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Abstract 

Modeling a link in a B-ISDN at the connection level by Ma.rkovian techniques, we 
derive an MMPP /PH/n/m multi-servet system as simplifi.ed, generic model. First, 
we cakulate the steady-state vector of the underlying Markov chain of the model 
by adva.nced numerical methods. Then we determine the time and call congestion 
of the delay-loss system and the a.ctua.l waiting-time dishibution of a. customet. 
Finally, the properties of some MMPP /PH/n/n loss systems are shdied. 

1 Introduction 
Nowada.ys, modeling and a.na.lysis of complex distributed, technical systems such as 
telecommnnication networks within a broadband ISDN (B-ISDN) environment ha.ve 
hecome important issues of performance ana.lysis. Norrnally, such physical systems are 
described by queueing networks employing Markovian modeling techniques. Usually, 
either a discrete- or continuous-time modeling approach is used. In the following, we 
restrict our attention fo continuous-time modeling techniques. 
As the derived queueing networks a.rising from the continnous-time modeling of modern 
communica.tion networks with sta.te-dependent routing or adva.nced congestion-control 
rnecha.nisms viola.te the restrictions o{ classical product-form networks o{ BCMP or Kelly 
type·(cf. [lt]), only simulation or computational techniques ba.sed on nurnerical solution 
rnethods for Ma.r kov chains a.re available a.s analysis methods (cf. (13J, [29), [32]). 
Regarding, however, the difficulties of simulation techniques to study rare events, for in-
stance, cell loss probabilities in the ra.nge of 10-7 a.rising from the investigation of ATM 
networks (cf. [26]), numerical a.nalysis methods seern to be the only feasible a.pproach. 
The rnain drawback of such an approach stems frorn the huge, untractahle number of 
states in Ma.rkovian models derived from actual networks. Therefore, suitable modeling 
techniques including special decomposition methods have to be employed to analyze 
large networks by parts. 
Regarding modeling o{ packet-switched networks, a classical decomposition a.pproach 
proposed by Kühn [15], Whitt {34] and Marie (17} among others uses GI/GI/1 models 
as generic elements of the queueing networks. lt is weil known, however, that the a.s-
sumption that all streams within the network are renewal streams is crucial, apart from 
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limiting regimes such as networks in a heavy traffic environment. Usually the traffic 
streams in a B-ISDN a.re bursty point processes since they are generated in the sources 
by sa.mpling a.nd pa.cketizing procedures employing variable bit rate coding techniques. 
They have to be modeled by versatile non-renewa.1 streams chosen such that the result-
ing generic queueing models a.re tra.cta.ble by ana.lytica.l or numerica.l analysis methods. 
Therefore, it is reasona.ble to use queueing systems with special Semi-Markovian arrival 
streams (SMPs) that yield tractable Ma.rkovian models a.s building blocks o{ the model 
world .. An important dass of streams is provided by Markov-modulated Poisson pro-
cesses (MMPPs) (d. [13], [21), [16], [26], [9), [18]). 
The holding times of network resources in a. B-ISDN environment such as the occupa.tion 
of links ca.n be modeled by deterministic or a.rbitra.ry genera.1 distrihutions on [O, oo ). 
lt is known tha.t they may be a.pproximated with suitable accuracy by Coxian or, more 
genera.lly, phase-type (PH) distributions (cf. [20]). Therefore, the service processes as-
sociated with the derived queueing models can be described by PH-distributions. 
lt is our main objective to ana.lyze parts of a.n integrated broadband network that em-
ploys advanced routing techniques toset up virtua.l connections (cf. [32], [14), (27, §12}). 
Considering a classica.l circuit-switched network, Erlang's loss system M/G/n/n is the 
generic queueing model o{ a link between two exchanges. If we model a broadba.nd 
network. at the connection level applying the standa.rd decomposition approach, the 
derived generic models include the generalized loss system MMPP /PH/n/n with one -traflic dass and combined delay-loss systems Li MMPPi/ PH /n/m with two or more 
tra.ffic classes of different characteristics (multi-service tra.ffic models - c{. [27, §12-3-
2, p. 670ff.], [14], (32]). Taking into account the different bandwidth requirements o{ 
traffic streams in a B-ISDN environment, the generic models are multi-cla.ss delay-loss 
systems L; MMPPf;/ PH /n/m with ba.tch a.rriva.ls and bulk service as optiona.l service 
discipline. 
From a pra.ctical point of view, it is important tha.t modeling a.nd ana.lysis are supported 
by conve~ent software tools. They should offer advanced user interfaces based on mod-
ern window and menu techniques. Following these considerations, a convenient software 
tool ca.lled MACOM (Markovia.n Analysis of Communication Systems) has been devel-
oped (cf. [13], [29]). Its model world provides multi-server queueing systems ofthe types 
PH/PH/n/m and MMPP /PH/n/m as generic elements. Furthermore, specia.l va.riants 
of the multi..:class delay-loss system l:; MMPPf'/ PH /n/m with fixed batch me can 
be ha.ndled, too. MACOM implements a computa.tional approach {or modeling and 
ana.lysis of communica.tion systems ba.sed on Markovian techniques. lt employs modern 
so{tware design techniques and numerical solution methods for finite Markov chains. 
In this paper, we restrict ~ur a.ttention to the simplest generic ISDN model o{ type 
MMPP /PH/n/m. We present some effi.cient a.lgorithms for its ana.lysis based on it-
erative sobition techniques for Markov chains. They m&y be used to c&lculate the 
steady-state cha.racteristics o{ this delay-loss system. These algorithms a.re considered 
as & supplement o{ the standa.rd ana.lysis techniques provided by MACOM that are 
based o:it·~ra.ssmann's algorithm a.nd point iterative schemes such as the Gauss-Seidel 
and SOR procedure with optional a.ggregation-disaggregation steps (d. [13]). They 
can be employed to study MMPP /PH/n/m models in isolation, as basic block iterative 
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solution methods in MACOM or as building blocks of a decomposition approa.ch based 
on Semi-Markovia.n techniques. Extending the previous work of Stewart a.nd Marie [31] 
and Seelen [30), we prove the convergence of the proposed iterative a.lgorithms. 
The paper is organized as follows: Section 2 describes the fea.tures of an 
MMPP /PH/n/m multi-server model. In section 3 the generator matrix associated with 
the basic Markov chain of this model is consttucted and its properties are studied. In 
section 4 we present some efficient algorithms based on iterative solution techniques. 
They may be used to calcula.te the stea.dy-sta.te distribution corresponding to the basic 
Markov cha.in o{ the model. Section 5 is devoted to the calculation of the performance 
measures associated with the considered dela.y-loss system. Finally, we investiga.te the 
performance cha.:racteristics of some MMPP /PH/n/n loss systems. 

2 Description of the MMPP /PH/n/m model 
Variants of the MMPP /PH/n/m multi-server model are basic elements of the described 
model world of MACOM. Their {ea.tures and a.na.lysis will be discussed subsequently. 
The related MMPP/PH/1/m single-server model and its generalized version N/G/1/m 
with Neuts' versatile Mar.Jcovian point process as arrival stream have been investigated 
by Heft'es and Luc&ntoni [9] &nd Blondia [3]. Interested re&ders a.re referred to their 
articles and the references therein. 
In the following section we a.ssume the reader to be familiar with the theory of homoge-
neous discrete- a.nd continuous-time Markov chains with finite state spa.ces, abbreviated 
DTMC and CTMC, to the extent ofthe books of Heyman and Sobel [10, Chap. 7, 8J and 
Kemeny and Snell [12]. Furthermore, we shall &dopt the terminology of Heyman and So-
bel and we use the following notation of Berma.n a.nd Plemmons [2, Chap. 2, p. 26) w.r.t. 
vector and matrix orderings: let :z: E 1R n, then z > 0 # Zi > 0 for ea.ch i E { 1, ... , n}, 
z > 0 {::} Zi 2 0 foreachi E {1, ... ,n} and:z:; > Oforsomej E {1,„.,n}i 
z ~ 0 {::} z1 2 0 for each i E { 1, „ . , n} . 
Let US now consider & multi-server model o{ type MMPP /PH/n/rn. lt has the following 
properties: 

• The arriva.l stream is a Markov-modulated Poisson process (MMPP) with s 
states, a.n irreducible generator matrix Q E 1R •X• and the arrival rate vector 
A:::: (A1 „.,>i.)• > 0 (cf. [21, p. 269]). Let Y(t),t ~ O, denote the correspond-
ing irreducible CTMC on the state space {1,. „, s} describing the pha.se o{ the 
MMPP. 

• The service fa.cility consists o{ n > 1 identical, parallel servers. 

• The capacity of the system comprising the number of servers and the number of 
waiting places is m = n + l, i.e., there a.re l ~ 0 waiting positions a.nd n parallel 
servers in the system. 

• The service discipline is 'delay-loss with FIFO'. li there a.re less than n customers 
in the system, an arriving customer selects a free server a.t ra.ndom and occupies 
it for a random service period. lf all servers are busy a.t his arriva.l insta.nt, the 
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customer joins the wa.iting line. If no wa.iting positions are available, he is lost 
a.nd has no !urther impa.d on the system. 

• The service times of the customers are independent, identica.lly distributed ran-
dom variables governed by a phase-type distribution F of order k with irreducible 
representa.tion (ß, T). We assume ßte = 1, where e is the vector of all ones, and 
set /Li= -Ti•> O, 1 $ i s k. 
Furthermore, the service times a.re a.ssumed to be independent of the a.rriva.l pro-
cess. 

According to its definition (cf. [20)), the generic service-time distribution F eva.luates the 
time to absorption in the state k + 1 of a CTMC with :finite state space {1, ... , k, k + 1} 
and tra.nsient states E = {1, ... , lc} provided that the cha.in is started in the tra.nsient 
set E accordi°f to the probability vector ß. The corresponding generator matrix is 

given by G = l ~ ~o ) with a regular M-Matrix -TE m.•xAi and a. vector 0 < T° = 

(Tu1+1i ... , Tu+1)t E m.• satisfying Te+ T0 = 0. Then F(u) = 1- ßt • eTu • e, u ~ O, 
holds. 
In analogy to the uniforniization of ergodic Markov cha.ins, we may proceed to a.n 
embedded DTMC associated with the absorbing CTMC defined above (d. [4], flO]). 
Let D = -diag(T11 , ••• ,TH,O) > O. Here, D = diag(~) denotes a diagonal matrix 
a.ssocia.ted with a vector z which is defined by Dii = :Z:i. Then we set a' = D•G + 1 
where 1 denotes the identity matrix and D• = -diag(Ti11 , ••• , T„-,,1, 0) is the group 
inverse of D. Hence, 

. { -Ti; /T;,i for i # j, 1 S i S k, 1 '5: j 5 k + 1 
et' i; = 1 for i = j = lc + 1 

0 otherwise 

holds a.nd a' is a stocha.stic matrix. lt follows G = D(a' - I). Obviously, ex';; is the 
proba.bility to proceed to state j after depa.rture from state i. The sojourn time in 
a transient state i E E = {1, ... , k} is governed by an exponential distribution with 
para.meter JLi = D11 = ....;.T;,i > 0 (d. [4]). 
Let us denote the k x k principal submatrix of oc' by a. Hence, a -
[-diag(T11 , ••• , Tu)]-1 T. + 1 is a strictly substochastic ma.trix, i.e., a 2: O, ae < e. 
The beha.vior of the MMPP /PH/n/m queueing model may be described by a stochastic 
process Z(t) = (R(t), H(t), Y(t)), t ~ 0. Here, R(t) E {O, ..• , m} denotes the num-
ber of customers in the system at time t. Given n > 1, H(t) == (h1(t), ... , h1(t)) with 
h;(t) E {O, ... , n}, 1 5 j :5 k, is the phase vector of the numbers of customersjust served 
in the dift'erent phases j of the service process at timet. Y(t) E {1, ... , s} is the phase of 
the CTMC controlling the arrival stream at time t. The number of busy servers is given 
by N(t) = H(t) · e = E,,..1 h;(t) = min(R(t), n). According to the assumptions, the vec-
tor process Z(t), t ~ O, is a CTMC on the finite sta.te space S = { z = (-r, h11 •• • , h1 , y) E 
JN~+2 I0$r$m,1:5y$1, 0 ~ h; $ n for 1 $ j $ k subject to I:}=1 h; = min(r, n)}. 
Here we imbed, of course, all admissible vectors H = (h1, ••• , h„) E JN: in S by identi-
fying the vectors (r,H,y) and (r,h1 , ••• ,h„,y) ES. 
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3 Construction of the generator matrix 
lmportant stea.dy-sta.te performance characteristics o{ the MMPP /PH/n/m model such 
as the time a.nd call congestion a.re defi.ned in terms of the steady-state distribution ?r of 
the CTMC Z(t). In order to ca.lculate '11" 1 we ha.ve to construct the genera.tor matri.x Q 
of Z(t). For this purpose, we ha.ve to fix an ordering of the states of the Markov chain 
first. Then we shall enumera.te the sta.tes a.nd determine the rates of all transitions 
beiween these states. 

3.1 Ordering of states 
We use the convenient ordering of sta.tes '--<' defi.ned by Stewart a.nd Marie [31J for 
the related M/PH/n/m model. First, we divide the state space into macrostates [r) = 
{(r, H, y) l YH ~ O, y E {1, ... a} : (r, H, y) E S},r = O,. „, m, ca.lled levels or R-lumps 
(cf. (20, p. 5J). They a.re denned hy fixing the nnmber o! customers in the system, 
for instance, R(t) = r. These macrostaies are ordered accorcling to the lexicographical 
ordering. The microsta.tes [(r,H)] = {(r,H,y) l Yy E {1„ .. s}: (r,H,y) ES} within 
a. macrosta.te determined by fi.xing both R(t) = r and H(t) = (h1(t),. „, hJi(t)) = 
H = (h1, ••• , h1e) are called H,-1umps. We order the vedors Hol all H.,.-lumps within 
each R-lump [r] according to the reverse lexicogra.phical ordering o{ their components. 
The last component determined by Y(t) = y is lexicogra.phically ordered again, i.e., 
(1',r, ... ,0,1)-< .„-< (r,r, ... ,O,a)-< (r,r-1,l,„.,0,1)-< .„-< (r,r-1,1,„.,0,s)-< 
„.(r,O,O, ... ,r,1)-< „.--< (r,O,O, ... ,r,a). 
To construct the generator matrix Q, we have a.t first to identify its zero structure. 
Therefore, it is necessary to enumerate the sta.tes based on the prescribed ordering, i.e., 
we have to define a position mapping p: S - JN, p: z 1-+ p(z) = Pe· Suppose there 
are r customers in the system. Then one has to distribute these r customers among n 
servers and l = m - n waiting places. Ea.ch busy server stays in one of the k phases of 
the service process. Based on these observations, it is easy to see that e&ch R-lump (r] 
comprises e+!-1)s states jf r < n &nd ("+!-1)a sta.tes if r ~ n holds. 
In the following, we exploit for 11 ~ r the identities 

f (j + ~ - t) = t (1' - i + ~ - t) =:: (" - V + k - t + 1) = (r - 11 + k - t + 1) 
. J . r-i r-v k-t+l 

1=0 ·=~ 

and the standard boundary conventions (,:) = 0 for all integers 0 :$ n < m and 
(_"m) = 0 for n = O, ±1, ±2, ... a.nd all integers m ~ 1 (cf. [24, p. 1)). Then it 
follows by some algebra.ic ma.nipulations that the position index p, oi an arbitrary sta.te 
z = (r, h11 ••• , hi, y) E S is determined by 

[(
min(r,n)+k-1) ( ( ) >(n+k-1) p, = Tc . + max r, n - n n 

~ (min(r,n)-(h1 +.„+hs+1) + k-i)) +4.. k . •+y 
i=l -i 

given :E~=l ::: 0 (cf. [33]). 
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3.2 Determination of the transition rates 
To determine the tra.nsition ra.tes between the states of the CTMC Z(t), we have to an-
alyze the transition beha.vior of the Markov cha.in. Suppose Z(t) = (R(t), H(t), Y(t)) = 
(r, hi, ... , h1„ y). We must consider only those events occuring in an interval [t, t + o) of 
in:finitesimally sma.ll length 6 whose transition probabilities exceed 0(8). Obviously, the 
{ollowing four distinct events cause such tra.nsitions: 

1. an arrival of a new customer (who can enter the system) 
This birth event changes the components R(t) and H(t) where the R-level is 
incremented by one if' the customer can enter the system. H he is lost there is no 
chaJige a.t all. 
H r · < n and the customet occupies a free server sta.rting its se:rvice in pha.se ; , then 
Z(t +c5) = (r+ 1, ... , h; + 1, ... , y) results, whereas Z(t +6) = (r + 1, h1 , ••• , h„, y) 
holds for n ~ r < m. In the latter case, all servers are busy and the customer 
can enter the waiting room of the system. The transition rate of the first event is 
given by· A,ßi, that o{ the second event by A,. 

2. a phase shift of one customer's service process without service completion 
This internal phase shift of a service process changes only H(t). But it can happen 
only if R(t) =.,. ~ 1 holds. Z(t + o) = (r, ... , h; -1, ... , h; + 1, ... , y) results, for 
instance, i{ a tra.nsition f:rom pha.se j to i occurs. The corresponding rate of this 
event is h;µ;a;,. 

3. a. phase shift of the CTMC controlling the a.rriva.l stream 
lt changes only Y(t). Z(t + c5) = (r, h1 , „., h1, u), {or instance, corresponds to a 
transition from y to u. The rate of this event is Qru· 

4. a Service completion o( a customer 
This death event changes the components R(t) and H(t) simultaneously decre-
menting the R-level by one. To determine the transiiion rates, we ha.ve to distin-
guish the events, that there are 110 customers waiting or that some are waiting. 
In the first case 1 5 r 5 n, Z(t +6) = (r-1,„.,h; -1, ... ,y) holds if' the 
customers leaves its service process in phase j. The transition rate of this event 
is given by h;µ;cx;1.+i· In the second case n < r 5 m, a waiting customer will 
occupy the free server in phase i of the service process immediately a.fter the de-
pa.rture of the served customer from pbase j of the service process. If i :j:. j holds, 
then Z(t + c5) = (r - 1, ... , h; - 1, ... ha + 1,. „, y) occurs with transition rate 
h;µ;cx;1i+iß;,. Hi = j holds, then Z(t + 6) = (r - 1, h1 , „., h1, y) occurs with 
transition rate E~,,.1 h;.JJ.iCX;.1s+tß:.. 

In the last subsection we have shown tbat ea.ch R-lump [r] has dr = (~!~~-1)1 
states. Thus the generator matrix Q E R"x' associated with Z(t) has the order 
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Obviously, d is linear in " and m, but it grows exponentially fast for n > 1 a.nd k > 1. 
Some examples are provided by Ta.hie 1. In comparison to that, for k = 1 d = (m + 1)1 
holds. For n = 1 it {ollows d = (m · k + l)s since in thls case H(t) E {O, ... , k} only 
records the pha.se of the service process at time t, where H(t) = 0 indicates an idle 
server. 
Regarding the lexicographical ordering of R-lumps, the generator matrix evidently pos-
sesses a block tridiagonal structure determined by the levels R(t) = 1': 

Qoo Qo1 0 

Q10 Qu Qn 
0 

Q= Qnn-1 

0 

q"" Qnn+l 
Qn+ln Qn+ln+l 

0 

0 

0 

Qm-1m 
Qmm-1 Qmm 

(1) 

Ea.ch block matrix Q•; is ad; x di matrix. The npper diagonal blocks Qii+l correspond to 
arrival events of type 1. The lower diagonal blocks Qii-l are a.ssocia.ted with depa.rture 
events o{ type 4. The diagonal blocks Q;; correspond to events of types 2 a.nd 3. 
Provided that Q is irredudble, all off-dia.gona.l blocks a.re nonzero, nonnega.tive matrices, 
wherea.s the diagonal blocks a.re regular Metzler-Leontief ma.trices; i.e., -Q;; is a regular 
M-matri.x since it is a proper principal subma.trix of an irreducible singular M-matrix 
alter an appropriate permutation ( d. (2]). 
The construction of the generator matrix Q may be pedormed by specia.I modeling 
tools such as MACOM (cf. [29], [13]) or by the direct generation o{ the block ma.trices 
employing Lucantoni's and Ramaswa.mi's algorithms (cf. [23), [22]). Subsequently, 
we adopt Ramaswami's a.nd Lucantoni's notation and apply their a.lgorithms. Setting 

G = ( :a ; ) 1 the construction algorithm reads as follows: 

Q1s+1 - P;(ß') ® A for i = O, .•. , n -1 
Q1;+i - 14.®A for i = n, . .. ,m-1 
Q.s-1 ' -- Ln-i( n, G) ® I. for i = 1, ... , n (2) q,,_. - Q(n, T°ßC)@ J, for i = n + 1, ... ,m 
Qoo - Q-A 
Qii - A(min(i, n), T) ® I. + 11, ® Q-Ä, for i = 1, •.. ,m 

Here ~ > 0 are diagonal ma.trices a.ssociated with Q;1 tha.t gua.ra.ntee Qe = 0 a.nd 
da= di/1. 11 denotes the identity ma.trix of order l a.nd A = diag(A) is the matrix of 
the arriva.l rates. The diagonal elements of Q(n, T°ßt) are ca.lculated by mea.ns. o{ [22, 
Theorem 2, p. 424]. Obviously, apart from the diagonal elements, all diagonal blod:s 
coincide for i = ·n, ... , m. Moreover, we have used the rela.tion Q00 = Q - Äo with 
Ä0 = diag((Po(ßt) ® A) · e) = diag(ß' • e ® A · e) = dia.g(A) = A. 
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3.3 Irreducibility properties of the generator matrix 
Regarding the calculation of the steady-state distribution 11' of Z(t), it is necessary 
to characterize the irreducibility of the generator matrix Q. The following Proposition 
provides a necessary and sufficient condition in terms of the zero structure o{ the service 
process. lt can be proved in a straighdorward manner (cf. [33)). 

Proposition 1 
The genera.tor matri~ Q i1 irreducible iff for each phase j E { 1, ... , k} of the 1ervice-time 
diltribution the following property ( P) hold1: 
(P) Ther:e ezsat an indez i and a 1et { a10 11 , cr1i 12 , ••• , ai,l,+i, ••. , ai,+„l•+r+i} 1uch tkat 

ßi > O, lo = i,l,+1 = j, la+r = ir, l.+,+1 = k+l and a1.,.1,,.+a > 0 form= O, .•• , 1+r 
hold. 

D 

Note, tha.t the assumptions ß ~ O, ßte = 1 a.nd T 0 > 0 imply the existence of indice~ 
i, j, with ßi > 0 and aj„1&+1 > 0. Now we are able to determine the irreducibility of Q 
ana.lyzing only the structure o{ the PH-type service-füne distribution. 

Proposition 2 
The generat~r matri:e Q i1 irreducible i!J the 1er11ice-time dütribution with PH-
repreaentation (ß, T) i1 irreducible, i.e.1 if the matriz T + T 0ßt i1 irreducible. 0 

As this assumption on the PH-representation is satisfied in the given context, the con-
structed generator matrjx Q of the MMPP/PH/n/m model is irreducible. Thus, the 
existence and uniqueness of the steady-state distribution 7r of the system is guaranteed. 
'lr is the positive solution of -, A · 'Ir = -Q · 'Ir = 0 (3) 
subject to the normalization condition ?rt • e = 1. 
Regarding the numerica.l solution of the homogeneous system (3) of linear equations, 
the block tridiagona.l structure a.n.d spa.rsity should be exploited. Some iterative solution 
procedures require the irreducibility of the diagonal blocks Aii of the singula.r M-matrix 
A = -Q'. Therefore, it is necessary to characterize this property by equiva.lent condi-
tions. They a.re provided by the following Proposition (cf. [33]). 

Proposition. 3 
The /ollowing conditio11.1 are equi11ale11.t: 
(i) All diagcmal blod1 .Qii of the generato'I' matriz Q are irreducible. 

{ii} The 1trictly 1·u.b1tocha1tic matriz a = -[diag('.1;1, ••• , Tu)]-1T + I E m.'xl aa1oci-
ated with the 1eM1ice-time diltribution of PH-type (ß, T) i1 i'l'reducible. 

{iii} Tke regula'I' Metzler-Leontief m.atriz TE m.h' u i'l"l'educible. 
0 
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4 Computation of the steady-state distribution by 
numerical solution methods 

Obviously, the special structure (1), {2) o{ the generator matrix Q implies that the 
stea.dy-state distribution "" of the CTMC Z(t) has a generalized matrix-geometric form 
(cf. [8]). In this section, we present an alternative approach for ca.lculating the stea.dy-
state vector 'lt'. lt is based on the numerical solution of the homogeneous system ( 3) and 
weil suited for an efficient implementation on a parallel or vector computer. Rega.rding 
the block tridiagona.l structure and sparsity o{ the system (3), it is advantageous to em-
ploy iterative solution methods based on inatrix splittings for singular M-matrices such 
as the block Gauss-Seidel or block SOR procedure (cf. [13]). To guarantee, however, the 
convergence of these procedures, some structural requirements on the system matrix A 
ha.ve to be {ulfil,led. 
Let us first consider an MMPP /PH/n/m model with a non-exponentia.l service-time 
distribution. Rega.rding the convergence of block iterative procedures based on regular 
matrix splittings A = M - N, a unifying framework is provided by R-regular splittings 
A = (D - L) - (L(N) + U(N) + D(N)) introduced by Rose [25]. 

Definition l 
Let A E m.n><n he a {1ingular} M-matriz with block partition A = (Ai;)1:::;iJ~ 1 pro11ided 
th.at p > 1. Auume the block 1plitting A = (D - D(N)) - (L + L(N)) - U(N) ha1 the 
following propertie1: 

{1} D = diag(D;;)t::;;i:::;p cind D(N) are block diagonal matricea with D(N) ~ 0. L and 
L(N) are 1trictly lower bloclc triangular matrice1 au.eh that L ~ 0, L(N) ~ 0 hold. 
U(N) i1 a 1trictly u.pper block triangular matriz with U(N) ~ 0. 

(i) Dij1 :> 0 foT 1 ~ i $ p • 

(3) M : D - L i1 a lower block triangu.lar matriz. 

(4) N = L(N) + U(N) + D(N) ~ 0. 

(5) Ao = D - L - U(N) i1 iN'educible. 

(6) The block matriz graph r(Ao) = (V, E) ha.1 a monotone decrea1ing cycle, thi1 ia 
a 1equence c = (i1 , i 2, ••• , ii, i 1) of adjacent nodea with the properly i1 #=. ii and 
i; ~ i;+11 l $ j $ l - 1. 
Recall that the block matriz graph r(Ao) = (V, E) i1 a directed matriz graph with 
node1 V = {V: l 1 $ i S p} and directed edge1 (V., V;) E E. V. re1v.lt1 from the 
pa.rtition of the indez 1et {1, ... , n} according to the block partition. (V., V;) E E 
ifj Ai; #- O, that mean1, there are indice1 l E Vi, m E V; 1uch that (l, m) E .Er(A) ia 
411. edge in tke ma.triz gra.pk of A. 

A block 1plitting A = M - N with the propertie1 (1) to (6) i1 called R-regular (block) 
Splitting. 
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Such schemes include the block Gauss-Seidel procedure, defined by M = D - L, D(N) 
= L(N) = O, N = U(N), and its modific&tions th&t exploit the sparsity strudure o{ A. 
By that means it is possible to employ incomplete L U-fa.ctoriza.tion techniques in the 
solution process. 
We wa.nt to exploit the natural partition A = (Ai;)o::;i,;::;m defi.ned by the block tridi-
agonal structure (1). Therefore, we assume that an R-regular splitting based on this 
natural partition is given. A sufficient condition tha.t gnara.ntees property (2) in Defi-
nition 1 and, hence, the convergence o! the iterative scheme arising from the R-regular 
splitting, e.g. the block Gauss-Seidel procedure, requires, however, that the diagonal 
blocks D00 , ••• , Dmm are regular, irreducible M-matrices (cf. [25], [131). Hence, the 
convergence o! the block Gauss-Seidel procedure can only be gnaranteed i{ the ma.trix 
T associated with the seivice-time distribution of PH-type is irreducible (cf. [25, Cor. 
2, p. 98]). In this case, the resulting iterative scheme may be accelerated by the use 
o{ rela.xa.tion techniques or the insertion of some aggregation-disaggregation steps (cf. 
[13], [28]). 
Rega.rding the genera.tor matrix Q, we note tha.t the diagonal blocks Q""' 
Qn+ln.+1, .•• , Qmm have the same o'ff-dia.gonal elements. Furthermore, the row sums 
of all lowel'. diagonal blocks Qii-li i = 1, ... , m, are equal to E:=l h;µ;a.;lc+l· As all 
upper diagonal matrices Qnn+1' ••• , Qm-lm coincide with I ® A, all dia.gonal elements 
of Q""' ... , Qm-lm-1 are equal and the elementwise ma.ximum of all positive dia.gona.Is 
of -Q""' -Qn+ln+li ... , -Qmm is given by that of the nth block -Qnn. Thns, the dü-
ference of the diagonals of Q;,, i = n, ... , m -1, and that one of Qmm is equal to 1 © A 
provided that a matrix notation is used. 
H T is irreducible, the following R-regular splitting A = -Qt = M - N exploits this 
structure: 
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lt is particula.rly recommended if m > n holds. 
According to the construction algorithm (2), Aii-i = (-qt)ii-t = -PL1(ß') ® A :5 0, 
i = 1, ... , n, a.nd Äii-t = -1 ® A :5 O, i = n + 1, ... , m hold. Furthermore, Aii = -Q!i, 
i = O, ••• , n, a.re irreducible regula.r M-ma.trices, hence, D~1 = Amin(-~ . )min(" ) > O s s,n , a,n 
follows. Obviously, M is a. regular M-ma.trix and L(N) = O, N = U(N) + D(N) ~ 0 
hold. Moreover, A0 = D - L - U(N) has the same zero structure a.s A implying the 
irreducibility of the block tridiagonal matrix A0 • Hence, the corresponding block matri.x 
graph f(A0 ) possesses a monotone decreasing cycle, too. Thus the proposed splitting 
(4), (5) is both an R-regular and a.n M-splitting. 
Regarding the genera.tor matrix 

-µ1 P.1 0 0 

0 -µ2 P.2 
G= 0 

0 0 -µ„ µ„ 
0 0 0 

of a generalized Erlang distribution (F E GE1 C PH), we see, however, that the 
corresponding submatrix T is reducible. Hence, Dii. are reducible regular M-matrices 
i111plying Di;.1 > 0. In such cases, a modification of the R-regular splitting (4), (5) must 
be used. lt is ba.sed on the following result (cf. [1, Theorem 3.9], [13J) that employs the 
well-known rela.xa.tion technique. 

Theorem 1 
Let A E m_nxn be a 1ing11.lar irreducible M-ma.triz with block partition A = (Äi;)i.i=l, ... „. 
Con1ider a block 1plitting A = (D - D(N)) - (L + L(N)) - U(N) whick 1ati1fie1 the 
propertie1 {1}, {3), (4) of an R-regular 1plitting according to Definition 1 and, in ad-
dition, (2') D;i1 > 0 for 1 :::; i ~ p. Define the aplitting M.., = :-(n - wL), N.., = 
~((l - w)D + wN), N = L(N) + U(N) + D(N) for aome 0 < w < 1. 
Tken A = M.., - N.., ia a weak regular 1plitting and tke iteration mat'l'iz T.., = M;1 N,,,, 
i1 1emiconvergent. The 1ckeme :z:(Hl) = T,,,, · z(") converge1 to a nonnega.tive, nont'l'ivial 
10/ution of Az = 0 provided tkat the initial vector z<0> i1 po1itive. D 

Regarding the MMPP /M/n/m varia.nt of the model with exponenti&l.ly distributed ser-
vice times, a. similar convergent, iterative procedure may be applied (cf. [25], [13]). 
lt is also ba.sed on an R-regula.r splitting and has been suggested by Meier-Heilstern 
[18, §3], but without a rigorous ma.thematical proof of the convergence of the resulting 
iterative scheme. The algorithm exploits the uniform structure of the diagonal blocks 
Äii = -Q~ + min(i, n)µ.1 + A(l - Dim), i = O, ... , m, that are of the same size d; = 1 

now. Here, A = dia.g(A) is again the matrix of the arrival ra.tes. 
As the diagonal blocks A;i a.re irreducible regular M-ma.trices in this case, it follows from 
f25, Cor. ·2; p.139) that the block Gauss-Seidel procedure a.nd, hence, the corresponding 
block SOR variant are convergent, too. Of course, these algorithms may be accelerated 
by inserting several aggregation-disa.ggregation steps during the iteration a.ccording to 
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the IAD scheme (cf. (13], [28]). 
In compa.rison with the block Gauss-Seidel or SOR scheme, the proposed R-regula.r split-
ting procedure has the advantage that all diagonal blocks of the matrix M are identical 
with -Q' + nµl + A. Therefore, it is necessary to decompose only this small matrix 
and to store its inverse during the iteration process. The resulting algorithm is weil 
suited for an implementation on a vedor processor. Experimental results concerning 
the performance of the scheme have been provided by Meier-Heilstern [18]. 

5 Performance measures of the model 
Regarding the application of an MMPP /PH/n/m model in teletraffic theory, it is our 
objective to calculate the steady-state performance characteristics of this delay-loss sys-
tem, namely, the time- and arrival-stationary distribution of the number of customers in 
the system and the actual waiting-time distribution of the customers. For this purpose, 
we have to use the steady-state distribution 1r o{ the CTMC Z(t). 

5.1 Time-stationary distribution of the number of customers 
Given a feasible state z = (r, H, y) E S, the time-stationary probabilities 7r(r, H, y) = 
'lr(r,B,tt) = limt-+co Prob{R(t) = r,H(t) == H = (hi, ... ,h„),Y(t) == y} may be computed 
by iterative procedures as normalized solution of the balance equations (3). Obviously, 
the time-stationary distribution P of the number of customers in the system is given by 
the marginal proba.bilities 

P„ = (?r[rJ)1e = [(1r(r,H,y))c,,JI,,)E[r)]'e = L; 11'(r,H,y) 
V(r.H,,)e[„] 

of each R-lump [r] = {(r, H, y) 1 VH, y: (r, H, y) E S}, r = O, .•. , m. Hence, the time 
congestion of the model is determined by Pm= ('7r[mJ)1e. 

5.2 Arrival-stationary distribution of the number of customers 
To calculate the arrival-stationary distribution p(o) of the number of customers in the 
system, i.e., the probabilities P,<0> that an arriving customer finds r customers in the 
system at his arrival instant, we may employ Mela.med's approach [19]. lt uses a level 
crossing argument for Markov chains that is also known as stochastic intensity principle 
in the general setting of marked point processes (cf. [6]). 
As we have to count all transitions ca.used by an arriva.l including the overllow events tha.t 
do not cha.nge the sta.te of the underlying Markov cha.in Z(t), we use the flip-:flop mar1ring 
technique described by Melamed [19, p. 126]. By this means, we mark all transitions of 
the Markov chain Z(t) corresponding to arriva.l instants. Following Melamed's approach 
and using his notation, we see that the arrival-stationary distribution of the number of 
customets in the system is given by the term 

P!o) = y-([r]) = ( 11'[rJ)' CJrr;-1 e 
E;'!:o( 11'[iJ)t Q;;+i e 

{6) 
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where we set Qmm+l = I ® A. Relation (6) sta.tes that the arriva.l-sta.tionary probability 
P~(o) coincides with the ratio of the stochastic intensity of those a.rriva.l instants leaving 
R-lump [r) a.nd the total intensity of all arrivals in the system. In the denominator we 
have to count all a.rrivals including those tha.t find the system occupied and overflow. 
Hence, the ca.ll congestion o{ the model is determined by 

p(O) = ( 1r[mj)t Qm~+l e 
m Ei=o('irµ1)t Q;;+t e 

Furthermore, it is evident tha.t the strea.m o{ lost ca.lls is a.lso an MMPP. 

5.3 Actual waiting-time distribution of the customers 
The a.ctua.l wa.iting-time distribution of the customers is an important performa.nce 
mea.sure o{ the MMPP /PH/n/m dela.y-loss system. Subsequently, we assume that the 
system is in steady sta.te and note tha.t the actua.l waiting times of the customers a.re 
identica.lly distributed ra.ndom variables. 
Let wc0> denote the waiting time observed by an &rriving customer. Let R(O) be the 
number of customers and H(o) the phase vector of the service process, both seen in the 
system at the arriva.l instant of a customer. W(:z:) denotes the conditional proba.bility 
that a.n a.rriving customer has to wait at most :r: time units until he is served, provided 
tha.t he can enter the system a.nd has to wait, i.e., W( re) = Prob{W<0 > ~ z 1 n ~ :n<0> < 
m}. 
Let us now consider an arriving customer who finds R(o) = r E [n, m) customers in the 
system a.nd the service process in state n<0> = H = (hi, ... , h„). Before his service can 
sta.rt, he has to wait until the remaining service time of the fastest of the n customers 
in service has elapsed, all other r - n customers in front of him in the waiting line 
ha.ve entered the service facility and one server becomes idle again. We note that all 
n parallel servers of the system a.re governed by a service-time distribution o{ PH-type 
(ß, T) and further arrivals a.re not ta.ken into a.ccount. Hence, the a.ctual wa.iting time 
S, -n of the ta.gged customer coincides with the time to serve r - n + 1 customers 
in the system provided that the service process was sta.rted in state H = (h11 ••• , h1c). 
Therefore, the distribution of S,_" can be computed a.s time until a.bsorption in a system 
with n independent, parallel Markovian service processes a.nd r - n customers in the 
queue applying Ra.ma.swa.mi's algorithms (cf. [23, p. 399), [22]) since only the numbers 
of servers in each pha.se of the service process ha.ve to be recorded. Hence, for r > n 
s,_n follows a PH-distribution (<Pcr,H)1 Lcr,H» of order (r - n + 1)("+!-1

). lt comprises 
the probability vector <P(,,H) = (e!(H)' 0) a.nd the regular Metzler-Leontief matrix 

Q(n,T) Q(n,Toßt) 0 0 

0 Q(n,T) Q(n, Toßt) 
Lcr,H) = 0 

Q(n,T) Q(n,Toßt) 
0 0 Q(n, T) 
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with r - n + 1 blocks Q(n, T) along the diagonal. Here, ep(H} E m.1n with dn = (n+!-1
) 

denotes the p( H)th unit vedor a.nd p( H) is the position index o{ the vector H for the 
reverse lexicographical ordering, i.e., 

for l = p(H) = :E~..:-t (n-(h1 +.„+la;+l)H-i) + l 
•-1 n-(h1 + ... +h;+l) 

otherwise · 

The matrices Q(n, T), Q(n, TJßi) E JR.lnx.l„ are computed by Ramaswami's algorithms 
applying [221 Theorem 2] to calculate their diagonal elements. 
For r = n no customer is wa.iting in the line and the ta.gged customer has to wait 
until the fastest customer in the service facility leaves system. Hence, S0 follows a PH-
distribution (cP(n,HiL(n,H)) of order dn with </Jcn,H) = ep(H) a.nd L(n,H) = Q(n, T). 
Obviously, the adual wa.iting-time distribution of & customer is a mixture of the PH-
distributions in the !a.mily 

" l = {(cP(•.Hh L(„,H>) 1 Yr, H: n ~ r < m, 0 ~ H = (h11 •.. , h1r) s.t. :E hi = n} 
i==l 

- {(tPli Li) l 31: 1 ~ l ~ w = (n + ~ - l) (m - n) s.t. (<Pr, L1) = (<Pcr,H)i L(„,H))} . 

Here, we order the w = ("+!-1
) ·(m-n) different tuples (r, H) in{, in such a. way that the 

first components rare a.rra.nged in a. descending order and the second components H fol-
low the ordering specifi.ed in S. Then we enumerate the PH-distrihutions in C according 
to this sequence ofindices, i.e., ((m-1, Hi), ... , (m-1, H1.J1 •• • (n, Hi), ... , (n, H1.J) = 
(1, ... ,w). 
The probability vector m = (m(„,H))(„,H) of this mixture has the components mc„,H) = 
K · Pc~01)· Here, K is a normalization constant and 

.P.~01 = 'if-([(r, H)J) = (7r[(r,H)J)t Q[(r,-!)J,[•+11 e 
( ' ) EV(;,H) ( 1f'[(j,H)J)t Qrc;.H)},[j+iJ e 

(7) 

is the arriva.1-stationary probability that an a.rriving customers finds r customers in the 
system and the service process in state H ::: (h11 ••• , h„). It is calculated a.ccording to 
Mela.med's a.pproach [19). In (7) Q1c;,H)J,[;+iJ denotes the submatrix of the generator Q 
on the H;-lump [(j, H)J and the R-lump [j + 1]. ?!"[(i,H)J is the vector of time-sta.tionary 
proba.bilities corresponding to this H;-lump. Obviously, K-1 = L;a;n1 LVH:HrE(•J Pc~k) 
holds. Regarding Q;;+i = 1 ® A for j 2:: n, we conclude tha.t 

_ KP.(O) _ E;::::t 11"(r,H,p) ~J 
m(r,H) - (r,H) - ~m-1 ~ ~· \ 

L-j=n .lJVH:H1€[jJ "'-'r=l 7r(j,H,11) "11 

holds for the probabilities of the mixture. 
As the finite mixture of PH-distributions is a.gain a PH-distribution (cf. [20, Theorem 
2.2.4, p. 53!), the actual wa.iting-time distribution W coincides with a PH-distribution 
(a, W). The vector a = (a1)19:5w is defi.ned by 

a: = o:(„,n) = mc„.a)</>(„.H) = K Pc~~1> (e~R) · 6„n + (1 - 6„n) · (e~H)' 0)) 
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where l = p(( r, H)) = (n+l-l) · (m -1- r) + E~.: 1 (n-(1.1 + ... +1.,+i)+A:-i)+1 is the position 
n s-1 n-(bi + ... +l.;+1) 

index o{ the tuple (r, H) in the specified ordering and 8rn is 1 for r = n and 0 otherwise. 
The representation matrix is given by 

Li 0 0 

W= 0 L, 
0 

0 0 L„ 

Obviously, all L(r,H) are submatrices o{ the ma.trix W = Lcm-l,H) with the largest order 
w = (m - n) · (n+!-1

). To describe this {eature, we define a tailoring operator 'Tin the 
following way: for 1 ~ j ::; m - n - 1 let ri(W) be the matrix obtained from W by 
deleting the fi.rst j block rows and columns and let To coincide with the identity. As all 
matrices Lc„,H) of the mixture ha.ve a.n upper triangula.r block strudure, it is possible 
to improve the representation of the distribution W by exploiting the relationship 

(Q ,1..t ) • eL<m-1,H) s =:: ,1.t • eL(„,B) c 
1 'f'(„,H) 'f'(r,H) 

for r < m -1. 
Hence, the a.ctual wa.iting-time distribution W coincides with the PH-distribution (a, W) 
defined hy W = Lc ... -1,H) and 

lt ma.y be represented in the form 

W(:z:} Tm-1-r (W) „ e · e 

! l - at . e w s • e . (8) 

lf the service times are exponentially distributed, it ca.n be shown tha.t the actual 
waiting-time distribution is a mixture of Erla.ng distribntions with 1 to m - n pha-
ses (cf. [18]). 
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6 Investigation of some MMPP /PH/n/m models 
In the tool MACOM PH/PH/n/m and MMPP /PH/n/m systems are used as generic 
elements of the queueing networks to model parts of a B-ISDN at the connection level 
or policing algorithms in these networks such as the rectangle sliding window technique 
(d. [32], [5]): Hereby, the question a.rises whether a.rrival and service processes with 
a small number of phases are sufficient to represent the behavior of ba.sic elements in 
broadband communication networks. As the complexity of a model dramatically in-
creases with the number of phases, it is necessary to use processes with a small number 
to limit .the e:lforts of analysis. On the other hand, there are some insensitivity results 
(cf. [35}, {7}) which give rise to conjecture that the major performance measures of an 
MMPP /PH/n/m model such as the time and call congestion are not very sensitive to 
deviations in the structures of the service a.nd arrival processes. To investiga.te the sensi-
tivity of the model cha.racteristics, it is necessary to compnte the performance measures 
of MMPP /PH/n/m systems with varying parameters. This task can be performed -very 
efficiently by m~ans of MACOM. 
In the following, we restrict our attention to special cases of the SMP+M/PH/n/m 
model, namely, variants of an SMP+M/M/n/n loss system. They represent simpli:fied 
versions of a digital transmission link for data and packetized voice traflic tha.t disregard 
the different holding time chara.cteristics, bandwidth requirements and traffic handling 
(cf. [27, p. 661HJ). · The SMP+M/M/n/n loss system was in-vestigated by Willie [35J 
who derived a very interesting insensitivity property of the model. Willie proved that 
the call congestl.on of the Semi-Markovian point process coinddes with the congestion 
rate of an associated renewal process in the GI+M/M/n/n Ioss systems if n = 1 holds 
and the interarriva.1-time distribution of the renewal stream is gi-ven by the generic 
interarrival-time distribution of the SMP (cf. [35]). 
We consider two variants of this loss system, the MMPP+M/01,/n/n and 
PH+M/02/n/n system, respectively. In the first case, we suppose that the MMPP 
arrival strea.m is a superposition of two independent point processes, namely, a Poisson 
process with rate AM and a. Ma.rkov-modula.ted Poisson process with genera.tor ma.trix 
Q E JR.'x' and rate vedor >..MMPP· They may be considered as simplifi.ed descrip-
tions of independent voice and data tra.ffic streams. Then the generic interarriva.I-füne 
distribution a.ssociated with the M~PP is a. PH-renewa.l distribution with :rep:resenta-
tion (r, Q - A) where r is the steady-state vector corresponding to (A - cJ)-1A and 
A = diag(AMMPP) is the arrival rate matrix. 
The service process is governed by a Coxia.n distribution with two phases (C2 ) having 
the sa.me parameter. The mean service time 1/ µ is set to 1. The coefficient oI variation 
of the service time may be varied to study its in:O.uence on the call-congestion rates. 
Let us consider a loss system with n = 5 parallel servers and set AM = 5, AMMPP = 
(1.0,2.0)', Q = {~~05 !2~o)· Then r' = {2/3,1/3) follows. The generic interar-
rival time is governed by a PH-distribution with representation matrix T = Q - A = 
( -1.5 0.5 ) In m bl 

2.0 -4:.0 . .i.a e 2 some results are shown for the related PH+M/02/5/5 and 
MMPP+M/C2/5/5 models. They illustrate the weak sensitivity of the time- and call-
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congestion ra.tes of this model Ü the coefficient of va.riation of the service process is 
modified. 
The next example (see Table 3) illustrates that there may be la.rge dift'erences between 
the time a.nd ca.ll congestion. We recall that different MMPP streams o:ffered to a 
cornmon link observe different call-congestion rates although their superposition is again 
an MMPP stream. By the way, both examples emphasize the necessity to calcula.te 
the individual and average call-congestion rates of düferent traffi.c streams in B-ISDN 
models. Furthermore, they show tha.t the a.pproxima.tion of these rates by the time 
congestion is impossible. 

7 Conclusion 
In this paper we have discussed modeling and analysis of a B-ISDN hy Ma.rkovian 
queueing networks employing a decomposition approa.ch and numerical solution meth-
ods for Markov cha.ins. First, we have briefly sketched the concepts of a computa-
tional approach for modeling a.nd analysis of such coimection-oriented communication 
systems with adaptive routing based on advanced Markovian techniques. They have 
been implemented by the software tool MACOM. Variants of the PH/PH/n/m and 
MMPP /PH/n/m dela.y-loss systems constitute the generic elements of its model world. 

Then we have investigated the simplest generic model of a communication link in B-
ISDN, na.mely, the MMPP/PH/n/m model. After describing the !ea.tures ofthis mu.lti-
server system, the generator matrix associa.ted with the underlying Markov chain was 
constructed and its properties were studied. We have developed new, convergent block 
iterative schemes based on R-regular splittings of the genera.tor ma.trix. They can be 
used to calculate the stea.dy-sta.te distribution corresponding to the basic Markov chain 
of the model. Ba.sed on these steady-state probabilities, förmulas for the time- and 
arrival-stationary distributions of the number of customers in the system ha.ve been 
derived including the time and call congestion. Furthermore, the a.ctua.l waiting-time 
distribution o{ a customer who has to wa.it after entering the system was stated, too. 
The presented block iterative schemes may be incorporated in MACOM as new block it-
erative solution methods for MMPP /PH/n/m models. They can also be used as building 
blocks of a network analysis method tha.t implements a decomposition approach based 
on Semi-Markovian techniques. lt is worthwhile to mention tha.t the proposed algo-
rithms are most suita.ble for an implementation on a vector processor. 
Finally, we ha.ve investigated some varia.nts of the MMPP /PH/n/n loss system a.nd 
pointed out the relevance of the corresponding results in B-ISDN modeling. 
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n m Tc d/s 
5 10 5 882 
5 10 10 13013 
10 10 5 3003 
10 10 10 184756 
20 200 5 1965810 

Table 1: Order d of the generator matrix 

Service pro.c~ss. PH-model MMPP-model 
Coefficient of Congestion rates of stream Congestion rates of stream 

variation M PH PH+M M MMPP MMPP+M 
0.80 0.373672 0.378163 0.374542 0.373571 0.378927 0.374608 
1.00 0.373680 0.377989 0.374515 0.373586 0.378726 0.374581 
1.20 0.373685 0.377873 0.374495 0.373596 0.378578 0.374560 
1.40 .0.373687 0.377794 0.374482 0.373603 0.378470 0.374545 
1.60 0.373689 0.377738 0.374473 0.373608 0.378390 0.374532 

Table 2: Comparison of the congestion rates of an MM PP+ M/C2/5/5 and its related 
PH+ M/02/5/5 model with generic interarriva.l-time distribution of the MMPP. The 
mean service time is 1 / µ, ::::: 1. The MMPP arrival rate is 1.2, the arrival rate of the 
Poisson process AM = 5. 

Service process - Congestion ra.tes 
Coeff. of variation Time congestion Call congestion 

0.8 4.26109e-Ol 6.05973e-01 
1.0 4.28444e-01 6.04779e-01 
1.2 4.30154e-01 6.03855e-01 
1.4 4.31403e-01 6.03153e-Ol 
1.6 4.32325e-Ol 6.02619e-01 
1.8 4.33016e-01 6.02209e-01 
2.0 4.33543e-01 6.01891e-01 

Table 3: Comparison o!the time and ca.llcongestion a.ssocia.ted with an MMPP /02/5/5 
loss system varying the coefficient · of variation of the service time. The service-time 
distribuüon is a Coxia.n distribution with 2 phases, equal rates and mea.n 1/ µ, == 1. 
The MMPP possesses the arrival rate vedor .\c = (5.0, 30.0) a.nd its generator m&trix 
Q E JR.2x

2 is determined by the elements Qu = 0.5, Q21 = 2.0. 
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