Acta Informatica
https://doi.org/10.1007/500236-021-00408-8

ORIGINAL ARTICLE

®

Check for
updates

Interface Automata for Shared Memory

Ayleen Schinko - Walter Vogler' - Johannes Gareis? - N. Tri Nguyen? .
Gerald Liittgen?

Received: 28 November 2019 / Accepted: 20 July 2021
© The Author(s) 2021

Abstract

Interface theories based on Interface Automata (1A) are formalisms for the component-based
specification of concurrent systems. Extensions of their basic synchronization mechanism
permit the modelling of data, but are studied in more complex settings involving modal
transition systems or do not abstract from internal computation. In this article, we show
how de Alfaro and Henzinger’s original IA theory can be conservatively extended by shared
memory data, without sacrificing simplicity or imposing restrictions. Our extension /A for
shared Memory (IAM) decorates transitions with pre- and post-conditions over algebraic
expressions on shared variables, which are taken into account by IA’s notion of component
compatibility. Simplicity is preserved as IAM can be embedded into IA and, thus, accurately
lifts IA’s compatibility concept to shared memory. We also provide a ground semantics for
TIAM that demonstrates that our abstract handling of data within IA’s open systems view is
faithful to the standard treatment of data in closed systems.

1 Introduction

Behavioural types [4,17] play an increasingly important role when developing and verifying
software systems. For object-oriented software, behavioural types are specified as contracts
[25], annotating methods and classes with pre- and post-conditions and invariants, respec-
tively. For distributed software, session types are employed [10,19] to specify permitted and
prohibited interactions. For concurrent software, component compatibility has been studied
by interface theories, such as de Alfaro and Henzinger’s Interface Automata (1A) [12,13].
Although IA is a well-studied theory, it does not directly reflect modern IT architectures that
rely on networked, distributed clusters of multi-core/-processor computers. In these architec-

Research support provided by the DFG (German Research Foundation) under Grant Nos. LU 1748/3-2 and
VO 615/12-2.

B Gerald Liittgen
gerald.luettgen @uni-bamberg.de

Walter Vogler
walter.vogler @informatik.uni-augsburg.de

Institut fiir Informatik, University of Augsburg, Augsburg, Germany

Software Technologies Research Group, University of Bamberg, Bamberg, Germany

Published online: 30 August 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-021-00408-8&domain=pdf
http://orcid.org/0000-0002-0925-4870
https://creativecommons.org/licenses/by/4.0/

A. Schinko et al.

tures, communication between clusters is via message passing, and communication within a
cluster is typically via shared variables. Holik et al. have studied the IA paradigm for message
passing in [18], but the treatment of shared variables in the context of IA has so far been
unsatisfactory.

This article is addressed to concurrency theoreticians and studies an IA-based setting where
data are communicated via shared memory while activities, or operations, are triggered by
synchronizing actions. In this introduction, we first summarize IA and related works on
extensions of IA with data, both of which is elaborated in Sects. 2 and 3, respectively. This
allows us to spell out our contributions and advances over the state-of-the-art in interface
theories.

Background Interface Automata (IA) [12,13] model system components as labelled transi-
tion systems that distinguish a component’s input and output actions. Parallel component
composition assumes that a component may wait on inputs but never on outputs, implying
that a component’s output must be consumed immediately, or a communication error occurs.
In case no system environment may restrict the components’ behaviour so that all errors are
avoided, the components are deemed to be incompatible.

To support refinement during software development, IA is equipped with a branching-time
behavioural preorder called alternating simulation; it allows one to substitute an abstract
component by a concrete one, provided the concrete component offers no fewer inputs and
no more outputs than the abstract one. As this implies that outputs cannot be enforced in
IA, researchers have frequently based IA-inspired interface theories on the more expressive
Modal Transition Systems (MTS) and modal refinement [3,5,15,22,29]. As an aside, a linear-
time semantics respecting communication errors as in IA was proposed by Dill [14] and more
recently adapted for variations of IA in [6,8].

To enable the modelling of richer classes of concurrent systems and software, IA has been
extended in various ways to capture data in addition to control [1,2,9,11,18,27]. Except for
[18], these works focus on shared memory. The work of Mouelhi et al. [9,27] is closest to
ours and adopts a paradigm well-known from structured programming. It considers an output
of one IA to trigger an operation in another IA. The guaranteed data state resulting upon exe-
cuting the operation on the input side is expected to meet the trigger’s assumption; otherwise,
an error occurs. While Mouelhi et al. stick to the IA-setting and express assumptions and
guarantees on data states by decorating actions with pre- and post-conditions, respectively,
none of the essential results that we treat in Sects. 3—7 are shown.

For an interface theory built upon the more expressive MTS setting, Bauer et al. [1,2]
also introduce data via pre- and post-conditions with the idea of operation calls. But counter
to the optimistic view on component compatibility adopted by IA, they restrict themselves
to a pessimistic view, whereby components are already deemed to be incompatible if there
exists a system environment that causes a communication error. De Alfaro et al.’s Sociable
Interfaces [11] employs scoping and non-interference conditions to ensure that interfaces
can participate in sophisticated n-to-n communication schemes on global variables. The
semantics of sociable interfaces is not directly based on a behavioural preorder but uses a
related phrasing in terms of game semantics. This semantics, however, does not abstract from
internal computation, which is also a limitation for [1,2].

Contributions This article demonstrates that IA permits a simple and faithful extension where
data are communicated via shared memory while activities are triggered by synchronizing
actions. To do so, we develop Interface Automata for Shared Memory (IAM) which, similarly
to [1,2,9,27], specify operation calls via pre- and post-conditions attached to transitions (see
Sect. 3).

@ Springer

Interface Automata for Shared Memory

Naturally, pre-conditions act as transition guards. As in [9,27], the post-condition of
an output-transition and that of a matching input-transition describe an assumption and
guarantee, respectively, on the data state obtained after the synchronization. Thus, an output-
transition may be understood as invoking an operation associated with the transition’s action,
whereas the matching input-transition describes how this operation manipulates the system’s
data state. One may think of the input-transition to actually perform the operation. This
approach contrasts the one in [11], where the inputs contain only assumptions about the
change of data values and the outputs determine which values are produced. We adopt the
point-to-point, handshake communication model of IA that is inspired by the process algebra
CCS [26]. A communication error occurs if either, as in IA, a matching input is not provided
for an output, or if the new data state set by the input after synchronization does not obey the
output’s assumption.

We conservatively extend IA’s concepts of parallel composition and alternating refinement
to IAM, while preserving compositionality and abstracting from internal computation (see
Sects. 3, 4). Then, we formally prove that IAM can be embedded into IA, which implies that,
using IAM, one can reason finitely about component compatibility in IA, even when infinite
data domains are involved (see Sect. 6); this is an important aspect not considered in related
work. We also connect our abstract treatment of data via pre- and post-conditions, where data
states are implicit, to the concrete treatment known from ground semantics for (data-)closed
systems (see Sect. 7). Such ground semantics naturally encode data values into control states,
leading to infinite presentations in the presence of infinite data domains. For establishing
the connection, we define a reduction on IAM such that—under some restrictions—ground
semantics and finiteness are preserved. The key result is that this ground semantics is bisimilar
to the structure of the reduced IAM. Hence, we arrive at a finite presentation of the usually
infinite ground semantics, which we consider as our most original and interesting result.
The result shows that a cluster, as introduced above, externally behaves as an IA, i.e. as a
message passing system, so that our ground semantics provides the user with an often finite
description of the cluster’s behaviour.

This article expands the published extended abstract [16] in multiple ways. First, a detailed
introduction to IA and discussion of closely related work on extending IA with data is
given here (see Sect. 2), in order to make the article accessible to an as broad audience of
concurrency theoreticians as possible. Further, we extend the IAM setting with the possibility
to refer to the previous data state in post-conditions by distinguishing between ‘primed’
and ‘unprimed’ variables. Thus, it is now possible to specify that a value is preserved or
changed by some operation. The setting in [16] is equivalent to the current one if we refrain
from unprimed variables in post-conditions. Additionally, this article technically justifies the
pruning employed in parallel composition, includes all proofs of our results, and applies
our theory to an illustrative example. The latter also testifies to the practical importance of
primed variables (see Sect. 5.1). To testify that our theoretical research may eventually lead to
tool-supported interface checkers employed in software engineering practice, we have built
a first, prototypic, open-source IAM toolset that consists of a textual modelling language,
implements interface composition, allows for simulating interfaces and debugging them for
communication errors, automates refinement checking for simple data theories, and offers
the interactive exploration of counterexamples in case a refinement check fails (see Sect. 5.2).
Last but not least, we have improved the article’s presentation in particular regarding, but not
limited to, our ground semantics (see Sect. 7).

@ Springer

A. Schinko et al.

2 The IA setting

We start off with a brief technical introduction to the classical setting of Interface Automata
(IA) by de Alfaro and Henzinger [13]. This makes it easier to understand our extension with
data, and the concepts and results for IA are technically needed in Sects. 6 and 7 for our
shared-memory extension IAM. An interface automaton specifies a system component as a
labelled transition system over some input and output alphabets I and O, respectively.

Definition 1 (Interface Automata) An Interface Automaton (I1A)is atuple (P, I, O, —, po),
where

— P is the set of states with pg € P being the initial state.

— A =gr I U O is the alphabet consisting of disjoint sets / and O of input and output
actions, respectively, not containing the distinguished internal action t; (I, O) is the
signature of the IA.

— — C P x(AU{r}) x P isthe transition relation, and p = q is written for (p, o,) € —.

? ?
The IA is required to be input-deterministic,i.e. p' = p” whenever p = p’and p <> p”
for some p € P anda? € I.

Weusea,a?,al,o,a?and a! as representatives of the sets A, I, O, AU{t}, [U{r}and OU
{r} and simply write P foranIA (P, I, O, —, po), and similarly for TAM below. According
to the above definition, a transition is labelled either with an input action a?, an output
action a! or the internal action t. Here, ? and ! are just comments showing whether an action
is an input or an output. The actual name of the action is a; thus, two components of a parallel
composition can share an action a, which then necessarily is an input of one and an output
of the other component (see below). The two IAs synchronize on such actions a, resulting
in internal t-transitions; the IAs interleave on all other actions. In general, an a?-labelled
transition shows that the component is willing to synchronize on a. In contrast, an action a!
(like 7) is locally controlled (or local for short) and can always be performed disregarding
the environment. Thus, a! initiates a synchronization, and this requires an environment with
input a? to be ready to receive a with a corresponding transition. As an aside note that, in
[13], there can be several internal actions and the refinement does not allow one to rename
these. We avoid this issue by having a single internal action t only.

Definition 2 (Parallel Product) 1As (P, 1p, Op,—p, po) and (Q, Ip, Og, — @, qo) are
composable if Op N Og = ¥ = Ip N Ip. The product P ® Q of such composable TAs
is defined as (P x Q, 1, O, —, (po, qo)), where I =qr (Ip U Ip)\(Ap N Ap), O =gt
(Op U Op)\(Ap N Ap), and the transition relation — is the least relation satisfying the
following rules:

(p',q)if p i>p planda ¢ Ag;
(p.q")ifq —>Q ¢’ and o ¢ Ap;
(r'.q")if p —>P r.q —>Q q' for some a;
(p.a)ifpSp plg —>Q g’ for some a.
Note that we often drop the index from a transition relation whenever it is clear from the
context.

IfIA P outputs an action shared with IA Q at a state p but Q cannot receive it in its current
state g, a communication error occurs in state (p, g). The parallel composition prunes all

@ Springer

Interface Automata for Shared Memory

illegal states, i.e. all error states (p, ¢) as well as those states from which an error state can be
reached autonomously via local transitions; these are the states where the environment can no
longer prevent the composition of P and Q from entering an error state. This consideration
of errors makes the IA interface theory suitable for reasoning about component compatibility
and provides a means of error-awareness.

Interface Automata apply an open systems view with optimistic compatibility, assuming
that a composed system runs in a so-called helpful environment. Such an environment obeys
the operation guideline as given by the parallel composition P || Q (see below) and avoids
communication mismatches by controlling the composed component’s input actions. Other
theories such as [1,3] take a pessimistic view, where no assumptions about the environment are
made: any occurrence of a reachable error state leads to an incompatibility of the components.

Definition 3 (Parallel Composition) Given a parallel product P ® Q of IAs P and Q, a state
(p, q) is an error state if there is some a € Ap N Ag s.t.

! ?
-p & p' with a € I, but there is no transition ¢ a5 q’;
al o, . . e a?
— g — ¢q' witha € Ip, but there is no transition p — p’.

The set E € P x Q of illegal states is the least set containing all error states and those
ol

states (p, ¢) for which there is a transition (p, ¢) — (p’, ¢’) with (p’, ¢’) € E. The parallel
composition P || Q is then computed by pruning the illegal states, i.e. by removing all states
in E and their incoming and outgoing transitions. If (p,q) € P || Q, then states p and ¢
are compatible, written p || g; one also says that p || ¢ is defined. Furthermore, P and Q are
compatible if their initial states are compatible; otherwise, P || Q is undefined.

Proposition 4 (Associativity & Commutativity) If P, Q and R are pairwise composable 1As,
then (P || Q) || R and P || (R || Q) are either both undefined or (P || Q) || Rand P || (R | Q)
are isomorphic. Analogously, || is commutative.

IA supports the compositional refinement of systems via a notion of alternating simulation:
P refines Q if the input-transitions of Q can be simulated by P and, vice versa, the output-
transitions of P can be simulated by Q. By simply following this pattern, new communication
errors cannot be introduced during refinement. The pattern prevents the removal of specified
inputs needed to synchronize with outputs of an environment as well as the addition of
unspecified outputs, which would create new needs of synchronization. A weak transition =
stands for a finite and possibly empty sequence of t-transitions.

Definition 5 (Alternating Simulation) For IAs P, Q with the same signature, a relation R C
P x Q is an alternating simulation if the following conditions hold for all pRg and actions a:

() g LiQ q' implies 3p’. p Lie p’ and p'Rq’

(i) p L p/ implies 3¢’, q". q" 2 g’ with g = ¢” and p'Rq’.
(iii) p = p’ implies 3g’. ¢ = ¢’ and p'Rq’.

We write P T4 Q to say that P IA-refines Q, if there exists an alternating simulation R s.t.
PoRqo. Further, P is IA-equivalent to Q if P and Q [A-refine each other.

Intuitively, a state p refines ¢ if it matches all inputs of ¢ and, conversely, if ¢ matches
all outputs of p. Note that p may have additional inputs in which ¢ cannot engage and
which may be followed by arbitrary behaviour afterwards. It is not hard to show that the
TA-refinement T4 is a preorder and, as motivated above, a pre-congruence for parallel
composition. It is also easy to see that, for the latter result, an input of ¢ must immediately
be matched by p, i.e. without preceding ts; neither trailing s are allowed.

@ Springer

A. Schinko et al.

M selT?
?
comn? sel
relT!
mo ms

relC!
Fig.1 Vending machine M with signature ({selC,selT,coin}, {relC,relT})

selfie!

relC'? relT?

Fig.2 Customer C with signature ({atVM¢,atVMy,relC,relT }, {selC,selT ,selfie,coin})

el o] wpe oo

atVMc? atVMT?

selfie! mo, co) p selfie!
T

T O 4
’ (m1,c3) H (ma, c3) ‘

Fig.3 Parallel product M ® C (full graph) and parallel composition M || C (without the crossed-out part)

Theorem 6 (Compositionality of IA) Let P, Q, R be IAs and P Ty Q. Further assume
that Q and R are composable. We have: (i) P and R are composable; (ii) P || R is defined
if Q| Ris, andthen P || RCiy Q|| R.

We illustrate the concepts of IA with a simple vending machine example that consists of
two components, the machine—offering coffee and tea—and the customer (see Figs. 1, 2).

The machine M waits for the customer C to select coffee or tea (inputs se/C? and selT?).
In the case of coffee, the machine accepts a positive number of coins (transitions labelled
coin?), while tea is free of charge. Eventually, coffee or resp. tea is released (outputs relC/
and relT!). If the customer approaches the vicinity of the machine and is thirsty for coffee or
tea (inputs atVM¢? and atVM7 ?), she or he presses the appropriate selection button (outputs
selC! and selT!) and makes a selfie of her or him at the machine afterwards (output selfie!).
In case of tea, a British customer would also accept the drink without taking the selfie. She
or he then inserts some coins (output coin!) and waits for the drink to be dispensed (inputs
relC? and relT?).

For the parallel composition of M and C, one determines the product shown in Fig. 3.
Here, (m3, cg) is an error state, because m3 does not accept the coin offered in c¢. Therefore,
also states (m3, c5) and (mo, c4) are illegal, because they can locally reach (ms, cg). Thus,
M || C is M ® C without the tea vending cycle in the right half of the figure.

An TA-refinement C’ of C that accommodates the taste of Italian customers is shown in
Fig. 4. Customer C’ has an additional input relC? at state c;, because he or she would also

@ Springer

Interface Automata for Shared Memory

atVMe ?C atVMr ?
relCMelT?
Co

. |]
coin!

selfie! selfie!

relC'? relT?

Fig.4 Refined customer C’

accept coffee earlier. Moreover, C’ has learned from M, seen as an ‘operating guideline,” not
to pay for tea. The product M ® C’ is the same as M @ C except that (m3, cg) is no longer
an error state. Hence, M | C' = M ® C’. Note that the additional input at ¢, has no effect
on the composition.

3 The IAM setting

To capture shared memory in [A, our extension IAM additionally labels transitions by pre- and
post-conditions, similar to [1,2,9,27]. These allow us to abstractly specify and reason about
manipulations of global variables without modelling data states explicitly, i.e. as functions
from variables to values. Formally, the shared memory is represented by a set V of variables,
ranged over by x, y, etc., and all IAMs, as defined below, have the same set V of variables.
Pre-conditions are predicates over V, i.e. first-order formulas with interpreted function and
predicate symbols. Besides the propositional operators —, V, A and —, we employ the
usual arithmetic operators and predicate symbols such as <, = and >. The universe of our
predicates is denoted by Pred(V'), with representatives ¢, @, ¢1, etc. In order to represent
also post-values of variables, we introduce the set V' of fresh primed variables x’ for each
x € V. While x represents the value of x before executing the respective transition, the value
after is referenced by x’. We write ¢’ for ¢ where each x is replaced by x’. Post-conditions
are ranged over by ¥, ¥, etc. and taken from the set Pred(V, V') of predicates over VU V',

A data state over V, often represented by o or @, is a valuation o: V — D over a fixed,
possibly infinite domain D of values. The set of all these data states is denoted by [V]. To
take a transition, now also its pre-condition ¢ must be satisfied by the current data state o,
and we write o = ¢ in this case; further, we define [¢] =q4f {0 € [V] |0 E ¢}, and similarly
for predicates over V'. The post-condition v must be satisfied by o together with the new
data state & applied to the primed variables, and we write 0,5’ &= . Here,5: V — Dis
a valuation like o: because the post-condition refers to the next state with primed variables,
we introduce 3": V/ — D defined by o/ (x') = o (x) forallx € V.

Intuitively, a pre-condition acts as a guard for a transition. An output-transition labelled
(¢, al, ¥) specifies that it is only executable when the system’s data state satisfies pre-
condition ¢ and expects that the system environment, upon synchronizing on a, leaves the
system in a data state such that post-condition ¥ is satisfied. Similarly, an input-transition
labelled (¢, a?, ¥) is executable in data states satisfying ¢ and guarantees that it implicitly
manipulates variables only in ways such that the post-condition is satisfied. This corre-
sponds to an operation call: the caller performs an output-transition; this requires the callee to
execute a respective input-transition in each data state satisfying ¢, or otherwise a communi-
cation mismatch arises; the callee modifies the memory according to the post-condition of the
input-transition and requires the caller to accept this. A violation of the caller’s assumption

@ Springer

A. Schinko et al.

Vo 0] a? [2/=1)

a1
[z>0] b?

[2'=x]

Fig.5 Examples of communicating [AMs P and Q

gives rise to a (data-)error in the parallel composition (see Sect. 4). These mutual require-
ments are very different from the one-way requirement in an IA; thus, it is quite surprising
that we can nevertheless embed IAM into IA below (see Sect. 6).

Interface Automata for Shared Memory We can now formally define the notion of IAM:

Definition 7 (Interface Automata for Shared Memory) An Interface Automaton for Shared
Memory IAM) is a tuple (P, I, O, —, po), where P, I, O, pp and the related notations are
as for IA (cf. Definition 1) and — € P x Pred(V) x (AU {t}) x Pred(V, V') x P is the
transition relation. The states in P are also called control states.

For a transition (p, ¢, o, ¥, p’) € —, written p —(p, a, ¥) p’ for simplicity, its pre-
condition ¢ must be satisfiable, i.e. [¢] # ¢ and denoted by ¢ sat. There is a stricter
requirement for the post-condition: if one assigns values to the unprimed variables in
according to some data state o satisfying ¢, the resulting predicate 1 (o) must be satisfiable.'
This requirement can also be written as ¢ = 3X’. ¢, where 3X’ existentially quantifies over
all primed variables in ¥ and symbol = denotes logical entailment.

Moreover, the transition relation — is required to be data-deterministic for input actions,
i.e. for all p € P and different transitions p —(¢1, a?, ¥1)> p’ and p —(¢2, a?, ¥n)—> p”
with a? € I, the conjunction ¢; A ¢ is unsatisfiable.

In figures, pre- and post-conditions are set in square brackets. Note that the above definition
coincides with the one of IA [13] in case only the tautology true, written #, is allowed as
pre- and post-condition. In particular, the normally finer notion of data-determinism is then
the same as input-determinism, which is needed to achieve compositionality for parallel
composition (see Theorem 6). Data-determinism is needed in our approach for the respective
result (see Corollary 18).

Figure 5 shows two simple IAMs P and Q, where P can call operation a (output action a!)
in initial state po, provided that variable x has value —1 (pre-condition x = —1). [AM P
assumes that operation a adjusts the value of x to a positive one (post-condition x’ > 0),
and transitions to state p;. Alternatively, if x is non-negative (pre-condition x > 0), P can
serve a call to operation b in pg (input action b?), guarantees that the value of x remains
unchanged (post-condition x” = x), and transitions to state p,. Similarly, [AM Q offers
to execute operation a in state go (input action a?), provided that x has a non-zero value
(pre-condition x # 0), and transitions to state g; while guaranteeing that the value of x is
set to 1 (post-condition x” = 1). The resulting synchronization on action « in the parallel
composition of P and Q can only take place if x = —1 and then updates the value of x to 1.
The post-condition of Q’s transition always meets the assumption of P’s transition due to
x" =1 = x’ > 0. Parallel composition for TAM is fully introduced and discussed in Sect. 4.

1 For example, given o with o(y) = 1 and the predicate x' +y =3, theresultis x’ + 1 = 3. In other words,
¥ (o) results from ¥ by replacing any unprimed variable x with the syntactical element representing o (x).

@ Springer

Interface Automata for Shared Memory

Alternating simulation We now adapt alternating simulation from IA to IAM. First observe
that a single IAM transition may represent many transitions when explicitly considering the
underlying data state. This implies that the behaviour of a transition in one [AM might need to
be matched by multiple transitions in another [AM, i.e. by a family—an indexed collection—
of transitions. For example, the behaviour of a transition labelled with pre-condition x > 0
may only be covered in the other IAM by two transitions with pre-conditionsx = Oand x > 0,
respectively, where the former transition matches the behaviour for data states in which x
has value 0 and the latter in which x has a strictly positive value. Employing such families
makes our approach more flexible and sophisticated than the one in [9,27]. In the following,
families of transitions are indexed over some implicit index set with representative i. Such a
family could even be infinite, e.g. when encoding local data states with infinite domains; the
meaning of ¢ = \/; ¢; is clear also in such a case.

A weak transition = stands for a finite and possibly empty sequence of t-transitions
labelled with arbitrary satisfiable pre- and post-conditions. This is because an environment
component can always change a data state satisfying a post-condition to a data state satisfying
the next pre-condition. This also explains why pre- and post-conditions are simply ignored
in Item (iii) of the following definition.

Definition 8 (Alternating Simulation) For IAMs P and Q with the same signature, R C
P x Q is an alternating simulation if the following conditions hold for all pRq and ¢, a, ¥:

() g (¢, a?, V)~ g’ implies that there exists a family of p —(¢;, a?, ¥;)— p} with ¢ =
\/; @i and, foralli and all o, o |= ¢ A @; implies ¥;(0) = ¥ (o) and p/Rq’.

(i) p —(g,a!,) p’ implies that there exists a family of ¢; —(¢;, a!, ¥}~ g with ¢ =
\/; @i and, for every o with o = ¢, there is at least one transition g; —(¢;, a!, ¥;)— ¢/
of the family satisfying o = ¢;, ¢ = gi, ¥i(0) = (o) and p'Rq.

(iii) p —(¢, T, ¥ p’ implies that there exists a ¢’ with ¢ = ¢’ and p'Rq’.

We write P Crap O and say that P IAM-refines Q, if there exists an alternating simulation R

such that poRqo. Further, P is IAM-equivalent to Q if P and Q IAM-refine each other. Note

that “for all o with o =@ A @i, ¥i(0) = ¥ (0)” is equivalent to ¢ A @; A Y = V.

As for alternating simulation in IA and motivated in Sect. 2, inputs must be matched imme-
diately for IAM, i.e. leading and trailing ts are not allowed. Additionally, Cond. (i) shows
that pre-conditions are weakened while post-conditions are strengthened. The weakening of
a pre-condition keeps in line with IA in that refinement may introduce additional inputs. The
strengthening in the post-conditions ensures that refinement does not loosen guarantees, i.e.
strengthening prevents the refined system from generating more data states than specified.
Note that, as Cond. (i) covers input actions, the pre-conditions ¢; are pairwise disjoint due
to data-determinism.

Outputs are matched the other way around, as specified in Cond. (ii), which is analogous
to Cond. (i) except that, as in =4, leading ts are permitted when matching output-transitions.
The matching runs show that the same output can occur in the specification, at least in an
environment causing the appropriate changes of data states; this time, the post-condition of
the specification is stricter because it is a requirement. Cond. (iii) has been explained above.

Despite the fact that =74 does not consider families when matching transitions, our alter-
nating simulation T4 for IAM coincides with £;4 when considering only IAMs where all
pre- and post-conditions are equivalent to #z. For such IAMs, it does not matter with which
family member a transition is matched, any one family member would do.

An example illustrating alternating refinement is depicted in Fig. 6, where IAMs P,
0, R are defined over shared variable sets V = {x} and V' = {x’} with domain R such

@ Springer

A. Schinko et al.

[2<—-2] [2>—1] [2<-2] [2>~1] [z<0]
b! b! bl bl bl
[2/<2] [2/>—3] [2'<2] />3] [-2<a'<?|

Fig.6 Refinement P Cjaps O Tram R

that P Ciay O Tiam R. The input-transition ro «(x > 0, a?, tt)— r; of the most abstract
TIAM R is matched by transition gg —(x #0,a?, x" # O)—> q1 of Q, where the pre-condition
is weakened and the post-condition is strengthened. In turn, this transition is matched in P by
the transitions pg —(x >0,a?, x < O)—> p1 and po —(x <0,a?, x> 0)—> p3. The internal
transition of ¢; is matched by r; staying put.

For output-transitions, leading ts are allowed when refining. Transition
q2 —(x >—1,b,x" > —3)—> qs of Q is matched in R by the family consisting of
rp—(x <0,b!, =2 <x’ <2}>ry and r3 —(x > 0, b, x’ = 1} rs; observe that r| = r
and r; = r3. Note that R has overlapping pre-conditions in r{; unlike for inputs, data-
determinism is not required for local actions in IAM.

Theorem 9 (Preorder) Cjays is a preorder.

Proof Reflexivity immediately follows from the fact that the identity relation is an alternating
simulation. For transitivity, we let P Cjaps O and Q Ty R due to R and Ry, respectively.
We show that R =g {(p,r) | 3¢ € Q. pRi1g and gRyr} is an alternating simulation, too,
implying P Ty R. Obviously, poRro. Let pRr due to ¢ with pRq and ¢R,r, and
distinguish Cases (i)—(iii) according to Definition 8. Because Cases (i) and (iii) are easier
than Case (ii), we focus on the latter only. A transition p —(¢, a!, ¥}~ p’ implies the existence
of afamily g; —(¢;, a!, ¥}~ g} withgp = \/; ¢; and, forevery o with o |= ¢, there is at least
one transition g; —(¢;, a!, ;)= ¢/ of the family such that o |= ¢;, ¢ = gi, Vi(o) = ¥ (o)
and p'R1q;.

For every ¢;, we provide a state r; for which r % 7 and qiRar;. Consider the given
sequence =g, —(¢!, T, ¥ }> q? ... g —(¢7, T, ¥} ¢"! = g; forsome n > 0. Starting
from r} =4¢ r, we iteratively find 2, ... "' by Definition 8 (iii) such that r* = ! and
qikHRger for 1 < k < n. We conclude that r = ri and g; Ror; for ri =¢¢ ri"H.

For every transition of the family g; —(¢;, a!, ¥;)~ ¢/, there exists a family of transitions
ri.j i . al i > ri ; with ¢; = \/; ¢ ; and, for every o with o |= ¢;, there is at
least one transition r; ; —(¢; ;. al, ¥i j)~ rl.’,j of the family such that o |= ¢; j, ri N rij,
i,j(0) = ¥i(o) and ¢;Ror; ;. Thus, we have a family r; ; —@i,j.al, i) r ; with
v = Vo = V,; \/j ¢;,j and, for every o with o0 = ¢, there exists a transition

gi ¢, al, ¥i)> ¢! with o = ¢; and a transition r; j —(¢i,j, al, ¥ j > ri’j of the fam-

@ Springer

Interface Automata for Shared Memory

ily of transitions of R such thato = ¢; j,r LN ri N rij, Vi, j(0) = ¥i(o) = ¥(o) and
P'Rr] ;- This family matches p —(¢, al,)~ p. O

Note that the decidability of alternating simulation for finite-state IAMs depends on the
logic chosen for expressing pre- and post-conditions. Above we picked first-order logic, for
which implication is known to be undecidable. We leave the question as to which logic is
most suitable for future work.

Related work We close this section by discussing the differences of our IAM setting to the
most closely related work, namely the publications of Mouelhi et al. [27], Bauer et al. [2]
(which extends [1]) and de Alfaro et al. [11]:

Mouelhi et al. The paper [27] has served as our original motivation for [AM. We adopted
Mouelhi et al.’s symbolic handling of data and their intuition of outputs triggering operations,
with the exception that they fix a pre- and post-condition for each action, while we do so for
each action instance. This results in larger expressiveness by being able to consider different
caller states, as does our addition of primed variables. However, the notion of communication
error—due to a missing input or because the pre- or post-conditions of caller and callee do not
fit—are the same in [AM as in [27]. The latter should be checked statically for each action a,
and in case of a misfit, each state with an a-output directly gives rise to an error. Otherwise,
only the presence of input a has to be checked. Additionally, the variation of alternating
refinement studied in [27] does not consider transition families when matching and, thus, is
unnecessarily limited. Mouelhi et al. also do not prove the precongruence result wrt. parallel
composition, and leave important terms such as compatibility open to interpretation.

Moreover, ideas such as extending the set of variables when refining are neither explained
nor intuitive; we cannot see how then a pre-condition in the specification could imply one in
the refinement. As an aside, note that Mouelhi et al. base their work on an early version of IA
[12] and not [13], which uses a variation of alternating simulation but appropriately abstracts
from internal actions; in particular, output transitions are matched with weak transitions.
Bauer et al. In [2], shared memory is considered for an [A-inspired variation of modal transi-
tion systems [21], which increases expressiveness wrt. A by allowing one to specify outputs
that are compulsory and cannot be refined away. Parallel composition is, however, different
from IA in that Bauer et al. adopt the pessimistic view of compatibility, as explained in Sect. 1:
if acommunication error is possible, then parallel composition is undefined. This makes tech-
nicalities much easier, e.g. when proving a precongruence result. But it also disregards many
meaningful compositions. Therefore, we advocate the optimistic compatibility of IA, where
the description of a parallel composition can also be seen as an operating guideline that tells
the system environment how to use the components such that errors are avoided.

AsinIAM, Bauer et al. use pre- and post-conditions for modelling operation calls and their
effect on shared-memory data, and adopt the same notion of communication error. Moreover,
the memory available to a component is subdivided in [2] into local variables and external
variables. A local variable can be read and written by the component, and it can only be read
by another component provided the variable is declared to be visible. An external variable
is a local visible variable of another component. Additionally, each operation has a list of
parameters with values set by the caller. In case of a synchronization, the operation and the
shared variables are internalized but operations keep their names. Hence, such a variable only
allows a one-way information flow between only two components; this is not what is usually
called shared memory. Moreover, refinement does not abstract from internal computation:
each transition, even if is invisible, has to be matched by a single step with the same operation,
which is quite restrictive in practice.

@ Springer

A. Schinko et al.

A further study of Bauer et al. concerns the comparison of systems via inclusion of their
sets of implementations. Such a refinement is often called thorough and shown to be implied
by the refinement preorder adopted in [2]. Here, a state of an implementation consists of a
control state and a data state for the local variables. This is not unlike our ground semantics
(see Sect. 7), but the implementation is still open since the values of external variables are
not fixed. Instead, such a valuation is part of each transition label.

In addition, there is no discussion in [2] that one transition can end in some concrete data
state for the external variables, while the next transition might be performed from a different
data state. Surprisingly, there is also no requirement that pre- and post-conditions must be
satisfiable: if a data state o satisfies some pre-condition but there is no ¢’ satisfying the new
data state, then there might be no implementation for such a specification.

De Alfaro et al. Sociable interfaces [11] also employ automata, called modules, but in contrast
to [A, de Alfaro et al. allow a module to use the same action both as input and as output,
consider a multicast parallel operator, and do not abstract from internal actions for refinement.
Each module has local and global variables, where local variables describe the module’s state.
Further, for each action a, a module has a set W (a) of variables that it can modify, which
interestingly might contain none of the local variables; in the latter case, a cannot change
the state, which is a bit peculiar. In a parallel composition, W (a) always contains all local
variables, and an output ¢ modifies the values of W (a), while the input requires that these
are acceptable. Hence, sociable interfaces are not meant to model operation calls.

Sociable interfaces are equipped with a semantics in terms of a two-player game, where
one player controls input actions and the other controls output actions. Moreover, the module
states are partitioned into the two sets iSet (called ¢’ in [11]) and oSet, with the aim of the
input (output) player being that the game does not leave iSet (oSet). In the product of two
modules, the good states are defined, in standard terms, as the non-error states. On the basis
of the good states, the old iSers and the winning states for input, the iSet of the product is
modified and this gives the parallel composition. However, the relation of this construction
to standard pruning is not clarified in any way in [11], and this is not obvious to us.

To conclude, we point out that it might well be useful to add local variables to IAM in the
future, similar to [2,11]. But, for the time being, this would only obscure our issue, namely
to study an IA-like setting where data is communicated by shared memory while operations
are triggered by synchronizing actions. From the perspective of the present article, local
variables are just syntactic sugar: if an interface has local variables x and y, we can choose
states of the form sy, where the index gives the current variable values. For this to work, it
is important that our IAM theory treats infinite state systems.

4 Parallel composition

This section extends the parallel operator of IA, as outlined above, to IAM.? Two IAMs P
and Q can be composed, if each action that is in the alphabets of both is an output action in one
IAM and an input action in the other. When the overall system composed of P and Q is in data
state o and P is in control state p with p —(¢,, a!, ¥,)> p’ such that o |= ¢, then P can
performactiona!.If Qisinstate g anda € Ig,atransitiong —(¢q, a?, ¥)> ¢’ suchthato =
@g is required, i.e. Q has to perform the operation invoked: such a transition provides a new
data state & witho, o’ = Y. If each such o meets the expectation of P, i.e. o, =Y p (and
Y4(0) = ¥p(o)inDefinition 1(P!?)), the data state changes from o to & and the components

2 Recall that all IAMs have the same set V' of variables.

@ Springer

Interface Automata for Shared Memory

jointly move from (p, ¢) to (p’, q¢’). Otherwise, we have a communication mismatch, and
(p, q) is an error state. This also holds if there is no transition ¢ —((pq, a?, wq)—> q' with
0 = @4. As for IA, all error states are pruned in the parallel composition of P and Q; the
same applies for those states from which reaching an error cannot be prevented by any system
environment.

Definition 10 (Parallel Product) IAMs (P, Ip, Op,—p, po), (Q,1g, Og, =, qo) are
composable if Op N Og = @ = Ip N Ig. The product P ® Q of composable IAMs
is defined as (P x Q,1, O, —, (po, qo)), where I =4t (Ip U Ip)\(Ap N Ap), O =gt
(Op U Op)\(Ap N Ap), and the transition relation — is the least relation satisfying the
following rules:

(PD) (P.q) ~(@p. . ¥p)> (P q) if p~(@p, . ¥p)>pp anda ¢ Ap:

(Pr) {p.q) _(qu o, l/fq)_> (P, ‘]/) ifg _(‘an a, 1/fq)_)Q ‘]/ anda ¢ Ap;

P! (P, q) _((pp N@q, T, 1//11)_> (r'.q) if ©p N @q sat, p _(‘pp’ al, Wp)_>P r,
q —((p ,a?, wq)—>Qq’ and Y4 (o) = ¥, (o) forall o with o = @), A @43

P (p.g)ep A T) (P q) B 9p A @y sat, p—~@p.al, Yp)sp P,

—(@g. al, ¥g)>04q and ¥, (0) = Yy (o) forall o with o = @) A @

BN

The asynchronous interleaving of autonomous transitions of P and Q is modelled by
Rules (P1) and (Pr). Rules (P!?) and (P?!) govern synchronization between P and Q. The
pre-condition of the synchronized transition is the conjunction of the pre-conditions of the
two involved transitions, as both must be fulfilled in the system’s current data state for P
and Q to engage in their transitions. To model the invocation of an operation, the input-
transition may alter the data state; accordingly, the synchronized transition is labelled with the
post-condition v,. This requires that the post-condition of the output-transition is respected,
leading to the implication ¥, (o) = ¥, (o) as explained above. The text “y, (o) = V¥, (o)
for all o with o |= ¢, A @, could be replaced by ¢, A @y A Yy = V).

Here, as already announced above, we deviate from the IA-approach—as do the authors
of [9,27]—in order to model operation calls properly as follows. A synchronization has two
phases: it is triggered by the caller’s output in the first phase, which requires a matching
input; in the second phase, the new data state is produced on the input side (i.e. by the
callee), requiring the outputting component (i.e. the caller) to accept it. Violation of one of
the requirements leads to an error.

Definition 11 (Parallel Composition) Given a parallel product P ® Q of IAMs P and Q, a
state (p, ¢) is an error state if at least one of the following conditions is satisfied:

(E) p—pp.al,¥p)> p' witha? € I, and there exists o s.t. o = ¢, but o = ¢
for all transitions ¢ —(¢, a?, ¥}~ ¢’

(EB) g —¢q.al,¥q)> q' witha? € Ip, and there exists o s.t. o |= ¢4 but o |~),
for all transitions p —(¢,, a?, ¥} p's

E?) p —((pp, al, 1/fp)—> p’ and there exists a transition g —((pq, a?, wq)—> q' and o
st.o =gy Ay and Yy (o) # Yp(0), ie. [y (0)] Q [V ()]

EMY) g —¢q.al, ¥} q' and there exists a transition p —(¢p,a?, ¥p)> p’ and o
st.o Ep Aggand (o) # Yg(o), ie. [Yp(0)] € [¥g(o)].

The set E € P x Q of illegal states is the least set containing all error states and the

states (p, q) satisfying (p, q) —(@, a!, ¥~ (p’, ¢') with (p’, q¢') € E; this is also called
Rule (Epb).

@ Springer

A. Schinko et al.

[w=|2] [z>0] [w>70]
P [I/;t.é?] Q [<0]

[t4] b7 [t]

. e
[2/# — 2] (] [z'>0]

[t1] b7 [t]

o2
[x';(]]

Fig.7 Parallel composition of IAMs P, Q, where Ip = {b}, Op = I = {a} and O =}

The parallel composition P || Q is obtained by pruning the illegal states. We also refer to
the set of illegal states of P ® Q asits E-set. The notions of state and component compatibility
are as in TA.

Rule (E!?¢) describes a situation where p performs a! in some data state o where g has
no a?-transition enabled by o. If (E!?v) applies, g has such an enabled a?-transition and it
is unique by data-determinism; but this transition can update the shared memory in a way
that violates the assumption of the a!-transition.

Note that the above definition coincides with the corresponding one for IA, if we consider
IAMs where only # occurs as pre- and post-condition. The latter guarantees that the side
conditions of the parallel product, i.e. ¢, A ¢, sat and Y,(0) = V¥p(o) for all o with
0 = ¢p A @y are satisfied trivially. Rule (E!?¢) states that g has no a?-transition, giving rise
to an error as for IA, and Rule (E!?v) is never applicable.

Figure 7 shows an example of a parallel product P ® Q and the effect of pruning. IAMs P,
Q synchronize on a where, e.g. po —(x =2,al,x # 2)—> p1 can only synchronize with the
upper transition ¢go —(x >0,a?,x' < O)—> q1 of Q: data state o with o(x) = 2 satisfies
both pre-conditions, and x’ < 0 = x’ # 2 for the post-conditions. Note that the pre-
condition x < 0 of the lower a?-transition from gg contradicts x = 2. The synchronization
results in transition (po, go) —~(x =2, 7,x’ < 0}> (p1,q1) in P ® Q. IAM P can perform
its b?-transition independently. Transition p3 —(x >0,al,x' = 0)—> p4 cannot be matched
by an a?-transition of go for x = 0, so (E!?¢) applies to (p3, qo). For x > 0, the upper
transition from go has a fitting pre-condition, but the new value of x could be —1; this
contradicts x’ = 0, so (E!?v) applies, too. Hence, (p3, qo) is an error state so that transi-
tions (po. qo) —(1t, b?, tty> (p3. qo) and (p3,qo) H(x =2.7.x" < O}> (ps.q1) in P ® Q
are pruned and not part of P || Q.

Itis important to observe that, in contrast to IA, an error may arise in a parallel composition
due to an output enabled in some data state, although a t-transition in which the output
participates may still exist in the product due to some different data state. For example, an

@ Springer

Interface Automata for Shared Memory

output a! might be offered when variable x has value 1 or 2, while the communication partner
only has input a? if x has value 1. This results in an error due to (E!?¢), but the product still
has a synchronizing 7-transition with pre-condition x = 1.

Clearly, one expects parallel composition to be associative and commutative. While the
latter is obvious, the former is not trivial in IA-like approaches. For our IAM-setting, the
associativity proof is given in Sect. 6.

Proposition 12 (Associativity & Commutativity) If P, Q and R are pairwise composable
IAMss, then (P || Q) || R and P || (R || Q) are undefined or (P || Q) || R and P || (R || Q) are
isomorphic. Analogously, parallel composition is commutative.

Preorder Tj4y7 is compositional wrt. parallel composition, which follows directly from
the properties of our embedding of IAM to IA in the next section (see Corollary 18). Before
showing this embedding, we wish to technically justify the notion of pruning which realizes
TIAM’s optimistic notion of compatibility that it inherits from IA. We follow the approach
adopted by us for Modal Interface Automata (MIA) in [5], which is based on so-called legal,
or helpful, environments as first introduced for IA in [13].

Definition 13 (Legal Environment) A legal environment for IAMs P, Q is an IAM U such
that

(i) U is composable with P ® Q;
(i) The reachable states of (P ® Q) ® U contain no error states, where ((r1, r2), 73) is an
error state, if some (r;, ;) with i # j is an error state according to Definition 11.

Intuitively, U prevents P ® Q from reaching an error state, so that one can think of a
legal environment as modelling a user with whom each desired system assembled from
concurrently running IAMs is composed at the end. Technically, our definition of legal
environment is more general than the one of de Alfaro and Henzinger in [13], because
we only demand composability for the signature. In the IA setting, de Alfaro and Henzinger
showed that two IAs are compatible if and only if there is a legal environment for them. As
in MIA, we can give a better justification for pruning:

Proposition 14 (Pruning Justification) Let P, Q be IAMs.

(1) P and Q are compatible if and only if there exists a legal environment for them.
1) (PR QO)QU = (P | Q) ®U, for any legal environment U for P and Q.

Hence, pruning only removes behaviour from P @ Q that is never reached in any legal
environment, i.e. when the composition is used properly.

Proof (i) “=":1If P and Q are compatible, then P ® Q has no locally reachable error

states. Composing it with an [AM U that has only one state, no transitions, no inputs,
and all inputs of P ® Q as outputs, yields essentially only those states that are locally
reachable from (pg, go). Thus, U is a legal environment for P and Q.
“«<=": Assume towards a contradiction that P and Q are incompatible,i.e. P® Q hasa
locally reachable error state (p, ¢). Then, forany IAM U, the IAM (P ® Q)®U either
has a locally reachable error state ((p, q), u), or there is a first output transition on
the path to (p, ¢) that U prevents by not providing the corresponding input transition.
This also results in a locally reachable error state in (P ® Q) ® U. Either way, U is
no legal environment.

@ Springer

A. Schinko et al.

[v<2 A c=1, 2] [v<l A ce=1,2]
comn? [¢t] [¢t] coin?
[v/ >v] ’ [v/>v]
[v>2] [v=2] [v=1] [v>1]
relC! done! [tt] done! [tt] relT!

[v'=v] [v'=v]

[v>2 A ch=v-2] [v>1 A ch=v—1]
relCh! [tt] relCh! [tt]

Fig.8 Specification M of the vending machine

[th=C]| [th=T] [tt]
[¢t] atVM? atVM? selT!
<2 A e=1,2] seicy [tt] [¢4] o] [v<IAe=05,
coin! [t c 1,2| coin!
[v" >] [v">v]
&

relC?
[v'=]

[v>2 A ch=v-2] [v>1Ach=v—1]
relCh? relCh?
[¢t] [tt]

Fig.9 Specification C of the vending machine’s customer

(i1) The claim can only fail if there is a state (p,q) € P ® Q that is illegal due to error
(p', q') butexists in (P ® Q) ® U in the form of some ((p, q), u). As just argued, the
path from (p, ¢) to (p’, g’) still exists in (P ® Q) ® U, or is prevented by U at some
stage leading to another error state. Either way, U is not a legal environment.

[m]

The correctness of pruning has also been investigated in the context of a linear-time

semantics for IA in [6], where a problem with the original version of IA [12] in the presence
of input-nondeterminism is pointed out and fixed.

5 Example
This section first illustrates the handling of data in IAM using a variation of the vending
machine example of Sect. 2. It then briefly introduces an initial, prototypic toolset-based

around our IAM theory, which supports modelling and simulating IAMs, debugging com-
munication errors, as well as checking and reasoning about model refinements.

5.1 The vending machine example, expanded with shared memory

The variation of our vending machine example (see Figs. 8, 9) considers, in particular, the
payment operation coin and the change giving operation relCh, the latter of which is supple-

@ Springer

Interface Automata for Shared Memory

[th=C] [th=T)
atVM? [tt] ppo o atVM? (it

[v<1l Ace=1,2]
T [v'>v]

[v>2 A ch=v—2] [v>1 A ch=v—1]
T [tt] T [tt]

Fig. 10 Parallel product M ® C

[v<2 A e=1,2]

[disc]
[v<1l A e=1,2|
coin? [v'=v+c|

[v<2 A e=1,2]
coin? [v'=v+(]

[v>1 A ch=v—1
relCh! [tt]

[v>2 A ch=v-2]
relCh! [tt]

Fig. 11 TAM-refinement M’ of vending machine M

mented with action done in case no change is given. Variable i stores whether customer C is
thirsty for coffee (value C) or tea (value T'); hence, this information is no longer encoded in
action atVM. Variable v stores the payment that the customer has made so far. Upon receiving
a selection selC or selT, machine M sets this value to 0. Variable v is updated in operation
coin; for coffee (tea), the machine never lowers (always raises) the value, while the customer
always expects an increase. Variable c holds the value of the inserted coin, which can be 50¢,
1€ or 2€. Note that, implicitly, ¢ is set by the customer when selecting a coin. The drink is
dispensed (operation relC) when v reaches the resp. price of 2€ for coffee and 1€ for tea.
Finally, the change computed in c# is returned in operation relCh.

The product M ® C is shown in Fig. 10. We discuss some of the transitions. In the 7-
transition from (mg, c4), actions selT! and selT? synchronize and M sets v to 0, while C does
not care about the value. The t-transition from (m4, ce) originating from the synchronization
on done is triggered by M if v = 1; customer C would also accept a lesser value. The pre-
condition of the t-loop at (m3, cs) is the conjunction of the pre-conditions of the underlying
coin-loops. But coin! is also triggered when the customer has chosen a 50¢ coin for the
cheaper drink. Because the machine does not accept such a coin, (m3, ¢5) is an error state
according to Rule (E?!g). The coin-transitions at m; and ¢, do not give rise to a t-loop
because M might keep the value of v, violating the assumption v’ > v of C. Also (m, ¢3)
is an error state since v’ > v does not imply v’ > v. Consequently, M || C just consists
of (mo, co). While M and C are formally compatible, this is only the case if the environment
ensures that the customer is never thirsty in the vicinity of the machine.

@ Springer

A. Schinko et al.

[v<2 A c=1,2] [disc]

T [p'=vtetl] 7 =0] [th=C] [th=T| [t]

atVM? atVM?

[tt] M ” c’ [tt]

[v,T:O] [v<1Ac=1,2]
T

[v>2] b=t

/=]

(m1,c2) (ma,c3)
[v<2 A e=1,2]

7 [v'=v+(]

[v>2 A ch=v-2] [v>1 A ch=v—1] [v'=v]

v=2] T[] 7 [1]

7 [v'=v]

Fig. 12 Parallel product and composition of M and C’, satisfying M’ @ C' = M’ || C’

To improve the situation, we IAM-refine M and C to M’ and C’, respectively. Refine-
ment C’ (not shown) is obtained from C by deleting the 0.5-option in the offending
pre-condition. Analogously to the IA-example, the customer has learned that 50¢ coins are
never accepted. On the machine side, refinement M’ (see Fig. 11) computes the correct pay-
ment v' = v + ¢ instead of v’ > v at m3. A similar change is made at m |, but here we have
a new feature, showing the splitting of the input selC? at mg. The refined machine M’ is
configurable to give a discount if variable disc is true. In this case, payment v is incremented
by one additional Euro for each coin, which actually happens exactly once. Observe that
data-determinism is maintained since disc A —disc unsat, while Definition 8(i) is satisfied
because disc v —disc implies #7. With these changes, we obtain M’ @ C' = M’ || C’, as dis-
played in Fig. 12. Because M’ T ap; M and C’ Ejap C, we also have M’ || C' Tjapyy M || C
and, indeed, (my, co) only has additional inputs in M’ || C’. Note that the behaviour after
a new input can be arbitrary, because inputs of the refinement do not have to be matched
according to Definition 8.

5.2 A prototypic IAM toolset

In order to demonstrate that tool support for the IAM interface theory is conceivable, we
have developed an initial, prototypical toolset, to which we refer as IAM Toolset. The toolset
is developed using various open-source technologies described below, is itself open source
and available for download and further development via GitHub [28] and comprises approx.
12,000 lines of code. It runs on Windows, Linux and macOS with installed JDK11. We have
used the toolset to check small examples that we had developed by pencil and paper, such as
the vending machine example above. Note that we do neither claim that the IAM Toolset is
fit for practical use by software engineers as is, nor that it scales to real-world examples of
concurrent systems.

Textual language To specify interfaces, we have developed a textual syntax for IAM, have
used the popular Xtext framework (https://www.eclipse.org/Xtext/) to realize this domain-
specific modelling language, and written an extension for Microsoft’s Visual Studio Code (VS
Code) editor (https://code.visualstudio.com). This has led to a state-of-the-art IDE for IAM,
with a modern editor that supports features such as syntax highlighting and code completion,
and a compiler—actually, more of an interpreter—for transforming the textual language into
TAM automata.

The textual language allows one to specify the underlying universe of global actions
(keyword actions), the shared global variables (keyword var) that are typed using built-

@ Springer

https://www.eclipse.org/Xtext/
https://code.visualstudio.com

Interface Automata for Shared Memory

eve vending.ia — vending

RUN... | D] No Configuratie~ | & - vending.ia b2 to0 i vending.ia X iz
> VARIABLES 1 actions { coin, selC, selT, done, relC, rell, relch, atvh } 4 proc Customer {
> WATCH 2 48 act { atvM?, coin!, selC!, relC?, selT!, rell?, relCh?, done? }
 CALL STACK [PRooucy ennon] 3 type CoinT { C1, €2, CO5 } o while {
TR vendingJa @D 4 type Drink { Coffee, Tea } 50 th == Coffee -> {
init ending. 865 = 51 atvn?
6 52 selC!
4 53 while {
s o s EEEXEEG) -> {05 ossuneQEEED ¥
18 Exception has occurred. x

> BREAKPOINTS. The post-condition implication is invalid: (v <28 c = (18 v <28&
11 proc Machine { =8V >=V) > (V' >V
 PRODUCT

12 act { coin?, selC?, relC!, selT?, rellt, relch!, done!)
R bast-condtion imblcation s 13 wnite { 55 V<28 == 2> { coint assume(v' > V) }
> e2sses=cleomvosd g s o> ¢ % reez > ¢
> [v<2a&c==Ci] coin! [v'>] 1 guarantee(v' == 6) 57 guarantee(v' == v)
¥ (true 8& true] [v == 0] 16 while { s break
> lnue] sec? [y == 0] 1 > 1 G svarantec QUESED } s y
> [true] selCH ftrve] 18 V<288 == C2 > { coin? guarantee(v' >z) } — o ¥ =
© {th== Coffee] atVM? (true] 19 vem2 o 6 case {
Independent transition 28) relc! assune(v' == v) 62 v <= 2 -> done?
> [th == Coffee] atVM? [true] i fanest 63 V> 28&ch=v -2 -> relth?
2 ¥ & ¥
2 ¥ & ¥
2% case { 6 th == Tea > {
25 V== 2 -> done! & atuwe
2% V> 288 ch == v - 2 -> relch! P sert
2 ¥ 6 while {
28 ¥ 70 Vel 5 -> { coin! assune(v' > v) }
29 selr? -> { 71 v<lEs -> { coin! assume(v' > v) }
30 guarantee(v' == 0) 7 velss > { cotn! assune(v' > W)}
5 wnile { 7% relr? -> {
32 V<188 c == C1-> { coin? guarantee(v' > v) } 7% guarantee(v' == v)
33 v <18&c ==C2->{ coin? guarantee(v' > v) } 75 break
3 ver 1o 7%
35 relT! assume(v' == v) 77 ¥
36 break 78 case {
37 i3 7 V< 1 o> done?
38 ¥ 8 V> 18k ch == v - 1> relth?
39 case { 81 }
40 v == 1 -> done! 82 ¥
a V> 186 ch == v -1 -5 relcht P ¥
42 } 84 }
@ s
44 } 85 init {
s} 8 sys prod = product (Hachine(), Customer())
46 87 sys comp = prune(prod)

88}
Ln54,Col39 Spaces:4 UTF-8 LF ia O IAIDEServer & (%

Fig. 13 Debugging the parallel product of vending machine M and customer C

in primitive types such as int and bool or custom-defined enumeration types (keyword
type), and the templates of interface processes (keyword proc). It also has an initialization
section (keyword init), where processes can be instantiated from templates (keyword sys),
composed in parallel (keywords product and composition for the parallel product and
composition, respectively) and checked for refinement (keyword refinement). In fact,
there is also an explicit pruning operator (keyword prune) such that composition is
simply product followed by prune. While Xtext assist us in realizing our language
interpreter’s front-end (approx. 1100 lines of code), the backend and, thus, all IAM operators
are implemented solely in the Kotlin programming language (approx. 9400 lines of code).
The various commands for instantiation, composition and refinement can also be executed
directly from VS Code (approx. 1350 lines of code in TypeScript) or the command line.
For checking static semantics constraints, we frequently call the Z3 SMT solver (https://
github.com/Z3Prover/z3), which we also use in the context of the product operator and IAM
refinement for checking logic implications that involve arithmetic expressions over shared
variables.

Figure 13 shows, in the rightmost two columns, snippets of the machine and customer
specifications of our vending machine example of the previous section, now cast in the
syntax of the IAM Toolset. The process template Machine first defines its input and output
alphabet and then defines interface behaviour via a guarded-command language enriched
with control structures such as while loops (with optional breaks), case statements,
sequential composition (via newlines or semicolons), or goto (jump to a 1abel). Guards
are on the left of symbol -> and constitute the pre-condition of the first action following
symbol ->. Post-conditions immediately follow an action and are labelled with keyword
assume for post-conditions of output actions and guarantee for post-conditions of input
actions; the rationale is that a post-condition of an output action a! abstractly specifies how

@ Springer

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

A. Schinko et al.

enve vending-refinement.ia — vending

vending-refinement.ia - vending-refinement.ia X m -
x _ 55 case { |
10 proc MachinePrimed { 56 v == 2 -> done!
1 act { coin?, selC?, relC!, selT?, relT!, relCh!, done! } 57 V> 2 & ch == v - 2 -> relCh!
12 label begin: 58 ¥
13 while { 59 goto begin
14 disc -> { 60
15 selc? 61
16 guarantee (V' == 6) y
17 while { 62 proc Machine {
18 Vv <28 c==Cl->{coin? guarantee(v' == v + 1+ 1) } 63 act { coin?, selC?, relC!, selT?, relT!, relCh!, done! }
19 V <2 & c == C2 -> { coin? guarantee(v' == v + 2 + 1) } 64 while {
20 vz 2> { 65 selt? -> {
21 relC! assume(v' == v) 66 guarantee (V! ==8)
22 goto end_coffee 67 while {
23 + 68 v <2 & c == C1 -> { coin? guarantee(v' >= v) }
24 } 69 vV <2 & c == C2 -> { coin? guarantee(v' >= v) }
25 b3 70 v=2->{
26 ~disc -> { 71 relC! assume(v' == v)
27 selc? 72 break
28 guarantee(v' ==) 73 b
29 while { 74 b3
30 V <2 & ¢ == C1 -> { coin? guarantee(v' == v + 1) } 75 case {
31 Vv <28 c == C2 -> { coin? guarantee(v' == v + 2) } 76 v == 2 -> done!
32 V=2 o> 77 v >28&ch==v -2 ->relth!
33 relC! assume(v' == v) 78 }
34 goto end_coffee 79 }
35 + 80 selT? -> {
36 } 81 guarantee(v' == 0)
37 } 82 while {
38 selT? -> { 83 v <1&&c ==Cl->{coin? guarantee(v' > v) }
39 guarantee(v' == 0) 84 v <18&c ==C2->{ coin? guarantee(v' > v) }
40 while { 85 v>=1->1{
41 v < 1&& c==Cl1->{coin? guarantee(v' == v + 1) } 86 relT! assume(v' == v)
42 v < 1&& c==C2->{coin? guarantee(v' == v +2) } 87 break
43 v>=1->{ 88 }
44 relT! assume(v' == v) 89 ¥
45 break 90 case {
46 } 91 v == 1 -> done!
@ b 92 v >18&ch==v-1->relCh!
48 case { 93 }
49 v == 1 -> done! 9 b
50 v > 18 ch==v-1->relCh! 95 }
51 b 9%}
52 } 97
53 3 t I
54 label end_coffee: 98 init { refinement(MachinePrimed(), Machine()) }
PROBLEMS ~ OUTPUT DEBUG CONSOLE ~ TERMINAL IA REFINEMENT A X
~ IMPLEMENTATION SPECIFICATION
< 23 Family 1 +0 [true] selC? [v' == 0]
+0 [disc] selC? [v' == 0] 2

+0 [1disc] selC? [v' == 0]

Ln4,Col1 Spaces:4 UTF-8 LF ia QIAIDEServer & (2

Fig. 14 Interactively exploring the refinement between machines M’ and M

the called operation a may modify the global variables, while a post-condition of an input a?
abstractly specifies how the global variables are modified when operation a is executed.
Missing pre- and post-conditions around an action are simply assumed to be true.

Debugging The left column in Fig. 13 reveals (see the section labelled Call Stack) that this
screenshot has been taken after instantiating machine and customer and computing their
product, which revealed a communication error between the interfaces. This error relates to
the highlighted lines 17 and 54, i.e. on the synchronization on action coin. The detailed
error message in the red box explains that the assumption is not met by the guarantee, and the
section labelled Product in the left column provides information via which series of actions
the error state is reached from the products initial state. As an aside, we wish to note here
that the IAM toolset has standard debugging features, including the setting of breakpoints,
that allow engineers the interactive tracing through interface processes, parallel products and
parallel compositions.

Refinement checking IAM’s notion of refinement, alternating simulation, has a convenient
characterization in terms of a two-player game [13], which we exploit so that users can
interactively explore in the IAM Toolset whether two processes are related under refinement.
A snapshot of such an exploration is shown in Fig. 14 where, in a first move of the game, the
initial sel1C? input action of the specification side (right-hand side), i.e. of Machine, was

@ Springer

Interface Automata for Shared Memory

P Q PllQ
L iy | o ! o
—

Fig. 15 TAMs P, Q and their parallel composition P || Q

chosen. The toolset now highlights the available se1C? families on the implementation side
(left-hand side), i.e. of MachinePrimed; in this case, there is a single family consisting of
two selC? transitions, one with pre-condition disc and one with its negation. In general,
our tool displays every family (i) consisting of members that have pre- and post-conditions
that match the requirements of alternating simulation (cf. Definition 8) and (ii) not including
amember already covered by others. The engineer now, in the matching move, picks the only
available family and continues the game by investigating the two transitions of the family.

The IAM Toolset also prototypes an automated refinement checker which reduces the
refinement problem between two IAMs to solving a Boolean equation system; note that
all IAMs specified in the toolset’s textual language are finite-state. The reduction is rather
straightforward and follows the lines proposed by Mateescu and Oudot in [24] who proposed
such a reduction for bisimulation [26]. We then employ the mCRL2 toolset [7] (https://www.
mcrl2.org) for solving the resulting Boolean equation system. In case a refinement does not
hold, the IAM Toolset synthesizes an attacking strategy so that an engineer might play a
game against the computer to gain understanding as to why refinement between the given
two processes is violated.

6 Embedding IAM into IA

This section shows that, while [TAM adds shared memory to the A theory, it does not alter IA’s
concept of component compatibility and refinement. IAM is rather an intuitive and possibly
finite abstraction for reasoning about possibly infinite data, which maintains the simplicity
that has made IA popular. In the following, we develop a behaviour-preserving translation
from IAM to IA such that our parallel composition and refinement match exactly those of
1A.

While our formal semantics of IAM is based on alternating simulation, we wish to

foster intuition here by considering an IAM P to have runs of the form (o9, po) 2,
Ap—1

@0, p)(o1, 1) =5 @1, p2) -. Ouety put) ——> (Gn—1, pa), for transitions
pi @i, o, Yiy> pi+1 with o; = ¢; and o;, E; = ¢, forall 0 < i < n. Note that o;
and o741 might be different, because interface theories consider open systems and P’s envi-
ronment can always interleave and arbitrarily modify the data state; we study and define
closed systems in Sect. 7.3

For our translation, one might consider to integrate data states into actions, so that the
above run gives rise to o« (oo, E{J) a1 (op_1, 5;71) as a sequence of actions, i.e. each
o; (o7, E;) is taken to be an (atomic) action. This idea is similar to, e.g. the translation of full
CCS into basic CCS in [26].

However, this translation does not work in general. Consider IAMs P, Q of Fig. 15,
where V. = {x}, V' = {x’} and D = {l, 2}. By the above idea, P would have tran-

3 Asan aside, also note that a formal treatment of linear-time semantics for IA can be found in [6,8,30,31];
lifting such semantics to IAM is left to future work.

@ Springer

https://www.mcrl2.org
https://www.mcrl2.org

A. Schinko et al.

IA for P a(z=2,2'=2)! IA for Q (IA for P) ® (IA for Q)
a(z=2,2'=1)?
[P1] -C:- (po,qo) | € E
a(z=1,2'=1)?

a(z=1,2'=2)!

Fig. 16 Intuitive, direct but inadequate translation of P and Q into IA

1a¢Q) “lo2Aa1})? IA(P) || IA(Q)

|
’ (po, q0) M (p1,q1) ‘

IA (P)

a(o2,{o1, 05!

B

a(o1,{o1, 05!

Fig. 17 Correct translation of P and Q into IA

. =1.x'=2)!
sition pg a(x—x—)» p1 in its corresponding IA, as shown in Fig. 16. The best match

a(x=1,x'=1)?

qo — > ¢ in the IA for Q is not good enough; thus, (pg, go) € E, i.e. the [As of P
and Q are incompatible. But there is no error according to Rule (E!?¢) in the operational

reality: Q decides about the new data state when answering the request of P. In other words,

x=1,x"=1)!
P would take the transition pg % D1

As a remedy, we translate an output-transition p —(¢, a!, ¥)}~ p’ of IAM P to multiple

!
TA transitions {p M p'loEe [¥()] €M C[V']} and analogously for input-

transitions. Pre- and post-conditions of t-transitions are simply suppressed. The reasons for

this choice are as follows. The first idea would be to use p oMy p with M = [y (0)],
because it is really the set of acceptable new data states that counts. To get a matching input-
transition, the same translation should be applied there. But such an input-transition could
have a smaller set according to its post-condition as in the example. To get the same input
action as the output, we allow all M D [y (0)] for inputs; such an M can be understood as
the guarantee that the new data state will be in M. This way, the IAs do not produce false
errors, and the real errors still occur in the translation if the output with M = [(0)] cannot
be matched.

Another issue is that, if we refine some p (¢, a!, ¥) p’, we could weaken the assump-
tion, i.e. the corresponding a (o, M)! would be refined by a(o, M')! with M C M’. To make
this possible, we also include supersets on the output side. This does not disturb the correct
handling of errors: if there is a matching input for a(o, M)!, there is also one for a(o, M')!.
Observe that taking supersets for inputs actually also allows for correct refinements, because
we have the same entailment ¥; (0) = (o) in Definition 8(i) and (ii).

To reflect on this translation scheme for our example IAMs P, Q, consider their trans-
lations IA(P), IA(Q) in Fig. 17, where o; stands for o (x) = i. Due to pre-condition #¢, the
transition of P is splitinto two transitions in JA(P), one each for the possible values of x in the
given domain. Because ¥ (01) = ¥ (02) = (x” € {1, 2}), the only choice for M is {o], 5}}.
Similarly, the translation scheme splits Q’s transition into two; each of these is again split
into two transitions, because ¥ (o1) = ¥ (02) = (x’ = 1) allows for choosing M = {o{}
and also M = {0, 0}}. This way, the resulting JA(P) and JA(Q) do not produce false errors
on action a(o7, {0}, 65}) when being composed. In other words, our translation ensures that
the weaker post-condition of P is taken care of by allowing the according weakening of Q’s

@ Springer

Interface Automata for Shared Memory

post-condition, while maintaining the semantics of Q by also including transitions for Q’s
original post-condition.

In such a scenario, more generally speaking, a(o, M)! is present for o satisfying the pre-
conditions of both P and Q whenever [yp(c)] € M, and a(o, M")? whenever [{g(0)] C
M’, where ¥p and Y refer to the according post-conditions in P and Q, resp. If no error
arises for o, i.e. if [o (0)] € [¢¥p(0)], each a(o, M)! is matched by a(o, M)?. Otherwise,
a(o, [Y¥p(o)])! does not have a match and the error arises in the translation as well.

We now formalize our translation and then work towards proving the correctness of the
induced embedding of IAM into IA.

Definition 15 (Embedding IAM into TA) TAM P is translated to the TA JA(P) =g
(P, I',0',—', po), where I' =gt {a(oc,M) | a € I,o0 € [V]and M C [V']},
O =¢4¢ {a(o,M) | a € O, 0 € [V]and M C [V’]}, and -’ is obtained from — of P
according to the following rules:

— p (@, a, ¥~ p' implies p 2257 1 foro = @ and M 2 [y (0)]; ¢
~ p—~¢. 7. ¥)> p implies p > p'.

This embedding satisfies two important properties: it is a homomorphism for parallel com-
position, as indicated in Figs. 15 and 17, and monotonic wrt. alternating refinement.

Theorem 16 (Homomorphism) IAMs P, Q are composable (compatible, resp.) iff IA(P)
and IA(Q) are. Then, IA(P || Q) and IA(P) || IA(Q) are identical.

Proof Composability only depends on the signature, and inputs (outputs, resp.) of an [AM R
give rise to inputs (outputs, resp.) of IA(R), so the first claim follows. Obviously, P ® Q
and JA(P) ® IA(Q) have the same state sets. The initial states also coincide. We proceed as
follows:

1. We show that P ® Q has the same error states as IA(P) ® IA(Q):

— (p, q) is an error state in P ® Q due to Definition 11 (E!?¢) or (E?'¢). W.l.o.g., P
has a transition p —(¢p, a!, ¥, }> p’, and some o with o |= ¢, satisfies o = ¢, for

i . . . M)!
all transitions g —(ﬁl’q, a?, I/Iq)—> q'. The p-transition gives rise to some p 2le,M) P

in JA(P) but, due to the condition o = ¢, state g has no input-transition with any
a(o, X)?. As aresult, (p, g) is also an error state in IA(P) ® IA(Q).

— (p, q) is an error state in P ® Q due to Definition 11 (E'M) or (EN). W.l.o.g., P
has a transition p —(¢p, a!, ¥,)~ p’ and, for some transition ¢ —(¢q, a?, ¥4 }> ¢’
and data state 0, 0 = ¢, A @, and ¥, (o) # V¥p(0). The latter means

. .. ll(O’,IIlﬁp(O’)]])! f

[Wy(@)] € [¥,(0)]. Now, IA(P) contains the transition p ——— p.

Due to data-determinism, the a(o, M)?-transitions of ¢ result from transition

q —((pq, a?, 1/fq)—> q',ie.M D [¥4(0)] and M cannot be [y, (c)]. Again, (p, q) is
also an error in IA(P) @ IA(Q).

a(o,M)!

— {p, q) is an error state in IA(P) ® IA(Q). W.l.o.g., IA(P) has a transition p ———
p’ that JA(Q) cannot match in state g. Thus, P has a transition p —(¢p, a!, ¥, }—> p’
with o = ¢, and [{,(0)] S M. By the definition of our translation, p can also
perform a (o, [, (0)]), while g cannot:

4 Note that infinite branching may occur in case the domain of variables is infinite and, thus, 7 "and O’ are
infinite. This may be unusual in interface theories, but the embedding exercise is rather a theoretical one aimed
at demonstrating that the IAM setting is not more expressive than the IA setting in principle.

@ Springer

A. Schinko et al.

— If TA(Q) does not contain any a(o, X)?-transition at ¢, then there is no
—((pq, a?, 1//q)—> g’ with 0 = ¢4 in Q. Thus, (p, g) is an error in P ® Q
due to Definition 11 (E!?¢).

— Otherwise, there exists only one transition ¢ —(¢,. a?, ¥4)> ¢’ with o |=
¢g in Q, due to data-determinism. Because g does not have the action
a(o, [V, (0)]), we get [, (0)] ;j [¥4(0)]. Again, (p, g) is anerrorin P ® Q
due to Definition 11 (E!?v).

2. We show that JA(P ® Q) isisomorphic to IA(P) ® IA(Q), except for outgoing transitions
of error states, and consider synchronized transitions first:

- If p—(gop,a!, 1/fp)—> p’ and q—(gaq,a?, wq)—> q', ¢p N @g sat and Y, (0) =
Y¥p(0) holds for all o with 0 = ¢, A @4, then the transitions synchronize to

(P, q) ~(0p A @gs T Wy) (P, q') in P ® Q. We get (p, q) = (p', q') on the left.
Choose o with 0 = ¢, A @, and M 2 [[wp(a)]] 2 [¥4(0)]. Then, we have

! M .
p seMy p' and g 2@ q', resulting in (p, q) — (p’, ¢’} on the right. Note
X
that all transitions p 20X} p’ are dealt with in this way, but possibly not all
a(o.X)?

transitions ¢ —— ¢’ stemming from the g-transition in Q; these are inputs and

do not arise on the right.

o.M
- If (p,q) 5 (p’,q') arises due top ¥> p’ and ¢ &) q' on the right,

then there are p —(pp, al, ¥} p' and g (@4, a?, ¥q)—> ¢’ with o = ¢, A ¢,
In case ¥4(0) # V,(0), state (p,q) is an error state in P ® Q. Otherwise,

(P, @) ~(#p A 9g. T W) (P, ¢) in P ® Q, and we get (p,q) = (p,q') on
the left, for all o such that o = ¢, A ¢,.

Unsynchronized transitions of P are “copied” into P ® Q and replaced by a bundle of
transitions on the left, and replaced by the same bundle that is copied into the product on
the right. The same holds for unsynchronized transitions of Q.

3. Due to Item (1), P ® Q and IA(P) ® IA(Q) have the same error states. Each illegal
state has a path of local actions reaching an error state at the end only. Hence, we can
conclude from Item (2) that both systems have the same illegal states, and IA(P) || IA(Q)
is defined iff P || Q is. Applying Item (2) again, we get that JA(P || Q) is isomorphic to
IA(P) || IA(Q).

Theorem 17 (Monotonicity) P Ty Q iff IA(P) T IA(Q), for all IAMs P, Q.

Proof “=": Assume P Ty Q due to the alternating simulation R. We show that R
is also an alternating simulation for JA(P) and IA(Q). First, poRgo holds for the IAMs
and, thus, also for the TAs. Let pRq and consider the following cases:

a@M)? , . . .

- q —> q' due to g —(¢,a?, ¥)> q’. Then, there is a family of transitions
p —(@i, a?, yiy> p; with ¢ = \/; ¢; such that, for all i and o with o = ¢ A ¢;,
we have ¥;(0) = ¥ (o) and p;Rq’. Further, &= ¢ and [y ()] € M due to
our translation. Hence, @ |= \/; ¢; and there is a unique i with @ = ¢;. Because

o,M)? .
[vi@)] S [¥@)] € M, we get p 2% b in IA(P) and piRg.

1
-p @M p' due to p—g,al,¥)y>p', o = ¢ and [¢(o)] € M. Then, there

is a suitable family of g; —(¢;, a!, ¥;)}> ¢/ with ¢ = \/; ¢;, and at least one of

@ Springer

Interface Automata for Shared Memory

[¢] a! [z=1] a! [+'€{1,2}]

P {2 (] g — T

[z=2] a! [2'€{1,2}]
Fig. 18 Example showing P # P’ but IA(P) = IA(P’), for IAM P of Fig. 15

these transitions g; —(¢;, a!, ¥;)}~ ¢/ satisfies o |= ¢;, g SN qi, Yi(o) = Y (o) and

p'Ra]. Now, ¢ £ g; also in IA(Q), ¢; “Z™% g/ due to [¥(0)] < [¥(@)] S M,

and p'Ry;.
— p = p’. This obviously leads to ¢ = ¢’ in IA(Q), for some ¢’ with p'Rq’

“«<": Assume IA(P) &4 IA(Q) due to the alternating simulation R. We claim that R is
also an alternating simulation for P and Q. Note that pgRgo holds for the IAs and, thus,
also for the IAMs. Let pRg and distinguish the following cases:
’ . . a(o, [y (e)])? ,
- q —p,a?, ¥)—> q'. Consider some o with o = ¢. So, ¢ —— > ¢’ and there

. al@,[y@Dh? .) . . .
is some p ———— p, with p_Rq’. The latter is due to a unique transition

P —(@s.,a?, Yo) p,, with o = ¢, which also satisfies [/ (0)] < [[W(cr)}].5 The
family of all these transitions satisfies ¢ = \/_ ¢ and, for all o with o = ¢, we
have o0 = ¢ A ¢, and ¥, (0) = V(o).

- p—(p,a!,y)> p'. Consider some o with ¢ = ¢. So, p m p’ and there

. . e a@[y@Dh! > .
is some g, with ¢ = g, and g ———— ¢/, such that p"Rgq/ . The latter is due

to some ¢, —(@o, a!, Yo)> g, with o |= ¢ and [V, (0)] < [(0)]. The family of
all these transitions in Q satisfies ¢ = \/ ¢, and, for each o with o |= ¢, the resp.
transition satisfies o = @5, ¢ = qo and Y, (0) = Y (o).

— p—@, T, ¥)> p'. We get the transition p — p’. Due to R, we obtain some ¢’ with
g = ¢/ inIA(Q) and p'Rq’. Hence, ¢ = ¢’ also holds in Q.

[m}

Using the last two theorems and Proposition 4, we can now prove the associativity of
parallel composition as stated in Proposition 12:

Proof IA((P || Q) || R) = (IA(P) || IA(Q)) || IA(R) is IAM-equivalent to IA(P) || (IA(Q) |
IA(R)) =IA(P | (Q | R))]

The embedding of IAM into IA is not injective due to at least two possible reasons,
although these are somewhat pathological. The first reason is that pre- and post-conditions
of t-transitions in an IAM are omitted in the translation. Hence, /A(P) cannot distinguish
between t-transitions with the same source and target but different pre- or post-conditions
in P. The second reason is that two different IAMs can have the same translation because
of visible parallel transitions. IAM P’ in Fig. 18 is not equal to P, but JA(P’) is the same
automaton as JA(P) shown in Fig. 17. Observe that, in general, two IAMs that are mapped
to the same IA are at least IAM-equivalent due to Theorem 17.

The compositionality of parallel composition for IAM now follows from the corresponding
property for IA [13] (see Theorem 6) and the above theorems:

5 The notation ¢ used in this proof does not stand for a univalent predicate as introduced in the next section.

@ Springer

A. Schinko et al.

el 3} P A=)
JJIE , a! s L
P[] sy o=

a? <p27x = 2>

Fig. 19 Example showing that gs(P) can be a quasi-IA

Corollary 18 (Compositionality) Ler P, Q, R be IAMs and P Tiapy Q. Further, assume
that Q and R are composable. We have: (i) P and R are composable; (ii) P || R is defined
if Q|| Ris, andthen P || R Ciaym Q || R.

Proof By Theorems 16 and 17, the assumptions hold for IA(P), IA(Q) and IA(R), and also
the assumption in (ii) carries over. For these, the result is known (see Theorem 6). Hence,
also P and R are composable (compatible, resp.) by Theorem 16. Further, JA(P) || IA(R) &4
IA(Q) || IA(R) implies IA(P || R) T4 IA(Q || R) by Theorem 16. Now, P | RCiapy QO || R
follows by Theorem 17. O

7 Ground semantics: data-closed IAM

Communication via shared memory works efficiently only for a limited number of com-
ponents that are locally close to each other. In practical applications, one has a group of
components that communicate among each other via shared memory and with their envi-
ronment via, e.g. message passing [18]. The group is modelled as a parallel composition of
IAMs with the understanding that the shared memory is local to this group. Technically, the
composition is itself an IAM that is data-closed as defined below. Informally, we speak of
a cluster to keep in mind that it represents a group closely connected by common data. To
sketch the use of our framework for designing shared-memory systems, we assume that the
communication with the system environment is just by synchronizing on common actions,
i.e. the environment is an IA and sees the cluster as an IA that is originally specified by some
1A Spec.

As the first step for implementing Spec, it has to be translated to an IAM Spec’, and we
demonstrate how this can be done towards the end of this section. Spec’ is developed with
the IAM design-process into a final cluster P. Now, the system environment needs an IA as a
behavioural description of P. As the main result, we show how to represent P by an IA that
refines Spec; under some restrictions, the construction even gives a finite IA if P is finite. Due
to the symbolic handling of possibly infinite data, this is not obvious. After Proposition 30,
when having obtained all formal results, we describe the design process from Spec to the
representation of P in greater detail. Until then, we concentrate on the representation of P.

In the previous sections, we have assumed that a control state p of P can be entered while
being in some data state o, and then left because of a data state o different from o. In a
data-closed system, such a change cannot happen since the shared memory is inaccessible
from the outside. To describe the behaviour of such a system, we present a ground semantics
where p can only be left via a transition whose pre-condition is satisfied by data state o. In
particular, pre- and post-conditions are now also relevant for t-transitions.

More formally, states of the ground semantics are pairs (p, o), where p is a control state
and o a data state. A transition of p with pre-condition ¢ is only kept for (p, o) if o = ¢.
Note that, in case of infinite data, there are usually infinitely many states, even if P is finite.

@ Springer

Interface Automata for Shared Memory

The ground semantics of a data-closed IAM P, denoted by gs(P), describes the behaviour
of P as seen from its environment, given some initial data state 0. Such an initial state would
not make much sense for an IAM since it could be changed immediately by the environment.
Automaton gs(P) is essentially an IA without pre- and post-conditions, but it might violate
input-determinism if several data states satisfy the post-condition of an input-transition.
Figure 19 shows an example with V = {x}, D = {1, 2} and an initial data state where x = 1.
In this section, we call such TA-like systems guasi-IAs. Similarly, a system that is an [AM
except for data-determinism is called a quasi-IAM.

Definition 19 (Ground Semantics) A data-closed IAM P is a tuple (P, I, O, — p, po, 00p),
where (P, I, O, — p, po) is an IAM and oy is the initial data state. The ground seman-
tics of such a P is the quasi-IA gs(P) =qr (P x [V], I, O, = gyp), {Po, 00)) such that

(p,o) ﬁ>gs(p) (p’, o) if there is a transition p —(¢, o, ¥)~ p p’ witho =g and o, = .

7.1 Reduction of a data-closed IAM

To fit the development of a shared-memory cluster into the IA-approach, we first define a
quasi-IA that properly reflects the behaviour of the final data-closed IAM P wrt. the ground
semantics, but is finite whenever P is (cf. Theorem 25). In turn, this quasi-IA is based on a
quasi-IAM to which we refer as the reduction of Pj; it has the same ground semantics as P.
Recall that state (p, o) of the ground semantics inherits those transitions of p whose pre-
conditions are satisfied by o. If another data state o satisfies the same pre-conditions as o,
then (p, o) inherits the same transitions as (p, o). The main idea is to merge such states.
Each merged state is essentially characterized by a conjunction of pre-conditions, written ¢
in the following definition.

Definition 20 (Reduction) Given a data-closed IAM (P, I, O, — p, po, 0p), assume that
each p € P has outgoing transitions indexed over some K, with pre-conditions ¢;, j € K.
For each J C K, let ¢; be /\jEJ 0j N /\j¢J —@;. Set J is called a p-index set if ¢ is
satisfiable.

The reduction of P is the data-closed quasi-IAM (red(P), I, O, = rea(P), {P0, ¥0), 00)
with the following properties:

— The set red(P) € PxPred(V) of states consists of all pairs (p, ¢;) with J being a
p-index set.

— If p~¢j, @ ¥)>p p’ and there are p- and p’-index sets J and J', resp., with jeJ and
@1 AV A, sat, then (p, o5) —(@1, o, @7 AYAQ) V> reacp) (P @)

— Predicate ¢ in the initial state (po, @o) is @ ,, Where J is the po-index set {;j | oo = ¢;}.

State (p, @) of red(P) represents all (p, o) in gs(P) where o = ¢;. Given p and o,
there is a unique p-index set J with o |= ¢; for this J, data state o satisfies ¢; iff j € J.
A state (p, @yg) corresponds to the data states that do not satisfy any pre-condition attached
to p; so all such states of red(P) have no outgoing transitions and could be identified with a
new state dead. Observe that there are finitely many formulas ¢ for a finite P; thus:

Lemma 21 (Finiteness) For any finite, data-closed IAM P, the quasi-IAM red(P) is finite.

Given the transition from p in Definition 20, consider some o with o = ¢;. Because
Jj € J, we have o |= ¢;, ¥ (o) is satisfiable and, for each feasible new data state & at p’,
one identifies the proper p’-index set J'. Then, & (which is applied to V') satisfies (o)

@ Springer

A. Schinko et al.

and ¢/, (obtained from the resp. pre-conditions, replacing each x by x’ first). Together,
0,0 E ¢ 1/\1///\(,0’1,. This explains the details of the transition of red(P) in the above
definition. It also shows that each transition from p gives rise to a transition from (p, ¢ ;) for
each suitable J; we refer to this in the proof of Theorem 29. Examples of reductions can be
found in Figs. 20 and 21.

Now, we show that gs(red(P)) is essentially the same as gs(P). This means that red(P)
and P have the same behaviour as seen from the environment. We call a state ((p, ¢j), o)
of gs(red(P)) data consistent if o |= ¢ ;. In other words, ¢ is an invariant for data consistent
states ((p, ¢s), o). All reachable states in gs(red(P)) are data consistent: the initial state is
data consistent, because ¢ is defined such that oy |= ¢¢. Furthermore, if o and &’ satisfy
the post-condition of a transition leading to (p’, ¢ /) in red(P), then & = ¢, i.e. the resp.
state ((p’, @), o) of gs(red(P)) is data consistent.

Similarly, we remark that only data consistent states of gs(red(P)) have outgoing tran-
sitions. All transitions in gs(red(P)) are based on transitions of red(P) and the data states
have to fulfill the pre-conditions of the outgoing transitions; these pre-conditions coincide
with the ¢ of the state of red(P).

Theorem 22 (Data consistency) Let P be a data-closed IAM. Each reachable state
of gs(red(P)) is data consistent. The quasi-IA induced by data consistent states is isomorphic
to gs(P) due to the isomorphism t: ((p,), o) +— {(p, o), note that o |= ¢;. The reachable
parts of gs(red(P)) and gs(P) are isomorphic due to the resp. restriction of L.

Proof After the above observations, it only remains to show that ¢ is an isomorphism. Because
the initial state of gs(red(P)) is data consistent and mapped to (pg, 09), this implies the last

claim. Let ¢ ({{p, 1), o)) = (p, o):

— Let ((p, @y),0) g)gs(red(p)) {{p', @;),T) be a transition from ({p, ¢;), o). This exists
due to transition (p, ¢;) —(@s. . @1 AV A @) reacp) (P @) With 0,7 = @5 A
U A (p’J,. In turn, this has arisen from a transition p —((pj, o, w)—>p p’ with j € J in P.
Hence,o = ¢;ando, o' = v, implying that there is the transition (p, o) 5 es(P) (D', 0)
in gs(P).

— Let (p, o) i>gs(p) (p’,) be a transition from (p, o), which has resulted from some
transition p —(¢;, o, ¥)—>p p’ with o = ¢; and 0,5’ = . This is the ith outgoing
transition of p, and since o also fulfills ¢ ;, we musthavei € J as observed above. Also as
observed, there is a unique p’-index set J' with& = ¢. Thus, o and &’ show o AY A/,
sat, and red(P) has the transition (p, @) —((pj, o, (pj/\W/\(p’J,)—ngd(p) (p’,). Hence,
(P, 91), 0) > gstreacry) (P, 91),) in gs(red(P)) and (((p', 9),5)) = (p', 7).

m}

We now define a simple translation of an IAM Q to a quasi-IA ia(Q). It turns out that
ia(red(P)) has essentially the same behaviour as gs(P), if P’s post-conditions do not contain
any unprimed variables.

Definition 23 (Quasi-IA Function) Quasi-IA ia(Q) results from IAM Q by deleting all pre-
and post-conditions.

The quasi-IA ia(Q) is only [A-like as we do not necessarily get an input-deterministic
system. Input-determinism is implied by data-determinism in combination with another prop-
erty (see below). Obviously, ia(Q) is finite if Q is. The notion of similar behaviour, as used
here, is (strong) bisimilarity. On IAs, this is much stronger than mutual IA-refinement.

@ Springer

Interface Automata for Shared Memory

p {70 [t] T red(P) —| (po, tt) [t T

[z'=z+1A , .,
y'=a'] ['=z+1 A y'=2']

=0l 7 i
I_ [y=0A
[2'=aA /
'—y] x'=x N\
y'=y y'=y]
[z'=xA
!
[t b! [£4] b!
’ [$ =x N\
[z'=aA I [y>0] 7
y'=y v [y>0A
y/zo] Yy

Fig.20 Example showing that ia(red(P)) and gs(P) are not bisimilar in general, where o (x) = og(y) =0

Definition 24 (Bisimulation) A bisimulation for quasi-IAs P, Q is arelation R C P x Q if
the following conditions hold for all pRq and «:

(i) p> p/implies 3¢'. ¢ = ¢’ and p'Rq’;

(i) ¢ > ¢/ implies 3p’. p > p’ and p'Rq’.

States p and ¢ are called bisimilar if pRq for a bisimulation R. Further, P and Q are
bisimilar if the initial states pg and go are bisimilar.

If P has no unprimed variables in its post-conditions, one obtains directly from Defini-
tions 19 and 20 that data consistent states ({(p, ¢s), o) and ({(p, @), o) in gs(red(P)) have
the same transitions, i.e. actions and target states coincide. Relating all such pairs results in
a bisimulation R on gs(red(P)) that is an equivalence. It is well known that merging such
equivalence classes gives a bisimilar system [20]. If we denote each class by the resp. (p, ¢j),
this system is ia(red(P)). With Theorem 22 and the above observation that ia(Q) is finite if
Q is, we have:

Theorem 25 Let P be a data-closed IAM. If P is finite, then ia(red(P)) is finite, too. If P
has no unprimed variables in its post-conditions, then ia(red(P)) and gs(red(P)), as well
as ia(red(P)) and gs(P), are bisimilar. They are IA-equivalent, if they are IAs.

Remark 26 The example in Fig. 20 shows that the restriction wrt. unprimed variables cannot
be dropped for this result; here, we do not show conjuncts # in the post-conditions of red(P).
The ground semantics of data-closed IAM P, with op mapping x and y to 0, has the sequence
ab'ab*ab’ ... of outputs as visible behaviour. On the resp. unique run, t-transitions and
visible transitions alternate. The states connected by t are bisimilar; each pair is characterized
by the number of bs before the next a and the number of bs after the next but before the next
but one a. Thus, no other states are bisimilar, and no finite quasi-IA is bisimilar to gs(P).
Although the ground semantics of the reduction red(P) is infinite, red(P) is finite, and so
is ia(red(P)). Hence, ia(red(P)) and gs(P) cannot be bisimilar.

Even worse, when we consider only quasi-IAs where outputs a and b are the only visible
actions, then the quasi-IAs are actually IAs. Taking all states as final states, we can regard them
as ‘possibly infinite finite automata,” which are language equivalent if they are equivalent

@ Springer

A. Schinko et al.

wrt. Cz4. The language of gs(P) consists of all finite prefixes of ab'ab?ab’ . . . ; this language
is not regular, so no finite IA is equivalent to the IA gs(P) wrt. Cj4.

The restriction regarding unprimed variables is clearly uncomfortable; we plan to study
how to weaken it in future work. O

7.2 Fitting the reduction to the IA-approach

As indicated above, we want to use a data-closed IAM P in a design process developing
an IA. For this, we would like red(P) to be an IAM and ia(P) and ia(red(P)) to be IAs.
This only holds under some restrictions. We first characterize those red(P) that violate data-
determinism.

Definition 27 (Transition ambiguity) Input-transition p —(¢, a?, ¥)— p’ of data-closed
IAM P is ambiguous if, for some p-index set J containing the index of this transition,
@7 A A @), is satisfiable for more than one p’-index set J'.

A predicate that is satisfied exactly by one data state o is called univalent and denoted
by ¢o; w.l.o.g. we assume that a univalent post-condition is written without unprimed vari-
ables.

Concerning the input-transitions of some state p in a data-closed IAM P, we observe
the following: if two transitions from p numbered i and j concern the same input a?, the
pre-conditions ¢; and ¢; contradict each other due to data-determinism. Thus, a p-index
set J can contain at most one index of an a?-transition for a fixed a?, i.e. there is at most one
p —(@,a?, ¥)—>p p’ that gives rise to a?-transitions from (p, ¢,). Still, red(P) might only
be a quasi-IAM: if a were an input in the example shown in Fig. 20, red(P) would otherwise
look the same and would violate data-determinism in state (py, #f).

Because every p-index set can contain at most one index of an a?-transition for a fixed a?,
a violation of data-determinism at some (p, ¢) can only arise from a single input-transition
at p, which is then ambiguous. Conversely, if p has an outgoing ambiguous a ?-transition as in
the definition, red(P) has more than one outgoing a ?-transition from (p, ¢) by the definition
of reduction. Hence, red(P) is not data-deterministic, because every outgoing transition of
(p, @) has the pre-condition ¢ . The latter also shows that data-determinism at each (p, @)
implies input-determinism and that ia(red(P)) is an IA.

We summarize, noting also that a transition with a univalent post-condition is unambigu-
ous, because the ¢/ at some state p’ contradict each other:

Proposition 28 Let P be a data-closed IAM.

(1) P has no ambiguous input-transitions iff red(P) is an IAM.
(1) If red(P) is an IAM, then ia(red(P)) is an IA.
(iii) Ifall input post-conditions in P are univalent, then P has no ambiguous input-transitions.

Obviously, ia(P) is input-deterministic, i.e. an IA, if every state of P has at most one
outgoing a?-transition for each input a. Due to data-determinism, this is guaranteed if all
pre-conditions of input-transitions are equivalent to true. The latter condition also allows us
to relate a data-closed IAM P and red(P) on the IA-level:

Theorem 29 (Reduction and IA-refinement) Let P be a data-closed IAM without ambiguous
input-transitions, where all pre-conditions of input-transitions are equivalent to true. Then,
ia(red(P)) and ia(P) are IAs and, moreover, ia(red(P)) Cja ia(P).

@ Springer

Interface Automata for Shared Memory

Spec’ —

[tt] a?
[tf]

red(P) —| (po, tt)

[tl] a?
o/ =1]

[t ! [t ¢!
[x'=1] z'=—1]

Fig.21 Example illustrating IAM’s application in the IA-context

Proof As noted above and by Proposition 28(i) and (ii), ia(red(P)) and ia(P) are 1As.
We show that R =q4¢ {({(p, @), p) | p € P} is an alternating simulation for ia(red(P))
and ia(P). Clearly, (po, ¢o)R po holds for the initial states. Let (p, ¢ ;)R p and consider the
following cases:

0
o p i>,-a(p) p’. For some ¢ and v, the transition p —(¢, a?, ¥) p p’ is a transition
of P, and ¢ is equivalent to # by assumption, implying that the index of the transition
is in each p-index set. As argued after Definition 20, there is some p’-index set J’

such that (p, ;) —(¢s. a2 5 AV A @)) reacp) (P’ @) (Actually, J is unique by
unambiguity.) This implies (p, @) a—),‘a(red(P)) (p’, @) with (p’, ;)R p’.
1
e (p,oy) i>l-a(,ed(p)) (p’,@y). The IAM red(P) has a corresponding transition
(P, os) —(Gﬂj, al,og AU A QD/J/)—>red(P) (p’, @) for some . Hence, P has some tran-

!
sition p —(¢;, a!, ¥} p p’ with j € J, implying p i>m(p) p’ with (p’, ;)R p'.
]

The following, final result shows how IAM-refinement fits together with IA-refinement:

Proposition 30 (IAM-refinement fits IA-refinement) Let P Ty Q due to an alternating
simulation R. Then, R also satisfies the conditions of an alternating simulation for ia(P)
and ia(Q).

Proof Let pRq. The case of t-transitions is obvious, because we ignore their conditions in
the ITAMs anyway. An input-transition of g is matched by a family of input-transitions from p.
Each of these results in a transition in ia(P) that matches the resp. transition in ia(Q). The
case of outputs is similar. O

We now describe in detail how one can implement a given IA specification Spec as a shared
memory cluster; explanations and the correctness proof are given afterwards. The inputs and
outputs of Spec are the external actions for the [AM-design. In the first step, we translate Spec
into an IAM Spec’ by decorating each transition with #f as pre- and post-condition, except
for the post-conditions of output-transitions. As first design choices, we select an initial data

@ Springer

A. Schinko et al.

state og and, for each output-transition, a single expected o, i.e. the post-condition is the
univalent predicate ¢/ . A possible resulting IAM Spec’ is given in Fig. 21.

To obtain a working implementation, one typically refines Spec’ by a parallel composition.
While developing this cluster in the [AM-framework, the overall system keeps the external
actions, and we require that the pre-condition of a transition with an external input is always
#t. Introducing new components introduces new actions; there are no restrictions for the resp.
transitions, and they are hidden after synchronization. Refining the new components, which
are not data-closed, demands TAM-refinement in order to have a precongruence.

We require the final cluster P to not have any unprimed variables in its post-conditions.
Furthermore, it must not have any ambiguous transitions, e.g. due to all post-conditions
of external input-transitions being univalent (cf. Definition 27). Then, ia(red(P)) IA-refines
Spec; as a faithful behavioural description of the data-closed IAM P, ia(red(P)) can be given
to the user of the shared memory cluster as an operating guideline. Preferably, P is finite so
that ia(red(P)) is finite as well, even if the common ground semantics of P and red(P) were
infinite.

This concludes the description of the design process. In order to demonstrate the technical
steps, we give a small example and, as we aim to keep things simple, we do not show any
components here. Instead, Fig. 21 depicts arealization P of Spec’, which has to be understood
as the parallel composition of the final cluster. Spec’, P and red(P) have the external inputs
and outputs as signature. Most interestingly, state p, in P has transitions with overlapping
pre-conditions. This leads to three satisfiable conditions ¢, which are equivalent to x < 0,
x > 0and x = 0. As x < 0 is always invalid after the r-transition in P, state p, results
in two reachable states in red(P); the post-conditions of the two t-transitions are suitably
adapted. The left-hand state inherits the two c-transitions where x > 0 is allowed, and the
right-hand state inherits only the c-transition where x = 0 is allowed; the pre-conditions are
adapted.

We close this section by motivating the initial choices for Spec’ and proving the correctness
of our method. Predicate # is chosen as pre-condition for output-transitions, because this is the
most general choice. These pre-conditions can be made stricter during refinement. Dually,
the post-conditions can be made broader, so we start from a minimal post-condition. The
conditions of t-transitions do only matter for the final cluster. Post-conditions # for input-
transitions are again most general. The pre-conditions of input-transitions being #f is only
necessary for the final P, where we have to apply Theorem 29, but it seems conceptually
easiest to require this throughout. This condition guarantees that the environment, which does
not have access to the shared memory, can really rely on the operation calls being accepted
as promised in the operating guideline. Obviously, ia(Spec’) is Spec.

As an aside, we note that Spec’ is isomorphic to red(Spec’); simply replace each p
by (p, tt). Furthermore, Spec’ has no post-conditions with unprimed variables. Hence, the
behaviour of the data-closed IAM Spec’ properly reflects ia(red(Spec’)) by Theorem 25, and
the latter is isomorphic to Spec. Therefore, the choice of Spec’ is intuitively well motivated.

The final cluster P is obtained from Spec’ by IAM-refinement. By Theorem 29, ia(P) and
ia(red(P)) are IAs and ia(red(P)) Cj4 ia(P). From P T4y Spec’ and Proposition 30, we
derive ia(P) Ty ia(Spec’), where the latter is Spec. Together, we have ia(red(P)) T4 Spec.
So, ia(red(P)) is an IA-refinement of Spec, and it faithfully shows the behaviour of P by
Theorem 25. Finally, ia(red(P)) is finite by Lemma 21, if P is.

Remark 31 One might think that these considerations could be simplified. The idea would

be to conclude red(P) Ty Spec’ from red(P) Ciay P. The TAM P in Fig. 22 and red(P)
in Fig. 23 show that the latter can fail in various ways. In this example, we have D = {1, 2},

@ Springer

Interface Automata for Shared Memory

Fig.22 IAM P with
red(P) Zijam P

[z=1] o'!
[z=1A 90/2,2]

Fig.23 IAM red(P) for IAM P of Fig. 22

V = {x, y} and o) maps x and y to 1. We write ¢; ; instead of x =i Ay = j and, therefore,
golf’j instead of x’ =i A y' = j, fori, j € D. In some of the post-conditions in red(P), we
have omitted some redundant conjuncts like #z. We assume that each of p», p3, p4 and ps has
a characteristic behaviour that is omitted in the figures, e.g. each has an input-transition not
occurring elsewhere. This way, no alternating simulation can relate any (p;, ¢ ;) € red(P)
tosome p; € P withi, j € {2,3,4,5}andi # ;.

Suppose that red(P) Cjap P due to some alternating simulation that relates (pg, x = 1)
to po. Due to the o-transition from (pg, x = 1) to (p1, ¢1,1), the simulation also relates

{p1, @1.1) to p1. Now, the first problem is that p; —(x = 2, i?, ¢} p ps must be matched
. 2,1

by an i-transition from (p1, ¢1,1) to {ps, tt). But there is no such transition, because the com-
mon pre-condition ¢ of the transitions from (py, ¢;,1) contradicts x = 2. More generally
speaking, the index of the i-transition above is not in the p;-index set giving rise to ¢1,1. Such
a contradiction cannot occur if all pre-conditions of input-transitions in P are tautologies,
which implies input-determinism.

The second problem is similar. Transition p; —(x =1,i?, goQ’])—) p p2 must be matched

by the only i-transition from (p1, ¢1,1). However, due to transition p; —(y =1,0!, <pi,1>—>p p3

@ Springer

A. Schinko et al.

and the construction of red(P), we have the pre-condition ¢ 1 in the latter IAM, and this
is not implied by x = 1. This effect can also occur if all pre-conditions of input-transitions
in P are tautologies.

Consider the transition (pg, x = 1) —(x =1loL,x=1A <pi,1)—> (p1, @1,1) in red(P) to
see the last problem. This must be matched by the only o-transition from pg. By the con-
struction of red(P), the post-condition of the given transition has an additional conjunct
that makes the post-condition stricter than x’ = 1. This also contradicts the definition of
alternating simulation. O

Finally, observe that also ia(P) Tju Spec, but ia(P) should not be used in place of
ia(red(P)). It might have outputs that cannot ever occur in the data-closed P, i.e. outputs for
which the environment does not have to care.

8 Conclusions and future work

Interface Automata (1A) [12,13] have laid the foundation for reasoning about the compati-
bility of concurrent system components and been extended in the literature in various ways
by shared variables for modelling data manipulating operations [1,2,9,11,27]. However, all
these works consider a more complex setting than IA [1,2], do not relate their proposed
semantics to an intuitive ground semantics [1,2,9,11,27], or do not abstract from internal
computation [1,2,9,11,27]. Thus, it has remained an open question whether IA permits a
simple and faithful extension to shared memory.

This article answered this question positively. Our interface theory IAM is a conserva-
tive extension of IA by shared memory. Similar to [1,2,9,27], we decorated action-labelled
transitions with pre- and post-conditions constraining data states. A pre-condition acts as the
transition’s guard, and a post-condition of an output (input) transition specifies an assump-
tion (guarantee) on the data state reached when executing the transition. We extended IA’s
concepts of compatibility, refinement and parallel composition to this setting, and provided a
translation from IAM to IA. The latter shows that ITAM accurately lifts [A’s concepts to shared
memory. In this sense, IAM keeps the simplicity that has made IA increasingly popular in
the formal methods community. But the clear advantage is that IAM attains finiteness even
when reasoning about infinite data domains. For our IAM theory, we implemented an initial,
prototypic toolset [28] using open-source technologies and applied it to a simple example,
thereby demonstrating that practical tool support is conceivable.

To prove that IAM treats shared variables as intuitively expected and that a cluster of
IAMs can be abstracted to an IA, we provided a ground semantics for data-closed [AMs.
This makes the data states, which are implicit in an IAM, explicit, and is not unlike the
implementation semantics of [2]. Most importantly, our presentation of the usually infinite
ground semantics is often finite. Data-closed IAMs may occur as a cluster of IAMs that
communicate among each other by shared memory, but via message passing with the system
environment. Thus, the cluster looks externally similar to an IA. We sketched an approach,
where under some restrictions, an [A as a specification is transformed into an IAM, which
in turn can be implemented by a cluster according to IAM-refinement. Then, the ground
semantics of the cluster IA-refines the specification, and it can be turned into a bisimilar
finite IA obtained from a reduction of data-closed IAMs.

Future work We propose to extend IAM with operators enhancing its practicality, namely
a conjunction operator that is needed when a component must satisfy several interfaces, as

@ Springer

Interface Automata for Shared Memory

well as operators for action scoping and variable scoping. The former is not as easy as for
IA [23], where two interfaces always have a common refinement since contradictions cannot
occur. In IAM, contradictions may arise due to transitions with conflicting post-conditions.
Action scoping can be realized by pruning inputs and hiding outputs [8]. Variable scoping
requires the introduction of an access control to IAM’s global variables [1,2,11].

Further, we plan to attach data invariants to IAM states. The idea is that, while a component
is in a state, a compatible system environment can only alter data in ways respecting the
invariant. This restricts the environments with which a component can be composed, thus
making shared variables more meaningful wrt. an open systems view. Variations like this
bring our theory closer to practical application; we then have to adapt our cluster result
accordingly, while replacing IA by message-passing systems.

Last, but not least, we wish to investigate the extent to which our prototypic IAM toolset
scales to realistic systems and whether it can cope with the variety of concurrent systems
developed in engineering practice. Certainly, scalability also depends on the logic chosen for
expressing pre- and post-conditions, which effects the computational complexity for deciding
alternating simulation.

Acknowledgements We thank the anonymous reviewers and also the reviewers of the extended abstract of
this article [16] for their helpful comments and suggestions.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bauer, S.S., Hennicker, R., Bidoit, M.: A modal interface theory with data constraints. In: SBMF, volume
6527 of LNCS, pp. 80-95. Springer, Berlin (2010)

2. Bauer, S.S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and data. Theoret. Comput.
Sci. 412(28), 3101-3121 (2011)

3. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refinement, and the
MIO Workbench. In: TACAS, volume 6015 of LNCS, pp. 175-189. Springer, Berlin (2010)

4. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinkemeier, P., Sangiovanni-
Vincentelli, A., Damm, W., Henzinger, T.A., Larsen, K.G.: Contracts for system design. Found. Trends
Electr. Des. Autom. 12(2-3), 124-400 (2018)

5. Bujtor, F,, Fendrich, S., Liittgen, G., Vogler, W.: Nondeterministic modal interfaces. Theoret. Comput.
Sci. 642(C), 24-53 (2016)

6. Bujtor, F., Vogler, W.: Error-pruning in interface automata. Theoret. Comput. Sci. 597, 18-39 (2015)

7. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wesselink, W., Wijs, A.,
Willemse, T.A.C.: The mCRL2 toolset for analysing concurrent systems—improvements in expressivity
and usability. In: TACAS, volume 11428 of LNCS, pp. 21-39. Springer, Berlin (2019)

8. Chilton, C., Jonsson, B., Kwiatkowska, M.: An algebraic theory of interface automata. Theoret. Comput.
Sci. 549, 146-174 (2014)

9. Chouali, S., Mountassir, H., Mouelhi, S.: An I/O automata-based approach to verify component compat-
ibility: application to the CyCab car. ENTCS 238(6), 3—13 (2010)

10. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput. 256, 253-286 (2017)

@ Springer

http://creativecommons.org/licenses/by/4.0/

A. Schinko et al.

20.

21.

22.

28.

29.

30.

31.

. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable interfaces. In: FroCoS,

volume 3717 of LNCS, pp. 81-105. Springer, Berlin (2005)

de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE, pp. 109-120. ACM (2001)

de Alfaro, L., Henzinger, T.A.: Interface-based design. In: ETSIS, volume 195 of NAII, pp. 83-104.
Springer, Berlin (2005)

Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. MIT
Press, Cambridge (1989)

. Fendrich, S., Liittgen, G.: A generalised theory of interface automata, component compatibility and error.

Acta Inf. 56(4), 298-319 (2019)

Gareis, J., Liittgen, G., Schinko, A., Vogler, W.: Interface automata for shared memory. In: Models,
Mindsets, Meta: The What, the How, and the Why Not?—Essays Dedicated to Bernhard Steffen on the
Occasion of His 60th Birthday, volume 11200 of LNCS, pp. 151-166. Springer, Berlin (2018)

Hatcliff, J., Leavens, G.T., Leino, K.R.M., Miiller, P., Parkinson, M.: Behavioral interface specification
languages. ACM Comput. Surv. 44(3), 16:1-16:58 (2012)

Holik, L., Isberner, M., Jonsson, B.: Mediator synthesis in a component algebra with data. In: Correct
System Design, volume 9360 of LNCS, pp. 238-259. Springer, Berlin (2015)

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIGPLAN Not. 43(1),
273-284 (2008)

Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence.
Inf. Comput. 86(1), 43-68 (1990)

Larsen, K.G.: Modal specifications. In: Automatic Verification Methods for Finite State Systems, volume
407 of LNCS, pp. 232-246. Springer, Berlin (1989)

Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and product line theories. In:
ESOP, volume 4421 of LNCS, pp. 64-79. Springer, Berlin (2007)

. Liittgen, G., Vogler, W.: Modal interface automata. Log. Methods Comput. Sci. 9(3:4), 1-28 (2013)

Mateescu, R., Oudot, E.: Improved on-the-fly equivalence checking using boolean equation systems. In:
SPIN, volume 5156 of LNCS, pp. 196-213. Springer, Berlin (2008)

. Meyer, B.: Applying “Design by Contract”. IEEE Comput. 25(10), 40-51 (1992)

Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

. Mouelhi, S., Chouali, S., Mountassir, H.: Refinement of interface automata strengthened by action seman-

tics. ENTCS 253(1), 111-126 (2009)

Nguyen, N.T., Liittgen, G. The IAM Toolset, 2021. Available at GitHub: https://github.com/uniba-swt/
ia-toolset

Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A modal interface theory
for component-based design. Fundam. Inform. 108(1-2), 119-149 (2011)

Schinko, A., Vogler, W.: Fault-free refinements for interface automata. Sci. Ann. Comp. Sci. 28, 289-337
(2018)

Vogler, W., Liittgen, G.: A linear-time branching-time perspective on interface automata. Acta Inform.
57(3), 513-550 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://github.com/uniba-swt/ia-toolset
https://github.com/uniba-swt/ia-toolset

	Interface Automata for Shared Memory
	Abstract
	1 Introduction
	2 The IA setting
	3 The IAM setting
	4 Parallel composition
	5 Example
	5.1 The vending machine example, expanded with shared memory
	5.2 A prototypic IAM toolset

	6 Embedding IAM into IA
	7 Ground semantics: data-closed IAM
	7.1 Reduction of a data-closed IAM
	7.2 Fitting the reduction to the IA-approach

	8 Conclusions and future work
	Acknowledgements
	References

