
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2022) 36:225–235
https://doi.org/10.1007/s13218-022-00771-9

TECHNICAL CONTRIBUTION

A Neural‑Symbolic Approach for Explanation Generation Based
on Sub‑concept Detection: An Application of Metric Learning
for Low‑Time‑Budget Labeling

Johannes Rabold1

Received: 10 February 2022 / Accepted: 21 June 2022 / Published online: 9 July 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Deep learning methods, although effective in their assigned tasks, are mostly black-boxes with respect to their inner workings.
For image classification with CNNs, there exists a variety of visual explanation methods that highlight parts of input images
that were relevant for the classification result. But in many domains visual highlighting may not be expressive enough when
the classification relies on complex relations within visual concepts. This paper presents an approach to enrich visual expla-
nations with verbal local explanations, emphasizing important relational information. The proposed Symmetric algorithm
combines metric learning and inductive logic programming (ILP). Labels given by a human for a small subset of important
image parts are first generalized to a neighborhood of similar images using a learned distance metric. The information about
labels and their spatial relations is then used to build background knowledge for ILP and ultimately to learn a first-order
theory that locally explains the black-box with respect to the given image. The approach is evaluated with the Dogs vs. Cats
data set demonstrating the generalization ability of metric learning and with Picasso Faces to illustrate recognition of spatial
meaningful constellations of sub-concepts and creation of an expressive explanation.

Keywords Explainable artificial intelligence · Neural-symbolic integration · Metric learning

1 Introduction

Research on explainable artificial intelligence (XAI) pro-
vides methods to make decisions of black-box classifiers
comprehensible and transparent [1]. What kind of explana-
tions are helpful, depends on the recipient—such as devel-
oper, domain expert, or end user—and on the domain. In this
paper explanation generation for domain experts based on
image data are addressed. Relevant application domains are
medical diagnostics [29] or quality control in industrial pro-
duction. As it is also argued in previous work, in such highly
specialized domains, established explanation methods based
on visual highlighting typically are not expressive enough to
communicate the relevant information [23–25]. For instance,
the type of a tumor might depend on its relative position to

muscle tissue, or it might be relevant whether some defect is
located on a supporting part or not to reject a produced part.

In this work, I present Symmetric, a novel neural-sym-
bolic approach [26] to generate such local relational explana-
tions for images classified with CNNs. Specifically, explana-
tions are based on semantic sub-concepts in an image and
their spatial relations. Naming parts in an image (e.g. whisk-
ers, ears, eyes of a cat) is normally an easy task to perform
by humans. But a labeling process of per-pixel annotations
of human understandable sub-concepts can become tedious
when the number of images becomes large. Although there
exists a variety of per-pixel labeled data sets, these collec-
tions are typically general-purpose data sets for broadly
spread research and may not be specialized to the particular
information need of the user. My approach aims at providing
explanations, even when there is no sufficiently pre-labeled
data set at hand. Additionally, human users might have
only a certain budget of images they are willing to label.
Therefore, the approach in this paper is utilizing a human
in the loop that provides a small number of annotations for
sub-concepts. Metric learning is then used to automatically
label a neighborhood of images around the image whose

 * Johannes Rabold
johannes.rabold@uni-bamberg.de

1 Cognitive Systems, Otto-Friedrich-Universität, Bamberg,
Bavaria, Germany

http://orcid.org/0000-0003-0656-5881
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-022-00771-9&domain=pdf
https://creativecommons.org/licenses/by/4.0/

226 KI - Künstliche Intelligenz (2022) 36:225–235

1 3

classification result needs to be explained. The labeled sub-
concepts together with extracted spatial relations are gener-
alized with inductive logic programming (ILP) [20] to form
first-order logic rules as expressive verbal explanations.
Before the approach is explained in detail, in the next sec-
tions I will briefly position it in the greater context of XAI.
Further, I will cover the theoretical background of the used
methods.

2 Expressive Explainable Artificial
Intelligence

It is generally known that deep learning models are omni-
present in machine learning research and are responsible for
many state of the art approaches. A major downside however
is their black-box nature [1]. The inner process of how the
model came to a decision is mostly obscure and can hardly
be audited by a user. To deal with this problem, the emerging
field of Explainable Artificial Intelligence (XAI) came up
with a number of approaches to break open the black-box
and to make model decisions more transparent to users [1].

XAI methods can be classified into either being model-
specific (can only be applied to a specific type of models)
or model-agnostic (model type does not matter). Further,
a distinction is made by whether the explanation is local
(the model decision for a single instance is explained) or
global (the complete model is explained) [2]. In this work,
I describe a model-specific, local method capable of gen-
erating expressive verbal explanations of the decision of a
trained black-box for a given instance.

Many local explanation approaches for image instances
give an attribution score for parts of the original image [3,
19, 27, 30]. Users are then able to quickly see via a color
coding on the image which parts of the image are contribut-
ing most to the final model decision. As already outlined
in previous works [23–25], simply showing what regions
are most important is not enough. Most of these approaches
are incapable of semantically grasping what the highlighted
objects mean to humans. A simple example is the mere
highlighting of an eye region in a setting where the model
told that a dementia patient suffers from pain [35]. Without
further context, it might not become evident that the eye has
to be closed in order for the model to output “pain”. In this
case, the explanation should transduce the verbal informa-
tion of the value of an attribute in the image.

Another application where verbal context is important is
industrial quality control [22]. It might not only be important
that a blowhole occurred in a component, but also the infor-
mation if it sits on a supporting part. This could then mean
that the component has to be scrapped. In this scenario, the
relation between regions located in the image should be part
of an explanation.

Introducing verbal, symbolic knowledge in the otherwise
connectionist world of neural network systems is nothing
new. Neural-symbolic integration (NSI) aims at fulfilling
the most important cognitive abilities according to [33]:
not only learning from experience but also reasoning about
what has been learned [11]. NSI yielded several approaches
to connect sub-symbolic learning with symbolic reasoning,
effectively integrating interpretable background knowledge
into an otherwise obscure black-box [4, 9].

In this work, I put my focus on extracting knowledge
from already trained models. This is in contrast to several
NSI approaches where the symbolic knowledge is a fixed
part of the end-to-end differentiable pipeline and learned
in the training phase (see citations above). An advantage of
implementing a post-hoc approach is the possibility to bet-
ter involve the user in the explanation process. The training
of the model can run as quickly as possible beforehand and
the user can then later decide how much time she/he will
spend on getting an explanation. Also, the user can decide
afterwards what kind of domain knowledge to use (see also
end of this chapter).

Efforts have also been made to extract visual features
from images and using them as building blocks for symbolic
reasoning engines [7]. The extraction is done via finding
points of interest with a purely data-driven approach. In con-
trast, my approach utilizes attribution methods to automati-
cally find parts in the image that are important to a classifier.

An interesting connection between the predictive power
of neural networks and the interpretability of symbolic
approaches was made in [16] where a set of visual signals
is directly incorporated in a logic reasoning engine. The
approach needs to have the components over which is rea-
soned readily available (e.g. the image parts where handwrit-
ten characters are present in a Sudoku grid). My approach
chooses image parts that are important to the reasoning auto-
matically by going over the complete image instance at once.

With a huge variety in application areas where expla-
nations are paramount, also the number of different users
with different explanation needs grows. As also highlighted
in [28], there can not be “one size-fits all” and the con-
text in which an explanation is issued has to be taken into
account. The paper makes the suggestion of involving the
user directly in the explanation finding process, which I will
directly pick up in this paper. My approach implements a
human in the loop where the user can choose the building
blocks of the explanation themselves.

An often overlooked challenge when it comes to quick
decision making is the time factor. Users of an ML system
critical for safety or health, that only have a low time-budget,
might need an almost immediate explanation to base a deci-
sion on. Recent work [13] suggests to lower the complexity
of an explanation in such scenarios. My approach of utiliz-
ing verbal explanations aims at reducing the complexity by

227KI - Künstliche Intelligenz (2022) 36:225–235

1 3

narrowing the semantic gap between the natural language
understanding of a human user and the processes inside
the black-box. Additionally, I incorporate mechanisms that
allow for expressive explanation generation by only minimal
interaction with the system needed.

3 Theoretical Background

We want to create explanations that are close to the original
behavior of the black-box at the locality of a given image.
Therefore, visual attribution methods to quantify the impor-
tance of image parts with respect to the classification of a
given machine learning model are employed:

3.1 GradCAM

As a method of quantifying the importance of instance parts
in my approach, GradCAM is used [30]. With this estab-
lished attribution approach for images, importance values
can be assigned to the so called feature vectors on a particu-
lar layer L in a black-box neural network B. Let us define a
feature vector to be one vector in the tensor output BL(s) of
a convolution layer L ∈ B when feed forwarding an image
s. That is, feature vector Aij is the complete array of all filter
neuron responses at one location (i, j) in the tensor of acti-
vation maps A = BL(s) . To get an importance value for a
feature vector with respect to the classification output B(s),
GradCAM first finds contribution values �k for all activation
maps Ak ∈ BL(s) . �k is computed by taking the average over
the complete matrix result of calculating the derivative of
B(s) with respect to Ak . These contribution values are now
taken as coefficients for a weighted combination over all
activation maps Ak . After feeding the resulting values in a
sigmoid function, we are left with a 2D map G of importance
values for the feature vectors at each location in the activa-
tion maps of Bl(s) with respect to B(s).

3.2 Concept Vector Analysis

Neurons in intermediate layers of CNNs act as feature detec-
tors (aka filters). The assumption that single neurons spe-
cialized in detecting very distinct semantic sub-concepts in
images was abandoned ever since the paper featuring the
Net2Vec approach by [10]. The authors propose a method
of quantifying the sub-concept detection power of neurons
and concluded that it usually takes multiple neurons that
contribute to detecting a given concept. By finding weights
for a linear combination of neuron outputs, they propose an
approach to find embeddings for given sub-concepts; the
weights constituting an embedding vector. They train lin-
ear classifiers to detect the occurrence of a sub-concept at a

particular image location given by the feature vector. This
strain of research suggests that there exist linear transforma-
tions of feature vectors that put vectors emerging from simi-
lar visual sub-concepts in the image closer together in terms
of a particular similarity metric. Fong and Vedaldi [10] sug-
gest the cosine similarity (see Eq. 1) to be suited best, taking
knowledge from word embeddings in text classification [18].

3.3 Metric Learning

The field of research concerned with the supervised learning
of custom distance metrics and their respective transforma-
tions on vectors is called metric learning [6, 15]. Given a
distance function D(x, y), e.g. the cosine distance between
vectors x and y, metric learning aims to find a new dis-
tance function D�(x, y) that is “better suited” for calculating
similarity between vectors in a given set V. Usually the set
contains labeled vectors and a supervised metric learning
approach constructs D′ in such a way that vectors with the
same label are calculated to be closer together by D′ . For
this purpose, the Large Margin Nearest Neighbor algorithm
(LMNN) is employed [34]. As the name suggests, LMNN
aims at learning a D′ that, when used as metric for a tradi-
tional k nearest neighbor classification yields high accuracy
on a given labeled data set of points V. D′ is formulated as a
generalization of the Euclidean distance function, referred
to as Mahalanobis distance (see Eq. 2; Σ denotes the covari-
ance matrix of data V).

The algorithm distinguishes between target points T and
impostor points I. T’s are pre-calculated as the |Tv| = k near-
est neighbors for all v ∈ V that share the same label with v.
Iv ’s are such points for all v ∈ V that are among v’s k nearest
neighbors, but do not share the same label with v. LMNN is
stated as an optimization problem on the covariance matrix
Σ with a twofold goal: minimizing the Mahalanobis dis-
tance between instances v ∈ V and their respective target
points Tv and penalizing distances to Iv ’s that are closer to v
than the Tv ’s plus one unit. This ensures that a large margin
is established between the preferred target points and the
unwanted impostor points. In practice, the learned function
can be regarded as a transformation � for the original data V
which can then be applied to the vectors in the data yielding
V � = apply(V , �) . The original function D can then be used
as usual on the transformed data V ′ . That way, e.g. cluster-
ing algorithms can use traditional metrics like the cosine
distance.

(1)D(�, �) =
� ⋅ �

||�|| ||�||

(2)D�(�, �) =
√
(� − �)⊤Σ−1(� − �)

228 KI - Künstliche Intelligenz (2022) 36:225–235

1 3

3.4 Inductive Logic Programming

In 1988, Michie [17] came up with three levels of crite-
ria evaluating machine learning approaches: weak, strong
and ultra strong machine learning. While weak ML sys-
tems merely become better in their predictive power when
provided with more data, strong ML systems provide their
hypotheses in human understandable symbolic form. An
ultra-strong ML system is further able to provide a user
with a knowledge gain beyond simply studying the training
data set.

Inductive logic programming (ILP) is a field of machine
learning approaches, that aim at inducing logic programs
from symbolic examples and background knowledge
(BK) [20]. The symbolic nature of their induced theses puts
ILP systems into the strong category of Michies scale. The
conducted experiments of [21] further show that hypotheses
induced by ILP can help humans to better understand the
underlying concept of a given ML task, lifting ILP to the
ultra-strong level of Michies scale. Thus, I claim that ILP is
perfectly suited for generating explanations for the decision
of black-box classifiers.

Unlike with neural networks (numerical) or decision trees
(numerical/categorical), the input of ILP consists of a collec-
tion of first-order logic literals. The examples are e.g. given
as facts (e.g. okay(e1), not okay(e2)) where the
predicate indicates membership to either the positive or neg-
ative class. The BK literals act as means to further describ-
ing the examples symbolically (e.g. contains(e1,
p42), left_of(p42, p43) stating that example e1
contains part p42 etc). ILP methods are generally designed
to induce hypotheses that classify as many positive exam-
ples as possible to be positive by avoiding to classify as
many negative examples to be positive. The hypotheses are
constructed by using predicates from the BK to form a set
of first-order logic clauses.

The ILP framework Aleph [32] is a general purpose
library, that allows flexible induction of first-order hypoth-
eses from examples and BK. Aleph induces a hypoth-
esis comprised of disjunctively connected first-order horn
clauses, given positive (E+) and negative (E−) examples.
The hypothesis is induced by using the BK literals to build
preconditions (rule bodies) to the rules in the hypothesis. A
mode-guided specific-to-general refinement search builds
rules that entail as many positive examples as possible by
not entailing the negative ones. The general steps of the
algorithm are as follows:

1. Select a positive example e ∈ E+ . If E+ is empty, halt.
2. Construct the most-specific clause C that entails e

and that is in the language-constraints imposed by the
modes.

3. Generalize the clause by removing literals from it. The
new subset of literals is found by maximizing a user-
defined score function (usually defined as a best cover-
age fit for the examples over the clause).

4. Add the clause with the best score to the hypothesis. All
examples covered by this clause are removed from the
set of examples.

5. Repeat from step 1.

An example rule that could be induced from examples and
BK can look as follows:

Note that the syntax of the logic programming language Pro-
log is used where variables are upper case and constants are
lower case letters. Rules start with the rule head followed
by :- (a left facing arrow) and the conjunctively connected
preconditions (The conjunction is expressed by a comma).
The rule ends with a period. The above example can be
interpreted as follows: instance A is okay if it contains parts
B and C and B is left of C in the image instance.

4 Symmetric: Finding Verbal Explanations
for CNN Classification Results

In the following, the Symmetric approach of obtaining an
expressive local explanation for a black-box classification
result of a given image is outlined. Assume a black-box B
given as a CNN that was pre-trained on a binary classifica-
tion task. B’s architecture and parameters need to be able
to be examined (model-specific approach). Assume further
an image instance P, that was assigned a positive classifica-
tion result B(P) = ⊕ and available images from a test set T
that was never seen before during the training of B. Figure 1
shows the general workflow of Symmetric as process graph.

4.1 Most Important Feature Vectors for Symbolic
Explanations

To find an explanation that explains B in the vicinity of the
given instance P, first a neighborhood S of user-defined size
N of positive and negative instances si that are close to P
according to a similarity metric D is obtained. It is ensured
that S contains N/2 positive and negative images. Since full
access to the structure and parameters of B is assumed, we
can define D as a similarity metric between the output vec-
tors BFE(si) of the flattening layer, that is, the output of the
last layer of the feature extractor of B when feed-forwarding
image instances si . For the experiments, the cosine similar-
ity metric (see Eq. 1) has turned out to work best. I chose
this model-specific approach over image-specific similarity

����(�) ∶ −��������(�, �), ��������(�, �), ����_��(�, �).

229KI - Künstliche Intelligenz (2022) 36:225–235

1 3

measures to stay close to the network we want to explain and
to not rely on data specific features.

This work assumes, that in order to find explanations that
are close to the local behavior of B with respect to instance
P, we need to incorporate parts of the instance that are
important for B to reach the classification result of P. I uti-
lize GradCAM to find the most important locations for all

images s ∈ S . As input for GradCAM, I use the activation
output A = BL(s) of the black-box when feed-forwarding
s. For each instance, we are only interested in the K most
important feature vectors. Each feature vector in A has a
corresponding pixel patch at a specific location in s. Assume
for example a layer L ∈ B that contains half as many feature
vectors in every spatial direction as the input image. The
feature vector in the upper left corner would then typically
correspond to the 2 × 2 pixel patch in the upper left corner
of the input image etc. Figure 2 makes this correspondence
between feature vectors and input image pixels clearer. The
entirety of the K most important feature vectors and their
corresponding pixel patches for all s ∈ S is stored in the
set V∗.

4.2 Low‑Time‑Budget User Labeling

The approach in this paper actively involves the user that has
a particular explanation need. She or he labels image patches
by taking labels of a pool of sub-concepts also given by the
user. That way, we are not bound to an already per-pixel
labeled data set like it is needed for Net2Vec.

In many application domains, the user might not have
much time to put in extra effort for receiving an explanation.
The experiments will show that only a small set of labeled
image patches is sufficient to generalize the user annota-
tion to unlabeled image patches sharing similar sub-concept
content.

The approach to obtain the initial labels for the feature
vectors is as follows:

1. Let a user input categories C into the system
2. The user is presented with the image patches taken from

V∗ corresponding to the most important feature vectors

Fig. 1 The process graph for Symmetric yielding an expressive ver-
bal local explanation for the classification of an image

Fig. 2 The model architec-
ture used in the experiments.
Figure and architecture adapted
from [31]. The last convolu-
tion layer in the fourth block
(shaded) is used for extract-
ing feature vectors. The most
important feature vectors in this
layer according to GradCAM
when inputting image a are
highlighted in heatmap b. This
heatmap has a dimension of
28 × 28. c shows the overlap
between a and b where b was
up-sampled to have the same
size as a. Therefore, one feature
vector location corresponds to
an 8 × 8 pixel patch in a

230 KI - Künstliche Intelligenz (2022) 36:225–235

1 3

in a small given amount n < |S| of positive and negative
image instances from neighborhood S (see Sect. 4.1).

3. She/he has to assign a label to them taking categories
c ∈ C forming the set Lab

Taking this human in the loop approach is favorable over
automatic approaches, since it gives the users the oppor-
tunity to select the semantic sub-concepts they find most
informative for the target audience of the explanation. I nev-
ertheless want to emphasize, that it is also possible to use
per-pixel ground truth masks for sub-concepts if available.
Bau et al. [5] for example have introduced the BRODEN
data set of per-pixel segmented images showing where on
the images certain colors, textures, object parts etc. can be
found. The human labeling procedure from above could then
be exchanged with using such a data set to form vicinity
S. Of course, one has to make sure that the used data set
is comparable with the original data source, meaning that
similar semantic concepts are labeled.

Symmetric now performs supervised metric learning
with LMNN on the labeled vectors Lab to find a transforma-
tion � that brings feature vectors of similar semantics closer
together according to the cosine similarity. Further, the mean
vector Labc is calculated for all labels c ∈ C in the labeled
vectors. � is now applied to all most important feature vec-
tors in V∗ of all image instances in neighborhood S. That
way, we achieve a space where also the unlabeled feature
vectors are closer to their respective semantically similar
vectors in terms of the cosine similarity.

4.3 Symbolic Explanation Generation with ILP

The transformed vectors V∗ are now clustered by expectation
maximization (EM) clustering, taking as number of Gauss-
ian components the number of categories |C| and yielding
mean vectors Clusc for c ∈ C . The cluster defining category
c∗ ∈ C for a particular cluster c0 is found by Eq. (3) (D is the
cosine similarity as given by Eq. 1).

Following the terminology of [10], I will call the mean vec-
tors Clusc sub-concept vectors. We then are able to local-
ize sub-concepts on all images of neighborhood S (also
the unlabeled ones) automatically by going over each sub-
concept c ∈ C and finding the image location ⟨x∗, y∗⟩ of the
transformed feature vector which is closest to the respective

(3)c∗ = argmaxc[D(Clusc0 , Labc)]

sub-concept vector of c according to the cosine similarity.
Note that we now are not restricting ourselves to the previ-
ously found most important feature vectors V∗ but we take all
feature vectors V at all locations of the images into account.
Given one image s, a concept c, a function A over posi-
tions xy giving the feature vector at that position, the learned
transformation � and cosine similarity D, the position of the
sub-concept c is thus found with Eq. (4).

The found location will mark the single point location of
c in a given image and is the first step in finding symbolic
representations of the images in our neighborhood.

In the following, I will describe how inductive logic
programming (ILP) is used to generalize over the symbolic
representations of the images to create verbal explanations:

In order to obtain symbolic background knowledge (BK)
for Aleph to get a local explanation for the original image
instance P, we first get all sub-concepts present in the images
s in neighborhood S as explained above. We construct the
BK with containment literals, e.g. contains(s1, p1).
concept(p1, eye) to state that image s1 contains
an image patch p1 that is of concept eye. To enrich the
background knowledge for the images, we additionally find
spatial relations between the sub-concepts. We only use the
four relations left_of, right_of, top_of and bot-
tom_of for now. Literals such as left_of(p1, p2)
or top_of(p3, p2) are then added to the BK. We find
these in a straight forward fashion by comparing the coordi-
nates of the found sub-concepts. E.g. for the top_of rela-
tion we scan if there is a sub-concept present in the 45°
section facing upwards in the image. Finally, Aleph is used
to generate explanations by inducing first-order logic rules.

4.4 Algorithm

Algorithm 1 shows the precise steps that Symmetric takes.
As an input it requires the original image instance P as well
as a trained CNN black-box B whose output B(P) we want
to explain. The algorithm further requires test instances T, a
convolution layer L ∈ B , the neighborhood size N, a smaller
number of images n < N that a user can label and the num-
ber of most important images patches K. As an output, the
algorithm gives a first-order logic hypothesis T consisting
of logic rules.

(4)⟨x∗, y∗⟩ = argmax⟨x,y⟩[D(�(Axy(s)), Clusc)]

231KI - Künstliche Intelligenz (2022) 36:225–235

1 3

Algorithm 1 SymMetric: Generate local verbal explanations for the classification result of convolutional neural
networks
Require: Original positive image instance P , Test set of images T , CNN black-box B, Convolution layer L ∈ B, neighborhood

size N , number of images to label n < N , number of most important image patches K
1: S ← N nearest positive and negative image instances t ∈ T to P with respect to the cosine similarity metric applied on

the output of the feature extractor BFE(t)
2: V ← {}
3: for all s ∈ S do
4: A ← BL(s) {Get activation output on layer L}
5: G = (gij)i=1,...,HEIGHT(A);j=1,...,WIDTH(A) ← GradCAM(s,BL(s), B(s)) {Find the importance map with Grad-

CAM}
6: patches ← Upsample(A, s) {Get original image patches by up-sampling the locations of A to the size of s}
7: vs ← {}
8: for i = 1, . . . ,HEIGHT(A); j = 1, . . . ,WIDTH(A) do
9: vs ← vs ∪ {〈Aij ,patchesij , Gij〉}
10: end for
11: V ← V ∪ {{vs}} {Add the vectors, image patches and importance information for each image s}
12: end for
13: V ∗ ← MostImportant(V,K) {For each image we build V ∗ to only contain the K most important locations}
14: Vanno ← Take(V ∗, n) {Take n images from V ∗}
15: C ← AskUserCategories
16: Lab ← LetUserLabel(Vanno, C)
17: θ ← LearnTransformation(Lab) {Supervised Metric Learning}
18: V ∗ ← apply(V ∗, θ)
19: Clus ← EM-Clustering(V ∗, |C|) {Clustering with |C| components}
20: E+ ← {}
21: E− ← {}
22: for all v ∈ V , s ∈ S do
23: v ← apply(v, θ) {Apply θ to all vectors in v}
24: v′ ← predict(v,Clus) {Predict the concepts for all vectors in v}
25: Parts ← {}
26: for all c ∈ C do
27: pc ← FindHighestCosineSim(v′, c) {Find the location of the vector with the highest cosine similarity to the sub-

concept vector of c}
28: Parts ← Parts ∪ {〈c, pc〉}
29: end for
30: Rels ← CalculateRelations(Parts)
31: if B(s) = ⊕ then
32: E+ ← E+ ∪ {〈Parts, Rels〉} {Symbolic representation of images together with background knowledge}
33: else
34: E− ← E− ∪ {〈Parts, Rels〉}
35: end if
36: end for
37: T ← Aleph(E+, E−) {Let Aleph induce a set of first-order logic rules}
38: return T

5 Conducted Experiments and Results

In the following, I discuss the conducted experiments as well
as the results. For all of the experiments in this section I
used a slightly altered version of the widely used VGG-16
architecture as black-box B [31]. In particular, I changed the
two fully-connected layers from both 4096 to 1024 and 512
neurons and the last sigmoid layer to output 2 class estima-
tor values. The changes in the layers are due to the signifi-
cant reduction of classes from 1000 to 2. Figure 2 shows
the altered architecture. For fine-tuning this network, I only
keep the parameters of the first three blocks of convolution

layers fixed. I took for L the last convolution layer in the 4th
convolution block of B as layer to extract our feature vec-
tors since I assume sub-concepts to emerge in higher layers
rather than lower layers that typically consist of detectors
for low-level features (see the introductory chapter in [12]).
The selection procedure of the best layer can become a tedi-
ous process which is not in the scope of this paper but is
an important future work. Fong and Vedaldi [10] and Bau
et al. [5], the work they built upon, provide a good starting
point for finding suited selection heuristics. The training, test-
ing and experiments were run on our in-house GPU work-
station with the following specifications: 24 CPUs of type

232 KI - Künstliche Intelligenz (2022) 36:225–235

1 3

AMD™ Ryzen™ Threadripper™ 2920X 12-Core Processor.
One NVIDIA® GeForce® RTX 2080 Ti with 11019 MiB.

As a first evaluation of how the approach generalizes par-
simonious sub-concept labeling from just a few examples to
a larger image data set, I report results on the Kaggle Cats
and Dogs data set published by Microsoft® [8]. The network
was fine-tuned on the task of discriminating between images
of cats and dogs using a balanced data set of 16,797 cat and
dog images. After one epoch I stopped training and received
an accuracy of 100 percent on 7200 test images (70:30 split).
By checking the metrics on the training and test sets (see
Table 1), I made sure that over-fitting is no issue.

I randomly sampled N = 20 images predicted to contain a
cat, constituting S. The images came from a separate experi-
mentation set of 1000 cat and dog images that were not part
of the training or test set. GradCAM yielded the K = 10 most
important image patches and corresponding feature vectors
from L for each image in S. For n = 4 images I annotated
the K most important image patches by hand. For this data
set I took as categories C = {eye, ear, whiskers} . Whenever
none of these categories was present in the patch, I did not
consider this region in the following. After labeling, I related

the respective feature vectors to that patches and performed
metric learning on the vectors of these few images. I took
LMNN as the supervised metric learning algorithm which
yielded a transformation � for our labeled feature vectors.
Applying this transformation to all important feature vectors
in S leaves us with vectors in a vector space we can cluster
according to the cosine distance metric. Using EM cluster-
ing and |C| = 3 as the number of clusters yields sub-concept
vectors representing our categories. I then transformed all
feature vectors at all locations of the images in S and pre-
dicted the category cluster for them. This lets us generate
heatmaps for the images with 3 heatmaps per image for the 3
categories. The heatmaps in Fig. 3 show the cosine similar-
ity of the feature vectors to the respective sub-concept vector
of 6 randomly selected images not labeled by hand.

Table 2 shows the maximum of the cosine similarity to
the respective sub-concept vector averaged over N − n = 16
neighborhood images that were not labeled. The values are
given for an experiment run with and without transforming
the feature vectors using metric learning. The similarities

Table 1 Accuracy and F1 score
on the training and test data sets

The respective train and test
scores closely match and indi-
cate that the degree of over-fit-
ting is negligible

Accuracy F1 score

Train data 0.9713 0.9706
Test data 1.0 1.0

Fig. 3 Exemplary images with regions of highest cosine similarity to the respective sub-concept vector. Rows from top to bottom are the sub-
concepts eye, ear, whiSkerS

Table 2 Average of the respective image maximums of the cosine
similarity to the sub-concept vector on previously unlabeled images

Bold values indicate that there was an improvement when using met-
ric learning when compared with the case without metric learning
The standard deviation is given in parentheses

Eye Ear Whiskers

Without metric learning 0.31 (0.10) 0.33 (0.11) 0.25 (0.06)
With metric learning 0.35 (0.12) 0.34 (0.12) 0.29 (0.07)

233KI - Künstliche Intelligenz (2022) 36:225–235

1 3

calculated for the experimental setup with metric learning
are always higher indicating a better fit to the labeled ground
truth when compared to taking the un-transformed “raw”
vectors from the probed network.

To illustrate the usability of the approach to recognize
meaningful spatial relations, I subsequently present results
for the expressive verbal explanation generation. As a sam-
ple data set I use the Picasso Faces data set we already cre-
ated in [25]. The data set is derived from the FASSEG data
set [14] of frontal face images. The underlying task of the
data set was altered towards a visual relational classification
task. The faces of selected individuals in FASSEG were rid
of facial features like eyes, nose and mouth and were given
a similar skin texture all over the face. These “canvases”
of faces were then used to construct either faces where the
constellations of facial features resemble “correct” faces
(positive class) or where the spatial structure does not ren-
der a standard face (negative class) (see Fig. 4 for examples).
The facial features were taken from a pool of features com-
ing from the original FASSEG data set. I made sure that
all the images contain exactly two eyes, one nose and one
mouth. For the conducted experiment, I proceeded nearly
identical to the experiment above with the following data
set dependent changes: fine-tuning on a balanced data set
of 9002 positive and negative images was stopped after 1
episode with an accuracy of 100 percent on 998 images.
GradCAM was fed with K = 10 and I annotated n = 4 out
of N = 20 images with categories C = {eye, nose,mouth} .
LMNN was used again for the supervised metric learning
approach and the learned transformation was applied to all
important feature vectors in the neighborhood. Learning
an EM clustering model on these vectors and predicting
all transformed feature vectors in the neighborhood leaves
us with a completely labeled neighborhood. Next, I trans-
formed the images to symbolic examples with background
knowledge (BK). I found the location of each sub-concept

(eye, nose, mouth) on each image s ∈ S by finding the
location of the image patch whose feature vector is most
similar to the sub-concept vector (see Sect. 4.3). For the
eyes who appear two times on each image we have to devi-
ate slightly from that approach. In order to get two points for
two eyes, we do not find the closest vector in the entirety of
the vectors that are part of the eye cluster. We rather find the
two “super patches” that are formed by coherent patches but
whose member patches have no neighbors from the respec-
tive other super patch. For each image, we now can write
literals like face(s1) or not face(s2) depending on
whether si represents a positive or negative image instance.
We further write background knowledge for the occurrence
of a sub-concept in an image (e.g. contains(s1, p1),
concept(p1, eye) etc.) as well as the derived spatial
relations between the sub-concepts (e.g. left_of(p1,
p2), bottom_of(p2, p3)). The last step consists of
inducing general rules from the examples and the BK. See
Fig. 4 for the rules as well as intermediate data collected
during the experiment.

The explanations are generalizations over the symbolic
examples. I explicitly allowed variables to be contained in
the rules. Both rules tell us that there has to be a nose in
between two other sub-concepts. Substituting the variables
by constants (in this case the sub-concepts) such that the
resulting rule entails the original image example yields B
to be an eye and C to be a mouth. This is on par with the
construction of the positive examples, i.e. a normal face.

6 Discussion and Further Work

I have demonstrated that Symmetric provides users with ver-
bal explanations that go beyond visualization of important
image parts. Parsimonious specialized labeling can be gen-
eralized by using metric learning, creating a neighborhood

Fig. 4 First column shows the
original images, second and
third column the locations of
the found sub-concepts for the
original image and the nearest
negative example respectively.
Last column states the found
rule. The common rule part
is face(A):- contains
(A, B), contains (A,
C), contains (A, D),
concept (D, nose)

234 KI - Künstliche Intelligenz (2022) 36:225–235

1 3

of symbolic data around the original image instance. The
metric learning helps locating sub-concepts on unlabeled
data that are more similar to a given sub-concept vector with
respect to the cosine similarity compared to an approach
without metric learning. This can become particularly
important in domains where labeled data is not available
(e.g. in a specialized medical field) and practitioners want
to receive expressive explanations with minimal additional
effort. In the future, the claim of the helpfulness of the gen-
erated explanations needs to be further backed up with a user
study aimed at practitioners that are working with black-box
decision systems. Comparing performance on a particular
task before and after being exposed to an explanation can
demonstrate the usefulness of it. In subsequent work I also
plan on investigating the effectiveness of this approach on
data sets that go beyond a proof of concept.

Commenting on the potential negative societal impact of
my work I believe the stated approach generally attempts
to mitigate issues like the inability of auditing automated
decision making. I aim at establishing trust that is justified
by correctly stating the reasons for a classification decision.
Highlighting spatial relations might be a first step towards
a holistic auditing process, but I am aware that this is most
likely still short of a complete answer.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Adadi A, Berrada M (2018) Peeking inside the black-box: a
survey on explainable artificial intelligence (xai). IEEE Access
6:52138–52160

 2. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S,
Barbado A, García S, Gil-López S, Molina D, Benjamins R et al
(2020) Explainable artificial intelligence (xai): concepts, taxon-
omies, opportunities and challenges toward responsible ai. Inf
Fusion 58:82–115

 3. Bach S, Binder A, Montavon G, Klauschen F, Müller K-R,
Samek W (2015) On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PLoS One
10(7):e013040

 4. Badreddine S, Garcez AD, Serafini L (2022) Logic tensor net-
works. Artif Intell 303:103649

 5. Bau D, Zhou B, Khosla A, Oliva A, Torralba A (2017) Network
dissection: quantifying interpretability of deep visual representa-
tions. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. IEEE, Manhattan, pp 6541–6549

 6. Bellet A, Habrard A, Sebban M (2015) Metric learning. Synth
Lect Artif Intell Mach Learn 9(1):1–151

 7. Dai W-Z, Muggleton S, Wen J, Tamaddoni-Nezhad A, Zhou Z-H
(2017) Logical vision: one-shot meta-interpretive learning from
real images. In: International conference on inductive logic pro-
gramming. Springer, pp 46–62

 8. Elson J, Douceur JR, Howell J, Saul J (2007) Asirra: a captcha
that exploits interest-aligned manual image categorization. ACM
Conf Comput Commun Secur 7:366–374

 9. Evans R, Grefenstette E (2018) Learning explanatory rules from
noisy data. J Artif Intell Res 61:1–64

 10. Fong R, Vedaldi A (2018) Net2vec: quantifying and explaining
how concepts are encoded by filters in deep neural networks. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition. IEEE, Manhattan, pp 8730–8738

 11. Garcez AD, Gori M, Lamb LC, Serafini L, Spranger M, Tran SN
(2019) Neural-symbolic computing: an effective methodology for
principled integration of machine learning and reasoning. arXiv
preprint arXiv: 1905. 06088

 12. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press. http:// www. deepl earni ngbook. org

 13. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F,
Pedreschi D (2018) A survey of methods for explaining black
box models. ACM Comput Surv (CSUR) 51(5):1–42

 14. Khan K, Mauro M, Leonardi R (2015) Multi-class semantic seg-
mentation of faces. In: 2015 IEEE international conference on
image processing (ICIP). IEEE, pp 827–831

 15. Kulis B et al (2012) Metric learning: a survey. Found Trends Mach
Learn 5(4):287–364

 16. Manhaeve R, Dumancic S, Kimmig A, Demeester T, De Raedt
L (2018) Deepproblog: neural probabilistic logic programming.
Adv Neural Inf Process Syst 31:3749–3759

 17. Michie D (1988) Machine learning in the next five years. In:
Proceedings of the 3rd European conference on European work-
ing session on learning. Pitman Publishing, Inc, Marshfield, pp
107–122

 18. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Dis-
tributed representations of words and phrases and their composi-
tionality. arXiv preprint arXiv: 1310. 4546

 19. Montavon G, Lapuschkin S, Binder A, Samek W, Müller K-R
(2017) Explaining nonlinear classification decisions with deep
Taylor decomposition. Pattern Recognit 65:211–222

 20. Muggleton S, De Raedt L (1994) Inductive logic programming:
theory and methods. J Logic Program 19:629–679

 21. Muggleton SH, Schmid U, Zeller C, Tamaddoni-Nezhad A,
Besold T (2018) Ultra-strong machine learning: comprehensibil-
ity of programs learned with ilp. Mach Learn 107(7):1119–1140

 22. Müller D, März M, Scheele S, Schmid U (2022) An interactive
explanatory ai system for industrial quality control

 23. Rabold J, Siebers M, Schmid U (2018) Explaining black-box clas-
sifiers with ilp-empowering lime with aleph to approximate non-
linear decisions with relational rules. In: International conference
on inductive logic programming. Springer, pp 105–117

 24. Rabold J, Deininger H, Siebers M, Schmid U (2019) Enriching
visual with verbal explanations for relational concepts-combining
lime with aleph. In: Joint European conference on machine learn-
ing and knowledge discovery in databases. Springer, pp 180–192

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1905.06088
http://www.deeplearningbook.org
http://arxiv.org/abs/1310.4546

235KI - Künstliche Intelligenz (2022) 36:225–235

1 3

 25. Rabold J, Schwalbe G, Schmid U (2020) Expressive explanations
of DNNS by combining concept analysis with ilp. In: German
conference on artificial intelligence (Künstliche Intelligenz).
Springer, pp 148–162

 26. Raedt LD, Dumancic S, Manhaeve R, Marra G (2020) From sta-
tistical relational to neuro-symbolic artificial intelligence. In: Bes-
siere C (ed) Proceedings of the twenty-ninth international joint
conference on artificial intelligence, IJCAI2020, pp 4943–4950.
ijcai.org. https:// doi. org/ 10. 24963/ ijcai. 2020/ 688

 27. Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you?
Explaining the predictions of any classifier. In: Proceedings of the
22nd ACM SIGKDD international conference on knowledge dis-
covery and data mining. Association for Computing Machinery,
New York, pp 1135–1144

 28. Schmid U (2021) Interactive learning with mutual explanations
in relational domains. Human-like machine intelligence. pp 338

 29. Schmid U, Finzel B (2020)Mutual explanations for cooperative
decision making in medicine. KI-Künstliche Intelligenz. pp 1–7

 30. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra
D (2017) Grad-cam: visual explanations from deep networks via
gradient-based localization. In: Proceedings of the IEEE interna-
tional conference on computer vision. IEEE, Piscataway, NJ, pp
618–626

 31. Simonyan K, Zisserman A (2014) Very deep convolutional net-
works for large-scale image recognition. arXiv preprint, arXiv:
1409. 1556

 32. Srinivasan A (2007) The Aleph Manual. https:// www. cs. ox. ac. uk/
activ ities/ progr amind uction/ Aleph/ aleph. html. Accessed 10 Feb
2022

 33. Valiant LG (2003) Three problems in computer science. J ACM
(JACM) 50(1):96–99

 34. Weinberger KQ, Saul LK (2009) Distance metric learning for
large margin nearest neighbor classification. J Mach Learn Res
10(2):207–244

 35. Weitz K, Hassan T, Schmid U, Garbas J-U (2019) Deep-learned
faces of pain and emotions: elucidating the differences of facial
expressions with the help of explainable ai methods. tm-Technis-
ches Messen 86(7–8):404–412

https://doi.org/10.24963/ijcai.2020/688
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

	A Neural-Symbolic Approach for Explanation Generation Based on Sub-concept Detection: An Application of Metric Learning for Low-Time-Budget Labeling
	Abstract
	1 Introduction
	2 Expressive Explainable Artificial Intelligence
	3 Theoretical Background
	3.1 GradCAM
	3.2 Concept Vector Analysis
	3.3 Metric Learning
	3.4 Inductive Logic Programming

	4 SymMetric: Finding Verbal Explanations for CNN Classification Results
	4.1 Most Important Feature Vectors for Symbolic Explanations
	4.2 Low-Time-Budget User Labeling
	4.3 Symbolic Explanation Generation with ILP
	4.4 Algorithm

	5 Conducted Experiments and Results
	6 Discussion and Further Work
	References

