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Abstract

Modeling a link in 8 B-ISDN at the connection level by Markovian techniques, we
derive an MMPP/PH/n/m multi-sezrver system as simplified, generic model. First,
we calculate the steady-state vector of the underlying Markov chain of the model
by advanced numerical methods. Then we determine the time and call congestion
of the delay-loss system and the actual waiting-time distribution of 2 customer.
Finally, the properties of some MMPP/PH/n/n loss systems are studied.

1 Introduction

Nowadays, modeling and analysis of complex distributed, technical systems such as
telecommunication networks within a broadband ISDN (B-ISDN) environment have
become important issues of performance analysis. Normally, such physical systems are
described by queueing networks employing Markovian modeling techniques. Usaally,
either a discrete- or continuous-time modeling approach is used. In the following, we
resirict our attention to continuous-time modeling techniques.

As the derived queueing networks arising from the continuous-time modeling of modern
commaunication networks with state-dependent routing or advanced congestion-control
mechanisms violate the restrictions of classical product-form networks of BCMP or Kelly
type (cf. [11]), only simulation or computational techniques based on numerical solution
methods for Markov chains are available as analysis methods (cf. [13], [29], [32]).
Regarding, however, the difficulties of simulation techniques to study rare events, for in-
stance, cell loss probabilities in the range of 1077 arising from the investigation of ATM
networks (cf. [26]), numerical analysis methods seem to be the only feasible approach.
The main drawback of such an approach stems from the huge, untractable number of
states in Markovian models derived from actual networks. Therefore, suitable modeling
techniques including special decomposition methods have to be employed to analyze
large networks by parts.

Regarding modeling of packet-switched networks, a classical decomposition approach
proposed by Kiihn [15], Whitt [34] and Marie {17] among others uses GI/GI/1 models
as generic elements of the queueing networks. It is well known, however, that the as-
sumption that all streams within the network are renewal streams is crucial, apart from
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limiting regimes such as networks in a heavy traffic environment. Usually the traffic
streams in a B-ISDN are bursty point processes since they are generated in the sources
by sampling and packetizing procedures employing variable bit rate coding techniques.
They have to be modeled by versatile non-renewal streams chosen such that the result-
ing genmeric queueing models are tractable by analytical or numerical analysis methods.
Therefore, it is reasonable to use queuneing systems with special Semi-Markovian arrival
streams (SMPs) that yield tractable Markovian models as building blocks of the model
world. . An important class of streams is provided by Markov-modulated Poisson pro-
cesses (MMPPs) (cf. [13], [21], [16], [26], [9], [18]).

The holding times of network resources in a B-ISDN environment such as the occupation
of links cén be modeled by deterministic or arbitrary general distributions on [0, ).
It is known that they may be approximated with suitable accuracy by Coxian or, more
generally, phase-type (PH) distributions (cf. [20]). Therefore, the service processes as-
sociated with the derived queueing models can be described by PH-distributions.

It is our main objective to analyze parts of an integrated broadband network that em-
ploys advanced routing techniques to set up virtual connections (cf. [32], [14], [27, §12}).
Considering a classical circnit-switched network, Erlang’s loss system M/G/n/n is the
generic queueing model of a link between two exchanges. If we model a broadband
network at the connection level applying the standard decomposition approach, the
derived generic models include the generalized loss system MMPP/PH/n/n with one

traffic class and combined delay-loss systems ¥; MMPP;/ PH /n/m with two or more
traffic classes of different characteristics (multi-service traffic models - ¢f. [27, §12-3-
2, p. 670ff], [14], (32]). Taking into account the different bandwidth requirements of
traffic streams in a B-ISDN environment, the generic models are multi-class delay-loss

systems ¥; MMPPF:/ PH /n/m with batch arrivals and bulk service as optional service
discipline.

From a practical point of view, it is important that modeling and analysis are supported
by convenient software tools. They should offer advanced user interfaces based on mod-
ern window and menn techniques. Following these considerations, a convenient software
tool called MACOM (Markovian Analysis of Communication Systems) has been devel-
oped (cf. [13], [29]). Its model world provides multi-server queueing systems of the types
PH/PH/n/m and MMPP/PH/n/m as generic elements. Furthermore, special variants

of the multi-class delay-loss system 3; MMPPX¢/ PH [n/m with fixed batch size can
be handled, too. MACOM implements a computational approach for modeling and
analysis of communication systems based on Markovian techniques. It employs modern
software design techniques and numerical solution methods for finite Markov chains.

In this paper, we restrict our attention to the simplest generic ISDN model of type
MMPP/PH/n/m. We present some efficient algorithms for its analysis based on it-
erative solution techniques for Markov chains. They may be used to calculate the
steady-state characteristics of this delay-loss system. These algorithms are considered
as & supplement of the standard analysis techniques provided by MACOM that are
based on-Grassmann’s algorithm and point iterative schemes such as the Gauss-Seidel
and SOR procedure with optional aggregation-disaggregation steps (cf. [13]). They
can be employed to study MMPP/PH/n/m models in isolation, as basic block iterative
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solution methods in MACOM or as building blocks of a decomposition approach based
on Semi-Markovian techniques. Extending the previous work of Stewart and Marie [31]
and Seelen [30], we prove the convergence of the proposed iterative algorithms.

The paper is organized as follows: Section 2 describes the features of an
MMPP/PH/n/m multi-server model. In section 3 the generator matrix associated with
the basic Markov chain of this model is constructed and its properties are studied. In
section 4 we present some efficient algorithms based on iterative solution techniques.
They may be used to calculate the steady-state distribution corresponding to the basic
Markov chain of the model. Section 5 is devoted to the calculation of the performance
measures associated with the considered delay-loss system. Finally, we investigate the
performance characteristics of some MMPP/PH/n/n loss systems.

2 Description of the MMPP/PH/n/m model

Variants of the MMPP/PH/n/m multi-server model are basic elements of the described
model world of MACOM. Their features and analysis will be discussed subsequently.
The related MMPP/PH/1/m single-server model and its generalized version N/G/1/m
with Neuts’ versatile Markovian point process as arrival stream have been investigated
by Hefles and Lucantoni [9] and Blondia [3]. Interested readers are referred to their
articles and the references therein.

In the following section we assume the reader to be familiar with the theory of homoge-
neous discrete- and continuous-time Markov chains with finite state spaces, abbreviated
DTMC and CTMC, to the extent of the books of Heyman and Sobel (10, Chap. 7, 8] and
Kemeny and Snell [12]. Furthermore, we shall adopt the terminology of Heyman and So-
bel and we use the following notation of Berman and Plemmons [2, Chap. 2, p. 26] w.r.t.
vector and matrix orderings: let z € R", then > 0 & «; > O for each i € {1,...,n},
z >0 & z;, > 0foreachi € {1,...,n} andz; > 0forsomej € {1,...,n},
z>0¢ a, > Oforeachi€ {1,...,n}.

Let us now consider a multi-server model of type MMPP/PH/n/m. It has the following
properties:

e The arrival stream is a Markov-modulated Poisson process (MMPP) with s
states, an irreducible generator matrix Q € R'** and the arrival rate vector
A= (A5 0) > 0 (cf [21, p. 269]). Let Y(t),t > 0, denote the correspond-
ing irreducible CTMC on the state space {1,...,s} describing the phase of the
MMPP.

o The service facility consists of n > 1 identical, parallel servers.

o The capacity of the system comprising the number of servers and the number of
waiting places is m = n + I, i.e., there are | > 0 waiting positions and n parallel
servers in the system.

e The service discipline is ’delay-loss with FIFO’. If there are less than n customers
in the system, an arriving customer selects a free server at random and occupies
it for a random service period. If all servers are busy at his arrival instant, the
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customer joins the waiting line. If no waiting positions are available, he is lost
and has no further impact on the system.

o The service times of the customers are independent, identically distributed ran-
dom variables governed by a phase-type distribution F of order k with irreducible
representation (3, T). We assume ('e = 1, where e is the vector of all ones, and
set u; = -T;;,>0,1<i1< k.

Furthermore, the service times are assumed to be independent of the arrival pro-
cess.

According to its definition (cf. [20]), the generic service-time distribution F evaluates the
time to absorption in the state k + 1 of a CTMC with finite state space {1,...,k,k+1}
and transient states £ = {1,...,k} provided that the chain is started in the transient
set E accordin( to the probability vector 3. The corresponding generator matrix is

0
given by G = T T ) with a regular M-Matrix —T € R*** and a vector 0 < T° =

0 0
(Tiks1, - - s Tons1)t € R satisfying Te +T° = 0. Then F(u) =1— B -e™-¢, uv > 0,
holds.

In analogy to the uniformization of ergodic Markov chains, we may proceed to an
embedded DTMC associated with the absorbing CTMC defined above (cf. [4], [10]).
Let D = —diag(T3;,...,Tas,0) > 0. Here, D = diag(z) denotes a diagonal matrix
associated with a vector ¢ which is defined by D; = z;. Then we set o' = DIG + I
where I denotes the identity matrix and DV = —diag(7T};%, ..., 0) is the group
inverse of D. Hence,

1 fori=j=k+1
0 otherwise

o=

{ T[T fori#j,1<i<k1<j<k+1

holds and o' is a stochastic matrix. It follows G = D(a' — I). Obviously, o';; is the
probability to proceed to state j after departure from state . The sojourn time in
a transient state : € F = {1,...,k} is governed by an exponential distribution with
parameter u; = Dy, = =T; > 0 (cf. [4]).
Let us denote the k x k principal submatrix of o' by a. Hence, a =
[~diag(Ti1, ..., D)™ T + I is a strictly substochastic matrix, i.e., a > 0, e < e.
The behavior of the MMPP/PH/n/m queueing model may be described by a stochastic
process Z(t) = (R(t) H(t),Y(t)),t > 0. Here, R(t) € {0,...,m} denotes the num-
ber of customers in the system at time ¢. Given n > 1, H(t) = (hy(t),..., hs(t)) with
hi(t) € {0,...,n},1 < J < k, is the phase vector of the numbers of customers just served
in the diﬁ'erent phases j of the service process at time ¢. Y () € {1,..., s} is the phase of
the CTMC controlling the arrival stream at time {. The number of busy servers is given
by N(t) = H(t)-e = 2,_1 () = min(R(¢),n). According to the assumptions, the vec-
toi process Z(t),t > 0, is a CTMC on the finite state space S = {z = (r, hy,..., s, %) €
+2|0<'¢-<rn,1<y<.s 0 <h;j <nfor1<j<ksubjectto T2 by —mm(r,n)}.
Here we imbed, of course, all admissible vectors H = (ky,...,hks) € IN* in S by identi-
fying the vectors (r, H,y) and (=, hy,..., hs,y) € S.
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3 Construction of the generator matrix

Important steady-state performance characteristics of the MMPP/PH/n/m model such
as the time and call congestion are defined in terms of the steady-state distribution = of
the CTMC Z(t). In order to calculate 7, we have to construct the generator matrix Q
of Z(t). For this purpose, we have to fix an ordering of the states of the Markov chain
first. Then we shall enumerate the states and determine the rates of all transitions
between these states.

3.1 Ordering of states

We use the convenient ordering of states ’<’ defined by Stewart and Marie [31} for
the related M/PH/n/m model. First, we divide the state space into macrostates [r] =
{(rH,y) | YH >0,y € {1,...8}: (r, H,y) € S},r =0,...,m, called levels or R-lumps
(cf. (20, p. 5]). They are defined by fixing the number of customers in the system,
for instance, R(t) = r. These macrostates are ordered according to the lexicographical
ordering. The microstates [(r, H)] = {(r,H,y) | Vy € {1,...8} : (r, H,y) € S} within
a macrostate determined by fixing both R(t) = r and H(t) = (h(2),...,M(?)) =
H = (hy,...,h;) are called H,-lumps. We order the vectors H of all H,-lumps within
each R-lump [r] according to the reverse lexicographical ordering of their components.
The last component determined by Y (t) = y is lexicographically ordered again, i.e.,
(77,0, 1) <.o. < (7.0 0,8) < (7,7 —11,...,0,1) < ... < (7,7 —1,1,...,0,8) <

o (r0,0,...,7,1) < ... < (1, 0,0,...,7, ).
To construct the generator matrix @, we have at first to identify its zero structure.
Therefore, it is necessary to enumerate the states based on the prescribed ordering, i.e.,
we have to define a position mapping p: S — N, p:z— p(z) = p,. Suppose there
are 7 customers in the system. Then one has to distribute these r customers among n
servers and | = m — n waiting places. Each busy server stays in one of the k phases of
the service process. Based on these observations, it is easy to see that each R-lump (r]
comprises {"**"1)s states if r < n and ("*:'l)s states if » > n holds.
In the following, we exploit for ¥ < r the identities
'z':"(j—i—k-t) _i:(r—-i+k—t) _ (r—v+k—t+1) _ (r—u+k—-t+1)

] - r—i ) r—v - E—t+1

3=0 =y
and the standard boundary conventions (;) = 0 for all integers 0 < n < m and

( m) 0 for n = 0,+1,+2,... and all integers m > 1 (cf. [24, p. 1]). Then it
follows by some algebrmc mampnlations that the position index p, of an arbitrary state
z=(r,hy,..., A, y) € S is determined by

p, = [(min(r,n)fk—-l)+(mu(r,n)_n)(n+:—1)

k
>

(mm(r,n) (hlz_z+h.+1)+k-—z)],+y
=1

given T7_, = 0 (cf. [33]).
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3.2 Determination of the transition rates

To determine the transition rates between the states of the CTMC Z(t), we have to an-
alyze the transition behavior of the Markov chain. Suppose Z(t) = (R(t), H(t),Y (t)) =
(r, h1,-. ., ks, y). We must consider only those events occuring in an interval [t,t + ) of
infinitesimally small length § whose transition probabilities exceed o(§). Obviously, the

following four distinct events cause such transitions:

1. an arrival of a new customer (who can enter the system)

This birth event changes the components R(i) and H(t) where the R-level is
incremented by one if the customer can enter the system. If he is lost there is no
chaiige at all.

If r < n and the customer occupies a free server starting its service in phase i, then
Z(t+68) = (r+1,...,hi+1,...,y) results, whereas Z(t+6) = (r+1,hy,..., ks, y)
holds for n < » < m. In the latter case, all servers are busy and the customer
can enter the waiting room of the system. The transition rate of the first event is
given by A, 5;, that of the second event by A,.

. & phase shift of one customer’s service process without service completion

This internal phase shift of a service process changes only H(t). But it can happen
only if R(t) =7 > 1 holds. Z(t +8)=(r,...,h; ~1,..., h;+1,...,y) results, for
instance, if a transition from phase j to i occurs. The corresponding rate of this
event is A;u;aj.

. a phase shift of the CTMC controlling the arrival stream
It changes only Y (¢). Z(t + 8) = (r, ks, ..., ks, u), for instance, corresponds to a
transition from y to u. The rate of this event is Q.

. & service completion of a customer

This death event changes the components R(f) and H(%) simultaneously decre-
menting the R-level by one. To determine the transition rates, we have to distin-
guish the events, that there are no customers waiting or that some are waiting.
In the first case 1 < r < n, Z(t +6) = (r—1,...,h; — 1,...,y) holds if the
customers leaves its service process in phase j. The transition rate of this event
is given by A;u;ajr41- In the second case n < 7 < m, a waiting customer will
occupy the free server in phase i of the service process immediately after the de-
parture of the served customer from phase j of the service process. H i # j holds,
then Z(t + &) = (r —1,...,h; — 1,...h; + 1,...,¥) occurs with transition rate
Ripjonqafi. H i = j holds, then Z(t +6) = (r — 1,hy,..., ks, y) occurs with
transition rate Z{;l hip015;.

min(f,n)+h—l) s

In the last subsection we have shown that each R-lump [r] has d, = ( ik )
states. Thus the generator matrix ¢ € R**? associated with Z(¢) has the order

d=fjd.»= (n+k)+(m_n)(n+k-—l)],.

1=0 n n
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Obviously, d is linear in s and m, but it grows exponentially fast for n > 1 and k > 1.
Some examples are provided by Table 1. In comparison to that, for k =1 d = (m +1)s
holds. For n = 1 it follows d = (m - k& + 1)s since in this case H(¢) € {0,...,%} only
records the phase of the service process at time ¢, where H(f) = 0 indicates an idle
server.

Regarding the lexicographical ordering of R-lumps, the generator matrix evidently pos-
sesses a block tridiagonal structure determined by the levels R(t) = r:

(QM Qun O 0\
Qu Qu Qu | :
Q= Qun-1 va Qrnti . : (1)
| Qn+1n Qn+ln+1 e 0
: oo coo . T T m~—1im
\ 0o ... 0 Qmm—l Qémm J

Each block matrix Q,, is a d; x d; matrix. The upper diagonal blocks Q;i+1 correspond to
arrival events of type 1. The lower dlagonal blocks Q,,_l are associated with departure
events of type 4. The diagonal blocks Q;; correspond to events of types 2 and 3.
Provided that @ is irreducible, all off-diagonal blocks are nongero, nonnegative matrices,
whereas the diagonal blocks are regular Metzler-Leontief matrices; i.e., —Q;; is a regular
M-matrix since it is a proper principal submatrix of an irreducible singular M-matrix
after an appropriate permutation (cf. [2]).

The construction of the generator matrix @ may be performed by special modeling
tools such as MACOM (cf. [29], [13]) or by the direct generation of the block matrices
employing Lucantoni’s and Ramaswami’s algorithms (cf. [23], [22]). Subsequently,
we adopt Ramaswami’s and Lucantoni’s notation and apply their algorithms. Setting

G= ( ,190 ;, ) , the construction algorithm reads as follows:

Qi1 = P(f)®A for i=0,...,n—1

Qivs = I3 ®A for ¢t=n,...,m-1

éit’-l = Lni(n,G)®I, for i=1,...,n )
Qi1 = Q(n, T°8Y) @ I, for i=n+1,...,m

Quw = Q@-A )

Qi = A(min(i,n),T)OL+I;®Q-A; for i=1,...,m

Here A; > 0 are diagonal matrices associated with Q;; that guarantee Qe = 0 and
d; = d; /8. I denotes the identity matrix of order [ and A = diag(]) is the matrix of
the arrival rates. The diagonal elements of Q(n,T°3") are calculated by means.of [22,
Theorem 2, p. 424]. Obviously, apart from the diagonal elements, all diagonal blocks
coincide for i ='n,...,m. Moreover, we have used the relation Qp = Q ~ A, with

Ao=diag((Po(ﬂ')®A) -e) = diag(B' ‘e ® A-¢) = diag()) = A
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8.3 Irreducibility properties of the generator matrix

Regarding the calculation of the steady-state distribution # of Z(t), it is necessary
to characterize the irreducibility of the generator matrix Q. The following Proposmon
provides a necessary and sufficient condition in terms of the gero structure of the service
process. It can be proved in a straightforward manner (cf. [33]).

Proposition 1 _
The generalor matriz Q is irreducible iff for each phase j € {1,...,k} of the service-time
distribution the following property (P) holds:

(P) There ezist an indéz i and a set {Qu,, Qutyye ey Q12 e o) Qlyprlyyrgs } SUCh that
Bi>0,lp =14l =j, live = Jorlotrs1 = k+1 and 5.1 J8 Y > 0 form=0,...,s+r
hold.

O

Note, that the assumptions 8 > 0,8% = 1and T° > 0 imply the existence of indices
i,J, with 8; > 0 and ;441 > 0. Now we are able to determine the irreducibility of Q
analyzing only the structure of the PH-type service-time distribution.

Proposition 2
The generator matriz Q is irreducible iff the service-time distribution with PH-
representation (B,T) is irreducible, i.e., if the mairizc T + T°B" is irreducible. O

As this assumption on the PH-representation is satisfied in the given context, the con-
structed generator matrix Q of the MMPP/PH/n/m model is irreducible. Thus, the
existence and uniqueness of the steady-state distribution 7 of the system is gnaranteed.
7 i8 the positive solution of
Ax=-Q' x=0 (3)

subject to the normalization condition 7 e = 1.
Regarding the numerical solution of the homogeneous system (3) of linear equations,
the block tridia.gona.l structure and sparsity should be exploited. Some iterative solution

procedures require the uredumblhty of the diagonal blocks A;; of the singular M-matrix
A = —Q". Therefore, it is necessary to characterize this property by equivalent condi-
tions. They are provided by the following Proposition (cf. [33)).

Proposition 8
The following conditions are equivalent:

(i) All diagonal blocks Q;; of the generator matriz Q are irreducible.

(i) The strictly substochastic matriz a = —(diag(Tay,..., Ti)]'T + I € R*** associ-
ated with the service-time distribution of PH-type (B,T) is irreducible.

(i) The regular Melzler-Leontief matriz T € R*** is irreducible.
a
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4 Computation of the steady-state distribution by
numerical solution methods

Obviously, the special structure (1), (2) of the generator matrix Q implies that the
steady-siate distribution r of the CTMC Z(%) has a generalized matrix-geometric form
(cf. [8]). In this section, we present an alternative approach for calculating the steady-
state vector . It is based on the numerical solution of the homogeneous system (3) and
well suited for an efficient implementation on a parallel or vector computer. Regarding
the block tridiagonal structure and sparsity of the system (3), it is advantageous to em-
ploy iterative solution methods based on matrix splittings for singular M-matrices such
as the block Gauss-Seidel or block SOR procedure (cf. [13]). To guarantee, however, the
convergence of these procedures, some structural requirements on the system matrix 4
have to be fulfilled.

Let us first consider an MMPP/PH/n/m model with a non-exponential service-time
distribution. Regarding the convergence of block iterative procedures based on regular
matrix splittings A = M — N, a unifying framework is provided by R-regular splittings
A=(D-1L)- (L(N)+U(N)+ D(N)) introduced by Rose [25].

Definition 1

Let A € R™™™ be a (singular) M-mairiz with block partition A = (Aijh<ijcp) provided
that p > 1. Assume the block splitting A= (D — D(N)) — (L + L(N)) — U(N) has the
following properties:

(1) D = diag(D;;)i<icp and D(N) are block diagonal matrices with D(N) > 0. L and
L(N) are strictly lower block triangular matrices such that L > 0, L(N) > 0 hold.
U(N) is a strictly upper block triangular matrizc with U(N) > 0.

(2) D;'>»0for1<i<p.

(3) M =D — L is a lower block triangular mairiz.

(4) N = L)+ UN)+ D)2 0.

(5) Ao =D — L—U(N) is irreducible.

(6) The block matriz graph T(Ao) = (V, E) has a monotone decreasing cycle, this is
a sequence ¢ = (iy,iz,...,i1,%1) of adjacent nodes with the property @ # 1, and
i > 1<i<I- 1
Recall that the block matriz graph I'(Ag) = (V, E) is a directed mairiz graph with
nodes V = {V; | 1 < i < p} and directed edges (V;,V;) € E. V; results from the
partition of the indez set {1,...,n} according 1o the block partition. (V;,V;) € E

iff Ai; # 0, that means, there are sndices | € V;,m € V; such that (I, m) € Ey(y) is
an edge in the mairiz graph of A.

A block splitting A = M — N with the properties (1) 1o (6) is called R-regular (block)
splitting.
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Such schemes include the block Gauss-Seidel procedure, defined by M = D - L, D(N)
= L(N) = 0, N = U(N), and its modifications that exploit the sparsity structure of A.
By that means it is possible to employ incomplete LU-factorization techniques in the
solution process.

We want to exploit the natural partition 4 = (A;j)ocij<m defined by the block tridi-
agonal structure (1). Therefore, we assume that an R-regular splitting based on this
natural partition is given. A sufficient condition that guarantees property (2) in Defi-
nition 1 and, hence, the convergence of the iterative scheme arising from the R-regular
splitting, e.g. the block Gauss-Seidel procedure, requires, however, that the diagonal
blocks Do, ..., Dmm are regular, irreducible M-matrices (cf. [25], [13]). Hence, the
convergence of the block Gauss-Seidel procedure can only be guaranteed if the matrix
T associated with the service-time distribution of PH-type is irreducible (cf. [25, Cor.
2, p. 98]). In this case, the resulting iterative scheme may be accelerated by the use
of relaxation techniques or the insertion of some aggregation-disaggregation steps (cf.
[13], [28]).

Regarding the generator matrix Q, we note that the diagonal blocks Qnn;
Qn+1n+n vy @ have the same off-diagonal elements. Furthermore, the row sums
of all lower diagonal blocfs Qii-1, ¢ = 1,...,m, are equal to Z;;, hijpsojpyr. As all
upper diagonal matrices Qun+1,.- ., Qm._m coincide with 7 ® A, all diagonal elements
of Q,,,., ,Q,,,..Im_l are equal and the elementwise maximum of all positive diagonals
of —Q,,, Q,,+1,.+,, Q,.,.,,. is given by that of the nth block — Q,,,, Thus, the dif-
ference of the dlagona.ls of Qi;,i=n,...,m—1, and that one of Qmm is equal to I ® A
provided that a matrix notation is used

If T is irreducible, the following R-regular splitting A = —Q* = M — N exploits this
structure:

(A 0 .. . . 00
Ay An O :
0o - : C e, :
M = Pt Ape: A 0 L. : |=D-1L (4)
: An-H.n Ann
N0 .. . e 0 Apny An )
[0 —Aps 0 ... ... ... 0\
0 " —An '
N =13 .. 0 0 —Apans
. . . 0
P L .. . 0 —-Anim
\0 e e e . 0 I@A

= L(N)+U(N)+ D(N) (5)
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It is particularly recommended if m > n holds.

According to the construction algorithm (2), A;i; = (=Q%)si1 = —PL,(8) ® A < 0,
i=1,...,n,and A;_, =-T®A<0,i=n+1,...,m hold. Furthermore, 4; = —Qf;,
i = 0,...,n, are irreducible regular M-ma.trxces, hence, D! = A'1 min(i,n)min(in) > 0
follows. Obvmusly, is a regular M-matrix and L(N) = 0, N = U(N) + D(N )>0
hold. Moreover, Ag = D — L — U(N) has the same zero structure as A implying the
irreducibility of the block tridiagonal matrix 4,. Hence, the corresponding block matrix
graph I'(A4o) possesses a monotone decreasing cycle, too. Thus the proposed splitting
(4), (5) is both an R-regular and an M-splitting.

Regarding the generator matrix

—#1 m 0 ... 0
0 -~y ps :
G= T |
0 e 0 —Hr [

0 vee ... 00

of a generalized Erlang distribution (F € GE, C PH), we see, however, that the
corresponding submatrix 7' is reducible. Hence, D;; are reducible regular M-matrices
implying D' > 0. In such cases, a modification of the R-regular splitting (4), (5) must
be used. It is based on the following result (cf. [1, Theorem 3.9], [13]) that employs the
well-known relaxation technique.

Theorem 1

Let A € R™*" be a singular irreducible M-matriz with block pertition A = (A;;); =1, 9
Consider a block splitting A = (D — D(N)) — (L + L(N)) — U(N) which satisfies the
properties (1), (3), ({) of an R-regular splitting according to Definition 1 and, in ad-
dition, (2') D3' >0 for 1 < i < p. Define the splitting M, = 1(D — wL),N, =
(1 -w)D +wN),N = L(N)+ U(N) + D(N) for some 0 < w < 1.

Then A= M, — N, ts a weak regular splitting and the iteration matriz T, = M;' N,
is semiconvergent. The scheme z(**1) = T, . 2*) converges 1o a nonnegative, nonirivial
solution of Az = 0 provided that the initial vector 2(®) is positive. D

Regarding the MMPP/M/n/m variant of the model with exponentially distributed ser-
vice times, a similar convergent, iterative procedure may be applied (cf. [25], [13]).
It is also based on an R-regular splitting and has been suggested by Meier-Hellstern
(18, §3], but without a rigorous mathematical proof of the convergence of the resulting
iterative scheme. The algorithm exploits the uniform structure of the diagonal blocks
A;; = —Q + min(i,n)pl + A(1 - &;), i = 0,...,m, that are of the same size d; = s
now. Here, A = diag(}) is again the matrix of the arrival rates.

As the diagonal blocks A;; are irreducible regular M-matrices in this case, it follows from
[25, Cor. 2; p.139] that the block Gauss-Seidel procedure and, hence, the corresponding
block SOR variant are convergent, too. Of course, these algorithms may be accelerated
by inserting several aggregation-disaggregation steps during the iteration according to



334

the IAD scheme (cf. [13], [28]).

In comparison with the block Ganss-Seidel or SOR scheme, the proposed R-regular split-
ting procedure has the advantage that all diagonal blocks of the matrix M are identical
with —Q* + nul + A. Therefore, it is necessary to decompose only this small matrix
and to store its inverse during the iteration process. The resulting algorithm is well
suited for an implementation on a vector processor. Experimental results concerning
the performance of the scheme have been provided by Meier-Hellstern [18].

5 Performance measures of the model

Regarding the application of an MMPP/PH/n/m model in teletraffic theory, it is our
objective to calculate the steady-state performance characteristics of this delay-loss sys-
tem, namely, the time- and arrival-stationary distribution of the number of customers in
the system and the actual waiting-time distribution of the customers. For this purpose,
we have to use the steady-state distribution = of the CTMC Z().

5.1 Time-stationary distribution of the number of customers

Given a feasible state z = (r, H,y) € S, the time-stationary probabilities (r, H,y) =
N(rHy) = M, Prob{R(t) = r, H(t) = H = (hy,..., k), Y (t) = y} may be computed
by iterative procedures as normalized solution of the balance equations (3). Obviously,
the time-stationary distribution P of the number of customers in the system is given by
the marginal probabilities

P = (T[r])te = [(=(r, H, y))(r.H.v)EI']]‘e = Z w(r, H, v)
V('DHV,)GE']
of each R-lump [r] = {(r, H,y) | VH,y : (»,H,y) € S§},» = 0,...,m. Hence, the time
congestion of the model is determined by P,, = (7jm))'e.

5.2 Arrival-stationary distribution of the number of customers

To calculate the arrival-stationary distribution P(°) of the number of customers in the
system, i.e., the probabilities P(°) that an arriving customer finds r customers in the
system at his arrival instant, we may employ Melamed’s approach [19]. It uses a level
crossing argument for Markov chains that is also known as stochastic intensity principle
in the general setting of marked point processes (cf. [6]).

As we have to count all transitions caused by an arrival including the overflow events that
do not change the state of the underlying Markov chain Z(t), we use the flip-flop marking
technique described by Melamed [19, p. 126]. By this means, we mark all transitions of
the Markov chain Z(t) corresponding to arrival instants. Following Melamed’s approach
and using his notation, we see that the arrival-stationary distribution of the number of
customers in the system is given by the term

PO = g(fr)) = ) Qrrre 6
(k) i=o(T131) Qjj41 € ©)
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where we set Qums1 = I ® A. Relation (6) states that the arrival-stationary probability
P coincides with the ratio of the stochastic intensity of those arrival instants leaving
R-lump [r] and the total intensity of all arrivals in the system. In the denominator we
have to count all arrivals including those that find the system occupied and overflow.
Hence, the call congestion of the model is determined by

(0) — (‘”{m])' Qm:n+l e
" E?:o(""[j])t Qiivr €

Furthermore, it is evident that the stream of lost calls is also an MMPP.

5.3 Actual waiting-time distribution of the customers

The actual waiting-time distribution of the customers is an important performance
measure of the MMPP/PH/n/m delay-loss system. Subsequently, we assume that the
system is in steady state and note that the actnal waiting times of the customers are
identically distributed random variables.

Let W denote the waiting time observed by an arriving customer. Let R(® be the
number of customers and H(®) the phase vector of the service process, both seen in the
system at the arrival instant of a customer. W(z) denotes the conditional probability
that an arriving customer has to wait at most z time units until he is served, provided
that he can enter the system and has to wait, i.e., W(z) = Prob{W® < z|{n < R® <

Let us now consider an arriving customer who finds R(®) = » € [n,m) customers in the
system and the service process in state H(®) = H = (h,,..., k). Before his service can

start, he has to wait until the remaining service time of the fastest of the n customers
in service has elapsed, all other » — n customers in front of him in the waiting line
have entered the service facility and one server becomes idle again. We note that all
n parallel servers of the system are governed by a service-time distribution of PH-type
(8,T) and further arrivals are not taken into account. Hence, the actual waiting time
S,_. of the tagged customer coincides with the time to serve » — n 4 1 customers
in the system provided that the service process was started in state H = (&, ..., hs).
Therefore, the distribution of S,_, can be computed as time until absorption in a system
with n independent, parallel Markovian service processes and » — n customers in the
queue applying Ramaswami’s algorithms (cf. {23, p. 399}, [22]) since only the numbers
of servers in each phase of the service process have to be recorded. Hence, for r > n
S, _n follows a PH-distribution (@, &), L(s,5)) of order (r —n + 1)(”*:‘1). It comprises
the probability vector ¢{, iy = (€5, 0) and the regular Metzler-Leontief matrix

Q(n,T) Q(rn,T°B") 0 “e 0
0 Q(n,T) Q(n,T°8) :
. ., ., 0

H e Q(n, T) Q(n:Toﬂi)
0 e . 0 Q(n,T)

L('rH) =
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with » — n + 1 blocks Q(n,T) along the diagonal. Here, e,x) € R* with d, = ("+:"1)
denotes the p(H)th unit vector and p(H) is the position index of the vector H for the
reverse lexicographical ordering, i.e.,
k=1 [r—(h 4ot hit) ki
(epenh = { 1 for 1=p(H) =TI (RGN T) +1
0 otherwise

The matrices Q(n, T), Q(n, T°F*) € R¥&>dn are computed by Ramaswami’s algorithms
applying [22, Theorem 2] to calculate their diagonal elements.

For r = n no customer is waiting in the line and the tagged customer has to wait
until the fastest customer in the service facility leaves system. Hence, So follows a PH-
distribution (¢(n i, L(n,m)) of order d,, with ¢(, m) = exmry and Lin .y = Q(n, T).
Obviously, the actual waiting-time distribution of a customer is a mixture of the PH-
distributions in the family

k
L = {(¢p)Legn) |V H:n<r <m0 < H=(hy,...,0) st. Y hi=n}

=1

= {(¢h L!) l 3l:1 _<.. l Kw= (n +1’: B 1) (m - ﬂ) s.t. (¢h Ll) = (¢(r.H)’ L(r,H))} .

Here, we order the w = ("+:'1) -(m—n) different tuples (r, H) in £ in such a way that the
first components r are arranged in a descending order and the second components H fol-
low the ordering specified in S. Then we enumerate the PH-distributions in £ according
to this sequence of indices, i.e., ((m—1, H),...,(m—1,H; }),...(n, Hy),...,(n, H; )) =

(1,...,w).
The probability vector m = (m(, m))(r,z) of this mixture has the components m, u) =

K. P(, ) Here, K is a normalization constant and

(M) Qe+ € 7
2 ()

v (mi6mn)* Quinis+) €
is the arrival-stationary probability that an arriving customers finds r customers in the
system and the service process in state H = (hy,..., ). It is calculated according to

Melamed’s approach {19]. In (7) Qii;,zyii+] denotes the submatrix of the generator Q
on the H;-lump [(j, H)] and the R-lump [j + 1). ny; .z is the vector of time-stationary

probabilities corresponding to this H;-lump. Obviously, K~! = ¥™! LAl P((:},)
holds. Regarding Q;;4+1 = I ® A for j > n, we conclude that
Lg=t R Hy) Ay
2;-";,,1 EVH:H,e[j] =1 TG, Hy) My
holds for the probabilities of the mixture.
As the finite mixture of PH-distributions is again a PH-distribution (cf. [20, Theorem

2.2.4, p. 53]), the actnal waiting-time distribution W coincides with a PH-distribution
(a, W). The vector a = (@t)1<icw is defined by

PO =¥ ([(n H)) =

0
i) = K Py =

o) = o, = MG Blezty = K Py (¢hmy - Son + (1 = E1n) - (€l 0))
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ntk— —1 {n~- v thg —3 . Y
'where l=p((r,H)) = ( *.'n 1) (m = 1-r)+ 2kt ( ﬁ’i‘(tl :" ;;:f;’; ') +1 is the position
index of the tuple (r, H) in the specified ordering and §,, is 1 for r = n and 0 otherwise.
The representation matrix is given by

Ly 0 ... 0
w=| 0 L
N
0 ... 0 L,

Obviously, all L, x) are submatrices of the matrix W= L{m-1,5) with the largest order
W= (m-—-n)- ("+:“). To describe this feature, we define a tailoring operator 7 in the

following way: for 1 < j <m—n—1 let Tj(W) be the matrix obtained from W by
deleting the first ; block rows and columns and let 7° coincide with the identity. As all
matrices L, gy of the mixture have an upper triangular block structure, it is possible
to improve the representation of the distribution W by exploiting the relationship

(01 ¢zr,fl)) - elm-1n * = ‘ﬁr.H) b €

forr<m-—1.
Hence, the actual wailing-time distribution W coincides with the PH-distribution (&, W)

defined by W= L(m-1,m) and
a‘ = (m(m—l.H1)1 ey m(m~1.HJn)1 ey Mfn Hy)y o o0y m(n,H'{n)) .

It may be represented in the form

m—1 d,

W) = 1- Y, Y oy e = e
r=n j=1
L 1-5. e* ... (8)

I the service times are exponentially distributed, it can be shown that the actual
waiting-time distribution is a mixture of Erlang distributions with 1 to m — » pha-

ses (cf. [18]).
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6 Investigation of some MMPP/PH/n/m models

‘In the tool MACOM PH/PH/n/m and MMPP/PH/n/m systems are used as generic
elements of the queuneing networks to model parts of a B-ISDN at the connection level
or policing algorithms in these networks such as the rectangle sliding window technique
(cf. [32], [5]): Hereby, the question arises whether arrival and service processes with
a small number of phases are sufficient to represent the behavior of basic elements in
broadband communication networks. As the complexity of a model dramatically in-
creases with the number of phases, it is necessary to use processes with a small number
to limit the efforts of analysis. On the other hand, there are some insensitivity results
(cf. [35], {7]) which give rise to conjecture that the major performance measures of an
MMPP/PH/n/m model such as the time and call congestion are not very sensitive to
deviations in the structures of the service and arrival processes. To investigate the sensi-
tivity of the model characteristics, it is necessary to compute the performance measures
of MMPP/PH/n/m systems with varying parameters. This task can be performed very
efficiently by means of MACOM.

In the following, we restrict our attention to special cases of the SMP+M/PH/n/m
model, namely, variants of an SMP+M/M/n/n loss system. They represent simplified
versions of a digital transmission link for data and packetized voice traffic that disregard
the different holding time characteristics, bandwidth requirements and traffic handling
(cf. [27, p. 661ff]). The SMP+M/M/n/n loss system was investigated by Willie [35]
who derived a very interesting insensitivity property of the model. Willie proved that
the call congestion of the Semi-Markovian point process coincides with the congestion
rate of an associated renewal process in the GI+M/M/n/n loss systems if n = 1 holds
and the interarrival-time distribution of the renewal stream is given by the generic
interarrival-time distribution of the SMP (cf. [35)).

We consider two variants of this loss system, the MMPP+M/C;/n/n and
PH+M/C,/n/n system, respectively. In the first case, we suppose that the MMPP
arrival stream is a superposition of two independent point processes, namely, a Poisson
process with rate Ay and a Markov-modulated Poisson process with generator matrix
Q € R*** and rate vector Agyqarpp. They may be considered as simplified descrip-
tions of independent voice and data traffic streams. Then the generic interarrival-time
distribution associated with the MMPP is a PH-renewal distribution with representa-
tion (r,Q — A) where r is the steady-state vector corresponding to (A — @) !A and
A = diag(Apapp) is the arrival rate matrix.

The service process is governed by a Coxian distribution with two phases (C;) having
the same parameter. The mean service time 1/ is set to 1. The coefficient of variation
of the service time may be varied to study its influence on the call-congestion rates.

Let us consider a loss sysiem with n = 5 parallel sexvers and set A\yy = 5, Apmpp =
(1.0,2.0)4, @ = (;005 _0250) Then »* = (2/3,1/3) follows. The generic interar-
rival time is governed by a PH-distribution with representation matrix T = Q@ —~ A =

(;1")5 _0450) - In Table 2 some results are shown for the related PH+M/C3/5/5 and

MMPP+M/C;/5/5 models. They illustrate the weak sensitivity of the time- and call-
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congestion rates of this model if the coefficient of variation of the service process is
modified.

The next example (see Table 3) illustrates that there may be large differences between
the time and call congestion. We recall that different MMPP streams offered to a
common link observe different call-congestion rates although their superposition is again
an MMPP stream. By the way, both examples emphasize the necessity to calculate
the individual and average call-congestion rates of different traffic streams in B-ISDN
models. Furthermore, they show that the approximation of these rates by the time
congestion is impossible.

7 Conclusion

In this paper we have discussed modeling and analysis of a B-ISDN by Markovian
queueing networks employing a decomposition approach and numerical solution meth-
ods for Markov chains. First, we have briefly sketched the concepts of a computa-
tional approach for modeling and analysis of such connection-oriented communication
systems with adaptive routing based on advanced Markovian techniques. They have
been implemented by the software tool MACOM. Variants of the PH/PH/n/m and
MMPP/PH/n/m delay-loss systems constitute the generic elements of its model world.

Then we have investigated the simplest generic model of a communication link in B-
ISDN, namely, the MMPP/PH/n/m model. After describing the features of this multi-
server system, the generator matrix associated with the underlying Markov chain was
constructed and its properties were studied. We have developed new, convergent block
iterative schemes based on R-regular splittings of the generator matrix. They can be
used to calculate the steady-state distribution corresponding to the basic Markov chain
of the model. Based on these steady-state probabilities, formulas for the time- and
arrival-stationary distributions of the number of customers in the system have been
derived including the time and call congestion. Furthermore, the actual waiting-time
distribution of a customer who has to wait after entering the system was stated, too.
The presented block iterative schemes may be incorporated in MACOM as new block it-
erative solution methods for MMPP/PH/n/m models. They can also be used as building
blocks of a network analysis method that implements a decomposition approach based
on Semi-Markovian techniques. It is worthwhile to mention that the proposed algo-
rithms are most suitable for an implementation on a vector processor.

Finally, we have investigated some variants of the MMPP/PH/n/n loss system and
pointed out the relevance of the corresponding results in B-ISDN modeling.
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n |m |k |d]s

5 110 |5 |882

5 |10 |10 ] 13013
10/10 |5 | 3003

10 | 10 |10 | 184756
20{200{5 { 1965810

Table 1: Order d of the generator matrix

Service process. PH-model MMPP-model
Coefficient of Congestion rates of stream Congestion rates of stream
variation M PH PH+M | M MMPP | MMPP+M

0.80 0.373672 | 0.378163 | 0.374542 | 0.373571 | 0.378927 | 0.374608
1.00 0.373680 | 0.377989 | 0.374515 | 0.373586 | 0.378726 { 0.374581
1.20 0.373685 | 0.377873 | 0.374495 | 0.373596 | 0.378578 | 0.374560
1.40 .0.373687 | 0.377794 | 0.374482 | 0.373603 | 0.378470 | 0.374545
1.60 0.373689 | 0.377738 | 0.374473 | 0.373608 | 0.378390 | 0.374532 |

Table 2: Comparison of the congestion rates of an MM PP+ M/C,/5/5 and its related
PH + M/C,/5/5 model with generic interarrival-time distribution of the MMPP. The
mean service time is 1/g = 1. The MMPP arrival rate is 1.2, the arrival rate of the
Poisson process Ay = 5.

Service process - Congestion rates
Coeff. of variation | Time congestion | Call congestion
0.8 4.26109e-01 6.05973e-01
1.0 4.28444¢-01 6.04779¢-01
1.2 4.30154e-01 6.03855e-01
1.4 4.31403e-01 6.03153e-01
1.6 4.32325e-01 6.02619¢-01
1.8 4.33016e-01 6.02209e-01
20 4.33543e-01 6.%&01 1

Table 3: Comparison of the time and call congestion associated with an MMPP/C,/5/5
loss system varying the coefficient of variation of the service time. The service-time
distribution is a Coxian distribution with 2 phases, equal rates and mean 1/u = 1.
The MMPP possesses the arrival rate vector A* = (5.0,30.0) and its generator matrix
Q@ € R*? is determined by the elements Q,; = 0.5,Qa = 2.0.
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