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Abstract
Deep learning methods, although effective in their assigned tasks, are mostly black-boxes with respect to their inner workings. 
For image classification with CNNs, there exists a variety of visual explanation methods that highlight parts of input images 
that were relevant for the classification result. But in many domains visual highlighting may not be expressive enough when 
the classification relies on complex relations within visual concepts. This paper presents an approach to enrich visual expla-
nations with verbal local explanations, emphasizing important relational information. The proposed Symmetric algorithm 
combines metric learning and inductive logic programming (ILP). Labels given by a human for a small subset of important 
image parts are first generalized to a neighborhood of similar images using a learned distance metric. The information about 
labels and their spatial relations is then used to build background knowledge for ILP and ultimately to learn a first-order 
theory that locally explains the black-box with respect to the given image. The approach is evaluated with the Dogs vs. Cats 
data set demonstrating the generalization ability of metric learning and with Picasso Faces to illustrate recognition of spatial 
meaningful constellations of sub-concepts and creation of an expressive explanation.

Keywords Explainable artificial intelligence · Neural-symbolic integration · Metric learning

1 Introduction

Research on explainable artificial intelligence (XAI) pro-
vides methods to make decisions of black-box classifiers 
comprehensible and transparent [1]. What kind of explana-
tions are helpful, depends on the recipient—such as devel-
oper, domain expert, or end user—and on the domain. In this 
paper explanation generation for domain experts based on 
image data are addressed. Relevant application domains are 
medical diagnostics [29] or quality control in industrial pro-
duction. As it is also argued in previous work, in such highly 
specialized domains, established explanation methods based 
on visual highlighting typically are not expressive enough to 
communicate the relevant information [23–25]. For instance, 
the type of a tumor might depend on its relative position to 

muscle tissue, or it might be relevant whether some defect is 
located on a supporting part or not to reject a produced part.

In this work, I present Symmetric, a novel neural-sym-
bolic approach [26] to generate such local relational explana-
tions for images classified with CNNs. Specifically, explana-
tions are based on semantic sub-concepts in an image and 
their spatial relations. Naming parts in an image (e.g. whisk-
ers, ears, eyes of a cat) is normally an easy task to perform 
by humans. But a labeling process of per-pixel annotations 
of human understandable sub-concepts can become tedious 
when the number of images becomes large. Although there 
exists a variety of per-pixel labeled data sets, these collec-
tions are typically general-purpose data sets for broadly 
spread research and may not be specialized to the particular 
information need of the user. My approach aims at providing 
explanations, even when there is no sufficiently pre-labeled 
data set at hand. Additionally, human users might have 
only a certain budget of images they are willing to label. 
Therefore, the approach in this paper is utilizing a human 
in the loop that provides a small number of annotations for 
sub-concepts. Metric learning is then used to automatically 
label a neighborhood of images around the image whose 
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classification result needs to be explained. The labeled sub-
concepts together with extracted spatial relations are gener-
alized with inductive logic programming (ILP) [20] to form 
first-order logic rules as expressive verbal explanations. 
Before the approach is explained in detail, in the next sec-
tions I will briefly position it in the greater context of XAI. 
Further, I will cover the theoretical background of the used 
methods.

2  Expressive Explainable Artificial 
Intelligence

It is generally known that deep learning models are omni-
present in machine learning research and are responsible for 
many state of the art approaches. A major downside however 
is their black-box nature [1]. The inner process of how the 
model came to a decision is mostly obscure and can hardly 
be audited by a user. To deal with this problem, the emerging 
field of Explainable Artificial Intelligence (XAI) came up 
with a number of approaches to break open the black-box 
and to make model decisions more transparent to users [1].

XAI methods can be classified into either being model-
specific (can only be applied to a specific type of models) 
or model-agnostic (model type does not matter). Further, 
a distinction is made by whether the explanation is local 
(the model decision for a single instance is explained) or 
global (the complete model is explained) [2]. In this work, 
I describe a model-specific, local method capable of gen-
erating expressive verbal explanations of the decision of a 
trained black-box for a given instance.

Many local explanation approaches for image instances 
give an attribution score for parts of the original image [3, 
19, 27, 30]. Users are then able to quickly see via a color 
coding on the image which parts of the image are contribut-
ing most to the final model decision. As already outlined 
in previous works [23–25], simply showing what regions 
are most important is not enough. Most of these approaches 
are incapable of semantically grasping what the highlighted 
objects mean to humans. A simple example is the mere 
highlighting of an eye region in a setting where the model 
told that a dementia patient suffers from pain [35]. Without 
further context, it might not become evident that the eye has 
to be closed in order for the model to output “pain”. In this 
case, the explanation should transduce the verbal informa-
tion of the value of an attribute in the image.

Another application where verbal context is important is 
industrial quality control [22]. It might not only be important 
that a blowhole occurred in a component, but also the infor-
mation if it sits on a supporting part. This could then mean 
that the component has to be scrapped. In this scenario, the 
relation between regions located in the image should be part 
of an explanation.

Introducing verbal, symbolic knowledge in the otherwise 
connectionist world of neural network systems is nothing 
new. Neural-symbolic integration (NSI) aims at fulfilling 
the most important cognitive abilities according to [33]: 
not only learning from experience but also reasoning about 
what has been learned [11]. NSI yielded several approaches 
to connect sub-symbolic learning with symbolic reasoning, 
effectively integrating interpretable background knowledge 
into an otherwise obscure black-box [4, 9].

In this work, I put my focus on extracting knowledge 
from already trained models. This is in contrast to several 
NSI approaches where the symbolic knowledge is a fixed 
part of the end-to-end differentiable pipeline and learned 
in the training phase (see citations above). An advantage of 
implementing a post-hoc approach is the possibility to bet-
ter involve the user in the explanation process. The training 
of the model can run as quickly as possible beforehand and 
the user can then later decide how much time she/he will 
spend on getting an explanation. Also, the user can decide 
afterwards what kind of domain knowledge to use (see also 
end of this chapter).

Efforts have also been made to extract visual features 
from images and using them as building blocks for symbolic 
reasoning engines [7]. The extraction is done via finding 
points of interest with a purely data-driven approach. In con-
trast, my approach utilizes attribution methods to automati-
cally find parts in the image that are important to a classifier.

An interesting connection between the predictive power 
of neural networks and the interpretability of symbolic 
approaches was made in [16] where a set of visual signals 
is directly incorporated in a logic reasoning engine. The 
approach needs to have the components over which is rea-
soned readily available (e.g. the image parts where handwrit-
ten characters are present in a Sudoku grid). My approach 
chooses image parts that are important to the reasoning auto-
matically by going over the complete image instance at once.

With a huge variety in application areas where expla-
nations are paramount, also the number of different users 
with different explanation needs grows. As also highlighted 
in [28], there can not be “one size-fits all” and the con-
text in which an explanation is issued has to be taken into 
account. The paper makes the suggestion of involving the 
user directly in the explanation finding process, which I will 
directly pick up in this paper. My approach implements a 
human in the loop where the user can choose the building 
blocks of the explanation themselves.

An often overlooked challenge when it comes to quick 
decision making is the time factor. Users of an ML system 
critical for safety or health, that only have a low time-budget, 
might need an almost immediate explanation to base a deci-
sion on. Recent work [13] suggests to lower the complexity 
of an explanation in such scenarios. My approach of utiliz-
ing verbal explanations aims at reducing the complexity by 
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narrowing the semantic gap between the natural language 
understanding of a human user and the processes inside 
the black-box. Additionally, I incorporate mechanisms that 
allow for expressive explanation generation by only minimal 
interaction with the system needed.

3  Theoretical Background

We want to create explanations that are close to the original 
behavior of the black-box at the locality of a given image. 
Therefore, visual attribution methods to quantify the impor-
tance of image parts with respect to the classification of a 
given machine learning model are employed:

3.1  GradCAM

As a method of quantifying the importance of instance parts 
in my approach, GradCAM is used [30]. With this estab-
lished attribution approach for images, importance values 
can be assigned to the so called feature vectors on a particu-
lar layer L in a black-box neural network B. Let us define a 
feature vector to be one vector in the tensor output BL(s) of 
a convolution layer L ∈ B when feed forwarding an image 
s. That is, feature vector Aij is the complete array of all filter 
neuron responses at one location (i, j) in the tensor of acti-
vation maps A = BL(s) . To get an importance value for a 
feature vector with respect to the classification output B(s), 
GradCAM first finds contribution values �k for all activation 
maps Ak ∈ BL(s) . �k is computed by taking the average over 
the complete matrix result of calculating the derivative of 
B(s) with respect to Ak . These contribution values are now 
taken as coefficients for a weighted combination over all 
activation maps Ak . After feeding the resulting values in a 
sigmoid function, we are left with a 2D map G of importance 
values for the feature vectors at each location in the activa-
tion maps of Bl(s) with respect to B(s).

3.2  Concept Vector Analysis

Neurons in intermediate layers of CNNs act as feature detec-
tors (aka filters). The assumption that single neurons spe-
cialized in detecting very distinct semantic sub-concepts in 
images was abandoned ever since the paper featuring the 
Net2Vec approach by [10]. The authors propose a method 
of quantifying the sub-concept detection power of neurons 
and concluded that it usually takes multiple neurons that 
contribute to detecting a given concept. By finding weights 
for a linear combination of neuron outputs, they propose an 
approach to find embeddings for given sub-concepts; the 
weights constituting an embedding vector. They train lin-
ear classifiers to detect the occurrence of a sub-concept at a 

particular image location given by the feature vector. This 
strain of research suggests that there exist linear transforma-
tions of feature vectors that put vectors emerging from simi-
lar visual sub-concepts in the image closer together in terms 
of a particular similarity metric. Fong and Vedaldi [10] sug-
gest the cosine similarity (see Eq. 1) to be suited best, taking 
knowledge from word embeddings in text classification [18].

3.3  Metric Learning

The field of research concerned with the supervised learning 
of custom distance metrics and their respective transforma-
tions on vectors is called metric learning [6, 15]. Given a 
distance function D(x, y), e.g. the cosine distance between 
vectors x and y, metric learning aims to find a new dis-
tance function D�(x, y) that is “better suited” for calculating 
similarity between vectors in a given set V. Usually the set 
contains labeled vectors and a supervised metric learning 
approach constructs D′ in such a way that vectors with the 
same label are calculated to be closer together by D′ . For 
this purpose, the Large Margin Nearest Neighbor algorithm 
(LMNN) is employed [34]. As the name suggests, LMNN 
aims at learning a D′ that, when used as metric for a tradi-
tional k nearest neighbor classification yields high accuracy 
on a given labeled data set of points V. D′ is formulated as a 
generalization of the Euclidean distance function, referred 
to as Mahalanobis distance (see Eq. 2; Σ denotes the covari-
ance matrix of data V).

The algorithm distinguishes between target points T and 
impostor points I. T’s are pre-calculated as the |Tv| = k near-
est neighbors for all v ∈ V  that share the same label with v. 
Iv ’s are such points for all v ∈ V  that are among v’s k nearest 
neighbors, but do not share the same label with v. LMNN is 
stated as an optimization problem on the covariance matrix 
Σ with a twofold goal: minimizing the Mahalanobis dis-
tance between instances v ∈ V  and their respective target 
points Tv and penalizing distances to Iv ’s that are closer to v 
than the Tv ’s plus one unit. This ensures that a large margin 
is established between the preferred target points and the 
unwanted impostor points. In practice, the learned function 
can be regarded as a transformation � for the original data V 
which can then be applied to the vectors in the data yielding 
V � = apply(V , �) . The original function D can then be used 
as usual on the transformed data V ′ . That way, e.g. cluster-
ing algorithms can use traditional metrics like the cosine 
distance.

(1)D(�, �) =
� ⋅ �

||�|| ||�||

(2)D�(�, �) =
√
(� − �)⊤Σ−1(� − �)
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3.4  Inductive Logic Programming

In 1988, Michie [17] came up with three levels of crite-
ria evaluating machine learning approaches: weak, strong 
and ultra strong machine learning. While weak ML sys-
tems merely become better in their predictive power when 
provided with more data, strong ML systems provide their 
hypotheses in human understandable symbolic form. An 
ultra-strong ML system is further able to provide a user 
with a knowledge gain beyond simply studying the training 
data set.

Inductive logic programming (ILP) is a field of machine 
learning approaches, that aim at inducing logic programs 
from symbolic examples and background knowledge 
(BK) [20]. The symbolic nature of their induced theses puts 
ILP systems into the strong category of Michies scale. The 
conducted experiments of [21] further show that hypotheses 
induced by ILP can help humans to better understand the 
underlying concept of a given ML task, lifting ILP to the 
ultra-strong level of Michies scale. Thus, I claim that ILP is 
perfectly suited for generating explanations for the decision 
of black-box classifiers.

Unlike with neural networks (numerical) or decision trees 
(numerical/categorical), the input of ILP consists of a collec-
tion of first-order logic literals. The examples are e.g. given 
as facts (e.g. okay(e1), not okay(e2)) where the 
predicate indicates membership to either the positive or neg-
ative class. The BK literals act as means to further describ-
ing the examples symbolically (e.g. contains(e1, 
p42), left_of(p42, p43) stating that example e1 
contains part p42 etc). ILP methods are generally designed 
to induce hypotheses that classify as many positive exam-
ples as possible to be positive by avoiding to classify as 
many negative examples to be positive. The hypotheses are 
constructed by using predicates from the BK to form a set 
of first-order logic clauses.

The ILP framework Aleph  [32] is a general purpose 
library, that allows flexible induction of first-order hypoth-
eses from examples and BK. Aleph induces a hypoth-
esis comprised of disjunctively connected first-order horn 
clauses, given positive ( E+ ) and negative ( E− ) examples. 
The hypothesis is induced by using the BK literals to build 
preconditions (rule bodies) to the rules in the hypothesis. A 
mode-guided specific-to-general refinement search builds 
rules that entail as many positive examples as possible by 
not entailing the negative ones. The general steps of the 
algorithm are as follows: 

1. Select a positive example e ∈ E+ . If E+ is empty, halt.
2. Construct the most-specific clause C that entails e 

and that is in the language-constraints imposed by the 
modes.

3. Generalize the clause by removing literals from it. The 
new subset of literals is found by maximizing a user-
defined score function (usually defined as a best cover-
age fit for the examples over the clause).

4. Add the clause with the best score to the hypothesis. All 
examples covered by this clause are removed from the 
set of examples.

5. Repeat from step 1.

An example rule that could be induced from examples and 
BK can look as follows:

Note that the syntax of the logic programming language Pro-
log is used where variables are upper case and constants are 
lower case letters. Rules start with the rule head followed 
by :- (a left facing arrow) and the conjunctively connected 
preconditions (The conjunction is expressed by a comma). 
The rule ends with a period. The above example can be 
interpreted as follows: instance A is okay if it contains parts 
B and C and B is left of C in the image instance.

4  Symmetric: Finding Verbal Explanations 
for CNN Classification Results

In the following, the Symmetric approach of obtaining an 
expressive local explanation for a black-box classification 
result of a given image is outlined. Assume a black-box B 
given as a CNN that was pre-trained on a binary classifica-
tion task. B’s architecture and parameters need to be able 
to be examined (model-specific approach). Assume further 
an image instance P, that was assigned a positive classifica-
tion result B(P) = ⊕ and available images from a test set T 
that was never seen before during the training of B. Figure 1 
shows the general workflow of Symmetric as process graph.

4.1  Most Important Feature Vectors for Symbolic 
Explanations

To find an explanation that explains B in the vicinity of the 
given instance P, first a neighborhood S of user-defined size 
N of positive and negative instances si that are close to P 
according to a similarity metric D is obtained. It is ensured 
that S contains N/2 positive and negative images. Since full 
access to the structure and parameters of B is assumed, we 
can define D as a similarity metric between the output vec-
tors BFE(si) of the flattening layer, that is, the output of the 
last layer of the feature extractor of B when feed-forwarding 
image instances si . For the experiments, the cosine similar-
ity metric (see Eq. 1) has turned out to work best. I chose 
this model-specific approach over image-specific similarity 

����(�) ∶ −��������(�, �), ��������(�, �), ����_��(�, �).
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measures to stay close to the network we want to explain and 
to not rely on data specific features.

This work assumes, that in order to find explanations that 
are close to the local behavior of B with respect to instance 
P, we need to incorporate parts of the instance that are 
important for B to reach the classification result of P. I uti-
lize GradCAM to find the most important locations for all 

images s ∈ S . As input for GradCAM, I use the activation 
output A = BL(s) of the black-box when feed-forwarding 
s. For each instance, we are only interested in the K most 
important feature vectors. Each feature vector in A has a 
corresponding pixel patch at a specific location in s. Assume 
for example a layer L ∈ B that contains half as many feature 
vectors in every spatial direction as the input image. The 
feature vector in the upper left corner would then typically 
correspond to the 2 × 2 pixel patch in the upper left corner 
of the input image etc. Figure 2 makes this correspondence 
between feature vectors and input image pixels clearer. The 
entirety of the K most important feature vectors and their 
corresponding pixel patches for all s ∈ S is stored in the 
set V∗.

4.2  Low‑Time‑Budget User Labeling

The approach in this paper actively involves the user that has 
a particular explanation need. She or he labels image patches 
by taking labels of a pool of sub-concepts also given by the 
user. That way, we are not bound to an already per-pixel 
labeled data set like it is needed for Net2Vec.

In many application domains, the user might not have 
much time to put in extra effort for receiving an explanation. 
The experiments will show that only a small set of labeled 
image patches is sufficient to generalize the user annota-
tion to unlabeled image patches sharing similar sub-concept 
content.

The approach to obtain the initial labels for the feature 
vectors is as follows: 

1. Let a user input categories C into the system
2. The user is presented with the image patches taken from 

V∗ corresponding to the most important feature vectors 

Fig. 1  The process graph for Symmetric yielding an expressive ver-
bal local explanation for the classification of an image

Fig. 2  The model architec-
ture used in the experiments. 
Figure and architecture adapted 
from [31]. The last convolu-
tion layer in the fourth block 
(shaded) is used for extract-
ing feature vectors. The most 
important feature vectors in this 
layer according to GradCAM 
when inputting image a are 
highlighted in heatmap b. This 
heatmap has a dimension of 
28 × 28. c shows the overlap 
between a and b where b was 
up-sampled to have the same 
size as a. Therefore, one feature 
vector location corresponds to 
an 8 × 8 pixel patch in a 
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in a small given amount n < |S| of positive and negative 
image instances from neighborhood S (see Sect. 4.1).

3. She/he has to assign a label to them taking categories 
c ∈ C forming the set Lab

Taking this human in the loop approach is favorable over 
automatic approaches, since it gives the users the oppor-
tunity to select the semantic sub-concepts they find most 
informative for the target audience of the explanation. I nev-
ertheless want to emphasize, that it is also possible to use 
per-pixel ground truth masks for sub-concepts if available. 
Bau et al. [5] for example have introduced the BRODEN 
data set of per-pixel segmented images showing where on 
the images certain colors, textures, object parts etc. can be 
found. The human labeling procedure from above could then 
be exchanged with using such a data set to form vicinity 
S. Of course, one has to make sure that the used data set 
is comparable with the original data source, meaning that 
similar semantic concepts are labeled.

Symmetric now performs supervised metric learning 
with LMNN on the labeled vectors Lab to find a transforma-
tion � that brings feature vectors of similar semantics closer 
together according to the cosine similarity. Further, the mean 
vector Labc is calculated for all labels c ∈ C in the labeled 
vectors. � is now applied to all most important feature vec-
tors in V∗ of all image instances in neighborhood S. That 
way, we achieve a space where also the unlabeled feature 
vectors are closer to their respective semantically similar 
vectors in terms of the cosine similarity.

4.3  Symbolic Explanation Generation with ILP

The transformed vectors V∗ are now clustered by expectation 
maximization (EM) clustering, taking as number of Gauss-
ian components the number of categories |C| and yielding 
mean vectors Clusc for c ∈ C . The cluster defining category 
c∗ ∈ C for a particular cluster c0 is found by Eq. (3) (D is the 
cosine similarity as given by Eq. 1).

Following the terminology of [10], I will call the mean vec-
tors Clusc sub-concept vectors. We then are able to local-
ize sub-concepts on all images of neighborhood S (also 
the unlabeled ones) automatically by going over each sub-
concept c ∈ C and finding the image location ⟨x∗, y∗⟩ of the 
transformed feature vector which is closest to the respective 

(3)c∗ = argmaxc[D(Clusc0 , Labc)]

sub-concept vector of c according to the cosine similarity. 
Note that we now are not restricting ourselves to the previ-
ously found most important feature vectors V∗ but we take all 
feature vectors V at all locations of the images into account. 
Given one image s, a concept c, a function A over posi-
tions xy giving the feature vector at that position, the learned 
transformation � and cosine similarity D, the position of the 
sub-concept c is thus found with Eq. (4).

The found location will mark the single point location of 
c in a given image and is the first step in finding symbolic 
representations of the images in our neighborhood.

In the following, I will describe how inductive logic 
programming (ILP) is used to generalize over the symbolic 
representations of the images to create verbal explanations:

In order to obtain symbolic background knowledge (BK) 
for Aleph to get a local explanation for the original image 
instance P, we first get all sub-concepts present in the images 
s in neighborhood S as explained above. We construct the 
BK with containment literals, e.g. contains(s1, p1). 
concept(p1, eye) to state that image s1 contains 
an image patch p1 that is of concept eye. To enrich the 
background knowledge for the images, we additionally find 
spatial relations between the sub-concepts. We only use the 
four relations left_of, right_of, top_of and bot-
tom_of for now. Literals such as left_of(p1, p2) 
or top_of(p3, p2) are then added to the BK. We find 
these in a straight forward fashion by comparing the coordi-
nates of the found sub-concepts. E.g. for the top_of rela-
tion we scan if there is a sub-concept present in the 45° 
section facing upwards in the image. Finally, Aleph is used 
to generate explanations by inducing first-order logic rules.

4.4  Algorithm

Algorithm 1 shows the precise steps that Symmetric takes. 
As an input it requires the original image instance P as well 
as a trained CNN black-box B whose output B(P) we want 
to explain. The algorithm further requires test instances T, a 
convolution layer L ∈ B , the neighborhood size N, a smaller 
number of images n < N that a user can label and the num-
ber of most important images patches K. As an output, the 
algorithm gives a first-order logic hypothesis T consisting 
of logic rules.

(4)⟨x∗, y∗⟩ = argmax⟨x,y⟩[D(�(Axy(s)), Clusc)]
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Algorithm 1 SymMetric: Generate local verbal explanations for the classification result of convolutional neural
networks
Require: Original positive image instance P , Test set of images T , CNN black-box B, Convolution layer L ∈ B, neighborhood

size N , number of images to label n < N , number of most important image patches K
1: S ← N nearest positive and negative image instances t ∈ T to P with respect to the cosine similarity metric applied on

the output of the feature extractor BFE(t)
2: V ← {}
3: for all s ∈ S do
4: A ← BL(s) {Get activation output on layer L}
5: G = (gij)i=1,...,HEIGHT(A);j=1,...,WIDTH(A) ← GradCAM(s,BL(s), B(s)) {Find the importance map with Grad-

CAM}
6: patches ← Upsample(A, s) {Get original image patches by up-sampling the locations of A to the size of s}
7: vs ← {}
8: for i = 1, . . . ,HEIGHT(A); j = 1, . . . ,WIDTH(A) do
9: vs ← vs ∪ {〈Aij ,patchesij , Gij〉}
10: end for
11: V ← V ∪ {{vs}} {Add the vectors, image patches and importance information for each image s}
12: end for
13: V ∗ ← MostImportant(V,K) {For each image we build V ∗ to only contain the K most important locations}
14: Vanno ← Take(V ∗, n) {Take n images from V ∗}
15: C ← AskUserCategories
16: Lab ← LetUserLabel(Vanno, C)
17: θ ← LearnTransformation(Lab) {Supervised Metric Learning}
18: V ∗ ← apply(V ∗, θ)
19: Clus ← EM-Clustering(V ∗, |C|) {Clustering with |C| components}
20: E+ ← {}
21: E− ← {}
22: for all v ∈ V , s ∈ S do
23: v ← apply(v, θ) {Apply θ to all vectors in v}
24: v′ ← predict(v,Clus) {Predict the concepts for all vectors in v}
25: Parts ← {}
26: for all c ∈ C do
27: pc ← FindHighestCosineSim(v′, c) {Find the location of the vector with the highest cosine similarity to the sub-

concept vector of c}
28: Parts ← Parts ∪ {〈c, pc〉}
29: end for
30: Rels ← CalculateRelations(Parts)
31: if B(s) = ⊕ then
32: E+ ← E+ ∪ {〈Parts, Rels〉} {Symbolic representation of images together with background knowledge}
33: else
34: E− ← E− ∪ {〈Parts, Rels〉}
35: end if
36: end for
37: T ← Aleph(E+, E−) {Let Aleph induce a set of first-order logic rules}
38: return T

5  Conducted Experiments and Results

In the following, I discuss the conducted experiments as well 
as the results. For all of the experiments in this section I 
used a slightly altered version of the widely used VGG-16 
architecture as black-box B [31]. In particular, I changed the 
two fully-connected layers from both 4096 to 1024 and 512 
neurons and the last sigmoid layer to output 2 class estima-
tor values. The changes in the layers are due to the signifi-
cant reduction of classes from 1000 to 2. Figure 2 shows 
the altered architecture. For fine-tuning this network, I only 
keep the parameters of the first three blocks of convolution 

layers fixed. I took for L the last convolution layer in the 4th 
convolution block of B as layer to extract our feature vec-
tors since I assume sub-concepts to emerge in higher layers 
rather than lower layers that typically consist of detectors 
for low-level features (see the introductory chapter in [12]). 
The selection procedure of the best layer can become a tedi-
ous process which is not in the scope of this paper but is 
an important future work. Fong and Vedaldi [10] and Bau 
et al. [5], the work they built upon, provide a good starting 
point for finding suited selection heuristics. The training, test-
ing and experiments were run on our in-house GPU work-
station with the following specifications: 24 CPUs of type 
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AMD™ Ryzen™ Threadripper™  2920X 12-Core Processor. 
One  NVIDIA®   GeForce® RTX 2080 Ti with 11019 MiB.

As a first evaluation of how the approach generalizes par-
simonious sub-concept labeling from just a few examples to 
a larger image data set, I report results on the Kaggle Cats 
and Dogs data set published by  Microsoft® [8]. The network 
was fine-tuned on the task of discriminating between images 
of cats and dogs using a balanced data set of 16,797 cat and 
dog images. After one epoch I stopped training and received 
an accuracy of 100 percent on 7200 test images (70:30 split). 
By checking the metrics on the training and test sets (see 
Table 1), I made sure that over-fitting is no issue.

I randomly sampled N = 20 images predicted to contain a 
cat, constituting S. The images came from a separate experi-
mentation set of 1000 cat and dog images that were not part 
of the training or test set. GradCAM yielded the K = 10 most 
important image patches and corresponding feature vectors 
from L for each image in S. For n = 4 images I annotated 
the K most important image patches by hand. For this data 
set I took as categories C = {eye, ear, whiskers} . Whenever 
none of these categories was present in the patch, I did not 
consider this region in the following. After labeling, I related 

the respective feature vectors to that patches and performed 
metric learning on the vectors of these few images. I took 
LMNN as the supervised metric learning algorithm which 
yielded a transformation � for our labeled feature vectors. 
Applying this transformation to all important feature vectors 
in S leaves us with vectors in a vector space we can cluster 
according to the cosine distance metric. Using EM cluster-
ing and |C| = 3 as the number of clusters yields sub-concept 
vectors representing our categories. I then transformed all 
feature vectors at all locations of the images in S and pre-
dicted the category cluster for them. This lets us generate 
heatmaps for the images with 3 heatmaps per image for the 3 
categories. The heatmaps in Fig. 3 show the cosine similar-
ity of the feature vectors to the respective sub-concept vector 
of 6 randomly selected images not labeled by hand.

Table 2 shows the maximum of the cosine similarity to 
the respective sub-concept vector averaged over N − n = 16 
neighborhood images that were not labeled. The values are 
given for an experiment run with and without transforming 
the feature vectors using metric learning. The similarities 

Table 1  Accuracy and F1 score 
on the training and test data sets

The respective train and test 
scores closely match and indi-
cate that the degree of over-fit-
ting is negligible

Accuracy F1 score

Train data 0.9713 0.9706
Test data 1.0 1.0

Fig. 3  Exemplary images with regions of highest cosine similarity to the respective sub-concept vector. Rows from top to bottom are the sub-
concepts eye, ear, whiSkerS 

Table 2  Average of the respective image maximums of the cosine 
similarity to the sub-concept vector on previously unlabeled images

Bold values indicate that there was an improvement when using met-
ric learning when compared with the case without metric learning
The standard deviation is given in parentheses

Eye Ear Whiskers

Without metric learning 0.31 (0.10) 0.33 (0.11) 0.25 (0.06)
With metric learning 0.35 (0.12) 0.34 (0.12) 0.29 (0.07)
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calculated for the experimental setup with metric learning 
are always higher indicating a better fit to the labeled ground 
truth when compared to taking the un-transformed “raw” 
vectors from the probed network.

To illustrate the usability of the approach to recognize 
meaningful spatial relations, I subsequently present results 
for the expressive verbal explanation generation. As a sam-
ple data set I use the Picasso Faces data set we already cre-
ated in [25]. The data set is derived from the FASSEG data 
set [14] of frontal face images. The underlying task of the 
data set was altered towards a visual relational classification 
task. The faces of selected individuals in FASSEG were rid 
of facial features like eyes, nose and mouth and were given 
a similar skin texture all over the face. These “canvases” 
of faces were then used to construct either faces where the 
constellations of facial features resemble “correct” faces 
(positive class) or where the spatial structure does not ren-
der a standard face (negative class) (see Fig. 4 for examples). 
The facial features were taken from a pool of features com-
ing from the original FASSEG data set. I made sure that 
all the images contain exactly two eyes, one nose and one 
mouth. For the conducted experiment, I proceeded nearly 
identical to the experiment above with the following data 
set dependent changes: fine-tuning on a balanced data set 
of 9002 positive and negative images was stopped after 1 
episode with an accuracy of 100 percent on 998 images. 
GradCAM was fed with K = 10 and I annotated n = 4 out 
of N = 20 images with categories C = {eye, nose,mouth} . 
LMNN was used again for the supervised metric learning 
approach and the learned transformation was applied to all 
important feature vectors in the neighborhood. Learning 
an EM clustering model on these vectors and predicting 
all transformed feature vectors in the neighborhood leaves 
us with a completely labeled neighborhood. Next, I trans-
formed the images to symbolic examples with background 
knowledge (BK). I found the location of each sub-concept 

(eye, nose, mouth) on each image s ∈ S by finding the 
location of the image patch whose feature vector is most 
similar to the sub-concept vector (see Sect. 4.3). For the 
eyes who appear two times on each image we have to devi-
ate slightly from that approach. In order to get two points for 
two eyes, we do not find the closest vector in the entirety of 
the vectors that are part of the eye cluster. We rather find the 
two “super patches” that are formed by coherent patches but 
whose member patches have no neighbors from the respec-
tive other super patch. For each image, we now can write 
literals like face(s1) or not face(s2) depending on 
whether si represents a positive or negative image instance. 
We further write background knowledge for the occurrence 
of a sub-concept in an image (e.g. contains(s1, p1), 
concept(p1, eye) etc.) as well as the derived spatial 
relations between the sub-concepts (e.g. left_of(p1, 
p2), bottom_of(p2, p3)). The last step consists of 
inducing general rules from the examples and the BK. See 
Fig. 4 for the rules as well as intermediate data collected 
during the experiment.

The explanations are generalizations over the symbolic 
examples. I explicitly allowed variables to be contained in 
the rules. Both rules tell us that there has to be a nose in 
between two other sub-concepts. Substituting the variables 
by constants (in this case the sub-concepts) such that the 
resulting rule entails the original image example yields B 
to be an eye and C to be a mouth. This is on par with the 
construction of the positive examples, i.e. a normal face.

6  Discussion and Further Work

I have demonstrated that Symmetric provides users with ver-
bal explanations that go beyond visualization of important 
image parts. Parsimonious specialized labeling can be gen-
eralized by using metric learning, creating a neighborhood 

Fig. 4  First column shows the 
original images, second and 
third column the locations of 
the found sub-concepts for the 
original image and the nearest 
negative example respectively. 
Last column states the found 
rule. The common rule part 
is face(A):- contains 
(A, B), contains (A, 
C), contains (A, D), 
concept (D, nose) 
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of symbolic data around the original image instance. The 
metric learning helps locating sub-concepts on unlabeled 
data that are more similar to a given sub-concept vector with 
respect to the cosine similarity compared to an approach 
without metric learning. This can become particularly 
important in domains where labeled data is not available 
(e.g. in a specialized medical field) and practitioners want 
to receive expressive explanations with minimal additional 
effort. In the future, the claim of the helpfulness of the gen-
erated explanations needs to be further backed up with a user 
study aimed at practitioners that are working with black-box 
decision systems. Comparing performance on a particular 
task before and after being exposed to an explanation can 
demonstrate the usefulness of it. In subsequent work I also 
plan on investigating the effectiveness of this approach on 
data sets that go beyond a proof of concept.

Commenting on the potential negative societal impact of 
my work I believe the stated approach generally attempts 
to mitigate issues like the inability of auditing automated 
decision making. I aim at establishing trust that is justified 
by correctly stating the reasons for a classification decision. 
Highlighting spatial relations might be a first step towards 
a holistic auditing process, but I am aware that this is most 
likely still short of a complete answer.
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