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Abstract: The Authors present a new approach to the modelling of human driving behaviour, 
which describes driving behaviour as the result of an optimization process within the formal 
framework of hybrid automata. In contrast to most approaches, the aim is not to construct a 
(cognitive) model of a human driver, but to directly model driving behaviour. We assume 
human driving to be controlled by the anticipated outcomes of possible behaviours. These 
positive and negative outcomes are mapped onto a single theoretical variable - the so called 
reinforcement value. Behaviour is assumed to be chosen in such a way that the reinforcement 
value is optimized in any given situation. To formalize our models we use hybrid automata, 
which allow for both continuous variables and discrete states. The models are evaluated 
using simulations of the optimized driving behaviours. A car entering a freeway served as the 
scenario to demonstrate our approach. First results yield plausible predictions for car 
trajectories and the chronological sequence of speed, depending on the surrounding traffic, 
indicating the feasibility of the approach. 

1 Introduction 
In the domain of driver modelling assumptions are made about the factors controlling driver 
behaviour. Among these variables are for example attitudes, personality, experience, driver 
state, task demand and situation awareness [1]. In the literature different types of driver 
models can be found. One familiar classification is the one of Michon who distinguishes four 
basic types of driver behaviour models [2]: task analyses, trait models, mechanistic/adaptive 
control models and motivation/cognitive models. These are organized in a two-way 
classification table distinguishing input-output (behaviour oriented) and internal state 
(psychological/motive oriented) firstly and taxonomic and functional secondly [3]. Driver 
behaviour models can further be located on a dimension ranging from specific to unspecific 
[2]. 
Driver models fulfil different purposes, leading to another distinction, e.g. conceptual and 
computational models [4]. Conceptual models are developed in order to understand the 
processes involved in driving. Computational models are constructed in order to compute, 
simulate and predict individual driving behaviour or to rebuild interactions among several 
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road users. Driver models are used in research as a tool for Rapid-Prototyping, reducing the 
need of extensive experiments with real subjects [4-6]. The dominant paradigm for the 
modelling of human driving behaviour is information processing in the cognitive domain in 
the tradition of cognitive architectures (e.g. ACT [7, 8]). The cognitive approach tries to 
model the relevant cognitive processes of a driver in order to explain and to predict his 
driving behaviour in certain situations. There are a large number of cognitive processes 
possibly involved in driving behaviour, for example perceiving, evaluating, goal-setting, 
deciding, etc. [9, 10]. Therefore, many existing modelling approaches use cognitive 
architectures (e.g. ACT [7, 8]). Because the description of dynamic processes is difficult 
within these modelling frameworks their application poses considerable problems in the 
domain of driver simulation. An alternative approach is the use of models for vehicle 
guidance that focus on the interaction between driver and vehicle and are conceptualized 
according to cognitive action theories [11, 12]. In this framework driver behaviour is 
described as the result of extensive internal planning and decision processes [13, 14]. These 
approaches focus on the specification of processes and structures underlying cognition [15]. 
The cognitive approach – although intuitively convincing – does not only suffer from heavy 
methodological problems (cognitive processes are intrinsically unobservable [8]), but also 
leaves open the question whether it is actually necessary to model internal processes in order 
to predict behaviour.  
In contrast to this approach, we propose a new modelling framework for driving behaviour, 
which uses theoretical concepts from Behavioural Psychology [16]. In Behavioural 
Psychology the focus lies on observing apparent behaviour and analysing its relations to 
situational stimuli. Theories of inner processes are not of primary interest [17, 18]. 
The core idea is that in a pragmatic setting what is needed is not a driver-model but a model 
of human driving – that is, a formal description of how controllable external variables 
influence the movement of a car in traffic. The fact that this is mediated by the cognitive 
processes (and of course by the physical actions) of a living driver sitting inside the car is not 
essential to questions concerning car movement. Therefore the approach put forward takes 
driver and car to be one single agent in a traffic scenario, rather than modelling the interaction 
between them. The theoretical background used in the present approach is an application of 
optimization theory and rests on the assumption that human behaviour is gradually adapted to 
the environment (this may include physical environment, as well as social factors or the 
behaviour of other organisms) [19-21]. In our models we are neither interested in the internal 
processes that lead to the observed behaviour, nor in those that mediate the process of 
adaptation. Instead, we start with the general assumption that driving behaviour is the result of 
an optimization process. Thus, the key to modelling driving behaviour is to find out what is 
“optimal” in a given situation [22]. How the optimization process is implemented in the 
organism is not relevant for our models.  
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2 Behavioural approach  
To formalize the concept of optimization we introduce a theoretical variable which will be 
called “reinforcement value” (due to its theoretical roots in operant behaviour theory). This 
reinforcement value plays an essential role in our models and simulations, because we assume 
behaviour to be chosen in order to maximize a theoretical reinforcement value. The 
reinforcement value of a behaviour in a given situation is taken to be a mapping of all 
anticipated positive and negative consequences of this behaviour onto a single dimension 
(Fig. 1). 
  

 
Fig 1: Origin of the reinforcement value [23] 

 
Thus, in any given situation, all possible behaviours can be assigned a reinforcement value by 
means of specific evaluative functions.   
 
Behaviour is assumed to be the result of this evaluation against positive and negative 
outcomes, in the way that in each situation the behaviour with the highest expected 
reinforcement value (with regard to a specific time horizon and a specific set of possible 
behaviours) is chosen. We would like to stress that this approach – although situated in the 
domain of behavioural psychology – does not take behaviour to be determined by external 
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factors alone, but to be the result of the specific reinforcement values of a person with respect 
to the possible behaviours in a given situation. In fact, the notion of reinforcement value 
maximization is very similar to the basic idea of Expected Utility Theory [24]. In contrast to 
Expected Utility Theory, however, the current approach does not assume driving behaviour to 
be the result of a rational decision process. Moreover, for reasons of parsimony, we omit the 
concepts of expectancies and subjective probabilities, which results in a slightly different 
formalization.  
 
2.1 Hybrid automata 

We use the ‘Theory of Hybrid Automata’ as a formal background to implement these 
assumptions into a quantitative model. Hybrid automata provide a helpful framework for our 
models, because they allow both for continuous variables as well as discrete states to describe 
a system [25]. Within a single state the change of each variable is described by a differential 
equation. Between states there are certain criteria which specify the transition from one state 
into another. This way it is possible to specify simple if-then-rules as well as continuous 
functions and even their interaction.  
To apply this formal framework to the aforementioned theory of optimal behaviour we break 
up the timeline into distinct situations and identify these with the states of a hybrid automaton. 
The driving behaviour in each situation changes continuously over time – thus we identify the 
corresponding variables (namely speed and trajectory) with the continuous part of the 
automaton. Thus, driving behaviour is described by a different set of continuous functions of 
time in each situation. To incorporate the concept of reinforcement maximization, these 
continuous functions are not specified a priori but modelled as unknown functions, which are 
to be maximized against a reinforcement value which depends upon suitably chosen functions 
of relevant external variables (e.g. distance to other cars, lateral position, steering angle etc.). 
 
2.2 Exemplary scenario 

As an exemplary scenario to apply our modelling approach we take a car entering the 
freeway. Merging onto the freeway is a rather complex driving task, as several factors have to 
be considered by the driver. The driver has to adapt his speed according to several factors, e.g. 
the road geometry, the speed limit and the car ahead, he has to control the distance to the car 
ahead, the lane markings and the end of the acceleration lane, before a lane change can be 
conducted he has to  find an appropriate gap on the freeway,  he has to adjust his driving 
speed to the traffic on the motorway, change lane and finally reach travelling speed [26]. 
Instead of modelling all these tasks and making assumptions about the related internal 
processes like perception, decision and response selection, and response execution [27] or 
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taking into account every variable that might have an influence in the situation, like 
personality, experience, task demand, driver state and situation awareness [1], our model 
focuses on observable behaviour, namely trajectory and speed of the ego car. Furthermore, as 
mentioned before, we model the driver and the car as one unit, omitting intermediate steps 
like steering or breaking. As long as these driver behaviours are causally dependent on 
external factors, it is not necessary to include them in the model, since they do not enhance 
predictive power. It is important to indicate that we do not doubt that the mentioned variables 
and interactions may have an impact on driving performance. However, we want to evaluate 
the predictive and explanatory power of a parsimonious model which is deduced from another 
scientific paradigm.  
The model is based on the assumption that the driver starts at a given velocity and has a 
desired travelling speed on the freeway. Moving onto the freeway he tries to minimize forces 
due to acceleration or trajectory change (trying to avoid unpleasant jerks, as well as possible 
threat associated with sudden car movements), to stay as far to the right as possible (resulting 
in a tendency to drive on the rightmost lane, which is also stipulated by the German road 
traffic regulations) and, of course, avoid collisions with other vehicles. The minimization of 
forces, accomplished by gradual braking and accelerating, results in smooth movements. It is 
supposed that drivers pursue smooth movements due to biological adaptation. Since abrupt 
movements are associated with aversive stimulus situations like stumbling, running into 
something or being hit, they are assumed to be aversive per se. Any departure from smooth 
movements are therefore taken to be the result of restricting factors in the environment (e.g. 
cars that get into the way of the ideal – that is smooth – trajectory). To formalize our 
assumptions we assigned corresponding reinforcement values to high forces, collisions etc. 
The resulting hybrid automaton is depicted in Fig. 2. Note that the timeline is divided into 
three functionally distinct parts – each being visualized by a circle containing the continuous 
functions controlling behaviour in this state. The first state stands for the time just before it is 
possible to enter the freeway. The second state describes the process of filtering into the 
traffic. The third state is just an exit-state, which corresponds to the fact that filtering onto the 
freeway is now accomplished. In a more elaborated model, of course, there would have to be 
a number of new states describing the task of driving on the freeway – possibly completed by 
additional states corresponding to changes in the environment like new cars entering or 
overtaking manoeuvres.The states contain a description of both the ego car and external 
factors relevant to driving behaviour. The ego car is assigned a position (𝑥𝑥,𝑦𝑦), a current 
velocity 𝑣𝑣, and an angle 𝛼𝛼 to the lane. Our model considers the variables 𝑣𝑣 and 𝛼𝛼 to be 
controlled by the driver via the functions 𝑓𝑓 and 𝑔𝑔, representing acceleration and steering, 
respectively. These two functions are optimized for maximal reinforcement value 𝑞𝑞. We add 
another car to our model, which is driving on the right lane of the freeway – with position 
(𝑥𝑥2,𝑦𝑦2) and velocity 𝑤𝑤. To transform steering and acceleration behaviour into absolute car 
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position the model uses the trigonometric functions 𝑣𝑣 × sin (𝛼𝛼) and 𝑣𝑣 × cos (𝛼𝛼). State 
transitions are determined by the position on the x-axis, which corresponds to how far the ego 
car has proceeded on its way onto the freeway. The most important part of the model is given 
by the two evaluative functions Δ1 and Δ2, which assign a reinforcement value 𝑞𝑞 to every 
possible steering and acceleration behaviours for each momentary state of the ego car. These 
functions are formalizations of the aforementioned theoretical assumptions made about the 
effects of certain external variables on the driver. During the process of filtering in the 
evaluative function is given by 
 

Δ1 = −𝑓𝑓(𝑥𝑥)𝜔𝜔 − tan (𝑔𝑔(𝑥𝑥)𝜔𝜔)𝑣𝑣2 −
𝜆𝜆

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + 𝑘𝑘
 

 
The parameters 𝜔𝜔 and 𝜆𝜆 are person specific values which express force aversion and the 
aversiveness of collisions, respectively. Forces are assumed to be only moderately aversive 
when small, but increasingly unpleasant when high – we model this by the use of a power 
function with 𝜔𝜔 > 1. To formalize the avoidance of car crashes we took the squared distances 
in both dimensions to construct a hyperbolic function with 𝜆𝜆 ≥ 1 contributing to the steepness 
of the curve. This results in extremely negative values for small distances and values close to 
zero for large distances. Because the term under the fraction line must not be zero we add a 
constant 𝑘𝑘, which is to be set to a very small number. 
As soon as the ego car has arrived on the freeway, the evaluative function changes to 
 

Δ2 = −𝜏𝜏(𝑣𝑣 − 𝑣𝑣des)2 + 𝜎𝜎[min(0,𝑦𝑦 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏r) + min(0, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏l − 𝑦𝑦)] − ρ × y

−
𝜆𝜆

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + 𝑘𝑘
 

 
The collision term is the same as in the previous state. Instead of force aversion, however, we 
include the squared deviation from the desired speed 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑, which is weighted by person and 
situation specific factor 𝜏𝜏. This parameter stands for the relative importance of reaching the 
desired travelling speed and can be interpreted as time pressure. We further modelled the 
tendency to avoid leaving the road by assigning positive values, if the ego car is within the 
boundaries of the road 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏r and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏l. These terms are weighted by another parameter, 
𝜎𝜎, which stands for the threat posed by an accident due to deviations from the road. The last 
factor is a general tendency to drive on the right. The corresponding weighting parameter ρ 
stands for the threat posed by the German traffic law, which demands to drive on the 
rightmost lane, whenever possible.  
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Fig. 2 Model of driver moving onto a freeway with another vehicle already on it 
 𝐱𝐱,𝐲𝐲: position, 𝐯𝐯: velocity, 𝛂𝛂: angle to freeway direction, 𝐱𝐱𝟐𝟐,𝐲𝐲𝟐𝟐: position of car 2, 𝐰𝐰: velocity of car 2, 𝐟𝐟𝐟𝐟[𝟎𝟎,𝟐𝟐]ℝ: acceleration (optimized), 
𝐠𝐠𝐠𝐠[−𝟎𝟎.𝟏𝟏,𝟎𝟎.𝟏𝟏]ℝ: steering (optimized), 𝐪𝐪: reinforcement value (measured at 𝐱𝐱 = 𝟏𝟏𝟏𝟏𝟏𝟏) 

 

𝑥𝑥 < 26 
𝑥̇𝑥 = 𝑣𝑣 × cos(∝) 
𝑦̇𝑦 = 𝑣𝑣 × sin(∝) 

𝑞̇𝑞 = 0 
𝑣̇𝑣 = 0 
∝̇= 0 
𝑥̇𝑥2 = 𝑤𝑤 
𝑦̇𝑦2 = 0 

𝑥𝑥 < 80 
𝑥̇𝑥 = 𝑣𝑣 × cos(∝) 
𝑦̇𝑦 = 𝑣𝑣 × sin(∝) 

𝑣̇𝑣 = 𝑓𝑓(𝑥𝑥) 
∝̇= 𝑔𝑔(𝑥𝑥) 
𝑞̇𝑞 = Δ1 
𝑥̇𝑥2 = 𝑤𝑤 
𝑦̇𝑦2 = 0 

𝑥̇𝑥 = 𝑣𝑣 × cos(∝) 
𝑦̇𝑦 = 𝑣𝑣 × sin(∝) 

𝑣̇𝑣 = 0 
∝̇= 0 
𝑞̇𝑞 = Δ2 
𝑥̇𝑥2 = 𝑤𝑤 
𝑦̇𝑦2 = 0 

𝑥𝑥 > 25 
 

𝑥𝑥 = 0 
𝑦𝑦 = 0 
𝑥𝑥2 = 0 
𝑦𝑦2 = 5 
𝑣𝑣 = 4 
∝= 0 
𝑞𝑞 = 0 

𝑥𝑥 > 70 
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3  Evaluation of the model 

In order to evaluate the basic properties of the model, we conducted a series of numerical 
simulations. For this reason we assigned exemplary values to the variables specifying the 
scenario. The dimensions of the road were given by three driving lanes, each 5 metres wide 
and an acceleration lane of 55 metres length. The starting speed of the ego car was set to 
40 km/h and the desired travelling speed was fixed at 120 km/h (the unit used in the 
simulations was actually 10 km/h – the reason for this is that dividing velocity by 10 enabled 
us to keep the remaining parameters simple, resulting in more comprehensive formulas) . The 
velocity of the second car was varied between 70 km/h and 80 km/h. The person specific 
parameters of the evaluative functions Δ1 and Δ2 were estimated within a simplified model 
which did not contain other cars on the freeway but was identical to the original model in 
every other respect. We used an iterative estimation procedure to find estimates which 
resulted in a smooth movement from the acceleration lane onto the freeway. To accomplish 
the estimation of 𝜆𝜆  without having an car to collide with we set it equal to 𝜎𝜎. This seems 
reasonable because both parameters represent the same anticipated consequence: the threat for 
death due to either collisions with other cars or leaving the road. The resulting values were: 

• 𝜔𝜔 = 1 for the force aversion parameter 
• 𝜏𝜏 = 1 for the weighting of reaching desired speed 
• 𝜌𝜌 = 5 for the tendency to drive on the rightmost lane 
• 𝜆𝜆 = 𝜎𝜎 = 1000 for the avoidance of crashes 

The constant 𝑘𝑘 was set to 0.01, representing an arbitrary small number to prevent division by 
zero. The resulting evaluative functions are 
 

Δ1 = −𝑓𝑓(𝑥𝑥)2 − tan (𝑔𝑔(𝑥𝑥)2)𝑣𝑣2 −
1000

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + 0.01
 

for state number two and 
 

Δ2 = −(𝑣𝑣 − 12)2 + 1000[min(0,𝑦𝑦 − 5) + min(0,15 − 𝑦𝑦)]− 5y

−
1000

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 + 0.01
 

for state number three, respectively. 
To test the plausibility of the specified model we entered the estimated parameter values into 
the complete model (including the other car on the freeway) and observed the resulting 
optimal behaviour when another car “gets in the way”. For reasons of computational 
resources we did not calculate the complete state space of the automaton but executed monte-
carlo approximations to estimate the expected value of the reinforcement value. The 
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optimization was accomplished by a genetic algorithm.  
 
3.1  Results of the evaluation process 

First results of the simulation show the feasibility of our approach. Depending on the traffic 
on the freeway, our model predicts different driving manoeuvres, which are rather complex in 
nature. If there are no cars on the freeway, the ego car “drifts” smoothly to the driving lane. If, 
however, there is another car on the lane, the ego car either enters the freeway in front of the 
other car or slows down and filters in behind the other car to overtake it after having entered 
the driving lane (see Fig. 2). The behaviour is chosen depending on the speed of the other car 
– a car that “gets in the way” of the preferred trajectory changes the optimal behaviour in this 
situation and thus results in a trajectory that can be described as a best alternative to what 
would have been done if there had been no other car. The behaviour of the ego car underwent 
an abrupt change between 𝑤𝑤 = 7.8 and 𝑤𝑤 = 7.9: When the other car travelled at 79 km/h the 
ego car stayed slow until it has passed and enters after the other car. If, however, the other car 
travels just a little bit more slowly (78 km/h), the ego car overtakes and enters the freeway in 
front of the second car. 
 
 
 

  
Fig. 2: Two simulation results with differing velocities of the other vehicle. 
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We took the evaluation a step further by varying some of the person parameters which 
determine the driver’s preferred behavior. The aim was to explore how changes of preferences 
could lead a driver to engage in a risky overtaking manoeuver in a situation where he would 
otherwise have filtered in after the other car has passed. Therefore we set the other car’s 
velocity to 𝑤𝑤 = 79km/h, resulting in the safer behaviour depicted in the lower panel of 
figure 2. We then changed the weighting factor of deviation from the desired travelling speed 
from 𝜏𝜏 = 1 to 𝜏𝜏 = 10, representing a situational change in preference (for example the event 
of taking a look at a watch and noticing that one has to hurry). As one might expect, the ego 
car’s behavior switched to the risky overtaking manoeuver (resulting in a trajectory very 
similar to that of the upper panel of fig.2). Another parameter we were interested in was the 
tendency to drive on the rightmost lane. The question we were interested in was whether a 
higher tendency to drive on the rightmost lane could result to riskier behavior – although it is 
mostly considered to prevent car accidents by enhancing traffic flow. We therefore doubled 
the corresponding parameter (𝜌𝜌 = 10). Indeed, this change resulted in the riskier overtaking 
behaviour, as well.   
 
4  Conclusions and outlook 

We presented a model of driving behaviour based on assumptions from Behavioural 
Psychology. Internal processes are neglected in favour of a parsimonious behavioural 
approach which takes behaviour to be the result of a subjective optimization process. In order 
to formalize this idea, a theoretical variable (reinforcement value) is introduced to represent 
the evaluation and summation of consequences of possible behaviours. We chose the driving 
task “merging onto the freeway” as an exemplary scenario to apply the model.  
At least on a qualitative level, the model generates plausible predictions for driving behaviour 
in this situation. We would like to stress that although our model predicts qualitatively distinct 
manoeuvres, we did not model a decision process. Neither did we attempt to model a learning 
process. What our model does is to find an optimal driving trajectory for a given situation, 
provided a valid evaluation of anticipated consequences. The rationale behind this approach is 
that behaviour can be best understood if one starts with theoretical assumptions about how an 
organism would behave, if there were no restrictions from the environment. Formalizing these 
theoretical assumptions within a behavioural model allows for the deduction of specific 
instances of behaviour from the underlying principles. Variation in behaviour is understood as 
the result of external disturbances, which lead to deviations from the optimal behaviour. In the 
exemplary scenario given above behaviour is “optimal” with respect to the specific 
preferences (incorporated in the model as reinforcement values) of a driver. The 
reinforcement value of acceleration forces, for example, may vary considerably between 
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drivers, depending on age, experience or gender. Thus, the model allows for differences in the 
behaviour of different drivers and proposes a quite simple explanation for them. The critical 
point of our modelling approach is to determine the “correct” reinforcement values for a given 
class of drivers. Whilst in the present model the corresponding functions are merely plausible 
assumptions based on a very general behavioural hypothesis (“high forces are aversive”), it 
would be desirable to derive the exact distributions of the parameters empirically. This would 
also allow for the exploration of different driving styles (e.g. “sportive” vs. “play-it-safe”). A 
differential approach to modelling driving behaviour within the current theoretical framework 
arises naturally from the fact that variation in reinforcement values leads to systematic 
variation in driving behaviour. Differences in driver behaviour can therefore be incorporated 
by letting the reinforcement parameters vary between drivers. Although our approach may 
seem rather technical, paying little attention to what happens “inside” the driver, the principle 
of reinforcement maximization does say a lot about the agent in the car. Since the 
reinforcement values in our model reflect (possibly unconscious) driver preferences, they 
might as well be interpreted as motivational factors. Shifting the focus away from the 
information processing occuring in a driver, the proposed model presents a way to formalize a 
functional approach to driving behaviour. Instead of modelling how a person accomplishes 
driving, the reinforcement maximization approach gives an account for why people drive the 
way they do. This perspective can give new insights in the driving process and provide a 
promising ground for the development of advanced driver assistance systems that take into 
account both external factors and their interaction with behavioural preferences. Knowledge 
about drivers’ preferred behaviour may as well lead to predictions about optimal (that is safe) 
road construction As our approach does not only allow for the deduction of qualitative 
hypotheses but leads to specific quantitative hypotheses that can be compared to empirical 
data, it should be possible to derive a more valid simulation using an adequate experimental 
setting.  
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