
Constrained Proofs:
A Logic for Dealing with Behavioural Constraints

in Formal Hardware Verification*

Michael Mendlert
Department of Computer Science

University of Edinburgh

Abstract

The application of forma.! methods to the design of correct computer hardware de-
pends crucially on the use of abstraction mechanisms to partition the synthesis and
verification task into tractable piece.s. Unfortunately however, behavioural abstractions
are genuine matbematical abstractions only up to behavioural constraints, i.e. under
certain restrictions imposed on the device's environment. Timing constraints on input
signals form an important class of such restrictions. Hardware components that behave
properly only under such constraints satisfy their abstract specifications only approxi-
mately.

This is an impediment. to the naive approach to formal verification since the question
of how to apply a theorem prover when one only knows appro:cimately what formula to
prove has not as yet been dealt with.

In this paper we propose a notion of constmined proof and constrained proposition
which provides for 'approximate' verification of abstract specifications and yet does
not compromise the rigour of the argument. It is based on the idea of removing the
constraints from the specification a.nd making them part of its proof. Thereby the
abstract verification is separated from constraint analysis which in turn may be delayed
arbitrarily. We have implemented the logic on the interactive theorem prover LEGO
and verified simple examples. The presentatiou in this paper uses one of these examples
for explaining the problem and demonstrating the use of the logic.

"This work was supported by the Studienstiftung des deutschen Volkes and SERC grant No.GR/F 35890
"Formal System Desigu"

tNow at University of Erla.ngen-Nürnherg, Institute for Computer Aided Circuit Design, email
mtmdler@faui77. informatik. uni-erlangen, de or mm@lfcs.ed.ac.uk

https://doi.org/10.20378/irbo-52666

2

1 Introduction

Quite a Jot of work has been done to make hardware verification practicable at a non-
academic scale [5,4,19,20,25]. What still seriously limits its success is the almost insurmoun-
table complexity from whicl1 verification of non-trivial hardware designs suffers. First steps
are being undertaken by various researchers to exploit structuring concepts such as modu-
larisation and abstraction in the design of hardware to break up the verification task into a
series of smaller chores, each of which can be dealt with independently {5,4,26,18,35,32,10].
The question arises how this approach should best be implemented in modern interactive
theorem provers.

1.1 The Problem of Constraints

A typical phenomenon one encounters with the implementation of even conceptually simple
abstraction steps which are standard practice in hardware engineering is that they cannot be
formalised without introducing constraints. Constraints are assumptions about the device's
environment under which the particular a.bstraction (of its behaviour) at hand is actually
valid.

An example is the passage from a sequential drcuit, built accord.ing to the synchronous
design pa.radigm, to its abstract description in terms of a.n input-output automa.tan. Here
the abstraction is only valid as long as the environment (among other things) obeys a
timing constraint which says that all input lines of the sequential circuit must be kept
stable during a certain well-defined phase of the clock. Clearly, the necessity for imposing
timing constraints is a general phenomenon, not restricted to the synchronous case. lt is
an even more important issue in asynchronous designs. (17,34,31J.

The interaction between abstraction and constraints poses a tangled prablem. Con-
straints interfere with the essential idea of reasoning about a behaviour in abstract terms
which is to avoid details specific to the implementation at the more concrete level. For it is
impossible to work with the device's ahstract behaviour without at the same time having
to deal with the concrete-level constraints on which it depends. To verify, for instance,
that the behaviour of a composite device meets its abstract specification it does not suffice
simply to compose the abstract specifica.tions of its components. The verification also has
to show that at the concrete 1evel the composition does not violate the constraints of each
component. This, in general, will make it necessary ta impose constraints again on the
environment of the composite device.

Thus, constraints defeat the idea of top-down refinemcnt, which is first to decompose
a systern into components at the abstract level and then independently to implement each
component at the concrete level; Verifying constraints requires knowledge bath of the overall
structure of the system (the environment of a component) from the abstract level and of
the imp1ementation (the canstraints of a component) at the lower level. In shart, the
general situation in the modeling of h_a.rdware seems tobe that of incomplete abstractians,
i.e. abstractions modulo constraints. The constraints an wllich the abstraction depends
embody residual aspects of the concrete level that impinge an the subsequent design and
cannot be a.bstracted away once and forall.

3

1.2 A Possible Solution

The best one can expect here is to find means by which reasoning about abstract behaviour
and constraint analysis fall into two separate verification passes rather than having them
intertwined as the straight-forward approach suggests. The goal of this paper is to intro-
duce and justify a logic in which the main verification of an abstract behaviour is truly
an abstract verification in that it does not have to be concerned with constraints. It pro-
ceeds hy assuming a successful constraint analysis wherever it depends on constraints. In
the course of this main verification information about the constraints is accumulated as
a proof obligation to be filled in at a later stage. Ideally, the remaining verification task
corresponding to constraint a.nalysis would then be handed over to a specialised tool. In
some cases it could he clone automatically, for instance extracting the minimal clock period
for a synchronous system. In other cases, where the logic is undecidable, it has to be done
manually. An example of this would be proving that the output of a certain integer function
lies within a given finite range.

The idea leading to the proposed logic presented in this paper is not new. It refiects
good engineering practice: In a first approximation one tries to establish the feasability of
a design. Only tlten is it worthwhile to attempt a complete validation in a second step.
New however, is the attempt to formalise this engineering principle mathematically and to
implement it at the root of a theorem prover.

We have implemented an experimental prototype ofthe logic with the help of the me-
chanical proof checker LEGO [29]. LEGO provides a bed for encoding natural deduction
style logics in the type theory of the Logical Framework (LF) [16] or the Calculus of Con-
structions (CC) [6,7] plus some extensions. We have used an extension of CC [22] which,
as the most prominent feature, provides E-types, i.e. a generalisation of ordinary pairing
where the type of the second component in a pair may depend on the value of the füst
component (ordinary pairing is the special case in which the types of both components are
independen t from their respective values). The following will show that i t is in fact the 'E-
types that make it possible to cut out and delay constraint analysis, so that the main proof
can be performed without looking at or even manipulating constraints. lt merely records
necessary information about what has to be proved later, when one turns to analysing the
constraints.

lt is outside the scope of this paper to give an introduction to LEGO and to present the
implementation in detail. Iustead, we will use an informal mathematical language which,
as we hope, will serve to explain the underlying idea in a compact and ludd way. We would
like to stress that everything presented in this paper actually can be done interactively,
modulo syntax, with the LEGO system even wl1ere we do not mention it explicitly.

2 Constraints and Synchronous Hardware Design

We are going to explain the implemented logic by means of a simple example that is just
complex enough to convey the basic idea. As the area of hardware design where the example
is taken from we have chosen the particular form of temp~ral abstraction that is fundamental
to the design of synchronous hardware. Let us first briefiy explain the general situation
(Section 2.1) and then turn to a concrete exa.mple (Section 2.2).

4

2.1 Synchronous Circuits
A typica.l synchronous circuit is built up from latche8 (such a.s D-type fl.ipfl.ops) and combi-
national circuits (such as nand gates, inverters, and nets thereof). In a slightly simplified
view1 one can summarise the essence of the synchronous design paradigm in the following
design rules:

Cl All latches are triggered by a common clock signal

C2 There is at least one latch in every feedback loop

C3 The clock period is long enough to allow for signal changes caused by any clock event
to settle throughout the circuit before the next clock event

C4 The inputs to the circuit have to be stable long enough prior to any cJock event for
signals to have become stable by the dock event.

In a broad sense all of these design rules can be interpreted as constraints, more precisely,
Cl-C2 as structural constra.ints and C3-C4 as behavioural constraints. From a verHi.cation
point of view the structural constraints Cl-C2 are essentially refiections of internal beha-
vioural constraints, i.e. they are conditions necessary for verifying that no behavioural
constraints are violated by components within the circuit.

Muc.h of the success of the synchronous design style is due to the fact that under the
design rules Cl-C4 one does not need to consider propagation delays when reasoning about
the circuit's behaviour. If one is interested in the state of the circuit only at every clock
event (or during a certa.in interval around it) an.d records the evolution of input and output
values at these points, then the descriptive effort can be drastically reduced:

Al Latches behave like unit delays

A2 Combinatorial circuits behave like delay free boolean functions

A3 Tlte complete synchronous circuit reduces to a finite automaton and the automa.ton's
behaviour can be derived by composing unit delays and delay-free boolean functions.
More precisely, every unit delay gives rise to one state variable and the state transi-
tion function is determined by the interconnection of state variables through boolean
functions.

Thus, relativising the synchronous circuit's behaviour to the abstract time given by the
succession of clock events abstracts from propagation delays. Note, that the restriction on
dock events can also he viewed as part of the design rules and as a constraint on the usage
of the circuit which is characteristic to synchronous abstraction.

Although, either implicitly or explicitly, timing abstraction has always been used in the
design of synchronous systems (36,3,8,23], it seems that first attempts to formalise it for
the purpose of verification have only recently been made [26,18]. The separation of design
rule checking (Cl-C4) from reasoning in abstract terms (Al-A3) is crucial for pra.ctical
applications, but there seems to be no sa.tisfactory implementation of this separation on
an interactive theorem prover. For instance, Herbert's methodology (18], implemented on

1 We ignore here, among other things, for the sake ol simplicity set-up a.nd hold times of latches or the
possibility to use multiple docks. This does not, however, a.ffect the point.

5

Figure 1: xor-gate and level triggered latch

the proof checker HOL [11,12], though it conceptually distinguishes between statements
about timing and abstract behaviour, leaves both aspects intertwined at the level of proofs.
This basically mean.s that design rule checking an.d reasoning in abstract terms have to go
together in a single proof. The logic presented in this paper provides a way to separate
these concerns within a single logical inference system.

2.2 A Simple Circuit Design
Let us turn to a specific example. Take the simple case of a combinational circuit such as
a '.x:or' gate and a level triggered latch (Figure 1) which, as in [18), are to be considered as
components of a synchronous system; i.e. they are put into an environment with a global
clock, relative to which certain conditions on the stability of inputs can be imposed as
timing constraints to allow timing abstra.ction.

Their behaviour can be described by predicates over input and output signals. For
simplici ty we take signals to be functions from integers to booleans, i.e.

signal = int - bool

Assuming that both gates have constant propagation delays Oxor > 0 and 0/atch > 0, their
behaviour rnay be defined by the following axioms:

xor(x,y,z) 'M Vt: int. z(t + Oxor) = ü + yt

latch (d,c,q) 'M Vt: int. (et= 1:>q(t+61atch) = dt) f\

(et:::: 0 ::> q(t + O/atch) == q(t + Otatch - 1))

Note, that we are using the operator + both for addition over int as weil a.s for modulo-
2 sum over bool. According to the a.xioms the xor-gate perforrns the modulo-2 sum of its
inputs x, y at every time step and outputs them with a delay l>xor on output z. The latch
is enabled to pass data from input d to output q with a delay 81atch by positive levels of the
clock input c, and it is locked when et == 0.

For the purpose of this paper these simple a.x:ioms are assumed to be the low·level, most
detailed, description available for the components xor and latch. Clearly, they are already an
abstraction of real devices' behaviours. A more realistic description would ha.ve to account
for variable gate delays as weil as setup and hold times for the latch; it would perhaps
assume continuous rather tha.n discrete time and signal values, require maximal signal rise
and fall times, and so on. Since for describing our logic it is of no importance how detailed
a model of behaviour one actually starts from we 11ave taken the simplest ax.ioms possible.

6

The reader is referred to [2,14] for a discussion of more sophisticated a.x.iomatizations of
elementary digital circuits.

Tl1e important thing to note is that xor and latch contain both timing (delays) a.nd
functional aspects (operations on booleans) intertwined. In a synchronous design context,
however, where one takes advantage of the design rules, one expects not having to ca.re
about delays. More precisely, the xor-gate should behave like a delay-free boolean function
and the latch like an one-unit delay (Al-A2). Therefore, in place of xor and latch one would
rather work with axioms like

xor _syn (x, y, z)

latch_syn (d, q)

'Vt : int. zt = xt + yt

lr/ti,t2: int. next (t1, t2) :) q(t2) == d(t1)

(1)

(2)

where next (t1 , t2) is a predicate expressing that t 1 and t2 are two consecutive points in
time. lt is defined abstractly2 by

In this abstract view the clock does no langer appear as an input to the latch. For in a
synchronous circuit the latch's clock input is always connected to the global clock signal
and consequently no longer availab]e as an input. Thus, assume a clock signal

clk: signal

which is globally defined throughout the system. As a result clkmay be used within formulae
without it being mentioned explicitly as a parameter.

Obviously, :eor_syn, latch_syn cannot be proved from xor and latch right away sjnce the
delays cannot be wiped out. What can be proved, however, by introducing constraints
are certain approximations thereof. Before we can state them we need some predicates for
formulating constraints. We first assume tltat clock tkks are marked by rising edges of clk
and de:fine a corresponding predicate

tick i f1. clk(t - 1) = 0 /\. clk(t) = 1

which obtains true if there is a clock tick at time t. Given this predicate one may define
what it means that a signal x is stable in all intervals of length li prior to clock events:

Finally, for constraining the clock we have two other predicates, the first expressing that
the 1-phase of the clock lasts exactly one time step, and the second imposing a minimal
distance li on two cousecutive clock ticks:

one_shot 'f!: 'r/t:int.clk(t)=l .::> (clk(t-1)=0/\ clk(t+l)=O)

min_sep b <ff: 'Vt1, t2 : int. (t1 < t2 /1. tick t1 /\ tick t2) :::> t2 ~ t1 + li
20ne might want to turn the predicate next into a. function which for time t yields the successive time

step next(t) and is undefined otherwise. In a logic with partial terrns this could be done using the so-called
i-operator which we do not have avaiiable in LEGO.

7

With these predicates put into place the promised approximations of xor_syn and latch_syn
can be formulated:

xor _abs (x, y, z) 'ff:: stable x 6:r:or /\ stable y 6xor

J 'Vt : int. tick t :J zt = xt + yt

latch_abs (d, q) rf:t (one..shot /\ min...sep 61aich) J Yt1, t2 : int.(tick t1 /\ tickt~
:J (next_abs(t1, t2) :J q(t2) = d(t1)))

where nexLabs is the following approximation of next:

The bold-faced parts indicate the o:ffset of the approximations from the ideal versions xor_syn
and lalch_syn. This offset explicitly reflects the design rules (C3-C4): timing constraints
on inputs, on the clock signal, and the sampling at clock events. In contrast to xor_syn,
latch..syn these· approximations now can be derived from axioms xor and latch, i.e. we have

xor(x,y,z) f- xor_abs(x,y,z)
latch (d, clk, q) 1- latch_abs (d, q)

We state this without proof here. The gap will be filled later when we have introduced the
logic. Note, that due to the simplification of the latch's behaviour (i.e. no set-up and hold
conditions) latch_abs does not require stability of data input d relative to the clock.

The observation that stability constraints essentially work to squeeze out delays of the
behavioura1 description and thereby separate timing behaviour from functional behaviour
is already employed in [18,26]). Here we push this idea further so as to also encompass
constraints on time points, i.e. tickt. Being restrictions which also refl.ect the design
rules, constraints on time points should be subjected to the same treatment as are stability
constraints on signals. In fact, our logic will also deal with this type of constraints.

Now suppose as a simple design task, we wanted to build a stoppable modulo-2 counter.
It is to have one input and one output, and to produce a stream of alternating Os and ls as
long as the input is at 1 and stop at the current output value when the input switches to
0. More formally, its behaviour is specified by the following 1ogicaJ formula:

cnt_spec (x,y) 'M 'Vt1,t2: int. next_abs(ti, t2) J y(t2) = x(t2) + y(t1)

From this input-output specification one derives easily a Moore automaton or equivalently
an implementation consisting of an exclusive-or function and a one-unit delay as depicted in
Figure 2. Given, that xor_syn (1) describes the behaviour of the exclusive-or and latch_syn
(2) that of the one-unit delay, the behaviour of the implementation is given by

cnt_syn(x,y,z) ~ xor_syn(x,z,y) /\ latch_syn(y,z) (3)

which em ploys logical conjv.nction /\ of predicates to express composition or sv.perposition of
two beha.viours. Another important operation on behaviours is hiding of internal wires which
logically is achieved by existential quanlification. Since in tl1e example the specification of
the counter describes a circuit with one input and one output we have to consider signal
z as intemal in the implementation (3), i.e. x and y are the required input and output

8

0/0
X

y

z

0/1

Figure 2: Implementation of the modulo-2 counter

signals visible to the envirorunent. Verifying that the implementation is correct would now
amount to proving that a.fter hiding of the internal signal z the implementation (3) entails
the specification, i.e.

3z: signal. cnLsyn(x,y,z) 1- cnt_spec(x,y) (4)

This would be an easy exercise invoking the rules of ordinary first-order logic. Unfortunately,
applying synchronous abstraction to xor and latch does not provide an ideal exclusive-or or
an ideal one-unit dela.y satisfying xor_syn and latch_syn but merely approximations xor_abs
and latch_abs. Therefore the implementation we are actually able to get is

cnt_abs(x,y,z) g xor_abs(x,z,y) /\ latch_abs(y,z)

Of course there is no reason to expect that 3z : signal. cnLabs (x, y, z) entails cnLspec (x, y).
Rather, in place of the original cnLspec, we will again only achieve an approxima.tion,
perhaps something of the form

cnt_appr (x, y) ~ (C0 A C1 (:z:, y)) :J (Vti. t2 : int. C 2 (t1 , t 2)

:::> (nexLabs (t1, t2) :J y(t2) = x(t2) + y(t1)))

where Co, Ci, and C 2 are constraints that have to be imposed on the composite circuit to
allow the envisaged derivation

3z : signal. cnt_abs (x, y, z) t- cnt_appr (x, y) (5)

Here we are facing the question of how to go about finding the constra.ints C0 , C1, C2
and thus the modifi.ed specifica.tion cnt_appr. The straightforward approach, as employed
for instance in [14], is attempting a derivation of cnt..spec (from cnLabs), finding out where
it fäils, and at each such dead end identifying a.ssumptions that would make it work if tliey
were available in the first place. This information can then be used for determining the
constraints C0 , Ci, C2 and the place where they have to go to weaken the specification
appropria.tely. This is however not quite satisfactory since it means going through the

9

verification proof twice, once for finding the constraints and a second time after pasting
them into the spedfication for completing the proof. Furthermore, and more importantly,
the proof has to intermingle timing constraints with abstracted properties; it aims to prove
the abstract specification cnt..spec while at the same time having to deal with the constraints
inside the propositions xor_abs, latch_abs, 'next_abs, and cnLappr.

As argued before, this is not what one really would like to do. Rather, one would like first
to perform the abstract verification (4) without consideration of constraints. This establishes
the feasibility of the design at the abstract level. The constraints, which are dependent on a.
particular implementation mechanism -here the implementation as a synchronous circuit-,
are not determined before the implementation of the abstract components is chosen. In the
example, this leads to the approximations xor_abs, latch_abs. Finally, a constraint analysis
should be able to use the abstract proof (4) together with the knowledge of the constra.ints
contained in xor _abs and latch_abs for extracting the constraints in cnt_appr.

In the following we will show how to achieve this goal by reformulating the notions of
proof and proposition so as to 'hide' constraints within them and set up a rudimentary
ca.lculus of derivations to deal with this constrained logic.

3 Logic of Constrained Proofs

The logic will consist of a suitable base logic in which to express both the constra.ints and
the abstraction properties of the verification example. For the purpose of our particular
example it is sufficient to assume a formal system for typed fi.rst order logic. lt is not really
essential what the base Jogic looks like as lang as it fuliills certain minimal requirements
which we set out below. This base logic will then be extended by a new syntactic operator
[. J for 'hiding' constraints. Tlte described logic of constrained proofs therefore need not
be seen as a particular and fixed Iogic but rather as a method for extending ones favourite
logic for accomodating constra.ints.

In the following we assume some familiarity with natural deduction style logics and the
lambda calculus (with explicit pairing) as a simple functional programming language.

3.1 Base Logic

Of the base logic we will require logical connectives for conjunction <f>/\ t/J, implication </> :::> 'l/J,
universal and existential quantifica.tion Vx : A.</>, 3x : A.</> together with the usual natural
deduction rules

VEt: </>{t/x}
Vx: A.4>

/\E :-</>-
1 </JA'lj;

v I . Vx : A. </J
V X• </> 31 . 3x: A.<J>

t • <f>{t/x} 3Ex:

:>I:

3x : A. </> 'l/J

10

Here <P{tjx} denotes the substitution of term t for variable x in</>. Additionally, the logic
comprises negation •</>, disjunction </>V t/J, the propositional constants T for true and .L for
contradiction with rules

cP V 1/J
Vlz ;-</>-

-,f:

VI . </>V tP
r • t/J

.L
-.E : </> -.<f>

</>1 V </>2
VE:

.LE :±.
.L

T
TI·-• <P

These rules are to be understood in the usual way in what regards free and bound
variables, substitution of a term for a free variable and the variable restrictions associated
with rules Vlx and 3Ex. In 'r/Ix, x must not occur in any assumption on which </> depends,
and in 3Ex, x must not occur in t/J or in any other assumption save </> on which the lower
occurrence oft/; depends. The letter I in the name of a rule stands for 'introduction' and
E for 'elimination'.

For (refinement) proofs these rules are read top-down, i.e. they reduce proving the
proposition above the rule bar to proving the propositions below it. In what follows all
rules are written in this top-down way. It is useful to have syntactic definition ava.ilable in
the logic as a means for abbreviating a complex formula by some user-defined name possibly
with syntactic parameters. Definitions also have their introduction and elimination rules,
e.g. a definition <fl 'f1 </> is acompanied by rules

dp·<P' . """i d/E::,

For the logic of constrained proofs we will not only have to treat propositions but also
proofs as mathematical entities which are manipulated by the inference system. All modern
interactive theorem provers, likc HOL, VERITAS, LAMBDA, IPE [30J, ELF [13], or LEGO
are hased on this principle as they are essentially programming systems for manipulating
proofs. A formula is identified with the set of its proofs a.n.d a rule is implernented by a
program which transforms proofs of the rule's hypotheses into proofs of its conclusion. In
tliis spirit we associate with each of the above rules a program which implernents the rule
bottom-up, i.e. it can be applied to proofs of the propositions below the bar to yield a proof
for the proposition above it. The name of each rule will be taken to denote its associated
program on proofs. Consider the rules /\[, /\E1 and /\Er. The introduction rule AI describes
how to build proofs of a formula </> /1. '!/; from proofs of its components </> and t{J; it serves
to introduce the junctor /\. Rules !1.E1, /\Er say that from a proof of </> /\ 1/J proofs of the
components </> and 1f; can he extracted; it serves to eliminate the junctor /\..

To be more precise, a.s we are dealing with rule schemata rather than single rules we
vmuld have to instantiate each rule name with the actual propositions to denote a particular

11

program on proofs. For instance, we would write Al(</>, t/J) for the function which takes pairs
of proofs of </J and 1/.J to a proof of <P /\ 1/J. However, since it is clear from the proofs to whicb
/\-introduction is applied which instance of the schemata is meant we may simply write /\./.
The same applies to the other rules. A nice feature of LEGO is that it supports this style
of polymorphism. It knows to infer the type of a function from tbe type of the arguments
to whiclt it is applied (or, more generally, from the context in whicb it is used).

We do not need to know what the basic prograrns implementing the rules look like nor
what exactly a proof is. All we want is compose them to form derived rules or derivations
and assume tliat they satisfy certain natural equations guaranteeing that they interact in a
coherent way. Of such equations only those are given below which are used in the sequel.

First some notation: The language chosen to compose and reason about derivations is
essentially a typed lambda calculus with explicit pairing. To denote that p is a proof of cf>
we write p: <f> and for f a derivation of 1/J from <P we write f : </>--;. 1/J.3 So, for instance, the
(basic) derivation /\J(</>, 'ljJ) : </>X 1/J --+ <f>/\ t/J may be applied to proofs p : </> and q : 'r/; to yield a
proof /\.!(</>, 'l/J)(p,q): </>A 'lj;. As remarked above this is more simply written /\l(p, q): <f>I\ 1/J.
>.-abstraction is written as usual, and o stands for the sequential composition of derivations
in reversed order (which matches with the bottom-up notation ofprooftrees). The Operator
o is an abbreviation definable in terms of >i-abstraction; for instance

AE1 o /\I == AX: <P x t/J. /\E1(/\l(x)) : <P x 1/;-+ </>

The equations required to hold between the hasic rules all state that an introduction
rule can be cancelled by subsequent application of the corresponding elimination rule.

/\Ei o /\.l(p: </J, q: t/J) = p (6)
/\Er o /\/(p : </>, q : '1/J) = q (7)

::>E(::>l(f: q,-+ t/J), p: </>) = f(p) (8)
3Ex(3It(P: c/>{t/x}), f: </>-+ '1/J) = f{ t/x }(p) (9)

V Et o Vlx(P: </>) = p{t/x} (10)
dfE o dfl(p : </>) = p (11)

3.2 Extending the Base Logic

On top of this base logk we encode the idea of a constrained proposition proofs of which,
also called constrained proofs, are allowed to have hidden assumptions. In the example
hidden assumptions will be behavioural constraints. To introduce the general concept, we
begin with the central definition.

Definition 1 (Motivation) Let <P be a proposition. A constrained proof of <f> is a pair
c =:: (;,p-y) consisting of a proposition r and a proof of i :::> </>. The set of constrained proofs
of <P will be denoted by [</>] and referre.d to as a constrained proposition.

The motivation for this definition in view of the envisaged application for handling
constra.ints is the following: Constructing a proof c = (1, p'"Y) of a specification of the form
[efi] amounts to proving cf> under some assumption r, for instance a timing constrain t. The

3 Note the difference between p : t/J ::) l/J a.nd f : efJ -+ '!/>; in the former p is a proof, in the latter f is a
derivation (a p1ogra.m on proofs).

12

assumption is determined by the proof c and recorded as its first component. Given such a
constrained proof c : [<P J, one can extract both the hidden constraint 11"1 (c) a.nd the proof

11"z(c): 7r1(c):) </>

that this constraint implies </> (11"1 and 11"2 denote first and second projection, respectively).
The constraint 1tt (c) may be subjected to constraint analysis and from the second component
:ir2(c) one may build proof of <P for a.ny proof of the constraint 11"1(c) via the -:)E rule.

Definition 1 suggests to extend the base logic by a new syntactic operator [.) which
for any proposition </> forms the constrained proposition (r/>]. This operator as we shall see
should work for all proposWons, not just for those of the base logic. More precisely, we
want to build propositions like

["lt: A.[<f>]],

i.e. we want to iterate the operator. As to the associated rules for [.], the discussion above
yields

[</>)
T

[I] :
7
..;

The introd uction rule [J] says that in order to prove [<P] we may prove <P under some
assumption /, which we are free to choose4 • Read bottom-up, (I] says that if a proposition
cf> can be derived from some assumption '"'(then there is a proof of [</>] which no Ionger
depends on ; . The assurnption "/ effectively is discharged in favour of the [. J construct
which only indicates its presence. Note that even though the assumption "/ to be hidden
by an application of [J] rnay be inferred (in LEGO) directly from the argument derivation
f: "(--+ <,b, we will supply it a.s an explicit argument, i.e. we write (IJ('r,f: 'Y--. </>) rather
t11an [IJ(J : ; ~ <P).

The elimination rule is stated with the help of an operator ! which is meant to project
out the assumption hidden in a proof of [</>]. lt represents the first projection 11"1 from
above. (E J proves </> from a proof p of [</> J if also a proof of the assumption J(p) hidden in
p is given. The interaction of [!), (E], and ! is governed by the equations

!o[J](;,/:"f-></>) = "/
(E]([IJ(;, f:;--+ </>), c: 1') == f(c)

(12)
(13)

wl1ich state that ! indeed yields the assumption hidden by [I] and the elimination rule [E J
recovers the proof hidden by [/]. Note, that (13) makes implicit use of (12). The reader
might find it useful to compare rules [/] and (E J with -::;I and :>E for implication.

4 For practiacl applica.tions it does not seern tobe a restriction to conline applica.tion of [J] to propositions
; of the base logic. Since it is teclrnically adva.ntageous our implementation imposes this restriction.

13

Two examples of rules which can be derived from the rules introduced are 'lifting' [L J
and 'constrained /\-introduction' [Al]:

[,µ 1
f/l [<P J

[L J: ;
.t
../

Rule [L] lifts an unconstrained derivation f : </> 'I/; to a constrained one, namely if <P
is provable under some (hidden) assumption then the conclusion 'I/; is provable under the
same (hidden) assumption. Rule [/\] J is the /\ introduction for constrained propositions
melting the hidden assumptions of [c/>] and ['I/;] into a single hidden assumption for their
conjunction. This interpretation of [L] and (/\I] is captured by the equations

1 o [L](!: <P 1", p: [</>]) == !(p)
1 o [J\J](p : [</>] , q : ['I/;]) == l(P) J\ 1(q)

(14)
(15)

That [L J and [l\I] are derived rules is shown by the derivation trees in Figure 3. The
derivations translate into the following 'programs' implementing the two rules:

[L](f: </>- t/;, p: [,P]) '!/, [J](l(p), >.x: l(p). ~E(":Jl(f), [E)(p,x)))

[/\I](p : [</>] ' q: [,p]) g [I](!(p) /\ l(q) ' AX: L(p) /\ Hq).
Al([E](p, /\E1(x)), [E](q, /\Er(x))))

for which the equations (14) and (15) immediately follow from (12) above. Let us take
[L] as an example to explain how the program is constructed. The arguments to the [L)
rule is a derivation f : </> -+ 'ljJ and a proof p : [4> J. The deri va.tion tree for [L] (upper
tree) in Figure 3 describes which rules have to be composed in which order to transform
these two arguments into a proof of (t/;]. The term given above for defining [L] is exactly
this composition. The top rule [IJ is applied to a pair consisting of an assumption (to be
hidden in [?/;]),in this case J(p), and a derivation of 'ljJ from this assumption. This derivation
g : t(p) -+ 1/J is given by the subtree with 'input' x : i{p) and 'output' t/;. The associated
subterm for g is the .>.-term g = >.x : l(p). ":JE(~I(J) , [E]{p,x)). The A-abstraction
corresponds to the discharging ofthe assumption x: !(p) by (J].

We should perhaps remark at this point that in the the real proof session all of the proof
terms are automatically constructed and manipulated by LEGO. The user only develops
the p:roof tree top-down in an interactive way and does not have tobe concerned with the
underlying proof terms. This also applies to the equations which in LEGO are built-in
automatic reductions. Thus, whenever proof terms are explicitly spelled out in the rest of
the paper it is to show the mathematical mecharusm of handling constraints a.s parts of
proofs. All of this, however, is done by LEGO and need not bother the user.

Let us end this section with some remarks concerning the LEGO implementation of the
logic. In tl1e LEGO implementation the ba.se logic is a higl1er order intuitionistic calculus
encoded in the type theory of the Calculus of Constructions, or more precisely in Luo's
extension L.CC c [22] of it. An introduction on using type theories as logical calculi can
be found in {21]. The following papers present examples of encoding particular Iogics in

14

p: [iP 1 [E]
!(p)

z: (!(p) /\ !(q))
..;

[E]
:z:: !(p)

..;

Figure 3: The derived rules [L] and [/\l]

the type theory of LF [24,1], CC [6], or Martin-Löf [27,28]. For implementating the [.]
operator it suffices to assumes a type universe Type which is closed under the formation of
simple function types A ---+ B, dependent function types IIx: A.M, and streng sum types
Ex:A.M. Further, there is a type Prop, the type of all propositions of the base logic which
is embedded in Type both as a type (the type of propositions) and as a subuniverse (each
proposition is the type of its proofs), in symbols

Prop : Type and Prop c Type.

All this is provided by the type theory EGG c·
If <P : Prop and 1/J : Prop are propositions then the proposition cf> ::::> 'ljJ : Prop is encoded

as the function type <P ---+ t/J, i.e. a proof of <P ::::> t/J is a function that maps proofs of <P to
proofs of tjJ5 • This is all what is needed for encoding Definition 1, an which the logic of
constra.ined propositions is based, as a particular type of proofs. Definition 1 is represented
by the following E-type:

df [ef>] = E1: Prop."f ::::> ef>.

A :E-type ~a : A.B (a) is the type of all pairs (a, b) where a is of type A and b is of type B(a).
The crucial feature of a :E-type is that the type of the second component (here B(a)) may
depend on the value of the first (here a). Thls is the feature needed to express [</>] as a type:
the type of pairs where the second cornponent is a proof of a proposition (r ::::> </J) which

5Thus, in our LEGO implementation of the logic derivations f: t/1- 1/J and proofs p : <P :::> t/J are actually
the sarne

15

depends on the first component (the assumption ;). This is why the implementation resides
on the fact that LEGO provides E-types6 . The properties of constrained propositions then
follow from the properties of ~ types within the LEGO type system.

Now, having available a logic for dealing with constrained propositions, we turn back to
the ex:ample and demonstrate its use.

4 Verification of the Example
To keep explanations reasonably short we will not mention all details that have to be
presented in the actuaJ. (complete) LEGO implementation. Among those are for instance
all definitions to do with basic data types such as integers and booleans. We simply assume
a LEGO context in which the usual mathematical properties regarding these data types are
available in the ba.se logic. We ma.y then focus on those parts of the verification that are
done using the constrained logic introduced in the previous section. The example presented
ltas been completely formalised and veri:fied in LEGO.

The task, set u p in Section 2.2, is to find a. derivation for

3z : signal. cnt_abs (x, y, z) 1- cnt_appr (x, y)

where

xor_abs(x,y,z) = (stablex6xor /\ stabley8a;or)
:::> Vt: int. tick t :::> zt = xt + yt

latch_abs(d,q) = (one_shot /\ min_sep61atch) :J \fti.t2: int.

(16)

(tick t1 J\ tick t2) J (next_abs(t1, t2) J q(t2) = d(ti))
cnLabs(x,y,z) = xor_abs(x,z,y) A latch_abs (y,z)
cnt_appr(x,y) = (Co/\ C1(x,y)) :::> (Vt1,t2 :int.C2(ti.t2)

J (nexLabs (ti.t2) ::> y(t2) = x(t2) + y(t1)))

which is split into a main proof, free of constraints, and a successive constraint analysis
to establish. constraints Co, Ci, C2 for the composite device. The flrst goal is achieved by
reformulating xor_abs, latch_abs, cnLabs, a.nd cnLappr a.s constrained propositions:

xor_abs' (x, y, z) '!1
latch_abs' (d, q) ~

cnLabs' (x, y,z) ~

cnt_appr' (x, y) -g

['v't: int.[zt = xt + yt]J

[Vtbt2: int.[next_abs(t1, t2) J q(t2) == q(t1)]]
xor_abs'(x,z,y) J\ latch_abs'(y,z)

[W1, t2 : int.[next_abs (t1, tz) J y(t2) :::::: x(t2) + y(ti)]]

Syntactically speaking, all constraints are now removed from the formulae and replaced by
the [] construct. Semantically speaking, a.nd this is the crucial idea., a constraint now is no
longer part of the proposWon but of the proof. For insta.nce,

[V't : int.[zt = xt + yt]] (17)
6The current implementation also makes use of LEGO's type nniverses and the built-in synthesis of

nniverse levels, also called "typica.l ambiguity".

16

does not give any more information regarding constra.ints than in<licating that there may be
hidden assumptions, na.rnely one for each instance of the []-operator. lt is the proof of (17)
that actually determines these constra.ints. In fact, the constra.ints depend on from which
low-level a.xioms about the exclusive-or gate the abstracted proposition (17) is derived,
and by which abstraction process. Here xor is used but one might take a more detailed
description of the gate, e.g. with va.riable delays, and then of course some other constraints
would result. Also, there may me more than one way to verify an abstract behaviour of a
composite device from properties about its components and ea.ch may result in a different
constra.in t.

4.1 Abstract Verification of Modulo-2 Counter
As the 'constraint-free' version of (16) we now demonstrate a derivation of

3z : signal. cnLabs' (x, y, z) 1- cnt_appr' (x, y) {18)

lt differs from the ideal derivation (4) only in the presence of the [.]-construct.
First note that we can dispense with the existential quantifier since (18) is logically

equivalent to a derivation

cnt_abs'(x,y,z) 1- cnLappr'(x,y) (19)

i.e. every proof of (18) gives rise to a proof of (19) and vice versa. Thus it does not
really matter whether we hide internal signals in the implementation (left hand side of the
turnstile) in the first place or not; they are alwa.ys eventually 'opened' when verified against
a spedfication (right hand side). Consequently, we decide to take (19) as the verlfication
goal right a.way.

Now let us introduce the following syntactic abbreviations:

(} ~ ne:cLabs (ti, t2)
(~ y(t2) = x(t2) + y(t1)

ef> ~ yt = xt + zt
,,µ ~ z(t2) = y(ti)

where x, y, z are, from now on, fix.ed variables of type signal and ti, t 2 fixed variables of
type int. With these abbrevia.tions (19) essentially amounts to finding a derivation

This will depend on a derivation

Q (</>{t2/t} A 1/J) -+ E:

whkh shall be assumed given.
Figure 4 shows the complete natural deduction tree for (19), using Q and applying

the rules of Section 3, where all typing information is removed to improve legibility. The
refinement mechanism in LEGO allows constructing the derivation and the corresponding

cnLappr' (z, 11) dJI

[Yti,t2.[ll ::> c)J (L) (q)
[Vt.[t/»] /\ Vt1,t:2-[9 ::> ,P}] [AIJ C1(r.r) :Vti,h.f8 ::> f)

see below (Vt.[~]} rl./E [Vti,t2-(/l :J ,P]) rl./E
zor_abs'(:t, z, y) E latch.abs'(y, z) -------A 1

(1) xor_abs' (z, z, y) A latch-abs '(y, z)

II :J f ----f,...---- 'Jl (•)
Q

C2(r,s): ef»{t := h} /\ ,P -----.......----------Al
4'{t:=t2} . "'

___;_ ___ ___;;_ AE1 ------------ ;>E
(r) 8 J"' s: e --------AEr

r: t/>{t := t2} /\ (9:>1/1)
..;

cnLabs' (x, y, z)

Figure 4: Veri:fication of correctness for modulo-2 counter

17

AEr

(l) dJE

18

proof term interactively in a top-down fashlon. The proof term collects together the rules
in the order in which they are applied. In this case the proof tree of Figure 4 defines the
proof function

C: cnLabs'(x,y,z) _... cnt_appr'(x,y)

whlch (if typing information is again supressed) reads:

C(pc) =
C1(q) =

C2(r,s) =
C3(q) =

dp o [L](Aq.C1(q), [AI](d/E o AE1 o dfE(pc), d/E o AEr o dfE(pc)))
'rf It1 o 'VJ,2 o [L](Ar. :::>!(~s.Q o C2(r, s)) , Cs(q))
AI(AE1(r),)E(AEr(r), s))
[/\I]('VEt2 o/\E1(q), 'VEt2 0 'VEti ol\Er(q))

This derivation provides a solution to the first part of the task: lt corresponds to the main
proof that composing a delay-free modulo-2 sum and an one-unit delay as in Figure 2 yields
a stoppable modulo-2 counter. The only steps in the ahove derivation that would not a.rise
in an ideal proof, i.e. one which does not consider constra.ints at all, are the two occurrences
of the [L] rule. This rule is necessary to lift a proof from the base logic, for instance Q, to
a constrained proof.

The derivation can be cal.led abstract since it is performed without looking at or even
manipulating explicit constraints. Remember that cnt_abs' and the other formulae do not
actually carry constra.ints. The square brackets only indicate where constraints are to
be expected and so intuitively serve as a place-holder for constrain ts. In manipulating
the place-holder instead of real constra.ints the (abstract) derivation C is independent of
constraints and yet retains enough in.formation for extracting the constraints inside C(pc) :
cnt_appr' (x, y) out of those in Pc: cnt_abs' (x, y, z), which can now be done in a completely
separate phase: in the constraint analysis.

Before we can demonstrate this we need to give proofs

X xor (x, z, y)---+- xor_abs' (x, z,y)
L latch (y,clk,z)--+ latch_abs'(y,z)

and thus establish that and how the exdusive-or and la.tch are implementations of the
abstract components. In these proofs the actual constraints for the place-holders inside
xor_abs' and latch_abs' and consequently inside

cnt_abs' (x, y, z) = xor _abs' (x, z, y) /\ latch_abs' (y, z)

will be determined.

4.2 Synchronous Abstraction of Exclusive-Or and Latch

We begin with the derivation X. The ma.in means for introducing constraints of course
is the [IJ rule which will be used twice, namely for hiding the constraints stable x bxor /\
stable z Ozor and tick t. The derivation will also have to assume 6:xor ?: 0, use substitution
rules -all abbreviated as 'subst'-, and the following facts about int:

l Vt,u: int. t - u + u = t
nv:~'--~~~~~~~-

T
Refi: \:/t: int. t::::; t

T
S b

Vt, u : int. u ?: 0 ::> t - u < t u . -. T

xor_abs' (x, z, y) dfl

[Vt.[yt = xt+ zt]J [I] (p)
Vt.[yt = xt + zt J ------VI,

19

[yt = xt + ztJ [I] (q)
yt =!lt+ zt ____________ __;:.._ ____________ -:----:- subst

X 2 (p,q): xt = x(t-6„ar) yt = x(t - li,,,0 r) + zt
--~--------_.;., __ _..:;.. ___________ subst
X1 (p, q): yt = x(t - 6„or) + z(t - D:ror) X4{J1, q) : zt = z(t - 6:ror)

X1(p,q): yt = x(t- 6:.or) + z(t- 6„o„)
---------:::..:::..:...;:.:__::..__~--..:.._-...:....~--'------~subst

y(t - D:.or + 6:ror) :::: yt
-------'---- subst

l - 6:ror + 6:ror = t VE
S:or

y(t - li,,,0 r + 6:ror) = :t(t - 6„„) + z(t - D:ror) VE
•-611:or

Vt. y(t + 6„or) = xt+ zt dfE
Vu. t - u + u = t
-------- VEi
Vt, u. t - u + u = t

xor(x,z,y)

--------Inv T

X2(P, q) : xt = x(t - 6„0 „)
--------------..:..:;~.;._ __,;:.._ _ __;;.,_ _____________ JE
(tickt/\ t- 6„ 0 „ $ t - 6a:or $ t) ::> xt = x(t -6„or) VE

t-O:ror
'tt2 .(tickt /\ t - 6„ 0 „ < t2 < t) :::> xt = x{t:i)

X3(q): tickt II t - 6:r:or :$ t - 6:ror ::St

- - VEi
Vt1, t2 .(tick ti /\ t1 - 6mor $ t~ :5 t1) :> x(t1) = x(h) dfE

atable x 6:11or
----------- AEr
p : stable x 6 o:or II atable z 6:ror

X3(q): tickt/\ t-6„0 „$t-6„or $ t
--~-=..:....;. ______ _;;;_ ___ ~--~AI

q : tick t

../
t - 6:ror $ t - 6:JJor :$ t

------------ d.fl
t - 6zor $ t - O:i:or A t - O:z;or $ t --------=;;_-------=------Al

t - 6zor $ t - 6„or VE
•-O:ror Vt. t < t

T
Reß

t - Ö:ror :5 t
---------"'------~JE
O:i:or > 0 :> t - li:ror $ t VE

O:ror
Vu. u > O ::> t - u < t

- - VEt
Vt, u. u > 0 :> t - u < t

- - Sub
T

Figure 5: Derivation for abstra.cting xor as a synchronous device

20

Figure 5 presents the proof tree, again split into several parts. The subtree named J4(p, q)
is not given as it is identical to the subtree X2(p, q) with variable x is replaced by z and
the AE1 rule instead of /\Er.

The two constraints built into the proof term by the introduction rule [1] ca.n be ex-
tracted by applying the ! function to the proof term X in the appropriate places. To this
end let Px be a proof of xor (x, z,y) a.nd consider the proof term X(px) of xor_abs' (x,z,y):

X(px) = dflo[I](stablex631or /\ stablezÖ310r,

X1(p,q)(px) =
,\p.'v'lto[I](tickt, >.q.subst(subst(X1(p,q)(Px), X4(p,q)), X2(p,q))))

subst(subst o V E0zor o 'v'Et o Inv , YEt-Ozor o dfE(px))
X2(p,q) = :>E('v'Et-Ozor 0 V Et 0 dfE 0 AEr(P)' X3(q))
)4(p,q) = :>E('v'Et-Özor 0 VEto dfE 0 AE1(p)' X3(q))

X3(q) = Al(q, dp o Al(VEt-Ö:r:or o Refl, YE5:r:or o V Et o Sub))

Nowfrom
dfEoX(px): ['V't.{yt = xt+zt]]

we can regain the constra.int hidden by the outer ocurrence of the square brackets by com-
puting

CXouter(x, z, y) <!!. ! o dJE oX(px)
= ! o dfE o dp o [I J (stable x Ö:r:or A stable z Ö:r:or , >.p)

by (11) = ! o [I](stablex C:i:or /\ stablezO:r:or, >.p. · · ·)
by (12) = stablexÖ:r:or A stablezÖzor

In order to get to the constraint hidden by the inner occurrence of [. J we have to assume a
proof p : stable x Ö:i:or /\ stable z D:r:or of the outer constraint and a variable t to instantiate
the universal quantifier with. Then,

and

CXinner(X, z, y; t)

by (11)
by (13)

by (10)
by (12)

V Et o [E](dJE oX(px), p) : [yt = xt + zt J

!oVEto[E](dfEoX(px), p)
! o V Et o [E](dfE o dP o [IJ(stablex O:cor /\ stable z Oxor , >.p. ·· ·), p)
!oVE1o[E]([I](stablexC310r /\ stablezÖ:cor, >.p. · · ·), p)
! o V Et o).p. · • • (p)
!oVEt(·„)
!oVEt(VIt([IJ(tick t, >.q.···)))
!oVE,oVlt([I](tickt, >.q. ···))
Jo[IJ(tickt, >.q. · · ·))
tickt

These computations show that, modulo renaming of variables,

X: xor(x, z,y)-+ xor_abs'(x,z,y)

21

indeed captures the derivation

xor(x,y,z) r xor_abs(x,y,z)

with the difference that the constaints do not show up in the proposition xor_abs' of abstract
behaviour but in the proof X. Similarly, there is a derivation

L: latch(y,clk,z) ~ latch_abs'(y,z)

for the latch swallowing the constraints in latch_abs, which can also be constructed interac-
tively in LEGO. lt is slightly more involved than X for it has to utilize bounded induction
on int. We do not present the derivation here and content ourselves wjth stating that it
contains the expected constraints. More precisely, if PL is a. proof of latch (y, clk, z) then

and we have

CLouter(y,z) ~ !odfEoI.(pL)
= one_shot A min...sep Ofotch

and for q a proof of one_shot /\ min_sep 61atch• a.nd ti, t2 variables of type int

CLanner(Y, z;ti,t2) '!/.. ! o VEt2 o VEt1 o [E](dfEoL(PL) , q)
= tick ti /\ tick t2

4.3 Constraint Analysis

Section 4.1 has shown that composition of delay-free modulo-2 sum and one-unit delay
satisfies the specification of a modulo-2 counter. The verification is summed up in the
derivation

C: cnt_abs'(x,y,z) ~ cnt_appr'(x,y)

In the previous section we gave proofs

X
L

xor(x,z,y) ~ xor_abs'(x,z,y)
latch (y, clk, z) -+ latch_abs'(y, z)

(20)

(21)
(22)

witnessing that in a synchronous environment xor and latch may be regarded as implemen-
tations of the corresponding abstract components delay-free modulo-2 sum and one-unit
delay. Residing inside X a.nd L are certa.in behavioural constraints which record assumpti-
ons about the environment of the components under which this abstraction is possible. Now
we may put pieces together and prove that in a synchronous environment the composition
of xor and latch can be regarded as a;n implementation of the abstract modulo-2 counter.
Th.is comes down to a derivation

1: xor(x,z,y) A latch(y,clk,z) -+ cnLappr'(x,y)

from the data (20), (21), a.nd (22).

22

cnt..appr '(:i, 11) c
cnt_abs' (x, y, z) dfl

xor_abs'(x,z,y) /\ latch..abs'(y,z)
xor_abs' (:i:,z,11) latch_abs '(11,.:) /\/

X L
xor (x, z, y) latch (y, clk, z)

----------- /\E1 /\Er
xor (z, z, y) A latch (y, clk, z) (1) {l)

Figure 6: Low-level implementation of modulo-2 counter

As an aside note that again all applications of existential quantification for hiding in-
ternal signals are dropped. This is done without loss of generality since it can be shown
that taking explicit account of hiding would reduce to the case considered here anyway.
A more detailed discussion of hiding in the context of the proposed logic is outside the
scope of this paper but we beJieve that hiding of signals via existential quantification does
not introduce any intrinsic complications. After all, hiding seems to be eliminable for all
practical examples.

Constraint analysis consists in examining the constraints residing in I which, as they
are synthesised from the constra.ints in X a.nd L, will embody the weakest constraint for the
composite circuit which guarantees that the constraints ofits components are met. Figure 6
shows the derivation tree for 1. The corresponding proofterm reads as follows:

I(pI) = Codfiol1(P1)
I1(PI) = Al(Xo/\.Ez(pr), Lol\Er(P!))

where 'PI is a proof of xor (x, z, y) /\ latch (y, clk, z). From

dfEoI(pr): [Vti,t2.[next_abs(t1, t2) :> y(t2) = x(t2) + y(ti)]]

we may then extract constraints for both occurrences of []. The most important of these
is the outer one:

Clouter(x, y, z)
=
=

by (11) =
by (14) -
by (15)

=

-
=

! o djE o I('PI)
lo d/EoCodJJ ol1(PI)
lod/Eodfio(L](,\q. C1(q),

[l\J](d/E o l\E1 o d/E o dfl o I1(P1), dfE o /\Er o d/E o dfl o I1(P1)))
lo[L](>.q. C1(q), (l\I](dfEol\E1ol1(P1), d/Eol\Erol1(P1)))
l o [AI)(dfE o AE1 o I1(P1) , dfE o /\Er ol1 (PI)))
!odJEol\E1ol1(PI) /\ lodfEol\Erol1(PI)
!odfEol\E1of\I(Xol\E1(P1)' Lol\Er(P1))

A ! o dfE o /\Er o l\I(X o AE1(P1), L o AEr(P1))
! 0 dfEoX 0 AE1(P1) A ! 0 dfE oLo l\Er(PI)
stable x Oxor /1. stable z li:i;or A one_shot /\ min_sep li1a.tch

The inner constraint on time points recorded within d/Eol(p1) can be computed as

23

This shows that the derivation I has in fact collected together the constraints for xor and
latch.

Constraint analysis in this framework is proof analysis: 'analyse the constraint hidden in
a constrained proof and replace it by a simpler proposition'. Consider the general situation
of a derivation f : </> - [t/;], of which I is a special instance. f constructs for each proof p of
<jJ essentially a pair consisting of a hidden assumption I and a proof of / :) t/;. 7 Performing
a constraint analysis on f mea.ns replacing; by a simpler or weaker assumption / 1

• The
condition under which this is possible is that

holds, i.e. / 1 together with <Pis stronger than;. (Note, this means; can always be replaced
by a stronger assumption 'Y' 1- 1). In the extreme case where -y' is tobe the weakest possible
assumption, namely 7' = T, this amounts to proving / from </>. Given that the hidden
assumption 'Y is an input constraint of a hardware device this will only be possible if <P
contains complete information about the environment of the device and then amount to
proving that the environment satisfies the input constraints. The typical case, however, is
that <P (as in I) merely describes parts of a complete circuit in which case only 'parts' of "f
will follow from </> while other 'paxts' have tobe retained in 1'. Formally, constraint a.nalysis
may be summarised by the following

Proposition 1 Let f : </>-+ [1/;] be a derivation in the logic of constrained proofs and 1 the
constraint constructed by f, i. e. 1 is a proposition of the base logic with t o f (p) :::: 'Y for all
p : </J. Then for all propositions 1' of the base logic such that 4> /\ 7 1 1- 'Y there is a derivation
!': <P-+ [1/i] with t o f'(p) = "'11 for all p: </J.

Back to the example: Since we regard signal z as internal to the composite circuit we
want to replace Clouter(x,y,z) by a constraint of the form Co/\ C1(x,y) which does not
have z as a free variable and thus embodies a constraint on the environment of the modulo-2
counter. In view of the above discussion on constraint analysis we are lead to search for a
proof of

xor(x,z,y) /\ latch(y,clk,z) /\Co/\ Ci(x,y) 1- Clouter(x,y,z)

lt is not difficult to see that this is equiva.lent to a derivation

Co/\ C1(x,y) 1- Vz. (xor(x,z,y) /\. latch (y,clk,z)) :::> CI0 uter(x,y,z)

or equivalently

Co /\ C1(.x,y) 1- one_shot /\ min_sep Olatch (23)
/\. V z. (xor (x, z, y) /\ latch (y, clk, z)) :::> (stable x Oxor /\ stable z Oxor)

A simple way to arrive at constraints Co and C1 that satisfy this property is simply to use
the right band side of the derivation as their definition, i.e.

Co '!!: one_shot /\ min..sep Otatch

C1(x,y) '!!: Vz. (xor(x,z,y) /\ latch(y,clk,z)) :::> (stablext5xor /\. stablezOxor)
7 "'! may in genera.l depend on the proof p. However, it is a property of the logic that if </> is a proposition

of the base logic then l o /(p) must be independent of p, i.e. l o f(p) = "'! for some fixed proposition "'! of the
base logic. In particular this is the case for our ex.ample 1 as the computation above confirmed.

24

C1(x,y) says that no matter what internal signal z is produced by the circuit for given
observable signals x, y the stability constraints for xor and latch are satisfied. Co is the
restriction on the clock originating from latch. This choice of Co and C1 corresponds to the
weakest restriction on the environment of the composite circuit for which the constraints of
all components are met.

Alternatively, a more intelligent constraint analysis could take advantage of knowledge
about the type of constraints and the behaviour of the components involved and try to
simplify Co and C 1 . For instance, the stability constraint stable z f>xor on signal z can be
traded against the clock period since z is the output of the latch and the characteristic
feature of the latch is to keep the output stable as long as it is not triggered by clock ticks.
More precisely, we have

min_sep (D1atch + O:eor) /\ latch (y, clk, z) 1- stable z Dx01'

which suggests to define the constraints as follows

Co
C1(x,y)

one_shot /\ min....sep(Otatch + Dxor)

stable X f>xor

(24)

The constraint analysis now consist in formally verifying (23). This simple proof, which we
do not give here, makes reference to fact (24) and may, according to Proposition 1, be used
for building a new derivation

I': xor(x,z,y) /\ latch (y,clk,z) -+ cnt_appr'(x,y)

such that !odfEol'(pr) = Co/\C1(x,y).

5 Conclusion and Future Work

As has been hinted at in the beginning, the global aim of our work is investigating the
application of abstraction mechanisms in hardware verification. This paper focused on a
particular problem arising from such an undertaking, namely the problern of constraint
handling. Recognising the special röle of constraints in the design process we are proposing
to distinguish at the level of the logical inference system between propositions pertaining
to specifications and those pertaining to constraints. To this end a logic of constra.ined
proofs has been introduced that, roughly speaking, provides a mechanism to move parts
of a proposition into the proof. We have demonstrated by means of a simple example
from synchronous circuit design that this mechanism, when used to take constraints out
of speci:fications of abstracted behaviour, acommodates for uncoupling the verification of
abstracted behaviour from the analysis of constraints without giving up the rigour of a
complete formal veri:fication. Moreover, the logic does not prejudice the type of constra.ints,
so that its application is not limited to the usual input constraints of hardware components
but also encompasses constraints on sampling times a.nd a.ny other type which need not be
related to input signals. Also, it does not prejudice the way components are modelled, i.e.
it is applicable for both the "components as functions" and the "components as predicates"
paradigm.

The logic has been implemented on the interactive proof editor LEGO. First verification
examples, one of which was described in the paper indicate that at least for the special

25

case of timing abstraction in synchronous hardwa.re design the implemented scheme of a
constrained logic works up to the expectations. The examples are however still too simple to
judge practical utility for 'real' verification problems. Also we did not as yet systematically
explore the analysis of constraints within the logic and the possibility for automating parts
of it in special cases like synchronous abstraction. A lot of work is left to be done here.

LEGO has proven tobe a convenient and flexible environment for experimenting with
a prototype logic. The scheme is implemented using ECC c and type universes, a rather
powerful type theory supported by LEGO. Since the goal is to arrive at a logic that knows
to differenciate between constraints and abstract properties it was important for the first
experiments that LEGO does not enforce the use of any particular logic. It is basically a
tool for implernenting mathematics and therefore allows to experiment with various logics
and to translate very directly mathematical definitions into an executable formal system.
An implementation on other verification systems which are ta.ilored to the needs of hard-
ware design and provide the necessary infrastructure to run !arger examples is planned. In
particular LAMBDA [9] and VERITAS [15] seem promising candidates. LAMBDA, for in-
stance, because its logic kerne} is a higher order proof system, i.e. it manipulates rules rather
than propositions, has already built-in the fiexibility to introduce constraints at any time in
the design process and arbitrarily to defer their analysis. The possibility of programming
cornplex refinement tactics will allow automating large portions of constraint analysis and
verification for specific circuit design styles like synchronous or speed independent circuits.

The main characteristic of the proposed logic for ha.ndling constra.ints is that it consi-
ders constra.ints as part of the proof a.nd consequently constraint analysis as proof analysis.
Although this is intuitively appealing and seems to encode the idea of decoupling abstract
reasoning and constraint analysis quite well from a pragmatic point of wiew, it has to
be further justified through both practical examples and mathematical analysis. The irn-
plementation in its current form is mathematically not yet completely satisfactory. For
example, among all constrained proofs of a proposition [<ft] there are also worthless ones,
like

(Jalse, ex-falso-quodlibet(<ft))

or

(</>, -:JE(>..a: </>. a)).

and no built-in measures have been taken to prevent these from being introduced in a proof.
So far the only way to avoid this lass of information, is to restrict proofs to chose from only
a well-defined set of elementary proof rules, which are known to be nicely behaved in this
respect.

We consider the logic of constra.ined proofs an intermediate stage towards abstraction
which means reasoning on (two ore more) different levels: on a concrete and an abstract
level, connected via an abstractfon function or relation. The example used in this paper
Jives at the concrete level only. For example, there is only a single notion of time, i.e.
no distinction between abstract synchronous time and concrete level time. Eventually we
want to combine constra.ined logic with abstraction mappings and reason about hardware
at several levels of abstraction within one verification framework. lt could be investigated
in LEGO using E-type which provide a mechanism for theory abstraction (33] allowing to
identify and keep apart the corresponding levels of theO!'ies. This was yet a.nother reason
for chosing LEGO.

26

6 Acknowledgements

The development of our work has been strongly infl.uenced by discussions with Rod Burstall.
We would also like to thank Mike Fourman for bis encouraging support, Terry Stroup and
the anonymous referees for valuable comments on a draft of thi.s paper, and J ulian Bradfield
for his help wHh type-setting a.nd for supplying TEX-macros for proof trees.

References
[1] A. Avron, F. Honsell, and I. Mason. Using typed lambda calculus to implernent formal

systems an a machine. Technical Report ECS-LFCS-87-31, Edinburgh Univ., Dept. of
Comp. Sei., June 1987.

[2] J. C. Barras and B. W. Johnson. Equivalence of the arbiter, the synchronizer, the
latch, and the inertial delay. IEEE Trans. on Comp., C-32(7):603-614, July 1983.

[3) Y. Brzozowsky. Digital Networks. Prentice-Hall, 1976.

(4) A. Cohn. Correctness properties of the VIPER block model: The second level. Tech-
nical Report 134, University of Cambridge, Computer Laboratory, May 1988.

[5] A. Cohn. A proof of correctness of the VIPER microprocessor: the first level. In
P. Subrahmanyam G. Birtwistle, editor, VLSI specification, verification, and synthesis,
pages 27-72. Workshop on hardware verification, Kluwer Academic Publishers, 1988.

[6] Th. Coquand and G. Huet. Constructions: A higher order proof system for mechanizing
mathematics. In B. Buchberger, editor, Proceedings EUROCAL'85, pages 151-184,
LNCS 203, 1985. Springer Verlag.

[7] Th. Coquand and G. Huet. The Calculus of Constructions. Information and Compu-
tation, 76:95-120, 1988.

[8) W. I. Fletcher. An engineering approach to digital design. Prentice-Hall, Englewood
Cliffs, N.J., 1980.

{9) M. Fourman and E. M. Mayger. Formally based system design - Interactive hardware
scheduling. In G. Musgrave and U. Lau ther, editors, Proceedings of the IFIP TC
10/WG 10.5 International Conference on VLSI, Mt.mich, Aug. 16-18, 1989, pages
101-112, 1989.

[10] Ganesh C. Gopalakrishnan, M. K. Srivas, and David R. Smith. From algebraic speci-
fications to correct VLSI circuits. In D. Borrione, editor, From HDL descriptions to
guaranteed correct circuit designs, pages 197-225. IFIP, North Holland, 1987.

{11] M. J. C. Gordon. HOL: A machlne oriented formulation of higher order logic. Technical
Report 68, University of Cambridge, Computer Laboratory, July 1985.

[12] M. J. C. Gordon. HOL: A proof generating system for hlgher-order logic. In G. Birt-
wistle and P. Subrahmanyam, editors, VLSI Specification, Verification, and Synthesis,
pa.ges 73-128. Workshop on Hardware Verification, Kluwer Academic Publishers, 1988.

27

[13] T. G. Griffin. An envfronment for formal systems. Technical Report ECS-LFCS-87-34,
Edinburgh Univ ., Dept. of Comp. Sei., August 1987.

[14J F. K. Ranna and N. Daeche. Specification and verification using higher order logic: A
case study. In G. M. Milne and P. A. Subrahmanyam, editors, Format Aspects of VLSI
design, Proc. of the 1985 Edinburgh conf. on VLSI, pages 179-213. North-Holland,
1986.

[15] F. K. Hanna, N. Daeche, and M. Long]ey. VERITAS+:a specification language based
on type theory. In Proc. Conf on Hardware Specification, Verification and Synthesis,
Cornell University, J uly 1989.

[16] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings
LICS'B'l, pages 194-204, Itha.ca, New York, June 1987.

[17] J. Herbert. Formal verification of basic memory devices. Technical Report 124, Uni-
versity of Cambridge, Computer Laboratory, February 1988.

[18) John Herbert. Temporal abstraction of digital design. In G. Milne, editor, The fusion
o/ hardware design and verification, pages 1-25, University of Strathclyde, Glasgow,
Scotland, July 1988. IFIP WG 10.2.

[19] W. A. Hunt, Jr. The mechanical verification of a microprocessor design. In D. Borrione,
editor, From HDL descriptions to guaranteed correct circuit designs, pages 89-196.
IFIP, North Holland, 1987.

[20] J. Joyce. Formal specification and verification of microprocessor systerns. In S. Winter
a.nd H. Schumny, editors, EUROMICR0'88. North Holland, 1988.

[21) J. Lam bek and P. J. Scott. lntroduction to higher order categorical logic. Cambridge
University Press, 1986.

(22] Zhaohui Luo. A higher order calculus and theory a.bstraction. Technical Report ECS-
LFCS-88-57, Edinburgh Univ„ Dept. of Comp. Sei., July 1988.

[23] L. R. Marino. Principles of computer design. Computer Science Press, Rockwell, 1986.

[24) I. Mason. Hoare's logic in the LF. TechnicaJ Report ECS-LFCS-87-32, Edinburgh
Univ„ Dept. of Comp. Sei., June 1987.

[25] D. May and D. Shepherd. Formal verification oftheIMS T800 microprocessor. Internat
report INMOS Limited, 1987.

[26] Thomas F. Melham. Abstraction mechanisms for hardware veri:fication. In G. Birt-
wistle and P. Subrahmanyam, editors, VLSI Specification, Verijication, and Synthe-
sis, pages 267-292. Workshop on Hardware Verification, Kluwer Academic Publishers,
1988.

(27] B. Nordström. Martin-Löf's type theory as a. programming logic. Technical Report 27,
Chalmers University of Teclrnology and University of Göteborg, September 1986.

(28] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf's type
theory. An introduction. Tobe published by Oxford University Press, 1989.

28

[29} Randy Pollack. The theory of LEGO. Draft report, LFCS, Univ. of Edinburgh, Octo-
ber 1988.

[30) Brian Ritchie. The Design and implementation of an interactive proof editor. PhD
thesis, Edinburgh Univ., Dept. of Comp. Sei„ 1989.

(31] P. A. Subrahmanyam. Contextual constraints, temporal abstraction, and observational
equivalence. In G. Milne, editor, The fusion of hardware design and verification, pages
156-182, University of Strathclyde, Glasgow, Scotland, July 1988. IFIP WG 10.2.

[32} P. A. Subrahmanyam. Towards a framework for dealing with system timing in very high
level silicon compilers. In P. Subrahmanyam G. Birtwistle, editor, VLSI specification,
verification, and synthesis, pages 159-215. Workshop on ha.rdware verifica.tion, Kluwer
Academic Publishers, 1988.

[33] P. Taylor and Z. Luo. Theories, mathematical structures, a.nd strong sums. Preliminary
notes, December 1988.

[34] S. H. Unger. Asynchronous sequential switching circuits. Wiley-Interscience, New
York, 1969.

[35] D. W. Weise. Formal multilevel hierarchical verification of synchronous MOS VLSI.
PhD thesis, Massachusetts Institute of Technology, 1986.

[36] S. Wendt. Entwurf komplexer Schaltwerke. Springer Verlag, Berlin, 1974.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28

