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Kurzfassung

Moderne Softwaresysteme werden zunehmend vernetzter und sind gezwungen
durch Netzwerke über die Grenzen von Organisationen hinweg zusammenzuar-
beiten. Die Entwicklung solcher verteilter Softwaresysteme wurde in den letzten
Jahren durch die orthogonalen Trends der Dienstorientierung und des Prozessbe-
wusstseins geformt. Diese Strömungen legen Wert auf technologische Neutralität,
lose Kopplung, Unabhängigkeit von der Ausführungsplattform und Standorttrans-
parenz. Ausführungsplattformen, die diese Trends unterstützen sowie Kontext
und Querschnittsfunktionen für Anwendungen bereitstellen, werden Engines
genannt.

Anwendungen und Engines werden durch Sprachstandards miteinander ver-
knüpft. Eine Engine implementiert einen Standard. Wenn eine Anwendung
konform zu einem Standard implementiert ist, kann sie auf der Engine ausge-
führt werden. Ein wesentlicher Aspekt der Verwendung von Standards ist die
Portabilität von Anwendungen. Portabilität, die Fähigkeit Software zwischen
verschiedenen Ausführungsplattformen hin- und herbewegen zu können, ohne
dass eine partielle oder völlige Neugestaltung notwendig wird, schützt vor der
Abhängigkeit von Softwarelieferanten und ermöglicht es, eine Anwendung auf
neuere Engines zu migrieren.

Das Aufkommen des Cloud Computings vereinfachte die Bereitstellung neuer
und skalierbarer Ausführungsplattformen. Bereits existierende internationale
Standards zur Implementierung dienstorientierter und prozessbewusster Software
bezeichnen die Portabilität von standardisierten Artefakten als wichtiges Ziel, um
einfache Plattformänderungen zu ermöglichen. Des Weiteren stellen sie plattform-
unabhängige Serialisierungsformate bereit, die die portable Implementierung von
Anwendungen ermöglichen. Dennoch zeigt die Praxis, dass dienstorientierte und
prozessbewusste Anwendungen heute in ihrer Portabilität begrenzt sind. Ein
Grund dafür ist, dass Engines selten einen kompletten Sprachstandard imple-
mentieren und stattdessen Teile auslassen oder sich in ihrer Interpretation des
Standards unterscheiden. Daraus folgt, dass sogar Anwendungen, die Portabilität
für sich beanspruchen, da sie konform zu einem Standard sind, dies nicht erfüllen.

Die vorliegende Arbeit trägt auf zwei Ebenen zur Entwicklung von portabler
dienstorientierter und prozessbewusster Software bei: Erstens liefert sie Belege für
existierende Portabilitätsprobleme und die Unzulänglichkeit von Standards zur
Sicherstellung von Softwareportabilität. Zweitens leitet sie einen neuartigen Be-
wertungsrahmen zur Quantifizierung von Portabilität ab und validiert diesen. Es
wird eine Methodik zur Bewertung der Standardkonformität von Engines in Bezug
auf einen Sprachstandard präsentiert und in einem vollautomatisierten Bewer-
tungswerkzeug implementiert. Mehrere Testsuiten von Konformitätstests für zwei
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verschiedene Sprachen, die Web Services Business Process Execution Language 2.0
und die Business Process Model and Notation 2.0, ermöglichen es, eine Vielfalt
von Standardkonformitätsproblemen in gegenwärtigen Engines aufzudecken. So
wird belegt, dass standardbasierte Anwendungsportabilität problematisch ist.
Basierend auf diesen Ergebnissen leitet die Arbeit einen Bewertungsrahmen
ab. Dieser Rahmen ist an die Methodik des ISO/IEC Systems and software
Quality Requirements and Evaluation Standards, der neuesten Version des renom-
mierten ISO/IEC Softwarequalitätsmodells und der dazugehörigen Messmethodik,
angepasst. Das Qualitätsmodell unterteilt die Softwarequalitätscharakteristik
Portabilität in die Subcharakteristiken Installierbarkeit, Adaptierbarkeit und Er-
setzbarkeit. Jede dieser Charakteristiken stellt einen Teil des Bewertungsrahmens
dar. Die vorliegende Arbeit behandelt jede Charakteristik mit einer separaten
Analyse, der Ableitung von Metriken, einer Evaluation und Validierung. Es wer-
den bestehende Metriken aus der Literatur diskutiert und neue Erweiterungen,
spezifisch abgestimmt auf die Evaluation von dienstorientierter und prozessbe-
wusster Software, abgeleitet. Vorgeschlagene Metriken werden formal definiert
und durch einen informalen sowie einen formalen Validierungsrahmen validiert.
Des Weiteren wird die Berechnung der Metriken prototypisch implementiert.
Diese Implementierung wird genutzt um die Leistungsfähigkeit der Metriken in
Experimenten auf Basis großer Softwarebibliotheken, die von öffentlichen und
quelloffenen Softwarearchiven erworben wurden, zu evaluieren.

Zusammenfassend liefert die vorliegende Dissertation Belege dafür, dass gegen-
wärtige Standards und deren Implementierungen nicht ausreichen um die Portabi-
lität von dienstorientierter und prozessbewusster Software sicherzustellen. Darüber
hinaus schlägt sie einen Bewertungsrahmen zur Messung von Portabilität vor
und validiert sowie evaluiert diesen praktisch.
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Abstract

Modern software systems are becoming increasingly integrated and are required
to operate over organizational boundaries through networks. The development
of such distributed software systems has been shaped by the orthogonal trends
of service-orientation and process-awareness. These trends put an emphasis
on technological neutrality, loose coupling, independence from the execution
platform, and location transparency. Execution platforms supporting these
trends provide context and cross-cutting functionality to applications and are
referred to as engines.

Applications and engines interface via language standards. The engine im-
plements a standard. If an application is implemented in conformance to this
standard, it can be executed on the engine. A primary motivation for the usage
of standards is the portability of applications. Portability, the ability to move
software among different execution platforms without the necessity for full or par-
tial reengineering, protects from vendor lock-in and enables application migration
to newer engines.

The arrival of cloud computing has made it easy to provision new and scalable
execution platforms. To enable easy platform changes, existing international
standards for implementing service-oriented and process-aware software name
the portability of standardized artifacts as an important goal. Moreover, they
provide platform-independent serialization formats that enable the portable
implementation of applications. Nevertheless, practice shows that service-oriented
and process-aware applications today are limited with respect to their portability.
The reason for this is that engines rarely implement a complete standard, but
leave out parts or differ in the interpretation of the standard. As a consequence,
even applications that claim to be portable by conforming to a standard might
not be so.

This thesis contributes to the development of portable service-oriented and
process-aware software in two ways: Firstly, it provides evidence for the existence
of portability issues and the insufficiency of standards for guaranteeing software
portability. Secondly, it derives and validates a novel measurement framework
for quantifying portability. We present a methodology for benchmarking the
conformance of engines to a language standard and implement it in a fully
automated benchmarking tool. Several test suites of conformance tests for two
different languages, the Web Services Business Process Execution Language 2.0
and the Business Process Model and Notation 2.0, allow to uncover a variety of
standard conformance issues in existing engines. This provides evidence that the
standard-based portability of applications is a real issue. Based on these results,
this thesis derives a measurement framework for portability. The framework
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is aligned to the ISO/IEC Systems and software Quality Requirements and
Evaluation method, the recent revision of the renowned ISO/IEC software quality
model and measurement methodology. This quality model separates the software
quality characteristic of portability into the subcharacteristics of installability,
adaptability, and replaceability. Each of these characteristics forms one part of the
measurement framework. This thesis targets each characteristic with a separate
analysis, metrics derivation, evaluation, and validation. We discuss existing
metrics from the body of literature and derive new extensions specifically tailored
to the evaluation of service-oriented and process-aware software. Proposed metrics
are defined formally and validated theoretically using an informal and a formal
validation framework. Furthermore, the computation of the metrics has been
prototypically implemented. This implementation is used to evaluate metrics
performance in experiments based on large scale software libraries obtained from
public open source software repositories.

In summary, this thesis provides evidence that contemporary standards and
their implementations are not sufficient for enabling the portability of process-
aware and service-oriented applications. Furthermore, it proposes, validates, and
practically evaluates a framework for measuring portability.
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1. Introduction

In today’s networked society, basically any computing system is a distributed one.
The advantages of distribution are well-understood and covered in established text
books, e.g., [1, 2]. However, distributed systems face a multitude of challenges in
practice and have to cope with ever changing hardware and software environments.
System size and the level of system interconnection increase [3]. At the same
time, systems are being revolutionized by new technological trends and devices at
an accelerating rate. Examples of such trends are process-awareness [4], service-
orientation [5], cloud computing [6], or the internet of things (IoT) [7]. Not only
these paradigm shifts, but also fierce market competition, force enterprises to
evolve their computing systems with respect to their hard- and software.

On the architectural level, distributed software systems are separated into
custom-purpose application software and general-purpose middleware, such as
application servers or execution engines. The middleware provides cross-cutting
functionality based on which custom applications are executed [8]. Addition-
ally, it offers standardized interfaces to application software, which enables the
transparent replacement of specific middleware products with newer and more
powerful versions. Especially the arrival of cloud platforms has opened up new op-
portunities for gaining performance or scalability improvements by switching the
platform or middleware on which an application is executed [6]. Put differently,
application software can be ported or migrated between different middleware
products and platforms that offer the same standardized interfaces to leverage a
plenitude of advantages [9]. This application portability is an enabler for software
evolution and the focus of this work.

One set of architectural and technological trends that favor simpler migration of
distributed application software is formed by Service-Oriented Computing (SOC)
and Service-Oriented Architecture (SOA). SOC is a computing paradigm that
calls for the construction of distributed software as sets of services instead of
monolithic applications [5]. Services are basic units of computation that support
rapid and low-cost development of heterogeneous distributed systems. They put
an emphasis on technological neutrality, interfaces, and loosely-coupled message-
based interaction [10, 11]. Alongside other benefits, these principles facilitate the
exchange of underlying middleware infrastructure. SOA denotes the architectural
paradigm with which service-oriented systems are developed. Service-oriented
systems have become ubiquitous today. SOC is an enabler for the current top
technology trend of cloud computing [12,13] and the paradigms can be combined
to much benefit [14]. Initially being closely tied to Web Services technologies [15],
SOC is evolving towards different architectural styles, such as Representational
State Transfer (REST) [16], or microservices [17]. The emphasis on technological
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1. Introduction

neutrality, interfaces, and loose coupling not only improves portability, but also
enables the composition of services [5,18]. Higher-level services with an added
value can be built on the basis of other services, by defining data- and control-
dependencies between their invocation in a process-driven manner [19]. The task
of service composition introduces another set of trends marked by Process-Aware
Information Systems (PAIS) [4, 20, 21]. The combination of the principles of
service-orientation and process-awareness in executable software artifacts is the
object of study in this thesis.

Process-aware information systems utilize explicit notions of processes, often
captured by representations of processes in process models, for designing, im-
plementing, and executing software [4, 20, 21]. Put differently, PAIS represent
software systems that are aware of the processes that underlie the software
execution. The use of PAIS introduces a variety of advantages for system devel-
opment [4, pp. 7 f.]. Examples are i) easier communication among the different
stakeholders of the system, due to the explicit representation of a process, ii) eas-
ier changes to the execution logic of a system, by adapting the positioning of
activities, instead of having to recode parts of the system, or iii) a better integra-
tion with verification and validation tools that can work with explicit process
representations instead of code. Moreover, process-awareness has frequently
been found to reduce cost and improve product quality [22]. The utilization of
PAIS is not limited to service composition, but extends to a variety of subject
areas [23]. Basically, the term can be seen as an umbrella for Business Process
Management (BPM) systems [20] and workflow management systems [24]. The
explicit notion of a process is fundamental to PAIS and has led to the definition
of numerous notations, standards, and languages for representing processes [25].
A subset of these notations and languages, e.g., [26–28], provide built-in facilities
for supporting service composition and aim at the direct execution of process
models on dedicated process engines [20, Sect. 3.1.1]. Engines serve as a layer of
abstraction for process execution and, in the terms of a distributed system, an
engine represents the middleware, whereas a process model is the application.
Referring to the migration scenario described in the first paragraph, process
models can be ported among engines to leverage the benefits of newer and better
engines.

Application portability depends on standardization and standard confor-
mance [29]. In theory, if processes are implemented in conformance to a stan-
dardized notation, which corresponds to the interface offered by different process
engines, they should be portable to any of those engines. This independence of
format and execution environment protects from vendor lock-in and is a major
design principle for process languages [30]. Notable international process stan-
dards, such as the Business Process Model and Notation (BPMN) [26], the Web
Services Business Process Execution Language (BPEL) [27], or the XML Process
Definition Language (XPDL) [31], name the portability of process models as
an important goal. For instance, BPEL claims to define “a portable execution
format for business processes” [27, p. 7] and BPMN states that its goal “is to
enable portability of Process definitions” [26, p. 20]. Since the provisioning of
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new execution environments is becoming increasingly easy and cheap with the
help of cloud platforms, leveraging the benefits of quick environmental changes
is becoming more and more realistic. This is emphasized by recent work on
application portability in cloud environments, e.g., [32–34], or the advent of
cloud-based process management systems [35]. Standardization initiatives for
cloud application portability, such as the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [36], make use of process standards such as
BPEL or BPMN for parts of their specification, precisely because these standards
are assumed to provide portability. TOSCA states that “the specification relies
on existing languages like BPMN or BPEL. Relying on existing standards in this
space facilitates portability” [36, Sect. 3.1]. In the case of TOSCA “portability is
inherited from the workflow language and engines used” [37, p. 83].

Despite the assumption that contemporary standards provide portability, the
porting of process-aware applications based on language standards faces severe
limitations in practice. The engines that implement international standards
rarely support the complete standard specification, but omit parts or differ in the
interpretation of the standard, which hampers porting in practice [38,39]. For
instance, a recent survey by DZone research [40] identified standards interpretation
differences as the highest rating obstacle to cloud integration. An analogy, which
many Internet users experience occasionally, can be observed for the Hypertext
Markup Language (HTML) standard [41], Cascading Style Sheets (CSS) [42],
and web browsers. HTML and CSS are used to define the structure and layout
of web pages that should be rendered identically with any web browser. However,
browsers do not necessarily support all parts of HTML and CSS and may even
support custom extensions. As a result, web pages might be rendered differently
in different browsers and also web applications might behave differently [43,44].
The same problem applies to the software in focus here. Standard-compliant
process models that can be executed on one engine might work only partly on
another one. In summary, it is not possible to solely depend on a standard for
achieving application portability, the implementation conformance of engines is
also critical [45].

As a result of standard conformance issues, the direct porting of process-
aware and service-oriented software, i. e., software implemented in dedicated
languages [26–28,31], currently faces many challenges. Consequently, many of the
advantages and benefits of platform and engine migration cannot be leveraged
and users are frequently locked into the engines they operate. This situation calls
for research on the portability of process-aware and service-oriented application
software. Work on application portability that takes current software environ-
ments into account is only in its beginning [32,33,46]. For instance, in the area of
cloud platforms, standards are lacking and approaches for improving portability
mainly aim to streamline different cloud platforms through the definition of new
standards, open libraries or services, or model-driven mappings to specific plat-
forms [46]. In the area of process-aware and service-oriented software, standards
are already in existence. These standards can be used as-is to approach the
problem of portability, instead of defining a new standard or model.
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1. Introduction

From a software engineering point of view, portability is a quality characteristic
of software. Hence, software quality improvement techniques can be applied
to enhance the portability of service-oriented and process-aware software. A
classic quality improvement technique, and a prerequisite for many others, is
software measurement [47, Chap. 1]. This technique deals with the quantification
of software characteristics, such as portability, through software metrics. When
applied in the context of agile techniques for software quality improvement,
such as continuous inspection [48,49], software measurement can lead to quality
improvement [48, 50–52]. Software portability has long been recognized as a
central characteristic of software quality and is part of many software quality
models, e.g., [53–60]. Nevertheless, only little work on measuring and quantifying
portability is available. One of the most renowned software quality models is de-
fined by the International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC) series of standards [53,57,58]. The quality
model is currently being revised in the context of the ISO/IEC Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) method [53] for software
quality measurement. This framework subdivides portability into several further
quality characteristics, namely installability, adaptability, and replaceability. The
reasoning behind this classification is that for porting an application, first a new
execution environment has to be installed. Thereafter, the application can either
be ported directly without modification or might need to be adapted or replaced
in part or whole.

This thesis addresses the portability of service-oriented and process-aware
software by analyzing the implementation conformance of process engines and
developing a measurement framework for portability aligned to the ISO/IEC
SQuaRE method. The following sections describe the research questions ad-
dressed in this work, outline its structure, and provide an overview of the
contributions made.

1.1. Outline of the Thesis

The research objective of this work is:

i) to investigate and gather evidence for standard-conformance induced porta-
bility issues that exist in service-oriented and process-aware software, and

ii) to design and evaluate a software measurement framework for quantifying
portability as a means of coping with portability issues.

On the one hand, this poses a number of research challenges, in terms of concept
and model development and formalization. On the other hand, it presents a num-
ber of engineering challenges, in terms of prototype implementation and practical
evaluation. We address the research objectives in a number of research questions,
which are detailed in the following Sect. 1.1.1. Thereafter, Sect. 1.1.2 describes
the methodology used to answer these questions and relates the methodology
and questions to the structure of the thesis.
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1.1. Outline of the Thesis

1.1.1. Research Questions

Although application portability is of high concern in the area of process-aware
and service-oriented software, and a design principle of process languages [30],
practical obstacles to porting applications are uncataloged. A number of studies,
e.g., [38, 39,61], report on standard-conformance induced portability issues, but
focus on singular language aspects or provide no comprehensive evaluation of
several standard implementations. Such a systematic study or benchmark that
provides a comprehensive evaluation of the support for the feature set of a
standard provided by several standard implementations is still lacking. Therefore,
the first step in this thesis is to investigate the current state of portability of
process-aware and service-oriented software. This is captured in the first research
question:

Research Question 1:

What is the current state of portability of service-oriented and process-aware
software?

It is a popular conception that all that is necessary to build portable software
is to implement an application in conformance to an international standard. If
an application conforms to a standard, it can be executed on any conforming
implementation of that standard. As a result, the availability of a standardized
serialization format for an application is often sufficient to silence a debate
regarding its portability. This forms a clear advantage for the implementers of a
standard over the users of an implementation. Support for a standard can be
easily claimed due to a lack of certification authorities.

As a consequence, to investigate the portability of service-oriented and process-
aware software, it is necessary to look at the implementation conformance of
existing execution environments [45]. Only if these environments conform to the
standards they claim to implement, the porting of applications is feasible. For
this reason, we divide the first research question into two subquestions. The
first subquestion challenges the assumption that the existence of standards is
sufficient:

Research Question 1.1:

Are current standards and their implementations sufficient for enabling
portability?

We address this question by benchmarking the implementation conformance of a
range of engines for service-oriented and process-aware applications. The results
of the benchmark demonstrate that huge differences in standard conformance
are the norm. Hence, the change of an engine is problematic.

Since application portability is not given per se, it becomes necessary to
examine what features typically hinder or reduce it. It can be expected that
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certain programming concepts or constructs are more problematic with respect
to portability than others. For instance, constructs related to parallel execution
might be less portable than constructs related to sequential execution. We
address this in the second subquestion:

Research Question 1.2:

What are existing portability issues and their implications?

If portability is problematic, the advantages of quick environmental changes
cannot be leveraged and system evolution is complicated. Therefore, the improve-
ment of the portability of service-oriented and process-aware software becomes
a relevant research goal. As a first step in this direction, we propose to apply
techniques of software quality improvement, in particular software measurement
and continuous inspection [49]. We discuss how such techniques work and why
they have the potential to improve software quality, or, with respect to this thesis,
to improve software portability. This leads to the question if and how portability
can be measured, the second main research question:

Research Question 2:

Is it feasible to measure the portability of service-oriented and process-aware
software?

A large body of work on software quality frameworks and models exists, e.g., [53–
59,62]. However, portability is not typically the focus of software quality eval-
uations, in particular for service-oriented and process-aware software. More
frequently, performance-related quality characteristics, such as throughput or
latency [63, 64], or application complexity, cohesion, and coupling [65, 66] are the
target of evaluation. As a result, little work exists on measuring and assessing
the portability of software in general, and of service-oriented and process-aware
software in particular.

To evaluate the feasibility of measuring portability, we select a software quality
model, based on a survey of several quality models, as foundational model for the
design of a measurement framework. The model selected is the ISO/IEC SQuaRE
model [53]. This model provides the common thread for the second part of this
thesis. In this model, the quality characteristic of portability is not defined as a
stand-alone and isolated characteristic of software quality, but as a conjunction
of a number of quality characteristics, notably installability, replaceability, and
adaptability. The model calls for the quantification of each of these characteristics
when measuring portability. A weighting of the characteristics is not part of the
model and they are considered as equally important. As a result, we address
each one by a set of dedicated software metrics, which, in combination, form
the measurement framework. The derivation, validation, and evaluation of these
metrics forms a separate research question for each quality characteristic, each of
which is dealt with in a separate chapter of the thesis.
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1.1. Outline of the Thesis

The starting point is the direct portability of an application, without the need
for adaptation or replacement. This aspect is addressed in research question 2.1:

Research Question 2.1:

What are suitable metrics for measuring portability?

Regardless of whether software can be ported directly, or has to be adapted
or replaced, it has to be installed into the new target execution environment.
Therefore, research question 2.2 focuses on the measurement of installability.

Research Question 2.2:

What are suitable metrics for measuring installability?

Although desirable, it can hardly be expected that software can always be
ported without any modification. Instead, nonportable parts of an application
must be adapted for the new target environment. The ease of this depends on
the adaptability of the software and should also be quantified. Adaptability is
addressed by research question 2.3.

Research Question 2.3:

What are suitable metrics for measuring adaptability?

Finally, if an application cannot be ported directly and it is hard to adapt, the
remaining option is to replace it as a whole. However, this can only be done if it
is replaceable by another piece of software. This can be determined by evaluating
its replaceability, which is the focus of research question 2.4.

Research Question 2.4:

What are suitable metrics for measuring replaceability?

To maintain scientific rigour when answering the research questions we use
a structured methodology and top-down approach to metrics definition and
evaluation. As indicated above, this leads to the structuring of the remainder
of this work. The methodology and structuring are the topic of the following
subsection.

1.1.2. Research Methodology and Structure

The research methodology used to answer the research questions and the structure
of the thesis is depicted in Fig. 1.1. The center of the figure shows the methodology
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1. Introduction

Figure 1.1.: Map of the Thesis

applied and the different steps of the work. Furthermore, it describes how the
different steps of the methodology relate to the research questions posed in
the previous section, i. e., it explains through which activities the questions
are answered. Finally, the figure also shows the relation of the steps in the
methodology to chapters of this thesis and explains where the answers to the
different research questions can be found. In the following, we explain each of
the different methodological steps and their relation to the research questions
and thesis structure.

To enhance the readability of the thesis, we streamlined the structure of the
different chapters, in particular of Part II. There, all chapters follow a certain
template when it comes to metrics definition and validation. The application of
the same template for every chapter is intended to facilitate reading comprehen-
sion. Moreover, we added margin notes to this section and the remaining parts
of the work to guide the reader throughout the document.

System
character-

istics

We begin by defining the characteristics of the systems that are the objects
of study and lay the methodological foundations. The central characteristics
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1.1. Outline of the Thesis

of service-oriented and process-aware software that are relevant to the topic of
this work are identified through a discussion of the literature. This includes
the foundational theory and technological background of, both, process-aware
and service-oriented systems, as well as a closer description of their synthesis.
We explain prevalent architectural styles of service-oriented systems in Sect. 2.1,
i. e., Web Services [15], REST [16], and microservices [17]. The characteristics of
process-aware information systems are described in Sect. 2.2, along with a sum-
mary of the languages used in the practical part of this work, i. e., BPEL 2.0 [27]
and BPMN 2.0 [26]. Sect. 2.2 also explains how process-awareness and service-
orientation can be combined for the task of service composition. This forms the
content of the first part of Chap. 2. Thereafter, Sect. 2.3 provides an overview
over several software quality models, which is the basis for the selection of the
ISO/IEC SQuaRE model [53]. We take a closer look at the relation between
portability and standard conformance, and motivate the necessity of evaluating
it. Furthermore, we describe the advantages and potentials of software quality
measurement, i. e., the reason why we design a measurement framework for porta-
bility. Finally, we discuss the theoretical foundations for defining, validating,
and evaluating software metrics in Sect. 2.4 and outline the architecture of our
prototypic implementation of a software metrics suite. In summary, Chap. 2 lays
the theory for answering research question 1 and its subquestions and presents
the approach for answering research question 2 and related subquestions.

Portabil-
ity issue
identifica-
tion

Research questions 1, 1.1, and 1.2, regarding the current state of application
portability and the sufficiency of standards, are conclusively addressed in Chap. 3.
This chapter demonstrates that the portability of process-aware and service-
oriented software is a real practical problem and provides evidence for it. We
begin by listing requirements for a standard conformance benchmark in Sect. 3.1.
Following this, we describe the design of the benchmark, including the systems
under test, the benchmarking tool and the benchmarking test suites in Sect. 3.2.
Through the benchmark, a variety of problems can be identified and an overview
of the current state of the art can be given, thereby advancing the state of
knowledge. These results are discussed in Sect. 3.3.

Metrics
deriva-
tion and
evalua-
tion

Each of the chapters of Part II, Chap. 4 to 7, focuses on a particular part of
the measurement framework, as prescribed by the software quality model defined
in the ISO/IEC SQuaRE methodology [53], and derives, defines, validates, and
evaluates a set of metrics. Each of the chapters uses a similar structure for defining
and validating the metrics, following common metrics derivation processes, like
proposed in, e. g., [67,68]:

1. Define the goal of the measurement, by specifying its purpose, the objects
of study, the quality focus and context, and the viewpoint taken.

2. Specify the questions to be answered by the metrics and experimental
hypotheses.

3. Define and validate the metrics.

In each of these chapters, we first state and motivate the measurement goal
as defined above and the question the metrics should answer. Thereafter, we
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derive and formally define a number of metrics based on the existing literature
and the problem domain and state their type and scale. This is followed by
their validation according to the validation approach described in Sect. 2.4. In
particular, this includes their theoretical validation, formally and informally,
with respect to measurement theory [69] and construct validity [70]. Thereafter,
we perform a practical evaluation, as described in Sect. 2.4.3. Alongside the
practical evaluation, we also state and evaluate a number of hypotheses. Chap. 4
focuses on portability, Chap. 5 on installability, and Chap. 6 on adaptability. For
replaceability, dealt with in Chap. 7, we deviate slightly from this methodology.
The reason for this is that a plethora of metrics for measuring replaceability
is already available and has been validated theoretically and practically. To
avoid the duplication of this work, we first perform a review of and a selection
from the body of existing metrics. Thereafter, we propose an extension to their
computation tailored to the focus of this thesis, and evaluate this extension.

Discus-
sion of
limita-

tions

The thesis is concluded by a discussion of related work in Chap. 8 and a
summary of contributions in Chap. 9. The final chapter also points out limitations
of our approach and open problems that offer areas of future work.

1.2. Contribution

The contribution of this thesis is twofold. On the one hand, it substantiates
evidence for portability issues that do exist in service-oriented and process-aware
software and the insufficiency of standardization for guaranteeing application
portability. On the other hand, it provides a novel approach for evaluating
portability that has been validated, both theoretically and practically:

1. Evidence for Portability Issues: We provide a detailed evaluation of the stan-
dard conformance of a total of eleven process engines. This includes open
source and proprietary engines for the two languages, BPEL 2.0 [27] and
BPMN 2.0 [26]. The evaluation uncovers a variety of standard confor-
mance issues, which result in portability issues. This advances the state of
knowledge. We identify areas of functionality that are particularly problem-
atic with respect to portability. Moreover, we investigate the impact that
standard conformance issues have on the expressiveness of the language
dialects supported by the engines with the means of workflow control-flow
patterns [71]. The benchmarking methodology we propose and implement
is independent of the respective process languages and engines and, hence,
can be extended easily. The benchmark is also fully repeatable and the
data we discuss can be reproduced by other scientists.

2. Measurement Framework: The measurement framework we propose is compre-
hensive with respect to the ISO/IEC SQuaRE method [53] and specifically
tailored to the evaluation of process-aware and service-oriented software.
The framework is new and has been validated theoretically with respect
to measurement theory [69] and construct validity [70]. The feasibility of
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the application of the framework is demonstrated by a prototypic imple-
mentation. This implementation is used for the evaluation of a large set
of realistic applications gathered from public software repositories in three
separate experiments.

Parts of these contributions have been submitted to scientific forums at different
stages throughout the dissertation project. This resulted in the publication of a
number of peer-reviewed workshop and conference papers, a book chapter, and
a number of non-peer-reviewed technical reports. The thesis is partly based on
these publications and we state at the beginning of a chapter or section, if this is
the case. In the context of this work, the following papers have been published
or have been accepted for publication:

1. Lenhard J., Wirtz G.: Building Orchestrations in B2Bi – The Case of
BPEL 2.0 and BPMN 2.0, Proceedings of the 4th Central-European Work-
shop on Services and their Composition (ZEUS), Bamberg, Germany, Febru-
ary 23 –24, 2012, [72]

2. Harrer S., Lenhard J.: Betsy – A BPEL Engine Test System, Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90,
Bamberg University, July 2012. ISSN 0937-3349, [73]

3. Harrer S., Lenhard J., Wirtz G.: BPEL Conformance in Open Source
Engines, Proceedings of the 5th IEEE International Conference on Service-
Oriented Computing and Applications (SOCA), Taipei, Taiwan, December
17-19, 2012, [74]

4. Kolb S., Lenhard J., Wirtz G.: Bridging the Heterogeneity of Orchestrations –
A Petri Net-based Integration of BPEL and Windows Workflow, Proceedings
of the 5th IEEE International Conference on Service-Oriented Computing
and Applications (SOCA), Taipei, Taiwan, December 17-19, 2012, [75]

5. Lenhard J., Wirtz G.: Detecting Portability Issues in Model-Driven BPEL
Mappings, Proceedings of the 25th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Boston, Massachusetts,
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in Service-Orientation: The Case of BPEL Engines, Proceedings of the
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8. Lenhard J., Harrer S., Wirtz G.: Measuring the Installability of Service
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International Conference on Service-Oriented Computing and Applications
(SOCA), Kauai, Hawaii, USA, December 16 - 18, 2013, Awarded Best
Conference Paper, [79]

9. Lenhard J.: Towards Quantifying the Adaptability of Executable BPMN
Processes, Proceedings of the 6th Central-European Workshop on Services
and their Composition (ZEUS), Potsdam, Germany, February 20 - 21,
2014, [80]
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gine Management in the Cloud, Proceedings of the CloudCycle14 Workshop,
Stuttgart, Germany, September 22, 2014, [81]

11. Geiger M., Harrer S., Lenhard J., Casar M., Vordran A., Wirtz G.: BPMN
Conformance in Open Source Engines, Proceedings of the 9th International
IEEE Symposium on Service-Oriented System Engineering (SOSE), San
Francisco Bay, USA, March 30 - April 3, 2015, [82].

12. Lenhard J., Geiger M., Wirtz G.: On the Measurement of Design-Time
Adaptability for Process-Based Systems, Proceedings of the 9th International
IEEE Symposium on Service-Oriented System Engineering (SOSE), San
Francisco Bay, USA, March 30 - April 3, 2015, [83]

13. Kolb S., Lenhard J., Wirtz G.: Application Migration Effort in the Cloud –
The Case of Cloud Platforms, Proceedings of the 8th IEEE International
Conference on Cloud Computing (CLOUD), New York, USA, June 27 -
July 2, 2015, [84]
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M. Reichert, R. Oberhauser, and G. Grambow, Eds., Springer-Verlag,
Germany, to appear, [85]

The experimental parts of the work resulted in several software tools and
proof-of-concept prototypes. The tools which the author built in the context of
this work, or significantly contributed to as a core developer, are:

betsy: The BPEL/BPMN Engine Test System is a conformance benchmarking
tool for BPEL and BPMN engines. It implements the benchmark for
standard conformance assessment discussed in Chap. 3 and is used to
uncover contemporary portability issues. It is available at https://github.
com/uniba-dsg/betsy1.

bpp: The BPEL Portability Profile is a tool for detecting portability issues in
the code of BPEL process definitions. It is used in the computation of
portability metrics and to provide a classification of model-driven mappings
of several specification languages to BPEL. It is available at https://

github.com/uniba-dsg/bpp.

1All links in this thesis have been last accessed on April 22, 2016.
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1.2. Contribution

prope: The PROcess-aware information systems Portability mEtrics suite is
the proof-of-concept metrics suite that bundles the computation of the
metrics defined in this thesis. It is a static analyzer that probes for porta-
bility issues in application code and highlights these issues by computing
metrics. The tool also includes the bpp tool described above as a li-
brary, which nevertheless is also maintained as a separate project, because
it is referenced and used in several research papers. Prope is available
at https://uniba-dsg.github.io/prope/.

All tool development was performed as open source and, therefore, all pieces of
software that are used for the experimentation in this thesis are publicly available.
All are free to use and are licensed with either LGPL or MIT license. These
tools can be used to reproduce the results presented in this thesis. In parts, the
tools also include the scripts used to perform the statistical computations and
significance tests presented in this work.
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2. Theoretical and Technological
Foundations

The design, implementation, and usage of service-oriented and process-aware
software has received considerable attention by the software industry and aca-
demics alike. Due to the diversity and interests of these groups, there is a lack
of common consensus with respect to the meaning of many terms in the area.
In this preliminary chapter, we synthesize these views and define the terms
used throughout this work. To begin, we define the term process-aware and
service-oriented software as follows:

Definition 1: Process-Aware and Service-Oriented Software

Process-aware and service-oriented software is software that combines service-
oriented and process-aware design principles and programming concepts, for
the implementation of executable programs.

It manifests itself in software applications that are written in languages
dedicated to the combination of service-orientation and process-awareness,
i. e., languages for implementing service compositions based on process models
that are executed on process engines.

This term is not commonly used in the literature. We introduce it in this work to
stress that our focus lies on executable software artifacts and not on conceptual
models or formal abstractions. Emphasizing the term software is supposed to
eliminate the overloading of the term process model, which is used to describe
many artifacts in the diverse literature of service-oriented and process-aware
systems, including executable applications and abstract models [23]. To make sure
that our notion can be properly positioned in the existing literature, we explain
its relation to other common notions in the area, such as service compositions [19],
orchestrations, or choreographies [86], in the respective parts of this chapter.

Structure
of the
chapter

We begin by explaining the nature and technological foundations of service-
oriented software and systems in Sect. 2.1 and of process-aware information
systems and applications in Sect. 2.2. We describe why process languages are
particularly useful for combining service-orientation and process-awareness and
briefly discuss predominant languages. Software applications implemented in
these languages are used in the practical parts of this work. This leads to the
definition of software portability in Sect. 2.3, including a discussion of contem-
porary software quality models. There, we also describe how software quality
measurement, the approach taken here, can help to improve portability. Finally,
we explain the theoretical foundations of developing, validating, and evaluating
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a metrics framework, and outline the functioning of our prototypic implemen-
tation of this framework. Taken together, this chapter lays the theoretical and
methodological foundations for answering the research questions specified in the
introduction.

2.1. Service-Oriented Systems

Service-oriented systems are systems that use services as the fundamental primi-
tive of computing [5]. On a conceptual level, services are platform-independent
and self-contained applications that offer self-describing and composable parts
of functionality via uniform and technologically neutral interfaces and inter-
act in a loosely-coupled fashion via message exchanges [87–89]. Initially being
closely tied to Web Services technologies [90], services can be seen as the next
evolutionary step in distributed computing originating from component-based
systems [91,92]. In the following sections, we discuss the central characteristics
of services and service-oriented applications, and the different architectural styles
and technologies that are used for their implementation.

2.1.1. Characteristics of Service-Oriented Systems

The rise of service-oriented systems and SOAs began at the turn of the millennium.
Though our focus in this work lies on technical reasons for their usage, SOAs
have also been found to provide economic benefits [93–95].

Since the conception of SOC a lot of technological advances have been made
and different styles, paradigms, and approaches for implementing service-oriented
software have emerged, i. e., Web Services [15], REST [16], and microservices [17].
SOA and the respective paradigms and styles have triggered industry hypes [96].
As a result, their boundaries are somewhat blurred [97] and it is hard to give a
uniform definition of the term service. Nevertheless, foundational articles [5, 87,
89,98], formalizations of the concept [88], agreements among experts [11], and
industry reference models [99] share a number of characteristics. Here, we build
on these works and define the term service as follows:

Definition 2: Service

A service is a platform-independent and interface-based computing facility
that:
• is described in a uniform, technology-neutral manner,
• allows for loosely-coupled message-based interaction,
• is transparent with respect to its location, and
• encapsulates an atomic unit of functionality.

Technical
benefits

of
services

The emphasis on these properties offer a variety of benefits for the implementation
of distributed computing systems [89,98,100,101]. The focus on technological
neutrality and platform independence leads to a higher level of intrinsic inter-
operability of software components and a higher degree of independence from
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vendor lock-in and portability of software artifacts. In [10], portability of service
implementations is also considered as an architectural principle. Loose coupling
and message-based interaction enables easier software reuse and allows for a
quicker adaption of single services, whereas location transparency makes it easier
to replace services in the face of failures. Finally, the focus on atomic units of
functionality ensures the single responsibility principle [102].

Figure 2.1.: Service Interaction Framework – adapted from [90, p. 69]

Service
interac-
tion
frame-
work

The term SOA denotes the architectural paradigm for structuring systems
of services [5]. In its core, a SOA is a form of client server architecture. The
general interaction framework is depicted in Fig. 2.1. This scenario includes
three parties: the service provider, the service requester, and the service registry.
The service provider offers the service functionality, described in a uniform,
platform-independent, and technology-neutral manner. The functionality is
accessible via loosely-coupled message-based interaction and the service provider
publishes the description of this functionality to a service registry. This registry
provides search engine functionality and enables a service requester to discover
the service description and the location of the service provider. Based on this
information, requester and provider can interact with each other via message
passing. This principle underlies any service-oriented system, although in practice
the functionality of service provider and service registry often coincide. A
SOA is implemented through a variety of service providers and requesters that
interact with each other. To maintain loose-coupling among service providers and
requesters, their private inner structure is not considered from an architectural
point of view. In a SOA, the interest lies on publicly visible behavior, i. e.,
communication relationships and sequences of message exchanges among providers
and requesters. This observable behavior of services is the decisive driver for the
architectural properties of a SOA, such as coupling or complexity [65,66].

Layers of
a SOA

More advanced service-oriented systems can be formed by composing the
functionality of several service providers by means of message exchanges with
these providers to construct value-added compound services [19]. This forms
the second layer of a SOA, as depicted in the so-called SOA pyramid in Fig. 2.2.
This kind of loosely-coupled composition allows for a high degree of flexibility,
since services can be replaced simply by directing messages to another provider.
Oftentimes, such composite services are implemented through explicit process
representations [19,86]. A service composition that is controlled by a single entity
is called a service orchestration.
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Figure 2.2.: Layers of a SOA, adapted from [5, p. 26]

Today, there exist three primary styles or paradigms, with which service-
oriented software is implemented, Web Services technologies [90], REST [16],
and microservices [17]. The software artifacts that are the target of this work
utilize these styles and technologies and portability issues also originate from
their usage, e.g., if a particular technological feature is supposed to be supported,
but is not. For this reason, we give a brief overview of the different styles in
the following section and describe notable technological features necessary for
understanding this work.

2.1.2. Architectural Styles and Technologies

Despite heated debates on the technical merits of the different styles for imple-
menting service-oriented software, there is no consensus on a one-size-fits-all style.
Instead, it can be said that the different technologies are suited for different
kinds of application scenarios [97]. Initially, the concepts of SOC and SOA
were strongly related to their by then primary implementation technology: Web
Services [15]. The importance of Web Services technologies is reclining today in
favor of RESTful services [16]. Recently, also microservices [17,103] have been
coined as the next evolutionary step in SOC. Any of these styles can be used to
implement applications that are described in a uniform, platform-independent,
and technology-neutral manner, that interact via message exchanges, and that
are transparent with respect to their location, i. e., services. Furthermore, all
styles are meant to build services that can easily be composed [103, p. 7]. In a
SOA, services implemented in different styles can also be combined with each
other.

The software applications we analyze in this thesis use at least one of the
different styles as the primary means for implementing distributed interactions. In
some cases, in particular for BPEL [27], the usage of Web Service technologies [15]
is required. In other cases, in particular for BPMN [26], the choice of the service-
oriented style is left open. We give an overview over the technologies and
principles underlying the different prevalent styles in the following subsections.
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2.1.2.1. Web Services

Web Services advertise the utilization of Internet-related standards for the imple-
mentation of a SOA [90]. The primary use case for Web Services are integration
scenarios that require the interoperation of heterogeneous systems [97]. Such sce-
narios are common in the Business-to-Business integration (B2Bi) domain [104].

WSDL
and
SOAP

Web Services are promoted by the World Wide Web Consortium (W3C) and
are based on a vast set of international standards. The Web Services architecture
white paper defines a Web service as a “software system designed to support
interoperable machine-to-machine interaction over a network” [90, p. 7]. This
definition reflects the target application scenario of integrating heterogeneous
systems. The core standards for implementing Web Services are the Web Service
Description Language (WSDL) [105, 106] and SOAP [107, 108]. WSDL is the
language in which interface definitions for services are written and SOAP defines
the message format used for interaction. The newest revision of WSDL, version
2.0 [106], is rarely used in practice and the older version 1.1 [105] is much more
common. The systems we use here utilize version 1.1 and it is unclear whether
version 2.0 will ever receive widespread adoption. All Web Services standards
make heavy use of Extensible Markup Language (XML) [109] to guarantee
technological neutrality and platform independence. Even interface definitions in
WSDL are written in XML.

Figure 2.3.: Structure of a Web Service Definition

Structure
of
interfaces

The uniform structure of a Web service definition [105] is depicted in Fig. 2.3.
A WSDL interface definition starts with a definitions element. It first lists
imports of necessary files such as XML Schema Definition (XSD) [110] types
that serve as parts of messages, which the Web service sends and receives. The
actual messages are defined in the types and messages elements. The central
interface definition part is the portType which corresponds to a cohesive set of
the operations a service offers. Each operation may define input, output, and
fault messages as parameters and return values of an invocation of the service
operation. Thereafter, a binding element maps each operation to a transport
protocol and message format, i. e., a particular version of SOAP, with which
messages are transmitted. Finally, a service element lists one or more ports,
which are endpoints with a concrete address under which a service provider can
be reached. The distinction between the portType of a service and its port ensures
location transparency. To communicate with a service provider, a requester has
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to build a SOAP message, consisting of a header and body. The body contains
one of the messages specified in the WSDL definition that is referenced as the
input of one of the operations of the service. The transport protocol with which
the message is transmitted depends on the binding of the service. Most frequently,
the Hypertext Transfer Protocol (HTTP) [111] is used for message transmission.
If it is specified in the service operation, the service provider may reply with a
SOAP message that contains on output message in its body or a fault.

WS-*
standards

The Web Services ecosystem encompasses many more standards that are
used to specify and implement various quality of service attributes for the pro-
vided functionality or interaction. These standards are called WS-* standards.
Examples of such standards are WS-Security [112] for specifying message en-
cryption, WS-ReliableMessaging [113] for implementing reliable interactions, or
WS-Agreement [114] for enabling agreement negotiation among services. The
usage of WS-* standards can be enabled by attaching policy specifications [115] to
a WSDL definition. WS-* standards have been criticized for their complexity [97],
but many of the features enabled through these standards are mandatory in
enterprise-level interactions. A prerequisite for the usage of WS-* standards is
mutual support for these standards by the execution environments of a service
provider and requester. However, studies show that interoperability among
different WS-* implementations is poor [116]. In this work, we concentrate on
the functional portability of an application and abstract from the portability of
additional quality of service requirements. Hence, we refrain from the usage or
evaluation of WS-* standards, as far as this is possible.

2.1.2.2. RESTful Services

The perceived complexity of Web Services technologies has lead to a focus on
more simplistic types of interaction and to the rise of RESTful services2 [117].
RESTful services are services that follow the REST architectural style [16,
Chap. 5]. Similar to Web Services, RESTful services utilize common Internet
technologies, in particular HTTP, to enable interoperable machine-to-machine
communication over a network, albeit in a more minimalistic fashion [118]. The
REST architectural style tries to mimic the design principles of the Internet for
constructing the architecture of a distributed application based on interacting
services. Due to their perceived simplicity, RESTful services are predominantly
used for building service-oriented software today, to the disadvantage of Web
Services technologies.

REST
principles

RESTful services are centered around a uniform, technology-neutral inter-
face [16, Chap. 5]. The constitutional constraints for such an interface are [117]:

1. the identification of resources,
2. their manipulation through resource representations,
3. self-descriptive messages, and
4. Hypermedia as the engine of application state (HATEOAS).

2The terms REST service and RESTful service are both common in practice to denote the
same entity. In this thesis, we use the term RESTful service.
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These constraints are typically implemented with standard Internet technologies:
Resources are identified through Uniform Resource Identifiers (URIs) and repre-
sented in a technology-neutral format, such as XML, HTML, or the JavaScript
Object Notation (JSON) [118]. Especially the latter one is preferred today.
Resources can be manipulated by transmitting messages in the required represen-
tation to the service provider. The universally accepted transport protocol for
performing this transmission is HTTP. In contrast to Web Services technologies,
different protocols, such as the Simple Mail Transfer Protocol (SMTP) [119]
are not considered. Due to the strong ties to HTTP, certain HTTP verbs, in
particular GET, PUT, POST, and DELETE, are used to transmit resource
representations [118]. POST is used to create a resource, GET to read its
representation, PUT to update the state of the resource, and DELETE to re-
move it. The verbs, in combination with URIs and resource representations,
constitute the uniform, technologically-neutral interface of a RESTful service.
The last constraint, HATEOAS, requires that state transitions for resources, i. e.,
operations available for a resource, are determined dynamically by the provider
in the form of hyperlinks encoded in resource representations. This means that
the state of a resource is not explicitly maintained by the provider or requester,
but encoded into the representation of a resource.

RESTful
service
interac-
tion

Based on these constraints, a RESTful service is identified by a base URI, which
marks the initial access point for a service requester to the service provider [118].
A service requester can invoke operations on the service via standard HTTP verbs
and transfer resource representations via formats such as JSON. By following
hyperlinks from the base URI, the requester can discover further resources
provided by the service and can invoke state transitions on these resources, i. e.,
it can trigger the execution of operations by the service provider. Note that an
explicit interface description for a RESTful service, similar to a WSDL definition,
is uncommon in practice. Nevertheless, specific languages for this task do exist,
such as the Web Application Description Language (WADL) [120]. Also WSDL
2.0 [106] could be used for this purpose.

REST
and
quality of
service

The profound success and industry adoption of RESTful services can be
attributed to the fact that the technologies used for their implementation are
well-known, ubiquitous, and largely interoperable in heterogeneous systems [117].
However, RESTful services lack most of the advanced features provided by WS-*
standards. For example, point-to-point encryption can be achieved by using the
Hypertext Transfer Protocol Secure (HTTPS) [121], but there is no standard
way of achieving end-to-end encryption as for WS-Security [97]. Due to such
functional limitations, RESTful services are necessarily more simplistic, but also
more interoperable. As before, the focus of this thesis resides on the portability
of application functionality, therefore more advanced quality of service features
are not discussed further.

2.1.2.3. Microservices

The most recent evolutionary step of SOC are microservices [17, 103]. Currently,
the microservices architecture is still in the definition phase and not all aspects
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are fully specified. Lewis and Fowler [17] advocate the microservice architecture
as a form of fine grained SOA. Also other sources state that microservices can
be seen “as a specific approach for SOA” [103, p. 9]. As discussed in the previous
sections, the main difference between Web Services and RESTful services is the
way in which service interfaces are defined and messages are exchanged between
provider and requester. The microservices architecture does not propose yet
another way for addressing these aspects, but reuses the concepts of REST for
providing uniform and technology-neutral interfaces and exchanging messages.
Instead, it puts more emphasis on the isolated deployment, autonomy, and self-
containedness of services [103, Chap. 1]. As a result, technological heterogeneity,
platform independence, composability, and easier replacement are crucial benefits
of microservices.

Figure 2.4.: Monolithic Architecture versus Microservices Architecture

Container
isolation

The key differences brought by a microservice architecture [17] are depicted in
Fig. 2.4. The figure contrasts two different architectures consisting of three ser-
vices, A, B, and C, and their execution environments. In both of the architectures
in Fig. 2.4, the different services look independent from the service requester
point of view. In the left-hand case, these services are hosted in a single container
and are linked to each other via shared dependencies, which is not visible from
the outside. They might even be provided by the same operating system process.
This forms a monolithic architecture, due to the shared environment. In contrast,
in the right-hand case, each service is hosted in a separate container. Each
container might also be a completely different software product. As a result,
there is a higher degree of isolation and location transparency among the different
services. The failure of one of the services has no influence on the behavior of
the others, which can occur in the case of a monolithic architecture. This strong
focus on deployment-related aspects and restrictions on private inter-service
relationships is what makes microservices different when compared with Web
Services or REST.
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Drivers
for micro-
service
adoption

The advent of microservices can be attributed to the arrival of techniques for
easier management and provisioning of scalable execution environments, i. e.,
cloud computing platforms [103, Chap. 1]. Container technologies, such as Docker,
enable the relatively simple and fast construction of isolated containers for a single
service [122,123]. Another principle mandated by the microservices architecture
is of organisational nature: All lifecycle aspects of a single service, including
development and operations, should be performed by a single small-scale team [17].
This is in line with a common agile software development practice, the DevOps
movement [124], and also the practices of continuous integration [103, Chap. 6].
In summary, it can be said that the microservices architecture is a form of SOA
that is orthogonal to the Web Services or REST architectural paradigms.

2.2. Process-Aware Information Systems

Process-Aware Information Systems are systems that use explicit notions of
processes, in the form of process representations, definitions, or models, for
information systems design, implementation, and execution [4,20,21]. PAIS have
been the target of extensive research in recent years [23] and comprise a vast area of
systems and management-related tasks. Their origins lie in the fields of workflow
management [125] and business process management (BPM) [20,126]. As is the
case for SOC and SOA, commonly accepted, clear, and distinctive definitions of
these fields are hard to find and their borders are blurred in practice. Delin-

eation of
PAIS

Here, we
adopt the view taken by leading researchers and industry standards [20,21,127–
129]. BPM includes all lifecycle aspects, the design, monitoring, optimization,
and execution of processes in an enterprise environment [128]. Workflow systems
focus on process execution through computer systems, in particular workflow
engines [129]. Clearly, there is an overlap in these areas. PAIS synthesize these
fields and the term can be defined as follows:

Definition 3: Process-Aware Information System

A process-aware information system is “a software system that manages
and executes operational processes involving people, applications, and/or
information sources on the basis of process models” [4, p. 7].

According to this definition, a system that uses a workflow engine is also process-
aware. However, process-aware systems are not limited to workflow technology,
because not every software system that executes process models, i. e., a process
engine, necessarily fits into the requirements for a workflow engine. In particular,
certain functions such as worklist and workitem handling [129, p. 34] are often
not part of contemporary process engines. Instead, process engines can be seen
as a superset of workflow engines. Furthermore, it has to be noted that the term
process-aware is not unanimous. In particular, the terms process-driven [127],
process-oriented [130], or process-based [131], are more or less synonymous.

Today, more and more applications are implemented in a process-aware way
and more and more tooling for PAIS becomes available [23] Studies that analyze
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the effects of process-awareness have found that the application of associated
principles improves organizational performance [22].Benefits

of
process-

awareness

In particular, speed and
quality improvements, cost reduction and an improved financial performance
have been observed. Process definition standards are constantly being revised
and new process engines are being built. This influx leads to the necessity to
migrate applications, a motivating factor for this work.

This section explains the theoretical foundations of PAIS that are needed to
understand the main part of the thesis, including the structure and functioning of
process models and engines. We first give an overview of the conceptual aspects
of PAIS, and thereafter discuss the standards and languages used in the practical
parts of this work.

2.2.1. Lifecycle and Architecture of Process-Aware
Information Systems

The lifecycle of a process-aware information system is depicted in Fig. 2.5 [4].PAIS
lifecycle

A
process is designed and implemented, i. e., modeled and programmed in a process
language. For process enactment, this model is deployed to a process engine. At
run-time, process instances are created and executed as specified in the process
model. A process instance is a concrete run of the execution logic defined in
a process model [20, Sect. 3.5.2]. These instance executions are independent
of each other and may occur in parallel. After execution, diagnosis tools are
used to verify that process instance execution was correct. Furthermore, areas of
improvement are identified, possibly leading to a redesign of the process model.

Figure 2.5.: Lifecycle of a PAIS adapted from [4, p. 12]

The focus of this thesis lies not on the design or diagnosis phase, but on
the implementation and enactment phase. Therefore, aspects such as modeling
support for creating process models, the suitability and appropriateness of
process modeling languages for humans [132], or the understandability of process
models [133] are explicitly out of scope. Instead, we focus on the portability of
executable process models among different process engines.

Architec-
ture of

PAIS

The architecture of such engine-based software systems, which is inspired by
the workflow reference model [129, p. 20], is depicted in Fig. 2.6. As discussed
earlier, process models are defined at design-time and implemented in a pro-
cess language, e. g., in BPMN [26], BPEL [27], or the XML Process Definition
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Figure 2.6.: Relation of Process Engines, Models, and Instances

Language (XPDL) [31]. This task is often assisted by visual editors and several
languages provide a visual notation, next to a serialization format. Executable
process models correspond to software artifacts that adhere to a specific struc-
ture defined in a process language (cf. Sect. 2.2.2). Therefore, the modeling of
executable processes is a form of visual programming [134]. After their definition,
process models can be deployed to an engine that implements the language the
model is written in. Akin to the definition of a workflow engine in [129, p. 22],
we define a process engine as follows:

Definition 4: Process Engine

A process engine is a software service that provides the run-time execution
environment for a process instance.

Note that the term Business Process Management System (BPMS) is also
frequently used to describe a process engine. For instance, Weske defines a BPMS
as “a generic software system that is driven by explicit process representations
to coordinate the enactment of business processes” [20, Def. 1.3, p. 6]. In this
thesis, we use the term process engine when referring to the software execution
environment for process models and instances. Typically, the engine parses the
process model and constructs an internal model that is executed in conformance
to the process model [135]. An executable process model needs to specify the
conditions under which process instances should be created and executed. The
engine takes care of cataloging if these conditions are met and, if so, creates new
instances. During execution, process instances may communicate with external
services or humans and may require external input. The process engine takes
care of routing messages to particular instances and directs incoming input to
the desired process instance. This feature is called correlation. All the while,
the engine offers management and monitoring functionality to supervise the
execution of process instances. Taken together, process engines and executable
process models form a service-oriented and process-aware software system in the
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sense of this thesis. The process engine is the middleware and the executable
process model is the application software.

Technical
benefits

of
process-

awareness

The separation of the execution logic (the process model) from the execution
environment (the process engine) offers a variety of technical benefits. For
instance, different parts of a process instance can be scheduled for execution on
different machines by the process engine, thereby improving the scalability of
the application. This is the focus of cloud based process engines [136]. Further
benefits include an easier coordination of parallel work and the possibility to
unload application state from memory and resume it later, which is necessary to
support long-running process instances [137].

2.2.2. Process Languages and Models

As clarified in the previous section, process models form a central part of PAIS.
They are typically not developed in general purpose high-level programming
languages, but in specific process languages, e.g., BPMN [26], BPEL [27], or
XPDL [31].Structure

of process
models

The most basic building block of process models are activities.
Activities are atomic steps of work, such as the execution of a program or the
sending of a message to an external service. The execution of activities can
be fully automated, involve user interaction, or even refer to a purely manual
action [20, Chap. 3]. The concrete types of activities available for a process model
and their semantics are defined by a process language. During the execution
of a process instance, activity instances are created from the process model,
similar to the creation of process instances from the model. Like a process
instance, activity instances follow a certain lifecycle, which is depicted in the
state machine in Fig. 2.7. After creation, an activity instance is initially inactive
until all preconditions to its execution, such as the availability of data elements,
are fulfilled. When all preconditions are met, the activity instance changes to
the active state and its execution logic is being run. During execution, the
instance may change back to the inactive state, because it needs to wait on
the fulfillment of certain conditions, such as the arrival of a message from an
external service. While being inactive, an activity may also be suspended by
the engine. Ultimately, the activity instance reaches the completed state and
terminates. Completion can refer to an ordered termination, but also to a failure
of the execution logic defined in the activity. In any case, the execution of the
activity is finished.

Figure 2.7.: Activity Lifecycle taken from [129, p. 24]
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Further elements of process models are gateways and events [20, Chap. 3].
Gateways are constructs for control-flow routing and are used to schedule the order
of activity execution. Events mark states in a process model, such as its start or
end, or the occurrence of certain actions, such as the expiration of a timeout or the
arrival of a message. The activities, gateways, and events of a process model are
connected via directed edges that describe their execution dependencies. Based
on these language elements, a process model can be characterized as a program
written in a process language that coordinates the execution of a set of activities
and the occurrence of a set of events and using gateways. These elements are
typically depicted in a graphical visualization of a process model. They are the
sole elements of nonexecutable and abstract process models. Formally, such a
process model is commonly defined as follows [20, Def. 3.3, Sect. 3.5]:

Definition 5: Process Model

A process model PM = < N,C > is a tuple of a set of nodes N and a set
of connectors C, where
• N = A ∪ E ∪G: the set of nodes N consists of the set of activities A,

the set of events E, and the set of gateways G. These sets are mutually
disjoint.
• C = N ×N : the set of connectors C consists of directed edges between

elements of N that describe execution order dependencies.

Implementing executable process models, the core part of service-oriented
and process-aware software, requires the usage of additional process elements.

Exe-
cutable
process
models

These elements are details of technical nature that are needed to execute the
process model and transfer the model into the realm of application software. Such
technical details are often not visible in a visualization of the process model and
not needed in abstract and nonexecutable models. Hence, they are often ignored
in such models. Examples of such elements are variable definitions, correlation
definitions, import definitions, and more, depending on the vocabulary of a process
language. Since this thesis targets executable process models, i. e., application
software, we need to take every language element into account, regardless of its
level of technical detail. As a result, the common definition of a process model in
Def. 5 is not sufficient for defining software metrics and we extend it for a formal
definition of executable process models:
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Definition 6: Executable Process Model

An executable process model EPM = < N,C > corresponds to a tuple of a
set of nodes N and a set of connectors C, where
• N = A∪E ∪G∪B: the set of nodes N consists of the set of activities
A, the set of events E, the set of gateways G, and the set of basic
language elements B. These sets are mutually disjoint.
• C = N ×N : the set of connectors consists of directed edges between

elements of N that describe execution order dependencies. The mapping
in C is not necessarily total, i. e., not all elements of N need to be
embedded into the control-flow graph. Particularly, this applies to the
elements of B.
• V = N∪C: every element of the process model is part of the vocabulary

of the process language, V . In particular, B includes all elements of the
vocabulary, V , not found in the other sets, i. e., B = V \(A∪G∪E∪C).
• Additionally, S ⊂ A∪E is the set of elements for service communication.

It includes all activities and events that are used for sending or receiving
messages. This specialization is necessary for defining metrics that have
a particular focus on service-oriented characteristics.

Since this thesis deals only with executable process models, for reasons of brevity,
we will use the two terms process model and executable process model interchange-
ably in the following. We have to emphasize that, in this work, an executable
process model solely corresponds to a program written in the vocabulary of a
process language. Apart from syntactical correctness, we make no assumptions
about such a model. This means that an executable process model need not be
deadlock free or guaranteed to terminate, as long as it conforms to the syntactical
rules of the language standard. An executable process model can be deployed
onto a process engine, which compiles or interprets it. This often requires the
definition of additional files, such as deployment descriptors, and the packaging of
the process model. In conjunction, these artifacts form a piece of service-oriented
and process-aware application software.

2.2.2.1. Graph-Orientation and Block-Structure

As discussed, the purpose of a process model is to coordinate the execution
of a set of activities and events. This coordination is achieved through the
definition of control- and data-dependencies among these elements with the help
of gateways. The way in which these dependencies are defined is a central point
of focus and a discriminating factor for process languages. There are two styles
in which dependencies are expressed [138]. These are either a graph-oriented
or a block-structured style. In a graph-oriented style, directed connectors are
used to link nodes. This resembles a flow chart. The activation of connectors is
conditional and depends on the type of preceding gateways. In a block-structured
notation, nodes are nested into each other and connectors are not represented
explicitly [138]. Instead, control-dependencies are implied by the nesting. For
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instance, a parent node sequence with enclosed nodes n1 and n2 signals that the
nodes are to be executed sequentially in the order of their definition. Process
languages may support either or both of these styles and process models can be
transformed from a block-structured to a graph-oriented style and the other way
round [139].

Figure 2.8.: The Travel Grant Process taken from [80] in Graph-Oriented Nota-
tion

Visuali-
zation

Fig. 2.8 depicts a fictional exemplary process model, taken from [80], in a
graph-oriented style in the BPMN notation. This process model implements
the handling of a travel grant application at a university department. First, a
travel grant application must be made and this triggers the creation of a new
process instance via a start event (circle). An initial activity (rounded rectangle)
first checks the amount of the application. An exclusive gateway (diamond)
controls the activation of different control-flow branches depending on the result
of this check. If the amount exceeds a certain threshold, the application must
be handled manually, otherwise automatic handling is possible. Both of these
actions are implemented as specific activities. Another exclusive gateway merges
the two branches and, thereafter, the process model is terminated with an end
event. If an error is thrown during the checking of the amount, represented by an
error event, the application must also be handled manually. Fig. 2.9 depicts the
same process in a block-structured notation3. Here, all nodes are represented as
rectangles and nested into each other. The activation and execution of each node
is controlled by its parent. If a node has multiple children, these are executed
either sequentially or as alternatives. The execution logic depicted in both process
models is identical, albeit the difference in representation.

Seriali-
zation

Underlying the graphical representation, a machine-readable serialization for-
mat of a process model is required for the execution by an engine. Contemporary
process languages provide an XML serialization format. The usage of XML is
primarily motivated by the platform-independent nature of XML, which is ex-

3This is an ad-hoc notation used solely for visualization here.
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Figure 2.9.: The Travel Grant Process taken from [80] in Block-Structured Nota-
tion

pected to enhance the portability of process models among engines [30]. List. 2.1
shows a simplified outline that omits parts of the process model4 of the XML
code of the travel grant process model.

Listing 2.1: Outline of the XML Serialization of the Travel Grant Process

<?xml version=”1 .0 ” encoding=”UTF−8”?>

<definitions . . . >

<process name=”Travel Grant Appl i ca t ion Process ”

isExecutable=”true ”>

<startEvent name=”Travel grant a p p l i c a t i o n r e c e i v e d ”>

<outgoing>SequenceFlow_1</bpmn2:outgoing>

</startEvent>

<serviceTask name=”Check amount ”>

<incoming>SequenceFlow_1</incoming>

<outgoing>SequenceFlow_2</outgoing>

</serviceTask>

<exclusiveGateway name=”Amount too high? ” >

<incoming>SequenceFlow_2</incoming>

<outgoing>SequenceFlow_5</outgoing>

4The complete serialization would cover many pages, but can be accessed at https://github.
com/uniba-dsg/zeus2014.
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<outgoing>SequenceFlow_12</outgoing>

</exclusiveGateway>

. . .

<endEvent name=”Travel grant a p p l i c a t i o n proce s sed ”>

<incoming>SequenceFlow_9</incoming>

</endEvent>

<endEvent name=”Appl i ca t ion proce s sed ”>

<incoming>SequenceFlow_11</incoming>

</endEvent>

</process>

. . .

</definitions>

2.2.2.2. Service Composition

As discussed in Sect. 2.1.1 and depicted in Fig. 2.2, the second layer of a
SOA is the service composition layer [5]. In this layer, higher-level and value-
added services are constructed on the basis of other services. The service
composition layer is seen as a significant part of a SOA and as a prerequisite
for achieving its full potential [19, 87]. It is as important in a microservices-
based SOA, as it is in a Web Services-based SOA [103, Chap. 4]. Service
composition is achieved by coordinating interactions with multiple services in a
single program. These programs are predominantly implemented in a process-
aware fashion. Therefore, processes that build on services are also called service
compositions [20, Sect. 2.5.4].

Service
composi-
tion
through
activities

Service-oriented and process-aware systems intersect at the level of an activity
or event. Contemporary process languages specify activities that can be used for
interacting with a service, i. e., for sending messages to and receiving messages
from a service provider. For instance, BPEL 2.0 [27] provides receive, reply,
invoke, and onMessage activities that can be used to communicate with a Web
service endpoint. An example of a process-aware service composition is depicted
in Fig. 2.10. The figure shows a simple inventory planning process that consists of
three activities. Each of the activities sends a message to and receives a message
from an external service. As a result, the purpose of the inventory planning
process is the coordination and composition of the invocation of the three external
services in a common context. In a realistic application, the invocation of services
may be mixed with arbitrary further activities and the process model may also
involve human interaction.

Advan-
tages of
process-
aware
service
composi-
tion

A process-aware way of service composition provides a variety of advantages
over alternative approaches for composition [19,86]. Basically, it combines the
benefits of service-oriented systems and process-aware systems and can be used
to leverage the advantages of both paradigms. On the one hand, this is the
technological neutrality, platform-independence, loose-coupling, and location
transparency coming from service-oriented systems (cf. Sect. 2.1.1). Added to
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Figure 2.10.: Process-Aware Service Composition adapted from [20, Sect. 2.5.4]

this, a process-aware service composition provides an improved separation of
concerns in the overall application. More precisely, the business logic that is
executed can be encapsulated in the services, whereas their coordination can be
captured in the process model. This enhances the flexibility of the system, because
the coordination can be modified without influencing the actual business logic.
Moreover, process languages, such as BPEL [27] or BPMN [26], and respective
engines come with built-in support for long-running interactions among services,
message correlation, and provide sophisticated facilities for fault handling and
compensation that are not typically found in higher level programming languages.
Last but not least, the implementation of a service composition in a process
language is supposed to be portable among different engines and should defend
from vendor lock-in.

Orches-
tration

and
choreo-
graphy

If service execution is coordinated by a single entity, for instance by a single
process instance, service compositions are also called service orchestrations [86].
As opposed to this, a service choreography describes a compound interaction
among multiple independent coordinators from a global point of view. This
is the case if multiple process instances interact with each other by sending
messages. The distributed interaction among the different instances forms the
implementation of the choreography [140]. In this thesis, we focus on process-
aware applications that can be directly executed on a process engine, i. e., singular
process models. Therefore, applications that are formed by the distributed
interaction of multiple process instances, i. e., service choreographies, are not
considered. Service orchestrations come quite close to our notion of process-aware
and service-oriented software. However, service orchestrations are considered
to consist of activities for service interaction exclusively [86]. Our target is
the complete vocabulary of a process language, which is not necessarily limited
to service interaction. For instance, the vocabulary of BPMN as outlined in
the following section, includes language elements that cover non-service related
aspects, such as user interaction or business rule execution. Hence, we target
applications that involve service interaction and all further aspects defined by a
process language. For this reason, we use the term process-aware and service-
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oriented software as a delimitation from service choreographies, orchestrations,
and compositions.

In the following sections, we discuss the two languages that we consider
most important for building service-oriented and process-aware software today.
Applications implemented in these languages are used in the practical parts of
this thesis.

2.2.2.3. The Business Process Model and Notation

The Business Process Model and Notation [26] is an international standard that
specifies a framework for the modeling of a variety of different types of processes,
including processes intended for execution on process engines. For BPMN, a
special emphasis is put on the visual notation for depicting process models. The
standard is maintained by the Object Management Group (OMG) and its goal “is
to enable portability of Process definitions” [26, p. 20]. In its most recent revision,
version 2.0.2, it has been accepted as an ISO/IEC standard. This revision is a
minor update, involving no significant semantic changes, of version 2.0, published
in 2011. Already since the publication of this version, BPMN has received much
attention in practice and more and more engines that claim to implement the
standard are made available. As such, BPMN is expected to supersede related
languages when it comes to the direct execution of process models.

Process
types in
BPMN

The specification document [26] defines a common grammar and set of basic
language elements for different types of processes. These are not only executable
processes, but also process choreographies or collaborations [26, Sect. 7]. The
latter two refer to sets of interacting processes, which are typically distributed
over several parties and not executed in a single environment. As discussed in the
previous section, such types of processes are out of the scope of this thesis. Hence,
we do not consider BPMN choreographies or collaborations. Also when it comes
to processes with a single execution context, BPMN allows to specify private
non-executable, private executable and public processes. Since our focus lies on
executable software, only executable processes are of interest. The elements of
such executable processes are specified in [26, Sect. 10], and execution semantics
in [26, Sect. 13].

Structure
of a
BPMN
process
model

The standard defines an XML serialization format in which process models
are implemented. Every BPMN file starts with a definitions root element that
serves as a container for several top-level elements, such as a process model.
BPMN process models predominantly use a graph-oriented style for control-flow
definition. The core elements of a process model are activities, events, and
gateways. These elements are connected by directed edges, called SequenceFlows.
Every BPMN element specifies incoming and outgoing SequenceFlows, thereby
building the process graph. When it comes to the definition of data, BPMN
“does not itself provide a built-in model for describing structure of data or an
Expression language for querying that data” [26, p. 202]. The standard designates
XSD and XPath as default technologies for defining data, but states that vendors
are free to substitute these technologies. For this reason, data handling aspects
of BPMN are not considered further here.
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Activities Activities [26, Sect. 10.2] can refer to atomic steps of work, in BPMN called
Tasks, but also to SubProcesses, which are used to implement hierarchical de-
composition, and to references to globally defined tasks or processes. Different
types of tasks with a different purpose and structure are defined by the specifica-
tion [26, Sect. 10.3.3]:

ServiceTasks are used to invoke an operation on a service. BPMN is not tailored
to a specific service-oriented technology, but Web Services are specified as
default implementation technology.

SendTasks transmit a message to an external party. Similar to a ServiceTask,
the default implementation technology are Web Services and the operation
invoked needs to be specified. Additionally, the message sent may be defined
as a top-level element of the process model and can be referenced in the
SendTask.

ReceiveTasks can be used to wait for the arrival of a message from an external
party. As such, a ReceiveTask is the counterpart to a SendTask and can be
configured in the same fashion. Additionally, a ReceiveTask can trigger the
creation of a new process instance.

UserTasks represent tasks that are semi-automated and require human input. A
process engine is expected to provide assistance in processing the execution
of the task and it may be implemented using a specification for managing
human interactions in a process model, such as WS-HumanTask [141].

ManualTasks serve as placeholders for non-automated actions in the process
model. Since the action is non-automated, a process engine is not able to
track the start or completion of such a task. As such, an engine is allowed
to ignore the task in a process model.

BusinessRuleTasks are used to mark the execution of a business rule by a business
rule engine. As before, an implementation technology needs to be specified
in the definition of the task.

ScriptTasks contain programs that can directly be executed by a process engine.
The program needs to be specified as a Script in a ScriptFormat which the
engine supports. BPMN does not specify a default format for scripts.

It can be seen from the task types that coordinating service interaction plays an
important role in BPMN process models. The default implementation technology
specified in the respective positions of the standard are Web Services. However,
BPMN process models can easily be adjusted to refer to different service-oriented
technologies. Since it is not required by the standard, such an adjustment is
engine-dependent and nonportable.

Next to tasks, BPMN activities can be SubProcesses [26, Sect. 10.3.5]. These
are a means for providing a hierarchical decomposition and structuring of a
process model. As such, SubProcesses introduce block-structure into a BPMN

36



2.2. Process-Aware Information Systems

process model. Similar to the different task types, several types of SubProcesses
do exist:

SubProcesses, in their ordinary form, resemble the structure of a top-level process.
Two options for defining ordinary SubProcesses do exist. Either a SubProcess
can be embedded into the control-flow graph of the parent process, or it
can be defined globally and be called by a CallActivity [26, Sect. 10.3.6].

Event SubProcesses are specialized SubProcesses that are triggered by the occur-
rence of an event. In contrast to other activities, they are not connected to
the control-flow graph of the process model through SequenceFlows. Instead,
they are embedded loosely into the parent process and executed whenever
their designated start event occurs. This can happen multiple times during
the execution of the parent process.

Transactions are special SubProcesses that are controlled by a transactional pro-
tocol, such as WS-AtomicTransaction [142] or WS-BusinessActivity [143].
The protocol employed needs to be specified in the definition of the Trans-
action by a TransactionMethod.

Ad-Hoc SubProcesses represent a form of unstructured processes and do not use
SequenceFlows to connect contained activities. Instead, the activities can
be executed in any order. Activity execution may take place sequentially
or in parallel, with parallel execution being the default setting. Moreover,
each activity may also be executed multiple times. To ensure termination,
an Ad-Hoc SubProcess needs to define a CompletionCondition. Activity
instances that are still active when the CompletionCondition is evaluated
as true may be canceled or allowed to terminate.

The last types of activities are CallActivities [26, Sect. 10.3.6] and Global-
Tasks [26, Sect. 10.3.7]. All task types described above are also available in a
global version, which means that they can be defined out of the scope of a process
and without being embedded into the control-flow graph. A CallActivity can
be used to reference such a globally defined task in the execution context of a
process. Moreover, it can also be used to reference another Process, which is
then executed in the same fashion as an embedded SubProcess.

Finally, all activities share a number of common attributes that can be used to
define repetitive execution or compensation [26, Sect. 10.3.8]. StandardLoopChar-
acteristics can be used to implement an iterative execution of multiple instances
of an activity. A Condition is used to control the amount of instances that
are executed. Alternatively, MultiInstanceLoopCharacteristics can be used to
implement the execution of multiple activity instances in parallel or sequen-
tially. Activity instances in the context of a standard loop may depend on
each other and subsequently work on the same data elements. In contrast to
this, multi-instance activities have an isolated execution context. Furthermore,
all activities can be marked for compensational execution instead of standard
execution [26, Sect. 10.7]. Activities marked as compensational are called com-
pensation handlers and are supposed to undo the results of the execution of
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previous activities. Fig. 2.11 summarizes the previous paragraphs and depicts
the visual representation of all BPMN activities and their configuration options.

Figure 2.11.: Activities and Configuration Options in BPMN

Gateways Gateways in BPMN [26, Sect. 10.6] are used for routing the control-flow in a
process model. Gateways are available in a diverging and a converging fashion.
A diverging gateway is followed by multiple outgoing SequenceFlows and a
converging gateway is preceded by multiple incoming SequenceFlows. A single
gateway may be converging and diverging at the same time, but such structuring
is generally not recommended [144]. The following types of gateways are available:

ExclusiveGateways are used to select a single branch among a set of Sequence-
Flows for subsequent activation, or to merge a single activated SequenceFlow
from a set of incoming SequenceFlows. The conditions that are evaluated
are not attached to the gateway, but to the outgoing SequenceFlows. The
semantics of this gateway correspond to if-elseif-else programming con-
structs.

EventBasedGateways are also used to select a single branch among a set of
control-flow branches. In contrast to the ExclusiveGateway, the selection
does not depend on a data-based condition, but on the occurrence of an
event. Alternative control-flow branches are identified by an event and the
event that occurs first leads to the activation of the associated control-flow
branch. EventBasedGateways can be used to trigger the creation of a
process instance and are also available in a parallel fashion, in which all
specified events are expected to occur before execution can proceed, i. e.,
the gateway can act as a barrier.

ParallelGateways activate all subsequent control-flow branches in parallel or
merge multiple parallel incoming control-flow branches.

InclusiveGateways form a combination of Parallel- and ExclusiveGateways. A
number of subsequent branches can be activated in parallel, but the activa-
tion of each single branch depends on a condition.
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ComplexGateways “can be used to model complex synchronization behavior” [26,
p. 294]. They synchronize a number of parallel incoming branches and
activate a number of subsequent branches in parallel. The diverging behavior
of the ComplexGateway is identical to the InclusiveGateway. Its converging
behavior corresponds to a cyclic barrier. A number of incoming control-flow
branches, which may be a subset of the activated incoming branches, is
expected to complete for the gateway to trigger the execution of subsequent
branches.

Fig. 2.12 depicts the visual representation of gateways in BPMN and the config-
uration options for SequenceFlows when being combined with gateways.

Exclusive Gateway Parallel GatewayEvent Based Gateway Inclusive Gateway Complex Gateway

Conditional Sequence FlowOrdinary Sequence Flow Default Sequence Flow

Figure 2.12.: Gateways and SequenceFlows in BPMN

EventsBPMN comes with a complex event model [26, Sect. 10.5] and numerous
events exists. Events are identified through a combinatorial combination of a
variety of event configuration options. A subset of these combinations are valid
events [26, pp. 259/260]. Instead of listing all 63 admissible events, we describe
the event configuration options here. First of all, events can either be start, end,
or intermediate events. StartEvents have no incoming SequenceFlows and trigger
the creation of a process instance. Vice versa, EndEvents mark the termination of
a control-flow branch and have no outgoing SequenceFlows. IntermediateEvents
occur during the execution of a process instance and are embedded into the
control-flow graph by SequenceFlows in the same fashion as activities. They can
be used to throw or catch an event. Moreover, events can be attached to the
boundary of an activity, to catch an event thrown during the execution of an
activity instance. Such intermediate boundary events can be interrupting, i. e.,
they stop the execution of the normal control-flow branch and continue with
an exceptional branch. Alternatively, they can be non-interrupting, i. e., the
execution of the normal control-flow branch continues as expected. Next to these
configuration options, there are 13 different event types. These types are:

None events, which are a placeholder of no specific type.

Message events, which are used to send or consume a message in the same fashion
as Send- or ReceiveTasks.

Timer events, which delay execution for a specified amount of time or until a
specific point in time is reached.

Error events, which can be used to signal faults.

Escalation events, which can be used to trigger escalation management. For
instance, this can be helpful if the execution of an activity takes too long.
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Cancel events, which can be used to cancel a running transaction.

Compensation events are used to trigger the execution of compensational activi-
ties as described above.

Conditional events, which can be used to trigger conditional execution of a
control-flow branch.

Link events are only relevant to visualization and are irrelevant to execution.
They are used to connect the control-flow graph in large process models
that do not fit into the space available on screen or paper.

Signal events, which can send or consume a signal. A signal is a notification that
can be seen and consumed by multiple parties or control-flow branches.

Multiple events are a way to throw or catch one of a set of different event types.

ParallelMultiple events are a way to throw or catch all of a set of different event
types.

Fig. 2.13 depicts the visual representation of event configuration options in
BPMN. The complete set of all admissible events would be too long here, but
can be found in [26, pp. 259/260].

Start Event End Event Intermediate Event Boundary Event

Message EventNone Event Timer Event Error Event Escalation Event

Cancel Event Compensation Event Conditional EventSignal Event

Multiple Event Multiple Parallel Event

Figure 2.13.: Event Configuration Options in BPMN

An example of an executable process model in BPMN is shown in Fig. 2.8,
as part of Sect. 2.2.2.1. An example of the serialization of the process model
can be found in List. 2.1 in the same section. As a last point, it should be
noted that, despite its popularity, the BPMN standard is quite imprecise, often
lacks necessary technical details, and leaves much room for interpretation [145].
This severely complicates the implementation of standard-conformant process
engines that behave in the same fashion. Consequently, the implementation of
standard-conformant process models that result in the same execution behavior
of process instances on different engines is challenging.
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2.2.2.4. The Web Services Business Process Execution Language

The Web Services Business Process Execution Language [27] is an international
standard that specifies a process language, which is primarily targeted at the
orchestration of Web Services. It is maintained by the Organization for the Ad-
vancement of Structured Information Standards (OASIS) and has been finalized
with version 2.0 in April 2007. The language “defines a portable execution format
for business processes that rely exclusively on Web Service resources” [27, p. 7].
Since the publication of the standard, a plethora of BPEL engines has been
developed and is available today. The tight link of BPEL to Web Services
extends to further XML technologies, such as XSD and Extensible Stylesheet
Language (XSL). Due to this technological dependence, the importance of BPEL
is diminishing today. However, BPEL engines are in productive use and are
still actively being developed. As a result, porting BPEL process models among
engines is a realistic problem.

Process
types in
BPEL

BPEL allows to specify two different types of process models5: abstract and
executable process models [27, Sect. 13]. Abstract process models permit the
usage of opaque and underspecified language elements, next to normal ones.
As a result, abstract process models are not executable. Therefore, we do not
consider abstract process models in this work. In contrast, executable process
models are fully specified models and can be executed by an engine. Every BPEL
process model is associated with at least one WSDL definition. This definition is
implemented by the process model. This means that every BPEL process is also
a Web service. BPEL supports block-structured and graph-oriented control-flow
definition, although the largest part of the language is block-structured. In
terms of terminology, BPEL refers to all nodes as activities, although specific
activities serve as routing constructs, i. e., gateways, and others serve as events.

Structure
of a
BPEL
process
model

The top-level language element is a process. Apart from activities, each process
requires a number of mandatory elements:

Import elements are used to reference additional files needed by the process
model, such as WSDL or XSD definitions and XSL transformations.

PartnerLinks correspond to role definitions [27, Sect. 6]. They link a process
to the Web Service interface it implements or to external Web Services
it invokes via a partnerLinkType. Each partnerLink is either specified as
myRole, if the process implements this type and provides the operations
specified by the portType of the service, or as partnerRole if it communicates
with a service of that type.

Variables [27, Sect. 7] are used for storing and reading data during process
instance execution. The types of variables can either be message types that
are sent and received by a Web service, or custom defined XSD element
types. Variables can be referenced by activities during execution and they
can be defined with global visibility or within a scope.

5The BPEL specification uses the term process definition instead of process model. For
reasons of consistency, we solely use the term process model here.
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CorrelationSets [27, Sect. 7] are needed by a BPEL engine at run-time to
direct incoming messages to a specific process instance. CorrelationSets are
linked to specific parts of Web service messages via propertyAliases. When
initialized with a certain value, all messages that have the same value in the
referenced parts can be directed to the same process instance. Typically,
correlationSets are initialized in a messaging activity and correlated upon
in following messages.

MessageExchanges are optional elements that can be used to group pairs of
activities for sending and receiving messages. They signal that two message-
related activities, and the respective messages, belong together, with the
second one being the reply to the first.

The remainder of the executable parts of BPEL separates in three areas: scopes,
basic activities, and structured activities.Scopes Scopes are a means for the hierarchical
decomposition of BPEL process models. They allow for the specification of the
same elements as for a top-level process (cf. above), which technically is a global
scope. Elements defined in a scope are only visible from within. Moreover, several
types of handlers can be attached to a scope [27, Sect. 12]. Essentially, handlers
are activities for event processing.

EventHandlers allow for the processing of incoming messages via onMessage
activities or the handling of timeout expiration via onAlarm activities in
parallel to the normal control-flow of a process instance.

FaultHandlers support fault handling similar to the exception handling strategies
of common high-level programming languages. Faults can be caught by
name, using a catch element, or all at once, using a catchAll element.

TerminationHandlers can be used to react to the forced termination of a scope.
TerminationHandlers are executed before the activation of fault handling
and start by disabling the eventHandlers attached to the scope. They trigger
the termination of all activity instances that are still running and interrupt
blocking instances.

CompensationHandlers are executed when the need for the compensation of a
scope is signaled by the execution of specific activities. Their task is to
undo, i. e., compensate for, the actions performed inside the scope. This is
necessary for the execution of distributed transactions [146].

Basic
activities

Basic activities are atomic steps of work that cannot be decomposed further.
BPEL defines the following set of basic activities [27, Sect. 10]:

Invoke activities are used to send a message to a Web service endpoint and,
in case of a synchronous interaction, to wait for a reply. They reference
the partnerLink, portType, and operation of the invoked Web service, and,
if required, an input- and outputVariable to read and store message data.
Invoke activities can also specify fault and compensation handling, in case
a fault occurs during the Web service invocation.
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Receive activities are used to wait for an incoming message. Similar to invoke
activities, they reference a partnerLink, portType, and operation, as well as a
variable in which the incoming message should be stored. Receive activities
can be used to create a new process instance and, if part of a subsequent
interaction, can be used to correlate on message data using correlationSets.

Reply activities are used in combination with receive activities to implement a
synchronous interaction with the process instance. They link to the same
partnerLink and operation as a previous receive activity and transmit the
output message specified in this operation. Additionally, receive and reply
can be linked by a messageExchange.

Assign activities are the primary means for data handling in BPEL. They can
be used to copy data from variables to other variables or parts thereof, and
can also be used to execute transformations in XSLT.

Throw activities can be used to trigger faults in the same fashion as is common
for high-level programming languages. A fault is identified by its name and
its structure needs to be defined in an imported schema. Moreover, a fault
can carry data.

ReThrow activities work similar to throw activities, but can only be used within
a faultHandler. They propagate a fault that was caught by the handler to
the parent scope without changing associated fault data.

Wait activities are used to delay the execution of a process instance. Execution
can either be delayed for a specific amount of time, or until a certain date.

Empty activities are mere placeholders and irrelevant to process execution.

ExtensionActivities are a means of adding language extensions into a process
model. Such extensions will necessarily be tailored to particular engines
and, in the sense of this work, be nonportable.

Exit activities can be used to immediately terminate a process instance without
any fault, termination, or compensation handling.

Struc-
tured
activities

The remaining group of activities in BPEL are structured activities. Structured
activities enclose other activities and determine the order of their execution. This
means that they correspond to gateways in the sense of Def. 6. The BPEL
specification defines the following structured activities [27, Sect. 11]:

Sequence activities execute enclosed activities in the order of their definition.

If activities allow for an exclusive choice among a set of different control-flow
branches using a data-based boolean expression. As common in high-level
programming languages, they can optionally be extended with a number of
elseif cases and at most one else case.
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While activities can be used to implement iterative looping behavior, given a
data-based boolean condition holds. The condition expression is evaluated
before the first execution of the loop.

RepeatUntil activities work similar to while activities, but execute contained ac-
tivities repetitively until a specified boolean condition holds. The condition
expression is evaluated after the first execution of the loop.

Pick activities support the selection of one among a set of control-flow branches
based on the occurrence of an event. At least one message processing
activity must be contained within a pick, along with at least a second
event-processing activity. This can either be a message processing activity
or a timeout. The control-flow branch of whichever event occurs first, is
enabled for execution.

Flow activities enable parallel execution of contained activities. In their default
fashion, all activities contained within a flow are executed in parallel.
Additionally, links can be defined among activities to specify execution
order dependencies. The usage of links effectively enables a graph-oriented
control-flow definition inside a flow activity.

ForEach activities provide a means to execute contained activities for a given
amount of times, either sequentially or in parallel. The amount of times is
determined by an internal counter variable. A completionCondition can be
used to terminate the forEach, even if not all the enclosed activities have
terminated yet.

List. 2.2 shows an outline of a BPEL implementation for the travel grant
process from Fig. 2.8. It is intended as a simple outline for the serialization of a
BPEL process model.

Listing 2.2: Outline of a BPEL Process Model for the Travel Grant Process

<?xml version=”1 .0 ” encoding=”UTF−8”?>

<process name=”Travel Grant Appl i ca t ion Process ”>

<import . . . />

<partnerLinks . . . />

<variables . . . />

<correlationSets . . . />

<sequence>

<receive name=”Travel grant a p p l i c a t i o n r e c e i v e d ”

/>

<invoke name=”Check amount ” />

<if name=”Amount too high? ”>

<condition . . . />

<else>
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. . .

</else>

</if>

<reply name=”Appl i ca t ion proce s sed ”/>

</sequence>

</process>

As in the case of the BPMN model in List. 2.1, the listing omits parts of the
process model, because a complete version would be too long. The most notable
difference from the BPMN serialization in List. 2.1 is the lack of connectors
between activities (SequenceFlows in BPMN), which are omitted here due to the
block-structuredness of the process model and the usage of structured activities.

2.3. Software Quality Models and Portability

Parts of this section have been taken from [85].

This thesis centers on the portability of service-oriented and process-aware
software. Since portability is a quality characteristic of software, we describe the
foundations of software quality and quality models in the current section. As a
start, the term software quality can be defined as follows:

Definition 7: Software Quality

Software quality is “the degree to which a software product satisfies stated
and implied needs when used under specified conditions” [53, p. 17].

The vagueness in this definition is intentional. The stated and implied needs,
as well as the conditions of usage, on which software quality depends, differ
for different types of software and application scenarios. Therefore, also the
measurement and assessment of software quality is operationalized differently in
different areas.

In the following subsection, Sect. 2.3.1, we first motivate the importance of
the measurement and assessment of software quality and explain how software
measurement techniques can contribute to software quality. We describe the
combination of software measurement and agile software quality improvement
techniques, in particular continuous inspection. This leads to a discussion of
several software quality models that define the nature of software portability, in
particular the ISO/IEC 25010 standard for software quality [53] in Sect. 2.3.2.
Finally, we explain the relationship of portability and standard conformance in
Sect. 2.3.3.
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2.3.1. Software Measurement Techniques for Quality
Improvement

Software quality is a decisive factor for software development project success or
failure [147].Motiva-

tion for
software
measure-

ment

It is not only indispensable for meeting project requirements, but an
improvement in software quality has also been found to lead to an improvement
in development productivity [148]. A prerequisite for improving software quality
is the ability to measure it. For instance, Reel states that “only by measuring a
system and analyzing those incremental measurements can you truly improve the
system” [147, p. 23]. The need for the measurement and assessment of software
quality became evident already with the coining of the term software crisis and
is voiced in foundational texts of this period [149]. Early works on software
measurement and metrics, in particular [150, 151], are much-cited and still
influential today. The quantification of the quality of software is an established
branch of research and studies demonstrate that measurement and metrics can
improve the quality of a software product [152, Chap. 9]. In a nutshell, this is
the reason why we design a software quality measurement framework. Today,
software measurement can be integrated into the software development process
early and often, enabling incremental measurements. Among early applicable
quality improvement techniques, especially code inspections and continuous
quality audits have been found to make an impact [148]. Using such techniques,
quality deficits can be identified early when the correction of defects is still cheap.

A particular agile quality assurance technique that makes use of software
measurement and has the potential to improve quality [48,50–52,152] is continuous
inspection [48,49]. Continuous inspection is a term for the convergence of two
quality assurance techniques, software inspection [153] and continuous integration
and delivery [48,154]. Continuous inspection refers to the constant and automated
inspection of a software product for every source code commit to enhance its
quality [49].

Software
inspection

Software inspections, pioneered by Fagan [153], have a long tradition in software
engineering [155,156]. Ordinarily, these are manual tasks performed as a quality
assurance technique next to other techniques such as unit testing. Essentially, an
inspection is a review process where a team of reviewers individually scrutinize
a software product according to a predefined set of criteria. The reviewers try
to verify if the product meets its specifications and has a sufficient level of
quality [157, pp. 16–25]. Afterwards, the reviewers gather in a meeting and
produce a list of defects that can be handed to the authors of the software.
Obviously, the inspection procedure requires a lot of communication and is
therefore expensive to perform, especially in a repeated fashion. For these reasons,
inspection tools have emerged during the last decade. These tools are static code
analyzers that automatically highlight potential issues in code [158], [152, pp. 124–
128]. The benefit of their usage is that an inspection can normally be performed
within mere seconds and repeatedly. Of course, such a tool might not find all
issues or detect false positives, but it offers unprecedented advantages in terms
of efficiency [159]. Software inspections need not necessarily be limited to the
detection of potential issues, but are also a good occasion to compute quality
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metrics to see if the software product meets predefined quality criteria.
Contin-
uous
integra-
tion

Inspection tools can be used to much benefit, when combined with Continuous
Integration (CI) [48]. The term emerged in the context of agile software devel-
opment methods. It belongs to the concept of continuous delivery [154] which
is specified in the first principle of the agile manifesto [160]. CI is a technique
applied during software development that refers to the frequent integration of
all parts of an application and the validation that they do indeed work together
properly. In practice, a continuous integration server is set up and configured
to build the software product and run the complete set of tests available every
time a commit is made to the version control system [48]. This allows getting
immediate feedback for the complete team in every stage of development and
offers a variety of benefits [154, pp. 17–22], [48, pp. 29–32]. For instance, defects
that are newly introduced into the code can be detected immediately and fixed
at a point in time where the cost of correction is relatively low. CI has been
embraced in practice and a variety of CI servers and tools is available today.

Figure 2.14.: Continuous Inspection Cycle adapted from [49]

Contin-
uous
inspection

With the proper tools, both of these techniques, software inspection and
continuous integration, can be combined to continuous inspection [48, pp. 161–
188], [49]. The idea depicted in the feedback cycle in Fig. 2.14 is to not just
run tests for every commit to the version control system, but also to inspect
the code automatically with available inspection software. That way, possible
defects that are not captured in the tests can be discovered and fixed just as
quickly. It might even be feasible to detect issues in the code that have not yet
turned into concrete defects, but are likely to do so in the future. Moreover, this
is an opportunity to compute quality metrics and compare them to previously
configured thresholds [48, pp. 166–172],[154, pp. 137–140]. This way, it can be
directly noticed if software quality deteriorates and counter measures can be
taken before the deterioration turns into software errors. What is more, through
this feedback, developers learn which patterns of code tend to reduce quality
and which ones tend to improve quality and are encouraged to produce code of
higher quality6 [154, pp. 137–140].

6This effect of the influence of measurement on the persons being measured is known as the
Hawthorne effect. Although it normally is disruptive for experiments, it can also be used to
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The focus of this thesis is software portability. So, this section can be summa-
rized in the following: Given inspection methods and tooling are available for
detecting portability issues in code and measuring portability, these methods
and tools can be used in today’s ubiquitous CI environments through continuous
inspection and, thus, have the potential to lead to code of higher quality, i. e.,
code that is more portable. This is the motivation for developing methods and
tools for measuring the portability of service-oriented and process-aware software.

2.3.2. Portability and the ISO/IEC 25010 Quality Model

To use a technique such as continuous inspection, it is necessary to be able to
capture software quality in the first place. The quality of software is generally
perceived as a multi-dimensional property and this is where software quality
models, e.g., [53–60,62], come into play. Accordingly, the term software quality
model can be defined as follows:

Definition 8: Software Quality Model

A software quality model is a “defined set of characteristics, and of rela-
tionships between them, which provides a framework for specifying quality
requirements and evaluating quality” [53, p. 19].

Develop-
ment of

quality
models

An abundance of such models has been developed during the last decades. A
timeline of several renowned quality models is depicted in Fig. 2.15. Work on
software quality began with the development of software metrics. Especially the
cyclomatic complexity [151] and the metrics suite by Halstead [150] are to be
mentioned here. Also the first quality models, especially by Boehm et al. [54],
Gilb [55], or McCall et al. [56], are still influential today. These models served
as the basis for the first software product quality standard, ISO/IEC 9126 [58].
This standard has had a tremendous impact on the evaluation of software quality
and was the basis for subsequent models, such as Dromey’s model [59], the
FURPS model [62], or the SQALE model [60], a recent special-purpose quality
model for estimating technical debt [161]. It has been revised in 2001 [57] and is
superseded by the ISO/IEC standards framework for quality evaluation, ISO/IEC
25000 [162], called Systems and software Quality Requirements and Evaluation.
The software product quality model of this series of standards is defined in [53]
and marks the current pinnacle of software quality models. It is “widely accepted
both by industrial experts and academic researchers” [163, p. 68]. Due to this
importance, we align the quality measurement framework in this thesis to the
ISO/IEC SQuaRE model.

As stated in Def. 8, quality models define a set of quality characteristics
of software, sometimes also called quality attributes [55, Sect. 3.6]. Quality
characteristics are defined as follows:

train developers in the fashion described in the text.
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Figure 2.15.: Timeline of Software Quality Models adapted and extended
from [163, Sect. 3.2]

Definition 9: Software Quality Characteristic

A software quality characteristic is a “category of software quality that bears
on software quality” [53, p. 19].

Examples are characteristics such as performance efficiency or usability [53].
Also software portability is part of the models and all but the FURPS model [62]
consider it as a major quality characteristic. The quality models provide a
hierarchy of quality characteristics and divide major characteristics into a number
of subcharacteristics that focus on more specific aspects7. For instance, the
characteristic of performance efficiency can be divided into the subcharacteristics
of time behavior, resource utilization, and capacity [53]. The main difference
between different quality models [53–60,62] lies in what quality characteristics
and subcharacteristics they define and how many layers of characteristics they
use.

ISO/IEC
SQuaRE

As stated, we use the ISO/IEC quality model in its most recent revision, the
ISO/IEC 25010 series [53]. This series is titled “Systems and software engineering

– Systems and software Quality Requirements and Evaluation (SQuaRE) – System
and software quality models”. The quality model from [53] is depicted in Fig. 2.16.
It specifies eight top-level quality characteristics and one of these is portability,
the focus of this work. The SQuaRE model defines portability as the “degree of
effectiveness and efficiency with which a system, product or component can be
transferred from one hardware, software or other operational or usage environment
to another. [53, p. 15]. [53] further states that portability can be interpreted
as an inherent capability of the software product, which is the interpretation
we adopt. The scope of this work lies solely on software and not on hardware.

7This is called the attribute hierarchy principle [55, p. 135].

49



2. Theoretical and Technological Foundations

Figure 2.16.: The ISO/IEC 25010 Quality Model adapted from [53, p.4]

Hence, we reduce the scope of portability accordingly and define it as follows:

Definition 10: Portability

Portability is the degree of effectiveness and efficiency with which a software
product can be transferred from one software environment to another.

As can be read from Fig. 2.16, portability has three subcharacteristics, adaptability,
replaceability, and installability. The reasoning behind this structuring can be
expressed through a sequence of decisions made when porting an application,
as depicted in Fig. 2.17. If a software product needs to be ported, the starting

Figure 2.17.: Portability and its Subcharacteristics

point is the question whether it can be directly ported in its current form. If this
is not the case, there are basically two options:

1. The nonportable parts of the software can be adapted for the new envi-
ronment. The ease of this depends on its adaptability. In conformance to
Def. 10, adaptability is defined as:
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Definition 11: Adaptability

Adaptability is the degree with which a software product can effectively
and efficiently be adapted for different or evolving software environ-
ments.

2. The software product can be replaced as a whole by an alternatively available
software product that runs on the new platform. This depends on whether
a suitable alternative is available. In contrast to portability or adaptability,
this characteristic is not inherent to a software product, but depends on
a comparison of software products. This is captured by the definition of
replaceability:

Definition 12: Replaceability

Replaceability is the degree to which a software product can replace
another specified software product for the same purpose in the same
environment [53, p. 16].

Regardless of the decision taken, the new execution environment for the software
product has to be installed. Moreover, the software product itself needs to be
installed in the new environment. This is captured by the characteristic of
installability, which is defined as:

Definition 13: Installability

Installability is the degree of effectiveness and efficiency with which a software
product can be successfully installed in a specified environment.

Portabil-
ity and
DevOps

[53, p. 7] clarifies that portability and its subcharacteristics are highly important
for the maintainers and operators of a system. This is especially true for the
installability of the system, since the operators of an organization will be the
ones who have to perform the installation. As a consequence, an improvement
of portability leads to an improvement of the working life of the operators.
Enabling the quantification of these characteristics during development provides
developers with feedback that allows them to develop software that is better to
operate. This integration of development and operations is the central goal of the
DevOps movement [124]. DevOps is a term for another agile practice that aims
at improving IT performance and is strongly related to continuous integration
and delivery. It is currently receiving widespread attention and is increasingly
adopted in practice [164].

Each of the quality characteristics should be quantified to allow for meaningful
decisions. The enabling of this quantification is one of the research objectives of
this thesis. As stated at the beginning of this section, software quality and its
measurement and assessment depends on stated and implied needs and conditions
of software usage. This restriction has given rise to a number of approaches that
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try to make the ISO/IEC model more applicable in practice, such as [165–167].
Correspondingly, there is a need to tailor the ISO/IEC model for an evaluation
of process-aware and service-oriented software and to develop metrics for this
kind of software. At the time of writing, the ISO/IEC specification that is to
contain concrete metrics [168] is still under development and not yet open to
public scrutiny.

2.3.3. Standard Conformance and Portability

Service-oriented and process-aware software is standards-based software. As
discussed before, a variety of standards for implementing process-aware and
service-oriented software exist (cf. Sect. 2.2.1). Conformance to such a standard
is a necessary prerequisite for software portability [29]. However, standard
conformance is a two-fold aspect [45]: On the one hand, an application can
be implemented in conformance to a standard, which is called source code
conformance. On the other hand, a software execution environment, i. e., an
engine, can implement a standard to enable the execution of application software
that is source code-conformant. This corresponds to implementation conformance
of the engine. Implementation conformance is more critical than source code
conformance [45]. If there is no implementation conformance in engines, even
applications that are source code-conformant cannot be executed. This means that
the source code conformance of an application alone does not necessarily increase
its portability. For this reason, we analyze implementation conformance as the
basis for application portability in this work and define standard conformance
accordingly:

Definition 14: Standard Conformance

Standard conformance is the degree to which a software product implements
the features specified in a standard.

Building implementation-conformant execution environments and source code-
conformant applications is a challenging task. Existing standards are complex and
contain ambiguities, as discussed for particular specifications in [38,39,145,169].
Moreover, they often have a large set of language elements. For instance, the
BPMN specification lists 63 different types of events [26, Sect. 10.5]. As a
result, the implementers of such a language often just implement a subset of
the language or implement some language features in a way that differs from
the original language specification. Only the elements of the language that are
contained in the overlap of these subsets are truly portable from the source-code
point of view. Other elements are portable to a limited degree, as depicted in
Fig. 2.18. This implies that a practical porting of an application is often not
feasible, despite the fact that multiple engines claim to support the standard it
is implemented in.

The first research objective of this thesis is to provide evidence for and a
general tendency of the portability of service-oriented and process-aware software.
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Figure 2.18.: Subsets of Supported Language Elements by Engines

Since portability depends on implementation conformance of engines, we build
a conformance benchmark for process engines. This benchmark is described in
Chap. 3. We benchmark engines for BPEL [27] and BPMN [26], since both are
important for building executable service-oriented and process-aware software.
The goal is to identify standard conformance-induced portability issues and to
identify a tendency or degree of portability for every language element. This
data is also the basis for subsequent metrics computation.

2.4. Software Metric Definition and Evaluation

Parts of this section have been taken from [170].

The second research objective of this thesis is the design and evaluation of a
measurement framework for the assessment of the portability of service-oriented
and process-aware software. To ensure scientific rigor in the definition and
evaluation of this framework, a structured approach is needed. This approach is
explained in the current section.

We discuss foundational theory of software metrics and metrics develop-
ment, evaluation, and validation that stems from common metrics definition
approaches [67,68]. This forms the basis for the chapters of Part II of this thesis.
The following subsection, Sect. 2.4.1, provides essential definitions and presents
basic metric properties. In Sect. 2.4.2, we discuss the theoretical validation
approaches used in this work, which includes a formal [69] as well as an informal
approach [70]. Thereafter, in Sect. 2.4.3, we explain our method of operation
for a practical evaluation of software metrics, along with the architecture of our
prototypic implementation of a metrics suite, and a summary of the methods
applied for hypothesis evaluation.
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2.4.1. Basic Metric Properties

The purpose of software quality evaluation and assessment is to make the prop-
erties of a piece of software tangible through measurement. Measurement refers
to the act of computing a metric value based on a piece of software [171, p. 3].
As such, it can be defined as follows:

Definition 15: Measurement

Measurement is “the assignment of numerals to objects or events according
to rules” [172].

When it comes to software measurement, the objects or events of interest are
software products. Measurement takes place either by analyzing their structure
or by observing their behavior during execution. The terms metric and measure
are often used interchangeably to denote a rule or function that performs the
assignment of a numeral [53, 171, 173][174, p. 38]. In this thesis, we refer to
the term metric as defined by [171]. There, the term software quality metric is
defined as:

Definition 16: Software Quality Metric

A software quality metric is a “function whose inputs are software data and
whose output is a single numerical value that can be interpreted as the degree
to which software possesses a given attribute that affects its quality” [171, p. 3].

Measurement using software metrics is usually applied, either for the assessment
of the quality of existing software or the prediction of future quality characteristics
based on existing software and a predictive model [47]. The metrics derived in
this work are directed at the assessment of the quality of existing software and
not at the prediction of future quality characteristics.

Direct-
ness and

inter-
nality

Metrics can be direct or indirect [171, p. 3], internal or external [53, pp. 16f.],
and possess a certain scale [172]. Direct metrics are metrics that do not depend
on any other metric or measurement [171, p. 2] and a typical example for a direct
metric are lines of code [174, p. 41]. In contrast, indirect metrics are computed
from a combination of other, direct or indirect, metrics [171, p. 2]. Internal
metrics are metrics that do only depend on the static attributes and structure
of the software product, such as the source code [53, p. 17]. Consequently, such
metrics can often be computed through static analysis. As opposed to this,
external metrics depend on the behavior of an application and are computed at
run-time [53, pp. 16f.]. The concepts of internality and externality are orthogonal
to directness or indirectness. Direct or indirect metrics are also either internal or
external.

Scale
types

The metric value that is assigned by a metric belongs to a certain value domain,
which is determined by the scale type of the metric. The scale type delimits the
mathematical operations that can be performed for a meaningful interpretation
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of the metric. Hence, it is the basis for the selection of proper statistical methods
in an interpretation. Four scale types are frequently used, not only for software
metrics [172][174, pp. 39f.]:

The nominal scale only differentiates between different values and is used for
classification. It maps the measured attribute to a certain name or label
and no relationships apart from equality and inequality can be observed
among labels. Hence, the statistical methods that can be applied for a
nominally scaled metric are limited. For instance, the total number of cases
or the mode can be computed.

The ordinal scale extends the nominal scale by defining a natural order among
the different labels. It can be observed that one label is considered “higher”
than another, but there are no clear-cut distances between different labels.
This allows for the computation of median values or percentiles.

The interval scale is similar to the ordinal scale in that it allows for an ordering
of metric values, but in contrast to the ordinal scale the distance between
the values are meaningful. For instance, it cannot only be observed that
one value is higher than another, but also that the distance between the two
is smaller or larger than the distance between another pair of values. Based
on an interval scale, for instance, mean values, standard deviations, and
correlations can be computed. Examples of an interval scale is temperature
measured in Celsius.

The ratio scale is the most powerful scale and adds a meaningful null value to
the interval scale. This implies that operations such as the coefficient of
variation are possible.

When defining metrics in this thesis, we clarify their scale type, directness or
indirectness, and internality or externality.

2.4.2. Theoretical Validation

Validation of new proposed metrics is a crucial but complex task [171]. Unfortu-
nately, there is no strict consensus on metrics validation in the literature [175].
Instead, many different validity criteria for metrics [175], as well as threats to
validity [174, Sect. 8.8], do exist. The importance of individual validity criteria
and threats is context- and study-dependent. As [171, p. 10] states, “validation
does not mean a universal validation of the metrics for all applications. Rather it
refers to validating the relationship between a set of metrics and a quality factor
for a given application”. In this thesis, we use the validity criteria defined in two
established and often-cited validation frameworks [69,70]. These frameworks have
been applied in studies that are methodically similar to our work [65,66,176].

Validation approaches can be separated into formal approaches, e.g., [69,177,
178], and informal approaches, e.g. [70,179][171, pp. 10–13].
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Informal approaches essentially bundle a number of validity criteria that are
considered particularly important. Criteria that are mentioned often include
aspects, such as repeatability, consistency, or discriminative power [171,179].
The evaluation of these criteria can be performed in a quantitative or
qualitative fashion, depending on the validation framework.

Formal approaches take an axiomatic form. They specify a number of mathe-
matical properties, for instance based on measurement theory, that a metric
of a certain type should adhere to. Well-known formal validation approaches
are, for instance, [69,177,178].

In this thesis, we apply a formal [69] and an informal [70] validation framework.
The two frameworks are detailed more closely in the following subsections.

2.4.2.1. Formal Validation

The formal validation framework we use is the property-based software engineering
measurement framework by Briand et. al. [69]. Its aim is to “make the measure
definition process more rigorous and less exploratory” [69, p. 71]. It is a generic
framework for validating mathematical properties of structural software metrics.
The framework proposes several types of software metrics, being size, length,
complexity, cohesion, and coupling. Each type of metric should fulfill certain
mathematical properties.

Modular
systems

The formal model underlying [69] is that of a modular system MS. Such a
system consists of the triple < E,R,M >, where E refers to the set of elements
of the system, R to the set of relations among elements, i. e., R ⊆ E × E,
and M to a set of modules. Modules, in turn, consist of a subset of elements
from E that are connected by relations from R. This means that modules form
partitions of the elements and relations of the complete modular system. Fig. 2.19

Figure 2.19.: Example of a Modular System adapted from [69, p. 71]

depicts an example of a modular system MS that consists of the four modules
M = {m1,m2,m3,m4}, with the elements E = {a, b, c, d, e, f, g, h, i} and the
relations R = {< a, b >, < a, h >, < b, d >, < c, e >, < d, c >, < d, e >,
< e, f >, < f, g >, < h, i >, < i, f >}. Each of the modules can be considered
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independently, for instance, m3 =< Em3, Rm3 >=< {b, c, d, e}, {< b, d >,<
c, e >,< d, c >,< d, e >} >. Although this is not the case in Fig. 2.19, modules
may also overlap.

The metaphor of a modular system can directly be applied to service-oriented
and process-aware software. The modular systems from [69] are directed graphs.
Thus, they share the representation with process models as defined in Def. 6 and
discussed in Sect. 2.2, which can also be represented as directed graphs. The
elements of the modular system, the elements of set E, correspond to the nodes
N of the process model, i. e., its activities, gateways, events, and basic elements.
Analogously, the relations of the system, the elements of set R, correspond to
the connectors C of a process model. For instance, a connector c1 ∈ C between
two nodes n1, n2 ∈ N implies a relation between the two, i. e., < n1, n2 > ∈ R.
Moreover, a process model can be partitioned into multiple modules by labeling
subsets of nodes and connectors. For instance, different control-flow branches
could be considered as modules of the process model. The system from Fig. 2.19

Figure 2.20.: A Process Model as a Modular System

can easily be rearranged in a directed form, which results in a visualization
that is typical for process models. The visualization is depicted in Fig. 2.20.
This demonstrates that the property-based software engineering measurement
framework [69] is applicable for the formal validation of metrics for process-aware
and service-oriented software.

The direct metrics defined in the course of this work are of two particular types:
size and complexity [69]. Size metrics should fulfill the following properties8:

Non-negativity: Metric values for any system should be non-negative:

∀.S =< E,R,M >⇒Metric(S) ≥ 0 (2.1)

Null value: Metric values for an empty system should be null:

∀.S =< E,R,M >,E = ∅ ⇒Metric(S) = 0 (2.2)

8In [180], Morasca proposes a refinement of the original framework [69] and demonstrates that
not all the properties defined in [69] need to be discussed, for size and complexity metrics
alike. Instead, only a subset of the original properties, from which the remaining properties
follow, is strictly necessary. We still evaluate all properties defined in [69]. In contrast
to [180], [69] has achieved wide-spread acceptance and is used in many studies. Relying on
the same framework and axioms makes it easier to compare our work to these studies.
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This means that an empty process model, i. e. a process model with no
nodes, should have a size value of zero.

Additivity: The size of two disjoint modules of a system taken together should
be identical to the sum of the two:

∀.S =< E,R,M >,M = {m1,m2}, Em1 ∩ Em2 = ∅ (2.3)

⇒Metric(S) = Metric(m1) +Metric(m2)

These properties also apply to complexity metrics. Moreover, two additional
properties should hold for complexity metrics:

Symmetry: Symmetry requires that the value of a complexity metric does not
depend on the labeling used for the relations between elements. Two systems
with identical elements but differently labeled relations should have the
same complexity value:

∀.S, S ′ : S = < E,R,M >, S′ = < E,R′,M > (2.4)

⇒Metric(S) = Metric(S′)

Monotonicity: Monotonicity relates to additivity, which implies that the metric
value for a combination of disjoint modules should be identical to the sum
of the two. Monotonicity requires that the metric value for a combination
of two non-disjoint modules should not decrease:

∀.S =< E,R,M >,M = {m1,m2}, Em1 ∩ Em2 6= ∅ (2.5)

⇒Metric(S) ≥Metric(m1) +Metric(m2)

It is important to note a difficulty in the interpretation of size and complexity, as
defined by [69]. According to [69], the complexity of a system originates from the
relations of the elements only and elements have no inherent complexity. [180]
expands on this and clarifies that metrics which build on the relations of the
system are complexity metrics, whereas metrics which build on system elements
are size metrics. This view is debatable and [69, p. 73] concedes that “it could
be argued that [...] each element of E may have some complexity of its own”. In
our case, system elements are the nodes of a process model. Each such element
typically involves a variety of configuration options and settings that may even
be interdependent. Thus, each element is also complex to a certain degree and, in
some cases, the metrics defined in this work take this complexity into account. In
this situation, the disambiguation into size or complexity metrics is not entirely
clear and it is possible to put forward arguments for either type. If this is the
case, we treat a metric as a complexity metric and, thus, validate more of the
properties, rather than fewer.
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2.4.2.2. Informal Validation

Software metrics should not only be mathematically sound, but also correctly
reflect what they are intended to measure. This is often hard to prove formally.
For instance, [67, p. 1107] states that “the definition of a measure is itself a very
human-intensive activity, which cannot be described and analyzed in a fully formal
way”. For this reason, informal validation approaches exist and complement a
formal validation.

The informal theoretical validation framework we use is [70]. This framework
builds on notable related informal validation approaches, in particular the IEEE
standard 1061 [171] mentioned before, which defines a methodology for software
quality metrics definition and validation. According to [171], direct metrics need
not be validated, but are assumed to be valid due to the direct relationship to the
characteristic which they measure. Kaner and Bond [70] criticize this assumption.
They demonstrate, using the example of a direct metric from [171], that the
directness of supposedly direct metrics is sometimes far from given. Their main
point is that the existence of a causal relationship between a software metric and
the quality characteristic it measures is seldom addressed. To better clarify the
relation of the quality characteristic and metric, the authors propose a framework
of ten questions. In these questions, they use the term quality attribute when
referring to a quality characteristic. Another essential part is the measurement
instrument, i. e., the tool or mechanism used to compute metric values. The ten
questions to be answered for proposed metrics are [70]:

1. What is the purpose of the metric? The purpose of a metric influences the
criticality of its validation. Examples of purposes are, for instance, project
status evaluation, self-assessment and improvement, or providing informa-
tion for stakeholders. The latter two are the primary purposes of the metrics
presented in this thesis.

2. What is the scope of the metric? Depending on the size of the organization
or project in which a metric is used, its scope can vary. Metrics can, for
example, be directed at single persons, single projects of one or more
workgroups, or at an entire company. The scope of the metrics in this
work is generally a single, service-oriented and process-aware, project of
one workgroup. They can be computed based on single process models or
their execution engines.

3. What attribute is the target of measurement? The quality attribute to be
measured should be clearly specified. If the attribute is unclear, then so is
the value of the measurement. The top-level attribute this work focuses on
is portability as defined in Sect. 2.3.2. Also the sub-attributes of portability,
being installability, adaptability, and replaceability, are defined in this
section.

4. What is the natural scale of the attribute? This question refers to scales
of measurement as defined in Sect. 2.4.1. Although it is necessary to define
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the scale type for a metric, this is not always possible for the measured
attribute.

5. What is the natural variability of the attribute? There might exist an in-
herent variability for a quality attribute. This variability must be considered
when interpreting it. For instance, programmer productivity varies naturally
depending on the time of the day. If such a variation exists, this should be
made clear.

6. What is the metric and measurement instrument? New metrics should be
specified clearly, which can be achieved by a formal definition. Since the
mechanism used to obtain metric values can also influence the result, it
should also be clearly stated. Typical mechanisms are counting (e.g., lines
of code, faults, control-flow branches), matching (e.g., program instructions,
statements in a script), comparing (e.g., specifications, bug reports), or
timing (e.g., duration of execution or installation). These mechanisms can
be applied by a human or by a program. An automatic computation is
clearly desirable, because it is more likely to result in objective metrics.
Objective metrics are metrics that yield the exact same result for repeated
computations [174, Sect. 3.1.2.]. In this work, we implement the metrics
computation, as far as this is possible, in a metrics suite (cf. Sect. 2.4.3.2).

7. What is the natural scale of the metric? As stated before, the scale type
of a metric needs to be defined. This scale may deviate from the scale of
the attribute, and still allow for a valid quantification. In any case, the
scale should be clearly specified.

8. What is the natural variability of the instrument? This question refers to
possible measurement errors. Realistically, any practical measurement,
regardless of whether it is performed by a human or by a program, has
sources of errors. Since it is impossible to prove the absence of errors in
the instrument, it is important to make clear what the primary sources of
errors are.

9. What is the relationship between attribute and metric? This refers to the
construct validity of the metric, i. e., if the metric really measures what
it is intended to. The relationship between attribute and metric should
be clarified by an underlying model. In particular, it should be clearly
explained if and why there is a causal relationship between the two. The
model that explains the relationship between the attributes we consider is
the SQuaRE model explained in Sect. 2.3.2. The relationship between the
metrics and each attribute is made clear in the respective chapters of the
thesis.

10. What are the side effects of using the instrument? The results of a mea-
surement may change depending on the effort put into the measurement
process itself. Especially measurement performed by a human is prone to
this error, as for example more time spent in measuring might result in

60



2.4. Software Metric Definition and Evaluation

more desirable metric values without any change in the underlying attribute.
Moreover, humans are good at modifying their behavior when being mea-
sured to produce more desirable metric values without any changes in the
underlying attribute. If such side effects exist, they should be made clear.

2.4.3. Practical Evaluation

An evaluation of newly proposed metrics is crucial also from the practical point
of view to complement a theoretical validation [171]. Metrics should be computed
for realistic pieces of software to see how well they perform. This is necessary to
demonstrate their applicability for assessing software quality and to exemplify
their interpretation. Furthermore, it helps to verify what properties of the metrics
hold in practice.

In this work, we perform a practical evaluation for the metrics we propose,
by the means of an experiment. We gather large sets of service-oriented and
process-aware applications, i. e., process models in BPEL 2.0 [27] or BPMN
2.0 [26], from public software repositories. Moreover, we implement the metrics
computation for one of the two languages and compute metric values for gathered
applications. Based on these values, we perform statistical analyses to verify a
number of quality factors for the metrics9.

2.4.3.1. Structure of the Experiments

The practical evaluation corresponds to an experiment. An experiment in
the software engineering domain typically follows a series of steps and the
structure and reporting of these steps is the topic of various publications [174,
pp. 85ff.] [182,183].

Goal
statement

The first step is the scoping of the experiment and the statement of its
goal, which we do during the discussion of the design of the experiment. This
statement [183] clarifies the objects of study, the purpose, the quality focus, the
perspective, and the context of the experiment. In our case, the objects of study
are always pieces of service-oriented and process-aware software written in the
languages mentioned above. The purpose of our experiment is to evaluate the
quality of proposed metrics. The quality focus, i. e., the properties evaluated,
depends on their nature. Hence, we evaluate different properties for different
metrics. Properties we evaluate include for instance:

Relation to Application Size: Software metrics, in particular complexity metrics,
tend to produce very different values for applications of different size [184].
As a result, they cannot meaningfully be used for comparing applications
of very different size. It can be considered a quality property of a metric, if
it produces comparable values for applications of very different size.

Stability : On repeated executions of the experiment for different data, metric
values should be similar. If they are vastly different, the mechanism of

9All statistical computations in this work are performed using the R software [181].
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computation can be considered unstable. For instance after a given amount
of time has passed and the applications that are the objects of study have
been modified, the metrics should yield similar values. Only then, the
mechanism of computation underlying the metrics can be considered as
stable (or predictable in the terms of [171, p. 12]).

Discriminative Power : Metrics should assign different values to different pieces
of software [171, p. 12]. If a metric assigns identical values to applications
of very different quality, it can hardly be used for assessment and ranking.

The properties we evaluate are captured by experimental hypothesis. To conclude
the goal statement, the perspective taken in the experiments is that of a software
engineer, developer, or operator who builds and maintains process-aware and
service-oriented software. Our evaluation is performed in the context of realistic
software products obtained from third parties.

Source of
applica-

tions

The next part of the experiment design, is the explanation of the origin and
nature of the software applications used in the experiment and the design decisions
made when obtaining them. The largest source for third party software used here
is the Open Hub open source network10. At the time of writing, this network
indexes and analyzes almost 700 thousand open source projects and offers the
capability to search the code of these projects. To obtain software for analysis,
we query the network, download the results of the query, and perform a variety
of sanity checks to exclude broken or irrelevant results. The outcome are large
sets of process models, in the languages we are looking for, that can be used for
an evaluation of proposed metrics.

2.4.3.2. Implementation of a Metrics Suite

To allow for an objective computation of the metrics [174, Sect. 3.1.2.], we imple-
ment proposed metrics in a metrics suite, i. e., an application that automatically
analyzes appropriate software artifacts and computes metric values. This is also
necessary to perform the practical evaluation and to analyze thousands of process
models. Without automated support, such a computation would not be feasible.

The metrics suite is essentially a static checker that parses and evaluates
various software artifacts, similar to [158]. Its name is prope, which stands for
PROcess-aware information systems Portability mE trics suite. The homepage
of the tool is available at https://uniba-dsg.github.io/prope/. Prope uses
a command line interface to trigger metrics computation and is implemented in
Java. It is open source and freely available without charge under an MIT license.

Quality
assurance

Being our measurement instrument, prope is also a potential source of mea-
surement errors. There is no way in which we can guarantee the absence of errors
in the implementation. Since this thesis deals with software quality, we also tried
to achieve a high level of quality in our tool. Therefore, we applied a variety of
quality assurance techniques to reduce the amount of potential errors. To begin
with, the code of prope is freely available and open to public scrutiny, which

10The network homepage is located at https://www.openhub.net/.
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can lead to quality improvement [185,186]. Moreover, we provide an excessive
set of unit tests and, as suggested in Sect. 2.3.1, apply techniques of continuous
integration and continuous inspection.

Figure 2.21.: Outline of the Metrics Suite

Function-
ing of the
metrics
suite

An outline of the structure of prope is depicted in Fig. 2.21. To perform an
analysis and metrics computation for a set of software artifacts, prope requires two
arguments: the type of the analysis to be performed and a file system path. The
type of the analysis corresponds to one of the quality characteristics considered
here, e.g., portability or installability, and the file system path identifies the
location of the software artifacts to be analyzed. The execution of an analysis
starts by instantiating an AnalysisWorkflow. This workflow controls the execution
of an analysis run. It creates a DirectoryAnalyzer for the file system path that
has been passed as an argument. This DirectoryAnalyzer recursively traverses
the complete directory structure beginning with the initial path and schedules
every file for an analysis by a FileAnalyzer. The FileAnalyzer corresponds to a
plugin mechanism that can be extended to perform arbitrary analyses on software
artifacts. The analyzers provided by prope depend on the quality characteristic
for which metric values are to be computed and multiple implementations of this
interface exist. A FileAnalyzer first determines if a given file is of interest to
the current analysis type. If this is the case, the FileAnalyzer parses the file,
computes relevant metrics for it, and produces a ReportEntry. Such an entry
contains all metric values computed for the current file. When all files have been
considered, the DirectoryAnalyzer aggregates all ReportEntries to a Report which
is handed back to the AnalysisWorkflow. The workflow invokes a ReportWriter
that serializes the results of the analysis. Currently, reports are written in CSV
format.

Plugin
mecha-
nism

As indicated, the main extension point of prope are FileAnalyzers. These
capture the actual mechanism of metrics computation. The functioning of
specific FileAnalyzers is detailed as part of the practical evaluation in the
different chapters of Part II. Using FileAnalyzers, it is easy to extend prope for
the computation of additional metrics, even for different quality characteristics.
Moreover, using its command line interface, prope can be integrated in enterprise
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level metrics suites, such as SonarQube11. That way, the metrics we propose are
available for continuous integration and continuous inspection, as described in
Sect. 2.3.1.

2.4.3.3. Hypothesis Evaluation

The last step in the practical evaluation is the computation of metric values
for the applications obtained, using the implementation in the metrics suite,
followed by the evaluation of the initially specified hypotheses. We discuss
descriptive metric data and provide an interpretation of this data for the different
applications. This serves as an example of the usage of the proposed metrics for
quality assessment. Next, a number of statistical methods and tests are executed
to evaluate the hypotheses stated in the design of the experiment. Using these
tests, we check if the metrics satisfy expected quality properties. Frequently
applied statistical techniques include:

• the Shapiro-Wilk test for normality [187] to see if metric values for a set of
applications are distributed normally.

• the Mann-Whitney U test [188] for comparing the distributions of metrics
values for different sets of applications. This test allows to see if the
distributions of metric values differ significantly from each other.

• the Wilcoxon signed-rank test [189] for comparing the means of paired sets
of metric values. The test is used to compare metric values for repeated
executions of an experiment based on updated applications or an updated
mechanism of computation. Using this test, we can see if the metric values
of repeated executions differ significantly. Thus, we can evaluate stability
(cf. Sect. 2.4.3.1).

• the square of the linear correlation coefficient, R2, which allows to see if
metric values for different metrics correlate with each other.

Lastly, the practical evaluation is concluded with a summary of the most
important findings. This includes a final judgement on the appropriateness of the
proposed metrics and, partly, the selection of a subset of the proposed metrics
for quality assessment. All in all, the approach presented here allows to answer
research question 2 and related subquestions, and addresses our second research
objective.

11The project page of SonarQube can be found at http://www.sonarqube.org/. A prope
plugin for this metric suite is currently under development.
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3. A Conformance Benchmark for
Process Engines

Parts of this chapter have been taken from [73, 74, 78, 82].

This chapter presents a benchmark of the standard conformance of a variety
of process engines for the process languages BPEL 2.0 [27] and BPMN 2.0 [26].
The goal is to analyze the current state of the portability of process-aware and
service-oriented software, i. e., to answer research question 1. As explained in
Sect. 2.3.3, portability depends on the conformance of engines to the standards
they claim to implement, i. e., their implementation conformance [45]. This is
the reason for building a benchmark for process engines.

The results of the benchmark challenge the common assumption that contem-
porary standards are enough for enabling portability, i. e., it answers research
question 1.1. Furthermore, it identifies existing portability issues and their
implications and thereby answers research question 1.2. In summary, this chap-
ter provides evidence that the portability of service-oriented and process-aware
software is limited.

Structure
of the
chapter

In the next section, we discuss common requirements for a benchmark and
explain how we address these requirements here. In Sect. 3.2, we describe
the design of the benchmark and its fully automatic implementation in the
benchmarking tool betsy. We characterize the engines being tested and detail
the test suites that cover the two languages BPEL [27], BPMN [26], as well as
common workflow control-flow patterns [71]. Finally, the results of the execution
of the benchmark are presented and interpreted in Sect. 3.3, which concludes the
chapter and answers the research questions.

3.1. Requirements for a Benchmark

Benchmarks are an important tool, for academic research and industry alike, to
demonstrate the superiority of certain algorithms, tools, software products, or
development processes [190]. Unfortunately, benchmarks are often complex and
hard to build and interpret correctly [191]. Even seemingly small and technical
issues can have a huge impact on the results and their validity. To make sure that
a benchmark is valid and can correctly be interpreted, a number of requirements
should be fulfilled [192]. These requirements relate to the software that automates
the benchmark and the problem of the benchmarking itself. In the following,
we detail the requirements from [192] and state how we address them in our
benchmark.
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Accessibility: The benchmark as well as its results should be easy to view and
access. This is necessary, so that others can reproduce the results and
double check their interpretation. It is not possible to assess the validity of
a benchmark that cannot be accessed.

In our case, all of the software needed to perform the benchmark, with
the exception of three commercial process engines, is open source and
freely available without charge. We obtained three commercial BPEL
engines under an academic license and are not permitted to distribute their
executables or disclose their names. The remaining five BPEL engines and
three BPMN engines, which we evaluate, are open source and available
without cost.

Affordability: The costs of performing the benchmark must not be higher than
the benefits gained from it. A benchmark should take up as little resources
and time as is necessary to obtain valid results.

The primary cost factor for performing the conformance benchmark is
execution time. Hardware costs are limited, and the benchmark can be
performed on a single machine with no exceptional hardware requirements.
The machine we executed the benchmark on was equipped with an Intel
Core i7-2600 processor, 16 GB RAM, a 1 TB HDD, and was running
Windows 7 Professional SP1. In this setting, a full conformance benchmark
of all engines takes several dozen hours.

Clarity: The specification of the benchmark must be clearly stated and be as
concise as possible so that others can look up and understand it with
reasonable effort.

The specification of our benchmark is stated in the form of a testing
methodology and a set of test suites consisting of conformance tests. These
test suites detail the artifacts involved in a conformance test, the inputs to
the test, the steps taken during test execution, and the expected results of
the test. The test suites are described in a compact format and outlined in
Sect. 3.2. Furthermore, all tests are listed in Appendix A.

Relevance: The benchmark should address a problem of realistic nature and
size. The closeness to reality of the benchmark is dependent on its goal.

Our goal is to evaluate the standard conformance of a process engine. Every
test in the benchmark is directly inferred from normative statements of a
standard. The features we test are required to be supported by a conforming
implementation of the standard and, hence, they are realistic. To allow for
an isolated benchmarking of language features, the tests are as minimal
as possible and, therefore, small in size. Nevertheless, they are relevant,
since every test describes a feature an implementation has to support.
Additionally, to cover larger-scale and realistic application scenarios, we
include tests for the support for workflow control-flow patterns [71]. These
patterns describe structures that are considered representative of realistic
usage scenarios.
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Solvability: A benchmark should produce meaningful results. There is no point
in a benchmark that does not find differences between different systems or
that is too trivial.

In Sect. 3.3, we describe a vast amount of unsuspected differences in stan-
dard conformance among the different engines which are uncovered by our
benchmark. These differences in conformance have far reaching implications
for application portability. Due to its size and specification coverage, the
benchmark is also far from trivial.

Portability: The focus of this thesis, software portability, is not only relevant to
process-aware and service-oriented software, but also to benchmarking. A
benchmark that just works for one particular system is pointless. Instead,
it should be abstract enough so that it is applicable to multiple systems. If
there are too many customizations required to execute the benchmark on
another system, its validity is put at risk. Differences in the results might
originate from the customizations implemented and not the actual problem
being tested.

The specification of our benchmark, as explained in Sect. 3.2, abstracts
from a particular engine and also from a particular process standard. What
is more, the benchmark is executed for a total of eleven different process
engines and multiple revisions of these engines. Hence, the benchmark is
sufficiently portable.

Scalability: The benchmark should work with systems of different maturity. It
should be possible to work with research prototypes and industrial projects
alike.

We benchmark open source and commercial engines, which are very different
projects by nature. Although all of the engines are rated as mature by their
respective distributors, it is clear from the benchmark results that some are
much more complete than others. Hence, the benchmark scales to systems
of varying origin and maturity.

3.2. Conformance Benchmark Design

The design of the benchmark consists of two main parts: The first part is a tool
that is capable of installing, deleting, and communicating with a variety of process
engines. The second part corresponds to three test suites of engine-independent
conformance tests. The benchmarking tool instruments these tests to produce
engine-specific deployment artifacts, deploys and executes these artifacts on the
different engines, and evaluates the results of the execution. The outcome is a
comprehensive overview of the support of a process engine for every feature of a
standard.

In the following, we first describe the systems under test, i. e., the process
engines we evaluate. Thereafter, we present the testing methodology and testing
tool in Sect. 3.2.2. The remainder of the section details the three test suites.
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3.2.1. Systems under Test

The benchmark addresses engines for BPMN [26] and BPEL [27]. The data we
describe in this thesis stems from the evaluation of eight BPEL engines, five
open source and three commercial ones, and three BPMN engines. It has to be
remarked upfront that these are not all engines that exist for the two languages.
Consequently, their selection might affect the external validity [174, p. 103], in
particular generalizability, of the results. Arguably, benchmarking all existing
engines is not feasible due to the associated effort and the licensing cost of several
engines.Decisions

for
engine

selection

However, the engines we selected are, to the best of our knowledge,
those that are most relevant to practice. Lacking market data on their usage, we
cannot ultimately prove this assumption. Since we compare a relatively large
amount of engines of open source and of commercial origin, we are confident
that our results are generalizable to a larger population. Moreover, most of
the engines received minor or patch version updates since the execution of the
benchmark12. These updates resulted in minor changes in the benchmark data.
None of these changes led to a different interpretation of the results or a different
outcome of statistical tests applied. Hence, the results of the benchmark can be
considered relatively stable.

In the following, we provide a brief overview over the engines under test.
Table 3.1 shows the names, version numbers, licenses, and dates of release of
the engines, with the exception of the three commercial BPEL engines. These
engines are pseudonomized and further details cannot be unveiled due to the
academic license under which the engines were obtained.

The BPEL engines we evaluate can be briefly characterized as follows:

Apache ODE: This engine can be considered as one of the most well-known
and widely used open source BPEL engines. This is demonstrated by
the fact that it is used in several open source Enterprise Service Buses
(ESB’s), such as WSO2. The project page of Apache ODE is available at
http://ode.apache.org/.

bpel-g: bpel-g is a fork of the former reference implementation of the BPEL
standard, the ActiveBPEL engine by Active Endpoints. The open source
distribution of ActiveBPEL has been discontinued, but bpel-g is developed
as a Google Code project and can be found at http://code.google.com/
p/bpel-g/.

OpenESB: The ESB product OpenESB includes a custom BPEL engine, which
we evaluate. OpenESB was being developed by Sun prior to its acquisition
by Oracle. Oracle open sourced OpenESB, which is now community-
maintained. The project homepage of OpenESB is located at http://www.
open-esb.net/.

Orchestra: Orchestra is a BPEL engine provided by the OW2 consortium, an
open source community for infrastructure software. It uses a process

12The benchmark for BPEL engines was executed in July 2013 and for BPMN engines in
October 2014.
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Table 3.1.: Engines Under Test

Name Version License Date of Release

BPEL

Apache ODE 1.3.5 Apache License 02/2011

bpel-g 5.3 GPL 12/2012

OpenESB 2.3 CDDL 12/2009

Orchestra 4.9 LGPL 01/2012

Petals 4.1 LGPL 07/2012

E1 n.a. commercial n.a.

E2 n.a. commercial n.a.

E3 n.a. commercial n.a.

BPMN

jBPM 6.0.0-Final Apache License 11/2013

Activiti 5.16.3 Apache License 09/2014

camunda BPM 7.1.0-Final Apache License 03/2014

virtual machine that is supposed to support the execution of different
languages apart from BPEL, such as XPDL. Our focus in the evaluation
relies solely on its BPEL conformance. Orchestra is available at http:

//orchestra.ow2.org/.

Petals: Similar to OpenESB, Petals ESB is an open source ESB that includes a
custom BPEL engine, called EasyBPEL. Just like Orchestra, this product
is developed by the OW2 consortium. After the benchmark had been
executed, the Petals ESB project decided to discontinue the development
of EasyBPEL. For completeness, we report on its support nonetheless.
The documentation for EasyBPEL can be found at http://research.

petalslink.org/display/easyBPEL/EasyBPEL+Overview.

Commercial BPEL Engines (E1–E3): The commercial engines under test come
from major SOA middleware vendors. These vendors are also among the
authors of the BPEL specification. Since we cannot disclose details, we
pseudonimize the engines and refer to them as E1, E2, and E3 in the
following.
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Analogously, the BPMN engines we evaluate are:

jBPM: Similar to the Orchestra BPEL engine, jBPM was conceived as a general
BPM platfrom and used a process virtual machine to support multiple
process languages. From version 4.3 onwards, jBPM put its focus on the
execution of BPMN processes specifically. The project website is located at
http://www.jbpm.org/.

Activiti: The Activiti project was initiated by former developers of jBPM, with
the intention to implement a new BPMN engine from scratch. Activiti’s
current main supporter is Alfresco and the project homepage can be found
at http://www.activiti.org/.

Camunda BPM: Developed by the BPM software vendor camunda, this engine
is a fork of Activiti. Prior to the forking in March 2013, developers from
camunda were involved in the development of Activiti. The camunda BPM
engine is available at http://www.camunda.org/.

3.2.2. Benchmarking Methodology and Tool

The intention of the benchmarking methodology presented in this section is to
evaluate the standard conformance of a range of process engines in an isolated and
reproducible fashion. We implemented a benchmarking tool that fully automates
this methodology. The tool derives its name, betsy, from BPEL/BPMN Engine
Test System and is freely available at https://github.com/uniba-dsg/betsy.
Betsy provides a domain model for defining conformance tests and automating
the lifecycle of process engines. Furthermore, it executes these conformance tests
in a conformance testing workflow. This section sketches the domain model and
the testing workflow.

Figure 3.1.: Conceptual Domain Model for the Conformance Benchmark

Domain
model

The domain model for specifying a benchmark is depicted in Fig. 3.1. This
structure applies for benchmarks of BPEL and BPMN engines alike. Every
execution of the tool is configured in a TestSuite. The key elements of this suite
are Processes and Engines. A Process corresponds to a process model in either
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BPEL or BPMN and bundles all engine independent artifacts that encapsulate a
single language feature. In the case of BPEL, this is a BPEL process definition
and related WSDL, XSD, and XSLT files. In the case of BPMN, it is a single
file ending in .bpmn that includes a BPMN Process. A Process in the domain
model is the basis for a single conformance test. An Engine represents one
of the systems under test and defines methods for managing the lifecycle of a
concrete engine instance in a specific version. Furthermore, it provides methods
for deploying process models to that engine instance. Specific subclasses of this
abstract class are implemented for every engine under test. This is also a major
extension point of betsy and the conformance benchmark.

For each Process, a set of TestCases, consisting of several TestSteps that
are verified through zero or more TestAssertions can be defined. A TestCase
corresponds to a single valid control-flow path through a process model. Hence,
multiple TestCases may be necessary to verify if the behavior of the language
feature captured in the process model conforms to the standard. TestSteps
correspond to steps in the traversal of the control-flow graph. For instance, this
can be the creation of a process instance with specific input parameters or the
sending of a message to a process instance. A TestAssertion captures expected
behavior or output and can be validated after process execution. If all assertions
pass, the test case is recorded as successful. If all TestCases linked to a Process
are successful, the engine under test is considered to have passed the conformance
test. Otherwise, the engine has failed the test.

TestAssertions are evaluated in different ways for BPEL and BPMN engines.
For BPEL engines, betsy actively communicates with a running process instance
by means of SOAP messages. In this case, TestAssertions are evaluated based
on the payload of the messages received from the process instance as a reply.
By sending messages at specific points during process instance execution, it is
possible to verify if execution takes place as expected. In the case of BPMN, a
fully standardized way of specifying message exchanges, working on all tested
engines, is lacking, although a RESTful way of interaction is possible for some
engines. [38] elaborates on this issue. Instead of actively communicating with a
process instance, betsy evaluates execution traces written by the instance. For
this reason, there is no communication between betsy and a BPMN process
instance during execution.

Process
stubThe structure of process models used for capturing conformance tests reflects

the difference between BPEL and BPMN. In both cases, we use a minimalistic
process model, a process stub as the starting point for the implementation of
every conformance test. The language elements used in the stub are of most
basic nature and are confirmed to work on every engine under test. This ensures
that they have no influence on the results of more sophisticated tests. For a
conformance test, the process stub is extended with a specific language feature.

Conformance tests for BPEL are necessarily based on WSDL. Every BPEL
process model implements the same WSDL interface to enable a unified handling
of all tests by betsy. To make sure that all engines support the interface, it is
relatively simplistic. It contains a single partnerLinkType and several message

71



3. A Conformance Benchmark for Process Engines

definitions. All messages consist of one message part of a primitive type. The
portType is made up of one asynchronous operation and two synchronous ones.
The difference between the synchronous operations is that one of them defines
a fault. The interface binding uses a document/literal style over HTTP, which
is the most basic style available [105, Sec. 3]. Additionally, betsy provides a
similarly structured web service interface, and Java implementation thereof,
during execution. This is needed in the conformance tests for the invoke activity.

The process stub for BPEL conformance tests includes a synchronous operation.
This is necessary to provide output and assert the correctness of the test execution.
As a consequence, every BPEL conformance test requires the usage of variables,
assign activities, and reply activities, next to an incoming message activity, either
receive or onMessage, for instance creation. List. 3.1 outlines the structure of the
process stub. The model starts with an incoming message activity (test prolog).
This is followed by the implementation of the test, i. e., a language element in a
particular configuration. Finally, the model is concluded by the transmission of
the result (test epilog).

Listing 3.1: Outline of the BPEL Test Cases

<process>

<partnerLinks />

<variables />

<sequence>

<!−−Test Prolog−−>
<receive />

<!−−Test implementat ion−−>

<!−−Test Ep i log−−>
<assign />

<reply />

</sequence>

</process>

In the case of BPMN, a process model is not required make use of WSDL.
Therefore, a single valid BPMN file is sufficient for implementing conformance
tests. As before, a number of basic language elements are required. These are
none StartEvents, SequenceFlows, ScriptTasks, and none EndEvents. None Start-
and none EndEvents are of the most basic type, which the standard offers. They
delineate the start and ending of the process model. As discussed above, active
communication with the process instance is not possible in the same fashion as for
BPEL conformance tests. Therefore, the tests use ScriptTasks to write execution
traces to a log file. In the engine-independent specification of the conformance
tests, the ScriptTasks only contain a token that describes the trace that should
be written to the log file. The BPMN standard does not require support for a
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specific scripting language [26, Section 10.3.3]. Therefore, we inject a script in a
language supported by an engine into the body of the ScriptTask on execution of
a conformance test. Input data is provided to a process instance through process
variables, which are initialized during the creation of the instance. Despite the
difference in vocabulary, the resulting process model presented in List. 3.2 is very
similar to its counterpart for BPEL conformance tests.

Listing 3.2: Outline of the BPMN Test Cases

<definitions>

<process isExecutable=”true ”>

<!−−Test Prolog−−>
<startEvent id=”StartEvent ”>

<outgoing>SequenceFlow_1</outgoing>

</startEvent>

<sequenceFlow id=”SequenceFlow 1 ” sourceRef=”

StartEvent ” targetRef=”StartTask ” />

<scriptTask id=”StartTask ”>

<incoming>SequenceFlow_1</incoming>

<outgoing>SequenceFlow_2</outgoing>

</scriptTask>

<sequenceFlow id=”SequenceFlow 2 ” sourceRef=”

StartTask ” targetRef=”TestImplementation ” />

<!−−Test implementat ion−−>

<!−−Test Ep i log−−>
<sequenceFlow id=”SequenceFlow 3 ” sourceRef=”

TestImplementation ” targetRef=”EndTask ” />

<scriptTask id=”EndTask ”>

<incoming>SequenceFlow_3</incoming>

<outgoing>SequenceFlow_4</outgoing>

</scriptTask>

<sequenceFlow id=”SequenceFlow 4 ” sourceRef=”

EndTask ” targetRef=”EndEvent ” />

<endEvent id=”EndEvent ”>

<incoming>SequenceFlow_4</incoming>

</endEvent>

</process>

<definitions>

Bench-
marking
process

As discussed, in each conformance test, i. e., in each Process, we insert a
specific language feature in a particular configuration as test implementation. On
execution, betsy links all Processes with all Engines in a TestSuite and executes
all resulting tests sequentially. The execution logic of a benchmark is depicted
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Figure 3.2.: Benchmarking Process

in Fig. 3.2 in BPMN notation. This process divides into phases of setup, tear
down and test execution. The activity Prepare Test Folders corresponds to the
setup phase and the activity Generate Reports to the tear down phase, which
are executed exactly once, before and after the test execution phase, respectively.
This latter phase corresponds to the execution of all Processes for all Engines
in a TestSuite. Test execution takes place sequentially for each process and
engine. Sequential execution of the tests implies a longer execution time, but is
necessary to avoid side-effects that could occur when testing in parallel. Such side
effects manifest for instance in blocked ports and could otherwise compromise
the benchmark results.

During setup, the folder structure required for the test execution phase is
built. The test execution in turn corresponds to multiple sequential steps. In
the first step, a deployable artifact for a specific engine is created from the test
files. If needed, this includes modifications to the standard-conformant process
models, such as the addition of required engine-specific namespaces. Additionally,
engine-specific deployment descriptors are generated. Second, test classes that
trigger the execution of a process instance and validate its correctness are created
from the TestCases. For BPEL, this involves a SoapUI13 project configuration

13SoapUI is a unit testing tool for Web Services and RESTful services. It is available at
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and JUnit14 classes. For BPMN, the generation of a JUnit class that evaluates
execution traces is sufficient. Third comes the installation of the engine under
test. Each engine is installed anew for every test case execution. This is needed
for test isolation, since the execution of a previous test case might have broken
the engine installation. For instance, we found that a particular test resulted
in an infinite loop for one engine, thereby crashing any future process instances
executed on this engine. Fourth, the engine is started. Thereafter, the deployable
artifact, which was created in the first step of the test execution phase, is deployed
to the engine. In the sixth step, the test classes are executed, triggering the
creation of a process instance, transmitting messages, and evaluating the result
of the instance execution. Finally, the engine is stopped. Afterwards, the next
test case is executed. During the tear down phase, all test results are aggregated
to reports in CSV and HTML format. Table 3.2 summarizes the differences in
the testing of BPMN and BPEL engines described in this section.

Table 3.2.: Differences in Testing BPMN and BPEL Engines

BPMN BPEL

Test Files .bpmn .bpel, .wsdl, .xsd, .xslt

Input Data process variables SOAP message content

Assertion Validation execution traces message exchanges

Test Execution JUnit SoapUI, JUnit

3.2.3. Conformance Test Suites

The next crucial ingredient of the conformance benchmark are the test suites of
conformance test cases. In total, there are three test suites. These are a BPEL
conformance test suite described in the following subsection, a test suite with
workflow control-flow pattern implementations in BPEL described in Sect. 3.2.3.2,
and a conformance test suite for BPMN described in Sect. 3.2.3.3.

All test cases have undergone quality assurance, to make sure that they correctly
reflect the language standards. This includes an XSD validation of the process
models, in-group peer review of all process models, as well as review of some
process models by external experts. Moreover, an overwhelming majority of the
test cases run on at least a single engine. The code used to perform the benchmark
of BPEL engines is the v0.3.0 release of betsy and is available at https://github.
com/uniba-dsg/betsy/releases/tag/v0.3.0-icsoc2013. The updated code
for benchmarking BPMN engines can be found in betsy’s v2.0.0 release, available
at https://github.com/uniba-dsg/betsy/releases/tag/2.0.0.

http://www.soapui.org/. We use SoapUI for the testing of BPEL processes to transmit
a series of SOAP messages and evaluate the replies.

14JUnit is the de-facto standard for unit testing in Java. It is available at http://junit.org/.
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3.2.3.1. BPEL Conformance Test Suite

The source of all test cases are the normative requirements stated in the BPEL 2.0
standard [27]. A complete listing of all test cases can be found in Table A.1 in
the appendix. Normative requirements are specified using common notational
conventions [193] (i.e. MUST, MUST NOT, etc.). The test cases are classified
into the activity groups defined in the specification and explained in Sect. 2.2.2.4:
basic activities [27, pp. 84–97], structured activities [27, pp. 98–114] and scopes [27,
pp. 115-147]. Each group also contains test cases for standard faults that are
associated with the activities of the group. Table 3.3 provides an overview of the
test suite and lists the number of conformance tests per activity.

Table 3.3.: BPEL Conformance Test Suite

Basic Activities Structured Activities Scopes

Assign 19 Flow 9 Compensation 5

Empty 1 ForEach 11 CorrelationSets 2

Exit 1 If 5 EventHandlers 8

Invoke 12 Pick 5 FaultHandlers 6

Receive 5 RepeatUntil 2 MessageExchanges 3

Receive & Reply 11 Sequence 1 PartnerLinks 1

Rethrow 3 While 1 Scope-Attributes 3

Throw 5 TerminationHandlers 2

Validate 2 Variables 2

Variables 3

Wait 3∑
65 32 34

Design
decisions Although the BPEL standard is relatively precise, three aspects necessary for

executable process models are left open: First, there is no required format for
the specification of a partner reference that can be used in the assignment of
partnerLinks. This is needed to enable dynamic assignment and runtime selection
of services. In the benchmark, we use WS-Addressing EndpointReferences [194]
(encapsulated in BPEL’s service-ref container). Second, the URI scheme for
identifying XSL stylesheets is not made clear. We use the filename of the stylesheet
for its identification. Third, and probably most critical, is the underspecification
of the behavior of the engine in case a fault is thrown during execution and
not handled by the process instance, while at the same time, request-response
operations are still open. Put differently, given a third party waits for a response
from a process instance, it is not made clear what the third party will receive in
case the instance crashes with a fault. Possible options are a timeout, a default
response, or a propagation of the fault that led to the crash. In the test cases,
we opt for the latter. This is also the fault propagation mechanism applied by
most high-level programming languages and is a prerequisite for distributed fault
handling [195].
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3.2.3.2. Pattern Test Suite

The conformance test suites puts its focus on single language elements in isolation.
Not all of these language elements are equally important in real-world applications.
Moreover, it is possible that language elements that conform to the standard
in isolation fail to conform when being combined with each other. To gain
insights on the implications, which standard-conformance issues have in realistic
application scenarios, additional tests are required. Such tests can be found
in Workflow Control-Flow Patterns (WCPs) [71]. According to the authors
of [71], these patterns capture scenarios that are frequently needed in real-world
process-aware applications. Moreover, WCPs have frequently been used as a
means for comparing different process languages or process management systems
with respect to their expressiveness. Also BPEL and BPMN have been addressed
by pattern-based analyses [196–198]. For this reason, we provide a test suite that
benchmarks support for WCPs in BPEL engines.

Patterns often require the combination of multiple language constructs for
their implementation. The focus of pattern-based analyses lies on how many
patterns a language allows to implement and how directly a pattern can be
implemented. The lower the amount of constructs needed for an implementation
in a particular language, the more direct the support is considered, and hence
the more expressive the language is [71]. The original pattern catalog [71]
consists of 20 patterns. These are basic control-flow, advanced branching and
synchronization, structural, multi-instance, state-based, and cancellation patterns.
A discussion of the nature of every pattern is out of scope here, but can be
found in [71] or on the homepage of the workflow patterns initiative located
at http://www.workflowpatterns.com/. For a detailed description of pattern
implementations in BPEL, we refer the interested reader to [196,199].

Pattern
test im-
plementa-
tion

In test suite at hand, we provide implementations of WCPs in BPEL that
can be used by the benchmarking tool in the same fashion as conformance
tests. The test cases are built by adapting the existing pattern implementations
from [196]. The pattern tests use the same process stub and WSDL interface as
the standard conformance tests. A pattern is considered to be directly supported
(denoted as +), if at least one solution can be found, which uses no more than a
single language construct to implement the pattern [71]. If a solution requires
a combination of two constructs, it is counted as partial support (denoted as
+/−) for the pattern, otherwise, there is no direct support (denoted as −).
BPEL 2.0 provides no direct support for four out of the 20 patterns (Multi-Merge,
Discriminator, Arbitrary Cycles and Multiple Instances Without a Priori Runtime
Knowledge) [196,199]. An engine can only improve this degree through the usage
of nonstandard extensions. Since the goal of the benchmark is to evaluate standard
conformance, we exclude these four patterns from the benchmark. Furthermore,
three patterns (Interleaved Parallel Routing, Milestone, and Cancel Activity) are
at most partially supported in standard-conformant BPEL. Implementations for
these patterns are evaluated in the benchmark. Finally, for four patterns (Multi-
Choice, Synchronizing Merge, Multiple Instances Without Synchronization and
Multiple Instances With a Priori Design Time Knowledge) alternative solutions

77

http://www.workflowpatterns.com/


3. A Conformance Benchmark for Process Engines

Table 3.4.: Workflow Control-Flow Patterns Test Suite

Patterns BPEL Tests

Basic Control-Flow Patterns

WCP01: Sequence + 1

WCP02: Parallel Split + 1

WCP03: Synchronization + 1

WCP04: Exclusive Choice + 1

WCP05: Simple Merge + 1

Advanced Branching and Synchronization Patterns

WCP06: Multi-Choice + 2

WCP07: Synchronizing Merge + 2

WCP08: Multi-Merge - 0

WCP09: Discriminator - 0

Structural Patterns

WCP10: Arbitrary Cycles - 0

WCP11: Implicit Termination + 1

Patterns with Multiple Instances (MI)

WCP12: MI Without Synchronization + 3

WCP13: MI With a Priori Design Time Knowledge + 2

WCP14: MI With a Priori Runtime Knowledge + 1

WCP15: MI Without a Priori Runtime Knowledge - 0

State-based Patterns

WCP16: Deferred Choice + 1

WCP17: Interleaved Parallel Routing +/- 1

WCP18: Milestone +/- 1

Cancellation Patterns

WCP19: Cancel Activity +/- 1

WCP20: Cancel Case + 1

are available in BPEL 2.0, which we cover in different tests. In summary, if an
engine passes a pattern test, it provides either direct or partial support for a
pattern, depending on the test. Table 3.4 shows the number of tests for the
different WCPs in the test suite and the degree of pattern support (direct support,
partial support, no direct support) that can be achieved with standard BPEL 2.0.
The structure of the tests can be found in Table A.2 in the appendix.

3.2.3.3. BPMN Conformance Test Suite

The third test suite contains tests for assessing the standard conformance of
BPMN 2.0 engines. Similar to the test suite for BPEL standard conformance,
test cases are derived from the normative parts of the language standard [26]. As
discussed in Sect. 2.2.2.3, the focus of this work is exclusively on the executable
part of BPMN. Therefore, tests are derived from Chapter 10 of [26] which
describes executable process models. The test suite is subdivided into the
categories of basics, activities, gateways, events, and errors. The activities
category comprises Tasks, SubProcesses, and CallActivities, as specified in [26,
Chapter 10.3]. Events can be found in [26, Chapter 10.5] and gateways are
defined in [26, Chapter 10.6]. Elements that are part of executable process
models, but do not fall into the preceding categories, such as SequenceFlows,
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Table 3.5.: BPMN Conformance Test Suite

Language Constructs Tests

Basics 6

Lane 1

Participant 1

SequenceFlow 4

Activities 12

CallActivity 2

Multiple Instantiation 5

Looping 3

SubProcess 1

Transaction 1

Gateways 13

ExclusiveGateway 3

InclusiveGateway 2

ParallelGateway 1

ComplexGateway 1

EventBasedGateway 2

GatewayCombinations 4

Events 36

Cancel 1

Compensation 6

Conditional 5

Error 4

Escalation 7

Link 1

Signal 6

Terminate 1

Timer 5

Errors 3

InvalidGatewayCombinations 2

ParallelGateway Conditions 1

belong to the basics category. Finally, the errors category comprises process
models that should be rejected by a BPMN engine. These are, for instance,
invalid combinations of gateways. The resulting number of tests are listed in
Table 3.5. An exhaustive description of all test cases can be found in Table A.3
in the appendix.

Test suite
scope

As indicated in Sect. 2.2.2.3, the BPMN standard is less precise than the
BPEL standard. Implementers of BPMN have a relatively high degree of freedom
of interpretation. As a result, it is challenging to write tests for standard
conformance. For this reason, the test suite presented here covers only a subset
of the executable part of BPMN. More precisely, it excludes specific types
of tasks, e.g., UserTask or BusinessRuleTask. Furthermore, the definition of
MultipleEvents and inter-process communication is not covered (intra-process
communication in terms of communicating SubProcesses is included in the test
suite). Since none of the engines we benchmarked provided the required support
for WSDL interfaces, message-related events and tasks are omitted. Finally,
DataObjects are also out of scope. The conformance evaluation of these elements
remains for future work.
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3.3. Benchmarking Results and Implications

The engines under test, described in Sect. 3.2.1, were evaluated using the method-
ology and tool, discussed in Sect. 3.2.2, with the test suites from Sect. 3.2.3. The
benchmark of BPEL engines for standard conformance and workflow control-
flow pattern support was performed in July 2013. The standard conformance
benchmark of BPMN engines took place in October 2014. Both benchmarks
were executed on a single machine, using betsy with the Jenkins CI server, that
runs a Windows 7 SP1 operating system and is equipped with an Intel Core
i7-2600 processor, 16 GB RAM, and an a hard disk with 1TB of memory. These
hardware specifications are more than sufficient for the benchmark. Repeated
subsequent benchmark executions were performed for validation and resulted in
the same data.

In the following, we first discuss the detailed results of the different test
suites. Sect. 3.3.1 covers the standard conformance of BPEL engines, Sect. 3.3.2
deals with workflow control-flow patterns, and Sect. 3.3.3 focuses on BPMN
engines. Thereafter, we discuss the implications these results have on application
portability in Sect. 3.3.4 and answer the research questions addressed in this
chapter.

3.3.1. Results for BPEL Engines

The amount of passed conformance tests aggregated by BPEL activity and engine
can be found in Table 3.6 for basic activities, in Table 3.7 for structured activities,
and in Table 3.8 for scopes. Additionally, the tables show the percentages of
successful tests for each engine. In the last row, the average amount of successful
tests for the three commercial engines, the top three open source engines, and all
five open source engines can be found. Moreover, Fig. 3.3 depicts the aggregated
amount of passed and failed tests by engine and activity group, i.e., basic activities
(BA), scopes (S), and structured activities (SA). In the following, we first discuss
the results for each particular engine, starting with commercial engines.

Engine E1: This engine passes the highest amount of tests, when compared to
the other commercial engines. It fails eleven conformance tests, thus passing
92% of the test suite. Failed tests are confined to fault handling, XSL
processing and specific service invocation settings. These failures occur for
basic activities (nine tests) and structured activities (two tests). E1 passes
all scope-related tests. Explained in more detail, the engine fails the tests
that use XSLT and is unable to correctly invoke a Web service operation
that does not expect an input message. Furthermore, it fails to throw an
invalidExpressionValue fault given the forEach activity is configured with a
negative completionCondition or a startCounter that is set too high.

Engine E2: Engine E2 passes only about half of all conformance tests. This is
the worst rate among the commercial engines. The amount of failures is
particularly high for basic activities, where 38 out of 65 tests fail. For scopes
and structured activities, the situation looks better, with around two thirds
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Table 3.6.: Number of Passed Conformance Tests for Basic Activities, Aggregated
by Activity and Engine

Proprietary Engines Open Source Engines

Activity E1 E2 E3 bpel-g ODE OpenESB Orchestra Petals Σ

Assign 15 7 15 15 10 13 11 8 19

Empty 1 1 1 1 1 1 1 1 1

Exit 1 1 1 1 1 1 1 1 1

Invoke 11 6 7 11 7 3 8 5 12

Receive 4 3 3 4 3 1 1 1 5

ReceiveReply 8 6 6 8 5 6 5 1 11

Rethrow 3 0 1 3 2 1 0 0 3

Throw 5 0 4 5 5 4 0 0 5

Validate 2 0 2 2 0 2 0 0 2

Variables 3 1 1 3 2 2 1 1 3

Wait 3 2 3 3 3 3 2 1 3

Σ 56 27 44 56 39 37 30 19 65

Percentage 86% 41% 68% 86% 60% 57% 46% 29%

Ø
Commerical bpel-g, ODE, OpenESB Open Source

65% 68% 56%

of successfully passed tests. The determining factor for this failure rate is
the fault handling paradigm of E2. As discussed in Sect. 3.2.3.1, we expect
a fault that reaches the root scope of the process to be propagated to third
parties that still wait for a response from the process instance in an open
request-response operation. In contrast to this, E2 does not propagate faults
and a process instance fails silently instead. This behavior severely hampers
the debugging of a process model and, as a result, the engine fails all tests
for the throw, rethrow, and validate activities. Moreover, tests regarding the
handling of faults from invoked services and other tests regarding standard
faults are also unsuccessful. In total, this results in a failure of 32% of
the complete test suite. The remaining amount of failed tests comes from
features that are seemingly not implemented. CompletionConditions cannot
be used in a forEach activity and joinConditions are not available in a flow
activity. The scope-level definition of correlationSets or partnerLinks is
not supported and so are terminationHandlers. Tests for eventHandlers
are largely successful, although the fromParts syntax is not supported
in an onEvent activity. Also delayed execution using the until element
in an onAlarm activity is not possible. Nearly all tests for in-process
fault handling are successful, with the exception of catching faults based
on fault data in a faultElement. CorrelationSets have to be initialized
in a synchronous operation, or E2 will be unable to correlate on a set in
subsequent eventHandlers. When it comes to basic activities, correlationSets
or faultHandlers cannot be defined for invoke activities and multiple features
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Table 3.7.: Number of Passed Conformance Tests for Structured Activities, Ag-
gregated by Activity and Engine

Proprietary Engines Open Source Engines

Activity E1 E2 E3 bpel-g ODE OpenESB Orchestra Petals Σ

Flow 9 6 7 9 9 2 7 0 9

ForEach 9 4 6 9 3 9 0 2 11

If 5 4 4 5 4 4 4 4 5

Pick 5 5 5 5 5 4 4 1 5

RepeatUntil 2 2 2 2 1 2 2 0 2

Sequence 1 1 1 1 1 1 1 1 1

While 1 1 1 1 1 1 1 1 1

Σ 32 23 26 32 24 23 19 9 34

Percentage 94% 68% 76% 94% 71% 68% 56% 26%

Ø
Commerical bpel-g, ODE, OpenESB Open Source

79% 77% 62%

of the assign activity, i. e., all XPath extension functions, the assignment of
partnerLinks, and the keepSrcElementName attribute, are unsupported.

Engine E3: The third commercial engine passes almost three quarters of the test
suite. Among basic activities, E3 fails tests related to handlers attached
to invoke activities, similar to E2, and the toParts syntax is unsupported.
Moreover, it does not throw several standard faults, such as correlationVio-
lation or missingReply. Also the throwing or rethrowing of faults based on
faultData is not possible and terminationHandlers are unsupported. When
it comes to structured activities, tests for the usage of joinConditions in
flow activities fail. Finally, the completionCondition with the successful-
BranchesOnly attribute set is not supported for the forEach activity. Also a
truly parallel execution of the forEach activity fails, even when the parallel
attribute is set.

bpel-g: Among the open source engines under test, bpel-g passes the highest
amount of tests. In particular, all tests for scopes and all but two tests for
structured activities are successful. Moreover, bpel-g also excels in throwing
the standard faults in the expected situations. Failed tests are mainly
confined to XSLT processing, which is not supported in the case of bpel-g,
and the invocation of service operations that do not require input.

Apache ODE: This engine passes a fair part of the overall test suite, although
several language features are not implemented. Similar to many other
engines, numerous standard faults are not thrown as expected, termina-
tionHandlers are unsupported, and so is the usage of completionConditions
in the forEach activity. Moreover, the toParts and fromParts syntax is
not supported for messaging activities and assignment alike. The same
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Table 3.8.: Number of Passed Conformance Tests for Scopes, Aggregated by
Activity and Engine

Proprietary Engines Open Source Engines

Activity E1 E2 E3 bpel-g ODE Op.ESB Orch. Petals Σ

Compensation 5 5 5 5 4 5 2 0 5

CorrelationSets 2 0 2 2 2 1 0 0 2

EventHandlers 8 5 7 8 6 6 6 0 8

FaultHandlers 6 5 6 6 6 6 2 5 6

MessageExchanges 3 1 1 3 1 1 1 0 3

PartnerLinks 1 0 1 1 1 1 1 0 1

Scope-Attributes 3 2 3 3 2 3 1 1 3

Termin.Handlers 2 0 0 2 0 2 2 0 2

Variables 2 2 2 2 2 2 2 0 2

Σ 32 20 27 32 24 27 17 6 32

Percentage 100% 63% 84% 100% 75% 84% 53% 19%

Ø
Commerical bpel-g, ODE, OpenESB Open Source

82% 86% 66%

applies to variable validation during assignment or the usage of the validate
activity.

OpenESB: The OpenESB BPEL service engine is on par with Apache ODE
and passes the same amount of tests, albeit different tests. One of its
major drawbacks is its complete lack of support for links within flow
activities. That way, a graph-oriented control-flow definition is not possible
with OpenESB and process models are confined to the block-structured
approach. Also truly parallel activity execution is not possible. Like in the
case of Apache ODE, the toParts and fromParts syntax is not supported
and many standard faults are not thrown as expected. The same applies to
XSLT processing. Finally, the engine does not support the attachment of
faultHandlers to invoke activities and the throwing and rethrowing of data
in a fault.

Orchestra: The fourth open source engine passes around half of the overall test
suite. The primary reason for failures lies in its fault handling paradigm,
which is similar to that of the commercial engine E2. If a fault is propagated
to the root scope of the process instance and third parties are still waiting
on a reply in an open request response operation, Orchestra replies with an
HTTP 200 OK status code instead of the fault. This results in a failure for
all tests regarding the throw and rethrow activities, as well as numerous
other tests for basic activities and scopes. Another severe issue is the failure
of all tests that use message correlation in combination with asynchronous
operations. As opposed to this, the amount of passed tests in the category of
structured activities is almost as high as for Apache ODE and OpenESB. In
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Figure 3.3.: Percentages of Passed and Failed Tests per Engine and Activity
Group for BPEL

this category, however, Orchestra completely lacks support for the forEach
activity.

Petals: Finally, the engine with the highest amount of failures is Petals. It
fails almost three quarters of the complete test suite and, hence, BPEL
support is minimal. In particular, the flow, repeatUntil, validate, throw, and
rethrow activities are completely unsupported. The same applies to the
scope-level definition of correlationSets, eventHandlers, messageExchanges,
partnerLinks, variables, compensationHandlers, and terminationHandlers.
Most critically, Petals does not pass a single test that involves message
correlation. As a result, it cannot be used for implementing long-running
interactions, which are among the primary motivations for using process-
aware systems in the first place.

Based on these results, several observations can be made. To begin with, it
becomes obvious that no single engine fully conforms to the BPEL standard.
Moreover, the amount of passed tests and, hence, the degree of standard con-
formance achieved varies a lot among the different engines. This implies that
research question 1.1 can be answered negatively for the case of the BPEL stan-
dard and BPEL engines. The existence of the relatively precise standard has
not resulted in implementations that use the same execution model. Due to
this varying degree of standard conformance, porting BPEL processes among
different engines will be challenging.

Features
with

broad
support

As a next step, it can be observed which parts of the language are well-
supported, and thus portable. First of all, basic language constructs for control-
flow definition, e.g., the sequence, if, and while activities, are supported by
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practically every engine. Hence, conditional control-flow definition and repeated
execution of activities is possible in a portable fashion. Moreover, basic facilities
for enabling message exchanges do exist. In particular, the invoke, receive, and
reply activities are supported in their simplest configuration. The same applies to
data handling mechanisms using the from and to or literal syntax in the assign
activity. Also basic support for fault handling using faultHandlers exists, as
long as either a single fault is caught explicitly or all faults are caught regardless
of their type. Finally, support for the empty and exit activities is in place.
However, any slightly advanced features, e.g., graph-based control-flow definition,
asynchronous messaging and message correlation, concurrency, compensation, or
validation are often not supported or not implemented as specified by the BPEL
standard. This implies that realistic process models that make use of these more
advanced features will be hard to port among different engines.

Since the benchmark includes commercial and open source engines, it is worth
to compare the two groups. Commer-

cial vs.
OS
engines

To begin with, commercial engines pass between
53% and 92% of the conformance tests. For open source engines, the deviation is
higher with 26% to 92% of successful conformance tests. On average, commercial
engines pass 73% of the conformance test suite, whereas the open source engines
only achieve 62%, so it looks as if commercial engines perform better. Using
a binomial test, we can verify if this difference is significant. We tested if the
probability of passing a conformance test is equal for open source engines and
commercial engines at a significance level of 5% by comparing the amount of
passed conformance tests in relation to the total amount of conformance tests
for each group. With a resulting p-value of 2.5e−9, this hypothesis can be
safely rejected in favor of the alternative: Open source engines pass significantly
less tests than their counterparts. A cause for this observation may be that
our test set of open source engines includes engines that could be considered
premature, despite the fact that all of the vendors claim the maturity of the
engines evaluated here. This argument is supported by the fact that the lowest
ranking engine, Petals, only passes 26% of the tests. The comparison among
commercial and open source engines changes, when excluding the engines with
the most failures, Orchestra and Petals, and considering the top three open
source engines, bpel-g, Apache ODE, and OpenESB. For these three engines,
average standard conformance ranges at 75%, two percentage points above the
corresponding value for commercial engines. Using binomial tests as before, we
can confirm that there is no significant difference between the commercial and
the top three open source engines. The number of successful conformance tests
is clearly not lower (p-value of 0.81), but also not significantly higher (p-value of
0.23) for open source engines. To summarize this paragraph, commercial engines
provide a higher degree of support, although the difference balances when only
considering mature open source engines.

3.3.2. Workflow Control-Flow Pattern Support

The second part of the benchmark of BPEL engines is formed by the patterns
test suite described in Sect. 3.2.3.2. Table 3.9 shows the results of this benchmark
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using the trivalent rating of direct support (+), partial support (+/-), and no
direct support (-). The second column lists the highest degree of direct support
for a pattern that can be achieved in standard BPEL. Patterns that cannot
directly be implemented using standard BPEL, as discussed in Sect. 3.2.3.2, are
omitted in the table. The last two rows show the percentages of the amount of
times the engines achieve the same support rating as the BPEL standard.

Table 3.9.: Workflow Control-Flow Patterns Support By Engine

Comm. Eng. Open Source Engines

Pattern BPEL E1 E2 E3 bpel-g ODE Op.ESB Orch. Pet.

Basic Control-Flow Patterns

P01 Sequence + + + + + + + + +

P02 Parallel Split + + + + + + + + +

P03 Synchronization + + + + + + + + +

P04 Exlusive Choice + + + + + + + + +

P05 Simple Merge + + + + + + + + +

Advanced Branching and Synchronization Patterns

P06 Multi-Choice + + + + + + +/- + +/-

P07 Synchronizing Merge + + + + + + +/- + +/-

Structural Patterns

P11 Implicit Termination + + + + + + + + +

Patterns with Multiple Instances

P12 MI Without Sync. + + + +/- + + +/- +/- +/-

P13 MI W. Design T. Know. + + + - + + +/- +/- +/-

P14 MI W. Runtime Know. + + + - + + - - -

State-based Patterns

P16 Deferred Choice + + + + + + + + +

P17 Interl. Parallel Routing +/- +/- +/- +/- +/- +/- - - -

P18 Milestone +/- +/- +/- +/- +/- +/- +/- - -

Cancellation Patterns

P19 Cancel Activity +/- +/- +/- +/- +/- +/- +/- +/- +/-

P20 Cancel Case + + + + + + + + +

Percentage 100% 100% 81% 100% 100% 63% 69% 56%

Ø
Commerical bpel-g, ODE, OpenESB Open Source

94% 88% 72%

The percentage values are relatively high, i. e., many engines support the
pattern implementations we test for. In particular, four engines, two commercial
and two open source ones, successfully support all control-flow patterns to the
same degree as the BPEL standard. These are E1, E2, bpel-g, and Apache
ODE. The remaining engines vary from 56% of pattern support to 81%. As
before, several open source engines show a relatively small degree of support
when compared to their commercial counterparts. Nevertheless, a lower degree of
pattern support could have been expected for all engines, considering the results
of the benchmark of standard conformance from the previous section.

All engines provide the same degree of support as BPEL for the basic control-
flow patterns (WCP01–WCP05), the Implicit Termination structural pattern
(WCP16), and the cancellation patterns (WCP19/20). In three cases, several
engines partially support a pattern, which in standard BPEL is fully supported.
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Finally, five patterns are not directly supported by at least one engine. The
highest amount of differences lies in the category of multi-instance patterns. Here,
in only half of the cases, the engines have the same degree of support as BPEL.
For two of the patterns in this category, WCP12 and WCP13, three of the open
source engines only support a workaround solution that grants partial support,
but not a direct solution that is possible in standard BPEL. Moreover, the same
engines fail to directly support the Multiple Instances With a Priori Runtime
Knowledge pattern (WCP14). The commercial engine E3 also only supports
WCP12 partially and fails to support the remaining multi-instance patterns. The
three open source engines mentioned before fail the tests for the Interleaved
Parallel Routing pattern (WCP17) and two of them do not pass the tests for
the Milestone pattern (WCP18). When it comes to advanced branching and
synchronization patterns, support is in place for all engines, although two open
source engines only support the patterns using a workaround solution. All in
all, the least supported pattern is the Multiple Instances With a Priori Runtime
Knowledge pattern (WCP14), which is unsupported by half of the engines.

Interestingly, the sets of patterns for which open source and commercial engines
achieve a lower degree of support than standard BPEL are almost disjoint. In
comparison, commercial engines support more workflow control-flow patterns
(94%) than open source engines (72%). Similar to the benchmark for standard
conformance, this difference shrinks to an insignificant level (94% vs. 88%) when
comparing only commercial and the three highest-ranking open source engines.

By looking at the detailed results of the tests, it becomes obvious that failures in
pattern support are not caused by added issues that arise through the combination
of language constructs. Reasons

for lack
of support

Instead, in all cases of failure, a pattern implementation
does not work correctly, because a single language feature is not supported as
specified in the BPEL standard. Strictly speaking, all issues have already been
discovered by the standard conformance benchmark discussed in the previous
section. In six cases of failure, a pattern implementation does not work, because
an engine does not fully support links in the flow activity. In three cases, support
for the forEach activity is required and in nine cases also parallel execution of the
activities contained therein. Finally, in two cases, engines do not provide proper
support for required message correlation and in a single case, support for isolated
scopes is missing. This demonstrates that standard-conformant implementations
of the flow and forEach activities are crucial for pattern support. Put differently,
a lack of truly parallel execution in an engine is the biggest obstacle to pattern
support. Still, the impact of standard conformance on pattern support is little.
For instance, Apache ODE, which passes only two thirds of the conformance
tests, supports all workflow patterns that can be directly implemented in BPEL.
Even the worst engine in terms of standard conformance, Petals, provides direct
or partial support for 13 out of 16 patterns. The results of this section can
be summarized as follows: workflow control-flow patterns can be implemented
directly with only a moderate degree of standard conformance, but support for
concurrent execution of activities is the decisive factor.
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3.3.3. Results for BPMN Engines

The third test suite addresses BPMN engines. Table 3.10 presents the amount of
successful tests for the three engines, grouped by language element. Furthermore,
Fig. 3.4 depicts the percentages of successful tests aggregated by engine and
construct group, i.e., basics (BA), activities (ACT), gateways (GW), events (EV),
and errors (ERR). Next, we describe the results for each engine under test.

Table 3.10.: Number of Passed Conformance Tests for BPMN Engines

Category Construct Activiti camunda BPM jBPM Total

basics Lane 1 1 1 1

Participant 1 1 1 1

SequenceFlow 3 3 1 4

activities CallActivity 0 0 0 2

Multiple Instantiation 3 3 0 5

Looping 1 1 1 3

SubProcess 1 1 1 1

Transaction 1 1 1 1

gateways Exclusive 3 3 2 3

Inclusive 2 2 1 2

Parallel 1 1 1 1

Complex 0 0 0 1

EventBased 2 2 2 2

GatewayCombinations 4 4 4 4

events Cancel 1 1 0 1

Compensation 2 2 5 6

Conditional 0 0 0 5

Error 4 4 4 4

Escalation 0 0 6 7

Link 0 1 1 1

Signal 2 4 5 6

Terminate 1 1 1 1

Timer 3 5 3 5

errors InvalidGatewayCombinations 2 2 2 2

ParallelGateway Conditions 1 1 1 1

Σ 39 44 44 70

Activiti: To begin with, Activiti and all other engines pass all error tests, i. e.,
they correctly reject process models that should be rejected according to
the standard. From the overall test suite, Activiti passes 56% (39 out
of 70) of the conformance tests. This is the lowest amount for all three
engines. Nevertheless, Activiti passes nearly all of the tests for the basics
category, with the exception of a special case of the usage of conditions with
SequenceFlows [26, p. 427]. In the activities category, the engine passes the
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Figure 3.4.: Percentages of Passed and Failed Tests per Engine and Construct
Group for BPMN

tests for SubProcesses and Transactions. In contrast, tests for GlobalTasks
or the usage of CallActivities fail. Furthermore, repeatable execution and
multi-instance execution of tasks using the MultiInstance attributes is not
fully supported. Several basic tests regarding MultiInstance behavior pass,
but the standard looping mechanism using StandardLoopCharacteristics is
not supported. A process model containing StandardLoopCharacteristics
is not rejected by the engine, but is ignored during execution. Only in
the case when the loop should be executed exactly once, i. e., no actual
iteration occurs, the test is successful. In the gateways category, all tests,
except for the ComplexGateway, pass. The events category is where most
of Activiti’s test failures belong to. Only roughly one third of all event-
related tests are successful. Of the nine event types, only Cancel, Error,
and Terminate events are fully supported. Compensation events are only
correctly supported if used as an intermediate event, but compensation
can also be triggered by a Cancel event. Signal events cannot be used
as start or end events in (event) SubProcesses and such SubProcesses are
not interrupted correctly by boundary events. Also Timer events are
not supported as start events of event SubProcesses. Finally, all tests for
Conditional, Escalation, and Link events fail.
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camunda BPM: Since camunda BPM is a fork of Activiti, the results of the two
engines are similar to a large degree. In particular, the test results for all
categories except the events category are identical. In this category, camunda
BPM performs considerably better. As a result, the engine has a higher
amount of successful tests in total (44 out of 70). In contrast to Activiti,
all tests for Cancel, Error, Link, Terminate, and Timer events pass and
Signal events can also be used as end events for an event SubProcess. Apart
from these differences, the same restrictions with respect to compensation
and cancellation as for Activiti apply. Lastly, Conditional and Escalation
events remain unsupported.

jBPM: jBPM successfully passes the same amount of conformance tests as ca-
munda BPM (44 out of 70), but not the exact same test cases. Especially
with respect to the activities category, support is limited and only one
quarter of the tests pass. Only the default usage of SubProcesses and
Transactions is supported, but tests for CallActivities or multiple instan-
tiation fail. With respect to the standard looping mechanism, the same
restrictions as for Activiti and camunda BPM apply. This is also the case
for the ComplexGateway. Furthermore, jBPM fails several special cases in
the gateways category. It does not support default SequenceFlows when
used with an InclusiveGateway and gateways cannot be used with a mixed
direction, i. e., they cannot merge and diverge control-flow at the same time.
When it comes to the events category, jBPM passes all tests related to
Error, Link, and Terminate events, as well as nearly all tests for Signal,
Compensation, and Escalation events. Notably, it is the only engine to
provide support for Escalation events. Three out of five tests for Timer
events pass, but jBPM fails to support the usage of such events as start
events in event SubProcesses. Finally, all tests for Conditional and Cancel
events fail.

A clear-cut ranking of the three engines based on these results is not possible,
since camunda BPM and jBPM pass the same amount of tests, with 64%
of the overall test suite. Also Activiti, with 56% of passed tests, is not far
of. Interestingly camunda BPM supports a superset of the language features
supported by Activiti. Despite the fact that camunda BPM and jBPM pass the
same amount of tests, camunda BPM passes all tests related to a single language
construct more often. Successful tests for jBPM are more dispersed and more
constructs are supported, although only in basic configuration.Features

with
broad

support

However, the
amount of constructs supported by all three engines is small when compared to the
large vocabulary of BPMN. Only unconditional SequenceFlows, none StartEvents,
none EndEvents, ScriptTasks, SubProcesses, Transactions, Lanes, Participants,
ErrorEvents, TerminateEvents, EventBasedGateways and ParallelGateways are
fully supported. Successful conformance tests for the latter gateway by all engines
can be considered surprising, since this gateway is used for defining parallelism.
It turned out on closer investigation that none of the engines supports truly
parallel execution of control-flow branches, but only pseudo-parallel interleaved
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execution. As discussed in the previous section, truly parallel execution is a
decisive factor for the support for workflow control-flow patterns. As a result, it
can be expected that the findings on workflow pattern support for BPEL engines
generalize to BPMN engines as well. Finally, all engines are capable to execute
combinations of different gateway types and to detect all tested erroneous process
models.

Since all engines pass less than two thirds of the overall test suite, it is clear
that they only implement a subset of the BPMN standard. Similar to BPEL,
the standardization target has failed. As a result, even BPMN 2.0-conformant
process models can not be directly executed on the engines and possibly require
non-trivial adaptions. This reinforces the negative answer to research question 1.1:
Conformance to the BPMN standard is not sufficient for enabling the portability
of process models.

3.3.4. Implications on Application Portability

As can be seen from the previous sections, there is a high variance among the
degree of standard conformance that engines provide. This means that the
standardization target of BPEL and BPMN has not been reached. Research

question
1.1

In both cases,
research question 1.1 can be answered negatively : Current standards are not
enough for enabling the portability of service-oriented and process-aware software
among engines. For a conclusive answer, it might be worthwhile to evaluate the
standard conformance provided by engines for other standards, such as XPDL,
as well. Nevertheless, BPEL and BPMN are among the most widely used process
standards today. Hence, a lack of conformance of the implementations of these
standards is a significant insight. Furthermore, there is no indication that the
situation is different in the case of other standards.

Figure 3.5.: Number of Engines By Percentage of Passed Tests for BPEL
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Even if standards fail the standardization target and engines only implement
a subset of the standard, the porting of applications might still be feasible. This
is the case if engines implement the same subset of the standard. In this case,
unsupported features cannot practically be used in any application. Features that
are not used do also not present an obstacle for porting15. However, as discussed
in Sect. 2.3.3, if each engine implements a varying subset of the standard, a loss
of portability will be the likely result.

Guide-
lines for
portable
applica-

tions

To examine the size of the overlap in standard conformance for the tested
engines, Fig. 3.5 displays different subsets of the BPEL conformance test suite
tabled by the amount of engines that support a subset. Fig. 3.6 displays the
same data for the BPMN conformance test suite. For the case of BPEL engines,

Figure 3.6.: Number of Engines By Percentage of Passed Tests for BPMN

only 21 of the 131 tests (16%) are passed by all eight engines under test. For
BPMN engines, this number is somewhat higher with 30 of 70 tests (43%). It
should be noted that these numbers are not suitable for a quality comparison
of the BPEL and BPMN standards, or their engines. The number of BPMN
engines we benchmark and the amount of tests of the BPMN test suite is much
smaller than for BPEL. For this reason, it is not surprising that we find a higher
overlap in features for BPMN engines. Increasing the number of tests or tested
engines will likely result in a decrease of commonly supported features for BPMN
engines, nearing the values found for BPEL engines.

Only the elements in the subsets that are supported by all engines are actually
portable, as intended by the two standards. As discussed in Sect. 3.3.1 and

15It is important to keep in mind that this is a practical assumption. It does not apply to
many theoretic approaches, common in academia, that map higher-level specifications and
models to standard-conformant process models. For instance, it is common to map process
choreographies to sets of interacting processes, implemented in one of the above standards.
Examples for such model-driven approaches are [130,200,201]. These approaches rely on
the portability guarantees made by standards and make use of language features that are
not supported on every engine. As the results presented here indicate, this leads to practical
issues and any of the above approaches is limited to the engine with which its authors
tested it. This restriction has been investigated in [76].
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Sect. 3.3.3, these elements are very basic. In both cases, strictly sequential
execution of basic tasks can be considered as portable. For BPEL, conditional
branching and basic structured looping are portable as well. This is not the
case for BPMN. There, pseudo-parallelism can be considered as portable, which
does not apply to BPEL. The usage of any other advanced features, such as
message correlation or compensation handling will be much less portable. When
looking at real-world process models, studies have found that the most frequent
language elements used in the models are also basic ones [202]. In the case of
BPMN, nearly all of the eight most frequent elements are also supported by all
of the engines under test. The implication of these results for portability can be
expressed as follows: To build truly portable applications, it is necessary to use
only basic language features. In particular, it is necessary to restrict control-flow to
sequential execution. When considering realistic application scenarios, in the form
of workflow control-flow patterns in Sect. 3.3.2, it becomes evident that only a
moderate degree of standard conformance is needed to achieve widespread pattern
support. However, one of the crucial features required is support for concurrent
activity execution. Only half of the BPEL engines and none of the BPMN
engines provides this feature in a standard-conformant fashion. Hence, another
implication from the benchmark results is that realistic application scenarios
cannot necessarily be executed by a majority of the tested process engines.

Research
question
1.2

The common lack of standard conformance in engines can be summarized to
frame an answer to research question 1.2: There do exist portability issues in all
but the most basic language elements, regardless of the language standard. To
built portable applications, it is necessary to limit process models to the usage
of a moderate language vocabulary. Contemporary process engines are unable
to execute many of the features needed in realistic application scenarios in a
portable fashion.

In summary, this section and the answers to research questions 1.1 and 1.2
conclude research question 1. The current state of portability of service-oriented
and process-aware software is dire, since the degree of standard conformance in
process engines and the amount of commonly implemented features is small. It is
likely that many applications developed in practice cannot easily be ported among
engines and their users are locked into the systems of an engine vendor. For this
reason, the improvement of the portability of service-oriented and process-aware
software is a relevant research goal. This is the motivation for the following part
of this thesis, that presents a software metrics framework for the measurement
and improvement of portability.
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4. Measuring Portability
Parts of this chapter have been taken from [77, 170].

As the evidence presented in Chap. 3 demonstrates, the standard conformance
of process engines is limited. Consequently, standards-based portability of
software artifacts is not guaranteed and the actual portability inherent to a piece
of software is unclear. This leads to the topic of the current and the following
chapters: Is it feasible to assess the portability of these software artifacts and
how can such an assessment be achieved?

We evaluate the feasibility of portability assessment through the construction
and validation of a measurement framework. The starting point of this framework
in the current chapter is the core characteristic itself, portability. The aim of
the chapter is to answer research question 2.1: What are suitable metrics for
measuring portability? Together with the following three chapters, this chapter
demonstrates the feasibility of measuring portability, answers research question 2,
and forms one of the two main contributions of this thesis.

Structure
of the
chapter

The chapter is organized as follows. First, we present our methodology for
measuring portability in Sect. 4.1. Thereafter, we provide formal definitions of
portability metrics in Sect. 4.2. Next, the metrics are validated theoretically in
Sect. 4.3. Moreover, Sect. 4.4 evaluates the metrics with respect to their practical
applicability. Finally, we summarize our findings in Sect. 4.5.

4.1. On the Measurement of Portability

In this section, we first discuss crucial considerations for measuring software
portability, followed by the definition of a degree of severity with respect to
portability. We outline design decisions made in this definition and present a
running example used throughout the chapter.

As defined in Sect. 2.3.2, portability is the“degree of effectiveness and efficiency
with which a software product can be transferred from one software environment
to another”. This broad definition includes all subcharacteristics of portability as
defined by the SQuaRE model. In this chapter, we focus on the feasibility of the
porting, regardless of adaptation or replacement. Hence, we reduce the scope of
the quality characteristic to direct portability :

Definition 17: Direct Portability

Direct portability is the degree of effectiveness and efficiency with which a
software system can be transferred from one software environment to another,
without the need for adaptation or replacement.
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4. Measuring Portability

The goal of assessing direct portability is to determine how easy it is to take an
existing piece of software to another execution environment with the purpose of
executing it there. The viewpoint taken is that of a developer or operator, who
has to perform the porting and possibly modify source code and configuration
settings. Portability is perceived as an inherent property of an application that
can be assessed independently of a concrete target environment.

Even though portability is a central part of most software quality models,
e.g. [53–59], it is hard to quantify with justifiable effort [203]. In general, it is
measured by contrasting the effort required for porting a piece of software to the
effort of rewriting it from scratch. Assessing this effort empirically is difficult. To
enable an automatable and objective assessment, as indicated in [54,55], direct
portability is computed based on lines of code. The number of portable lines of
code is compared to the size of the overall code base. Although this principle
is quite simple, it is nontrivial to distinguish automatically between portable
and nonportable lines of code. Moreover, such a computation is coarse and
its meaningfulness is limited. Any two lines of code have the same weighting,
although their criticality might be vastly different.

Our goal is to provide a more accurate measurement and assessment of portabil-
ity by taking into account domain knowledge of service-oriented and process-aware
software. We map the basic mechanism for computing application portability
to service-oriented and process-aware software and extend it by a definition of
further metrics that consider the typical characteristics of this kind of software.
Additionally, we enrich the computation with empirical data on language support
in engines, obtained through the engine benchmarks described in Chap. 3. As
mentioned before, we view portability as an inherent property of an application
that can be computed, although a target engine on which the application should
be executed is not yet known.

Porta-
bility

metrics
based on
standard

confor-
mance

As argued in Sect. 2.3.3, software portability is strongly tailored to the stan-
dard conformance of execution environments. Only program elements that are
supported by a majority, if not all, of the environments can be considered to
be portable. As a consequence, the measurement of the portability of service-
oriented and process-aware software should take process engines into account. If
all engines support all of the specified language elements in the same manner
with respect to semantics, then any compilable program will be portable to any
engine. Thus, there are no portability issues. As demonstrated through the
benchmark in Chap. 3, this is not the case. Each process engine, regardless of
the language, supports a specific subset of the language elements. On the one
hand, there is a basic subset of the total language that is supported by every
engine. On the other hand, several language elements are limited to a subset of
engines, causing portability issues. The more engines support a language element,
the more portable it can be considered. The fewer engines support a language
element, the more severe it is with respect to portability. This severity should
be taken into account when computing portability metrics.
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4.1.1. Degree of Severity

To enhance the assessment of portability, we introduce a degree of severity with
respect to portability for each language element. This degree can be identified by
the number of engines that do not support a particular element in a particular
configuration. As discussed, the smaller the amount of engines supporting a
language element is, the harder it will be to port code that uses this element. The
conformance benchmarks, discussed in Chap. 3, allow to identify the amount of
engines that support a particular language element in a particular configuration.
The data set resulting from the benchmark lists for every language element
whether it is supported by a given engine. Thus, this data lets us compute
the number of engines that support, or fail to support, each language element.
For illustration, Fig. 4.1 depicts the conceptual outline of the support of BPEL
elements, grouped into elements supported by many, some, or few engines16. This
enables the static checking of a process model for elements that are not supported
by all engines and, thus, the assessment of the portability of the process model.

Figure 4.1.: Schematic Outline of BPEL Language Support – Dashed ellipses
represent different subsets of language elements, e.g., the sets of
elements supported by particular engines. Overlaps between the
sets constitute subsets of elements that are supported by a higher
amount of engines.

Test
assertions
for
severity

A single language element may have multiple different configurations or features
that are of varying severity with respect to portability. This can happen if there
are multiple different problematic configurations of the element. An example
of such an element in BPEL is the reply activity [27, Sect. 10.4]. The activity
may be used to report a fault to a client of the process, by setting its faultName
attribute and it may be linked to a receive activity by setting its messageExchange
attribute. Both of these attributes are independent of each other, but not fully

16The figure essentially maps Fig. 2.18 from Sect. 2.3.3 to BPEL.
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portable, and differ in the amount of engines supporting them. Therefore, each
of these configurations of an element should be captured separately. To enable
their separate evaluation, we introduce the concept of a test assertion for static
checking. A test assertion is a function used in code inspection that identifies a
particular language element in a particular problematic configuration17. Each test
assertion can be classified according to its severity. The portability metrics we
propose in the following describe different aggregations of the degree of severity of
every language element used in a process model, and identified by a test assertion,
to a degree of portability for the overall model. The degree of severity is defined
as follows:

Definition 18: Degree of Severity

Dta(tael) =
Nengines∑

i=1
(1− Supports(enginei, el)), where (4.1)

- el ∈ N ∪ C, p =< N,C > is an element of the language specification in a
particular configuration used in process model p; It corresponds to a node
or connector in a process model p, as defined in Def. 6;

- tael is a test assertion which tests for the occurrence of el in p;
- Dta : (Assertion→ N0) is a function that assigns a natural number to a

test assertion. A higher number corresponds to a higher degree of severity
in terms of portability;

- Nengines is the number of engines under consideration, the cardinality of
the set of engines: Engine = {engine1, . . . , engineNengines};

- An engine, enginei, can be represented by the set of language elements of
the language vocabulary V , which it supports: enginei = (elx, . . . , ely) ⊆
V ;

- Supports : (Engine× Element→ [0, 1]) is a function that returns 1 if an
engine does support a language element and 0 otherwise, that is:

Supports(enginei, el) =
1 iff el ∈ enginei

0 otherwise

The degree of severity Dta of test assertion tael, which checks for the usage of
language element el in a process model p, reflects the position of el in Fig. 4.1.
In other words, the degree represents the number of engines that do not support
the feature (i.e., language element or specific configuration thereof) an assertion
is checking. Any extension element that is found in a process model (i.e., an
element that is not defined in the language specification and is not part of the

17This corresponds to the terminology used in related inspection tooling, in particular the
Web Services Interoperability Organization (WS-I) test tools, available at http://www.

ws-i.org/deliverables/workinggroup.aspx?wg=testingtools. There, a test assertion
corresponds to a particular issue in a software artifact and is classified according to its
severity.
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vocabulary V ) is considered to be supported by a single engine only. A high
degree value means that the usage of the language element is an obstacle to
portability.

4.1.2. Design Decisions

The degree of severity presented in the preceding section considers all engines to
be of equal practical importance.

Weighting
of engines

Any engine that does not support the feature
tested by a test assertion increases the degree of severity by one. For example,
the usage of links in the flow activity in BPEL is not supported by two engines in
our benchmark, so the degree of severity of such an activity is equal to two. This
identical weighting of engines is a questionable assumption, because, that way,
the impact of experimental engines is larger than justified from their practical
usage identified by their market share. For a more realistic computation, a lack
of support in the engine with the biggest market share could be considered to be
more severe than an issue in an experimental engine with just a small percentage
of the overall market share. For instance, the degree value could be increased not
by one for every engine, but instead with a value that is relative to the market
share of the engine. However, as we lack independent data on engine usage,
we cannot introduce a meaningful weighting into the degree computation. At
least, all engines in our benchmark are considered as mature by their respective
vendors. All in all, we consider the equal weighting of all engines in the degree
computation a reasonable compromise.

Single
language
elements

Furthermore, we focus on the support for single language elements instead
of their combinations. As demonstrated with the evaluation of the support
for workflow control-flow patterns in Sect. 3.3.2, combining language elements
does not result in added portability issues. All failures in support for a pattern
could be attributed to failures in singular language elements. For this reason,
we consider it safe to use singular language elements in isolation for computing
portability metrics.

Metrics
based on
empirical
data

Finally, this scheme of calculating metrics uses empirical data as a crucial
ingredient for the weighting of the metrics. If this data, describing the language
support in engines, changes, also the metrics values change. We claim that this
is valuable, because it takes into account the evolution of engines, which are the
decisive factor for portability. Moreover, it produces more practically relevant
results than could be obtained with purely theoretically founded metrics.

4.1.3. Running Example

Fig. 4.2 depicts a simple BPEL process model18, which we use as running
example to demonstrate the metrics computation in this chapter. List. 4.1
contains a condensed version of the XML code of the same process model in
which problematic areas are highlighted. In total, the process model consists of

18The visualization of the process model uses BPMN.
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63 code elements, but, for conciseness, we limit List. 4.1 to the most important
parts.

Figure 4.2.: Process Graph for the Running Example

Listing 4.1: Simplified XML Code of the Running Example

1 <process xmlns:sxt=”http ://extens ion/namespace ” . . . >

2 <import . . . />

3 <partnerLinks> . . . </partnerLinks>

4 <variables>

5 <variable name=”logMessage ” . . . />

6 <variable name=”proce s s Input ” . . . />

7 </variables>

8 <correlationSets>

9 <correlationSet name=”CorSet ” properties=”

n s : c o r r e l a t i o n I d ”/>

10 </correlationSets>

11 <sequence>

12 <receive operation=”startProcessAsync” createInstance=”yes ”

variable=”proce s s Input ”>

13 <correlations>

14 <correlation set=”CorSet” initiate=”yes”/>

15 </correlations>

16 </receive>

17 <assign>
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18 <copy>

19 <from variable=”proce s s Input ” part=”inputPart ”/>

20 <to>$logMessage/log:processId</to>

21 </copy>

22 <!– Implementation of logging –>

23 <sxt:trace>

24 <sxt:log level=”info” location=”onComplete”>

25 <from variable=”logMessage”/>

26 </sxt:log>

27 </sxt:trace>

28 </assign>

29 <pick name=”Pick ” createInstance=”no ”>

30 <onMessage operation=”receiveAsyncMessage” variable=”

proce s s Input ” . . . >

31 <correlations>

32 <correlation set=”CorSet” initiate=”no”/>

33 </correlations>

34 <assign>

35 <!– Implementation of logging –>

36 </assign>

37 </onMessage>

38 <onAlarm> <for> ’ P0Y0M0DT0H0M5 . 0 S ’ </for>

39 <assign>

40 <!– Implementation of logging –>

41 </assign>

42 </onAlarm>

43 </pick>

44 </sequence>

45 </process>

The process is built for execution on the OpenESB BPEL service engine and
is taken from [196]. It is also included in one of the libraries used in the practical
evaluation in this chapter (cf. Sect. 4.4). It essentially implements a deferred
choice between the occurrence of a timeout and the arrival of a message, and is a
BPEL-based implementation of the milestone workflow control-flow pattern [71].
The process model starts with the reception of a message in a receive activity and,
thereafter, waits for either a second message to arrive or a timeout to occur using
a pick activity with an onMessage and an onAlarm event handler. Following
each of these actions, there are assign activities. Issues in

the
running
example

Portability issues in this process
model exist for the receive and the onMessage activities in lines 12–15 and
30–33, as these use message correlation. Depending on the initialization of the
correlation value, which in this case is done asynchronously, message correlation is
only partly supported across engines. Moreover, the onAlarm event handler, used
in lines 38–42, is not supported by every engine. Finally, all assign activities use
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custom engine-specific extensions, two for each activity (an example is depicted
in lines 22–27), for logging and monitoring purposes.

4.2. Portability Metrics

In this section, we propose several metrics that measure and assess portability
from different viewpoints. Next to a basic metric used for comparison, we
introduce a weighted mechanism of computation. Moreover, we define two
metrics that focus on process-aware and service-oriented aspects respectively.
In combination, these metrics form a comprehensive framework for quantifying
portability.

4.2.1. Basic Portability Metric

From a conceptual point of view, portability metrics quantify the relation between
the cost or effort of porting software and rewriting it from scratch [203]. As such,
a portability metric for process-aware and service-oriented software can be based
on the following definition:

Definition 19: Portability Metric

Mport(p) = 1− Cport(p)
Cnew(p) , where (4.2)

- p =< N,C > is an executable process model as defined in Def. 6.
- Cport(p) : (Process→ N0) is the cost of porting, a function that assigns a

number from N0 to p; A higher number corresponds to a higher cost.
- Cnew(p) : (Process→ N0) is the cost of rewriting, a function that assigns

a number from N0 to p; A higher number corresponds to a higher cost.
- Cnew(p) = 0→Mport(p) = 0;
- ∀p, Cnew(p) ≥ Cport(p).

Mport(p) is a metric that quantifies the portability of a process model p. Cport(p)
is the cost of modifying the model so that it can be executed on another engine.
Cnew(p) is the cost of rewriting it completely for a new engine. Def. 19 is based
on the assumption that the cost of a rewrite is always at least as high as the cost
of modification. This implies that the metric value ranges in the interval of zero
and one, where zero indicates no portability and one full direct portability. Hence,
the metric is defined on an interval scale. The difficulty in the equation is how to
meaningfully determine the cost. The different metrics presented here propose
different ways of calculating these values. Based on Def. 19, a portability metric
is indirect [171, p. 2], since it depends on Cnew(p) and Cport(p). Furthermore, it is
internal [53, pp. 17], since it depends on the static structure of the process model.
Finally, the metric is defined as zero for an empty program, where Cnew(p) = 0.
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Classic
computa-
tion of
portabil-
ity

A universally applicable way of calculating Cport(p) and Cnew(p), which we
denote as the basic portability metric Mbasic, is to take into account the lines of
code that have to be rewritten for porting the software (as indicated in [54,55]). If
it is to be redeveloped from scratch, all lines will have to be rewritten, so Cnew(p)
amounts to the total lines of code of the program. Cport(p) in turn amounts to
the lines of code that have to be rewritten when porting it; that is, all lines of
code for which portability issues can be detected. As the number of lines that
have to be rewritten for porting cannot be larger than the number of lines that do
actually exist, Cport(p) ≤ Cnew(p) is satisfied. In the most extreme case, where
all lines are nonportable, Cport(p) will be equal to Cnew(p) and consequently
Mbasic(p) = 0, indicating no portability at all. In the other extreme, no line
will have to be rewritten and Mbasic(p) = 1. All in all, the metric quantifies the
percentage of portable lines of code of the program.

To be able to automate the calculation of Cport(p) and Cnew(p) in this setting,
one aspect has to be clarified. Process languages are XML dialects with an XML
serialization format and as such abstract from the notion of lines of code. Instead,
XML elements, essentially the elements of the vocabulary of the process language,
are the crucial unit, identifying a single statement or instruction. For that reason,
we refer to language elements instead of lines of code. For Mbasic, Cnew(p) refers
to the total amount of elements in a process model, denoted as Nel being the
cardinality of the sets of all model elements of p, i. e., |p| = |N ∪C|, and Cport(p)
to the number of elements for which portability issues can be diagnosed. This
discussion is summarized in Def. 20:

Definition 20: Basic Portability Metric

Mbasic(p) = 1−
∑Nel

i=1 Issue(eli)
Nel

, where (4.3)

- (el1, . . . , eln) ∈ p =< N,C >;
- Nel = |p| is the number of elements in process model p;
- Issue : (Element→ [0, 1]) is a function that returns 1 if an element el is

not fully portable and 0 otherwise; that is,

Issue(el) =
1 iff ∃ enginei, such that el /∈ enginei

0 otherwise

where enginei is defined as the set of elements supported, enginei =
(elx, . . . , ely) (cf. Def. 18).

To demonstrate the computation of the metric, we can compute it for the
running example (cf. Sect. 4.1.3). This process model consists of 63 elements in
total, and for nine elements, portability issues are detected. These are six usages
of extension elements, the onAlarm event handler, the usage of correlations in
the receive activity, and the usage of correlations in the onMessage eventHandler.
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This results in the following metric value19: Mbasic(sample) = 1− (9/63) = 0.86.

4.2.2. Weighted Elements Portability Metric

Mbasic transfers the classical abstract portability metric [203] to the area of
process models. However, it does not make full use of the empirical data at
hand. To be precise, it only confronts the amount of fully portable elements of a
process model to all of them. Using the degree Dta (cf. Def. 18), it is possible to
relativize this observation, resulting in a more accurate assessment of the inherent
portability of an application. This is the principle underlying the current and
the following metrics.

The weighted elements portability metricMelem takes the degreeDta of elements
into account. Here, the cost of rewriting a process model Cnew is defined as
follows:

Cnew(p) = Nel ∗Nengines (4.4)

This cost is identical to the amount of model elements Nel (as in the basic
portability metric) multiplied with the number of engines under consideration
Nengines. Effectively, every element is treated as if it is unsupported by any engine
and has to be rewritten when being ported. The cost of porting, Cport, for Melem

is:

Cport(p) =
Nel∑
i=1

Cel(eli) (4.5)

The cost of porting, Cport, of a process model p is the sum of the element cost,
Cel, for each element eli. The element cost function for an element eli of model p
is defined as follows:

Definition 21: Element Cost Function

Cel(eli) = max
j=1...Nta

(V iolates(taj, eli) ∗Dta(taj)), where (4.6)

• Nta is the number of assertions that test for portability issues;
• V iolates : (Assertion× Element→ [0, 1]) is the testing function that

returns 1 if an assertion taj detects a portability issue for an element
eli and 0 otherwise.

As discussed, Dta(taj) denotes the degree of the test assertion taj (i.e., the number
of engines that do not support the feature tested by a test assertion taj). This
means that if an assertion taj does not find a violation for an element eli (i.e.,
V iolates(taj, eli) = 0), the element cost for the combination of the two amounts
to zero. If eli violates the assertion, the element cost depends on the amount

19All metric values in this thesis are rounded to two decimal places.
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of engines that do not support the feature tested by the assertion. The more
engines that support the feature, the less the cost of porting it will be. The lower
the amount of engines, the higher the cost. Design

decisions
for
weighted
compu-
tation

The max function takes into account
that a single element can violate multiple assertions. As stated in Sect. 4.1.1,
this can happen if there are multiple different problematic configurations of
the element. We select the maximum of the degrees based on the assumption
that the least portable part of the element will have the highest impact. This
is a design decision and alternative schemes are possible. For instance, the
arithmetic mean of the degrees of all violations could be computed. We tested
several schemes for aggregating degrees during the practical evaluation of the
metrics (cf. Sect. 4.4), but could not find significant differences in the metric
values and therefore selected the simplest approach (i.e., the max function) here.
Summarizing the above discussion, the weighted elements metric Melem is defined
as follows:

Definition 22: Weighted Elements Portability Metric

Melem(p) = 1−

∑Nel
i=1 max

j=1...Nta

(V iolates(taj, eli) ∗Dta(taj))

Nel ∗Nengines
(4.7)

To exemplify the computation, we again refer to the running example: As
discussed, there are 63 elements of code, for nine of which portability issues
are detected. These are six usages of extension elements, which are naturally
of limited portability and in our case have a degree of eight. The onAlarm
event handler is unsupported by one engine and thus has a degree of one.
The usage of correlations in the receive activity has a degree of three and in
the onMessage eventHandler of two. So, the result for Melem is the following:
Melem(sample) = 1− (6 ∗ 8 + 1 + 3 + 2)/(63 ∗ 9) = 0.9.

4.2.3. Activity Portability Metric

As discussed in Sect. 2.2.2, the most central building block of process languages in
general are activities, events, gateways, and the directed edges that connect them.
These elements are also present in nonexecutable process models and the focus
of visualizations for these models. For process complexity measures [204, 205],
activities and the transitions among them are the dominant factor. From a
conceptual point of view, activities, events, gateways, and connectors are of
higher importance than the remaining elements of an executable process model,
such as variable definitions or import statements. Therefore, it can be expected
that the impact of using problematic activities on portability is more critical. Non-

functional
changes
and
change
propa-
gation

If
portability issues exist in activities and these have to be replaced when porting
the process model, this might affect the control-flow behavior of process instances.
In contrast to this, changes in the way in which documents are imported into
the process model do not necessarily influence the definition of its control-flow
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structure. Changing the control-flow structure because of the porting of a process
model means that a nonfunctional change requirement would trigger a functional
change, which is a particularly undesirable kind of change propagation [206].

To provide a view on portability that focuses on control-flow, we define an
additional portability metric, which we denote as activity portability metric Mact.
This is a variation of the weighted elements metric. Here, instead of elements,
we only consider problematic configurations of activities, events, gateways, and
connectors (referring to Def. 6, the elements of sets C, A, E, and G, excluding B)
when computing portability20. Portability issues that are linked to basic elements,
i. e., the elements of set B, as for example process-level import statements or
engine-specific language extensions, are omitted in the consideration of this
metric. For Mact, Cnew changes to:

Cnew(p) = Na ∗Nengines (4.8)

where Na denotes the cardinality of sets C ∪ N \ B of a process model p.
Analogously, Cport changes to:

Cport(p) =
Na∑
i=1

Cel(ai) (4.9)

This means that only the element cost Cel of the activities, events, gateways,
and connectors is considered. The computation of Cel works as stated in Def. 21.
Summarizing the above, Mact is defined as:

Definition 23: Activity Portability Metric

Mact(p) = 1−
∑Na

i=1Cel(ai)
Na ∗Nengines

, where (4.10)

- (a1, . . . , an) ∈ C ∪N \B;
- Na = |C ∪ N \ B| is the number of activities, events, gateways and

connectors of process model p.

Looking at the running example, there is a total of seven activities, gateways,
and events. Since the example is a block-structured BPEL process definition,
there are no explicit connectors to be considered. The receive activity and
the onMessage and onAlarm event handlers are of relevance here. Since it
is not generally possible to tie language extensions to activities, except for
extensionActivities, the logging-related extensions used in the running example do
not count. Hence, the metric value is Mact(sample) = 1−(1+3+2)/(7∗9) = 0.90.

20This corresponds to the computation of portability also for nonexecutable process models as
defined in Def. 5.
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4.2.4. Service Communication Portability Metric

As discussed in Sect. 2.1.1 and Sect. 2.2.2.2, communication and composition
relations among services are a decisive factor for service-oriented software. Observ-

able
behavior
and
change
propa-
gation

Conse-
quently, metrics for such software center on communication-related properties [66].
Communication relationships describe the observable behavior of services; that is,
the messages they send and receive. Message sending and reception is performed
using specific activities or events for sending, receiving, and replying messages. In
terms of portability, these nodes are most critical. Single elements and perhaps
even the control-flow structure of a process model may be changed for porting in
a way that does not affect the observable behavior. However, this is unlikely if
the elements that have to be changed, concern communication with other systems.
In this case, these elements directly affect the observable behavior of process
instances. Changing them (to enable portability), and consequently changing the
observable behavior, influences third-party systems that interact with a process
instance. This is undesirable.

The service communication portability metric Mserv allows to view the impact
of communication related activities and events on portability. For this metric,
the calculation of Cnew and Cport is changed to include only the activities relating
to service interaction (i.e., the elements of set S as defined in Def. 19):

Definition 24: Service Communication Portability Metric

Mserv(p) = 1−
∑Ns

i=1Cel(si)
Ns ∗Nengines

, where (4.11)

- (s1, . . . , sn) ∈ S ⊂ (A ∪ E) as defined in Def. 6;
- NS = |S| is the number of communication activities or events of process

model p, the cardinality of set S.

Effectively, this is a specialization of Mact that focuses solely on activities and
events for service interaction. Cport is limited to only consider the element cost
of these activities.

Coming to the example, there are two service-related nodes, the receive activity
and the onMessage event handler. This results in the following metric value:
Mserv(sample) = 1− (3 + 2)/(2 ∗ 9) = 0.72.

4.3. Theoretical Validation

In this section, we validate the proposed metrics theoretically using the two
theoretical validation frameworks [69,70] presented in Sect. 2.4.2. We begin with
the evaluation of construct validity, followed by the discussion of measurement
theory.
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4.3.1. Evaluation of Construct Validity

In the following, we apply the validation framework from [70] and answer each
question posed by the framework.

Purpose of the metrics: The purpose of the metrics is the assessment of soft-
ware and provisioning of information for stakeholders: Developers and
system ad-ministrators can be informed about the portability character-
istics of their software. When the change of a process engine becomes
necessary, the metrics help to make a decision on whether to invest in
porting or rewriting software.

Scope of the metrics: Our metrics are of technical nature and are applicable
during and after development. Since the metrics are computed at the
level of a single executable process model, their scope is typically a single
(service-oriented and process-aware) project of one workgroup.

Measured attribute: The metrics address a quality attribute of service-oriented
and process-aware software. Specifically, they address its portability.

Natural scale of the attribute: Portability of software naturally ranges between
two poles, full direct portability without a single modification and no
portability of any part of the application. This resembles an interval scale.

Natural variability of the attribute: Being a technical attribute, portability is
not subject to variations that are common for attributes involving human
factors, such as the performance of a person depending on the time of the
day. We can only determine the variability of the attribute by observing
it in practice and considering the ranges in which in varies. Therefore, we
defer this discussion to the practical evaluation in Sect. 4.4.

Definition of the metrics: The metrics and the functions for computing them
have been formally defined in Sect. 4.2. They are direct and internal metrics
that are computed at the level of a single executable process model. The
measurement instrument used is counting (i.e., counting of portability issues
in code). The measurement is automated.

Natural scale of the metrics: The metrics are defined on an interval scale of
[0; 1].

Natural variability of the instrument: To begin with, our metrics rely on em-
pirical data of language support in engines; that is, the engine benchmarks
described in Chap. 3 that list the amount of engines that support each
language element. As a consequence, the main source of measurement
error in the instrument stems from incomplete or faulty data. As already
discussed in the respective chapter, we did not benchmark all engines that
exist for the process languages, which is hardly feasible due to the effort
associated with benchmarking and the licensing cost and strategy of several
engine vendors. Hence, the data is not fully complete and an increase of
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the number of engines in the benchmark may also lead to a differing output
of the measurement instrument. In Sect. 4.4, we show that such an increase
does not significantly change the metric values, by contrasting the results
based on two benchmarks from different points in time, which includes an
increase in engines. Hence, this error can be considered negligible.

Another source of measurement errors are possible faults in the benchmark
that indicate portability issues where there are none (false-positives) or
do not discover certain issues (false-negatives). It is not possible to prove
that no such errors exist, but since the total amount of tests performed in
the benchmark is large (in the case of the BPEL conformance test suite
with more than 130 tests for each of the engines) singular errors should not
have a strong impact. Moreover, the benchmark code is available to public
scrutiny and has been reviewed and corrected by experts from other groups.

The third possible source of measurement errors is the metric suite that
performs a static analysis of process models based on benchmark data and
computes metric values. As before, we cannot prove the absence of faults
in this software tool. We try to reduce faults and maintain a high degree
of quality of the suite by means of unit testing, continuous integration,
continuous inspection, and open development of the tool.

Relationship between metrics and attribute: Our metrics are directly related
to the measured attribute, portability. If for instance a nonstandard exten-
sion element is introduced in the process model, this will limit its overall
portability. The usage of this element will be detected by our measurement
instrument and influence the metric values accordingly.

Natural side effects of using the instrument: Since we have automated the
measurement process fully, there is no room for human bias in the measure-
ment instrument.

4.3.2. Measurement-Theoretic Validation

The second theoretical validation framework [69] is grounded in measurement
theory and, as discussed in Sect. 2.4.2.1, defines certain types of metrics as well
as the mathematical properties that should be satisfied by each type of metric.
Although there is no direct fit of the portability metrics proposed here to this
framework, it is important to discuss what kind of properties our metrics fulfill.
The metrics presented here are formed by the relation of two metrics Cport and
Cnew, with different ways of calculating them. These metrics can be considered as
complexity metrics [69]. Consequently, they fulfill the properties of non-negativity,
null value, symmetry, additivity, and monotonicity. The purpose of relating Cport

and Cnew is to obtain a normalization which enables the comparison of programs
of different sizes concerning their portability. Hence, our metrics are normalized
complexity metrics which do no longer fulfill all properties of classical complexity
metrics. Using different terminology, they could also be viewed as a density
metric of portability. In the following, we discuss each of the different properties.
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Non-negativity: Both, Cport and Cnew, are obtained by adding up positive num-
bers, so they are always positive. From this follows that the property of
non-negativity also applies to the normalized metrics: Mport(p) ≥ 0

Null value: The null value property requires that the complexity of an empty
system must be null. In our case, this corresponds to a process model
p =< N,C >, with N = ∅, C = ∅. As a result, the cost values, Cnew(p) and
Cport(p), will be zero. For this special case, the metric value is defined as
zero in Def. 19. Therefore, the metrics fulfill the property of null value.

Symmetry: Symmetry for complexity metrics requires that the complexity value
does not depend on the labeling used for the relationships between elements.
In our case, the relationship between elements translates to their ordering
in the process graph. This means that two process models p and p′ with
an identical set of elements EL that have different orders order and order′

with the same control-flow semantics should have the same metric values
Mport(p) and Mport(p′). Reordering is possible for a variety of elements,
for example when used for parallel processing or event handling. The cost
metrics calculate the cost on a per-element basis, so the ordering is irrelevant
and the metrics are symmetrical. As a consequence, also the normalized
metrics are symmetrical. In the notation of [69]:

(p=<EL, order> ∧ p′=<EL, order′>)⇒Mport(p) = Mport(p′) (4.12)

Additivity: Additivity requires that the complexity of a program that is composed
of two disjoint modules is equal to the sum of their complexity. This applies
to Cport and Cnew, as specified in Def. 19. However, summing up the
normalized portability metrics is meaningless, due to normalization. Hence,
the portability metrics defined here are not additive.

Monotonicity: Monotonicity requires that the complexity of a program is no less
than the sum of the complexity of two unrelated parts of it. In our case this
can be illustrated by two parallel branches, p1 and p2 of the process model p.
The complexity of the overall model should be at least as high as the sum
of the complexity of the two branches. For Cport and Cnew, this property
clearly holds. However, this does not apply for the normalized metrics. Due
to the normalization, the metric value Mport(p) always is in the interval of
Mport(p1) and Mport(p2) and not equal or higher than the sum of the two.
Nevertheless, it is still monotonic. For instance, let Cport(p1) < Cport(p2),
Cnew(p1) < Cnew(p2), and Mport(p1) < Mport(p2). From the additivity of
complexity metrics we get:

Mport(p) = (Cport(p1) + Cport(p2))
(Cnew(p1) + Cnew(p2)) >

Cport(p1)
Cnew(p1) = Mport(p1) (4.13)

It follows that Mport(p) > Mport(p1): The portability of the process model
will always be larger than the lower bound of the portability of two disjoint
parts of it.
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Summarizing the discussion, we can see that the metrics are normalized complex-
ity metrics, or densities of portability, which fulfill the properties of non-negativity,
null value, symmetry, and monotonicity. They fail to satisfy the property of
additivity due to normalization.

4.4. Practical Evaluation

The practical evaluation in this section demonstrates the applicability of the met-
rics and exemplifies their interpretation. Furthermore, we verify what properties
of the metrics hold in practice. We first explain the planning and design of the
evaluation in Sect. 4.4.1 and outline the prototypic implementation of the metrics
computation in Sect. 4.4.2. Thereafter, in Sect. 4.4.3, we discuss the results.

4.4.1. Design and Instrumentation

The goal of this evaluation is to analyze executable process models, for the purpose
of assessing the metrics proposed in this chapter with respect to their practical
properties. Goal

statement
We perform the evaluation using process models implemented in

BPEL. The context [174, p. 90] of our evaluation can be characterized as follows:
We perform an off-line experiment, meaning that we do not assess software that
is currently in development in a project, but software that is already finished and
available. We try to gather software that solves realistic problems, but without
restricting it to a certain problem domain. The data gathering took place over
an extended period of time, from 2013 to 2014, resulting in a variety of software
artifacts.

Through the experiment, we validate a number of quality factors of the metrics.
In particular, we evaluate the following hypotheses:

1. Metric values are resilient to moderate changes in the data underlying
their computation: Engines constantly evolve and therefore also application
portability is subject to slight changes over a longer period of time. If
metric values do not change significantly, even if there are moderate changes
in the data underlying their computation, then the current mechanism
for computation can be considered robust and the interpretation of the
portability values is meaningful.

2. The metrics can be used for comparing process models of very different
size: Especially complexity metrics are prone to a distorting effect when
it comes to code size [184]. Metrics tend to vary for programs of strongly
differing size and, therefore, should be used with care when comparing such
programs. It is a quality property of a metric to be resilient to changes in
code size.

3. The different metrics carry diverse information: If the different metrics
carry similar information from an information-theoretic viewpoint, then
there is no point in computing all of them. Instead, the simplest one is
sufficient and the remaining ones can be discarded.
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4. The weighted portability computation improves discriminative power: A
fundamental purpose of quality metrics is the ability to discriminate between
different pieces of software. This ability is called the discriminative power
of a metric. A metric that often assigns the same values to different pieces
of software is not desirable, as it lacks this central property. The additional
complexity introduced in the weighted metrics computation proposed here
should be justified by an increase in discriminative power.

Objects
of study

When it comes to the instrumentation phase [174, pp. 101–102], our experiment
objects are code documents, i.e., BPEL process models, for which the metrics
can be computed. They come from a practical context and are of varying size.
In total, we gathered five different process libraries for the evaluation. Three of
them, L1−L3 come from different BPEL engine vendors, being ActiveEndpoints,
Apache ODE, and Oracle. These libraries are freely available and serve as
documentation and tests for the respective engines. We obtained the fourth one,
L4, manually from a set of different and more heterogeneous sources where BPEL
processes are made publicly available, such as the BPEL-Unit [207] mailing
list, Stack Overflow21, and a collection of workflow patterns implemented in
BPEL [196]. These libraries were collected in February 2013. In total, the
amount of process models of these libraries adds up to a set of 215. The process
models vary strongly in size, ranging from eight to 168 elements, and cover all
features of BPEL. The size of each library varies from 22 to 86 process models.
To evaluate the first hypothesis, we compare metric values for these libraries
computed at two different points in time with updated benchmark data for the
metrics computation, which includes: i) the benchmarks of two additional
engines, ii) the benchmarks of the new revisions of four engines, iii) and an
enhanced set of test assertions, due to more fine-grained test cases.

The remaining fifth library, L5, is a large-scale library collected from the Open
Hub open source network. We queried the network in January 2014 for files
ending in .bpel, resulting in 3312 hits which we downloaded for the analysis.
From this set, we removed all process models from our own projects, which are
also listed on Open Hub, as these are the input to the mechanism of the metrics
computation and hence would introduce a bias into the library. Furthermore,
we removed the process models from the Apache ODE project, as these are
already included in one of the previous four libraries. From the remaining set,
we analyzed only the process models that started with a valid BPEL process
element with the proper BPEL 2.0 namespace and which contained messaging
activities. That way, we exclude abstract processes, process models of different
dialects, and minimalistic test cases for BPEL parsers. This ensures that the
library consists of executable process models. The final set encompasses 1427
process models and is more than six times as large as the other four libraries
taken together. It contains very diverse and large process models with up to 3845
elements of code. Due to its size and the fact that it comes from very different
sources, we are confident that the process models give us a realistic view of the

21Stack Overflow is a question and answer site for programmers. Its homepage is located at
http://stackoverflow.com.
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usage of BPEL in practice, at least of its usage in the open source community,
and thus allow for a meaningful interpretation of the portability metrics.

4.4.2. Portability Metrics Implementation

To be able to repeatedly calculate metric values from the extensive process
libraries, we implemented a plugin for our metrics suite. The general structure
of this suite is outlined in Sect. 2.4.3.2. In this section, we explain how we
incorporate the computation of portability metrics into the metrics suite.

Figure 4.3.: Portability Plugin for the Metrics Suite

The portability metrics computation has initially been implemented in a static
checking tool, the BPEL Portability Profile (bpp)22. During the progression of
the dissertation project, it became obvious that it would be beneficial to bundle
the computation of all metrics in a single tool, i. e., a metrics suite. Since the
bpp tool had already been referenced in several publications, we decided to keep
maintaining it and to integrate it in our metrics suite, prope, as a library. This
is possible using the plugin mechanism for prope.

An outline of the structure of the portability plugin is depicted in Fig. 4.3.
Whereas the main part of prope takes care of folder traversion and report
generation, the portability metrics computation is implemented in a separate
FileAnalyzer. This PortabilityAnalyzer is the facade for bpp and enables the
interoperation of the APIs of prope and bpp. It parses files that end in .bpel

and contain the BPEL 2.0 namespace. When it finds a valid BPEL process,
it first tries to detect portability issues in it and groups them by the process

22See the project page, located at https://github.com/uniba-dsg/bpp, for details.
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elements for which they are found.Test
assertion

implemen-
tation

For the detection of issues, the tool has access
to a large set of TestAssertions. Each assertion defines a normative requirement
that should be respected to achieve portability and is associated with a degree
of severity, the quantitative representation of its severity in terms of portability
as described in Sect. 4.1.1. There is a test assertion for every language feature
of BPEL that is not unanimously supported by all engines, as described in the
benchmark (cf. Sect. 3.3.1). An assertion is identified by an id and is associated
with an explanatory description. Furthermore, it contains a target, which is
an XPath expression that selects all elements in the process model that are
problematic with respect to the assertion, i. e., that violate the assertion. All test
assertions are listed in tabular form in the appendix (cf. Appendix B)23.

The PortabilityAnalyzer uses the assertions to detect all issues in the process
model, by executing the XPath expressions that are associated with each assertion
on the process model. These issues are grouped by the process elements, which
results in a list of process elements for which one or more issues could be found,
i. e., an AnalysisResult. Based on this result, different algorithms for computing
portability, as defined by the metrics in Sect. 4.2, are implemented in separate
classes for each distinct metric. All except the BasicPortabilityMetric make use
of the degree of severity. The remaining implementations differ in the subsets
of the process elements they select. Finally, all metric values computed for the
process model are handed back to the main core of prope, which triggers the
analysis of further files and, finally, writes all results to a report.

4.4.3. Results

In the following, we first describe the metric values we computed for the different
process libraries. This serves as an exemplary assessment of the process libraries
using the portability metrics. We contrast the initial four libraries with the
extended fifth one and also look at the natural variability of BPEL process
models. Thereafter, we evaluate the hypotheses stated above and provide a
summary of the results.

4.4.3.1. Descriptive Statistics of the Process Libraries

Table 4.1 shows descriptive statistics for the process libraries with the different
metrics. Additionally, Fig. 4.4 depicts boxplots for the different process libraries.

23It is important to note that the benchmark results presented in Sect. 3.3.1 are comprehensive
point in time observations. To ensure the practical applicability of our tool, we update it
every time we find differences in standard conformance, such as when a new patch version of
an engine becomes available. As such updates do not justify the repetition of a full-fledged
benchmark of all engines, the tool has diverged from the data presented in Sect. 3.3.1
to a certain degree. During the metrics evaluation in Sect. 4.4.3, we demonstrate that
these updates do not harm the applicability of the metrics. This is essentially the focus of
hypothesis 1. To sum up, the benchmark data from Sect. 3.3.1 shows the results at the
time the benchmarks were made and the test assertions in the appendix show the state of
the tool at the time of writing this thesis.
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Table 4.1.: Descriptive Statistics for Process Libraries

Library N Statistics Mbasic Melem Mact Mserv Ø

L1 22
Mean 0.84 0.87 0.99 0.99 0.92

std(X) 0.13 0.12 0.01 0.05 0.11

Mean 0.90 0.97 0.92 0.94 0.93
L2 25

std(X) 0.03 0.01 0.04 0.07 0.05

L3 82
Mean 0.94 0.98 0.96 0.94 0.95

std(X) 0.06 0.02 0.04 0.10 0.07

Mean 0.90 0.93 0.97 0.97 0.94
L4 86

std(X) 0.04 0.03 0.05 0.08 0.06

L5 1427
Mean 0.90 0.95 0.95 0.94 0.93

std(X) 0.12 0.10 0.07 0.11 0.10

Mean 0.90 0.95 0.95 0.94 0.94
All 1642

std(X) 0.11 0.10 0.06 0.11 0.10

Small Processes, Q1 395
Mean 0.92 0.96 0.96 0.96 0.95

std(X). 0.10 0.07 0.07 0.10 0.09

Mean 0.89 0.96 0.94 0.94 0.93
Large Processes, Q4 409

std(X) 0.11 0.09 0.06 0.09 0.09

Looking at L1, relatively low values for Mbasic and Melem with values of 0.84
and 0.87 respectively, along with relatively high standard deviations, contrast
high values for Mact and Mserv. This reveals that the main portability issues do
not lie in the control-flow and communication activities of the process models,
these are indeed almost fully portable. The issues here reside mostly in the usage
of nonstandard extensions. Such issues, as they relate to extensions for logging,
etc., tend to be fixable.

For L2, values of Mact and Mserv are lower in total, and also lower than
Melem. This indicates the opposite structure than for L1. Portability issues
mainly originate from the activities and the control-flow definition. Whereas
the process models do not make heavy use of language extensions, they rely on
configurations of activities that are of limited portability. Porting this process
library is comparatively harder.

L3 achieves high and similar values for all metrics. Mbasic and Mserv are lowest
with values of 0.94 and Mserv has a comparably high standard deviation with 0.10.
Again, the value of Mserv implies that most problems are found in service-related
activities and thus porting this library could pose problems.

L4 shows similar values as L1, although with lower numbers in total. Portability
issues mainly come from nonstandard elements that do not directly relate to
activities or communication aspects.
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Figure 4.4.: Portability Values for the Process Libraries

The largest and hence the most diverse library, L5, is similar to L3, but at a
lower degree of portability and standard deviations are higher. All in all, Mbasic

is lowest and has the highest standard deviation, which suggests that the main
problems in this library are due to extension elements.

In total, L3 scores best when it comes to portability in general and a final
decision is indicated by the aggregated metric values in the last column of
Table 4.1. This is also illustrated by Fig. 4.4, where L3 clearly ranges at the top
when looking at the plots for Mbasic and Melem. For Mact and Mserv, the situation
is no longer that clear, due to the relatively large standard deviation in L3. The
other libraries lie at the border of an acceptable level, with L1 scoring lowest
and showing the highest degree of variation when it comes to Mbasic and Melem.
Focusing on the process and communication view (Mact and Mserv), however, L3
is overtaken by L1 and L4.

Compari-
son of L5

and re-
mainder

Due to its large size and origin, L5 can be seen as representative for the usage
of BPEL in the open source community. This makes a closer comparison of L5 to
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Table 4.2.: Mann-Whitney U Test for the Difference of L5 to L1− L4

Library Mbasic Melem Mact Mserv

L1←→ L5 p 0.01 1.80e−8 5.49e−6 0.01

U 10902.5 4793.5 24387 19678

L2←→ L5 p 0.07 0.15 9.81e−5 0.03

U 14131.5 14874 9874 14098

L3←→ L5 p 0.01 0.00 0.70 0.41

U 69070.5 69417.5 59967.5 55926.5

L4←→ L5 p 0.00 1.03e−15 0.01 0.00

U 49946.5 29957 70898 71216

the other libraries worthwhile. In particular, it could be interesting to observe if
the process models in L5 have a significantly higher or lower degree of portability
for the different metrics, than the other libraries. We used the Shapiro Wilk
test [187] to determine if metric values are normally distributed for the different
process libraries24. As this was clearly not the case for all libraries except L2,
we used a non-parametric test, the Mann-Whitney U test [188], for comparing
the libraries. The null hypothesis in this case is that there are no significant
differences in the distributions of the different process libraries, when compared
to L5. Because we are doing four comparisons, one for each metric, we perform
alpha-adjustment and reduce the significance level to p < 0.05/4 = 0.0125. The
results of the test are depicted in Table 4.2. The null hypothesis can be rejected
in all cases when comparing L5 to L1 and L4 respectively, so the differences
between these libraries are significant. These two libraries are more portable
when it comes to control-flow, but less portable according to Mbasic and Melem,
indicating that there is a higher amount of nonstandard extensions used in these
libraries. This is interesting, since L1 consists of process models which run on
a commercial engine. In contrast to this, L2 and L3 do not show a significant
difference to L5 for Mbasic and Melem or Mact and Mserv respectively. This implies
that the process models in these libraries are representative for process models
used in the open source community.

4.4.3.2. Natural Variability of Portability

For all metrics and process libraries, mean portability values are relatively high,
ranging at values around 0.9. All standard deviations are relatively low, with the
highest value of 0.13 for L1 and Mbasic. This indicates that the process models of
each library do not deviate strongly and, despite their differences in functionality,
do share a common level of portability. At a first glance, this level may seem

24Since we drop the assumption of normality in the following, we omit a presentation of the
results of this test.
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high. However, it is important to keep in mind, that the language and systems
we consider here specifically aim to produce portable code. The question is what
can be considered as high in this domain, or, in the terms of [70], what the
natural variability of the attribute is (cf. Sect. 4.3.1). With the data at hand, we
can provide a hint for the natural variability of the portability of BPEL process
models in general. Considering the aggregated means and standard deviations of
the different metrics for all process models, listed in the last column of Table 4.1,
the data indicate that the portability naturally ranges at 0.94. Based on the
evaluation, this value can be used as reference for the quality assessment of
BPEL process models. Anything below this level can be considered to be of lower
quality with respect to its portability.

As shown in Sect. 3.3.4, only 16 % of the total test set of the benchmark are
passed by all engines under test. This implies that engines implement relatively
disjoint sets of the language (cf. Fig. 4.1) and as a result lower portability values
than the ones observed here could be expected. As discussed, disjointedness in
standard conformance only results in portability issues if process models use
features that are not well supported. If they mainly use features of the basic
language subset that is widely supported, higher portability will be the result.
The latter seems to be the case for all of the libraries. Even the process models
from L5, which are most representative of practical BPEL usage, seem to use
only a modest part of the language.

4.4.3.3. Variance of the Metrics Over Time

Hypothesis 1 addresses the resilience of the metrics to changes in the underlying
data. This can be examined by testing whether the metric values have changed
through the updates and additions of the engines over time, which we can find
out by comparing newer data for L1 to L4 with older revisions. More precisely,
we compare metric data computed based on benchmark results from February
2013 to metric data computed based on results from January 2014.

There are different ways of performing this comparison, such as by contrasting
the mean or median values of repeated computations [171, p. 12]. Here, we use
a statistical test to see if there are significant differences in the distributions of
the metric values for repeated experiments. If there are no significant differences,
we can infer that the mechanism for metrics computation is robust in the face
of changes and the interpretation of the portability values is meaningful. To
find out if there are significant differences, we use the Wilcoxon signed-rank
test [189], a non-parametric test for comparing the means of paired sets of data,
which is what we have here. Table 4.3 outlines the results. In no case, p-values
become significant. This means that, based on the data, we cannot diagnose any
significant changes in the metric values despite the updates in the underlying
benchmark. It seems that the mechanism for metrics computation is at a mature
state and robust in the face of changes.
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Table 4.3.: Wilcoxon Test for the Difference of L1 − L4 at Different Points in
Time

Library Mbasic Melem Mact Mserv

L1 p 0.72 0.87 0.68 1

W 126.5 123 32 2

L2 p 0.61 1 0.89 0.75

W 131.5 162 168 106

L3 p 0.22 0.88 0.84 0.59

W 1157.5 1432.5 1463.5 590.5

L4 p 0.84 0.99 0.59 0.53

W 1657 1787.5 1409.5 159

4.4.3.4. Effect of Code Size

The second hypothesis addresses the usage of the metrics for the comparison
of process models of very different size. In general, a distorting effect can be
observed when comparing the complexity of programs with a different code
size [184]. Metrics values tend to vary in this case and therefore should be used
with care when comparing such programs. Resilience to changes in code size is
considered a quality property of a metric.

Table 4.4.: Mann-Whitney U Test for the Difference of Small and Large Process
Models

Statistics Mbasic Melem Mact Mserv

p 5.65e−12 2.42e−12 2.2e−16 8.32e−11

U 103270.5 103661.5 119881 97674.5

To investigate the effect of code size on our metrics, we extract two groups
of process models, large and small ones, from all of the libraries. Large process
models come from the fourth quartile in terms of the number of elements (i.e.,
the 25% largest models) and small process models from the first quartile (i.e.,
the 25% smallest models). Table 4.1 lists descriptive statistics for these sets in
the last two rows. The mean values and standard deviations for large and small
process models are very similar for all metrics. Still, when comparing the two
sets using the Mann-Whitney U test at a significance level of 0.0125, we can see
that there are significant differences between the two sets. The results of the
test can be found in Table 4.4. This means that our metrics, as common for
complexity metrics, should be treated with care if used to compare programs of
widely differing size.
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4.4.3.5. Information Carried by the Metrics

Another important property, the focus of hypothesis 3, is the ability of the
metrics to provide diverse information. This can be determined by looking at
their correlation. If all metrics correlate strongly to each other, then, strictly
speaking, they all carry similar information, in spite of their difference in point
of view. If they all carry similar information, then there is no point in computing
all of them. Instead, the simplest one is sufficient and the remaining ones can be
discarded.

Table 4.5.: R2 for Portability Metrics

Mbasic Melem Mact Mserv

Mbasic – 0.89 0.56 0.38

Melem 0.89 – 0.49 0.37

Mact 0.56 0.49 – 0.64

The square of the linear correlation coefficient R2 is suggested in [171] to
evaluate correlation among software metrics. Table 4.5 outlines R2 for the
different metrics, aggregated for all process libraries. Mbasic and Melem, as well
as Mact and Mserv, show a stronger correlation. All other combinations show
a moderate correlation. Since the metrics are computed in a similar fashion,
although with a different view, a moderate correlation should be expected.
Nevertheless, this level is still acceptable. Mbasic and Melem, as well as Mact and
Mserv, show a strong correlation which can be attributed to the strong similarity
in their computation. So, from an information-theoretic viewpoint, Melem is not
superior to Mbasic nor is Mserv to Mact. It is still beneficial to look at Melem and
Mserv, for reasons discussed in the following section.

4.4.3.6. Discriminative Power

Finally, hypothesis 4 addresses the discriminative power of the metrics. A metric
should assign different values to different pieces of software, because otherwise
there is not much use in a comparison of the metric values. In particular, the
weighted metric, Melem, should have a higher discriminative power than the basic
metric, Mbasic, to justify the added complexity for its computation.

Discriminative power can be measured by calculating the amount of unique
metric values in the total set of values. The higher the amount of unique
values, the better the metric is able to distinguish between different pieces of
software and the higher its discriminative power is. For Mbasic the discriminate
power amounts to 379/1642 = 0.23, for Melem it is 531/1642 = 0.32, for Mact:
224/1642 = 0.14, and for Mserv: 81/1642 = 0.05. Clearly, Melem has the highest
degree of discriminative power. In combination with the fact that it correlates
strongly to Mbasic, we claim that for that reason, Melem is preferable to Mbasic and
the specialized metric indeed does have an added value. Both, Mact and Mserv,
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have a more limited degree of discriminative power which is expected as they
abstract from certain aspects compared to Mbasic. However, as demonstrated
in the previous subsection, they do carry information different from Mbasic and
Melem and highlight more critical portability issues.

4.5. Summary

In this chapter, we presented a measurement framework for quantifying and
assessing the portability of service-oriented and process-aware software. The idea
of using the amount of standard-conformant engines supporting certain language
elements, discussed in Sect. 4.1, is an extension to classical portability metrics.
Our measurement framework considers the portability of process models from
different viewpoints, captured by dedicated metrics, that vary in their severity.
We provide an extensive evaluation of the metrics, both from a theoretical and a
practical angle. The metrics proposed in Sect. 4.2 are:

1. A basic portability metric that resembles the classical way of computation
and serves as a means of comparison.

2. A weighted portability metric that, similar to the basic metric, considers all
process elements and introduces engine support data into the computation.

3. An activity-oriented metric that limits the scope to the activities, events,
and gateways of the process model.

4. A communication-oriented metric that limits the scope to the activities and
events used for message sending and reception.

The theoretical properties these metrics fulfill are determined in the theoretical
validation in Sect. 4.3. From a theoretical point of view, the metrics are normalized
complexity metrics or densities of complexity. They satisfy the properties of
non-negativity, null value, symmetry, and monotonicity, but not additivity. They
are internal and indirect, target service-oriented and process-aware pieces of
software, are obtained by counting issues in code, and have an interval scale.

The practical evaluation in Sect. 4.4 shows that the metrics are resilient to
moderate changes in the data underlying the computation and carry diverse
information. Furthermore, the evaluation demonstrates that the inclusion of
engine support data in the computation improves the discriminative power of the
metrics in comparison to the basic way of computation. However, as usual for
complexity metrics, they cannot be used to compare process models of arbitrarily
different size. By computing the metrics for various process libraries, we can
also investigate the portability of BPEL process models in practice. Overall,
the portability of real-world BPEL process models is quite high, which can be
attributed to the fact that only a modest part of the language seems to be used
in practice.

In combination, the proposed metrics and their theoretical and practical
evaluation allows to answer research question 2.1: What are suitable metrics
for measuring portability? The metrics framework provides a validated and
practically tested way of achieving this.
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5. Measuring Installability
Parts of this chapter have been taken from [79].

One of the three subcharacteristics of portability defined in the SQuaRE model
in Sect. 2.3.2, and, hence, the next step in the measurement framework, is
installability. In the same fashion as in the previous chapter, we define, validate,
and evaluate a set of metrics for measuring the installability of process-aware
and service-oriented software. The goal of this chapter is to answer research
question 2.2: What are suitable metrics for measuring installability?

Structure
of the
chapter

The organization of the chapter follows the framework of Part II of this thesis.
We begin by discussing the nature of installability and how it can be measured
in Sect. 5.1. Thereafter, we examine existing metrics that attempt this task and
derive and formally define our metrics framework. Next comes the theoretical
validation of the metrics in Sect. 5.2, followed by the practical evaluation in
Sect. 5.3. Finally, the chapter is concluded with a summary in Sect. 5.4.

5.1. On the Measurement of Installability

Nature of
installa-
bility

In Sect. 2.3.2, installability was defined as the degree of effectiveness and effi-
ciency with which a software product can be successfully installed in a specified
environment. When it comes to the installation of middleware-based software,
which is the focus here, this definition has two focal points. The first one is the
application to be installed. The second one is the middleware into which the
application is installed. In our case, the application is an executable process
model and the middleware a process engine. Especially at the enterprise-level,
process engines are of considerable complexity. As a consequence of this com-
plexity, also their installation can constitute a noticeable effort and should not
be disregarded. This implies that a measurement framework for the installability
of service-oriented and process-aware software should target two areas: i) The
assessment of the installability of a process engine, and ii) the assessment of
the installability of an executable process model into the process engine. The
latter task, i. e., installing an application into a server environment, is commonly
referred to as deployment [208]. Therefore, we subdivide the quality charac-
teristic of installability into the subcharacteristics of engine installability and
deployability.

Uninstal-
lation

It should be noted that the original definition of installability from [53] also
considers uninstallation. In contrast, we do not consider uninstallation here.
The reason for this is that in our setting, an uninstallation of a software system
is rarely needed. In the times of cloud-provisioned execution environments,
process-aware and service-oriented software systems are seldom installed directly
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into an operating system. Instead, the execution environment is virtualized,
e.g., using virtual machines or containers, as discussed in Sect. 2.1.2.3. In such
environments, an uninstallation can be performed simply by resetting the virtual
machine state or discarding a container. A dedicated uninstallation procedure
is not needed, since the system as a whole is being reset. The time and effort
required for this task is constant, little, and independent of the software installed.
Thus, we do not consider uninstallation here.

Existing
metrics

for instal-
lability

When it comes to quantifying installability, only few metrics are available and
some have been defined in the predecessors of SQuaRE, e.g., [209,210]. However,
in [209], all of them are marked as experimental. Furthermore, several of the
defined metrics effectively measure the same thing. For instance, the metrics
effortless installation, installation ease, and ease of users manual installation
operation [209, p. 64] all measure the extent to which user actions are needed
during the installation procedure. We condense this notion into a single metric,
installation effort, in our measurement framework. The metric operational
installation effort reduction [209, p. 64] is used to measure effort reduction in the
case of changes in the installation procedure. As we do not focus on procedural
changes, but want to assess installability as-is, the metric is of no relevance
here. Installation flexibility [210, p. 37] relates the number of customizations
implemented for the installation procedure, such as installation paths or port
numbers, to the number of customizations required. The larger the extent
to which customizations can be implemented is, the better. In the practical
evaluation (cf. Sect. 5.3), we could implement all customizations needed in all
cases. As a consequence, this metric did not bear any benefit here, and we
decided to exclude it from our framework. The remaining metrics relevant here
are installation effort and ease of setup retry [210, p. 37]. These metrics are
adapted to and included in our framework, along with several new ones presented
in the following.

Frame-
work Fig. 5.1 outlines the framework we use for measuring installability. As discussed

earlier, the quality characteristic installability is subdivided into the subcharac-
teristics engine installability and deployability. Each of the subcharacteristics can
be measured by a set of direct and aggregated metrics. The metrics ease of setup
retry (ESR) and installation effort (IE) stem from [209, 210]. Ease of setup
retry is meant to characterize the reliability of the installation procedure. The
intention of installation effort is to quantify the complexity of the installation
procedure. In [209,210], this is done by counting the number of steps required to
perform the installation. We extended installation effort to also consider average
installation time (AIT ) and not only the number of distinct steps (NDS) of
the installation procedure. When it comes to deployability, no corresponding
metrics are available in [209,210], so we develop a new set. This set consists of
deployment effort (DE) which, like installation effort, is intended to quantify
the effort required to achieve deployment. The metric considers deployment
descriptor sizes (DDS) and the effort of package construction (EPC). Moreover,
we introduce deployment flexibility (DF ), to assess the degree of freedom an
operator has when trying to achieve deployment.
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Figure 5.1.: The Framework for Measuring Installability – Ellipses denote qual-
ity attributes to be measured, rectangles denote metrics obtained
through code analysis and benchmarking, and rounded dashed rectan-
gles depict aggregated metrics that are computed by the combination
of other metrics using the functions displayed in circles.

The deployability metrics DDS, EPC, and DE, as well as the installability
metric NDS, are internal (i.e., they relate to static properties of the software).
The remaining metrics are external (i.e., they relate to dynamic properties and
can be computed during execution) [53, p. 27]. Apart from ESR, all metrics are
defined on a ratio scale. In the following subsections, the metrics for the two
quality characteristics are defined formally.

5.1.1. Measuring Engine Installability

Ease of
setup
retry

Ease of setup retry (ESR) is intended to assess how easy it is to successfully
repeat an installation [210, p. 37]. It relates the number of successful installations
of the same engine e (Nsucc) to the number of attempted installations in total
(Ntotal). The computation of the metric requires the installation procedure to be
repeated a suitable amount of times. Put formally:

Definition 25: Ease of Setup Retry (ESR)

ESR(e) =
0 if Ntotal(e) = 0

Nsucc(e)
Ntotal(e) otherwise

, where (5.1)

- Nsucc(e) ∈ N0 is the number of successful installation attempts of engine e;
- Ntotal(e) ∈ N0 is the total number of installation attempts of engine e;
- For Ntotal(e) = 0, ESR is defined as zero.
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[210] refers to a manual installation procedure, but the metric is just as applicable
to an automated procedure. If this procedure is completely deterministic, then
Nsucc(e) and Ntotal(e) will be identical and ESR(e) equal to one. If it is not free
of errors or side effects, installations may fail, resulting in a lower ESR value.
This resembles an interval scale of [0, 1].

Installation effort (IE) is intended to provide a notion of the difficulty of the
installation procedure.Installa-

tion
effort

[210, p. 37] suggests to measure it as the relation of the
amount of automatable installation steps and the total amount of prescribed
steps. In our application scenario, the engine installation procedure can usually
be automated fully, as demonstrated by our benchmarking tool in Chap. 3. As
a consequence, relating automatable and manual installation steps would not
result in a helpful metric value. Still, the engines do differ in the amount of steps
they require for the installation. What is more, they do require a vastly different
amount of time for the installation, which can vary in orders of magnitude when
comparing certain engines. For that reason, we deviate in the measurement of
installation effort from [210] and instead measure it through a combination of
two other metrics: The total number of distinct steps (NDS) of the installation
procedure and the average installation time (AIT ). Hence, installation effort
is an indirect metric.Number

of distinct
steps

NDS is identical to the number of steps that need to be
automated, and thereby partly corresponds to the metric defined in [210]. NDS
includes every operation that needs to be performed for the installation, such as
the copying of files and creation of directories or changes in the configuration of
certain files. This number can be determined by a heuristic evaluation [211]. This
is a technique commonly applied for assessing the usability of a user interface.
In a heuristic evaluation, a domain expert examines the steps of a procedure in
a user interface and judges their appropriateness and usability. Ported to our
context, a heuristic evaluation can be performed to judge the complexity of an
installation procedure, by counting the steps encoded in the installation script.
It is important to note that this implies that the computation of NDS cannot
be automated, but requires human inspection. An example of the steps in an
installation script, required to install a BPEL engine, looks as follows:

1. Create or clean the installation directory

2. Uncompress the engine distribution to the installation directory

3. Uncompress the server core in the engine distribution

4. Copy the BPEL runtime to the server core

5. Copy the SOAP runtime to the server core

Average
installa-

tion
time

The average installation time can be computed by performing the distinct
steps required a suitable amount of times and timing the duration. AIT and
NDS can be aggregated to a notion of installation effort (IE) per installation
step. This is captured in Def. 26:
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Definition 26: Installation Effort (IE)

IE(e) =
0 if NDS(e) = 0

AIT (e)
NDS(e) otherwise

(5.2)

- NDS(e) ∈ N0 refers to the number of steps required for installing engine
e;

- For NDS(e) = 0, IE(e) is defined as zero;
- AIT (e) = time(einst1), . . . , time(einstn) refers to the arithmetic mean of

the duration of multiple engine installations einst1, . . . , einstn.

Note that an installation routine that consists of several simple steps is desirable
over a single installation step that takes very long, even if the multiple step
installation takes longer. The reasoning behind this is that simple and quick
installation steps are easier to automate, to repeat in case of a failure, or to
adapt to a new environment.

5.1.2. Measuring Deployability

Deployment is the task “of readying [...] a component for installation in a
specific environment” [208]. Deployability characterizes the effort required to
perform this task. There is no direct representation or corresponding metrics
for this characteristic in the SQuaRE method. We derive new metrics from
existing general-purpose quality measure elements from SQuaRE [212] as far as
applicable.

Deploy-
ment
flexibility

Deployment normally consists of the execution of a single engine operation
provided with the packaged application. Nevertheless, deployment can take
different forms, multiple of which can be supported by an engine. The more
options an engine supports, the more flexible it is and the easier deployment can
be achieved. We capture this in the metric deployment flexibility (DF ), which
corresponds to the number of options available. The intention of the metric is to
adapt installation flexibility from [210, p. 37] to this context. Typically, three
different options are available:

1. a copy operation of a deployment archive into a specific directory, which is
known as hot deployment,

2. the invocation of a deployment script or service,
3. a manual user operation using a GUI or web interface.
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Definition 27: Deployment Flexibility (DF)

DF (e) = |{op1, . . . , opn}|, where (5.3)

- {op1, . . . , opn} refers to the set of the deployments options available for an
engine e.

Deployment flexibility can be determined by a heuristic evaluation, similar to
the number of distinct steps described in the previous section.

To be able to use one of the deployment operations for an application, this
application must be prepared and, usually, be packaged for deployment. Next
to packaging, this requires the construction of one or more deployment descrip-
tors [208]. The construction of these descriptors may be partly automated or
aided by graphical wizards, but in the end it is configuration effort that can take
a significant amount of time to get right. The more complex the packaging is and
the more extensive the descriptors are, the harder it is to deploy an application in
a specific environment. We capture packaging with the metric effort of package
construction (EPC) and deployment descriptors with the metric deployment
descriptor size (DDS).Effort of

package
construc-

tion

The effort of package construction can be measured in
a similar fashion as the number of distinct steps for an installation procedure.
That is, by counting each part of a prescribed folder structure that needs to be
built and compression operations that need to be performed to construct the
prescribed packaged application:

Definition 28: Effort of Package Construction (EPC)

EPC(app) = Nfc(app) +Ndc(app) +Nco(app), where (5.4)

- Nfc(app) ∈ N0 refers to the amount of folder creations needed for building
the deployment package for application app;

- Ndc(app) ∈ N0 refers to the amount of descriptor files needed in the
deployment package for application app;

- Nco(app) ∈ N0 refers to the amount of compression operations needed for
building the deployment package for application app.

Nfc refers to the amount of folder creations, Ndc to the amount of descriptors,
and Nco to the amount of compression operations required. Note that, due to
the prescribed structure of a deployment package, the calculation of EPC can
be automated. Taking the example of BPEL engines and process models, a
very simple structure consists of a process file, a WSDL file, and a deployment
descriptor file in one directory that is compressed to an archive. Decisive for EPC
are the deployment folder, the descriptor file and the compression operation, so
EPC = 1 + 1 + 1 = 3. However, the structure can be vastly more complex and
depend on various nested archives with multiple descriptors.
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Deploy-
ment
descriptor
size

The next part of deployment effort is the size of the descriptor files. The
deployment descriptor size for an application corresponds to the added size of all
descriptor files needed:

Definition 29: Deployment Descriptor Size (DDS)

DDS(app) =
Ndesc∑
i=1

size(ddi), where (5.5)

- {dd1, ..., ddNdesc
} refers to the set of descriptor files needed for the deploy-

ment package for application app; Ndesc ∈ N0 refers to the cardinality of
this set;

- size(ddi) : Descriptor → N0 is a function that returns the size of a
descriptor file.

DDS is the sum of the size of all relevant descriptors {dd1, ..., ddNdesc
}. For

process-aware and service-oriented applications, typically two different types of
descriptor files exist: i) Plain text files and i) XML configuration files. As plain
text files and XML files differ in the ways in which they represent information,
different ways of computing their size are needed. Here, we use two simple
mechanisms to compute file sizes. For plain text files, a lines of code metric is
appropriate. For the descriptors at hand, every non-empty and non-comment
line in such files is a key-value pair with a configuration setting needed for
deployment, such as a host or port configuration. We consider each such line,
using a LOC function. For XML files, the notion of lines is not applicable,
but instead information is structured in nested elements and attributes. To
compute the size of XML files, we consider the number of elements, including
simple content, and attributes, excluding namespace definitions, called Nea. This
represents an items of information in the same fashion as key-value pairs in plain
text files. All in all, the size function for a descriptor desc is defined as follows:

Definition 30: Size Function

size(desc) =
LOC(desc), if plain(desc)
Nea(desc), if xml(desc)

, where (5.6)

- LOC(desc) : Descriptor → N0 is a function that returns the number of
non-empty and non-comment lines of a descriptor file;

- Nea(desc) : Descriptor → N0 is a function that returns the number of
elements and non-namespace attributes in an XML descriptor file;

- plain(desc) : Descriptor → Boolean is a function that determines if a
descriptor file is a plain text file;

- xml(desc) : Descriptor → Boolean is a function that determines if a
descriptor file is an XML file.
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Listing 5.1 outlines a simple descriptor file for a single BPEL application. The
descriptor consists of four elements and four non-namespace attributes that are
set, so the total size of the descriptor is eight.

Listing 5.1: Example of a Simple Deployment Descriptor

<deploy xmlns=” . . . ” xmlns:bpel=” . . . ”>

<process xmlns:tns=” . . . ” name=”t n s : S i m p l e S e r v i c e ”>

<provide partnerLink=”SimplePartnerLink ”>

<service name=” t n s : S i m p l e S e r v i c e I n t e r f a c e ” port=”

SimplePort ”/>

</provide>

</process>

</deploy>

Deploy-
ment
effort

To obtain the deployment effort of the complete application, the effort of
package construction and deployment descriptor size can be added up to the
indirect metric deployment effort :

Definition 31: Deployment Effort (DE)

DE(app) = EPC(app) +DDS(app), where (5.7)

- EPC(app) is defined in Def. 28;
- DDS(app) is defined in Def. 29.

The idea here is to capture every factor, independent of its nature, that increases
the effort of deploying an application.

This concludes our measurement framework for installability. Next comes the
theoretical validation of the metrics.

5.2. Theoretical Validation

In this section, we perform the theoretical validation of the proposed installa-
bility metrics. As before, we validate the metrics with respect to measurement
theory [69] and construct validity [70]. We begin with the measurement-theoretic
validation in the following section.

5.2.1. Measurement-Theoretic Validation

The measurement-theoretic validation framework [69] is tailored to internal
software metrics. Here, only the metrics relating to descriptors and package
sizes DDS, EPC, and DE, as well as installation scripts, NDS, are internal
metrics. Hence, only they directly fit in this framework. The internal metrics
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are size metrics in the sense of [69], which should fulfill the properties of non-
negativity, null value, and additivity. Since a clarification of measurement-
theoretic properties is valuable for all metrics, we nevertheless discuss these
properties for all installability metrics.

Non-negativity: Nearly all of the metric values are obtained by counting occur-
rences of specific elements, being either operation steps (NDS), time units
elapsed (AIT ), successful installations and installation attempts (ESR),
available deployment options (DF ), or code constructs and lines of code
(DDS and EPC). This implies that these metrics cannot yield negative
values. The indirect metrics installation effort (IE) and deployment effort
(DE) are aggregated through the summation or division of two non-negative
metrics. As a result, they are also non-negative.

Null value: Deployment descriptor size (DDS) and the effort of package con-
struction (EPC) are equal to zero for an empty program, as no descriptors
or packages need to be built. Being the sum of the two, this also applies
to deployment effort (DE). If there is nothing to install, the number of
distinct steps for the installation (NDS) is equal to zero as well. The
average installation time (AIT ) of zero installations is also zero, similar to
the ease of setup retry (ESR). In this case, IE is defined to be zero. The
same applies to deployment flexibility (DF ), as the set of available options
is empty.

Additivity: Size metrics should be additive, meaning that the size of two disjoint
systems taken together should be identical to the sum of the two. This
property holds for deployment descriptor size (DDS) and the effort of
package construction (EPC). If two applications app1 and app2 are packaged
separately and can be deployed on their own, the sizes of their descriptors
and packages are completely independent of each other. Hence, if they are
deployed on the same engine, forming a system app together, the values for
DDS and EPC of that system will be equal to the sum of the values of
the two applications. Since deployment effort (DE) refers to the sum of
DDS and EPC, additivity also holds for this metric.

Furthermore, additivity holds for the number of distinct steps of the instal-
lation (NDS). Given two engines are installed, the installation operations
need to be completed for each of them.

However, additivity does not hold for the remaining metrics. The average
installation time (AIT ), ease of setup retry (ESR), and installation effort
(IE) are average values or aggregated thereof, so adding them up is mean-
ingless. Also the number of deployment options (DF ) does not necessarily
increase with the number of engines.

Summarizing the discussion, it can be seen that all metrics are non-negative
and provide null values. The internal metrics are additive, whereas the external
metrics fail to satisfy this property.
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5.2.2. Evaluation of Construct Validity

When it comes to the second theoretical validation framework [70], the attribute
in the sense of [70] that is being measured by the metrics is installability. As
before, the measurement instrument is our metrics suite. In the following, we
answer the ten aspects specified by [70].

Purpose of the metrics: Similar to the metrics for the other quality charac-
teristics, the primary purpose of the metrics at hand is the information
of stakeholders. They inform developers and operators about the instal-
lability characteristics of their applications. This can be used for private
self-assessment of a workgroup or for the information of third parties, such
as customers and maintainers. The metrics can also be used for decision
making, for instance when selecting one of a set of systems for deployment
into production.

Scope of the metrics: The scope of the metrics is typically a single project from
one workgroup that consists of multiple process-aware and service-oriented
applications and engines.

Measured attribute: The attribute to be measured is the installability of the
software, the ease with which it can be installed in an environment. As
discussed in Sect. 5.1, uninstallability is negligible. The installation effort
metrics (NDS, AIT , and IE) measure the complexity of the installation
routine of an engine and the ease of setup retry (ESR) measures the
reliability of the installation. The deployment effort metrics (DDS, EPC,
and DE) measure the size of deployment artifacts and DF the flexibility
of the deployment operation.

Natural scale of the attribute: We have no knowledge on the natural scale of
installability or deployability per se, but it is reasonable to assume that
applications differ in their installability or deployability in a way that allows
to build an ordering. This implies that installability can be observed at
least on an ordinal, and possibly on a ratio scale.

Natural variability of the attribute: We have no knowledge on the natural vari-
ability of installability or deployability. However, it can reasonably be
expected that installability or deployability varies depending on the envi-
ronment into which a piece of software is installed or the size of the system
to be installed or deployed. This claim is also supported by the practical
evaluation in Sect. 5.3.

Definition of the metrics and the instrument: All metrics are formally defined
in Sect. 5.1. They are computed by counting code constructs or elements,
by matching installation steps or product functions, and by timing task
executions [70, p. 4].
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Natural scale of the metrics: Ease of setup retry (ESR) is measured on an
interval scale of [0; 1]. All other metrics are measured on a ratio scale [212,
p. 36]

Natural variability of the measurement instrument: Human judgement usu-
ally involves a margin of error, so metrics determined by heuristic evaluation
(NDS and DF ) can yield inaccuracies. The rate of failed installations
(ESR) and the time elapsed during installation (AIT and IE) likely de-
pends on physical constraints such as the number of processors or memory
available, and will be different on different hardware. However, this is rather
an inherent natural variability and not a computational error. We compute
the descriptor size metrics (EPC, DDS, and DE) based on whitelisting of
relevant descriptor files. In case we omitted a file type, there is an error in
the measurement instrument.

Relationship of the attribute to metrics values: Except for installation effort
(IE) and deployment effort (DE), which are aggregated from the other
metrics, all of the metrics are direct in the sense of [171]. Changes to the
underlying attributes are directly reflected in the metrics. For instance,
if more installations fail, the ease of setup retry (ESR) decreases. If the
installation procedure gets more complex, it will likely involve more steps
(NDS) or take longer (AIT ). If deployment gets more complex, it will likely
involve more steps to construct deployment packages (EPC) or require
larger descriptors (DDS). If a new option for deployment is available,
deployment flexibility (DF ) increases.

Natural side-effects of using the metrics: The measurement of human behav-
ior is prone to side-effects, as humans could adapt their behavior to produce
desirable metric values without changing the underlying attribute. Here,
we measure code artifacts, so there is no room for this type of error.

5.3. Practical Evaluation

By performing a practical and experimental evaluation, we can demonstrate the
interpretation of the metrics and the properties that hold for them in practice.

In Sect. 5.3.1, we explain the goal and design of the evaluation, as well as
experimental hypotheses. This is followed by the description of our prototypic
implementation of the installability metrics in the prope tool in 5.3.2. Thereafter,
we discuss the results of the evaluation in Sect. 5.3.3.

5.3.1. Design and Instrumentation

The goal of the evaluation is the assessment of the proposed metrics with respect
to their practical properties, by evaluating the installability and deployability
characteristics of a set of process models and engines. Goal

statement
More precisely, we use a

set of BPEL engines and process models that can be executed by these engines.
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The evaluation corresponds to an off-line experiment. We have a closer look at
the following metric quality factors:

1. Installability metrics allow for a distinction of different engines: The
purpose of the metrics is the information of stakeholders and decision
support. To achieve this purpose, the metrics should uncover differences in
the installation characteristics of different engines.

2. The average installation time can be interpreted in a meaningful way:
The average installation time is computed through the arithmetic mean.
Hence, it is vulnerable to outliers in the data, which limits its applicability.
Installation times, however, do typically not differ strongly. Therefore, it
could be expected that this effect is minimal.

3. Deployability metrics allow for a distinction of different engines: Similar to
installability metrics, deployability metrics should also uncover differences
and allow for the construction of rankings of different software systems.
Although deployability values are computed based on concrete applica-
tions, it can be expected that there are similarities in the deployability of
applications depending on the engines used.

4. Process model size affects deployability: It can be expected that the size of a
process model influences its deployability. In particular, larger applications
can be expected to require more effort for deployment.

Objects
of study

With respect to instrumentation, the objects we evaluate are software artifacts
and their runtime environments. In particular, we evaluate BPEL process models
and engines, along with the artifacts required for executing the first on the
latter. It should be noted that, although we focus on BPEL engines to make sure
that the metrics are applicable for assessing service-oriented and process-aware
software, the metrics framework as a whole can be applied to a larger variety of
environments. For instance in [84], the framework has been adapted to assess
the installability characteristics of Platform-as-a-Service (PaaS) environments.

The engines used in the evaluation are the five open source engines included
in the benchmark (cf. Sect. 3.2.1) and the former ActiveBPEL engine in version
5.0.2. The latter is the predecessor of the bpel-g engine. Although the open source
version is deprecated by now, we decided to include it in the evaluation, because
it differs strongly in its installability characteristics from its successor. Data
on the size of installation routines and deployment artifacts for these engines
can be gathered with the help of our conformance benchmarking tool betsy,
presented in Chap. 3. In the context of the benchmark, the installation of an
engine and deployment of an application is performed for every test case. To be
able to gather the data needed for the computation of metrics like the average
installation time (AIT ), we modified the installation procedure to print timing
data in a suitable format into the log files, so that we could parse these files with
our metrics computation tool, prope. Furthermore, we performed a heuristic
evaluation of the installation scripts to compute metrics such as the number
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of distinct steps (NDS). The advantage of using the conformance benchmark
for this task is that the installation procedure of engines is automated and,
thereby, reproducible. Moreover, it works in the same fashion for all engines.
This similarity enables a reasonable direct comparison of different engines, the
lack of which is a common drawback in software comparisons [185].

To gather the data needed for the calculation of the metrics, we repeated
the installation routine of each engine 150 times, after a warm-up phase of
three installations, on a machine running Windows 7, 64bit with an i7 quadcore
processor, 16 GB of RAM, and a 1 TB SATA drive with 7200 RPM. This is the
same machine used to perform the conformance benchmark described in Chap. 3.
The hardware requirements are far above the requirements specified for any of
the engines. After performing the benchmark, we mined the log files of these
runs and analyzed the installation scripts.

The BPEL process models used for the evaluation of deployability are custom-
built and of identical functionality. This is necessary to allow for the direct
comparison of the deployability values for the same piece of software, when
executed on different engines. In this case, the only part that differs are the
deployment-related artifacts. To be more precise, the process models for the
evaluation correspond to the set of test cases that are passed by all of the engines
used in this evaluation. This amounts to 36 process models from the test suites
for BPEL (cf. Sect. 3.2.3.1 and 3.2.3.2). This way, a direct comparison of the
deployability of the engines is possible.

Finally, to demonstrate that deployability metrics can also be used for compar-
ing separate applications with different functionality, we examine the applications
that form the ActiveBPEL process library. This library has also been used for
evaluating the portability metrics in Chap. 4. With the help of this library, we
can observe the impact of process size on deployability.

5.3.2. Installability Metrics Implementation

As before, the metrics computation has been implemented in the prope tool in
the form of a plugin for installability. The structure of this plugin is depicted in
Fig. 5.2.

It has to be emphasized that the computation cannot be automated for all of the
metrics presented in Sect. 5.1. This applies to metrics that are obtained through
a heuristic evaluation, i. e., the number of distinct steps NDS and deployment
flexibility DF . Since the values of NDS are needed for the computation of
installation effort, they are encoded into prope for the engines used in this
evaluation.

The installability plugin provides two separate implementations of a FileAna-
lyzer. The first, the DeploymentPackageAnalyzer, computes deployability metrics,
whereas the second, the AverageInstallationTimeCalculator, computes metrics
for engine installability. Deploya-

bility
The DeploymentPackageAnalyzer parses application

packages that are ready for deployment. First, it uncompresses deployment
packages, as well as further packages contained therein. Thereafter, it analyzes
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Figure 5.2.: Installability Plugin for the Metrics Suite

all deployment descriptor files. The relevant files are identified by a whitelist
based on their file ending. This list is exhaustive for the engines considered in the
evaluation, but needs to be extended if further engines are to be considered. If a
deployment descriptor is found, the DeploymentPackageAnalyzer computes its
size depending on its type, as described in Sect. 5.1.2. The number of elements
and non-namespace attributes of an XML descriptor are computed based on the
document object model of the descriptor.

The AverageInstallationTimeCalculator is essentially a log file parser.Engine
installa-

bility

It
consumes log files written by betsy and selects the time stamps of specific events.
In particular, it scans for messages that confirm a successful installation of an
engine and extracts the duration of this installation. Moreover, it scans for
messages that signal an installation failure and uses this to compute the amount
of failed installation attempts. Based on the encoded values for NDS, this data
enables the AverageInstallationTimeCalculator to compute all metrics related to
engine installability.

5.3.3. Results

We first discuss results for the metrics related to engine installability in Sect. 5.3.3.1
and evaluate hypotheses 1 and 2. Thereafter, we discuss results for deployability
in Sect. 5.3.3.2 and construct a ranking of the engines by considering the com-
bination of the two characteristics. Thereby, we evaluate hypothesis 3. Finally,
we investigate the relation between process model size and deployability, thus
evaluating hypothesis 4, in Sect. 5.3.3.3.

5.3.3.1. Engine Installability

Table 5.1 lists the metrics that characterize engine installability. The installation
procedure for all engines consists of the setup of a core server environment
into which the engine needs to be copied or installed with a vendor-provided
installation script, along with the setting of environment-specific configurations.
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Table 5.1.: Engine Installability Metrics (N = 150 runs)

Metric OpenESB Petals ODE bpel-g Orchestra ActiveBPEL

NDS 7 5 6 6 7 6

AIT [sec] 133.88 3.13 3.31 3.01 42.53 22.91

CVtime 0.02 0.11 0.51 0.37 0.22 0.06

IE 19.13 0.63 0.55 0.50 6.08 3.82

ESR 1 0.90 1 1 1 1

The data presented in Table 5.1 allows for several observations. Most engines
require a similar amount of steps for installation (i.e., have a similar value for
NDS). All but the engine with the lowest amount of steps, Petals, have a fully
deterministic installation procedure (i.e., after one installation attempt, it is
always possible to deploy and execute an application on the engine). For Petals,
every tenth installation attempt is a failure, as seen in the value for ease of setup
retry (ESR). In this case, the engine signals a successful installation, but certain
components are missing which results in failures during later operation. We were
unable to ultimately determine the reasons for these installation failures, but this
underlines the necessity of computing a metric such as ESR. For the average
installation time (AIT ), the engines differ strongly with up to two orders of
magnitude. OpenESB forms an outlier with a very high installation time. This
is due to one step, where a vendor-provided installation script is called which
consists of a number of uncompression operations that take a comparably high
amount of time. The same applies for Orchestra and ActiveBPEL, albeit to a
lesser degree.

Interpre-
tation of
AIT

Being a mean value, AIT is vulnerable to outliers in the data. Given there is a
high deviation in the data, AIT would not allow for a meaningful interpretation.
This is the focus of hypothesis 2. To determine whether this is the case here,
we computed the coefficient of variation (CVtime), which describes the relation
between the mean value and the standard deviation of a variable. If the value of
CVtime is larger than one, the underlying distribution is considered as having a
high variation. Otherwise, it is considered as having a low variation. Low values
apply for all our observations of AIT , which means that this metric indeed allows
for a meaningful interpretation on its own.

Ranking
engines
based on
installa-
bility

A ranking of engines based on engine installability can be constructed by
looking at the installation effort, IE. Three engines, Petals, Apache ODE,
and bpel-g, have quite low values, resulting from their relatively low average
installation time. However, considering the frequent installation failures of Petals,
this engine should be used with care. For the remaining engines, there is a
clear difference in terms of installation effort, with OpenESB ranking last. This
demonstrates that the metrics can be used for a meaningful interpretation and
confirms hypothesis 1.
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5.3.3.2. Application Deployability

Table 5.2 lists deployability metrics for the set of applications, aggregated by
the engines. To get an overall view of the metric values for the applications, we
present the mean values and standard deviations.

Table 5.2.: Deployability Metrics of Functionally Identical Process Models (N =
36)

Metric OpenESB Petals ODE bpel-g Orch. ActiveBPEL

DF 2 2 3 2 2 2

DDS

Mean 73.92 78.5 10.69 9.11 0 21.36

std(X) 7.37 6.31 1.75 2.81 0 5.96

EPC Mean 14 9 2 2 1 5

DE

Mean 87.92 87.5 12.69 11.11 1 26.36

std(X) 7.37 6.31 1.75 2.81 0 5.96

For the effort of package construction (EPC), the mean alone allows for a
meaningful interpretation. As all deployment packages are built in a very similar
fashion, standard deviations for EPC are equal to zero in all cases. The values
of all metrics vary strongly for the different engines. For instance, OpenESB and
Petals require descriptor sizes of more than 70 elements in the mean. For the other
engines, this value is much lower. One special case is formed by Orchestra. There,
no deployment descriptors are required. All information needed is read from the
source files, such as WSDL definitions, directly. Due to the self-descriptiveness
of Web Services artifacts, such a strategy is possible and Orchestra demonstrates
that it is feasible. Nevertheless, only few engines make use of this feature and,
instead, require the duplication of information in deployment descriptors. When
looking at EPC values, it can be seen that the engines that require the largest
deployment descriptors are also the ones that require the most complex archives
(i.e., several nested archives containing zip and war files). For all other engines,
archives are simply necessary for grouping all relevant files together, so that
they can be deployed by linking a single file. Moreover, when looking at the
number of deployment options available (DF ), it can be seen that nearly all
engines offer a similar level of flexibility.Ranking

engines
based on
deploya-

bility

DE aggregates the deployment effort
for a direct comparison that allows for a ranking of the engines. This is the focus
of hypothesis 3. Orchestra clearly excels with respect to deployability, followed
by ODE and bpel-g. The deployment effort for ActiveBPEL is more than twice
as high as for these engines. OpenESB and Petals require an effort that is a
multitude of the effort required for the other engines.

Engine installability and deployability metrics can be also be combined to rank
engines. Firstly, it can be seen that both, ODE and bpel-g, provide a balanced
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level of good values for the installability and deployability metrics, with bpel-g
being slightly ahead. Although it excels in terms of deployability, Orchestra
takes somewhat longer to install (AIT and IE) and therefore ranks third. Combina-

tion of
engine
installa-
bility and
deploya-
bility

Even
though ActiveBPEL is quicker than Orchestra in its installation, the deployment
is much more complicated (DE), leading to rank four. Finally, OpenESB and
Petals both have relatively complex files with large descriptors (DDS and DE).
OpenESB takes long to install (AIT and IE) and the installation of Petals is
not stable (ESR).

5.3.3.3. Application Size and Deployability

The final hypothesis concerns the impact of application size on deployability.
To evaluate this hypothesis, Table 5.3 depicts results for deployability of the
applications from the ActiveBPEL library.

Table 5.3.: Deployability of Applications of Different Size

Nservices Applications DDS EPC DE

1 11 31.36 9 40.36

2 3 43.67 9.33 53.0

5 5 105.0 9 114.0

Table 5.3 also includes metrics that characterize the complexity or size of
the applications in the library. A basic metric for expressing the size of a
service-oriented system, and, hence, the size of a service-oriented and process-
aware applications is the number of services, Nservices, provided or used in the
application [66]. The applications in the library involve either one, two, or five
services, and Table 5.3 depicts deployability metrics for these groups, along with
the number of applications in each group.

EPC values are almost constant, although slightly higher than the ones
presented in Sect. 5.3.3.2, due to the package structure typical in the library.
Moreover, they are unaffected by the growth in application size. Relation

of number
of
services
and
descriptor
size

In contrast to
this, as proposed in hypothesis 4, descriptor sizes increase with the number of
services. Here, a linear regression analysis confirms that there is a linear relation
between application size and deployment descriptor size. The corresponding
scatterplot is depicted in Fig. 5.3. Since deployment descriptor size is the decisive
input to deployment effort, the linear relation also holds for deployment effort
and application size. This result demonstrates that an application with many
services of possibly fine granularity will be comparably harder to deploy than
one with a few services of lower granularity. This is an important observation
when considering the current trend of microservices development, which favors
the construction of software based on many fine-granular services instead of fewer
services of lower granularity.
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Figure 5.3.: Scatterplot for the Number of Services and Deployment Descriptor
Size

5.4. Summary

In this chapter, we presented a measurement framework for quantifying and
assessing the installability of service-oriented and process-aware software. The
installability of such software can be subdivided into the installability of the engine
and the deployability of an application onto the engine. We proposed metrics
for these two characteristics in Sect. 5.1, which form a significant extension of
prior metrics proposed in respectice ISO/IEC standards [209,210]. In particular
the metrics related to application deployability are new. The metrics fall into
the categories of direct and indirect, as well as internal and external metrics. All
internal metrics are size metrics.

The theoretical evaluation in Sect. 5.2 shows that all internal size metrics
satisfy the properties of non-negativity, null value, and additivity. External
metrics do not satisfy additivity. The purpose of the metrics is the information
of stakeholders and decision support. They are computed by counting, matching,
or timing and are defined on an interval or a ratio scale.

The practical evaluation in Sect. 5.3 demonstrates that installability and
deployability metrics can be used for ranking and comparing engines, as well as
single applications. The coefficient of variance shows that the average installation
time allows for a meaningful interpretation. Moreover, there is a linear relationship
between the number of services involved in an application and its deployability.

In summary, the framework presented in this chapter provides a suitable way
for assessing the installability of service-oriented and process-aware software,
i. e., it forms an answer to research question 2.2: What are suitable metrics
for measuring installability?. The metrics presented in this chapter form a
theoretically valid and practically applicable framework for achieving this.
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6. Measuring Adaptability
Parts of this chapter have been taken from [80, 83, 85].

According to the SQuaRE model [53], if software cannot be ported directly
to another platform, it might be possible to adapt it for the new platform. The
quality model tackles this aspect in the context of the quality characteristic of
adaptability. Akin to the methodology applied in the previous chapters, we answer
the following research question here: What are suitable metrics for measuring
adaptability?

Structure
of the
chapter

Similar to the other chapters of Part II, we first discuss the nature of adapt-
ability and how it can be measured, followed by the formal definition of a set of
metrics that are made for assessing service-oriented and process-aware software,
in Sect. 6.1. In particular, we propose two different modes of computation for
adaptability. Thereafter, in Sect. 6.2, the metrics are validated with respect to
their theoretical properties. This is followed by a practical evaluation of the
metrics in Sect. 6.3. In contrast to the previous two chapters, we perform the
practical evaluation in this chapter based on BPMN process models. Finally, the
chapter is concluded in Sect. 6.4 with a summary.

6.1. On the Measurement of Adaptability

Like the other quality characteristics, the term adaptability has different meanings
in different contexts and subject areas. Design-

time
adapt-
ability

In Sect. 2.3.2, we defined adaptability as
the “degree with which a software product can effectively and efficiently be adapted
for different or evolving software environments.”. The change of a software
environment typically involves the recompilation or repackaging of an application.
The changes made to the application in the interim are design-time changes. In
other words, adaptability, as defined here, does not refer to run-time changes to a
piece of software. This is a different interpretation as, for instance, in the subject
area of autonomous systems, where adaptability refers to whether a system can
change its structure to cope with changing requirements, such as a different
system load, at run-time [213].

Ap-
proaches
for mea-
suring
design-
time
adapt-
ability

Design-time adaptability, as defined here, is often measured at the software
architecture level. A common conceptual approach used in similar work [214,215],
is to start with the assessment of adaptability at the level of an atomic system
element. For instance, every element can be tagged with an adaptability score.
Then, these atomic scores are aggregated at one or more levels to indices or
degrees of adaptability, until the complete system is considered as a whole. This
approach is outlined in Fig. 6.1. The focus here is on service-oriented and process-
aware software, i. e., executable process models. Hence, the most atomic system
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atomic system
elements

adaptability
scores AS AS AS AS

adaptability
metric

AM

aggregation

Figure 6.1.: Mechanism for Computing Adaptability

elements that can be considered for the start of an adaptability computation are
the nodes, i. e., activities, events, gateways, and basic elements, and connectors
of a process model, as defined in Def. 6. So, when evaluating the adaptability of
process models written in a particular language, it is first necessary to assign an
adaptability score to each type of element in that language.

Alter-
native

represen-
tations

The idea we put forward here is to consider the amount of alternative repre-
sentations a process language offers for a specific language element. The more
of such alternative representations exist, the easier and more likely it is that
one can find a semantically equivalent alternative when modifying the process
model for porting. In other words, the more alternatives exist, the more adapt-
able the element is. A practical example for BPMN are ReceiveTasks, atomic
tasks that consume a message. One straight-forward alternative for such a task,
among others, is an IntermediateMessageCatchEvent which provides semantically
identical behavior. Another example for multiple alternative implementations
of the same functionality in BPMN is repetitive execution of a task through
StandardLoopCharacteristics. As demonstrated by the benchmark in Chap. 3,
this particular looping mechanism is not supported by any engine and, hence,
needs to be adapted in a process model that is to be used for execution. Any of
the following language constructs can be used to define iterative execution of a
task and hence can be used as an alternative to StandardLoopCharacteristics :

1. A combination of an ExclusiveGateway and SequenceFlows
2. A combination of an InclusiveGateway and SequenceFlows
3. A combination of a ComplexGateway and SequenceFlows
4. Enclosing the task in a loop SubProcess
5. Enclosing the task in an Ad-hoc SubProcess
6. Enclosing the task in an event SubProcess

Usually, a given BPMN engine only supports a subset of these options. For
instance, the Activiti engine does support the combination of certain Gateways
and SequenceFlows, as well as event SubProcesses, but no loop or Ad-hoc SubPro-
cesses. Given a process with a task that uses StandardLoopCharacteristics needs
to be ported to the Activiti engine, the code needs be adapted to a solution that
Activiti supports. To summarize the above discussion, the adaptability score of
a task with StandardLoopCharacteristics is equal to six. The adaptability score
AS(e) can be formally defined as:
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Definition 32: Adaptability Score

AS(e) is the cardinality of the set of alternatives ALTe = {alte1, . . . , alten}
available for an element e.

AS(e) = | ALTe |, where (6.1)

• e ∈ V is an element of the vocabulary V of the process language (cf.
Def. 6);
• altei ∈ V is a semantically equivalent alternative to language element e.

The set of alternatives, and, thus, the adaptability score, needs to be determined
for every language element of a process language.

The next step towards computing an adaptability metric, as depicted in Fig. 6.1,
is the normalization and aggregation of the scores for all elements of a complete
process model.

6.1.1. Adaptability Metrics Definition

For the definition of an adaptability metric based on adaptability scores, two
crucial aspects have to be addressed:

1. How to turn the scores into a meaningful relative value? Absolute values are
common for software metrics, but often hard to interpret. This is easier with
relative values, which range in a certain interval, as for instance percentage
values. That way, values close to the upper bound of the interval can be
identified as referring to high quality and vice versa.

2. How to normalize this value with respect to process model size? Different
process models can be expected to have different sizes. Metric values should
be normalized with respect to process model size, because otherwise they
cannot meaningfully be used to compare process models of different sizes.

Relativi-
zation

The first aspect can be addressed by introducing an adaptability degree AD(e)
that turns an adaptability score as defined in the previous section into a relative
value:

Definition 33: Adaptability Degree

The adaptability degree AD(e) of an element e is a function that maps an
element e to a value in the interval of zero and one, i.e., a percentage scale.

AD(e)→ [0, 1]. (6.2)

Similar to the measurement of portability, discussed in Chap. 4, it is a design
choice of our approach to map degree values to the interval of [0, 1]. Strictly
speaking, we could choose any interval, but the reason we choose [0, 1] is one of
understandability. This interval resembles a percentage scale and this scale is
easily understood by most people. This eases the interpretation of the metric to
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some degree and thus lowers the barrier for its adoption. The question of what
values in this scale refer to high or low depends on how the mapping is achieved.
This is the central difference between the different metrics we introduce below.
Hence, we redefine the adaptability degree for each adaptability metric in the
following sections.

Normal-
ization

The second problem can be solved by following the approach taken by similar
studies [214,215] and computing the arithmetic mean of all adaptability degrees
of the different elements of a process model. Hence, an adaptability metric
AM(p) of a process model p is defined as follows:

Definition 34: Adaptability Metric

AM(p) =
0 if p = ∅
AD(e1), . . . , AD(en) otherwise

(6.3)

• p =< N,C > is an executable process model (cf. Def. 6) that consists
of the elements e1, . . . , en;
• For an empty process model, p = ∅, AM(p) is defined as zero, i. e.,
AM(p) = 0;
• For a nonempty process model, p = {e1, . . . , en}, AM(p) is defined

as the arithmetic mean of adaptability degrees of the elements of the
model: AD(e1), . . . , AD(en).

In the following, we propose different ways of computing an adaptability degree
for a given process element, and, hence, different adaptability metrics.

6.1.1.1. Binary Adaptability Degree

A first option for computing adaptability degrees is a binary mapping. Here,
AD(e)→ {0, 1} applies, i. e., every element is mapped to a degree of zero or one.
Such a mapping is, for instance, used in [214].

Threshold
mapping

This mapping is achieved by applying a threshold on the adaptability score
for an element. The score, as specified in Def. 32, is an absolute representation
of the adaptability of an element, the higher the better. When comparing the
elements of one language, it is possible to distinguish high adaptability scores
with respect to all scores of the language from low ones. In the binary mapping,
we assign a degree value of one to elements with high scores and a value of zero
to elements with low scores. To achieve this, a suitable threshold value needs to
be found. For instance, the threshold can be defined at 50%. This means that
elements that have lower adaptability scores than 50% of all language elements
are mapped to zero and elements that have higher or equal scores to 50% of all
language elements are mapped to one. Put formally:
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Definition 35: Binary Adaptability Degree

ADbinary(e) =
1, if AS(e) ≥ (t ∗R)

0, otherwise
, where (6.4)

• R ∈ N0; R is a reference value, the maximum adaptability score
achieved by any element in the language under consideration, i.e.,
∀e ∈ V,AS(e) ≤ R;
• t ∈ ]0, 1[; t marks a threshold that is used to discriminate between high

and low adaptability values.

As a consequence, a binary adaptability metric AMbinary(p) is based on the
binary adaptability degree: AMbinary(p) = ADbinary(e1), . . . , ADbinary(en). An
appropriate threshold value t that results in meaningful metric values can only
be fixed based on practical experiments. In the practical evaluation in Sect. 6.3,
we evaluate several threshold values and select the most appropriate one.

6.1.1.2. Weighted Adaptability Degree

The binary degree maps the score values to the boundaries of the interval of [0, 1].
It could be expected that the utilization of the full scale of this interval leads to a
more fine-grained and precise quantification of adaptability. A similar reasoning
underlies the definition of weighted portability metrics, defined in Sect. 4.2. Here,
we define a weighted mapping as the basis for a weighted adaptability degree:

Definition 36: Weighted Adaptability Degree

ADweighted(e) = AS(e)/R,where (6.5)

• R refers to the maximum adaptability score as defined in Def. 35;
• ∀e, AS(e) ≤ R; implies that ADweighted(e)→ [0, 1].

As a result, the adaptability degree of every language element is relative to the
most adaptable element of the language. This leads to the desired normaliza-
tion to the interval of [0, 1]. A weighted adaptability metric AMweighted(p) =
ADweighted(e1), . . . , ADweighted(en) is based on the weighted adaptability degree.

6.1.2. Example for Adaptability Computation

In this section, we demonstrate an exemplary computation of the proposed
adaptability metrics. We use two synthetic process models, PM1 and PM2,
which are implemented in BPMN and depicted in Fig. 6.2.
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Figure 6.2.: Example for Adaptability Computation

Both process models have a similar graph structure, but use different elements
of the vocabulary of BPMN, which vary in their adaptability score.Language

elements
used

The first
process model, PM1 relies on language elements that can hardly be adapted.
In particular, these are ComplexGateways, ManualTasks, and a SignalEndEvent.
As indicated in its name, the ComplexGateway is the most advanced gateway
construct in BPMN. It is used to model complex synchronization behavior that
may involve conditional activation based on a number of incoming branches and
conditional activation of outgoing branches. Due to its complex configuration, it
cannot generally be adapted by another language element of BPMN. The same
applies to ManualTasks, which serve as unique placeholders for actions performed
without automatic support. For the final SignalEndEvent, semantically equivalent
alternatives that represent ordered termination and produce a notification do exist.
For instance, a MessageEndEvent could be used to implement similar behavior.
In contrast, PM2 uses elements that can be considered as more adaptable. These
are ParallelGateways, a SendTask, a ServiceTask, and a MessageEndEvent. For
the ParallelGateway, straight-forward alternatives, such as an InclusiveGateway
that is configured to activate all subsequent control-flow branches, do exist.
Message-related elements in BPMN are duplicated in the form of message-related
tasks and message-related events and, as a result, several alternatives are available
for the SendTask and the MessageEndEvent. Also for a ServiceTask, alternatives
that do trigger the execution of an application or service, such as a ScriptTask,
do exist.

Metric
values

The adaptability metrics should consider PM2 as more adaptable than PM1.
This is clearly the case, which can be seen in the metric values listed in Table 6.125.
The table lists the values for the binary adaptability metric with a threshold set
at 60% and the weighted metric. In both cases, the metric values for PM1 are
much lower than for PM2, with 0.17 compared to 0.50 for the binary metric and

25The details of the metrics implementation are clarified in Sect. 6.3.2.
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0.21 compared to 0.55 for the weighted metric. This demonstrates that both
metrics measure what they are intended to.

Table 6.1.: Adaptability Metric Values for the Example

Process Model AMbin. AMweighted

PM1 0.17 0.21

PM2 0.50 0.55

6.2. Theoretical Validation

In this section, we validate the binary and the weighted adaptability metrics
theoretically. The starting is the clarification of the measurement-theoretic
properties of the metrics in Sect. 6.2.1. Thereafter, we discuss construct validity
in Sect. 6.2.2.

6.2.1. Measurement-Theoretic Validation

Similar to the portability metrics presented in Chap. 4, we classify the metrics
defined here as complexity metrics. Since the metrics are computed by the
arithmetic mean, we deal with normalized complexity metrics, or densities of
complexity, with the same restrictions and properties as before. Complexity
metrics should fulfill the properties of non-negativity, null value, symmetry,
monotonicity, and additivity [69].

Non-negativity: Complexity metrics should yield non-negative values. Since
the adaptability score is defined as the cardinality of a set, it is always
non-negative. Moreover, adaptability degrees are mapped to the interval
of [0, 1]. The arithmetic mean of a set of values in this interval, i.e., an
adaptability metric as defined in Def. 34, is always non-negative.

Null value: The complexity of an empty system should be zero. In our case,
an empty system corresponds to a process model p with no elements, i.e.,
p = ∅. For this case, AM(p) is defined as zero in Def. 34.

Symmetry: The labeling for representing the relationships among system el-
ements should not affect the metric value. Here, the labeling refers to
the ordering of elements in the process graph. The reordering of elements
in the process graph, without altering control-flow semantics, is possible
for a variety of elements, for instance in the case of parallelism. In the
notation of [69], symmetry means that two process models p =< E,R >
and p′ =< E,R′ > with identical elements E and control-flow semantics
but different element ordering R and R′ should have the same metric value.
We compute adaptability on a per-element basis through the adaptability
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degree. This degree is fixed independently of an elements position in the
process graph, so symmetry holds: AM(p) = AM({e1, . . . , en}) = AM(p′)

Monotonicity and Additivity: When two unrelated parts of a system are taken
together, the resulting metric value should at least be equal to the sum of
the combined parts. This means that complexity metrics should be additive
and monotonous. Additivity holds for adaptability degrees, but not for the
metrics, due to normalization. We apply the arithmetic mean to achieve
a normalization with respect to the size of a process model and adding
up the mean values of two process fragments is not meaningful. Hence,
additivity in the sense of [69] does not hold for reasons of normalization.
Nevertheless, adaptability metrics are still monotonous. For instance, let
p1 = {e1, . . . , ei} and p2 = {ej, . . . , en} be two unrelated parts of process
model p:

AM(p) = AM(p1 ∪ p2) = AM({e1, . . . , en}) = (6.6)

AD(e1, ) + . . .+ AD(ei) + AD(ej) + . . .+ AD(en)
N|p1∪p2|

≥ min(AM(p1), AM(p2))

The metric value of two process fragments taken together cannot be lower
than the metric value of the less adaptable of the two fragments and therefore
the metrics are monotonous. This is the same result as for the portability
metrics, discussed in Sect. 4.3.2.

To summarize the above discussion, adaptability metrics are normalized complex-
ity metrics, or densities of complexity, which fulfill the properties of non-negativity,
null value, symmetry, and monotonicity.

6.2.2. Evaluation of Construct Validity

The attribute, [70] to be measured in the current chapter is adaptability and the
measurement instrument remains the metrics suite, prope.

Purpose of the metrics: The purpose is the facilitation of private self-assessment
and improvement, and the information of developers and system adminis-
trators about the adaptability characteristics of a process model. When
having to port a process model, the metrics can help to make the decision
whether it is worth to invest in its adaptation.

Scope of the metrics: The scope of the metrics is a single project of one work-
group. The metrics are applicable during and after development.

Measured attribute: The metrics try to measure the adaptability of a process
model, the ease with which the elements of a given process model can be
modified at design-time without changing the execution semantics of the
model.
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Natural scale of the attribute: The scale of the attribute is intrinsic to the
attribute itself and independent of the way in which we try to quantify it.
At the current time, we cannot tell what the scale of adaptability is, but it
can reasonably be assumed that process models differ in their adaptability
in a way that allows us to construct a natural ordering. Hence, the attribute
of adaptability, at the very least, has an ordinal scale.

Natural variability of the attribute: We do not know in which ranges adapt-
ability typically varies. Being a technical attribute inherent to a process
model, we know that it is not subject to variation common for human
attributes, such as developer productivity depending on the time of the day.

Definition of the metrics and the instrument: All the metrics, the functions
that assign values to the attribute, are formally defined in Sect. 6.1.1.
Adaptability scores of elements are fixed values and obtained through
counting. Adaptability degrees and metrics are computed based on this.
The measurement instrument is a plugin for our metrics suite in which
we implemented the metrics computation. The structure of this plugin is
explained as part of the practical evaluation in Sect. 6.3.

Natural scale of the metrics: The metrics are defined in Def. 34 on an interval
scale of [0, 1].

Natural variability of the measurement instrument: This question refers to
the measurement error of the instrument, in our case a static analyzer.
Since we compute the metrics through static analysis, there is no variability
of the instrument for subsequent analyses of the same process model.

There is no way in which we can guarantee the absence of errors in our
software. For instance, programming errors that impact the metric values
the tool produces might exist. We try to limit the amount of errors by
open sourcing the tool and making all code available to public scrutiny, by
providing an excessive set of unit tests for the tool itself, and by applying
techniques of continuous integration and inspection during development.

Another source of measurement error are the adaptability scores encoded
in the tool. These are based on human judgment and, naturally, we can
err in our understanding of the semantics of BPMN elements. We tried
to minimize these errors through in-group peer review and by making all
scores publicly available as part of the tool implementation. Moreover, it is
possible that we did not consider all potential alternatives that exist for a
particular language element when judging its score. If this is the case, the
element is considered as less adaptable by our tool than it is in reality. As
a consequence, the metric values computed by our measurement instrument
can be treated as a lower bound of the adaptability of a process model.

Relationship of the attribute to metrics values: As discussed in Sect. 6.1, the
adaptability of an element is related to the number of alternatives available to
that element. The more alternatives exist for a given language element, the
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more adaptable this element can be considered. Based on this assumption,
our metrics are directly [171] related to process elements. Given elements
with a higher degree of adaptability are introduced into the process model,
this will be detected by our measurement instrument and the resulting
metric value will increase accordingly.

Side-effects of using the metrics: Similar to the portability metrics, we auto-
mated the metrics computation fully. Hence, there is no room for human
bias in the measurement instrument.

6.3. Practical Evaluation

As before, the practical evaluation of the adaptability metrics demonstrates the
feasibility of their computation and exemplifies their interpretation.

In the next section, we first describe the design and instrumentation of the
evaluation. This is followed in Sect. 6.3.2 by an outline of the functioning of their
prototypic implementation in a plugin to our metrics suite. Finally, Sect. 6.3.3
describes the results of the evaluation.

6.3.1. Design and Instrumentation

The goal of this evaluation is to analyze real-world process models for the purpose
of assessing the metrics and selecting the most appropriate ones.Goal

statement
To meet this

goal, we evaluate software that is finished and available, i.e., we perform an
off-line experiment. Using the evaluation, we can validate several quality factors
for the different metrics, addressed by the following hypotheses:

1. The weighted adaptability computation improves discriminative power in
comparison to a binary computation: The ability to distinguish between
different pieces of software, the discriminative power, is an important quality
factor of a software metric. We expect that the weighted computation,
due to more fine-grained scoring, outperforms the binary computation with
respect to this quality factor.

2. The metrics can be used for comparing process models of different size:
Another important quality factor of a software metric is the ability to allow
for a comparison of programs of very different size. This is often problematic,
especially with complexity metrics [184].

3. The metric values are resilient to minor changes in the underlying data: Mi-
nor modifications to process code should not result in significant changes to
the metric value, since this would imply that the mechanism of computation
is unstable.

Objects
of study

A practical evaluation needs to be based on real-world process models and,
therefore, on a particular process language. In this evaluation, we use process
models implemented in BPMN [26]. Therefore, we need concrete data in the
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form of BPMN process models. As before, we gathered this data from numerous
open source projects with the help of the Open Hub Open Source network. To
obtain our primary data set, we queried the network in May 2014 for files that:

1. have the file extension bpmn, bpmn2, or xml,

2. contain the keyword definitions, the top-level element of a BPMN-compliant
file, and

3. contain the BPMN 2.0 namespace.

We downloaded and analyzed the resulting files using the plugin for our metrics
suite described in the following section. We tried to parse every file downloaded
from Open Hub and if we could find a valid definitions element and at least one
process element beneath it, we computed the adaptability metrics for it. This
resulted in almost three thousand BPMN process models. We re-performed the
query in October 2014, to obtain a second version of the same data set at a later
point in time. This is necessary for evaluating hypothesis 3.

6.3.2. Adaptability Metrics Implementation

To implement the approach, it is necessary to set adaptability scores, as defined
in Def. 32, for every relevant element of BPMN. Score

setting
As discussed in Sect. 2.2.2.3,

we limit the evaluation to BPMN processes [26, pp. 143–314], since these form
the executable part of the language and, hence, the target of our metrics. Other
types of process models, such as collaborations or process choreographies are
not considered. We reviewed the specification and set scores for all elements
that are permitted in BPMN processes. These are activities, including tasks and
subProcesses, gateways, and events. Thus, we cover all control-flow aspects of
BPMN, but abstract from data-flow here. Moreover, we omit language elements
that are relevant to the visualization of the process model only, such as lanes.
The result is a total of 94 language elements for which we set a score.

Plugin
structure

After setting the scores, we extended our metrics suite, prope, with a plugin
for computing the adaptability of BPMN process models. The structure of
this plugin is depicted in Fig. 6.3. As before, the plugin is hooked into the
architecture of prope through a custom implementation of a FileAnalyzer. This
AdaptabilityAnalyzer starts with a number of sanity checks on a given file, using a
BpmnInspector. These sanity checks include the checking of the usage of correct
namespaces and the validation of referential integrity of the elements in the
process model using the BPMNspector tool26. If a process model does not pass
these checks, it is excluded from further analysis. After the initial validation,
the AdaptabilityAnalyzer continues with the computation of adaptability metrics
using different implementations that follow the definitions from Sect. 6.1.1. In
particular, the implementation of the binary adaptability metric can be configured
with different threshold values that are used as cutoff criterion. The metric

26The project page of this BPMN file validation tool can be found at http://www.bpmnspector.
org/.
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Figure 6.3.: Adaptability Plugin for the Metrics Suite

implementations themselves utilize AdaptableElements that are representations
of concrete BPMN elements and their adaptability score. Each AdaptableElement
is identified by its name and a list of possible adaptations. This list corresponds
to the set of alternative representations, as defined in Def. 32. Hence, the size of
the list is the adaptability score of the element. Moreover, an AdaptableElement
contains a documentation that explains design decisions for the configuration of
the list of adaptions and an XPath expression that is used to locate the element
in a BPMN process model. The set of all these elements is constructed via a
factory class, AdaptableElements. Since the AdaptableElements, and particularly
the list of adaptions, is imperative for the computation of the adaptability metric
values, they are listed in tabular form in Appendix C.

6.3.3. Results

In the following sections, we first describe the nature and construct usage of
the gathered process models in Sect. 6.3.3.1. Thereafter, we present and discuss
descriptive metric data in Sect. 6.3.3.2 and evaluate the hypotheses to determine
the most useful metrics in Sect. 6.3.3.3 to 6.3.3.5.

6.3.3.1. BPMN Process Models and Usage of Elements

The process models we obtained can be seen as representative of the open source
usage of BPMN, since they are all gathered from freely accessible projects.Correct-

ness
checks

As
indicated in the previous section, we performed several correctness checks, such
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as the correct usage of namespaces and the validation of element references, on
the process models and excluded them from the analysis if they did not pass
these checks. For instance, despite the fact that a file contains the correct BPMN
2.0 namespace, a process model defined in it might use a different one. The
amount of such process models in our data set is negligible and more than 99%
of the analyzed process models are using the correct BPMN namespace. When it
comes to referential integrity, we could detect issues, such as an EventDefinition
referenced in an event but not found in the process model, in 8% of the cases.
This step reduced the initial set of process models from 2995 to 2745. Finally,
12% of the process models, a total of 327, are explicitly marked as executable,
i.e., the isExecutable flag of the process element is set to true.

Figure 6.4.: Occurence Frequency of BPMN Elements

Occur-
rence
frequency

In an influential paper [202], which also had impact on the current version of
BPMN [216], zur Muehlen and Recker analyzed the usage of BPMN elements in
process models and found that only a very small subset of the existing elements
were actually used in practice. As this information can be used to refine the
computation of our metrics, we reproduced this analysis for the process models
at hand. The plot in Fig. 6.4 depicts the occurrence frequency of selected BPMN
elements, i.e., the percentage of process models in which the elements occur. We
limit the figure to the ten most frequent elements found in the process models.
Although the evaluation from [202] uses an older revision of BPMN, our results
largely reinstate theirs. By far the most common elements in BPMN process
models that occur in almost all cases are SequenceFlows and ordinary Start-
and EndEvents. The next most frequent elements are two specific types of tasks.
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This is similar to [202] where tasks are not separated by a specific type. The
occurrence frequency of elements is important to the metrics computation for the
following reason: The most frequent elements will need to be present in every
process model and adapting them is simply not an option. If included in the
adaptability computation, these elements would introduce noise into the metric
value. For instance, SequenceFlows are very common in any process model and
including them in the computation would introduce a strong weighting towards
the adaptability of SequenceFlows in general. Since they cannot be adapted,
this weighting would be noise. Based on the data depicted in Fig. 6.4, we can
exclude the most common elements from the metrics computation, being the
elements that occur in more than two thirds of all process models. These are
SequenceFlows and ordinary Start- and EndEvents.

6.3.3.2. Comparison of the Metrics

Table 6.2 lists descriptive statistics for the process models, sorted into executable
and nonexecutable models, i. e., process models that have the isExecutable flag
set to true or false respectively. We computed the weighted metric as defined
in Sect. 6.1.1.2, and the binary metric, as defined in Sect. 6.1.1.1, with the
thresholds set at 20%, 40%, 60%, and 80% of the most adaptable element of the
language to see which threshold performs best. The metric values are very similar

Table 6.2.: Descriptive Statistics for the Process Libraries

Process Group N Statistics
AMbin., AMbin., AMbin., AMbin.,

AMweighted
t = 0.2 t = 0.4 t = 0.6 t = 0.8

Mean 0.91 0.88 0.60 0.09 0.56

std(X) 0.14 0.16 0.15 0.16 0.14executable 327

Disc.Pow. 0.08 0.09 0.12 0.09 0.21

nonexecutable 2418

Mean 0.96 0.93 0.59 0.09 0.59

std(X) 0.12 0.14 0.19 0.16 0.12

Disc.Pow. 0.02 0.02 0.02 0.01 0.05

for the two process groups, but there are strong differences among the different
metrics.Differ-

ences in
metric
distri-

butions

A first step is to examine if there are significant differences between the
adaptability of executable and nonexecutable process models. To determine this,
we first performed the Shapiro-Wilk test to see if the metric values are normally
distributed. Since this is clearly not the case, we chose a nonparametric test, the
Mann-Whitney U test [188] to find out if there are differences in the distributions
of the metric values for the two process groups. The null hypothesis here is that
there are no significant differences in the distributions of the metric values for
the two process groups. Here, p-values do not reach a significant level for any
of the metrics, so the null hypothesis cannot be rejected and there seem to be
no significant differences between executable and nonexecutable process models
in the data at hand. The reason for this might be that most process models
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we obtained are in fact used for execution, but not marked with the respective
flag. In the following, we evaluate the previously stated hypotheses regarding
the quality of the metrics.

6.3.3.3. Hypothesis 1 – Discriminative Power

We can show that our metrics perform better when analyzing process models
marked for execution and we can filter for the metrics that are particularly
good. This can be achieved by looking at the discriminative power of the
metrics, their ability to differentiate between different process models. The better
a metric differentiates between different process models, the better it can be
used for quality comparison and ranking of process models. To determine the
discriminative power, we removed all duplicate metric values from the different
data sets, resulting in a list of unique metric values for each metric and process
group. By comparing the amount of unique values to the total amount of values,
we obtained the percentage of unique values for the process models in the different
sets. These percentage values are listed in the third row of each process group
in Table 6.2. It can be seen that the discriminative power is much higher for
executable process models and in particular the weighted adaptability degree
performs best. Looking at the binary degrees, a threshold set at 60% yields best
results. This narrows the scope of the useful metrics to the weighted metric and
the binary metric with a threshold set at 60%.

6.3.3.4. Hypothesis 2 – Process Model Size

A further quality characteristic of software metrics is the ability to compare
systems of different size. Typically, metrics tend to produce very different values
when the system size differs a lot [184], thus rendering them insufficient for
comparing systems of a very different size. To investigate how well our metrics
perform in the face of process models of different size, we extracted two sets
of process models. These are small and large models separated into executable
and nonexecutable groups. The set of small process models refers to the first
quartile with respect to the number of elements in the process model, i.e., the 25%
smallest models. In the same fashion, the set of large process models corresponds
to the fourth quartile with respect to the elements in the process models. We
use the Mann-Whitney U test [188] as above to see if the metrics for small and
large process models differ in their distribution. The null hypothesis here is that
there are no significant differences in the distributions of the metric values for
the two process groups. We limit this comparison to AMweighted and AMbinary

with a threshold set at 60%.
Table 6.3 depicts the results of this test separated by process groups. Because

we are doing four tests, we have to adjust the significance level to 0.05/4 = 0.0125.
In all but one case, p-values become significant, meaning that the distributions
of the process groups for the metrics really are different. Consequently, these
metrics should be treated with care when comparing process models of very
different size. The only exception to this is AMweighted for executable process

157



6. Measuring Adaptability

Table 6.3.: Descriptive Statistics and Mann-Whitney U Test for Differences in
Process Model Size

Process Nsmall Nlarge Statistics AMbin., AMweighted

Group t : 60%

x̃small 0.67 0.62

x̃large 0.58 0.53

p 0.004 0.09
executable 62 80

U 2559 2803

nonexecutable 573 564

x̃small 0.67 0.62

x̃large 0.43 0.54

p 2.2e−16 2.2e−16

U 220285 213544

models. Here, no significant differences of the metric values for small and large
process models could be detected. This means that the metric really can be used
for comparing process models of different size.

6.3.3.5. Hypothesis 3 – Stability

A third quality factor for the metrics addresses their resilience to variances over
time. Repeated measurements should produce similar results to demonstrate
the stability of the mechanism of computation, i.e., the predictability of the
metric value. One way to test this aspect, recommended by [171, p. 12], is by
checking if metric values of repeated measurements differ only up to a certain
accuracy threshold. This can be evaluated with the following formula, adapted
from [171, p. 12]:

∣∣∣∣∣AM(p2)− AM(p1)
AM(p2)

∣∣∣∣∣ < Acc.Threshold (6.7)

By comparing the metric values of different snapshots of our data set over time,
we can evaluate this aspect. For this reason, we repeated the data gathering
described in Sect. 6.3.1 five months later and obtained a second snapshot of the
data. This data set is slightly smaller, with 2719 instead of 2997 process models,
but contains a larger amount of executable process models with 565 instead of 327
cases. Since we do not compare single process models, but different sets of process
models, we replace the metric values in equation 6.7 with the median values of
the different sets. As [171] leaves no hint for a suitable accuracy threshold, we set
it to 0.05, meaning that the difference in metric values of repeated measurement
should be no higher. The median values and results are depicted in Table 6.4. In
nearly all cases, median values are identical. In case of the weighted metric for
executable process models, the result is 0.04 which is still below the threshold.
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Table 6.4.: Descriptive Statistics and Accuracy for Repeated Measurements

Process N1 N2 Statistics AMbin., AMweighted

Group t : 60%

x̃1 0.63 0.59

x̃2 0.63 0.57executable 327 565
Acc. 0 0.04

nonexecutable 2418 1921
x̃1 0.67 0.62

x̃2 0.67 0.62

Acc. 0 0

6.4. Summary

In this chapter, we proposed a set of metrics for measuring and assessing the
adaptability of service-oriented and process-aware software. Adaptability in
this context refers to the design-time adaption of executable process models
to enable their execution on a different engine. In Sect. 6.1, we proposed and
formally defined a set of metrics that capture this quality characteristic, based
on the notion of alternative representations of process elements. The idea is
that elements for which a higher amount of standard-conformant alternative
representations exist can be considered as more adaptable.

The proposed metrics are internal complexity metrics. The theoretical vali-
dation in Sect. 6.2 shows that the metrics fulfill related measurement-theoretic
properties, i. e., non-negativity, null value, symmetry, and monotonicity. Due to
the normalization of the metrics with respect to process model size, they fail to
satisfy additivity. Moreover, the metrics are defined on an interval scale and are
computed by counting. Their purpose is status assessment and the information
of stakeholders.

We implemented the metrics computation for BPMN process models and
gathered a large set of real-world process models for the practical evaluation in
Sect. 6.3. The occurrence frequency of process elements in the gathered process
models shows that only a small part of the vocabulary of BPMN is used in
practice. We used this information to refine the metrics computation. The
analysis of the discriminative power of the metrics shows that the weighted
adaptability metric and the binary adaptability metric with a threshold set at
60% perform best. However, the former is the only metric that allows for the
meaningful comparison of process models of different size. Finally, all metrics
produce stable results.

In summary, the weighted adaptability metric outperforms the other proposed
metrics. Hence, it is our answer to research question 2.3 and we can recommend
it as a theoretically valid and practically tested mechanism for computing the
adaptability of service-oriented and process-aware software.
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Parts of this chapter have been taken from [85].

If software is not directly portable, nor easy to adapt, the remaining alternative,
specified by the SQuaRE model [53], is to replace it. Replacement might also be
required when upgrading an execution environment and a high degree of replace-
ability reduces the risk of vendor lock-in [53, p. 16]. This quality characteristic
forms the concluding part of the measurement framework. It is addressed by
research question 2.4, the target of this chapter: What are suitable metrics for
measuring replaceability? As discussed in Sect. 2.3, the SQuaRE model defines
replaceability as the “degree to which a product can replace another specified soft-
ware product for the same purpose in the same environment” [53, p. 16]. In terms
of this work, a product refers to a piece of service-oriented and process-aware
software, whereas the environment is the engine. The definition indicates that
replaceability is not computed based on a single piece of software, but based on
a paired comparison of an original piece of software and a replacement candidate.
This constitutes a notable difference to the quality characteristics that have
been the focus of the previous chapters. As opposed to these characteristics,
replaceability is no inherent property of a piece of software.

In this chapter, we deviate from the methodology applied for the previous
three quality characteristics. The reason for this deviation is that a large amount
of metrics that seem applicable for assessing replaceability has already been
proposed, validated, and evaluated, e.g., [217–227]. What is more, comparative
studies that evaluate these metrics do already exist [228]. Adding yet another set
of replaceability metrics on top of the existing body of metrics is neither desirable,
nor likely to form a novel contribution. Instead of proposing new metrics, we
review existing metrics and discuss their suitability for our area of application,
the replaceability evaluation of executable software. We propose an extension
to existing metrics that is necessary to support our use case and evaluate the
resulting metrics computation. The proposed extension is orthogonal to the
definition of existing metrics and does not change their way of computation. A
theoretical validation of existing metrics is not required, since this is part of the
sources in which they are defined.

Structure
of the
chapter

We start by explaining the nature of replaceability in Sect. 7.1. This is followed
by a review of existing metrics in Sect. 7.2. The review includes a discussion of
desirable properties for replaceability metrics and presents a categorization of
existing metrics. Moreover, we select a subset of applicable metrics based on their
targeted area of application, provide a closer discussion of these metrics, and
ultimately choose two metrics for an evaluation. Next, Sect. 7.3 states deficiencies
of these metrics for replaceability assessment, proposes an extension to cope with
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these deficiencies, and evaluates the selected metrics using a set of synthetic
process models. This allows to decide on which metric fits best. Finally, Sect. 7.4
concludes with a summary.

7.1. On the Measurement of Replaceability

As indicated in the previous section, the quality characteristic of replaceability, as
defined by the SQuaRE model [53], differs from the other characteristics related
to portability. These characteristics of portability, installability, and adaptability
are inherent properties of a single piece of software or software system. They
can be computed based on the static attributes or dynamic behavior of the piece
of software alone. In contrast, replaceability, as defined above, is the degree to
which a software product can replace another software product. This implies
that replaceability cannot be evaluated for a single isolated piece of software,
but requires a paired combination of two pieces: the currently installed software
product and a candidate for its replacement. In our case, this translates to
a currently enacted executable process model and one or more replacement
candidates. If the change of an engine becomes necessary, for instance due to an
upgrade, and a process model is neither directly portable to this engine, nor easy
to adapt, it could be replaced by an alternative that can be executed on this
engine. Clearly, this is only possible if alternatives to the original model do exist.
Consequently, the evaluation of replaceability is not always possible or desired.

An eventual source of replacement candidates are process model reposito-
ries [229,230]. Management of such repositories is a common task for enterprises
that adopt process-aware and service-oriented technologies. If replacement candi-
dates are available in such a repository, replaceability can be computed for all
paired combinations of the enacted model and its alternatives to determine the
best fitting replacement candidate.

Replace-
ability

and
similarity

Though denoted as replaceability by the SQuaRE model [53], in its core,
replaceability translates to similarity [231]. Process models are more likely to be
replaceable with each other, if they are highly similar. As a consequence, metrics
for evaluating process model similarity seem suited for evaluating replaceability.
This opens up a large space of related work. Process model similarity is important
for a wide array of application scenarios apart from replaceability assessment [231].
A few of these application scenarios, without claiming completeness, are process or
service discovery [218,221,225,232], compliance assurance [233], pattern support
assessment [196], the facilitation of process change [222], or process clustering
for efficient process model repository management [234]. As a result of this
wide applicability, many similarity metrics have been proposed in the literature,
e.g., [217–227]. In the following section, we discuss common properties and
classifications of similarity and replaceability metrics and review existing metrics
that seem suitable for our area of application.
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7.2. Review of Existing Metrics

Similarity metrics, and, therefore, also replaceability metrics, measure the distance
between objects [235,236]. The smaller the distance between the objects is, the
more similar and, thus, the more replaceable they are. In our case, the objects are
executable pieces of software. Based on the definition of a similarity metric given
in [228, Sect. 2.4], a replaceability metric for service-oriented and process-aware
software can formally be defined as follows:

Definition 37: Replaceability Metric

REPL(p1, p2) = 1
1 + dist(p1, p2) , where (7.1)

- dist : Process× Process→ R+
0 is a function that computes the distance

between two process models.
- p1, p2 ∈ P , where P is the set of all process models and (P, dist) forms the

metric space [235].

The crucial difference between replaceability metrics lies in their definition of the
distance function.

Since replaceability is no structural property of a software system, the property-
based software engineering measurement framework [69] is not applicable here.
Nevertheless, a set of properties that apply to the distance function are defined
in the literature [235]. These properties are symmetry, non-negativity, identity,
and the triangle inequality :

Symmetry: Distance values for pairs of objects must be identical, regardless of
the order of in which the objects are compared.

∀p1, p2 ∈ P, dist(p1, p2) = dist(p2, p1) (7.2)

Non-negativity: Distance values cannot be negative.

∀p1, p2 ∈ P, dist(p1, p2) ≥ 0 (7.3)

Identity: The distance between identical objects must be zero.

∀p1, p2 ∈ P, p1 = p2 → dist(p1, p2) = 0 (7.4)

Triangle inequality: The distance between two objects must not be larger than
the added distance between the two objects and a third.

∀p1, p2, p3 ∈ P, dist(p1, p2) ≤ dist(p1, p3) + dist(p3, p2) (7.5)

Similarity metrics for process models can further be classified depending on the
entities which form the basis of the computation. This results in a classification
in terms of labels, structure, or behavior [237].
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Label Similarity: Metrics based on label similarity compute the similarity of
process models based on the names, i. e., the labels, assigned to their
elements. If the labels of two elements found in the models p and p′

are identical, these elements are considered to be identical as well. If all
elements of p are also found in p′, and no more, regardless of the structuring
of the process graph, then p and p′ are considered to be identical and
REPL(p, p′) = 1. Examples of metrics for label similarity can be found
in [217–220,226].

The problem with label similarity is that the labels assigned to process
elements are normally written in natural language and, hence, they are
seldom identical. For instance, the label of an activity in p might be
“Check Order”, whereas p′ contains an activity labeled “Order Checking”.
Though the labels are not identical, their distance could be considered
as small. Certain natural language comparison techniques, such as the
string edit distance [238], or semantic techniques that utilize a thesaurus,
as for instance found in [218, 239], can be used to improve the similarity
computation among labels.

Structural Similarity: Metrics based on structural similarity compare the struc-
ture of the process graphs of two models. The smaller the distance between
the structure of the graphs, the more similar they are. The distance between
graphs can be measured through the graph edit distance of process mod-
els [232]. This distance corresponds to the number of insertions, deletions,
and substitutions of process elements that are needed to transform the
graph of one process model into another. The higher this number is, the
greater is the distance. Structural similarity metrics have for instance been
defined in [218,222,232].

Behavioral Similarity: Metrics based on behavioral similarity focus on the exe-
cution behavior of process models [221]. They are often computed based on
the execution traces of process models or the execution dependencies among
the activities of two models. First, possible traces or execution dependencies
are computed based on the model. Then, these traces or dependencies are
compared to the traces or dependencies belonging to another model. The
higher the overlap between these sets of traces or dependencies is, the higher
is the similarity of the process models. Behavioral similarity metrics can
for example be found in [218,225,227].

A crucial problem of approaches in this area is the requirement to map the
nodes in one process model to one or more nodes in the other model. This is
necessary to identify if traces really are similar. To achieve this, approaches
for behavioral similarity often make use of approaches for label similarity.

As indicated above, an abundance of similarity metrics has been defined in
all of these categories, e.g., in [217–227]. This has led researchers to refrain
from the definition of new metrics and perform comparative studies on metrics
performance instead. One such study, which is used as the foundation of this
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chapter, is [228]. In this work, Becker and Laue perform a review of existing
metrics, classify them according to the area of application they are directed at,
and compute metric values for a set of synthetic process models. Based on this
computation, they provide suggestions on the quality and appropriateness of the
different metrics for different use cases. Here, we use the classification and results
from [228] to narrow the set of relevant metrics and to decide which metrics are
a potential fit for our use case.

Metric
use cases

[228] distinguishes seven application areas for similarity metrics: i) The sim-
plification of change in process variants, ii) process merging, iii) facilitation of
reuse, iv) management of process model repositories, v) automation of process
execution, vi) compliance assurance with normative models, and vii) service
discovery. The areas of process execution automation and service discovery are
closest to our focus of application. [228] emphasizes the importance of these
areas for SOA, which coincides with the focus of this thesis. The authors remark
that “automation is usually concerned in SOA applications” and service discovery
is “closely connected to the goal of automation” [228, Sect. 4.2]. For these areas of
application, the authors recommend behavioral metrics that compute similarity
based on the dependencies among the nodes of the process graph in favor of
metrics based on label or structural similarity. In particular, these metrics are
dependency graphs [223] and their improvement in TAR-similarity [224], the
string edit distance of sets of traces [225], causal behavioral profiles [227], and
causal footprints [218]. From this set of metrics, we consider TAR-similarity
and causal behavioral profiles to be applicable for a replaceability computation.
The reasons for excluding the remaining metrics are explained in the following
subsections.

7.2.1. Direct Precedence Relationships Among Activities

The metrics captured by dependency graphs [223], TAR-similarity [224], and
the string edit distance of sets of traces [225], are all based on a similar idea:
They compute the similarity of process models by considering direct precedence
relationships among the activities in a process model.

Depen-
dency
graphs

In [223], the direct precedence relationships among activities correspond to
the so-called dependency graph of a process model. To determine process model
similarity, first, all direct precedence relationships of two models, i. e., their
dependencies graphs, are computed. In a second step, these sets of direct
precedence relationships are compared and the higher their overlap is, the more
similar the two process models are27. More precisely, the distance between the
dependency graphs is equal to the number of dependencies that are not present
in both of the graphs. In the case of [223], direct precedence relationships among
activities are considered, regardless of gateways that might be placed between
two activities. This means that conditional branching or parallelism in a process
model is not taken into account. This is a clear drawback of the approach.

27Essentially, the distance between two dependency graphs corresponds to the Jaccard dis-
tance [240] between the sets of dependencies.
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An extension of dependency graphs that tries to tackle this issue is formed
by TAR-similarity [224].TAR-

similarity
The term TAR stems from the transition adjacency

relation, which is a special form of a direct precedence relationship. The TAR
does not only consider direct control dependencies among activities, but also
takes into account the interleaving of activities that are executed in parallel. This
means that if a process model uses inclusive (OR) or parallel (AND) gateways,
there is a larger amount of dependencies in the dependency graph, which is
called the TAR set here. Apart from this, TAR-similarity is computed in the
same fashion as dependency graphs, i. e., by comparing the amount of shared
adjacency relations of the TAR sets, TAR1 and TAR2, of two process models, p1

and p2, to all relations. Based on the definition of the similarity metric in [224],
the distance function, dist, from Def. 37, can be defined as follows:

distT AR(p1, p2) = | (TAR1 ∪ TAR2) |
| (TAR1 ∩ TAR2) |

− 1 (7.6)

Although TAR-similarity takes gateways into account, it is still limited to direct
adjacency relations.Projected-

TAR
An improvement of TAR-similarity that tries to eliminate

the requirement of directness can be found in the projected TAR [241]. This
extension tries to relax the restriction of direct dependencies, by first computing
a projection of the original process model that eliminates so-called silent steps in
the model. The TAR-similarity is then computed based on the projected model.
The problem with the approach presented in [241] is that it cannot automatically
be determined which parts of the process model are considered as silent. Here,
human judgment is required. As a result, the projected TAR is a subjective
metric in the sense of [174, Sect. 3.1.2]. For this reason, we omit the projected
TAR from further consideration.

Edit
distance

of sets of
traces

Another metric that is quite similar to dependency graphs and TAR-similarity
is the string edit distance of sets of traces [225]. This metric is based on the
analysis of execution traces, instead of a dependency graph. However, as the
traces are computed based on the process graph, the difference between sets of
traces and a dependency graph is mainly one of terminology. A more notable
difference of this metric lies in the fact that it does not necessarily focus on binary,
i. e., direct, relations only. Instead, it also takes larger sets of activity sequences
into account, which are called words of length n, or n-grams. An n-gram is a
trace of the process model that includes exactly n subsequent activities. To
calculate the string edit distance of sets of traces, all possible n-grams for a process
model have to be computed. Thereafter, the distance of two process models
corresponds to the aggregated string edit distance of all n-grams. Although [225]
does not address the computational complexity of this approach, it is clear that
the calculation is challenging. To begin with, the amount of traces of a process
model explodes when parallelism is involved. On top of that, all n-grams of these
traces have to be computed, which quickly reaches computational boundaries.
Additionally, for the metrics computation, a pairwise comparison of all elements
of the potentially high amount of n-grams is required. As a result, the usage of
a high value of n is not feasible in practice and n-grams of length two, called
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bi-grams, are most frequent. In this case, the string edit distance of sets of traces
corresponds to TAR-similarity. For this reason, we only consider TAR-similarity
further.

7.2.2. Causal Footprints

Causal footprints are a behavioral similarity metric proposed in [218]. A causal
footprint of a process model corresponds to the set of its activities and the
execution dependencies among them. These execution dependencies are not
limited to direct precedence relationships. To obtain a causal footprint, a set of
look-back links and a set of look-ahead links is computed for every activity in a
process model. The set of look-back links of an activity A corresponds to the
set of all activities that may precede the execution of A. Similarly, the set of
look-ahead links of A corresponds to the set of all activities that may be executed
after A has finished. Note, that it is not necessary that all activities in the set
of look-back or look-ahead links are executed. Instead, the execution of at least
one of the activities from each set is sufficient. The causal footprint of a process
model corresponds to all sets of look-back and look-ahead links of the activities
in the model. The sets of look-ahead and look-back links are treated as vectors,
and the similarity of two process models is computed through the cosine of their
vectors.

Based on their observations in [228], Becker and Laue discourage the usage of
causal footprints, due to their computational inefficiency. Despite the usage of
the reference implementation of causal footprints and a very moderate test set of
only eight small process models, they experienced computation times that were
more than five times as large as for any other similarity metric. This puts the
feasibility of the practical application of causal footprints into question. Hence,
we do not consider causal footprints any further.

7.2.3. Causal Behavioral Profiles

As the name indicates, causal behavioral profiles [227] refer to a behavioral
similarity metric. Like the other metrics, its mechanism of computation bases on
relations between activities. These relations are not limited to direct precedence
relations, as for the metrics discussed in Sect. 7.2.1. Instead, the metric considers
four categories of behavioral relations between activities. Given two activities,
A1 and A2, these relations are: i) Strict order relation (A1 is always executed
before A2), ii) co-occurrence relation (if A1 is executed in a process instance, A2
must be executed as well, and vice versa), iii) exclusiveness relation (A1 and A2
are never executed in the same process instance), and iv) concurrency relation
(A1 may be executed before A2, but also the other way round). The set of all
behavioral relations among the activities of a process model is its behavioral
profile.

The similarity of two process models is computed by comparing their behavioral
profiles. More precisely, the amount of shared execution relations among activities
is compared to the amount of all execution relations. In this sense, causal
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behavioral profiles are very similar to TAR-similarity. The main difference
between the two lies in what kind of relations among activities are considered.
Behavioral profiles are necessarily larger than TAR sets, since they include a
relation for every pair of activities in a process model. However, there is an
additional notable distinction. To be able to compare the execution relations
among activities of the two process models, it is necessary to establish which
activities in the two models correspond to each other. Only then, it is possible
to determine if two behavioral relations are the same. If it is the case that, for
a specific activity, there are no corresponding activities in the partner process
model, all behavioral relations that involve this activity are ignored. As [227]
puts it: “Solely activities that are aligned by the correspondence relation are
considered”. This is a significant difference from TAR-similarity, for which such
relations are still part of the TAR sets. Furthermore, it implies that causal
behavioral profiles heavily depend on a proper correspondence function. Weidlich
et al. use a trace equivalence correspondence function based on execution traces
and activity labels, but require that the function must be injective. This means
it is not applicable if there are activities in the first process model for which no
corresponding activity in the second process model can be found.

7.2.4. Summary of the Review

The results of the review are summarized in Table 7.1. The table depicts

Table 7.1.: Reviewed Similarity Metrics for Replaceability Evaluation

Metric Ref. Object in Focus Issues

Dependency [223] direct precedence relations gateways are ignored

Graphs superseded by

TAR-similarity

TAR-similarity [224] direct precedence relations

Edit Distance of [225] n-grams inefficient for larger n

Set of Traces

Causal Footprints [218] look-back and inefficient computation

look-ahead links

Causal Behavioral [227] behavioral relations

Profiles among activities

the metrics that seem suitable for our area of application, according to the
categorization specified in [228]. Dependency graphs are excluded from further
consideration, since they are superseded by TAR-similarity. When using bi-grams,
the edit distance of sets of traces corresponds to TAR-similarity as well. For this
reason, it is sufficient to use TAR-similarity as representative for the mechanism
of computation underlying these three metrics. Causal footprints are omitted
from further consideration, because of their computational inefficiency. Finally,
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causal behavioral profiles are considered in the evaluation. To form a conclusion,
based on the review, we evaluate TAR-similarity and causal behavioral profiles
as candidates for a replaceability metric.

7.3. Metrics Improvement and Selection

Evaluating the replaceability of executable software is not what the designers
of similarity metrics originally had in mind. Due to this, existing similarity
metrics share a number of deficiencies for a replaceability evaluation, which
we discuss in the following subsection, Sect. 7.3.1. Thereafter, in Sect. 7.3.2,
we propose an extension that is supposed to improve their applicability for
evaluating replaceability of service-oriented and process-aware software. Finally,
we evaluate the extension using a set of synthetic process models, similar to [228],
in Sect. 7.3.3, to determine which of the remaining similarity metric is best for
our use case.

7.3.1. Deficiencies of Existing Metrics for Replaceability
Evaluation

To be applicable in many settings and use cases, all metrics discussed in Sect. 7.2
are computed on the basis of a formalism, such as Petri nets, or other abstractions
of concrete process models. To enable the metrics computation, a process model
has to be translated into the formalism. During this translation, language-
specific execution semantics of particular language elements, except for control-
flow routing constructs, are mostly lost. This is acceptable in general-purpose
application scenarios, in particular those that deal with nonexecutable and
abstract process models anyway. In fact, such scenarios are what most metrics
have been designed for. For instance, only three out of the 22 metrics evaluated
in [228] are targeted at similarity assessment of executable process models by
their authors. This results in several problems when trying to use the metrics for
an evaluation of the replaceability of executable software. These problems may
render certain metrics unsuitable for this use case.

Issues of
existing
tech-
niques

To understand these issues, it is important to recall the purpose of a replace-
ability evaluation here: To investigate how well a given software product can
replace a second software product in a given execution environment, because the
second one contains language elements that are not supported. As a consequence,
the concrete language elements have to be taken into account during the replace-
ability evaluation. Abstracting from the concrete vocabulary of the language,
which is what practically all metrics do, defeats the purpose of the evaluation to
begin with. The deficiencies for a replaceability evaluation resulting from this
abstraction level can be summarized a follows:

1. Generality : In most cases, similarity is computed based on the activities
and connectors among them. The vocabulary of a process language may
not be limited to these sets of elements. For instance, in the case of BPMN,
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activities and gateways clearly fit to this model. However, it needs to be
stated, in what way events fit into the above categories. Moreover, it is
seldom made clear how a metric should deal with hierarchical decomposition
in a process model.

2. Node Mapping : Practically all approaches assume that it is possible to map
the nodes, in particular the activities, or their execution traces between two
process models, i. e., that it is possible to determine if an activity of process
model p1 corresponds to one or more activities of process model p2. This
is referred to as the matching problem in [242]. In the definition of most
structural or behavioral metrics, this aspect is left open or, if discussed
at all, deferred to approaches that determine the correspondence between
activities based on their labels. This underspecification is problematic, due
to the impact of the node mapping on the similarity metric. As [228, Sect. 7]
puts it, “the quality of the mapping between nodes [...] has a significant
contribution to the quality of a similarity measure”. This is even more
evident when it comes to executable software. Activity labels on their
own are of no importance for the execution semantics of activities. As
a consequence, relying on activity labels only for finding corresponding
activities is a questionable assumption. Instead, the execution semantics
of a concrete activity, as for instance captured in its type (e.g., message
sending, script execution, business rule execution, etc.) are a decisive factor.
When considering a process language, such as BPMN, a variety of node
types with different execution semantics exist. None of the approaches
explicitly takes these types into account.

Solutions
to the
issues

All in all, the issue of generality can be resolved with relative simplicity. In
the case of BPMN, as done in [228], events can be included in the replaceability
evaluation by considering them as nodes of a process model in the same fashion as
activities. Hierarchical decomposition is more difficult to incorporate. It can be
achieved by either treating a SubProcess as a single node in the same fashion as
tasks and events, or by ignoring the decomposition and embedding the contents
of a SubProcess into the parent process. The latter is the strategy favored by the
metrics we consider for evaluation here [224,227].

The issue of constructing a node mapping is more critical. By ignoring node
types, and, hence, parts of the execution semantics of the process model, a
similarity metric risks to rate process models as similar, although they are
dissimilar in reality, or vice versa. This can be demonstrated by considering
the similarity of the BPMN process models depicted in Fig. 7.128. These are a
reference model, RM, a first variant of the reference model, V1, and a second
variant of the reference model, V2. The structure of the process graph is identical
in all cases and so are the labels of the nodes. We use identical labels and
structure to eliminate any influence of label or structural similarity and enable

28The structure of the models is identical to the structure of the reference model from [228].
We adjusted the types of the activities from ordinary tasks to specific BPMN tasks and
introduced events in V1.
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Figure 7.1.: Process Models for Replaceability Computation

an isolated consideration of the node types. When ignoring node types, the
dependency graphs and execution traces for the process models, as well as their
causal footprints and behavioral profiles are identical. As a result, all process
models are considered identical to each other with the discussed metrics. This is
problematic, since two of the models are less similar, when taking the concrete
node types into account. At first glance, it may seem that V2 is more similar
to the reference model than V1, since V1 uses events, whereas V2 only uses
activities. However, the opposite is true: The execution semantics of V1 are
identical to RM, although it uses events instead of activities. In V1, Send- (A3,
A4) and ReceiveTasks (A5) are replaced by Send- and ReceiveEvents. These
process elements have the same execution semantics in BPMN. Furthermore, the
ServiceTask (A7) in RM is replaced by a ScriptTask. A script implemented in a
programming language can be used to emulate almost any other task, including a
ServiceTask. Therefore, V1 and the reference model are in fact fully replaceable.
In contrast, in V2, activity A5 is not a ReceiveTask that blocks until a message is
received from an external party, but a BusinessRuleTask, which has very different
execution semantics. Thus, it cannot be considered as corresponding to activity
A5 of the reference model. The same reasoning applies to activities A3, A4, and
A7, which are ManualTasks in V2, but Send- and ServiceTasks in the reference
model. Similar to [228], the process models depicted in Fig. 7.1 can be used for
evaluating replaceability metrics. A suitable replaceability metric should consider
V2 less fit to replace RM than V1 and RM.

Although mentioned before, it is important to emphasize that so-called semantic
mapping approaches, as for instance found in [218,239], focus on the semantic
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similarity of node labels, but not on execution semantics of nodes. As most
approaches address the similarity of abstract process models, executable models
have been neglected so far. Such models require a more restrictive notion of
node correspondence, which, as indicated in [228, Sect. 7], may render metrics
unsuitable.

To address this issue, we propose a node mapping approach that takes execution
semantics of nodes into account. The aim of this mapping approach is to
operationalize the metrics for the replaceability evaluation of service-oriented and
process-aware software. Our mapping approach is described in the next section.

7.3.2. Node Mapping and Correspondence

Nearly all approaches require the usage of a function that maps the nodes in
one process model to one or more nodes in another one. Formally, we define the
mapping function as follows:

Definition 38: Mapping Function

map(p1, p2)→MAP,where (7.7)

- map : Process × Process → MAP is a function that computes the
mapping set MAP .

- ∀ai ∈ p1 ∧ aj ∈ p2, (ai, aj) ∈ MAP ↔ corresponds(aj, ai), i. e., the map-
ping set MAP of two process models p1 and p2 consists of all corresponding
pairs of activities.

- corresponds : Activity×Activity → Boolean is a function that determines
if an activity corresponds to another one.

The crucial aspect in this definition is the correspondence function corresponds
that is used to construct the mapping set MAP . It is possible that, for an
activity ai from p1 no corresponding activity aj from p2 is found. Moreover, there
may be multiple activities from p2 that correspond to ai. Hence, the mapping is
not necessarily total or injective. This can be problematic, since some approaches
require an injective mapping. However, such a requirement is questionable from
a practical point of view.

As discussed in the previous section, most approaches decide on node corre-
spondence based on the similarity of node labels only. This ignores execution
semantics of nodes and, therefore, is problematic for the evaluation of the re-
placeability of executable software. Here, we draw on a previous definition of the
similarity of the execution semantics of process elements to define an improved
correspondence function. In Chap. 6, we have already considered the similarity
of the execution semantics of process elements for measuring the adaptability of
process models. There, we defined the set of alternatives, ALT , for an element as
part of Def. 32. This set contains all semantically equivalent alternative process
elements that can be used to replace a certain element. As such, it can be reused
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to take execution semantics into account when evaluating node correspondence:

Definition 39: Node Correspondence Function

corresponds(ni, nj) =
true ↔ nj ∈ ALTni

false otherwise
(7.8)

Where ALTni is the set of alternatives, as defined in Def. 32.

Based on this correspondence function, nodes with similar execution semantics
are considered as corresponding nodes in the replaceability computation. This
function can easily be combined with approaches for label similarity. For instance,
two nodes can be considered as corresponding if their labels are identical and
their types correspond to each other.

As a final design decision, it has to be noted that the correspondence function
could be defined to return a real number instead of a boolean value. Such a return
value could be used to denote a relative correspondence of process elements. The
relative correspondence could also be used to influence the overall similarity value,
as for instance done in [218]. Since the metrics we selected for the evaluation
here do not use such a weighting, a boolean return value of the correspondence
function is sufficient.

7.3.3. Discussion of Metrics Performance

To evaluate how well the metrics perform with the node mapping and corre-
spondence functions from Sect. 7.3.2, and to determine their suitability for
replaceability assessment, we compute the metric values for the BPMN process
models depicted in Fig. 7.129. As such, our evaluation is similar to the one
performed in [228].

As stated in Sect. 7.3.1, a suitable metric should find V1 to be very similar, if
not identical, to the reference model. At the same time, the metric should find
V2 to be dissimilar from the reference model. The two metrics that remain from
the review presented in Sect. 7.2 are TAR-similarity [224] and causal behavioral
profiles [227]. In the following, we discuss the values of these metrics, when
computed using the mapping function defined in Sect. 7.3.2, and judge the results,
which can be found in Table 7.2. To determine corresponding nodes, we combine
the correspondence function and label identity.

TAR-similarity: In the case of TAR-similarity, the TAR set of the reference
model, TARRM , resolves to {(A1, A2), (A1, A3), (A1, A4), (A2, A5), (A3,

29We did not re-implement the metrics computation in the prope tool, since the implementation
primarily serves as a proof of feasibility. For the metrics at hand no such proof is needed,
as they have already been implemented as part of [228]. This implementation can be found
at http://sourceforge.net/projects/prom-similarity/.
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Table 7.2.: Results of the Metrics Evaluation

Metric RM ↔ V 1 RM ↔ V 2

Desired Result 1 < 1
TAR-similarity 1 0.16

Causal Behavioral Profiles 1 1

A5), (A4, A5), (A5, A6), (A6, A7), (A6, A8), (A7, A9), (A8, A9)}. For V1,
the nodes A3, A4, A5, and A7 are events and tasks that differ in their
type from their counterparts in the reference model. However, based on
the correspondence function, they correspond to the respective tasks in the
reference model. Thus, the TAR set of V1, TARV 1, resolves to the same
set as for the reference model, TARRM . Hence, dist(RM,V 1) = 0 and
REPL(RM,V 1) = 1. Put differently, the TAR-similarity metric rates the
reference model and V1 as fully replaceable. This is a desirable result.

When considering V2, the tasks A3, A4, A5, and A7 do not correspond
to their counterparts in the reference model based on the correspondence
function. Therefore, the TAR set of V2, TARV 2 resolves to {(A1, A2),
(A1, A3V 2), (A1, A4V 2), (A2, A5V 2), (A3V 2, A5V 2), (A4V 2, A5V 2), (A5V 2,
A6), (A6, A7V 2), (A6, A8), (A7V 2, A9), (A8, A9)}. Consequently, TARRM ∩
TARV 2 is limited to {(A1, A2), (A6, A8), (A8, A9)}. Since | TARRM ∪
TARV 2 | resolves to nineteen, the replaceability metric bears the following
value: REPL(RM,V 2) = 1 / (19 / 3) ≈ 0.16. The reference model and
V2 are not considered as identical.

Summarizing the results, TAR-similarity, when computed based on our map-
ping function, passes the evaluation, as it rates RM and V1 as replaceable
and RM and V2 as dissimilar.

Causal Behavioral Profiles: Although the source defining causal behavioral pro-
files [227] uses BPMN process models as example, it states that it is necessary
to map the models into a formal representation. This mapping is not clari-
fied in the paper, but deferred to another paper [243]. The applicability of
this mapping for BPMN 2.0 process models is questionable, since it refers
to an outdated version of BPMN and, therefore, ignores aspects that are im-
perative to the execution semantics of a BPMN 2.0 process, such as different
task types. Nevertheless, using our mapping and correspondence function,
metrics computation for the process models is rather straight-forward. The
structure of the three process models is identical, hence, their behavioral
profiles are also identical, given they are computed based on node labels or
execution traces. As before, the distinguishing difference lies in the nodes
that differ between the models: A3, A4, A5, and A7. In the case of the
reference model and V1, these nodes are considered to correspond to their
counterparts by our correspondence function. Therefore, the two process
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models are considered to be identical and fully replaceable. Similar to
TAR-similarity, this is the desired result.

However, the assessment of the replaceability of the reference model and the
V2 uncovers a crucial problem. For A3, A4, A5, and A7, no corresponding
nodes can be found for the reference model in V2 and vice versa. In this case,
as described in Sect. 7.2.3, all behavioral relations involving these nodes are
omitted from the behavioral profiles. This means, replaceability is solely
computed by considering the behavioral relations among A1, A2, A6, A8,
and A9. These relations are completely identical in both models. Therefore,
the result is the same as for the comparison of the reference model and V1:
For causal behavioral profiles, REPL(RM,V 2) = 1 = REPL(RM,V 1)
applies, and the two models are considered fully identical. This is not a
desirable result, since we expect REPL(RM,V 2) < REPL(RM,V 1).
This finding indicates that causal behavioral profiles are not applicable for
our use case of computing replaceability. It seems that our notion of node
correspondence is too restrictive for a meaningful application of the metric.

The result of the discussion in this section can be expressed as follows: TAR-
similarity has been found to be applicable for the evaluation of the replaceability
of service-oriented and process-aware software. In contrast, causal behavioral
profiles have not passed the test, and we cannot recommend this metric for our
application scenario.

7.4. Summary

In this chapter, we discussed how the replaceability of service-oriented and
process-aware software can be evaluated and found TAR-similarity [224] to be
the most promising candidate metric. Hence, we can answer research question 2.4,
concerning what metrics are most suitable for evaluating replaceability, with a
recommendation for TAR-similarity.

Essentially, as explained in Sect. 7.1, replaceability can be reduced to a
problem of similarity. For the computation of this property, a large body of
metrics, discussed in Sect. 7.2, does already exist. These existing metrics can be
classified as either labeling, structural, or behavioral metrics. They are based
on the computation of the distance between objects. A proper distance function
fulfills the desirable properties of symmetry, non-negativity, identity, and triangle
inequality. Using the metrics categorization presented in [228], dependency
graphs, TAR-similarity, the string edit distance of sets of traces, causal footprints,
and causal behavioral profiles seem appropriate to our use case. From this set
of metrics, TAR-similarity [224] and causal behavioral profiles [227] are most
promising and the remaining metrics can be excluded due to their computational
inefficiency or because they have been superseded by one of the two previous
metrics.

To perform a conclusive evaluation of the selected metrics in Sect. 7.3, we
discussed problems of the metrics for replaceability assessment. The main issue is
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that the metrics in their current form fail to take node types into account. This can
be resolved by the usage of proper node mapping and correspondence functions,
which we defined. The subsequent evaluation with a set of synthetic process
models demonstrates that TAR-similarity is better suited for a replaceability
evaluation than causal behavioral profiles. As a result, it is the metric we
recommend for a practical application.
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8. Related Work
Parts of this chapter have been taken from [74, 77, 79, 80, 83, 85, 170].

In this chapter, we discuss work that is related to this thesis and that presents
alternative views of, or approaches to, the aspects addressed in this work. Re-
lated work that has directly influenced and laid the foundations for the studies
performed here, has already been discussed throughout the previous chapters of
the thesis and will not be repeated here. Thus, the chapter complements the
existing discussion of related work and provides a wider view of the topic.

Structure
of the
chapter

We start by discussing alternative languages and standards that can be used to
implement service-oriented and process-aware software in Sect. 8.1. Thereafter, we
examine approaches that can be used to tackle portability issues, but which do not
necessarily rely on standard-conformance in Sect. 8.2. This is followed by related
work on benchmarking and testing of process engines and models in Sect. 8.3.
Next, we outline approaches for measuring further quality characteristics of
service-oriented or process-aware software, apart from the ones relevant here, in
Sect. 8.4. Finally, Sect. 8.5 to 8.8 discuss alternative notions and interpretations
of the quality characteristics considered in this work and alternative approaches
for measuring them.

8.1. Alternative Languages and Standards

Considerable effort has been put into the development of process standards
and languages. The languages used in this thesis, BPEL [27] and BPMN [26],
were described in Sect. 2.2.2. Apart from these two, several more languages
with varying focus exist. For instance, [25] discusses fifteen languages for spec-
ifying business process models, but only a small minority of these languages
actually allow to specify executable process models. Notable competitors of
BPEL and BPMN are the XML Process Definition Language (XPDL) 2.2 [31],
the Windows Workflow Foundation (WF) 4.5 [28], and Yet Another Workflow
Language (YAWL) [244]. The usage of XML-technologies is ubiquitous in this
area. Enabling the portability of process models among editors and engines is a
central aim of these languages and the reason to provide an XML serialization
format. Each of the languages has specific areas of focus and application.

XML
Process
Defini-
tion
Language

XPDL is a process language and standard promoted by the workflow manage-
ment coalition. Its initial version was published in 1993 and the standard has
undergone multiple revisions and extensions since that time. Process models are
specified in a graph-oriented style. The primary focus of XPDL is the storage and
interchange of process models. This means, it is specifically tailored to porting
process models between tools of different vendors. However, its main purposes are
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documentation, monitoring, and simulation [31, p. 10] and not primarily execu-
tion. To this end, process models in XPDL also include information that relates
to the visualization of process models. Prior to the publication of BPMN 2.0
in 2011, XPDL was frequently used as a serialization format for BPMN process
models [245]. Hence, some BPMN engines consumed this format for deploying
process models and BPMN was only used for visualization purposes. Since the
publication of BPMN 2.0, this separation is no longer needed and process models
can be implemented and visualized directly in the BPMN format. Nevertheless,
there are still engines that only consume XPDL process models, but claim to be
BPMN 2.0-compliant. In revision 2.2, XPDL also addresses BPMN 2.0 and its
conformance classes. As such, XPDL can still be used to provide an alternative
serialization format for BPMN process models. Nonetheless, it is expected that
newer process engines head for direct support of the BPMN format [245]. Due
to this, BPMN can be considered to be of more importance, when it comes to
process execution.

Windows
Workflow

Founda-
tion

Most of the contemporary process engines are implemented in Java or in a
language that is part of the Java ecosystem. When it comes to Java’s most
notable competitor, the .NET framework promoted by Microsoft, there is only
one major process language available natively. This language is WF [28], which
is the designated process language of the .NET framework and which is cur-
rently available in version 4.5. WF is somewhat closer to ordinary high-level
programming languages than other process languages, since process models can
be specified in either C# or in an XML dialect called extensible application
markup language. There is a graphical visualization format for process models
and the language provides different styles of control-flow definition that include
block-structuredness and graph-orientation. Moreover, WF is tightly integrated
with the Windows Communication Foundation to support service-orientation.
Due to its clear focus on the development of executable software, WF is a good
candidate for implementing service-oriented and process-aware applications. Since
the .NET framework is also a specification that may be implemented by different
runtime environments, the portability of code among its implementations is an
issue. Currently, however, only the official .NET implementation by Microsoft
supports WF. Open source implementations, such as Mono30, might provide
support for the language in the future, but at the moment no such implementation
is available. Therefore, the porting of WF-based applications is only a theoretical
problem so far.

Yet
Another

Workflow
Language

YAWL [244] is an academic workflow language based on Petri nets that was
originally developed as a reference implementation for workflow patterns [71].
YAWL has had impact in academia, especially on work that concerns the formal
verification of safety and lifeness properties of process models. Nowadays, the
language has shifted from a purely academic application and is also used in
commercial systems. YAWL captures functionality that is typically needed in
workflow management systems, i. e., workflow patterns, with dedicated language
constructs to allow for a convenient and straight-forward process model definition.

30The homepage of the Mono project is available at http://www.mono-project.com.
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Similar to the other languages, YAWL does provide an XML serialization format
for process models. Since it is based on Petri nets, process models are defined in
a graph-oriented style. However, like for WF, only a single engine is currently
available. This is the reference implementation of the language. To the best of our
knowledge, there is no project or initiative that intends to provide an alternative
implementation. As a consequence, the issue of porting process models among
different YAWL implementations is likely to remain a theoretical one.

8.2. Approaches for Mitigating Portability Issues

In this thesis, we approach the problem of application portability based on the
conformance of implementations to standards. There are other directions from
which this problem can be addressed, especially if the modification and refinement
of standards is considered as an option. The approaches discussed in this section
can be categorized into i) approaches that specify formal execution semantics for
existing languages, ii) approaches that provide alternate specification languages,
which are compiled to process models, iii) approaches that compile process
models to different notations, and iv) approaches that refine and restrict existing
standards based on their practical usage.

Formal
execution
semantics

The languages and standards considered here, e. g., BPMN [26] or BPEL [27],
are informal specifications. As a consequence, they are not free of ambiguities or
underspecifications, as discussed for the case of BPMN in [38,145]. Ambiguities
and underspecifications can lead to implementations that behave differently. This
behavior is the cause of portability issues. One approach to resolve these issues,
taken in related work, is to refine existing standards with a formal, and, therefore,
unambiguous, definition of execution semantics. If implemented correctly by every
implementation, such a formal definition would ensure that all implementations
behave identically. Frequently, a formalization of a standard is achieved by
translating the constructs defined in the standard into a formal notation. For
process languages, frequently applied formal notations include Petri nets [246]
or process algebras, such as the π-calculus [247]. [248] provides an overview
of challenges and translation approaches for different languages to Petri nets.
Concrete approaches that translate BPEL process models to Petri nets can, for
instance, be found in [249–251], and for BPMN in [243,252]. Often, the primary
focus of such translation approaches is to enable the verification of behavioral
properties of the interaction of multiple process instances. The clarification of
the execution semantics defined in a standard can be considered as a by-product.
We have to emphasize that our work does not focus on cross-process instance
behavior. Although a formal specification may help to reduce portability issues in
theory, implementers of a standard are not required to take these formalizations
into account in order to claim support for a standard. Unfortunately, such work
is rarely considered in practice by engine vendors, leading to differences in the
interpretation of language elements and to portability issues. Even if engine
vendors did take formalizations into account, there is no guarantee that the
formalization itself would be implemented correctly. In this work, we take a
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practical point of view and concede the unavoidable imperfectness of standard
implementations. For that reason, we base the metrics computation in this thesis
on the informal semantics defined in the respective standards and the factual
behavior of process engines only, and not on a formalization thereof.

Alternate
specifi-
cation

languages

A way to preempt the occurrence of portability issues can be seen in the
application of model-driven development approaches. Such approaches often
try to make formalizations more applicable in practice by defining alternate
specification languages. These languages can be used by developers to implement
or specify an application and this specification is compiled to a process model
for execution on an engine. For instance, [253] tries to tackle the problem of
portability of BPEL process models through a formal specification that refines
ambiguous aspects, similar to approaches discussed above. The formalization is
accomplished by a formal language called Blite [39]. This language is intended to
be used by developers and can be compiled to executable BPEL code for a specific
engine. [254] takes the same approach, by defining a domain specific language
that should make BPEL programming easier. This additional step of compilation
can preempt portability problems, if the compilation of the original model to the
vocabulary supported by a particular engine is correct. The downside of such
approaches is that its users need to learn another language besides the target
implementation language. This requirement is often problematic from a practical
point of view. Here, we do not try to preempt portability issues, but instead to
call attention to them via benchmarking, quantification, and quality assessment.

Process
code

reduction
and com-

pilation

[255] is similar to [253,254], although the authors take the opposite direction.
Their approach is to reduce an existing process model to the usage of a subset of
the language, through idempotent transformations of the model elements. The
approach is implemented for BPEL and the subset of the language that results
from the idempotent transformations is called Core BPEL. The advantage of
this approach is that the original process models can be implemented according
to the existing language and there is no requirement for developers to learn
another language on top. The result of the transformation is a process model that
uses a smaller set of the language constructs. This approach has the potential
to solve portability issues by eliminating constructs that are rarely supported.
However, it could also reduce portability, if the core subset is not well supported.
A similar, but more general approach, proposed in [256], is to provide a virtual
machine for various process languages. The idea is to compile process models
to a separate format, called process intermediate representation, which can be
executed on a process virtual machine. This is beneficial to bridge the usage
of different process languages and execute them on the same engine. In this
case, the problem of portability is transferred from the original language to the
compiled format, the process intermediate representation. Similar to Core BPEL,
this format has the potential to eliminate portability issues during compilation,
but also to introduce new issues, if it is not implemented in the same fashion by
multiple implementations.

An alternative and practically-oriented approach, taken by [61], is to modify the
standard specification itself, by considering the implementation of the standard
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in practice. Standards
refine-
ment and
restric-
tion

This is different from the previously discussed approaches, which try
to refine the standard based on theoretical considerations. The solution proposed
in [61] is quite straight-forward: Problems of ambiguity in the specification can
be resolved by adopting the interpretation a majority of implementations use
in practice and modifying the standard specification accordingly. This principle
is close to our work, since we also consider the way engines implement the
standard in practice. However, lacking influence on the respective standardization
committees, it is not our intent to refine and change the specifications, as in [61].
A comparable approach that has achieved some improvement in the refinement
of Web Services standards has been taken by the WS-I. Since Web Services
standard implementations turned out to be not as interoperable as expected, the
WS-I defined restrictions on existing standards, in the form of so-called profiles,
e. g., [257–259], that need to be adhered to if interoperability is a target. These
profiles have been accepted in practice. This approach is quite close to our work,
when it comes to quantifying portability. The WS-I profiles define test assertions
that check the artifacts produced by Web Services standard implementations for
aspects that are considered as non-interoperable. Similarly, in Chap. 4, we define
test assertions that check process models for elements that can be considered as
nonportable. In both cases, test assertions are used to highlight issues. Ultimately,
this does not fix interoperability or portability issues, but serves as a means to
draw attention to them to enable their resolution. We think this is valuable,
since the WS-I approaches are among the few initiatives that have had significant
impact in practice and, thus, have demonstrated their feasibility.

8.3. Benchmarking and Testing of Process Engines

So far, the conformance benchmarking of process engines is a niche area that
did not receive widespread attention. Nevertheless, it builds on lower-level
testing approaches for process engines and models, in particular on unit testing
approaches. Performance benchmarking approaches for process engines are more
frequent. Finally, there exists a variety of approaches for conformance checking
in the area of service-orientation and process-awareness.

Lower-
level
testing
tech-
niques

Conformance tests evaluate the correctness of the implementation of singular
language features in isolation. For this reason, they are quite similar to unit
tests for process models. The unit testing of BPEL process models received
considerable attention, but even here more work is called for [260]. In this area,
the BPELUnit project [207] is widely recognized. BPELUnit allows for the
construction of unit and integration tests for BPEL process models that run
on specific engines. The benchmarking tool presented in this work is similar to
BPELUnit, as it allows for the automatic deployment of BPEL process models
and execution of test cases for these models for specific engines. In fact, the
benchmarking tool internally uses unit testing frameworks, soapUI and JUnit,
to automate test execution and reporting. Using BPELUnit in this thesis was
not an option, since it supports fewer and less up-to-date engines. To the best
of our knowledge, there are no unit testing frameworks specifically tailored to
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BPMN process models and engines so far. Instead, unit testing methodologies
are engine-specific and unit tests are usually implemented using lower-level
testing frameworks, such as JUnit. Ultimately, unit testing tools are enabling
technologies for conformance testing, but differ in the system under test. For
unit tests, the system under test is the process model and for conformance tests,
the system under test is the process engine.

Perfor-
mance
bench-

marking

Performance benchmarking approaches share the system under test with our
conformance benchmark, the process engine, but evaluate a different software
quality characteristic, i. e., performance. The most important performance bench-
marking approaches related to our work are SOABench [63] for BPEL engines,
the BenchFlow project [261] for BPMN engines, and GENESIS2 [262] as a gen-
eral purpose testbed generation framework. Essentially, all of these approaches
develop testbed environments that can be used to generate testbeds for particu-
lar types of systems. Each approach defines a domain model to automatically
generate and execute test cases for a given system. Performance benchmarking
approaches necessarily have a more complex domain model and benchmarking
procedure, since a more fine-grained control of the testing environment is required.
Otherwise, the gathering of accurate performance data would not be possible.
Among the performance testing approaches in BPEL [64], SOABench [63] forms
one of the few approaches that is not limited to a single engine. A central
limitation of SOABench is the size of its set of test cases used to perform the
benchmark, which comprises only four process models. When it comes to bench-
marking the performance of BPMN engines, the BenchFlow project is currently
underway. In comparison to SOABench, BenchFlow [261] aims at the construc-
tion of a more realistic set of performance tests. To this end, the project tries to
gather real-world process models as the basis for performance test cases. Since
real-world process models are not necessarily portable to every engine under test,
the benchmark presented in this thesis can serve to inform the BenchFlow project
on which process models are actually applicable. GENESIS2 [262] is a testbed
generation framework that targets service-oriented applications in general and is
not strictly limited to process-aware applications as well. Moreover, it also can
be used for correctness and integration testing. Since it includes performance
characteristics and quality of service aspects, we consider it as a performance
testing approach here. The framework takes a Web Services-based system and
generates interceptors on the basis of the Web service definitions used in the
system. These interceptors allow to intercept messages exchanged at run-time,
and thus to test a single component in the system, such as a process model, in
isolation. This can also be used to verify performance aspects and quality of
service parameters.

Confor-
mance

checking

Finally, conformance checking is a frequently applied term in research on SOA
and process-aware information systems, albeit not in the meaning used in this
work. Instead of checking the conformance of an implementation to a software
standard in the sense of [263, pp. 203–208] or [264], as done here, conformance
checking often refers to the verification of behavioral properties of a concrete
process model. For instance, it is verified that a process model behaves as specified
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by (conforms to) an abstract process model. In this case, conformance checking
is necessary to verify the functional correctness of a larger system. Oftentimes,
model-driven development approaches require these verification techniques to
ensure that generated execution artifacts comply with the higher-level models
from which they have been generated. Examples of approaches using this type of
conformance checking are [265–269].

8.4. Metrics for Process-Aware and
Service-Oriented Software

Portability is a special aspect of software quality and, as specified in the SQuaRE
model in Sect. 2.3.2, there are many more quality characteristics that can be
considered with the help of software metrics. In this section, we provide an
overview of related work on measurement for different quality characteristics
in service-oriented and process-aware information systems, with a focus on
approaches that are particularly relevant to executable software. It has to be
emphasized that the topic of metrics and measurement in this area is vast and
this section should be considered as a short and selective summary of important
points and not as a conclusive discussion of the subject, which would likely form
a thesis of its own.

Metrics
in SOA

The two quality characteristics that are most often considered in SOC are per-
formance and maintainability. The latter is generally assessed by operationalizing
metrics that stem from object-oriented design to the service-oriented context.
In particular, these are cohesion and coupling metrics. Metric frameworks that
measure cohesion and coupling for service-oriented systems have for example
been presented in [65, 66, 270]. These works also include metrics for further
structural properties of service-oriented systems, such as size and complexity.
Other structural aspects addressed include, for instance service granularity [271],
or reusability and composability [272]. The common ground the metrics pre-
sented in this thesis share with the above metric frameworks is that computation
takes place based on structural properties of a given application. When it
comes to external metrics in SOA, the by far most frequent target of study are
performance-related characteristics. The specification of performance guarantees
in service-level agreements is important in SOA. To verify if service providers
fulfill the level of quality of service that they have guaranteed, it is necessary to
monitor service performance and compute related metrics [273]. Performance
characteristics that are frequently considered are latency, throughput, or the
resource consumption in terms of memory and processing power required by
a service. Examples of studies that use such performance-related metrics are,
for instance, [274–276], as well as the performance benchmarking approaches
discussed in Sect. 8.3.

The dichotomy of structural metrics primarily focused on maintainability
and complexity on the one hand, and external metrics primarily focused on
performance on the other hand, can also be found for process-aware information
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systems.Metrics
in PAIS

An overview of the usage of metrics in business process modeling and
execution is given in [277]. Structural quality metrics for process models also build
upon classical object-oriented metrics [204], focus on syntax- or semantics-related
errors in a process model [278], relate to the static complexity of the model
during design-time [279], or the dynamic complexity of process instances during
run-time [205,280]. Performance metrics for service-oriented software can easily
be transferred to process-aware services, as further studies, apart from the ones
already mentioned in the context of performance benchmarking, for instance, [281,
282], show. Since process modeling, especially for non-executable models, is a
human-intense task, the measurement of related quality characteristics, such as
understandability and comprehensibility [133,283] has been addressed as well.

8.5. Related Work on Portability Measurement

As discussed in Chap. 4, portability is commonly measured as the relation between
the cost of porting a software product and the cost of rewriting it from scratch.
Notable quality models [54, 55] indicate that this cost can be computed in terms
of program size, i. e., by relating portable to nonportable lines of code. Also the
respective ISO/IEC standards [209,210] measure portability with a single metric
based on standard conformance. This metric contrasts the amount of items that
conform to a standard to the amount of items that require standard conformance.
In Chap. 4, we built upon these approaches.

Related
measure-

ment
tech-

niques

Apart from the notion described above and used in this thesis, there is little
work on quantifying portability. For instance, [284] uses a similar definition of a
degree of portability as done here. However, the author recommends computing
the cost of porting and the cost of rewriting based on a number of further cost
functions, instead of lines of code. For example, the cost of porting in [284] is
defined as the sum of the cost for manual modification, the cost of testing and
debugging, and the cost of documentation. However, [284] does not prescribe
how the latter cost functions should be computed based on a software product,
but uses cost estimates from domain experts. A more recent work on portability
measurement is [285]. This work proposes a portability coefficient based on
the size of a software product in terms of the number of its components. This
number is combined with the number of external interactions of the program
during execution. As before, the result is contrasted for the reference system
and the new system to obtain the coefficient. Whereas these approaches are
defined on a generic software product level, to the best of our knowledge, there
is no study that operationalizes portability measurement for service-oriented or
process-aware software in detail. Furthermore, there is no work that supports an
automated calculation of portability based on source code, instead of manually
established estimates by domain experts.

Appli-
cation

migration

Recently, software portability is shifting more into the focus of research in
distributed systems, in particular for cloud environments [46]. The reason for
this is that applications are increasingly deployed to infrastructure- or platform-
as-a-service environments to leverage performance or cost benefits. This trend
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introduces new platform dependencies and potentials for vendor lock-in. A high
degree of application portability can protect from this lock-in effect. Research on
portability in cloud environments is still in its early stages [32,33,286]. So far,
portability of cloud applications has not been measured in terms of a degree or
coefficient of portability inherent to an application, as done in this thesis. Rather,
the value of porting is quantified by comparing operational costs or application
performance before and after an application migration. Examples of such studies
are [287–289].

8.6. Related Work on Installability Measurement

In this work, we adopt the SQuaRE definition of installability. This means, we
consider installability as the effectiveness and efficiency with which a software
product can be installed in a given environment. Corresponding metrics from
existing ISO/IEC standards [209,210] have already been discussed in Chap. 5.
However, alternative notions for installability, and the related characteristic
deployability, exist.

Co-
existence

Installability need not necessarily be viewed as an inherent property of a
software product. As an alternative, it can be considered as the ability to install
several software products next to each other in the same environment, as done
in [290, 291]. Component-, or package-based software systems, such as most
Linux distributions, are built from package repositories. A software product that
is installed into the system might require other packages in particular versions
to be installed as well. These package versions can conflict with the versions
required by other software products, resulting in a failure of the installation.
This property is also covered in the SQuaRE model, but there it is denoted
as co-existence [53, p. 11], a subcharacteristic of the quality characteristic of
compatibility.

Deploya-
bility

We consider deployability as the ease with which an application can be deployed
onto a middleware product. In contrast, the characteristic can also be seen as
the cost of the deployment of an application onto the nodes of a network. In this
setting, the cost of deployment is dependent on the amount or positioning of the
nodes in the network on which an application has to be deployed to function
properly [292, Sect. 2.6]. This interpretation of deployability is important in large
scale IoT systems [293]. Here, we do not consider the network-wide deployment
of an application, but instead the ease of deploying it on a single host. This
view is orthogonal to a network-wide deployment and our framework could be
combined with such an approach. When it comes to the quality characteristic
of deployability in the sense of the work at hand, recent work [294] suggests
practices for enabling deployability, but without defining concrete metrics. Finally,
a software development process-oriented view and quantification of deployability
is to consider it as the duration of the release cycles of a software product [295].

Installa-
bility
measure-
ment

An alternative to automated measurement that has also been used for measuring
installability, deployability, and, in particular, usability in different domains is a
heuristic evaluation or cognitive walkthrough [211]. As discussed in Sect. 5.1.1,
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using these methods, a user steps through a procedure, such as an installation, and
judges its appropriateness for the task at hand. These techniques are especially
useful for the evaluation of user interfaces [211]. In [296], they are also used to
analyze the installability and deployability of an application for anonymous web
browsing. In this work, we use heuristic evaluation to quantify the complexity
of an installation procedure, but we evaluate installation scripts instead of user
interfaces.

8.7. Related Work on Adaptability Measurement

Adaptability, as it is addressed in Chap. 6, is defined as the degree to which
a software product can effectively and efficiently be adapted for different or
evolving execution environments. Our focus lies on structural adaptions to a
software product that are made at design-time, such as the change of a process
model to enable its execution on a different engine. This opposes other common
definitions of adaptability, which are discussed in the following.

Adapter
synthesis

A number of studies in the field of SOA deals with the topic of adapter synthesis,
e. g., [297–299], which resolves to an application integration problem [75]. In a
distributed setting, two service-oriented and process-aware applications might
need to interact with each other to achieve a desired goal. This can be challenging,
if the message signatures or message transmission sequences expected by the
two applications do not fit together. Adapter synthesis targets the automatic
generation of an adapter that mediates message sequences between the two
applications to enable their interoperation. In this context, adaptability refers to
the ability to generate such an adapter.

Auto-
nomous
systems

Another area, where adaptability is of high importance, is autonomous sys-
tems [213]. There, adaptability refers to the ability of an application to change its
structure at run-time to cope with changing requirements, such as a different load.
In the area of cloud computing, this property is also referred to as elasticity [300].
In the context of service-oriented or process-aware systems, this kind of adaption
typically takes place at the level of a service instance or activity and is called
service rebinding. For instance, an application may dynamically change a service
provider it invokes at run-time, i. e., it may rebind the service to another provider,
and try to select a provider that offers the best quality of service [301]. The
difficulty here lies in the appropriate specification of quality requirements as the
basis for service selection and the determination of an optimal service provider
based on these requirements. Approaches that focus on this kind of adaptability
can, for instance, be found in [301–303]. The problem is also addressed by
cloud process engines, for which it is necessary to decide where service instances
should be placed [304]. We have to emphasize that the focus of this work lies on
structural design-time adaptability and not on run-time adaptability or elasticity.

Struc-
tural

adaption
and mea-
surement

When it comes to the enablement of structural design-time adaptions, a com-
mon approach is to parameterize an application at design-time. At run-time, pa-
rameterized parts can be exchanged and modified with predefined variations, thus
making an application more flexible and adaptable. To this end, aspect-oriented
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programming concepts are applied and examples of such approaches are [305,306].
Furthermore, features that increase the adaptability of process-aware systems
have been captured in change patterns [307]. However, the measurement and
quantification of the structural design-time adaptability inherent to a software
product is less frequently addressed. Adaptability metrics defined in the ISO/IEC
standards [209,210] focus predominantly on the observation of user behavior in
response to changes in an application, for instance, to see if users can adapt easily
to a new software environment. This contrasts our use case, which concerns how
easily a process model implemented in a specification language can be changed,
in a way that still complies to the specification, to enable it to run on a different
implementation of the specification. As discussed in Chap. 6, related studies
that measure design-time adaptability [214,215] do so at the architectural level.
They provide an adaptability score at the level of atomic system elements and
aggregate this score to a global degree of adaptability. In similar work [308],
the authors define numerous metrics for measuring run-time adaptivity, but
their metrics suite also includes structural and architectural adaptability metrics.
Like in the studies mentioned before, these metrics depend on the identification
of adaptable or adaptive program elements, which are aggregated to several
adaptability indices for the complete application. This is also the path we take
in this thesis.

8.8. Related Work on Replaceability Measurement

As discussed in Chap. 7, replaceability refers to the degree to which a software
product can replace another software product in the same environment. As such,
it corresponds to the notion of similarity. Existing replaceability or similarity
metrics have already been reviewed in Chap. 7. This section elaborates on
additional notions that are related to replaceability. Moreover, it discusses
approaches for the evaluation of node mapping functions.

Related
notions

Several notions used in the literature can be considered to bear a similar
meaning as replaceability or similarity. These are substitutability [309], bi-
simulation [310], or equivalence [311]. Substitutability refers to the ability of one
service to fully replace, i. e., to substitute, another service. Hence, substitutability
has a boolean value. Conceptually, if the replaceability of two services is equal
to one, they are substitutable. Bi-simulation is a consistency relation among two
process-aware and service-oriented applications and concerns their communication
relations. Two applications bi-simulate each other if they provide the same
communication behavior from an external point of view. The inner structure and
the control-flow graph of the applications may be vastly different, as long as the
observed behavior is identical. Finally, equivalence in process-aware services is
introduced in [311] as a multifaceted aspect. It is used to refer to the invocation
of similar, i. e., equivalent, services in an application. Equivalence consists of
three different equivalence properties. These are i) label equivalence, which refers
to the similarity of the labels used in the two services, ii) attribute equivalence,
which corresponds to similarity in context, such as input or output parameters
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of two services, and iii) position equivalence, which refers to the position of their
invocation in the control-flow graph of an application.

Work on
node

mapping

As discussed in Chap. 7, a crucial basis for a replaceability computation is
the node mapping function that determines corresponding nodes in two process
models. It could be seen in the chapter that a suitable mapping function
depends on the application domain and may render given similarity metrics
more or less suitable for a domain. Recent work [226,242,312] shifts the interest
from the definition of new similarity metrics to the evaluation of node mapping
functions and the prediction of their quality. Mapping functions are evaluated in
terms of precision and recall, by observing to what degree the outcome of the
mapping function corresponds to human judgment. A considerable hinder to
these evaluation approaches, and the evaluation performed in this thesis, is the
unavailability of a sufficiently large corpus of process models that can be used as
a benchmark for similarity metrics and mapping functions. Recent initiatives
try to establish such process corpora [312,313]. However, a universally accepted
corpus for similarity metric and node mapping function evaluation is not yet
available.
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This final chapter completes the thesis and reflects on the main contributions
and findings. We begin by summarizing the contributions presented throughout
the dissertation in Sect. 9.1. This is followed by an overview of the limitations of
the work and a discussion of selected aspects that offer promising areas of future
work in Sect. 9.2. Finally, Sect. 9.3 ends the thesis with concluding remarks.

9.1. Summary of Contributions

This thesis revolved around two research objectives, proposed in Sect. 1.1. The
first research objective centered on the investigation of standard-conformance
induced portability issues that exist in service-oriented and process-aware software.
The second research objective concerned the design and evaluation of a software
measurement framework for quantifying portability. These two objectives have
been captured by two central research questions, which were split up into a
number of subquestions. The subquestions have been answered throughout the
main part of the thesis. In the following, we summarize the answers to these
questions and the central contributions made.

9.1.1. Evidence for Portability Issues

The first research question addressed the current state of the portability of
service-oriented and process-aware software. This question was split into research
question 1.1, regarding the sufficiency of contemporary standards and their
implementations for enabling application portability, and research question 1.2,
regarding the nature of existing portability issues and their implications.

Confor-
mance
bench-
mark

As discussed in Sect. 2.3.3, a core driver and prerequisite for enabling appli-
cation portability is the standard conformance of process engines, which is also
called implementation conformance. Process engines that conform to a standard
enable the execution of applications that are implemented in that standard.
Consequently, a comprehensive standard conformance benchmark of multiple
process engines, presented in Chap. 3, formed the basis for answering the research
questions. In Sect. 3.1, we outlined the requirements for such a benchmark, being
accessibility, affordability, clarity, relevance, solvability, portability, and scalabil-
ity, and explained how the benchmark addresses them. This was followed by a
description of the benchmark design in Sect. 3.2. The benchmarking methodology
was detailed through a domain model that allows to specify test suites of standard
conformance tests. Moreover, the execution of the benchmark was implemented
in a fully automated benchmarking tool, called betsy. This tool enables the
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isolated testing and evaluation of process engines. A central advantage of the
benchmark is that it works similarly, regardless of the actual standard for which
standard conformance is evaluated and regardless of a concrete engine that is
being evaluated. As a consequence, it is possible to extend the benchmarking
methodology and tool with support for additional standards and engines. The
fact that the benchmark in this work includes multiple engines and different
standards demonstrates this extensibility. We implemented the benchmark for
the two process standards, BPMN 2.0.2 [26] and BPEL 2.0 [27]. The final
benchmark data encompasses the evaluation of a total of eleven process engines
that claim to support either of these standards. The core of the benchmark are
three test suites, which are used to evaluate process engines. Two of these test
suites support the benchmarking of BPEL engines and one is tailored to BPMN
engines. The test suite for BPMN engines and one of the test suites for BPEL
engines cover standard conformance. They comprise tests for asserting the correct
implementation of the features that are required for building executable process
models, as defined in the respective standards. The implementation of each
conformance test is aimed at minimality and feature isolation. For BPEL, there
is a second test suite that consists of implementations of workflow control-flow
patterns [71]. The purpose of this test suite is to evaluate support in process
engines for realistic usage scenarios. Moreover, the pattern test suite enables
the investigation of dependencies among portability issues that may arise when
combining language features.

Insuffi-
ciency of
standards

When it comes to research question 1.1, regarding the sufficiency of stan-
dards and their implementations for enabling application portability, the data
that resulted from the benchmark showed that contemporary standards and their
implementations do not reach this aim. These results were presented in Sect. 3.3.
Only a minority of the language features that are required to be supported by
a conforming implementation of the respective standard were supported by all,
or nearly all, engines under test. This observation holds for BPEL engines and
BPMN engines alike. None of the two standards was able to secure broad support
of its feature set in practice. Thus, both standards failed their standardization
target. In both cases, only a subset of the language features are actually imple-
mented in most engines and can be considered as portable. This subset is limited
to the most basic language elements, such as support for sequential activity in-
stance execution and conditional control-flow branching. More advanced features,
most notably truly parallel activity instance execution, are rarely supported. As a
consequence, application portability cannot be guaranteed, even for applications
that are intended to be portable by being implemented in conformance to a
standard.

Implica-
tions of

porta-
bility

issues

From these results, a number of implications follow, which regard research
question 1.2. To build portable service-oriented and process-aware applications,
it is necessary to limit an application to the most basic feature set of a language
standard. This is a problem, since several of the more advanced features, such
as truly parallel activity instance execution or compensation, are indispensable
for implementing certain types of use cases. Nevertheless, the evaluation of
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the second test suite for BPEL, the workflow control-flow patterns test suite,
showed that several realistic application scenarios can still be expected to be
implementable in a portable fashion. Even engines with only a moderate degree
of standard conformance were able to support a majority of the usage scenarios
that are captured by the workflow control-flow patterns. However, the lack of
truly parallel activity instance execution is clearly an inhibiting factor. Besides,
the evaluation of workflow pattern support did not uncover portability issues
that were triggered by the combination of language features. A lack of support
for a particular pattern could always be traced back to a singular standard
conformance issue in an engine.

SummaryAs a summary, these contributions could be used to frame an answer to research
question 1. The portability of service-oriented and process-aware software based
on language standards is clearly problematic, because the degree of standard
conformance in contemporary engines is limited. Neither of the two standards
fulfills its goal of defining “a portable execution format for business processes”
(BPEL) [27, p. 7], or enabling the “portability of Process definitions” (BPMN) [26,
p. 20]. As a consequence, the assessment of the portability of existing applications,
as a means of improving their portability, could be confirmed as a relevant research
goal. This motivated the second research objective of this thesis.

9.1.2. Measurement Framework for Portability

The second research objective targeted the design and evaluation of a measure-
ment framework for portability. In Sect. 2.3.2, the ISO/IEC SQuaRE model for
software quality was selected as theoretical basis for this measurement framework,
because it can be considered as one of the most important quality models today.
The model defines portability as one of eight major software quality charac-
teristics. Furthermore, it defines three subcharacteristics of portability, being
installability, adaptability, and replaceability. As a consequence, the measurement
and assessment of portability and its subcharacteristics were addressed by a
separate research question each. Moreover, each characteristic was the topic of a
separate chapter of Part II.

Metric
deriva-
tion and
evalua-
tion

The analysis of each quality characteristic started with a discussion of its
nature and an explanation of how the characteristic is commonly measured.
This was followed by the formal definition of a set of metrics that capture the
characteristic for service-oriented and process-aware software. Subsequently, each
set of metrics was validated theoretically with two validation frameworks. On the
one hand, a formal validation framework was used to address the measurement-
theoretic properties of the metrics. On the other hand, an informal validation
framework was applied to enhance the definition of the metrics and to clarify
their relationship to the characteristic they are intended to measure. This was
followed by a practical evaluation of the metrics. First, the goal of the evaluation
and experimental hypotheses were stated. Second, a large set of real-world
applications were gathered from public open source software repositories. Third,
the metrics computation was implemented in a prototypic metrics suite, called
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prope. Fourth, using the metrics suite, metric values were computed for the
gathered applications. Based on this data, we could perform a variety of statistical
tests to verify a number of quality properties of the metrics and could evaluate
the experimental hypotheses. The quality properties included, for instance, the
discriminative power of the metrics, their stability, or their relation to application
size. In parts, this analysis allowed us to recommend a subset of the proposed
metrics for practical usage.

Porta-
bility Portability was discussed in Chap. 4. In the context of this thesis, portability

was defined as the degree of effectiveness and efficiency with which an executable
process model can be transferred from one process engine to another, without
the need for modification. Four different metrics were proposed to measure this
characteristic: i) a basic portability metric, used as a means of comparison,
ii) a weighted elements portability metric that takes all elements of a process
model into account, iii) an activity portability metric that reduces the focus of
measurement to the nodes of a process model, and iv) a service communication
portability metric that reduces the focus of measurement to the nodes relevant to
service interaction. The computation of the metrics relies on a degree of severity
with respect to portability for every language element. This degree is computed
based on the relative support of a language element in process engines. The data
necessary for this computation was provided by the engine benchmarks described
in Chap. 3. Introducing this data into the metrics computation improves the
practical relevance of the resulting metric values. From a measurement-theoretic
point of view, the metrics can be considered as normalized complexity metrics
or densities of complexity. They satisfy the properties of non-negativity, null
value, symmetry, and monotonicity. Due to their normalization with respect
to application size, they fail to satisfy additivity. The metrics are direct and
internal, are obtained by counting issues in code, and have an interval scale. The
practical evaluation was performed on the basis of more than 1600 BPEL process
models and provided several insights: First, it showed that the metrics and their
mechanism of computation is stable, since repeated executions of the evaluation
based on modified data yielded similar results. Second, the metrics have been
found to carry diverse information, as there was only a moderate correlation
among their values for the data at hand. Third, the evaluation showed that the
inclusion of engine support data in the computation improves the discriminative
power of the metrics in comparison to the basic way of computation. Fourth,
it could be seen that the metrics cannot be used to compare process models of
arbitrarily different size, which is usual for complexity metrics. Finally, we found
that the portability of the gathered process models was relatively high, despite
the limited degree of standard conformance in engines. This finding could be
attributed to the fact that only a moderate part of the language is actually used
in practice.

Installa-
bility The topic of Chap. 5 was the quality characteristic of installability. Installability

was defined as the effectiveness and efficiency with which a software system
can be installed. In the context of this thesis, the quality characteristic was
subdivided into two further subcharacteristics. These were the installability
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of the process engine and the deployability of an application onto the engine.
Several metrics for assessing each of the subcharacteristics were proposed and
defined formally. Engine installability was addressed by considering the duration
of the installation, the amount of steps required for the installation, and the
reliability of the installation routine. Deployability was assessed through the size
of the different deployment artifacts and the flexibility of the deployment. The
theoretical evaluation showed that nearly all metrics are size metrics and satisfy
the necessary properties of non-negativity, null value, and additivity. Proposed
size metrics are internal, whereas metrics related to installation duration are
external. The metrics are computed either by counting, matching, or timing
and are defined on an interval or on a ratio scale. In the practical evaluation,
the engine installability of six BPEL engines was evaluated based on data from
150 installation runs. Moreover, the evaluation included the assessment of the
deployability of almost 40 applications to said engines, and the assessment
of an external process library coming from an engine vendor. This showed
that installability and deployability metrics alike can be used for ranking and
comparing engines, as well as single applications. It could be demonstrated that
the average installation time allows for a meaningful interpretation, despite being
an average value. Moreover, a linear relationship between the number of services
involved in an application and its deployability could be determined.

In Chap. 6, the quality characteristic of adaptability was discussed. Adapt-
ability

Adaptabil-
ity refers to the degree with which an application can effectively and efficiently be
adapted for different process engines at design-time. The proposed metrics assess
adaptability by considering the amount of alternative representations for every
language element that exist in a process language. The more alternatives that
are available for a language element, the more adaptable it can be considered.
Consequently, the adaptability of an application can be assessed by computing
the average adaptability of all language elements the application is made up of.
A binary metric, which is configurable with a threshold, and a weighted metric
were proposed and formally defined to capture this notion. Similar to the metrics
for assessing portability, the adaptability metrics can be considered as internal
complexity metrics. As such, they fulfill the same measurement-theoretic proper-
ties, are also defined on an interval scale, and are computed through counting.
To evaluate the metrics practically, almost three thousand BPMN process models
were gathered from public open source software repositories. The occurrence
frequency of process elements in the gathered process models showed that only a
small part of the vocabulary of BPMN is used in practice. As such, this result
was similar to the observation made for the usage of the vocabulary of BPEL in
the context of the evaluation of portability metrics. The observed occurrence
frequency of process elements was used to refine the metrics computation. The
subsequent analysis of the discriminative power of the metrics showed that the
weighted adaptability metric and the binary adaptability metric, with a threshold
set at 60%, perform best. Furthermore, the weighted adaptability metric was
also found to allow for the meaningful comparison of process models of different
size. A repeated execution of the complete evaluation based on data gathered
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several months later confirmed that the mechanism of computation is stable.
Replace-

ability
The final quality characteristic, addressed in Chap. 7, was replaceability.

Replaceability captures the degree to which an application can replace another
application in the same environment. As such, its assessment requires a paired
comparison of two applications. Moreover, this assessment boils down to an
assessment of similarity, because similar applications can more easily be used
to replace each other. When it comes to process model similarity, a large body
of metrics does already exist. For this reason, the evaluation of replaceability
metrics differed from the evaluation of the other quality characteristics. Instead
of proposing new metrics, several existing metrics were selected based on a
relevance and suitability assessment. Thereafter, an extension for these metrics
was proposed and evaluated. Existing metrics can be classified as either labeling,
structural, or behavioral metrics and are computed on the basis of the distance
between objects. The distance function fulfills the properties of symmetry,
non-negativity, identity, and triangle inequality. Ultimately, the metrics TAR-
similarity and causal behavioral profiles were selected based on their target
application area and practical properties. For the application of these metrics, a
proper node matching function was required. Such a function was defined based
on the notion of alternative representations for process elements stemming from
the adaptability metrics proposed in Chap. 6. A practical evaluation based on
several synthetic process models showed that TAR-similarity is best suited for
evaluating replaceability in the context of this work.

Summary Each study, discussed above, answers its associated research question, regarding
the identification of suitable metrics for measuring a particular software quality
characteristic. In combination, the studies allow to frame a concluding answer to
research question 2: It is feasible to measure the portability of service-oriented and
process-aware software. The framework presented in this thesis can be considered
as one way to achieve this task. All metrics proposed have been theoretically
validated. An implementation and automated computation of nearly all metrics
that enables the evaluation of thousands of applications was possible. Finally,
the comprehensive practical experiments emphasize the practical suitability of
the metrics and the feasibility of their application. Using this framework, the
portability of service-oriented and process-aware software can be made visible.
Ultimately, this visibility is necessary to improve application portability.

9.2. Limitations and Open Problems

Scientific work is hardly ever fully complete without limitations and areas that
deserve further investigation. Of course, this restriction also applies to this thesis.
Many of the limitations of the work at hand have been discussed throughout
the different chapters. For instance, there are more process languages that
could be considered and also more process engines that could be evaluated in a
standard conformance benchmark. Moreover, the metrics proposed for measuring
associated quality characteristics should not be viewed as a final say. Different
mechanisms of computation are possible and have been indicated in the design

196



9.2. Limitations and Open Problems

decisions discussed. Future work may show that there are more suitable or more
efficient ways of assessing application portability. Whereas we have broached
these issues throughout the thesis, this section addresses several limitations that
have not yet been sufficiently discussed. At least as importantly, we consider
these limitations as promising sources of future work.

The first aspect discussed in the following subsection is the combination and
ranking of the metrics. The second one, discussed in Sect. 9.2.2, concerns effort
prediction for application porting and migration. Finally, Sect. 9.2.3 concerns
the investigation of the practical usage of process languages.

9.2.1. Metrics Combination and Ranking

In this thesis, we defined a measurement framework that consists of metrics for
assessing four different quality characteristics. Each set of metrics addresses
one characteristic and helps in decision making during application migration, as
outlined in Sect. 2.3.2. Hence, the framework is beneficial and can be applied
in its current form. Still, the amount of metrics is high and the metrics are
defined at a quite fine-granular level, for instance at the level of process elements.
For this reason, it would be helpful to offer a way to compose or aggregate all
metrics to a global portability indicator that can be interpreted based on a single
value [314].

A variety of options exists for performing a metrics aggregation [315]. These
range from simple statistical measures, such as mean or median values, to more
sophisticated statistical techniques, such as distribution fitting [316] or inequality
indices like the Gini [317] or Atkinson [318] index. A central issue with metric
aggregation techniques is that the importance of individual metrics can vary
strongly depending on the requirements of a concrete project. Hence, it is difficult
to provide a universally acceptable aggregation for a metrics framework. Since
individual metrics essentially translate to quality requirements for a software
project, it is possible to apply requirements prioritization techniques for building
an aggregation, as was done in similar work [278]. Among existing prioritization
techniques, the analytic hierarchy process [319] has been identified as particularly
useful [320]. Thus, the application of the analytic hierarchy process to our metrics
framework seems to be a promising area of future work.

The analytic hierarchy process [319] builds on a pair-wise comparison of all
requirements, in our case of all metrics. Decision makers compare each pair of
requirements and decide which one is more important for the project at hand,
using a scale of different levels of importance. The results of the choices of
multiple decision makers for a pair of requirements can be merged by computing
the arithmetic mean of the importance relations. This pair-wise comparison is
performed for every level of the hierarchy of requirements, i. e., for the quality
characteristics and the metrics. The relative priorities of each hierarchy level are
propagated down to the lower levels. This means that if a top-level requirement is
found to be more important, an example could be that installability is considered
more important than adaptability, also the lower-level requirements, i. e., the
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metrics for installability, have a higher impact on the aggregation. To provide
a general indication for a suitable aggregation of the metrics presented here, it
would be possible to perform a survey among domain experts. A questionnaire
could be used to table the metrics pair-wise and domain experts could use this
questionnaire to perform the ranking. Consequently, the meaningfulness of the
results of such a study depends on the availability of a sufficiently large set of
domain experts that are able to compare the proposed metrics.

9.2.2. Effort Prediction

As stated in Sect. 2.4, the goal of the metrics in this thesis is quality measurement
and assessment. Based on quality assessment, a second common target of software
metrics is quality or effort prediction [47]. More recently, also the prediction
of technical debt [161] is gaining traction. In that sense, the thesis lays the
foundation for further work on predicting the effort associated with porting or
migrating software.

There are several ways to approach effort estimation. For instance, in [321],
Sun and Li present an effort estimation approach for cloud application migration
that can directly be applied in our setting. To estimate the effort required for
a migration project, the authors propose to estimate the effort for the different
phases of performing an application migration separately and to sum up the
results. For determining the effort associated with an individual phase, two
central ingredients are required. Firstly, these are structural properties of the
application, such as the size of the artifacts to be migrated. This corresponds to
the metrics proposed in this work, which mostly relate to structural properties
of an application. Secondly, the size and skills of the team that performs the
migration is taken into account. Each person is ranked by her skills and each
skill rank is associated with a weighting factor which influences the estimated
effort. For instance, an expert is considered to have a high success probability
for a given task, whereas a novice is considered to have a low success probability.
The consideration of skill is orthogonal to the metrics presented in this thesis.
More precisely, the metrics can be used to characterize the size of the artifacts
to be migrated and the likelihood of a successful porting or adaptation, whereas
skill factors could be used to translate metric values into effort estimates.

A second way to estimate effort could be operationalized similar to the methods
applied in well-known industry effort estimation models, such as COCOMO2 [322].
This model comes in various flavors and is applicable at different stages of
development. Most close to our use case is the so-called post-architecture model,
which concerns development and maintenance effort for a software product [323].
Similar to the approach from [321], effort or cost is estimated based on the
structural properties of the software product and several weighting factors or
cost drivers that influence the resulting effort estimates. The size of the system
is measured in lines of code or function points and takes adaptions and reuse
into account. As before, this is close to the metrics presented here, which largely
base on application size or process elements. Hence, the metrics seem applicable
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as an input to the post-architecture model. The weighting factors for estimating
effort stem from a database of previous projects and their de facto effort. This
is one of the primary reasons for the industry acceptance of COCOMO2. As
such, it is also a major challenge for effort prediction based on our metrics.
The project database that underlies COCOMO2 builds on projects that have
been executed during the 1990s. These projects did not apply the principles of
service-orientation or process-awareness, but relied on development methodologies
and technologies that were available at that time. It is not clear if the relation
among size and effort is the same for these projects, as opposed to projects
that build service-oriented and process-aware software. Hence, a new project
database is needed for meaningfully estimating effort values. Such data would
need to be gathered in a series of industry projects that perform a migration
of a process-aware and service-oriented application. A lack of access to such
projects could be compensated for, to a limited degree, using student projects
at a university. For instance, a representative amount of skilled students could
perform the migration of a set of applications and the effort required could be
correlated with the metric values for the applications. The problem with this
approach is that studies based on student projects can never fully be used as
representative for real industry projects. Hence, observing the effort required in
industry projects and the relation to our metrics forms a promising, but also
quite challenging, area of future work.

9.2.3. Practical Usage of Process Languages

In this thesis, we evaluated application portability based on standard conformance.
A major finding of the conformance benchmark presented in Chap. 3 was that a
large part of the respective languages and many of the more advanced language
features are rarely supported by their implementations. As a result, a low degree
of portability could be expected in realistic applications. Nevertheless, during
the practical evaluation of the portability metrics in Sect. 4.4, average portability
values of real-world applications were still relatively high. This can be attributed
to the fact that many of the advanced features of a process language are used very
seldom in practice. Such a restricted language usage has already been indicated
by earlier work [202]. The analysis of the usage of BPMN elements as part of the
practical evaluation of adaptability metrics in Sect. 6.3 reinstates these findings.

These research results question the suitability of the vocabulary provided
by contemporary process languages. It seems that many of the features that
are required to be implemented by an engine might not actually be needed in
practice. Unfortunately, it is not entirely clear if these features are not used,
because they are not needed, or because they are not properly implemented.
To gain more insights on this aspect, more work, especially of empirical kind,
that analyses realistic and industry scale process models is required. Much of
the established work on the necessary features of process languages, such as
the workflow patterns [71], bases the relevance of features solely on theoretical
argumentation or the claims of its authors. This is problematic. As discussed by
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Börger [145], workflow patterns and also a large part of BPMN lack empirical
evidence of their relevance. If many of the features in contemporary languages
are irrelevant from a practical point of view, their importance to portability is
also reduced. The metrics proposed here already take this into account, since
only language elements that are actually used in an application do influence the
resulting metric value. Nevertheless, if fewer language features would be required
to be implemented in a process engine, it would be easier for engine vendors to
implement a larger part of the standard. As a result, it is likely that there would
be a larger set of language features that are supported by a majority of engines.
This in turn, would increase application portability. To summarize this section,
more empirical work is needed to determine the actual functionality required in
realistic service-oriented and process-aware applications.

9.3. Closing Remarks

This chapter tied together the central findings of this thesis and summarized
the results. Both research objectives have been addressed by a number of
comprehensive studies that advance the state of knowledge. Moreover, this
chapter pointed out selected limitations of this work and discussed how these
limitations can be leveraged as promising areas of future work.

Ultimately, this thesis demonstrates that software portability in contemporary
distributed applications is a challenging and relevant topic. It shows that stan-
dards alone cannot be used as a free ticket for achieving application portability.
Moreover, the research points out that portability is a multi-faceted aspect that
is hard to pin down accurately. Nevertheless, there are also many directions from
which application portability can be approached and improved. Given the recent
surge of work on application portability in cloud environments, we hope that this
thesis can serve to motivate further work and inform future researchers.
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Wirtschaftsinformatik und Angewandten Informatik, no. 88, March 2011.
(Cited on page 77.)
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A. Conformance Test Suites

This section lists all conformance tests and test cases used in the conformance
benchmark discussed in Chap. 3. For each conformance test, we list a name
that describes the feature being tested for, a description that characterizes the
underlying process models, and a list of test cases that are used to evaluate the
feature. For pattern tests cases, we omit a description row, since the description
of a pattern can be looked up in the original source. The tables have been
generated automatically from the source code of the betsy tool.

The next section, Appendix A.1, contains the conformance test suite for BPEL
and the test suite for workflow control-flow patterns. Appendix A.2 lists the test
suite for BPMN.

A.1. BPEL Test Cases

In the case of BPEL, there is at least one test step for every test case. Each
test step is described by its input, expected output, and invoked operation. The
input equals to the payload of the message sent to a process instance during the
test step. Correspondingly, expected is the payload of the reply message that is
required for a passing test. If there is no assertion on the output payload, expected
is left empty. Operation corresponds to the type of Web service operation being
invoked in the test step, which can either be synchronous or asynchronous.

Table A.1 lists the BPEL conformance test suite described in Sect. 3.2.3.1
and Table A.2 lists the workflow control-flow patterns test suite described in
Sect. 3.2.3.2.

Table A.1.: BPEL Conformance Test Cases

Property Conformance Test

Name Assign-Validate

Description A receive-reply pair with an intermediate assign that has validate set
to yes. The assign copies to a variable that represents a month and
the validation should fail for values not in the range of one to twelve.

Test case: Input
Value 13 should
return validation
fault

input expected operation

13 invalidVariables synchronous

Name Assign-Property

Continued on next page
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Table A.1 – Continued from previous page

Description A receive-reply pair with an intermediate assign that copies from a
property instead of a variable.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Assign-PartnerLink

Description A receive-reply pair with an intermediate assign that assigns a WS-A
EndpointReference to a partnerLink which is used in a subsequent
invoke.

Test case: Good-
Case

input expected operation

5 0 synchronous

Name Assign-PartnerLink-UnsupportedReference

Description A receive-reply pair with an intermediate assign that assigns a bogus
refernce to a partnerLink which is used in a subsequent invoke. The
reference scheme should not be supported by any engine and fail with
a corresponding fault.

Test case: Good-
Case

input expected operation

1 unsupportedReference synchronous

Name Assign-MismatchedAssignmentFailure

Description An assignment between two incompatible types. A mismatchedAssign-
mentFailure should be thrown.

Test case: Good-
Case

input expected operation

1 mismatchedAssignment synchronous

Name Assign-Literal

Description A receive-reply pair with an intermediate assign that copies a literal.

Test case: Good-
Case

input expected operation

5 1 synchronous

Name Assign-Expression-From

Description A receive-reply pair with an intermediate assign that uses an expression
in a from element.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Assign-Expression-To

Description A receive-reply pair with an intermediate assign that uses an expression
in a to element.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Assign-Int

Continued on next page
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Table A.1 – Continued from previous page

Description A receive-reply pair combined with an assign and an invoke inbetween.
The assign copies an int value as an expression to the inputVariable of
the invoke. The invocation fails if the value copied is not an int (but,
for instance, a float).

Test case: Good-
Case

input expected operation

1 10 synchronous

Name Assign-SelectionFailure

Description A receive-reply pair with an intermediate assign that uses a from that
retuns zero nodes. This should trigger a selectionFailure.

Test case: Good-
Case

input expected operation

1 selectionFailure synchronous

Name Assign-Copy-Query

Description A process with a receive-reply pair with an intermediate assign that
uses a query in a from element.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Assign-Copy-KeepSrcElementName

Description A receive-reply pair with an intermediate assign with a copy that has
keepSrcElementName set to yes. This should trigger a fault.

Test case: Good-
Case

input expected operation

1 mismatchedAssignmentFailure synchronous

Name Assign-Copy-IgnoreMissingFromData

Description A receive-reply pair with an intermediate assign with a copy that has
ignoreMissingFromData set to yes and contains a from element with an
erroneous xpath statement. Therefore, the assign should be ignored.

Test case: Good-
Case

input expected operation

5 -1 synchronous

Name Assign-Copy-GetVariableProperty

Description A receive-reply pair with an intermediate assign that uses the getVari-
ableProperty function.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Assign-Copy-DoXslTransform

Description A receive-reply pair with an intermediate assign that uses the
doXslTransform function.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Assign-Copy-DoXslTransform-InvalidSourceFault

Continued on next page
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Description A receive-reply pair with an intermediate assign that uses the
doXslTransform function without a proper source for the script.

Test case: Good-
Case

input expected operation

1 xsltInvalidSource synchronous

Name Assign-Copy-DoXslTransform-XsltStylesheetNotFound

Description A receive-reply pair with an intermediate assign that uses the
doXslTransform function, but where the stylesheet does not exist.

Test case: Good-
Case

input expected operation

1 xsltStylesheetNotFound synchronous

Name Assign-Copy-DoXslTransform-SubLanguageExecutionFault

Description A receive-reply pair with an intermediate assign that uses the
doXslTransform function, but where the actual stylesheet has errors.

Test case: Good-
Case

input expected operation

1 subLanguageExecutionFault synchronous

Name Assign-VariablesUnchangedInspiteOfFault

Description A receive-reply pair with two intermediate assigns, the second of which
produces a fault that is handled by the process-level faultHandler to
send the response. Because of the fault, the second assign should have
no impact on the response.

Test case: Good-
Case

input expected operation

1 -1 synchronous

Name Invoke-Async

Description A receive-reply pair with an intermediate asynchronous invoke.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Invoke-Sync

Description A receive-reply pair with an intermediate synchronous invoke.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Invoke-Sync-Fault

Description A receive-reply pair with an intermediate synchronous invoke that
should trigger a fault.

Test case: Good-
Case

input expected operation

-5 CustomFault synchronous

Name Invoke-Empty

Description A receive-reply pair with an intermediate invoke of an operation that
has no message associated with it. No definition of inputVariable or
outputVariable is required.

Continued on next page
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Test case: Good-
Case

input expected operation

5 5 synchronous

Name Invoke-ToParts

Description A receive-reply pair with an intermediate synchronous invoke that uses
the toParts syntax.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Invoke-FromParts

Description A receive-reply pair with an intermediate synchronous invoke that uses
the fromParts syntax.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Invoke-Correlation-Pattern-InitAsync

Description An asynchronous receive that initiates a correlationSet used by a subse-
quent invoke that also uses a request-response pattern and is thereafter
followed by receive-reply pair that also uses the correlationSet.

Test case: Good-
Case

input expected operation

1 asynchronous

1 1 synchronous

Name Invoke-Correlation-Pattern-InitSync

Description A synchronous receive that initiates a correlationSet used by a subse-
quent invoke that also uses a request-response pattern and is thereafter
followed by receive-reply pair that also uses the correlationSet.

Test case: Good-
Case

input expected operation

1 0 synchronous

1 1 synchronous

Name Invoke-Catch

Description A receive-reply pair with an intermediate invoke that results in a fault
for certain input, but catches that fault and replies.

Test case: Good-
Case

input expected operation

-5 0 synchronous

Name Invoke-Catch-ExplicitFault

Description A receive-reply pair with an intermediate invoke that results in a fault
for certain input, but catches that fault and replies. The fault is
declared in the Web Service Definition of the partner service.

Test case: Good-
Case

input expected operation

-6 0 synchronous

Name Invoke-CatchAll

Continued on next page
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Description A receive-reply pair with an intermediate invoke that results in a fault
for certain input, but catches all faults and replies.

Test case: Enter-
CatchAll

input expected operation

-5 0 synchronous

Name Invoke-CompensationHandler

Description A receive-reply pair combined with an invoke that has a compensation-
Handler, followed by a throw. The fault is caught by the process-level
faultHandler. That faultHandler triggers the compensationHandler of
the invoke which contains the reply.

Test case: Good-
Case

input expected operation

1 0 synchronous

Name Receive

Description A single asynchronous receive.

Test case: Good-
Case

input expected operation

1 asynchronous

Name Receive-Correlation-InitAsync

Description Two asynchronous receives, followed by a receive-reply pair, and bound
to a single correlationSet.

Test case: Good-
Case

input expected operation

1 asynchronous

1 asynchronous

1 1 synchronous

Name Receive-Correlation-InitSync

Description One synchronous receive, one asynchronous receive, followed by a
receive-reply pair, and bound to a single correlationSet.

Test case: Good-
Case

input expected operation

1 0 synchronous

1 asynchronous

1 1 synchronous

Name ReceiveReply-MessageExchanges

Description A simple receive-reply pair that uses a messageExchange.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Receive-AmbiguousReceiveFault

Description An asynchronous receive that initiates two correlationSets, followed by
a flow with two sequences that contain synchronous receive-reply pairs
for the same operation but differnet correlationSets. Should trigger an
ambiguousReceive fault.
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Test case: Good-
Case

input expected operation

1 asynchronous

1 ambiguousReceive synchronous

Name Receive-ConflictingReceiveFault

Description An asynchronous receive that iniates a correlationSet, followed by a flow
with two sequences that contain synchronous receive-reply pair for the
same operation and correlationSet. Should trigger a conflictingReceive
fault.

Test case: Good-
Case

input expected operation

1 synchronous

1 conflictingReceive synchronous

Name ReceiveReply-ConflictingRequestFault

Description A synchronous interaction, followed by intermediate while that sub-
sequently enables multiple receives that correspond to a single syn-
chronous message exchange. Should trigger a conflictingRequest fault.

Test case: Good-
Case

input expected operation

1 1 synchronous

1 synchronous

1 conflictingRequest synchronous

Name ReceiveReply-CorrelationViolation-No

Description A receive-reply pair that uses an uninitiated correlationSet and sets
initiate to no. Should trigger a correlationViolation fault.

Test case: Good-
Case

input expected operation

1 correlationViolation synchronous

Name ReceiveReply-CorrelationViolation-Yes

Description Two subsequent receive-reply pairs which share a correlationSet and
where both receives have initiate set to yes.

Test case: Good-
Case

input expected operation

1 1 synchronous

1 correlationViolation synchronous

Name ReceiveReply-CorrelationViolation-Join

Description A receive-reply pair that initates a correlationSet with an intermediate
invoke that tries to join the correlationSet. The join operation should
only work if the correlationSet was initiate with a certain value.

Test case: Good-
Case-1

input expected operation

1 correlationViolation synchronous

Test case: Good-
Case-2

input expected operation

2 2 synchronous

Name ReceiveReply
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Description A simple receive-reply pair.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name ReceiveReply-Correlation-InitAsync

Description An asynchronous receive that initiates a correlationSet followed by a
receive-reply pair that uses this set.

Test case: Good-
Case

input expected operation

5 asynchronous

5 5 synchronous

Name ReceiveReply-Correlation-InitSync

Description A synchronous recieve that initiates a correlationSet followed by a
receive-reply pair that uses this set.

Test case: Good-
Case

input expected operation

5 0 synchronous

5 5 synchronous

Name ReceiveReply-FromParts

Description A receive-reply pair that uses the fromPart syntax instead of a variable.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name ReceiveReply-ToParts

Description A receive-reply pair that uses the toPart syntax instead of a variable.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name ReceiveReply-Fault

Description A receive-reply pair replies with a fault instead of a variable.

Test case: Good-
Case

input expected operation

1 syncFault synchronous

Name Throw

Description A receive-reply pair with an intermediate throw. The response should
a soap fault containing the bpel fault.

Test case: Good-
Case

input expected operation

1 completionConditionFailure synchronous

Name Throw-WithoutNamespace

Description A receive-reply pair with an intermediate throw that uses a bpel fault
without explicitly using the bpel namespace. The respone should be a
soap fault containing the bpel fault.

Test case: Good-
Case

input expected operation

1 completionConditionFailure synchronous
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Name Throw-FaultData

Description A receive-reply pair with an intermediate throw that also uses a
faultVariable. The content of the faultVariable should be contained in
the response.

Test case: Good-
Case

input expected operation

1 1, completionConditionFailure synchronous

Name Throw-CustomFault

Description A receive-reply pair with an intermediate throw that throws a custom
fault that undefined in the given namespace. The response should be
a soap fault containing the custom fault.

Test case: Good-
Case

input expected operation

1 testFault synchronous

Name Throw-CustomFaultInWsdl

Description A receive-reply pair with an intermediate throw that throws a custom
fault defined in the myRole WSDL. The response should be a soap
fault containing the custom fault.

Test case: Good-
Case

input expected operation

1 syncFault synchronous

Name Rethrow

Description A receive activity with an intermediate throw and a fault handler with
a catchAll. The fault handler rethrows the fault.

Test case: Good-
Case

input expected operation

1 completionConditionFailure synchronous

Name Rethrow-FaultDataUnmodified

Description A receive activity with an intermediate throw that uses a faultVariable.
A fault handler catches the fault, changes the data, and rethrows the
fault. The fault should be the response with unchanged data.

Test case: Good-
Case

input expected operation

1 1, completionConditionFailure synchronous

Name Rethrow-FaultData

Description A receive activity with an intermediate throw that uses a faultVariable.
A fault handler catches and rethrows the fault. The fault should be
the response along with the data.

Test case: Good-
Case

input expected operation

1 1, completionConditionFailure synchronous

Name Wait-For

Description A receive-reply pair with an intermediate wait that pauses execution
for five seconds.
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Test case: Good-
Case

input expected operation

5 5 synchronous

Name Wait-For-InvalidExpressionValue

Description A receive-reply pair with an intermediate wait. The for element is
assigned a value of xs:int, but only xs:duration is allowed.

Test case: Good-
Case

input expected operation

5 invalidExpressionValue synchronous

Name Wait-Until

Description A receive-reply pair with an intermediate wait that pauses the execution
until a date in the past. Therefore, the wait should complete instantly.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Empty

Description A receive-reply pair with an intermediate empty.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Exit

Description A receive-reply pair with an intermediate exit. There should not be a
normal response.

Test case: Good-
Case

input expected operation

1 synchronous

Name Validate

Description A receive-reply pair with an intermediate variable validation. The
variable to be validated describes a month, so only values in the range
of 1 and 12 should validate successfully.

Test case: Input
Value 13 should
return validation
fault

input expected operation

13 invalidVariables synchronous

Name Validate-InvalidVariables

Description A receive-reply pair with an intermediate variable validation. The
variable to be validated is of type xs:int and xs:boolean is copied into
it.

Test case: Good-
Case

input expected operation

1 invalidVariables synchronous

Name Variables-UninitializedVariableFault-Reply

Description A receive-reply pair where the variable of the reply is not initialized.
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Test case: Good-
Case

input expected operation

1 uninitializedVariable synchronous

Name Variables-UninitializedVariableFault-Invoke

Description A receive-reply pair with intermediate invoke. The inputVariable of
the invoke is not initialized.

Test case: Good-
Case

input expected operation

1 uninitializedVariable synchronous

Name Variables-DefaultInitialization

Description A receive-reply pair where the variable of the reply is assigned with a
default value.

Test case:
DefaultValue-
10-Should-Be-
Returned

input expected operation

5 10 synchronous

Name Sequence

Description A receive-reply pair enclosed in a sequence.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name While

Description A receive-reply pair with an intermediate while that loops for n times,
where n is equal to the input.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name RepeatUntil

Description A receive-reply pair with an intermediate while that loops for n+1
times, where n is equal to the input.

Test case: Good-
Case

input expected operation

2 3 synchronous

Name RepeatUntilEquality

Description A receive-reply pair with an intermediate while that loops for n times,
where n is equal to the input.

Test case: Good-
Case

input expected operation

2 2 synchronous

Name Flow

Description A receive-reply pair with an intermediate flow that contains two assigns.

Test case: Good-
Case

input expected operation

5 7 synchronous
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Name Flow-Links

Description A receive-reply pair with an intermediate flow that contains two assigns
which have a precedence relationship between each other using links.

Test case: Good-
Case

input expected operation

1 2 synchronous

Name Flow-BoundaryLinks

Description A receive-reply pair with an intermediate flow that contains an assign
and a sequence with an assign, as well as a link pointing from the
former to the later assign. That way the links crosses the boundary of
a structured activity, the sequence.

Test case: Good-
Case

input expected operation

1 2 synchronous

Name Flow-Links-JoinCondition

Description A receive-reply pair with an intermediate flow that contains three
assigns, two of which point to the third using links. Both links have
transitionConditions and their target a joinCondition defined upon
them. A joinFailure should result, given not both of the links are
activated.

Test case: Good-
Case-1

input expected operation

1 joinFailure synchronous

Test case: Good-
Case-2

input expected operation

3 6 synchronous

Name Flow-Links-JoinFailure

Description A receive-reply pair with an intermediate flow that contains three
assigns, two of which point to the third using links. Both links have
transitionConditions and their target a joinCondition defined upon
them. The transitionConditions do never evaluate to true, resulting in
a joinFailure on each invocation.

Test case: Good-
Case-1

input expected operation

1 joinFailure synchronous

Test case: Good-
Case-2

input expected operation

3 joinFailure synchronous

Name Flow-Links-SuppressJoinFailure

Description A receive-reply pair with an intermediate flow that contains three
assigns, two of which point to the third using links. Both links have
transitionConditions and their target a joinCondition defined upon
them. The transitionConditions do never evaluate to true, resulting in a
joinFailure on each invocation. However, this joinFailure is suppressed.

Test case: Good-
Case-1

input expected operation

1 3 synchronous
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Test case: Good-
Case-2

input expected operation

3 5 synchronous

Name Flow-Links-TransitionCondition

Description A receive-reply pair with an intermediate flow that contains three
assigns, two of which point to the third using links. Both links have
transitionConditions that do fire only if the input is greater than two.

Test case: Good-
Case-1

input expected operation

2 4 synchronous

Test case: Good-
Case-2

input expected operation

3 6 synchronous

Name Flow-GraphExample

Description An implementation of the flow graph process defined in Sec. 11.6.4.

Test case: Good-
Case-1

input expected operation

1 1 synchronous

1 1 synchronous

1 asynchronous

1 1 synchronous

1 asynchronous

Test case: Good-
Case-2

input expected operation

1 1 synchronous

1 asynchronous

1 1 synchronous

1 1 synchronous

1 asynchronous

Test case: Good-
Case-3

input expected operation

1 1 synchronous

1 1 synchronous

1 asynchronous

1 asynchronous

1 1 synchronous

Test case: Good-
Case-4

input expected operation

1 1 synchronous

1 asynchronous

1 1 synchronous

1 asynchronous

1 1 synchronous

Name Flow-Links-ReceiveCreatingInstances

Description A flow with a starting activity (receive with createInstance set to yes)
and a non-starting activity (assign), where a precedence relationship
is defined using links.
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Test case: Good-
Case

input expected operation

5 6 synchronous

Name If

Description A receive-reply pair with an intermediate if that checks whether the
input is even.

Test case: Not-If-
Case

input expected operation

1 0 synchronous

Test case: If-Case
input expected operation

2 1 synchronous

Name If-Else

Description A receive-reply pair with an intermediate if-else that checks whether
the input is even.

Test case: Else-
Case

input expected operation

1 0 synchronous

Test case: If-Case
input expected operation

2 1 synchronous

Name If-ElseIf

Description A receive-reply pair with an intermediate if-elseif that checks whether
the input is even or divisible by three.

Test case: Not-If-
Or-ElseIf-Case

input expected operation

1 0 synchronous

Test case: If-Case
input expected operation

2 1 synchronous

Test case: ElseIf-
Case

input expected operation

3 2 synchronous

Name If-ElseIf-Else

Description A receive-reply pair with an intermediate if-elseif-else that checks
whether the input is even or divisible by three.

Test case: Else-
Case

input expected operation

1 0 synchronous

Test case: If-Case
input expected operation

2 1 synchronous

Test case: ElseIf-
Case

input expected operation

3 2 synchronous

Name If-InvalidExpressionValue

Description A receive-reply pair with an intermediate if that should throw an
invalidExpressionValue fault because of an invalid condition.
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Test case: Selec-
tionFailure

input expected operation

1 invalidExpressionValue synchronous

Name ForEach

Description A receive-reply pair with an intermediate forEach that loops for n
times, where n is equal to the input. Each iteration the current loop
number is added to the final result.

Test case: 0-equals-
0

input expected operation

0 0 synchronous

Test case: 0plus1-
equals-0

input expected operation

1 1 synchronous

Test case:
0plus1plus2-
equals-3

input expected operation

2 3 synchronous

Name ForEach-NegativeStopCounter

Description A receive-reply pair with an intermediate forEach that should al-
ways fail with an invalidExpressionValue fault as finalCounterValue is
negative.

Test case: Nega-
tiveStopCounter

input expected operation

1 invalidExpressionValue synchronous

Name ForEach-CompletionCondition

Description A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated. N+1 children are scheduled
for execution, where n is equal to the input. If N+1 is less than two,
an invalidBranchConditionFault should be thrown.

Test case: Skip-
ping the third iter-
ation

input expected operation

2 1 synchronous

Test case: Can-
not meet comple-
tion condition

input expected operation

0 invalidBranchCondition synchronous

Name ForEach-CompletionCondition-Parallel

Description A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated. N+1 children are scheduled
for execution in parallel, where n is equal to the input. If N+1 is less
than two, an invalidBranchConditionFault should be thrown.

Test case: Skip-
ping the third iter-
ation

input expected operation

2 1 synchronous
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Test case: Can-
not meet comple-
tion condition

input expected operation

0 invalidBranchCondition synchronous

Name ForEach-CompletionCondition-SuccessfulBranchesOnly

Description A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated successfully. Each child
throws a fault, given the current counter value is even. N children are
scheduled for execution, where n is equal to the input.

Test case: Good-
Case-1

input expected operation

5 6 synchronous

Test case: Good-
Case-2

input expected operation

10 6 synchronous

Name ForEach-CompletionConditionFailure

Description A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated. N+1 children are scheduled
for execution in parallel, where n is equal to the input. If N+1 is less
than two, an invalidBranchConditionFault should be thrown. This is
a seperate test case that tests only for the failure.

Test case: Expect
completionCondi-
tionFailure

input expected operation

1 completionConditionFailure synchronous

Name ForEach-Parallel

Description A receive-reply pair with an intermediate forEach that executes its
children in parallel.

Test case:
0plus1plus2-
equals-3

input expected operation

2 3 synchronous

Name ForEach-Parallel-Invoke

Description A receive-reply pair with an intermediate forEach that executes its
children in parallel.

Test case:
0plus1plus2-
equals-3

input expected operation

102 synchronous

2 3 synchronous

101 true synchronous

102 3 synchronous

Name ForEach-NegativeStartCounter

Description A receive-reply pair with an intermediate forEach that should al-
ways fail with an invalidExpressionValue fault as startCounterValue is
negative.

Continued on next page

248



A.1. BPEL Test Cases

Table A.1 – Continued from previous page

Test case: Iterate-
Twice

input expected operation

2 invalidExpressionValue synchronous

Name ForEach-TooLargeStartCounter

Description A receive-reply pair with an intermediate forEach that should al-
ways fail with an invalidExpressionValue fault as startCounterValue is
initialized with a value that exceeds xs:unsignedInt.

Test case: invalid-
ExpressionValue

input expected operation

2 invalidExpressionValue synchronous

Name ForEach-CompletionCondition-NegativeBranches

Description A receive-reply pair with an intermediate forEach that should always
fail with an invalidExpressionValue fault as branches is initialized with
a negative value.

Test case: invalid-
ExpressionValue

input expected operation

2 invalidExpressionValue synchronous

Name Pick-Correlations-InitAsync

Description An asynchronous receive that initiates a correlationSet, followed by a
pick with a synchronous onMessage that correlates on this set.

Test case: Good-
Case

input expected operation

1 asynchronous

1 1 synchronous

Name Pick-Correlations-InitSync

Description A receive-reply pair that initiates a correlationSet, followed by a pick
with a synchronous onMessage that correlates on this set.

Test case: Good-
Case

input expected operation

1 1 synchronous

1 2 synchronous

Name Pick-CreateInstance

Description A pick with a synchronous onMessage that has createInstance set to
yes.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Pick-OnAlarm-For

Description An onAlarm with for test case. The test contains a receive-reply pair
that initiates a correlationSet and an intermediate pick that contains
an onMessage and an onAlarm with an for element. The onAlarm
should fire after two seconds and the process should reply with a
default value.

Test case: Good-
Case

input expected operation

1 -1 synchronous
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Name Pick-OnAlarm-Until

Description A receive-reply pair that initiates a correlationSet and an intermediate
pick that contains an onMessage and an onAlarm with an until element.
The onAlarm should fire immediately.

Test case: Good-
Case

input expected operation

1 -1 synchronous

Name Scope-Compensate

Description A scope with a receive-reply pair where the reply is located in a
compensationHandler. The scope is followed by a throw and the
compensationHandler is invoked from the process-level faultHandler
that catches the fault using compensate.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-CompensateScope

Description A scope with a receive-reply pair where the reply is located in a
compensationHandler. The scope is followed by a throw and the
compensationHandler is invoked from the process-level faultHandler
that catches the fault using compensateScope.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-ComplexCompensation

Description Complex scope compensation test case that implements the scenario
described in Sec. 12.4.2.

Test case: Good-
Case

input expected operation

1 3 synchronous

Name Scope-RepeatedCompensation

Description A scope with a receive-reply pair where the reply is located in a
compensationHandler. The scope is followed by a throw. The process-
level faultHandler that catches the fault contains two subsequent
compensates the second of which should be treated as empty.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-CorrelationSets-InitAsync

Description A scope with an asynchronous receive which initiates the correlation
set and a receive-reply pair, as well as a scope-level definition of a
correlationSet that is used by the messaging activities.

Test case: Good-
Case

input expected operation

1 asynchronous

1 2 synchronous

Name Scope-CorrelationSets-InitSync
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Description A scope with two subsequent receive-reply pairs and a scope-level
definition of a correlationSet that is used by the messaging activities.

Test case: Good-
Case

input expected operation

1 1 synchronous

1 2 synchronous

Name Scope-EventHandlers-InitAsync

Description An asynchronous receive followed by a wait and a process-level onMes-
sage eventHandler. The receive initiates a correlationSet on which the
onMessage correlates with a synchronous operation.

Test case: Good-
Case

input expected operation

5 asynchronous

5 5 synchronous

Name Scope-EventHandlers-InitSync

Description A receive-reply pair followed by a wait and a process-level onMessage
eventHandler. The receive initiates a correlationSet on which the
onMessage correlates with a synchronous operation.

Test case: Good-
Case

input expected operation

1 1 synchronous

1 2 synchronous

Name Scope-EventHandlers-OnAlarm-For

Description A receive-reply pair and a process-level onAlarm eventHandler. The
receive is followed by a wait that pauses execution for five seconds.
The eventHandler waits for two seconds and replies to the receive.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Scope-EventHandlers-OnAlarm-RepeatEvery

Description A receive-reply pair with an intermediate wait and a process-level
onAlarm eventHandler. The eventHandler repeats execution every
second and adds one to the final result. The intermediate wait pauses
execution for 2.2 seconds, after which the current result is replied.

Test case: Good-
Case

input expected operation

5 true synchronous

Name Scope-EventHandlers-OnAlarm-RepeatEvery-For

Description A receive-reply pair with an intermediate wait and a process-level
onAlarm eventHandler. The eventHandler repeats execution every
second and adds one to the final result. The repetition takes place
after one second, so the handler should repeat exactly once. The
intermediate wait pauses execution for 2.2 seconds, after which the
current result is replied.

Test case: Good-
Case

input expected operation

5 true synchronous
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Name Scope-EventHandlers-OnAlarm-RepeatEvery-Until

Description A receive-reply pair with an intermediate wait and a process-level
onAlarm eventHandler. The eventHandler repeats execution every
second and adds one to the final result. The repetition takes place
after a date in the past, so the handler should execute immediately.
The intermediate wait pauses execution for 2.2 seconds, after which
the current result is replied.

Test case: Good-
Case

input expected operation

5 true synchronous

Name Scope-EventHandlers-OnAlarm-Until

Description A receive followed by a scope with an onAlarm eventHandler and a
wait. The onAlarm waits until a date in the past and should therefore
execute immediately. Its body contains the reply to the initial receive.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Scope-EventHandlers-Parts

Description An asynchronous receive followed by a wait and a process-level onMes-
sage eventHandler. The receive initiates a correlationSet on which the
onMessage correlates with a synchronous operation. Furthermore, the
onMessage uses the fromPart syntax.

Test case: Good-
Case

input expected operation

5 asynchronous

5 5 synchronous

Name Scope-FaultHandlers

Description A scope with a receive followed by a intermediate throw. The fault that
is thrown is caught by the scope-level faultHandler by its faultName.
Inside this faultHandler is the reply to the initial receive.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Scope-FaultHandlers-CatchAll

Description A scope with a receive followed by a intermediate throw. The fault that
is thrown is caught by the scope-level catchAll faultHandler. Inside
this faultHandler is the reply to the initial receive.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Scope-FaultHandlers-FaultElement

Description A scope with a receive followed by a intermediate throw. The fault
that is thrown is caught by the scope-level faultHandler that uses a
faultVariable and faultElement configuration. Inside this faultHandler
is the reply to the initial receive.
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Test case: Good-
Case

input expected operation

5 5 synchronous

Name Scope-FaultHandlers-FaultMessageType

Description A scope with a receive followed by a intermediate throw. The fault that
is thrown is caught by the scope-level faultHandler that uses a fault-
Variable and faultMessageType configuration. Inside this faultHandler
is the reply to the initial receive.

Test case: Good-
Case

input expected operation

5 5 synchronous

Name Scope-ExitOnStandardFault

Description A scope with receive-reply pair and an intermediate throw. There is
no faultHandler, but the exitOnStandardFault attribute of the scope
is set to yes.

Test case: Good-
Case

input expected operation

5 synchronous

Name Scope-ExitOnStandardFault-JoinFailure

Description A scope with a receive-reply pair and an intermediate throw that throws
a joinFailure. There is no faultHandler, but the exitOnStandardFault
attribute of the scope is set to yes. However, the exitOnStandardFault
sematics do not apply to joinFailures.

Test case: Good-
Case

input expected operation

1 joinFailure synchronous

Name Scope-FaultHandlers-CatchOrder

Description A scope with a receive followed by a intermediate throw. The scope is
associated with mulitple faultHandlers. A specific one of these should
catch the fault and only inside this faultHandler is the reply to the
initial receive. The process is adapted from the example in Spec. 12.5.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-FaultHandlers-VariableData

Description A scope with a receive followed by a intermediate throw. The fault
that is thrown is caught by the scope-level faultHandler that uses a
faultVariable and faultMessage configuration. Inside this faultHandler
is the reply to the initial receive and the data replied is the content of
the faultVariable.

Test case: Good-
Case

input expected operation

1 0 synchronous

Name Scope-MessageExchanges

Description A scope with a receive-reply pair and a scope-level definition of mes-
sageExchanges.
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Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-PartnerLinks

Description A scope with a receive-reply pair and an intermediate invoke. The
partnerLink which is invoked is defined at scope-level.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-Variables

Description A scope with a receive-reply pair and an intermediate invoke. The
partnerLink which is invoked is defined at scope-level.

Test case: Good-
Case

input expected operation

1 1 synchronous

Name Scope-Variables-Overwriting

Description A scope with a receive-reply pair and another nested scope. The
nested scope overwrites a variable of the parent scope. Child-level
manipulation of this variable should not be visible at the parent scope.

Test case: Good-
Case

input expected operation

123 3 synchronous

Name Scope-Isolated

Description A receive-reply pair that encloses a flow with ten isolated scopes which
all increment the result by one. As the scopes should not run in
parallel, the outcome must be deterministic.

Test case: Good-
Case

input expected operation

1 11 synchronous

4 14 synchronous

123 133 synchronous

Name Scope-TerminationHandlers

Description A scope with a receive-reply pair and a nested scope in between. That
scope in turn contains a flow with two parallel scopes. Both scopes
pause execution for a short period. The scope that resumes execution
first throws a fault caught by the faultHandler of its parent scope. The
should trigger the execution of the terminationHandler of its sibling
scope.

Test case: Good-
Case

input expected operation

5 -1 synchronous

Name Scope-TerminationHandlers-FaultNotPropagating
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Description A scope with a receive-reply pair and a nested scope in between. That
scope in turn contains a flow with two parallel scopes. Both scopes
pause execution for a short period. The scope that resumes execution
first throws a fault caught by the faultHandler of its parent scope. The
should trigger the execution of the terminationHandler of its sibling
scope. That terminationHandler also throws a fault which should not
be propagated.

Test case: Good-
Case

input expected operation

5 -1 synchronous

Name Scope-RepeatableConstructCompensation

Description A receive followed by a while that contains a scope with a compensa-
tionHandler. After the while comes a throw and its fault is caught by
the process-level faultHandler. This faultHandler first invokes compen-
sation of all scopes and the replies to the initial receive. The content
of the reply depends on the execution of the compensationHandlers.

Test case: Good-
Case

input expected operation

3 3 synchronous

Name MissingReply

Description A receive for a synchronous operation with no associated reply.

Test case: Good-
Case

input expected operation

1 missingReply synchronous

Name MissingRequest

Description A receive and a reply which belong to different messageExchanges. On
the execution of the reply, a missingRequest fault should be thrown.

Test case: Good-
Case

input expected operation

1 missingRequest synchronous

Table A.2.: WCP Test Cases

Property Pattern Test

Name WCP01-SequencePattern

Test case: Good-
Case

input expected operation

1 1AB synchronous

Name WCP02-ParallelSplitPattern

Test case: Good-
Case

input expected operation

1 1AB synchronous

Name WCP03-SynchronizationPattern

Continued on next page
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Test case: Good-
Case

input expected operation

1 1AB synchronous

Name WCP04-ExclusiveChoicePattern

Test case: Good-
Case-1

input expected operation

1 1A synchronous

Test case: Good-
Case-2

input expected operation

11 11B synchronous

Name WCP05-SimpleMergePattern

Test case: Good-
Case-1

input expected operation

1 1A synchronous

Test case: Good-
Case-2

input expected operation

11 11B synchronous

Name WCP06-MultiChoicePattern

Test case: Good-
Case-1

input expected operation

1 AYZ synchronous

Test case: Good-
Case-2

input expected operation

2 ABZ synchronous

Test case: Good-
Case-3

input expected operation

3 ABC synchronous

Name WCP06-MultiChoicePattern-Partial

Test case: Good-
Case-1

input expected operation

1 AYZ synchronous

Test case: Good-
Case-2

input expected operation

2 ABZ synchronous

Test case: Good-
Case-3

input expected operation

3 ABC synchronous

Name WCP07-SynchronizingMergePattern

Test case: Good-
Case-1

input expected operation

1 AYZ synchronous

Test case: Good-
Case-2

input expected operation

2 ABZ synchronous

Test case: Good-
Case-3

input expected operation

3 ABC synchronous

Name WCP07-SynchronizingMergePattern-Partial

Continued on next page
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Test case: Good-
Case-1

input expected operation

1 AYZ synchronous

Test case: Good-
Case-2

input expected operation

2 ABZ synchronous

Test case: Good-
Case-3

input expected operation

3 ABC synchronous

Name WCP09-DiscriminatorPattern

Test case: Good-
Case

input expected operation

1 1 synchronous

Name WCP10-ArbitraryCyclesPattern

Test case: Good-
Case-1

input expected operation

1 1ABC synchronous

Test case: Good-
Case-2

input expected operation

2 2BC synchronous

Test case: Good-
Case-3

input expected operation

3 3C synchronous

Name WCP11-ImplicitTerminationPattern

Test case: Good-
Case

input expected operation

1 1 synchronous

Name WCP16-DeferredChoicePattern

Test case: Good-
Case-1

input expected operation

1 1 synchronous

Test case: Good-
Case-2

input expected operation

1 1 synchronous

Name WCP12-MultipleInstancesWithoutSynchronizationPattern

Test case: Good-
Case-1

input expected operation

102 synchronous

1 synchronous

101 true synchronous

102 2 synchronous

Test case: Good-
Case-2

input expected operation

102 synchronous

2 synchronous

101 true synchronous

102 3 synchronous
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Name WCP12-MultipleInstancesWithoutSynchronizationPattern-Partial

Test case: Good-
Case

input expected operation

102 synchronous

100 synchronous

101 true synchronous

102 4 synchronous

Name WCP12-MultipleInstancesWithoutSynchronizationPattern-While-
Partial

Test case: Good-
Case-1

input expected operation

1 1 synchronous

Test case: Good-
Case-2

input expected operation

2 2 synchronous

Name WCP13-MultipleInstancesWithAPrioriDesignTimeKnowledgePattern

Test case: Good-
Case-1

input expected operation

102 synchronous

1 synchronous

101 true synchronous

102 4 synchronous

Test case: Good-
Case-2

input expected operation

102 synchronous

2 synchronous

101 true synchronous

102 4 synchronous

Name WCP13-MultipleInstancesWithAPrioriDesignTimeKnowledgePattern-
Partial

Test case: Good-
Case

input expected operation

102 synchronous

100 synchronous

101 true synchronous

102 4 synchronous

Name WCP14-MultipleInstancesWithAPrioriRuntimeKnowledgePattern

Test case: Good-
Case-1

input expected operation

102 synchronous

1 synchronous

101 true synchronous

102 2 synchronous
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Test case: Good-
Case-2

input expected operation

102 synchronous

2 synchronous

101 true synchronous

102 3 synchronous

Name WCP19-CancelActivityPattern

Test case: Good-
Case-1

input expected operation

1 1A synchronous

Test case: Good-
Case-2

input expected operation

0 0B synchronous

Name WCP20-CancelCasePattern

Test case: Good-
Case-1

input expected operation

1 1 synchronous

Test case: Good-
Case-2

input expected operation

0 synchronous

Name WCP18-MilestonePattern

Test case: Pick-
AsyncMessage

input expected operation

1 1 synchronous

1 asynchronous

1 8 synchronous

Test case:
Pick3sTimeout

input expected operation

1 1 synchronous

1 9 synchronous

Name WCP17-InterleavedParallelRoutingPattern

Test case: Good-
Case

input expected operation

1 AW1ABW2B synchronous

A.2. BPMN Test Cases

In contrast to the BPEL tests, there is exactly one test step per test case for
the BPMN test suite, since there is no additional interaction with a process
instance during execution. Each test step is described by its input and the
expected execution trace. The input corresponds to the value a certain process
variable is initialized with and the trace corresponds to the tokens expected in
the process log file for a passing test. Table A.3 lists the test cases for the BPMN
conformance test suite described in Sect. 3.2.3.3.
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Property Conformance Test

Name CallActivity-GlobalTask

Description Definitions contains a GlobalScriptTask which is called by a CallAc-
tivity.

Test case 1
input trace

task1, task2

Name CallActivity-Process

Description A collaboration with two participants. One process calls the other one
through a callActivity.

Test case 1
input trace

task1, task2

Name Cancel-Event

Description A simple test for canceling a transaction. This test uses the two
allowed cancel event types:CancelEndEvent (within the transaction)
and CancelBoundaryEvent (interrupting, attached to the transaction).

Test case 1
input trace

task1, task2

Name Conditional-BoundaryEvent-SubProcess-Interrupting

Description A test for an conditional boundary event attached to asub process
which is marked as interrupting.

Test case 1
input trace

a task3

Test case 2
input trace

b task1, task2

Name Conditional-BoundaryEvent-SubProcess-NonInterrupting

Description A test for an conditional boundary event attached to asub process
which is marked as non interrupting.

Test case 1
input trace

a task1, task2, task3

Test case 2
input trace

b task1, task2

Name Conditional-IntermediateEvent

Description A test for an intermediate conditional event: ConditionIntermediate
checks a condition set at process instantiation. If the condition is
fulfilled the process completes, if not the process is locked at the event
and should not complete.

Continued on next page
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Test case 1
input trace

a task1

Test case 2
input trace

b

Name Conditional-StartEvent-EventSubProcess-Interrupting

Description A test for an interrupting conditional start event in an event sub
process

Test case 1
input trace

a task1

Name Conditional-StartEvent-EventSubProcess-NonInterrupting

Description A test for an conditional start event in an event sub process which is
marked as non interrupting.

Test case 1
input trace

a task1, task2

Name Compensation-BoundaryEvent-SubProcess

Description Tests whether the compensation boundary event can be attached to
asub process.

Test case 1
input trace

task1

Name Compensation-EndEvent-SubProcess

Description A test with a compensation end event placed in a sub process which
should trigger the compensation of the task performed before.

Test case 1
input trace

task1

Name Compensation-EndEvent-TopLevel

Description A test with a top level compensation end event which should trigger
the compensation of the task performed before.

Test case 1
input trace

task1

Name Compensation-IntermediateEvent

Description A test with a top level compensation intermediate event which should
trigger the compensation of the task performed before.

Test case 1
input trace

task1

Name Compensation-StartEvent-EventSubProcess

Description A test with an event SubProcess, triggered by an Compensation
StartEvent.The compensation is triggered by an Intermediate Throw
Event placed outside the subprocess.

Continued on next page
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Test case 1
input trace

task1

Name Compensation-TriggeredByCancel

Description A test with a transaction which ends with a CancelEnd Event. In the
course of canceling the transaction all successful executed tasks have
to be compensated. Therefore, the compensational task Task1 has to
be executed.

Test case 1
input trace

task1

Name ComplexGateway

Description A process with five scriptTasks and two complexGateways. Three of the
tasks are enclosed by the complexGateways and each one is enabled
based on input data. The activationCondition of the converging
complexGate is set to ’activationCount >= 1’, so the gateway should
fire for any number of activated incoming branches.

Test case 1
input trace

a task1, task4

Test case 2
input trace

b task2, task4

Test case 3
input trace

c task3, task4

Test case 4
input trace

ab task1, task2, task4

Name Error-BoundaryEvent-SubProcess-Interrupting

Description A test for the error boundary event attached to a sub process.The task
(task2) following the SequenceFlow originating from the boundary
event should be executed. The Task (task3) following the normal
outgoing sequence flow after the SubProcess must not be executed.

Test case 1
input trace

task1, task2

Name Error-BoundaryEvent-Transaction-Interrupting

Description A test for the error boundary event attached to a transaction.The task
(task2) following the SequenceFlow originating from the boundary
event should be executed. The Task (task3) following the normal
outgoing sequence flow after the Transaction must not be executed.

Test case 1
input trace

task1, task2

Name Error-EndEvent-TopLevel

Description A simple test for the ErrorEndEvent in a top level process.

Continued on next page
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Test case 1
input trace

task1, ERROR-thrownErrorEvent

Name Error-StartEvent-EventSubProcess-Interrupting

Description A test for the error start event in an event sub process. After the
execution of the EventSubProcess the flow should continue normally.

Test case 1
input trace

task1, task2, task3

Name Escalation-BoundaryEvent-SubProcess-Interrupting

Description A test for an escalation event interrupting a subprocess.The task
(task2) following the Intermediate EscalationEvent and the Task (task4)
following the normal outgoing sequence flow after the SubProcess must
not be executed. The SequenceFlow originating from the boundary
event is activated and therefore Task3 should be executed.

Test case 1
input trace

task1, task3

Name Escalation-BoundaryEvent-SubProcess-NonInterrupting

Description A test for an escalation event NOT interrupting a subprocess.All tasks
(Task1-4) should be executed.

Test case 1
input trace

task1, task2, task3, task4

Name Escalation-EndEvent-SubProcess

Description A test for an escalation end event defined in a SubProcess.Only the
task attached to the BoundaryEvent should be executed.

Test case 1
input trace

task1

Name Escalation-EndEvent-TopLevel

Description A test for an escalation end event in a top level process.

Test case 1
input trace

task1, ERROR-thrownEscalationEvent

Name Escalation-IntermediateThrowEvent

Description A test for an escalation intermediate throw event: Task1 can only be
executed if the event has been thrown (and caught).

Test case 1
input trace

task1

Name Escalation-StartEvent-EventSubProcess-Interrupting

Description A test for the interrupting escalation start event in an event SubProcess.
Task1 within in the (normal) SubProcess should not be executed. Task
2 should be executed.
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Test case 1
input trace

task2

Name Escalation-StartEvent-EventSubProcess-NonInterrupting

Description A test for the escalation start event in an event sub process which is
marked as ”non interrupting”. Task2 within in the (normal) SubProcess
and Task3 which is defined after the SubProcess should be executed.

Test case 1
input trace

task1, task2, task3

Name EventBasedGateway-Signals

Description A process with five scriptTasks, a diverging parallelGateway, a diverg-
ing eventBasedGateway, an intermediate signal throw event and two
intermediate signal catch events. The parallelGateway points to the
eventBasedGateway in one branch and, in the other branch, throws
the signal. This signal is caught by one of the branches following the
eventBasedGateway.

Test case 1
input trace

task1, task2, task4

Name EventBasedGateway-Timer

Description A process with three scriptTasks, a diverging eventBasedGateway and
two intermediate catch events. One of the catch events refers to a
signal that is never thrown and the other one to a timer. Only the
branch of the timer should ever be executed.

Test case 1
input trace

task2

Name ExclusiveDiverging-InclusiveConverging

Description A process with four scriptTasks, a diverging exclusiveGateway and a
converging inclusiveGateway. Two of the tasks are enclosed between
the gateways and only one of them is triggered depending on input
data. The inclusiveGateway should merge the incoming branches.

Test case 1
input trace

b task2, task3

Test case 2
input trace

a task1, task3

Test case 3
input trace

ab task1, task3

Name ExclusiveDiverging-ParallelConverging

Description A process with four scriptTasks, a diverging exclusiveGateway and
a converging parallelGateway. Two scriptTasks are enclosed by the
gateways and the execution should deadlock, because only one incoming
branch of the parallelGateway should ever be executed. Hence, the
scriptTask following the parallelGateway should never be executed.

Continued on next page
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Test case 1
input trace

a task1

Test case 2
input trace

b task2

Test case 3
input trace

ab task1

Name ExclusiveGateway

Description A process with four scriptTasks and exclusiveGateways. The execution
of two of the tasks is controlled by the exclusiveGateways and only
one of the tasks is actually executed.

Test case 1
input trace

b task2, task3

Test case 2
input trace

a task1, task3

Test case 3
input trace

ab task1, task3

Test case 4
input trace

c ERROR-runtime

Name ExclusiveGateway-Default

Description A process with five scriptTasks and exclusiveGateways. The execution
of three of the tasks is controlled by the exclusiveGateways based on
the input and only one of the tasks is actually executed.Two tasks are
triggered through sequenceFlows with conditionExpressions and one
is triggered through a sequenceFlow which is marked as default.

Test case 1
input trace

b task2, task4

Test case 2
input trace

a task1, task4

Test case 3
input trace

ab task1, task4

Test case 4
input trace

c task3, task4

Name ExclusiveGatewayMixed

Description A process with six scriptTasks and three exclusiveGateways.One of
the gateways acts as a mixed gateway. Each pair of exclusiveGateways
encapsulates two script tasks.The enabling of these scriptTasks depends
on input data

Test case 1
input trace

a task2, task4, task5

Continued on next page
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Test case 2
input trace

b task1, task3, task5

Test case 3
input trace

ab task1, task3, task5

Name InclusiveDiverging-ExclusiveConverging

Description A process with four scriptTasks, a diverging inclusiveGateway and a
converging exclusiveGateway. Two of the tasks are encapsulated by
the gateways. Either one, none, or both of the scriptTasks are enabled
based on input data and as a result the exclusiveGateway should either
fire once or twice.

Test case 1
input trace

ab task1, task3, task2, task3

Test case 2
input trace

a task1, task3

Test case 3
input trace

b task2, task3

Name InclusiveDiverging-ParallelConverging

Description A process with four scriptTasks, a diverging inclusiveGateway and
a converging parallelGateway. Two scriptTasks are enclosed by the
gateways and the execution should deadlock if only one incoming
branch of the parallelGateway is enabled. Hence, the scriptTask
following the parallelGateway should only be executed in a single case.

Test case 1
input trace

a task1

Test case 2
input trace

b task2

Test case 3
input trace

ab task1, task2, task3

Name InclusiveGateway

Description A process with four scriptTasks, two of which are encapsulated by
inclusiveGateways. Either one, none, or both of the scriptTasks are
enabled based on input data.

Test case 1
input trace

ab task1, task2, task3

Test case 2
input trace

a task1, task3

Test case 3
input trace

b task2, task3

Continued on next page
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Test case 4
input trace

c ERROR-runtime

Name InclusiveGateway-Default

Description A process with five scriptTasks, three of which are encapsulated by
inclusiveGateways. One of the scriptTasks acts as a default task.
Either one, both of the others or the default task are executed based
on input data.

Test case 1
input trace

c task3, task4

Name MultiInstanceTask-AllBehavior

Description A scriptTask that is marked as a sequential multiInstance task and is
enabled three times and its behavior set to all.The task has a signal
boundary event attached that points to another script task. The event
should never be thrown.

Test case 1
input trace

task1, task1, task1, task2

Name Lanes

Description A collaboration with a single participant with two lanes. Lanes have
no effect on the execution and should be ignored.

Test case 1
input trace

task1, task2, task3

Name Link-Event

Description A simple test for link events

Test case 1
input trace

task1

Name LoopTask-LoopMaximum

Description A scriptTask with standardLoopCharacteristics and a condition that
always evaluates to true. Additionally a loopMaximum is set to three.

Test case 1
input trace

task1, task1, task1, task2

Name LoopTask-NoIteration-TestBeforeFalse

Description A scriptTask with standardLoopCharacteristics and a condition that
always evaluates to false, but has testBefore set to false and, hence,
should be executed once.

Test case 1
input trace

task1, task2

Name LoopTask-NoIteration-TestBeforeTrue

Description A scriptTask with standardLoopCharacteristics and a condition that
always evaluates to false and has testBefore set to true. Hence, the
task should never be executed.

Continued on next page

267



A. Conformance Test Suites

Table A.3 – Continued from previous page

Test case 1
input trace

task2

Name MultiInstanceTask-NoneBehavior

Description A scriptTask that is marked as a sequential multiInstance task and is
enabled three times and its behavior set to none.The task has a signal
boundary event attached that points to another script task. The event
should be thrown for every task execution

Test case 1
input trace

task1, task3, task1, task3, task1, task3, task2

Name MultiInstanceTask-OneBehavior

Description A scriptTask that is marked as a sequential multiInstance task and is
enabled three times and its behavior set to one.The task has a signal
boundary event attached that points to another script task. The event
should be thrown once.

Test case 1
input trace

task1, task3, task1, task1, task2

Name MultiInstanceTask-Parallel

Description A scriptTask that is marked as a parallel multiInstance task and is
enabled three times

Test case 1
input trace

task1, task1, task1, task2

Name MultiInstanceTask-Sequential

Description A scriptTask that is marked as a sequential multiInstance task and is
enabled three times

Test case 1
input trace

task1, task1, task1, task2

Name ParallelDiverging-ExclusiveConverging

Description A process with four tasks, a diverging parallelGateway and a converging
exclusiveGateway. Two of the tasks are executed in parallel and then
merged by the exclusiveGateway. As a result, the task following the
exclusiveGateway should be followed twice.

Test case 1
input trace

task1, task3, task2, task3

Name ParallelDiverging-InclusiveConverging

Description A process with four tasks, a diverging parallelGateway and a converging
inclusiveGateway. Two of the tasks are executed in parallel and merged
by the inclusiveGateway.

Test case 1
input trace

task1, task2, task3

Name ParallelGateway

Continued on next page
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Description A process with four scriptTasks and two parallelGateways. Two of the
scriptTasks are surrounded by the parallelGateways.

Test case 1
input trace

task1, task2, task3

Name ParallelGateway-Conditions

Description A process with four scriptTasks and two parallelGateways. Two
of the scriptTasks are surrounded by the parallelGateways and the
sequenceFlows pointing to the mergine gateway have conditions. These
conditions should be ignored by an engine.

Test case 1
input trace

a task1, task2, task3

Test case 2
input trace

b task1, task2, task3

Test case 3
input trace

ab task1, task2, task3

Test case 4
input trace

c task1, task2, task3

Name Participant

Description A collaboration with a single participant

Test case 1
input trace

task1

Name SequenceFlow

Description A process with two scriptTasks connected by a sequenceFlow

Test case 1
input trace

task1

Name SequenceFlow-Conditional

Description A process with three scriptTasks connected by sequenceFlows. The
first scriptTask points to the other tasks with sequenceFlows. One of
these sequenceFlows is associated with a conditionExpression

Test case 1
input trace

a task1, task2

Test case 2
input trace

b task2

Name SequenceFlow-ConditionalDefault

Description A process with three scriptTasks connected by sequenceFlows. The
first scriptTask points to the other tasks with sequenceFlows. One
of these sequenceFlows is associated with a conditionExpression, the
other one is marked as default

Continued on next page
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Test case 1
input trace

a task1

Test case 2
input trace

b task2

Name SequenceFlow-ConditionalDefault-Normal

Description A process with four scriptTasks connected by sequenceFlows. The first
scriptTask points to the other three tasks with sequenceFlows. The
first of these sequenceFlows is associated with a conditionExpression,
the second one is marked as default and the third has no condition
associated. This is a special case document in Sec. 13.2.1, p. 427.

Test case 1
input trace

b task2, task3

Name Signal-EndEvent-SubProcess

Description A test to test a signal end event placed in a SubProcess. The thrown
signal is caught by an attached boundary event.

Test case 1
input trace

task1

Name Signal-BoundaryEvent-SubProcess-NonInterrupting

Description A test for a signal boundary event NOT interrupting a subprocess.All
tasks (Task1-4) should be executed.

Test case 1
input trace

task1, task2, task3, task4

Name Signal-BoundaryEvent-SubProcess-Interrupting

Description A test for a signal boundary event interrupting a subprocess.The task
(task2) following the Intermediate SignalEvent and the Task (task4)
following the normal outgoing sequence flow after the SubProcess must
not be executed. The SequenceFlow originating from the boundary
event is activated and therefore Task3 should be executed.

Test case 1
input trace

task1, task3

Name Signal-IntermediateEvent-ThrowAndCatch

Description A test for signal intermediate events: After a parallel split onebranch
of the process awaits a signal which is thrown by the other branch.

Test case 1
input trace

task1

Name Signal-StartEvent-EventSubProcess-Interrupting

Description A test for the interrupting signal start event in an event SubProcess.
Task1 within in the (normal) SubProcess should not be executed. Task
2 should be executed.

Continued on next page

270



A.2. BPMN Test Cases

Table A.3 – Continued from previous page

Test case 1
input trace

task2

Name Signal-StartEvent-EventSubProcess-NonInterrupting

Description A test for the signal start event in an event sub process which is marked
as ”non interrupting”. Task2 within in the (normal) SubProcess and
Task3 which is defined after the SubProcess should be executed.

Test case 1
input trace

task1, task2, task3

Name SubProcess

Description A process that contains a subProcess

Test case 1
input trace

task1, task2

Name Transaction

Description A process that contains a transaction

Test case 1
input trace

task1, task2

Name Terminate-Event

Description A test for a terminate end event

Test case 1
input trace

Name Timer-IntermediateEvent

Description A process with two scriptTasks. There is a intermediateCatchEvent in
between the tasks that delay the execution for a short period of time.

Test case 1
input trace

task1

Name Timer-BoundaryEvent-SubProcess-Interrupting

Description A process with multiple scriptTasks and a subProcess with timer
events. The execution of the subProcess is delayed by an intermediate
timer event for a short amount of time.In the meantime, a boundary
timer event should fire and interrupt the subProcess.

Test case 1
input trace

task3

Name Timer-BoundaryEvent-SubProcess-NonInterrupting

Description A process with multiple scriptTasks and a subProcess with timer
events. The execution of the subProcess is delayed by an intermediate
timer event for a short amount of time.In the meantime, a boundary
timer event should fire without interrupting the subProcess.

Test case 1
input trace

task1, task2, task3
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Name Timer-StartEvent-EventSubProcess-Interrupting

Description A process with an ordinary subProcess and an event subProcess.The
subProcess encloses the event subProcess and the latter is started by
a timer startEvent. The event subProcess interrupts the activities of
its parent subProcess.

Test case 1
input trace

task2

Name Timer-StartEvent-EventSubProcess-NonInterrupting

Description A process with an ordinary subProcess and an event subProcess.The
subProcess encloses the event subProcess and the latter is started
by a timer startEvent. All activities should be executed without
interruption.

Test case 1
input trace

task1, task2, task3
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In Table B.1, this section lists the test assertions encoded in the bpp tool that have
been used to perform the practical evaluation of portability metrics presented in
Sect. 4.4. As described in Sect. 4.4.2, they consist of a unique ID, a description
of the process element they are targeted at, a target that corresponds to an
XPath expression which is executed during their evaluation, and a degree which
identifies their severity with respect to portability. The table has been generated
automatically from the code of the bpp tool.

Table B.1.: Portability Test Assertions

Property Test Assertion

ID bpp-r1

Description A process definition should not use the doXslTransform() extension function

Target //*[local-name() = ’from’ and contains(. , ’doXslTransform’)] | //*[local-
name() = ’to’ and contains(. , ’doXslTransform’)]

Degree 5

ID bpp-r2

Description A process definition should not rely on the semantics of keepSrcElementName
in a <copy> construct

Target //*[@keepSrcElementName=’yes’]

Degree 7

ID bpp-r3-1

Description A process definition must not use the empty variant in a from-spec in an
assignment

Target //*[local-name() = ’from’ and not(text()) and not(node()) and
empty(@variable) and empty(@part) and empty(@partnerLink)
and empty(@endpointReference) and empty(@property) and
empty(@expressionlanguage) and empty(@expression)]

Degree 9

ID bpp-r3-2

Description A process definition must not use the empty variant in a to-spec in an
assignment

Target //*[local-name() = ’to’ and not(text()) and not(node()) and not(@variable)
and not(@part) and not(@partnerLink) and not(@endpointReference) and
not(@property) and not(@expressionlanguage) and not(@expression)]

Degree 9
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ID bpp-r3-3

Description A process definition may directly assign an int-value in a from-spec in an
assignment

Target //*[local-name() = ’from’ and (string(number(.)) != ’NaN’) and not
(./*[text()]) ]

Degree 1

ID bpp-r3-4

Description A process definition may assign a property in a from-spec in an assignment

Target //*[local-name() = ’from’ and exists(@property) ]

Degree 1

ID bpp-r4

Description A process definition should not use dynamic invocation based on the re-
assignment of a partnerLink

Target //*[local-name() = ’to’ and not(empty(@partnerLink))]

Degree 4

ID bpp-r5

Description A process definition may use a query in a copy operation

Target //*[local-name() = ’from’ or local-name() = ’to’]/*[local-name() = ’query’]

Degree 1

ID bpp-r6

Description A process definition should not use validation during an assignment

Target //*[@validate=’yes’]

Degree 5

ID bpp-r7

Description A process definition should not use the shortcut syntax for catching a fault
during a service invocation.

Target //*[local-name() = ’invoke’]/*[local-name() = ’catch’]

Degree 7

ID bpp-r8

Description A process definition should not use the shortcut syntax for catching any fault
during a service invocation

Target //*[local-name() = ’invoke’]/*[local-name() = ’catchAll’]

Degree 3

ID bpp-r9

Description A process definition should not use the shortcut syntax for using compensation
during a service invocation

Target //*[local-name() = ’invoke’]/*[local-name() = ’compensationHandler’]

Degree 3

ID bpp-r10

Description A process definition should not use correlations in a service invocation
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Target //*[local-name() = ’invoke’ and exists(@outputVariable)]/*[local-name() =
’correlations’]/*[local-name() = ’correlation’ and exists(@pattern)]

Degree 4

ID bpp-r11

Description A process definition should not omit the variable when invoking a web service
operation that does not expect an input message

Target //*[local-name() = ’invoke’ and empty(@inputVariable) and
empty(@outputVariable) and not(child::fromParts) and not (child::toParts)]

Degree 5

ID bpp-r12-1

Description A process definition should not use the fromParts shortcut syntax during a
service invocation

Target //*[local-name() = ’invoke’]/*[local-name() = ’fromParts’]

Degree 4

ID bpp-r12-2

Description A process definition should not use the toParts shortcut syntax during a
service invocation

Target //*[local-name() = ’invoke’]/*[local-name() = ’toParts’]

Degree 5

ID bpp-r13

Description A process definition should not use correlations during the receipt of a message

Target //*[local-name() = ’receive’]/*[local-name() = ’correlations’]

Degree 3

ID bpp-r14-1

Description A process definition should not use the fromParts shortcut syntax during the
receipt of a message

Target //*[local-name() = ’receive’]/*[local-name() = ’fromParts’]

Degree 4

ID bpp-r14-2

Description A process definition should not use the toParts shortcut syntax when replying
to an invocation

Target //*[local-name() = ’reply’]/*[local-name() = ’toParts’]

Degree 5

ID bpp-r14-3

Description A process definition should not explicitly reply a fault in a <reply> activity

Target //*[local-name() = ’reply’ and exists(@faultName)]

Degree 2

ID bpp-r14-4

Description A process definition may use messageExchanges in a <reply> or a <receive>
activity

Target //*[(local-name() = ’reply’ or local-name() = ’receive’) and ex-
ists(@messageExchange)]
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Degree 1

ID bpp-r15

Description A process definition should not use the rethrow activity.

Target //*[local-name() = ’rethrow’]

Degree 3

ID bpp-r16

Description A process definition should not use a faultVariable when rethrowing a fault

Target //*[local-name() = ’catch’ and exists(@faultVariable)]//*[local-name() =
’rethrow’]

Degree 6

ID bpp-r17

Description A process definition should not use the throw activity to propagate faults
out of the scope of the process

Target //*[local-name() = ’throw’ and not(ancestor::*[(local-name() = ’scope’ or
local-name() = ’process’) and (child::*[local-name() = ’faultHandlers’])]) ]

Degree 3

ID bpp-r18

Description A process definition should not use the throw activity with a faultVariable
to signal faults

Target //*[local-name() = ’throw’ and exists(@faultVariable)]

Degree 5

ID bpp-r19

Description A process definition should not use the validate activity

Target //*[local-name() = ’validate’]

Degree 5

ID bpp-r20

Description A process definition should not initialize a variable with a default value

Target //*[local-name() = ’variable’]/*[local-name() = ’from’]

Degree 3

ID bpp-r21

Description A process definition may use the <wait> activity

Target //*[local-name() = ’wait’]

Degree 1

ID bpp-r22-1

Description A process definition should not use the getVariableProperty() extension
function in a <from> statement

Target //*[(local-name() = ’from’) and contains(. , ’getVariableProperty’)]

Degree 2

ID bpp-r22-2

Description A process definition should not use the getVariableProperty() extension
function in a <condition> statement
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Target //*[(local-name() = ’condition’) and contains(. , ’getVariableProperty’)]

Degree 2

ID bpp-r23

Description A process definition should not use the <compensateScope> activity to signal
compensation

Target //*[local-name() = ’compensateScope’]

Degree 2

ID bpp-r24

Description A process definition should not use message-based eventHandlers

Target //*[local-name() = ’eventHandlers’]/*[local-name() = ’onEvent’]

Degree 5

ID bpp-r25

Description A process definition may use timeout-based eventHandlers

Target //*[local-name() = ’eventHandlers’]/*[local-name() = ’onAlarm’]

Degree 1

ID bpp-r26

Description A process definition should not use isolated scopes

Target //*[local-name() = ’scope’ and @isolated=’yes’]

Degree 3

ID bpp-r27-1

Description A process definition should not define correlationSets on scope-level

Target //*[local-name() = ’scope’ and child::*[local-name()=’correlationSets’]]

Degree 4

ID bpp-r27-2

Description A process definition may define messageExchanges on scope-level

Target //*[local-name() = ’scope’ and child::*[local-name()=’messageExchanges’]]

Degree 1

ID bpp-r27-3

Description A process definition should not define partnerLinks on scope-level

Target //*[local-name() = ’scope’ and child::*[local-name()=’partnerLinks’]]

Degree 2

ID bpp-r27-4

Description A process definition may define variables on scope-level

Target //*[local-name() = ’scope’ and child::*[local-name()=’variables’]]

Degree 1

ID bpp-r28

Description A process definition should not use the <compensate> activity to signal
compensation

Target //*[local-name() = ’compensate’]

Degree 2
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ID bpp-r29

Description A process definition should not use the fromParts shortcut syntax in a
message-based eventHandler

Target //*[local-name() = ’eventHandlers’]/*[local-name() = ’onEvent’]/*[local-
name() = ’fromParts’]

Degree 6

ID bpp-r31-1

Description A process definition should not catch a fault based on the faultVariable.
Catching faults by name only is recommended

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and ex-
ists(@faultVariable)]

Degree 2

ID bpp-r32

Description A process definition may use a compensationHandler within a <while>,
<forEach> or <repeatUntil> activity

Target //*[local-name() = ’while’ or local-name() = ’forEach’ or local-name() =
’repeatUntil’]//*[local-name() = ’compensationHandler’]

Degree 1

ID bpp-r33

Description A process definition should not use terminationHandlers

Target //*[local-name() = ’terminationHandler’]

Degree 4

ID bpp-r34-1

Description A process definition may use the flow activity

Target //*[local-name() = ’flow’]

Degree 1

ID bpp-r34-2

Description A process definition should not use links

Target //*[local-name() = ’links’]

Degree 2

ID bpp-r34-3

Description A process definition should not use a joinCondition to merge links

Target //*[local-name() = ’joinCondition’]

Degree 5

ID bpp-r34-4

Description A process definition should not use a transitionCondition to merge links

Target //*[local-name() = ’source’ and child::*[local-name() = ’transitionCondition’]]

Degree 2

ID bpp-r35

Description A process definition may use the forEach activity

Target //*[local-name() = ’forEach’]
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Degree 1

ID bpp-r36

Description A process definition should not use the forEach activity with a completion-
Condition

Target //*[local-name() = ’forEach’]/*[local-name() = ’completionCondition’]

Degree 4

ID bpp-r37

Description A process definition should not use correlations in an onMessage eventHandler
in a pick activity

Target //*[local-name() = ’pick’]/*[local-name() = ’onMessage’]//*[local-name() =
’correlations’]

Degree 2

ID bpp-r38

Description A process definition may use a timeout-based eventHandler in a pick activity

Target //*[local-name() = ’pick’]/*[local-name() = ’onAlarm’]

Degree 1

ID bpp-r41

Description A process definition may use the repeatUntil activity

Target //*[local-name() = ’repeatUntil’]

Degree 1

ID bpp-r42

Description A process definition should not use the repeatUntil activity with a condition
that uses ’=’

Target //*[local-name() = ’repeatUntil’]/*[local-name()=’condition’ and contains(.,
’=’)]

Degree 2

ID bpp-r43

Description A process definition may use the forEach activity with the parallel attribute
set to ’yes’

Target //*[local-name() = ’forEach’ and (@parallel = ’yes’)]

Degree 1

ID bpp-r44

Description A process definition should not use the forEach activity with a completion-
Condition and parallel attribute set to ’yes’

Target //*[local-name() = ’forEach’ and (@parallel = ’yes’)]/*[local-name() = ’com-
pletionCondition’]

Degree 6

ID bpp-r45

Description A process definition should not use the forEach activity with a completion-
Condition and a negative number of branches
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Target //*[local-name() = ’forEach’]/*[local-name() =
’completionCondition’]/*[local-name() = ’branches’ and starts-with(text(),’-
’)]

Degree 6

ID bpp-r46

Description A process definition should not use the forEach activity with a negative
startCounterValue or finalCounterValue

Target //*[local-name() = ’forEach’]/*[(local-name() = ’startCounterValue’ and
starts-with(text(),’-’)) or (local-name() = ’finalCounterValue’ and starts-
with(text(),’-’))]

Degree 4

ID bpp-r47

Description A process definition should not use the forEach activity with a too large
startCounterValue

Target //*[local-name() = ’forEach’]/*[(local-name() = ’startCounterValue’ and
(number(text()) >= 4294967295))]

Degree 4

ID bpp-r48

Description A process definition should not use the forEach activity with a completion-
Condition and the successfulBranchesOnly attribute set to ’yes’

Target //*[local-name() = ’forEach’]/*[local-name() =
’completionCondition’]/*[local-name() = ’branches’ and (@successful-
BranchesOnly = ’yes’)]

Degree 4

ID bpp-r39

Description A process definition must not have a namespace different from
http://docs.oasis-open.org/wsbpel/2.0/process/executable namespace

Target //*[local-name() = ’process’ and not(namespace-uri() = ’http://docs.oasis-
open.org/wsbpel/2.0/process/executable’)]

Degree 8

ID bpp-r40

Description A process definition must not contain non-BPEL elements
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Target //*[not(ancestor::*[local-name() = ’literal’]) and not(local-name() =’pro-
cess’) and not(local-name() = ’import’) and not(local-name() = ’partner-
Links’) and not(local-name() = ’partnerLink’) and not(local-name() = ’vari-
ables’) and not(local-name() = ’variable’) and not(local-name() = ’correla-
tionSets’) and not(local-name() = ’correlationSet’) and not(local-name() =
’sequence’) and not(local-name() = ’if’) and not(local-name() = ’condition’)
and not(local-name() = ’elseif’) and not(local-name() = ’else’) and not(local-
name() = ’while’) and not(local-name() = ’repeatUntil’) and not(local-name()
= ’pick’) and not(local-name() = ’onMessage’) and not(local-name() = ’cor-
relations’) and not(local-name() = ’correlation’) and not(local-name() =
’fromParts’) and not(local-name() = ’fromPart’) and not(local-name() =
’toParts’) and not(local-name() = ’toPart’) and not(local-name() = ’on-
Alarm’) and not(local-name() = ’for’) and not(local-name() = ’until’) and
not(local-name() = ’flow’) and not(local-name() = ’links’) and not(local-
name() = ’link’) and not(local-name() = ’targets’) and not(local-name() =
’joinCondition’) and not(local-name() = ’target’) and not(local-name() =
’sources’) and not(local-name() = ’source’) and not(local-name() = ’transition-
Condition’) and not(local-name() = ’forEach’) and not(local-name() = ’start-
CounterValue’) and not(local-name() = ’finalCounterValue’) and not(local-
name() = ’completionCondition’) and not(local-name() = ’branches’) and
not(local-name() = ’receive’) and not(local-name() = ’assign’) and not(local-
name() = ’copy’) and not(local-name() = ’from’) and not(local-name() =
’to’) and not(local-name() = ’empty’) and not(local-name() = ’reply’) and
not(local-name() = ’scope’) and not(local-name() = ’messageExchanges’)
and not(local-name() = ’messageExchange’) and not(local-name() = ’even-
tHandlers’) and not(local-name() = ’faultHandlers’) and not(local-name() =
’compensationHandler’) and not(local-name() = ’terminationHandlers’) and
not(local-name() = ’compensate’) and not(local-name() = ’compensateScope’)
and not(local-name() = ’catch’) and not(local-name() = ’catchAll’) and
not(local-name() = ’rethrow’) and not(local-name() = ’repeatEvery’) and
not(local-name() = ’throw’) and not(local-name() = ’invoke’) and not(local-
name() = ’wait’) and not(local-name() = ’exit’) and not(local-name() =
’query’) and not(local-name() = ’literal’) and not(local-name() = ’service-
ref’) and not(local-name() = ’EndpointReference’) and not(local-name() =
’exit’) and not(local-name() = ’Address’) and not(local-name() = ’onEvent’)]

Degree 8

ID bpp-r30

Description A process definition should not rely on the semantics of exitOnStandardFault

Target //*[@exitOnStandardFault=’yes’]

Degree 3

ID bpp-r31-1

Description A process definition must not rely on the correct triggering of xsltInvalidSource
fault

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’xsltInvalidSource’)]

Degree 8

ID bpp-r31-3

Description A process definition must not rely on the correct triggering of subLanguage-
ExecutionFault
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Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName, ’subLanguageExecutionFault’)]

Degree 9

ID bpp-r31-4

Description A process definition should not rely on the correct triggering of xsltStyleSheet-
NotFound

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’xsltStyleSheetNotFound’)]

Degree 6

ID bpp-r31-5

Description A process definition must not rely on the correct triggering of unsupporte-
dReference fault

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’unsupportedReference’)]

Degree 8

ID bpp-r31-6

Description A process definition should not rely on the correct triggering of selectionFailure

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’selectionFailure’)]

Degree 3

ID bpp-r31-7

Description A process definition should not rely on the correct triggering of ambiguous-
Receive

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’ambiguousReceive’)]

Degree 7

ID bpp-r31-8

Description A process definition must not rely on the correct triggering of conflictingRe-
ceive

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’conflictingReceive’)]

Degree 9

ID bpp-r31-9

Description A process definition must not rely on the correct triggering of conflictingRe-
quest

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’conflictingRequest’)]

Degree 9

ID bpp-r31-10

Description A process definition should not rely on the correct triggering of correlation-
Violation

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’correlationViolation’)]
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Degree 7

ID bpp-r31-11

Description A process definition should not rely on the correct triggering of uninitialized-
Variable

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’uninitializedVariable’)]

Degree 4

ID bpp-r31-12

Description A process definition should not rely on the correct triggering of invalidEx-
pressionValue

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’invalidExpressionValue’)]

Degree 3

ID bpp-r31-13

Description A process definition should not rely on the correct triggering of missingReply

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’missingReply’)]

Degree 7

ID bpp-r31-14

Description A process definition should not rely on the correct triggering of missingRequest

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’missingRequest’)]

Degree 7

ID bpp-r31-15

Description A process definition should not rely on the correct triggering of joinFailure

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’joinFailure’)]

Degree 4

ID bpp-r31-16

Description A process definition should not rely on the correct triggering of invalidVari-
ables

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’invalidVariables’)]

Degree 5

ID bpp-r31-17

Description A process definition should not rely on the correct triggering of completion-
ConditionFailure

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName, ’completionConditionFailure’)]

Degree 6

ID bpp-r31-18
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Description A process definition should not rely on the correct triggering of suppressJoin-
Failure

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName,’suppressJoinFailure’)]

Degree 2

ID bpp-r31-19

Description A process definition should not rely on the correct triggering of mismatchedAs-
signmentFailure

Target //*[local-name() = ’faultHandlers’]/*[local-name() = ’catch’ and con-
tains(@faultName, ’mismatchedAssignmentFailure’)]

Degree 6
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C. Adaptability Scores

In Table C.1, this section lists all adaptable elements used in the evaluation of
adaptability discussed in Chap. 6. Every element is described by its name and
a documentation that outlines design decisions. Moreover, we list the XPath
expression that can be used to select the element in a BPMN file. Finally, the
adaptions correspond to the alternatives that exist for a particular element. The
size of the list of adaptions is also shown in the first column. The table has been
generated automatically from the code of the metrics suite.

Table C.1.: Adaptability Scores

Property Element

Element name adHocSubProcess

Documentation Due to its unstructured nature, no general advice can be given on how to
adapt an adHocSubProcess

Expression //*[local-name() = ’definitions’]//*[local-name() = ’adHocSubProcess’]

Adaptions (0) []

Element name businessRuleTask

Documentation A businessRuleTask can be adapted by another task that can be used to
trigger (programmatically or manually) the execution of a business rule
through another program and return the result

Expression //*[local-name() = ’definitions’]//*[local-name() = ’businessRuleTask’]

Adaptions (7) [serviceTask, userTask, scriptTask, sendAndReceiveTask, globalScriptTask,
globalUserTask, globalBusinessRuleTask]

Element name callActivity

Documentation A callActivity can be adapted by replacing it with a replica of the called
globalActivity or process embedded into the calling process

Expression //*[local-name() = ’definitions’]//*[local-name() = ’callActivity’]

Adaptions (1) [embedIntoProcess]

Element name cancelEndEvent

Documentation Since there is no alternative endEvent with transactional sematics, this
event cannot be adapted

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’cancelEventDefinition’] or child::*[local-name() =
’eventDefinitionRef’ and text() = //*[local-name() = ’cancelEventDefini-
tion’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)]) =
1)]

Adaptions (0) []
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Element name compensationEndEvent

Documentation Since there is no alternative endEvent with compensation sematics, this
event cannot be adapted

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’compensationEventDefinition’] or child::*[local-
name() = ’eventDefinitionRef’ and text() = //*[local-name() =
’compensationEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name compensationStartEvent

Documentation A compensationStartEvent cannot be adapted since there is no alternative
start event with compensational semantics

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and @trig-
geredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isInterrupting
= ’true’ and (child::*[local-name() = ’compensationEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’compensationEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name complexGateway

Documentation The general behavior of the complexGateway cannot be emulated by any
other construct

Expression //*[local-name() = ’definitions’]//*[local-name() = ’complexGateway’]

Adaptions (0) []

Element name conditionalStartEvent

Documentation A conditionalStartEvent can be adapted to another startEvent that repre-
sents normal control-flow and is fired through a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’startEvent’ and
(child::*[local-name() = ’conditionalEventDefinition’] or child::*[local-
name() = ’eventDefinitionRef’ and text() = //*[local-name() =
’conditionalEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [messageStartEvent, signalStartEvent, multipleStartEvent, parallelMulti-
pleStartEvent]

Element name errorEndEvent

Documentation There is no equivalent for this end event, since it terminates all active
threads and signals a fault

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’errorEventDefinition’] or child::*[local-name() =
’eventDefinitionRef’ and text() = //*[local-name() = ’errorEventDefini-
tion’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)]) =
1)]

Adaptions (0) []

Element name escalationEndEvent
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Documentation There is no equivalent for this end event, since it does not terminate all
active threads and, at the same time, signals a problem

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’escalationEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’escalationEventDef-
inition’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)])
= 1)]

Adaptions (0) []

Element name eventBasedGateway

Documentation An eventBasedGateway can be adapted to a solution where an intermediate
multipleCatchEvent waits for the occurence of one among a set of events
and a different control-flow path is taken by a following gateway, depending
on the type of event

Expression //*[local-name() = ’definitions’]//*[local-name() = ’eventBasedGateway’
and not (@eventGatewayType = ’parallel’) and not (@instantiate = ’true’)]

Adaptions (3) [intermediateMultipleCatchEventFollowedByExclusiveGateway, interme-
diateMultipleCatchEventFollowedByInclusiveGateway, intermediateMul-
tipleCatchEventFollowedByComplexGateway]

Element name eventSubProcess

Documentation EventSubProcesses can be adapted to a different form of subProcess that is
executed through a callActivity. In case of an interrupting startEvent, the
subProcess can be embedded into the normal flow of control (thus halting
the parent process). In case of a noninterrupting startEvent the subProcess
must be called in parallel to the normal flow using a parallelGateway.

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and @trig-
geredByEvent = ’true’]

Adaptions (3) [callActivityAndTransactionSubProcess, callActiviyAndAdHocSubProcess,
callActivityAndOrdinarySubProcess]

Element name exclusiveGateway

Documentation An exclusiveGateway can be adapted to any other gateway that allows for
the triggering of one among a set of branches

Expression //*[local-name() = ’definitions’]//*[local-name() = ’exclusiveGateway’]

Adaptions (3) [eventBasedGateway, complexGateway, inclusiveGateway]

Element name globalBusinessRuleTask

Documentation A globalBusinessRuleTask can be adapted through another task that trig-
gers (programmatically or manually) the execution of a business rule
through another program and returns the result

Expression //*[local-name() = ’definitions’]//*[local-name() = ’globalBusinessRule-
Task’]

Adaptions (7) [serviceTask, userTask, scriptTask, businessRuleTask, sendAndReceiveTask,
globalScriptTask, globalUserTask]

Element name globalManualTask

Documentation A globalManualTask can be embedded into a process as an ordinary manual
task. Apart from this, there is no alternative way to represent an arbitrary
external action in general
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Expression //*[local-name() = ’definitions’]//*[local-name() = ’globalManualTask’]

Adaptions (1) [manualTask]

Element name globalScriptTask

Documentation A globalScriptTask can be the adaptions can be embedded into the process
as an ordinary scriptTask or be adapted to another task that triggers the
execution of a script at another entity (programmatically or manually).
A receiveTask is not suitable as it passively waits without performing an
action and a businessRuleTask is too specific

Expression //*[local-name() = ’definitions’]//*[local-name() = ’globalScriptTask’]

Adaptions (5) [serviceTask, sendTask, userTask, scriptTask, globalUserTask]

Element name globalUserTask

Documentation A globalUserTask can be embedded into the process as an ordinary userTask
or be adapted through another task that is programmed to ask for user
input

Expression //*[local-name() = ’definitions’]/*[local-name() = ’globalUserTask’]

Adaptions (5) [scriptTask, serviceTask, sendTask, globalScriptTask, userTask]

Element name inclusiveGateway

Documentation An inclusiveGateway can only be adapted to a complexGateway which is
strictly more expressive

Expression //*[local-name() = ’definitions’]//*[local-name() = ’inclusiveGateway’]

Adaptions (1) [complexGateway]

Element name instantiatingEventBasedGateway

Documentation An instantiatingEventBasedGateway can be adapted to a solution where
the multiple startEvents are merged by an exclusiveGateway

Expression //*[local-name() = ’definitions’]//*[local-name() = ’eventBasedGateway’
and not (@eventGatewayType = ’parallel’) and (@instantiate = ’true’)]

Adaptions (1) [startEventsFollowedByExclusiveGateway]

Element name instantiatingParallelEventBasedGateway

Documentation An instantiatingParallelEventBasedGateway cannot be adapted since there
is no alternative way to avoid the instantiation of the process until multiple
events have been received

Expression //*[local-name() = ’definitions’]//*[local-name() = ’eventBasedGateway’
and (@eventGatewayType = ’parallel’) and (@instantiate = ’true’)]

Adaptions (0) []

Element name intermediateCompensationThrowEvent

Documentation An intermediateCompensationThrowEvent cannot be adapted since there
is no other intermediate throw event with compensation semantics

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediateThrow-
Event’ and (child::*[local-name() = ’compensationEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’compensationEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []
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Element name intermediateConditionalCatchEvent

Documentation An intermediateConditionalCatchEvent can be adapted to another inter-
mediate catch event that triggers normal control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediate-
CatchEvent’ and (child::*[local-name() = ’conditionalEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’conditionalEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [intermediateSignalCatchEvent, intermediateMessageCatchEvent, interme-
diateMultipleCatchEvent, intermediateMultipleParallelCatchEvent]

Element name intermediateEscalationThrowEvent

Documentation An intermediateEscalationThrowEvent can be adapted to another interme-
diate throw event that leads to exceptional control-flow continuation and
is fired by a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediateThrow-
Event’ and (child::*[local-name() = ’escalationEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’escalationEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [intermediateMessageThrowEvent, intermediateSignalThrowEvent, inter-
mediateMultipleThrowEvent, intermediateMultipleParallelThrowEvent]

Element name intermediateMessageCatchEvent

Documentation An intermediateMessageCatchEvent can be adapted to another intermedi-
ateCatchEvent used in normal control-flow that consumes a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediate-
CatchEvent’ and (child::*[local-name() = ’messageEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’messageEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [intermediateSignalCatchEvent, receiveTask, intermediateMultiple-
CatchEvent, intermediateParallelMultipleCatchEvent]

Element name intermediateMessageThrowEvent

Documentation This event can be adapted to a sendTask or another intermediateThrow-
Event used in normal control-flow that provides a signal

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediateThrow-
Event’ and (child::*[local-name() = ’messageEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’messageEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [intermediateSignalThrowEvent, sendTask, intermediateMultipleThrow-
Event, intermediateParallelMultipleThrowEvent]

Element name intermediateMultipleCatchEvent

Documentation An intermediateMultipleCatchEvent can be reduced to the available alter-
native catch events surrounded by gateways that allow for the selection of
one among a set of branches
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Expression //*[local-name() = ’definitions’]//*[local-name() = ’interme-
diateCatchEvent’ and not(@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (3) [intermediateCatchEventsAndExclusiveGateway, intermediate-
CatchEventsAndInclusiveGateway, intermediateCatchEventsAnd-
ComplexGateway]

Element name intermediateMultipleParallelCatchEvent

Documentation An intermediateMultipleParallelCatchEvent can be reduced to the available
alternative catch events surrounded by a gateway that triggers multiple
parallel branches

Expression //*[local-name() = ’definitions’]//*[local-name() = ’inter-
mediateCatchEvent’ and (@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (3) [intermediateCatchEventsAndParallelGateway, intermediate-
CatchEventsAndInclusiveGateway, intermediateCatchEventsAnd-
ComplexGateway]

Element name intermediateMultipleThrowEvent

Documentation An intermediateMultipleThrowEvent can be reduced to the available alter-
native throw events surrounded by a gateways that allow for the selection
of one branch

Expression //*[local-name() = ’definitions’]//*[local-name() = ’interme-
diateThrowEvent’ and not(@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (3) [intermediateThrowEventsAndExclusiveGateway, intermediateThrow-
EventsAndInclusiveGateway, intermediateThrowEventsAndComplexGate-
way]

Element name intermediateNoneThrowEvent

Documentation An intermediateNoneThrowEvent can be adapted to another intermedi-
ateThrowEvent that leads to normal control-flow continuation. Lacking a
specific signal that can be caught, the event can also be ignored

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediateThrow-
Event’ and not(child::*[contains(local-name(),’ventDefinition’)])]

Adaptions (5) [deleteEvent, intermediateMessageThrowEvent, intermediateSignalThrow-
Event, intermediateMultipleThrowEvent, intermediateParallelMulti-
pleThrowEvent]

Element name intermediateSignalCatchEvent

Documentation A intermediateSignalCatchEvent can be adapted to another intermediate-
CatchEvent that is used in normal control-flow and catches a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermedi-
ateThrowEvent’ and (child::*[local-name() = ’catchEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’catchEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [intermediateMessageCatchEvent, intermediateConditionalCatchEvent, in-
termediateMultipleCatchEvent, intermediateParallelMultipleCatchEvent]

Element name intermediateSignalThrowEvent
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Documentation A intermediateSignalThrowEvent can be adapted to another intermediate
throw event that leads to normal control-flow continuation and fires a
trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediateThrow-
Event’ and (child::*[local-name() = ’signalEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’signalEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [intermediateMessageThrowEvent, intermediateConditionalThrowEvent, in-
termediateMultipleThrowEvent, intermediateParallelMultipleThrowEvent]

Element name intermediateTimerCatchEvent

Documentation An intermediateTimerCatchEvent can be adapted to another intermediate
catchEvent that has a trigger and leads to normal control-flow continuation,
as it is possible to calculate the expiration of the time and trigger the event
when it occurs

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediate-
CatchEvent’ and (child::*[local-name() = ’timerEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’timerEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (5) [intermediateConditionalCatchEvent, intermediateMessageCatchEvent, in-
termediateSignalCatchEvent, intermediateMultipleCatchEvent, intermedi-
ateParallelMultipleCatchEvent]

Element name interruptingCancelBoundaryEvent

Documentation An interruptingCancelBoundaryEvent cannot be adapted since its semantics
with respect to transaction cancelation are unique

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
@isInterrupting = ’true’ and (child::*[local-name() = ’cancelEventDefini-
tion’] or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’cancelEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name interruptingCompensationBoundaryEvent

Documentation An interruptingCompensationBoundaryEvent cannot be adapted since its
semantics with respect to compensation are unique

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
@isInterrupting = ’true’ and (child::*[local-name() = ’cancelEventDefini-
tion’] or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’cancelEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name interruptingConditionalBoundaryEvent

Documentation An interruptingConditionalBoundaryEvent can be adapted to another in-
terrupting boundary event that represents normal control-flow continuation
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Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and @isInterrupting = ’true’ and (child::*[local-name() = ’condi-
tionalEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’conditionalEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [interruptingSignalBoundaryEvent, interruptingMessageBoundaryEvent,
interruptingMultipleBoundaryEvent, interruptingMultipleParallelBound-
aryEvent]

Element name interruptingConditionalStartEvent

Documentation An interruptingConditionalStartEvent can be adapted to another inter-
rupting start event that represents normal control-flow

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and @trig-
geredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isInterrupt-
ing = ’true’ and (child::*[local-name() = ’conditionalEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’conditionalEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [signalStartEvent, messageStartEvent, multipleStartEvent, multipleParal-
lelStartEvent]

Element name interruptingErrorBoundaryEvent

Documentation An interruptingErrorBoundaryEvent can be adapted to another interrupting
boundary event that leads to exceptional control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
@isInterrupting = ’true’ and (child::*[local-name() = ’errorEventDefinition’]
or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’errorEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (3) [interruptingEscalationBoundaryEvent, interruptingMultipleBound-
aryEvent, interruptingMultipleParallelBoundaryEvent]

Element name interruptingErrorStartEvent

Documentation An interruptingErrorStartEvent can be adapted to another interrupting
start event that leads to exceptional control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isIn-
terrupting = ’true’ and (child::*[local-name() = ’errorEventDefinition’]
or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’errorEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (3) [escalationStartEvent, multipleStartEvent, multipleParallelStartEvent]

Element name interruptingEscalationBoundaryEvent

Documentation An interruptingEscalationBoundaryEvent can be adapted to another inter-
rupting boundary event that leads to exceptional control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and @isInterrupting = ’true’ and (child::*[local-name() = ’escalation-
EventDefinition’] or child::*[local-name() = ’eventDefinitionRef’ and
text() = //*[local-name() = ’escalationEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]
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Adaptions (3) [interruptingErrorBoundaryEvent, interruptingMultipleBoundaryEvent, in-
terruptingMultipleParallelBoundaryEvent]

Element name interruptingEscalationStartEvent

Documentation An interruptingEscalationStartEvent can be adapted to another interrupt-
ing start event that leads to exceptional control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and @trig-
geredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isInterrupt-
ing = ’true’ and (child::*[local-name() = ’escalationEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’escalationEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (3) [errorStartEvent, multipleStartEvent, multipleParallelStartEvent]

Element name interruptingMessageBoundaryEvent

Documentation An interruptingMessageBoundaryEvent can be adapted to another inter-
rupting boundary event that fires a signal and leads to normal control-flow
continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and @isInterrupting = ’true’ and (child::*[local-name() = ’mes-
sageEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’messageEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [interruptingSignalBoundaryEvent, interruptingConditionalBound-
aryEvent, interruptingMultipleBoundaryEvent, interruptingMultipleParal-
lelBoundaryEvent]

Element name interruptingMessageStartEvent

Documentation An interruptingMessageStart event can be adapted to another interrupting
start event that leads to normal control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and @trig-
geredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isInterrupt-
ing = ’true’ and (child::*[local-name() = ’messageEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’messageEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [signalStartEvent, conditionalStartEvent, multipleStartEvent, multiplePar-
allelStartEvent]

Element name interruptingMultipleBoundaryEvent

Documentation An interruptingMultipleBoundaryEvent can be adapted by multiple inter-
rupting boundary events that link to a merging gateway

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
(@isInterrupting = ’true’) and not(@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (3) [multipleInterruptingBoundaryEventsFollowedByExclusiveGateway, multi-
pleInterruptingBoundaryEventsFollowedByInclusiveGateway, multipleIn-
terruptingBoundaryEventsFollowedByComplexGateway]

Element name interruptingMultipleStartEvent
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Documentation An interruptingMultipleStartEvent can be adapted to multiple different
eventSubProcesses with one start event each

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and
(@isInterrupting = ’true’) and not(@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (1) [multipleEventSubProcessesWithSingleStartEvents]

Element name interruptingParallelMultipleBoundaryEvent

Documentation A multipleParallelBoundaryEvent cannot be adapted since there is no other
way to ensure that multiple events are thrown in parallel in the context of
a single activity

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and (@isInterrupting = ’true’) and (@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (0) []

Element name interruptingParallelMultipleStartEvent

Documentation A multipleParallelStartEvent cannot be adapted since there is no other
way to avoid the instantiation of a process unless multiple conditions are
satisfied

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and @trig-
geredByEvent = ’true’]/*[local-name() = ’startEvent’ and (@isInterrupting
= ’true’) and (@parallelMultiple = ’true’) and (count(child::*[contains(local-
name(),’ventDefinition’)]) > 1)]

Adaptions (0) []

Element name interruptingSignalBoundaryEvent

Documentation An interrupting signal boundary event can be adapted to another inter-
rupting boundary event that represents normal control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
@isInterrupting = ’true’ and (child::*[local-name() = ’signalEventDefini-
tion’] or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’signalEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [interruptingMessageBoundaryEvent, interruptingConditionalBound-
aryEvent, interruptingMultipleBoundaryEvent, interruptingMultipleParal-
lelBoundaryEvent]

Element name interruptingSignalStartEvent

Documentation An interruptingSignalStartEvent can be adapted to another interrupting
start event that represents normal process instantiation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isIn-
terrupting = ’true’ and (child::*[local-name() = ’signalEventDefinition’]
or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’signalEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (4) [messageStartEvent, conditionalStartEvent, multipleStartEvent, multi-
pleParallelStartEvent]

Continued on next page

294



Table C.1 – Continued from previous page

Element name interruptingTimerBoundaryEvent

Documentation An interruptingTimerBoundaryEvent can be adapted to another inter-
ruptingBoundaryEvent that leads to normal control-flow continuation and
fires a trigger, as it is possible to calculate the expiration of the temporal
condition and trigger the event when it occurs

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
@isInterrupting = ’true’ and (child::*[local-name() = ’timerEventDefini-
tion’] or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’timerEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (6) [interruptingSignalBoundaryEvent, interruptingConditionalBound-
aryEvent, interruptingMessageBoundaryEvent, interruptingSignalBound-
aryEvent, interruptingMultipleBoundaryEvent, interruptingParallelMulti-
pleBoundaryEvent]

Element name interruptingTimerStartEvent

Documentation An interruptingTimerStartEvent can be adapted to another startEvent
that leads to normal control-flow continuation and requires a trigger, as it
is possible to calculate the expiration of the temporal condition and trigger
the event when it occurs

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and @isIn-
terrupting = ’true’ and (child::*[local-name() = ’timerEventDefinition’]
or child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’timerEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (5) [messageStartEvent, signalStartEvent, conditionalStartEvent, multi-
pleStartEvent, multipleParallelStartEvent]

Element name linkCatchEvent

Documentation Link events are only relevant to visualization and therefore not relevant for
adaptation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediate-
CatchEventEvent’ and (child::*[local-name() = ’linkEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-name()
= ’linkEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name linkThrowEvent

Documentation Link events are only relevant to visualization and therefore not relevant for
adaptation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’intermediateThrow-
EventEvent’ and (child::*[local-name() = ’linkEventDefinition’] or
child::*[local-name() = ’eventDefinitionRef’ and text() = //*[local-
name() = ’linkEventDefinition’]/@id]) and (count(child::*[contains(local-
name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name loopSubProcess
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Documentation Looping subProcesses can be embedded in code and surrounded by ordinary
looping mechanisms or adapted to different types of subProcesses.

Expression //*[local-name() = ’definitions’]//*[(local-name() = ’subProcess’) and
(child::*[local-name() = ’standardLoopCharacteristics’])]

Adaptions (5) [embeddedfragmentWithExclusiveGateways, embeddedfragmentWithInclu-
siveGateways, embeddedfragmentWithComplexGateways, eventSubProces-
sAndLoopThatTriggersEvents, adHocSubprocess]

Element name loopTask

Documentation A loopTask can be adapted by loop or ad hoc subProcesses or by a combi-
nation of the task with different gateway types

Expression //*[local-name() = ’definitions’]//*[(local-name() = ’receiveTask’ or local-
name() = ’serviceTask’ or local-name() = ’manualTask’ or local-name()
= ’businessRuleTask’ or local-name() = ’userTask’ or local-name() =
’sendTask’or local-name() = ’scriptTask’ or local-name() = ’globalUserTask’
or local-name() = ’globalManualTask’ or local-name() = ’ globalScriptTask’
or local-name() = ’globalBusinessRuleTask’) and (child::*[local-name() =
’standardLoopCharacteristics’])]

Adaptions (6) [exclusiveGatewaysAndSequenceFlows, inclusiveGatewaysAndSequence-
Flows, complexGatewaysAndSequenceFlows, loopSubProcess, adHocSub-
Process, eventSubProcess]

Element name manualTask

Documentation There is no alternative and generally applicable way to represent an arbi-
trary external action

Expression //*[local-name() = ’definitions’]//*[local-name() = ’manualTask’]

Adaptions (1) [globalManualTask]

Element name messageEndEvent

Documentation A messageEndEvent can be adapted to another type of endEvent that
refers to ordered termination and produces a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’messageEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’messageEventDef-
inition’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)])
= 1)]

Adaptions (2) [signalEndEvent, multipleEndEvent]

Element name messageStartEvent

Documentation A messageStartEvent can be adapted to another startEvent that represents
ordered process instantiation and is triggered in some fashion.

Expression //*[local-name() = ’definitions’]//*[local-name() = ’startEvent’ and
(child::*[local-name() = ’messageEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’messageEventDef-
inition’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)])
= 1)]

Adaptions (4) [conditionalStartEvent, signalStartEvent, multipleStartEvent, parallelMul-
tipleStartEvent]

Element name multipleEndEvent
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Documentation A multipleEndEvent can be adapted to multiple alternative events followed
by a noneEndEvent

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
not(@parallelMultiple = ’true’) and (count(child::*[contains(local-
name(),’ventDefinition’)]) > 1)]

Adaptions (1) [multipleIntermediateEventsFollowedbyNoneEndEvent]

Element name multipleParallelStartEvent

Documentation A multipleParallelStartEvent cannot be adapted since there is no other
way to avoid the instantiation of a process unless multiple conditions are
satisfied

Expression //*[local-name() = ’definitions’]//*[local-name() = ’startEvent’
and @parallelMultiple = ’true’ and (count(child::*[contains(local-
name(),’ventDefinition’)]) > 1)]

Adaptions (0) []

Element name multipleStartEvent

Documentation A multipleStartEvent can be reduced to one of the available alternative
start events

Expression //*[local-name() = ’definitions’]//*[local-name() = ’startEvent’ and
not(@parallelMultiple = ’true’) and (count(child::*[contains(local-
name(),’ventDefinition’)]) > 1)]

Adaptions (3) [multipleStartEventsWithExclusiveGateway, multipleStartEventsWithIn-
clusiveGateway, multipleStartEventsWithComplexGateway]

Element name noneEndEvent

Documentation A noneEndEvent can be adapted to any other endEvent that represents
ordered termination

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
not(child::*[contains(local-name(),’ventDefinition’)])]

Adaptions (3) [messageEndEvent, signalEndEvent, multipleEndEvent]

Element name noneStartEvent

Documentation A noneStartEvent can be adapted to another start event that represents
normal process instantiation

Expression //*[local-name() = ’definitions’]/*[local-name() = ’process’]/*[local-name()
= ’startEvent’ and not(/*[contains(local-name(),’ventDefinition’)])]

Adaptions (5) [messageStartEvent, conditionalStartEvent, signalStartEvent, multi-
pleStartEvent, parallelMultipleStartEvent]

Element name nonInterruptingConditionalBoundaryEvent

Documentation A nonInterruptingConditionalBoundaryEvent can be adapted to another
non-interrupting boundary event that leads to normal control-flow continu-
ation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() = ’con-
ditionalEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’conditionalEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]
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Adaptions (4) [nonInterruptingSignalBoundaryEvent, nonInterruptingMessageBound-
aryEvent, nonInterruptingMultipleBoundaryEvent, nonInterruptingMulti-
pleParallelBoundaryEvent]

Element name nonInterruptingConditionalStartEvent

Documentation A nonInterruptingConditionalStartEvent can be adapted to another non-
interrupting start event that represents normal control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and
not(@isInterrupting = ’true’) and (child::*[local-name() = ’condi-
tionalEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’conditionalEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [signalStartEvent, messageStartEvent, multipleStartEvent, multipleParal-
lelStartEvent]

Element name nonInterruptingEscalationBoundaryEvent

Documentation A nonInterruptingEscalationBoundaryEvent cannot be adapted since there
is no other non-interrupting boundary event that leads to exceptional
control-flow continuation. Error events are only interrupting

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() = ’esca-
lationEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’escalationEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name nonInterruptingEscalationStartEvent

Documentation A nonInterruptingEscalationStartEvent cannot be adapted since there is no
other non-interrupting start event that represents exceptional control-flow
continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and
not(@isInterrupting = ’true’) and (child::*[local-name() = ’escala-
tionEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’escalationEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (0) []

Element name nonInterruptingMessageBoundaryEvent

Documentation A nonInterruptingMessageBoundaryEvent can be adapted to another non-
interrupting boundary event that transmits a signal and represents normal
control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() = ’mes-
sageEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’messageEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [nonInterruptingSignalBoundaryEvent, nonInterruptingConditionalBound-
aryEvent, nonInterruptingMultipleBoundaryEvent, nonInterruptingMulti-
pleParallelBoundaryEvent]
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Element name nonInterruptingMessageStartEvent

Documentation A nonInterruptingMessageStartEvent can be adapted to another non-
interrupting start event that leads to normal control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and
not(@isInterrupting = ’true’) and (child::*[local-name() = ’mes-
sageEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’messageEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [signalStartEvent, conditionalStartEvent, multipleStartEvent, multiplePar-
allelStartEvent]

Element name nonInterruptingMultipleBoundaryEvent

Documentation A nonInterruptingMultipleBoundaryEvent can be adapted by multiple
non-interrupting boundary events that link to a merging gateway

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
not (@isInterrupting = ’true’) and not(@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (3) [multipleNonInterruptingBoundaryEventsFollowedByExclusiveGateway,
multipleNonInterruptingBoundaryEventsFollowedByInclusiveGateway,
multipleNonInterruptingBoundaryEventsFollowedByComplexGateway]

Element name nonInterruptingMultipleStartEvent

Documentation A nonInterruptingMultipleStartEvent can be adapted to multiple different
eventSubProcesses with one startEvent each

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and not
(@isInterrupting = ’true’) and not(@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (1) [multipleEventSubProcessesWithSingleStartEvents]

Element name nonInterruptingParallelMultipleBoundaryEvent

Documentation A multipleParallelBoundaryEvent cannot be adapted since there is no other
way to ensure that multiple events are thrown in parallel in the context of
a single activity

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’ and
not (@isInterrupting = ’true’) and (@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (0) []

Element name nonInterruptingParallelMultipleStartEvent

Documentation A multipleParallelStartEvent cannot be adapted since there is no other
way to avoid the instantiation of a process unless multiple conditions are
satisfied

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
@triggeredByEvent = ’true’]/*[local-name() = ’startEvent’ and not
(@isInterrupting = ’true’) and (@parallelMultiple = ’true’) and
(count(child::*[contains(local-name(),’ventDefinition’)]) > 1)]

Adaptions (0) []
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Element name nonInterruptingSignalBoundaryEvent

Documentation A nonInterruptingSignalBoundaryEvent can be adapted to another non-
interrupting boundary event that leads to normal control-flow continuation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() = ’sig-
nalEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’signalEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [nonInterruptingMessageBoundaryEvent, nonInterruptingConditional-
BoundaryEvent, nonInterruptingMultipleBoundaryEvent, nonInterrupting-
MultipleParallelBoundaryEvent]

Element name nonInterruptingSignalStartEvent

Documentation A nonInterruptingSignalStartEvent can be adapted to another non-
interrupting start event that represents normal process instantiation

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’
and @triggeredByEvent = ’true’]/*[local-name() = ’startEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() = ’sig-
nalEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’signalEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (4) [messageStartEvent, conditionalStartEvent, multipleStartEvent, multi-
pleParallelStartEvent]

Element name nonInterruptingTimerBoundaryEvent

Documentation A nonInterruptingTimerBoundaryEvent can be adapted to another non-
interrupting boundary event that represents normal control-flow continua-
tion and is fired by a trigger, as it is possible to calculate the expiration of
the temporal condition and trigger the event when it occurs

Expression //*[local-name() = ’definitions’]//*[local-name() = ’boundaryEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() =
’timerEventDefinition’] or child::*[local-name() = ’eventDefinitionRef’
and text() = //*[local-name() = ’timerEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (5) [noninterruptingSignalBoundaryEvent, noninterruptingConditionalBound-
aryEvent, noninterruptingMessageBoundaryEvent, noninterruptingMulti-
pleBoundaryEvent, noninterruptingParallelMultipleBoundaryEvent]

Element name nonInterruptingTimerStartEvent

Documentation A nonInterruptingTimerStartEvent can be adapted to another startEvent
that represents normal control-flow and is fired through a trigger, as it is
possible to calculate the expiration of the temporal condition and fire the
trigger the event when it occurs

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’
and @triggeredByEvent = ’true’]/*[local-name() = ’startEvent’
and not(@isInterrupting = ’true’) and (child::*[local-name() =
’timerEventDefinition’] or child::*[local-name() = ’eventDefinition-
Ref’ and text() = //*[local-name() = ’timerEventDefinition’]/@id]) and
(count(child::*[contains(local-name(),’ventDefinition’)]) = 1)]

Adaptions (5) [signalStartEvent, conditionalStartEvent, messageStartEvent, multi-
pleStartEvent, parallelMultipleStartEvent]
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Element name parallelEventBasedGateway

Documentation A parallel eventBasedGateway can be adapted to a solution where the
events are processed through catch events before a gateway that merges
parallel branches

Expression //*[local-name() = ’definitions’]//*[local-name() = ’eventBasedGateway’
and (@eventGatewayType = ’parallel’) and not (@instantiate = ’true’)]

Adaptions (2) [inclusiveGateway, complexGateway]

Element name parallelGateway

Documentation A parallelGateway can be replaced by other gateways that allow for paral-
lelism, given the conditions of these gateways are set to trigger all branches

Expression //*[local-name() = ’definitions’]//*[local-name() = ’parallelGateway’]

Adaptions (2) [inclusiveGateway, complexGateway]

Element name parallelMultiInstanceSubProcess

Documentation ParallelMultiInstanceSubProcesses can be embedded in the parent process
and surrounded by a complexGateway to trigger the same branch multiple
times or they can be adapted to an adHocSubProcess

Expression //*[local-name() = ’definitions’]//*[(local-name() = ’subProcess’) and
(child::*[local-name() = ’multiInstanceLoopCharacteristics’ and @isSequen-
tial=’false’])]

Adaptions (2) [embeddedfragmentWithComplexGateways, adHocSubprocess]

Element name parallelMultiInstanceTask

Documentation A parallelMultiInstanceTask can be be adapted to a subProcess that allows
for the execution of multiple instances in parallel

Expression //*[local-name() = ’definitions’]//*[(local-name() = ’receiveTask’ or local-
name() = ’serviceTask’ or local-name() = ’manualTask’ or local-name()
= ’businessRuleTask’ or local-name() = ’userTask’ or local-name() =
’sendTask’ or local-name() = ’scriptTask’ or local-name() = ’globalUserTask’
or local-name() = ’globalManualTask’ or local-name() = ’ globalScriptTask’
or local-name() = ’globalBusinessRuleTask’) and (child::*[local-name() =
’multiInstanceLoopCharacteristics’ and @isSequential=’false’])]

Adaptions (2) [multiInstanceSubProcess, adHocSubProcess]

Element name receiveTask

Documentation A receiveTask can be adapted to another task that can be used to wait for
a message (programmatically or manually)

Expression //*[local-name() = ’definitions’]//*[local-name() = ’receiveTask’]

Adaptions (7) [serviceTask, userTask, scriptTask, globalScriptTask, globalUserTask, inter-
mediateMessageCatchEvent, eventSubprocessWithMessageStartEvent]

Element name scriptTask

Documentation A scriptTask can be adapted by another task that triggers (programmati-
cally or manually) the execution of a script. A receiveTask is not suitable,
as it is passively waits without performing an action and a businessRuleTask
is too specific

Expression //*[local-name() = ’definitions’]//*[local-name() = ’scriptTask’]

Adaptions (5) [serviceTask, sendATask, userTask, globalUserTask, globalScriptTask]
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Element name sendTask

Documentation A sendTask can be adapted to another task that, programmatically or
manually, triggers the sending of a message. A receiveTask is not suitable as
it passively waits without performing an action and a businessRuleTask is
too specific. Also intermediate message throw events can serve as alternative

Expression //*[local-name() = ’definitions’]//*[local-name() = ’sendTask’]

Adaptions (6) [serviceTask, scriptTask, userTask, globalScriptTask, globalUserTask, inter-
mediateMessageThrowEvent]

Element name sequenceFlow

Documentation A sequenceFlow is a basic language element that cannot be adapted

Expression //*[local-name() = ’definitions’]//*[local-name() = ’sequenceFlow’]

Adaptions (0) []

Element name sequentialMultiInstanceSubProcess

Documentation SequentialMultiInstanceSubProcesses can be embedded into the parent
processes and be surrounded by ordinary looping mechanisms or adapted
to different types of subprocesses

Expression //*[local-name() = ’definitions’]//*[(local-name() = ’subProcess’) and
(child::*[local-name() = ’multiInstanceLoopCharacteristics’ and @isSequen-
tial=’true’])]

Adaptions (5) [embeddedfragmentWithExclusiveGateways, embeddedfragmentWithCom-
plexGateways, eventSubProcessAndLoopThatTriggersEvents, adHocSub-
process, loopSubProcess]

Element name sequentialMultiInstanceTask

Documentation A sequentialMultiInstanceTask can be adapted to an ordinary sequential
loop or a different represenation thereof, as well as to different subProcesses.

Expression //*[local-name() = ’definitions’]//*[(local-name() = ’receiveTask’ or local-
name() = ’serviceTask’ or local-name() = ’manualTask’ or local-name()
= ’businessRuleTask’ or local-name() = ’userTask’ or local-name() =
’sendTask’ or local-name() = ’scriptTask’ or local-name() = ’globalUserTask’
or local-name() = ’globalManualTask’ or local-name() = ’ globalScriptTask’
or local-name() = ’globalBusinessRuleTask’) and (child::*[local-name() =
’multiInstanceLoopCharacteristics’ and @isSequential=’true’])]

Adaptions (6) [exclusiveGatewaysAndSequenceFlows, complexGatewaysAndSequence-
Flows, loopTask, loopSubProcess, multiInstanceSubProcess, adHocSubPro-
cess]

Element name serviceTask

Documentation the adaptions of a serviceTask can be used to programatically or manually
trigger service execution, possibly combined with a receive task in case of
synchronous communication. A receiveTask alone is not suitable as it is
passively waits without performing an action and a businessRuleTask is
too specific. Also intermediate throwing and catching message events can
be used.

Expression //*[local-name() = ’definitions’]//*[local-name() = ’serviceTask’]

Adaptions (6) [scriptTask, userTask, sendTask, globalScriptTask, globalUserTask, inter-
mediateMessageThrowAndCatchEvents]
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Element name signalEndEvent

Documentation A signalEndEvent can be adapted to another type of endEvent that repre-
sents ordered termination and produces a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’signalEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’signalEventDefini-
tion’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)]) =
1)]

Adaptions (2) [messageEndEvent, multipleEndEvent]

Element name signalStartEvent

Documentation A signalStartEvent can be adapted to another startEvent that represents
normal process instantiation and provides a trigger

Expression //*[local-name() = ’definitions’]//*[local-name() = ’startEvent’ and
(child::*[local-name() = ’signalEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’signalEventDefini-
tion’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)]) =
1)]

Adaptions (4) [messageStartEvent, conditionalStartEvent, multipleStartEvent, parallel-
MultipleStartEvent]

Element name subProcess

Documentation An ordinary subProcess can be embedded into the process or replaced by
a more specific type of subProcess

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
not (@triggeredByEvent = ’true’ or child::*[local-name() = ’multiIn-
stanceLoopCharacteristics’] or child::*[local-name() = ’standardLoopChar-
acteristics’])]

Adaptions (4) [embeddIntoProcess, transactionSubProcess, eventSubProcess, adHocSub-
Process]

Element name subProcessStartEvent

Documentation A startEvent of an ordinary subProcess cannot be adapted since it is the
only way of starting non-eventSubProcesses

Expression //*[local-name() = ’definitions’]//*[local-name() = ’subProcess’ and
not(@triggeredByEvent = ’true’)]/*[local-name() = ’startEvent’]

Adaptions (0) []

Element name task

Documentation A plain task is a kind of wildcard element for an unspecified task and
irrelevant to process execution

Expression //*[local-name() = ’definitions’]//*[local-name() = ’task’ or local-name()
= ’globalTask’]

Adaptions (0) []

Element name terminateEndEvent

Documentation Since there is no alternative endEvent that results in immediate termination
without compensation or event handling, this event cannot be adapted
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Expression //*[local-name() = ’definitions’]//*[local-name() = ’endEvent’ and
(child::*[local-name() = ’terminateEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’terminateEventDef-
inition’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)])
= 1)]

Adaptions (0) []

Element name timerStartEvent

Documentation A timerStartEvent can be adapted to another startEvent that represents
normal flow and is triggered in some fashion, as it is possible to calculate
the expiration of the time and trigger the event when it does

Expression //*[local-name() = ’definitions’]//*[local-name() = ’startEvent’ and
(child::*[local-name() = ’timerEventDefinition’] or child::*[local-name()
= ’eventDefinitionRef’ and text() = //*[local-name() = ’timerEventDefini-
tion’]/@id]) and (count(child::*[contains(local-name(),’ventDefinition’)]) =
1)]

Adaptions (5) [conditionalStartEvent, messageStartEvent, signalStartEvent, multi-
pleStartEvent, parallelMultipleStartEvent]

Element name transactionSubProcess

Documentation A transactional context cannot be emulated with any other element in
BPMN

Expression //*[local-name() = ’definitions’]//*[local-name() = ’transaction’]

Adaptions (0) []

Element name userTask

Documentation A userTask can be adapted through another task that is programmed to
ask for user input

Expression //*[local-name() = ’definitions’]//*[local-name() = ’userTask’]

Adaptions (5) [scriptTask, serviceTask, sendAndReceiveTask, globalScriptTask, glob-
alUserTask]
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The development of modern distributed software systems has been 
shaped by the trends of service-orientation and process-awareness. 
Execution platforms supporting these trends are called engines. Appli-
cations and engines interface via language standards. A primary moti-
vation for the usage of standards is the portability of applications, the 
ability to move software among different execution platforms without 
the necessity for full or partial reengineering. Nevertheless, practice 
shows that service-oriented and process-aware applications today are 
limited with respect to their portability. The reason for this is that en-
gines rarely implement a complete standard. 
This work contributes to the development of portable service-oriented 
and process-aware software in two ways: Firstly, it provides evidence 
for the existence of portability issues and the insufficiency of standards 
for guaranteeing software portability. Secondly, it derives and validates 
a novel measurement framework for quantifying portability. We pre-
sent a methodology for benchmarking the conformance of engines to 
a language standard and implement it in a fully automated benchmar-
king tool. On this basis, this work derives a measurement framework 
for portability, which is aligned to the ISO/IEC SQuaRE model and 
measurement methodology. This quality model separates the software 
quality characteristic of portability into the subcharacteristics of instal-
lability, adaptability, and replaceability. Each characteristic is addressed 
by a separate analysis, metrics derivation, evaluation, and validation.
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