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Abstract 

Most machine learning based decision support systems are 
black box models that are not interpretable for humans. 
However, the demand for explainable models to create 
comprehensible and trustworthy systems is growing, 
particularly in complex domains involving risky decisions. In 
many domains, decision making is based on visual 
information. We argue that nevertheless, explanations need to 
be verbal to communicate the relevance of specific feature 
values and critical relations for a classification decision. To 
address that claim, we introduce a fictitious visual domain 
from archeology where aerial views of ancient grave sites 
must be classified. Trustworthiness among other factors relies 
on the perceived or assumed correctness of a system's 
decisions. Models learned by induction of data, in general, 
cannot have perfect predictive accuracy and one can assume 
that unexplained erroneous system decisions might reduce 
trust. In a 2×2 factorial online experiment with 190 
participants, we investigated the effect of verbal explanations 
and information about system errors. Our results show that 
explanations increase comprehension of the factors on which 
classification of grave sites is based and that explanations 
increase the joint performance of human and system for new 
decision tasks. Furthermore, explanations result in more 
confidence in decision making and higher trust in the system.  

Keywords: Explainability; verbal explanations; prediction 
errors; trust; relational learning. 

Introduction 

With the success of machine learning in many real-world 
application domains, it has been recognized that it is 
important for machine learned models to be transparent and 
comprehensible for humans (Miller, 2019). The focus of 
Explainable Artificial Intelligence (XAI) research is mostly 
on post hoc explanations for back box models such as deep 
neural network models for image classification (Guidotti et 
al., 2019; Rudin, 2019). That is, it is shown which 
information in the input image contributes mostly to the 
systems classification decision. In other domains – 
especially such where data is available in form of symbolic 
representations such as feature vectors – intrinsically 
interpretable machine learning approaches can be used 
(Rudin, 2019) such as different variants of decision rules 
(Lakkaraju et al., 2016) or logical rules (Muggleton et al., 
2018). However, such white box models, although they are 
in principle understandable by humans, can be too complex 

to be grasped by direct inspection and need to be augmented 
with an explanation mechanism. 

Over the last years, different taxonomies for explanation 
mechanisms have been proposed (e.g., Adadi & Berrada, 
2018; Miller, 2019). Explanations can be characterized by 
their modality – being either verbal (symbolic) or visual 
where visual explanations typically highlight pixels or areas 
in the input image. Furthermore, explanations can be local – 
explaining the classification decision for the current instance 
– or global – explaining the learned model as a whole. 
Which type of explanation is helpful depends on the 
recipient and the application domain (Miller, 2019). 
Explanations can help model developers to identify 
overfitting to irrelevant information or unfair biases. 
Explanations can be given to end-users, for instance in the 
context of personal recommenders (Tintarev & Masthoff, 
2012). For specialized domains such as medical diagnosis or 
quality control in industrial production, explanations need to 
be addressed to domain experts (Holzinger et al., 2019). 

Many expert domains rely on interpreting and classifying 
visual information, such as X-rays or microscopic images. 
While visual explanations in the form of highlighting are 
helpful to detect overfitting, they are mostly not expressive 
enough to communicate decision relevant information 
(Rabold et al., 2018). For instance, an expert might 
recognize the presence of tumor cells in a tissue sample. But 
to understand why the system returns a specific tumor class, 
the size, the form, or the spatial relations between the tumor 
and other tissue might be important (Bruckert et al., 2020). 
Consequently, even for visual domains, there is a need for 
verbal explanations to inform about classification relevant 
information concerning feature values or relations between 
different parts.  

Besides understanding the reason for a system decision, 
human decision makers can profit from transparent 
communication of the predictive accuracy of a machine 
learned model to assess the reliability of system outputs. 
This can be realized by explicit communication of the 
degree of uncertainty of a specific decision (Bykov et al., 
2020) or about differences in precision and recall for 
specific classes (Katsikopoulos et al., 2020). This kind of 
information has been shown to be helpful to decrease the 
cry wolf effect in human-machine interaction (Breznitz, 
2013). 
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When focusing on effective explanations for users rather 
than the model developers themselves (as strongly 
advocated by Miller et al., (2017)), it becomes relevant to 
understand what characteristics of an explanation make it 
helpful to the user. The notion of helpfulness has been 
mostly defined as effective transfer of knowledge 
(Lombrozo, 2009). In the context of XAI, this means that a 
machine learning model has uncovered information which 
has not previously been available to the human decision 
maker and communicates this information in a way which 
gives new insights to the human and in consequence allows 
for more effective and efficient decision making. Machine 
learning approaches which support this type of joint human 
and machine learning have been classified as ultra-strong 
(Muggleton et al., 2018). A study by Muggleton et al. 
(2018) demonstrated that, in a relational learning 
classification task, the participants were not able to learn the 
concepts by themselves, but did so easily when provided 
with an explanation. Comprehensibility of the explanations 
have been assessed as the average accuracy a participant 
achieves when classifying new samples in the same domain.  

The relational domains investigated in the study of 
Muggleton et al. (2018) has been the family domain 
involving relations between pairs of persons and an 
isomorph fictitious chemistry domain with relations 
between substances. While these domains are purely 
symbolic, we are interested in relational learning in visual 
domains. Therefore, we adapted a classification task from 
Rabold et al. (2018), in which aerial images of fictitious 
ancient grave sites need to be assigned to their age of origin 
as Viking Age or Iron Age. This his artificial domain as a 
cover story ensures that no prior knowledge about 
archeology is required or helpful to comprehend the 
classification of the stimuli.  

Besides the helpfulness of explanations for 
comprehension, the effect of explanations on trust is often 
discussed (Miller, 2019; Ribeiro et al., 2016). In general, 
trust – be it in humans or machines – is the result of 
experience of interactions (Miller, 2019). To assume a 
system to be more trustworthy just because it can provide an 
explanation is an oversimplification. Explanations might be 
right for the wrong reasons or even wrong for the wrong 
reasons depending on the machine learned models 
predictive accuracy and on the fidelity of the explanation 
(Schramowski et al., 2020). Trust might be appropriate or 
not and explanations should help humans to develop 
appropriate trust and understand better when to trust and 
when not to trust system decisions. 
To investigate the effect of erroneous system decisions, in 
our study, the presented machine learned model system has 
been designed such that it is not perfectly accurate. 
Depending on the specific class, a system decision is more 
or less reliable. To our knowledge, there exists no prior 
empirical study that systematically compares the combined 
effect of explanations and system error information on 
comprehensibility and trust. 
 

Table 1: Stimuli following the 5-4 category structure (see 
Medin & Schaffer, 1978) with the respective class assigned. 
 

Example O S A N Class 
e1 1 1 1 0 Iron 
e2 1 1 0 1 Iron 
e3 1 0 1 0 Iron 
e4 0 1 1 1 Iron 
e5 0 1 1 0 Iron 
e6 0 0 0 0 Viking 
e7 0 0 1 1 Viking 
e8 0 1 0 0 Viking 
e9 1 0 0 1 Viking 

Note. O: Orientation (1: North, 0: East); S: Shape (1: narrow, 
0: wide); A: Ascending order of inner stones (1: yes, 0: no); 
N: Number of outer stones (1: many, 0: few). The values that are 
relevant for the category assignment are written in bold, the 
irrelevant factor in italics. 

 
In the following, we will first introduce the visual 

relational domain of ancient grave sites. Afterward, we will 
present an experiment to explore the effect of verbal 
explanations and system error information on 
comprehensibility and trust. Furthermore, joint 
performance, as well as confidence in joint decision making, 
is assessed where joint performance means that a human 
receives the systems classification decision and can decide 
whether to follow it or not.  

Category Learning in the Relational Ancient 

Grave Domain 

Abstracting rules and forming concepts are basic 
constituents of human cognition. To investigate context 
effects on classification learning, Medin and Schaffer 
(1978) created a simple two-class problem with a set of 
stimuli based on four binary visual features, such as color, 
form, size, and position. Depending on the feature values, 
instances belong to one of two classes. We introduce the 
structure of the Medin and Schaffer stimuli on the ancient 
grave domain we use in our experiment. The four features 
are orientation, shape, order of inner stones, and number of 
outer stones (see Table 1) For instance, example e1 from 
Table 1 has the values <North, narrow, ascending, few>. 
The last feature – number of outer stones – is irrelevant for 
the class decision. An instance is assigned to the category 
Iron Age when two or more of the three relevant features 
have value 1 and to Viking Age when two or all three of 
them are 0. None of the features alone offers a sufficient cue 
for a clear categorization (Medin & Schaffer, 1978). The 2-
of-3 rules which characterize the true classes are given in 
Figure 1. Note that there are no rules for the class Viking as 
this automatically applies if none of the Iron rules are true. 
The rules can be easily described verbally as “If a grave has 
value North on the dimension orientation and value narrow 
on the dimension shape, then it belongs to Iron Age”. 

Following Medin and Schaffer’s (1978) 5-4 category 
structure, to learn the specific feature combinations, 
participants are presented nine labeled training examples – 
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Figure 1: Classification rules for Iron Age graves. 
 

five examples for Iron Age (“positive”) and four examples 
for Viking Age (“negative”) without any further information 
about the relevant dimensions or possible values. An 
example of an aerial view is given in Figure 2. 

In contrast to the original Medin and Schaffer stimuli, the 
third feature (order of inner stones) is not a simple visual 
pattern, but a more general concept based on evaluating the 
relationship between the sizes of the entire row of an 
arbitrary number of at least three stones. This is a recursive 
relation which is true when – starting with the leftmost stone 
– each stone in the sequence of inner stones is larger than its 
left neighbor.  

The correct rule to classify all possible stimuli of this 
ancient grave domain can be learned from the examples 
given in Table 1 using the inductive logic (ILP) 
programming system Metagol (Muggleton et al., 2018). 
This fact gives evidence that the nine examples constructed 
in accordance with the Medin and Schaffer category 
structure are sufficient to infer the target concept. Recent 
work in explainable artificial intelligence demonstrates (1) 
how verbal explanations can be generated from rules 
learned with ILP (Siebers & Schmid, 2019), and (2) how 
ILP can be applied to generate local explanations in a model 
agnostic way from a deep learning model such as a CNN for 
image classification (Rabold et al., 2019). 

Experiment 

For the introduced visual relational domain, we hypothesize 
that (1) verbal explanations increase the trust in an imperfect 
system, the joint performance of human and machine, the 
participant’s confidence in their decisions, and their 
comprehension of the rules. We predict that (2) information 
about system errors increases the understanding of such 
errors. Furthermore, we assume (3) additive effects of 
verbal explanations and error information on trust, 
performance, and confidence. 
 

 
 

Figure 2: Stimulus example <1111> with the system's 
recommendation (line 1) and the verbal explanation  

(line 2-3) of the relevant features for the classification. 

Table 2: Experimental design with the three experimental 
(EG) and the control group (CG). 
 

   Verbal explanations 

   available not 
available 

System error 
information 

available  EG 1 EG 3 
not 
available 

 EG 2 CG 

Method 

Design and Procedure The experiment is based on a 
complete 2×2 between-subject factorial design with the 
factors verbal explanations and error information, which is 
summarized in Table 2. The main parts of the experiment 
are: (1) initial unguided concept learning, (2) being shown 
new instances together with machine learned class decisions 
by the system with (EG 1, EG 2) or without (EG 3, CG) 
explanation, (3) joint decision making where participants 
receive system decisions (again with or without explanation) 
which they can follow or not, and (4) unguided 
classification of further graves by the participants. After part 
(2), the system error information has been given.  

In accordance with the ultra-strong machine learning 
proposition (Muggleton et al., 2018) and the current 
research on human-AI partnership (Nguyen et al., 2018), we 
assume that explanations support joint decision making of 
humans and AI systems. That is, the AI system provides 
information and insights which the human alone would not 
have been able to come up with and at the same time allows 
the human to evaluate this information based on his or her 
experience. Consequently, the proposition of the AI system 
can be either accepted or rejected by the human based on the 
provided explanation. Combining the strength of both 
human and AI should result in a higher performance – 
reflected in the number of correct decisions – than of the AI 
system or the human alone. Furthermore, there is empirical 
evidence (Ai et al., 2021; Muggleton et al., 2018) that 
explicit verbal explanations support human understanding 
and learning. Consequently, giving explanations can result 
in better human performance in new tasks which have to be 
solved without support of the AI system. 

The general procedure has been the following: First, the 
participants received a short introduction to machine learned 
classifiers as decision support systems and that such AI 
systems can be helpful for complex classification tasks. 
Afterward, they were made familiar with the ancient grave 
domain and were informed that a machine learned model is 
available to propose the age of a grave. Subsequently, the 
participants were shown nine aerial images of ship settings 
following the 5-4 structure from Table 1 divided into a 
group of “Iron Age” graves and of “Viking Age” graves. 
They were instructed to acquaint them with the two types of 
graves, and it can be assumed that participants in 
consequence, generalized at least a partial representation for 
the two types of graves. Following this concept learning 
task, a set of nine new sample stimuli was presented 

 his grave originates from the  ron Age, 

because it is oriented to the      ,       

and its inner stones are in                .
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together with the system’s recommendations (see Figure 2, 
line 1). Part of the participants (EG 1 and EG 2) in addition 
was given verbal explanations (see Figure 2, line 2-3). 
These verbal explanations were systematically generated by 
the authors and not an actual XAI system to eliminate 
possible confounding factors (for explanation generation see 
Siebers & Schmid, 2019). Afterward, all participants 
received information about systems predictive accuracy, 
stating that the system had a success rate of 83.3% and part 
of the participants (EG 1 and EG 3) were additionally 
provided with information about the different error rates for 
Iron Age and Viking Age graves. In the following joint 
decision task, participants were given 12 new grave sites 
with the system’s recommendation – again with verbal 
explanations for EG 1 and EG 2. For the grave site stimuli 
presented on positions 6 and 11 faulty system 
recommendations were given. For each of the presented 
grave images, participants were asked to decide which Age 
the grave originated from.  hey could follow the system’s 
recommendation or not. Additionally, they had to rate how 
confident they were with their decision from “just guessing” 
to “absolutely sure” on a 7-point scale. Finally, participants 
had to classify six new samples without the system’s help to 
assess transfer (unguided classification). The experiment 
concluded with a trust questionnaire, an assessment of 
demographic information, and a debriefing. 

Materials The grave stimuli were manually created using 
the software GIMP according to the binary codes in Table 1. 
Combining the four dimensions with the two possible values 
creates 24 = 16 distinct stimuli for the category membership. 
However, as the experimental design required a higher 
number of grave stimuli, they were all slightly modified so 
that no ship setting resembles another one. Therefore, 
stimulus characteristics for the non-relational features are 
provided by the decision boundaries adopted from Rabold et 
al. (2018) and illustrated in (see Table 3). The row of inner 
stones consists of three to five stones in up to five different 
sizes. To be classified as ascending, all inner stones from 
left to right need to grow in size, but not necessarily 
linearly.  

An example of a verbal explanation that has been used in 
the experiment is shown in Figure 2. Although mentioning 
two of the three relevant features would be enough, the 
system points out all three (if applicable) to prevent 
misunderstandings. The information about system errors 
 
Table 3: Decision boundaries for binary value assignment to 

the non-relational features. 
 

Dimension Characteristics 

Orientation North: ± 21° from vertical 
East: ± 21° from horizontal 

  

Shape Narrow: axis ratio < 0.5 (Mdn = 0.36) 
Wide: axis ratio > 0.5 (Mdn = 0.66) 

  

Number of 
outer stones 

Many: > 35 (Mdn = 39) 
Few: < 25 (Mdn = 22) 

was given as a statement before the actual classification task 
with the system’s aid. Participants were told that the system 
is generally more susceptive to errors with Viking graves 
(19%) than Iron Age graves (3%) and were asked to be 
more attentive for “Iron Age” recommendations.  his error 
allegedly occurred because the system confuses inner and 
outer stones for precisely horizontally aligned stimuli (0° 
rotation from the axis), and mistakenly classifies them as 
originating from the Iron Age. To assess trust, the shortened 
version of the questionnaire for human-computer trust by 
Madsen and Gregor (2000) has been used with the subscales 
perceived understandability, perceived reliability, and faith.  

Participants An international online questionnaire in both 
English and German ensured the large number of 243 
voluntary participants, that had started the study. Out of the 
213 completed questionnaires, 23 participants had to be 
excluded from the analysis post hoc because of low scores 
(< 3) on the 7-point scales ranging from “strongly disagree” 
to “strongly agree” for language comprehension (n = 4), 
distraction (n = 9) and efforts taken during the study (n = 3) 
as well as participants with implausibly fast reaction times 
(relative speed index > 2.0 SD) or response biases (n = 1). 
The final sample size comprised of 190 participants (63% 
women, 1% diverse), which were randomly distributed 
under the restriction of equal group sizes. Participants were 
mostly students from various study programs (63%) and 
employees from various working backgrounds (25%), 
ranging from age 18 to 67 (M = 27.2 years, SD = 10.09 
years). The three experimental groups EG 1, EG 3, and CG 
did not differ significantly in age or gender distribution. 
EG 2 demonstrated a significantly higher proportion (p = 
.009) of male participants (43%) and a higher average age 
with greater variance (M = 31.7 years, SD =15.5 years) 
compared to EG 3 (M = 24.7 years, SD =6.9 years).  

Results  

A two-way analysis of variance (ANOVA)1 was performed 
for the factors verbal explanation and error information. An 
a priori power analysis for medium effect size (f = .25, α = 
.05, 1-β = .90) gave a minimum required sample size of 171 
participants, which has been met in the present study.  

Joint Decision Making The descriptive findings on the 
joint human-machine performance are illustrated in Figure 
3. The analysis of the performance scores showed a 
significant main effect for the factor verbal explanations, 
F(1, 186) = 22.38, p < .001, ηp2 = .11. The mean confidence 
scores during this joint decision task of EG 2, EG 1, CG and 
EG 3 were ME2 = 5.21 (SDE2 = 0.97), ME1 = 4.91 (SDE1 = 
1.03), MC = 4.73 (SDC = 1.23), ME3 = 4.35 (SDE3 = 1.24). 
We found a significant main effect for verbal explanations 
on the confidence in the decisions, F(1, 186) = 10.03, p = 
.002, ηp2 = .05. The ANOVA on the confidence ratings in  

 
1 We decided for multiple ANOVAs and not a single MANOVA 

because of low positive or no significant correlation between the 
dependent variables. 
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Figure 3: Classification accuracy in the joint decision task 
dependent on the verbal explanation and error information: 

1 = available, 0 = not available (performance sores: min = 0, 
max = 1). 

the joint decision task was the only one that showed a 
significant main effect for the factor error information, F(1, 
186) = 4.40, p = .037, ηp2 = .02. 

Overall Trust  The overall trust scores are descriptively 
illustrated in Figure 4. We found a significant main effect 
for the verbal explanations on the reported overall trust in 
the system, F(1, 186) = 5.46, p = .021, ηp2 = .03.  

Unguided Classification The correct application of the 
classification rules without the help of the system, shows a 
similar pattern to the previous findings. The mean accuracy 
in the transfer task was ME2 = 0.78 (SDE2 = 0.19), ME1 = 
0.77 (SDE1 = 0.20), MC = 0.67 (SDC = 0.19), ME3 = 0.65 
(SDE3 = 0.21). For the verbal explanation factor, the 
ANOVA showed a significant main effect on the individual 
performance in the transfer task, F(1, 186) = 12.11, p < 
.001, performance in the transfer task, F(1, 186) = 12.11, p 
< .001, ηp2 = .06. 
 

 
 
Figure 5: Mean confidence in decisions dependent on the 
validity of the recommendation and experimental condition. 

 

Figure 4: Trust scores dependent on verbal explanation and 
error information: 1 = available, 0 = not available (trust 

scores: min = 1, max = 7). 

Exploratory Analysis 

The exploratory ANOVAs on socio-demographics showed a 
significant main effect for the factor gender on the decision’ 
confidence, F(2,184) = 4.89, p = .009. A background in 
computer science was found to interact with the factor error 
information on the confidence scores, F(1,182) = 5.08, p = 
.025 and with the factor verbal explanation on the joint 
performance scores, F(1,182) = 4.04, p = .046. Overall, the 
variables trust, joint performance, and confidence during the 
joint decision task demonstrate the same descriptive pattern: 
Groups with verbal explanations reported and scored higher 
than groups without the system’s recommendations, and 
groups with error information reported and scored lower 
than groups without the display of error proneness. This 
results in the following order: EG 2 > EG 1 > CG > EG 3.  

The only exception of this structure lays in the reports for 
error understanding. EG 1 (ME1 = 4.09, SDE2 = 1.25) with 
both verbal explanations and error information reported the 
highest understanding before EG 2 (ME2 = 3.60, SDE2 =  
 
 

 
 

Figure 6: Mean decision accuracy in the joint decision task 
dependent on the validity of the recommendation and 

experimental condition. 
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1.40) and EG 3 (ME3 = 3.04, SDE3 = 1.65) with only one type 
each, and CG (MC = 2.97, SDE3 = 1.47) without any 
explanation/information ranked last. Concerning the error 
understanding values, the factor verbal explanations reached 
significance, F(1, 186) = 15.91, p < .001, ηp

2 = .08, but no 
main effect for the factor error information.  

The confidence during the joint decision task and the 
overall reported trust correlated significantly, t(188) = 3.36, 
p < .001, resulting in a sample estimate correlation of r = 
.24. Additionally, we post-hoc explored the performance 
and confidence for the two faulty recommendations in the 
joint decision task demonstrated in Figure 5 and Figure 6. 
The ANOVA showed a significant main effect for 
explanations on the accuracy scores for faulty 
recommendations, F(1,186) = 9.06, p = .003, ηp2 = .05. 
Similarly, we found a significant main effect on the 
confidence ratings for decisions with faulty predictions 
F(1,116) = 4.85, p = .030, ηp

2 = .04. All ANOVAs above 
demonstrated no significant interaction of the two 
explanation/information types.  

Discussion 

The findings confirm that verbal explanations increased the 
performance in the joint decision task and enhanced the 
confidence within the decisions. Groups with verbal 
explanations stated higher trust in the system and – 
measured in the transfer task accuracy – had a better 
comprehension of the classification rules. Error information 
affected the understanding of incorrect system answers, 
however, failed to reach significance. We also found no 
additive effect of verbal explanations and error information 
as later, contrary to our expectations, decreased all main 
dependent variables. 

From our exploratory analysis, we conclude that verbal 
explanations not only encourage in (correctly) deciding 
contrary to the system’s recommendations but also enhance 
the confidence for not relying on the system. The significant 
main effect for gender might be influenced by the higher 
proportion of male participants in the group EG 2 that 
received solely verbal explanations. The moderating effect 
of background in AI suggests that those participants are 
more aware that in machine learned models, errors can 
occur. 

A potential limitation of the present study lays in the way 
the system error information was presented. This additional 
information about when a system is more prone to errors 
might have increased the task complexity. This higher 
demand for cognitive capacity could have affected the 
performance and confidence scores and be a possible 
explanation for the unexpected lower scores. However, we 
do not assume that this potentially higher complexity 
affected the reported trust.  

Conclusion 

We presented an experiment exploring the effect of 
explanations in human-AI partnerships on joint 
performance, human learning, and trust. Generating 

explanations to make machine learned black box classifiers 
comprehensible to humans, is a very active area of current 
AI research. Explainable AI (XAI) has been mainly 
concerned with explanations for image classifications. Many 
XAI approaches propose visual highlighting of relevant 
parts in the input image as an explanation. We presented the 
ancient grave domain as a relational visual domain where 
highlighting alone is not enough to convey the information 
relevant to classify an object. Explanations were presented 
in explicit verbal form. Generating verbal explanations from 
reasoning traces has already been proposed in the context of 
expert system research (Clancey, 1983). However, classic 
symbolic AI is well suited to deal with explicit, symbolic 
inputs, but not well suited for images. In our work, we 
assume an underlying hybrid system which combines black 
box deep learning for image classification with white box 
symbolic explanations (Rabold et al., 2019). 

In the presented experiment, we addressed verbal 
explanations for image classification together with 
information about system errors. This second aspect, to our 
knowledge, has not been addressed in empirical work on 
XAI before. However, since machine learned models cannot 
be 100 percent correct by design, communication of system 
errors and system uncertainty is important for justified trust. 
The empirical findings show that verbal explanations of the 
classification decisions of a machine learned model improve 
the overall trust in the system. Explanations not only help to 
perform better and feel more confident in a classification 
task with faulty predictions but also enhance the 
comprehension of the general ground truth rules underlying 
the classification.  

If the understanding of errors in an XAI application is 
crucial for domain experts or end-user, then it might be 
useful to offer both (local) verbal explanations and general 
(global) information for contexts in which the system is 
more prone to errors. However, when the focus lays in 
developing appropriate trust in a system, higher confidence 
in the interaction and the general performance, the results of 
our study suggest that verbal explanations for system 
decisions on specific instances are sufficient. Nevertheless, 
further experiments are necessary to give more insights into 
the interaction between explanations and perceived error 
such that future XAI systems support adequate trust 
resulting in human-AI partnerships which exceed the 
performance of a human or machine alone. 
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