, including the population

mean and the intercept and regression coefficients of Y2 (β1) and Y3 (β2) in a

regression of Y1 on Y2 and Y3. We repeat each simulation 5,000 times.

Table A.1 displays key results from the simulations. The average q̄m across the

5,000 simulation runs is always very close to the average qobs for α ≤ 100. For

α = 1, 000 we find small biases for all point estimates. The variance estimator

Tp (column four) correctly estimates the true variance of q̄m (column three)

for any given level of α. Columns six and seven summarize the percentages of

the 5,000 synthetic 95% confidence intervals that cover their corresponding Q

for the original sample and the synthetic samples respectively. We find that

the coverage rates from the synthetic samples are always close to the expected

nominal coverage of 95% for α ≤ 100. Only for α = 100 we notice a slight

undercoverage for the regression coefficient β2 compared to the coverage rate

of β2 in the original sample. The undercoverage increases for α = 1, 000. All

estimates slightly undercover and for β2 the coverage rate actually drops to

90.8%. The ninth column reports the ratio of the confidence interval length

from the synthetic datasets over the confidence interval length from the original
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samples. Not surprisingly, the ratio increases with increasing α, since the

variance inflated imputation model increases the between imputation variance

bm and thus the variance of q̄m. Comparing the confidence interval length ratio

with the root mean squared error (RMSE) ratio in the last column, we notice

that the RMSE ratio is always smaller than or equal to the confidence interval

length ratio indicating that the increased RMSE in the synthetic datasets

is likely due to the increased variance from the variance inflated imputation

model. Only for the regression coefficient β2 and α ≥ 100 we find an increased

RMSE ratio compared to the confidence interval length ratio. Overall we find

that at least for this simulation levels of α ≤ 100 only lead to reduced efficiency

in the estimation, but not to any noticeable bias. For α = 1, 000 we find a

small bias that leads to slight undercoverage, but note that we replaced all

records with variance inflated imputations in these simulations. In practice

agencies will only replace some records that are specifically at risk with draws

from the variance inflated imputation model. We expect that the bias will be

small in this context.

The results for the data generation that drops Y1 from the imputation model

to obtain a higher level of data protection are presented in Table A.2. Ȳ3 and

the intercept from the regression are not affected, but the two regression coef-

ficients are completely biased leading to a 0% coverage rate for both estimates

and a significantly increased RMSE ratio. It is obvious that the variance in-

flated imputation model provides far better results in terms of data validity.

Dropping variables from the imputation models should only be considered an

option, if the data disseminating agency knows that the data user will never

evaluate the relationship between the dropped variable and the variable to be

imputed.
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