BAMBERGER BEITRAGE
ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK
ISSN 0937-3349

Nr. 87

Analyzing the Interoperability of
WS-Security and WS-ReliableMessaging
Implementations

Johannes Schwalb and Andreas Schonberger

September 2010

FAKULTAT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITAT BAMBERG

Distributed Systems Group

Otto-Friedrich Universitat Bamberg
Feldkirchenstr. 21, 96052 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

http://www.uni-bamberg.de/pi/

Due to hardware developments, strong application needs and the overwhelming influence of the
net in almost all areas, distributed systems have become one of the most important topics for
nowadays software industry. Owing to their ever increasing importance for everyday business,
distributed systems have high requirements with respect to dependability, robustness and per-
formance. Unfortunately, distribution adds its share to the problems of developing complex
software systems. Heterogeneity in both, hardware and software, permanent changes, concur-
rency, distribution of components and the need for inter-operability between different systems
complicate matters. Moreover, new technical aspects like resource management, load balancing
and guaranteeing consistent operation in the presence of partial failures and deadlocks put an
additional burden onto the developer.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the realization of robust and easy-to-use software for complex
systems in general while putting a focus on the problems and issues regarding distributed sy-
stems on all levels. Our current research activities are focussed on different aspects centered
around that theme:

e Reliable and inter-operable Service-oriented Architectures: Development of design me-
thods, languages, tools and middle-ware to ease the development of SOAs with an em-
phasis on provable correct systems that allow for early design-evaluation due to rigorous
development methods. Additionally, we work on approaches and standards to provide
truly inter-operable platforms for SOAs.

e Implementation of Business Processes and Business-to-Business-Integration (B2Bi): Star-
ting from requirements for successful B2Bi development processes, languages and systems,
we investigate the practicability and inter-operability of different approaches and plat-
forms for the design and implementation of business processes with a focus on combining
processes from different business partners.

o Quality-of-Service (QoS) Aspects for SOA and B2Bi: QoS aspects, especially reliability
and security, are indispensable when putting distributed systems into practical use. We
work on methods that allow for a seamless observance of QoS aspects during the entire de-
velopment process from high-level business processes down to implementation platforms.

o Agent and Multi-Agent (MAS) Technology: Development of new approaches to use Multi-
Agent-Systems for designing, organizing and optimizing complex systems ranging from
service management and SOA to electronic markets and virtual enterprises.

e Visual Programming- and Design-Languages: The goal of this long-term effort is the uti-
lization of visual metaphors and languages as well as visualization techniques to make
design- and programming languages more understandable and, hence, more easy-to-use.

More information about our work, i.e., projects, papers and software, is available at our home-
page (see above). If you have any questions or suggestions regarding this report or our work in
general, don’t hesitate to contact me at guido.wirtz@uni-bamberg.de

Guido Wirtz

Bamberg, January 2010

Analyzing the Interoperability of WS-Security and
WS-ReliableMessaging Implementations

Johannes Schwalb and Andreas Schonberger

Lehrstuhl fiir Praktische Informatik, Fakultdt WIAI

Abstract Since their invention as lightweight integration technology about a decade ago,
Web Services have matured significantly. Today, major middleware solution vendors as well
as industry communities like RosettaNet are propagating Web services even for exchanging
business-critical data and implementing inter-organizational business processes. Core enablers
for using Web services in this domain are stateful interactions using the Web Services Business
Process Execution Language (WS-BPEL) as well as advanced communication features like se-
curity and reliability using the WS-Security and WS-ReliableMessaging standard specifications.
However, advanced communication features come at the price of complexity which challenges
interoperability across different Web services stack implementations. Interoperability, in turn,
is a predominant requirement for an integration technology such as Web services, in particular
if inter-organizational business processes are supposed to be implemented on top of that tech-
nology.

This paper approaches the problem of testing the interoperability of the so-called WS-* stan-
dards, advanced Web services communication features that are typically defined as SOAP
extensions and configured using WS-Policy. Being essential to business process integration,
WS-Security and WS-ReliableMessaging are selected as representatives of this group and the
two major Java-based Web services stack implementations Metro and Axis2 are tested for in-
teroperability. We operationalize the notion of interoperability for testing WS-* standards,
suppose an approach for deriving test cases from WS-* specifications as well as a method for
performing the test cases, and we provide a comprehensive interoperability review of the two
selected Web services stack implementations.

Keywords WS-Security, WS-ReliableMessaging, Quality-of-Service, Interoperability, Web
Services, Testing

Contents
1 Introduction

2 Fundamentals

2.1 Extensible Markup Language 0.
2.2 Basic Web Services Technologies
2.2.1 Web Services Description Language (WSDL)
222 SOAP . .
2.2.3 Business Process Execution Language (WS-BPEL)
2.3 Basic XML Security Technologies
2.3.1 XML Signatureo
2.3.2 XML Encryption
2.4 WS-* Standards
24.1 WS-Addressing
2.4.2 WS8S-ReliableMessaging
243 WS-Security
244 WS-Policy

3 Platforms
3.1 IBM WebSphere Platform o

3.2 Sun Microsystems GlassFish Platform

4 Test Method

4.1 Isolated Function Tests
4.2 Combined Function Tests
4.3 Practicability Test: Secure WS-ReliableMessaging Scenario

5 Test Preparation

5.1 Determination of the Features under Test

IT

5.2 Setup of the Test Environment 49
6 Test Results 51
6.1 Isolated Function Tests 52
6.1.1 WS-ReliableMessaging L 52
6.1.2 WS-Security Protection Assertions 53
6.1.3 WS-Security Token Assertions 54
6.1.4 WS-Security Binding Assertions L. 58
6.1.5 WS-Security Supporting Token Assertions 60

6.1.6 WS-Security Simple Object Access Protocol (SOAP) Message Security
and WS-Trust Options 61
6.2 Combined Function Tests 62
6.3 Secure WS-ReliableMessaging Scenario 63
6.3.1 Policy Configuration 66
6.3.2 Test Execution & Test Result 71
7 Related Work 73
8 Conclusion & Future Work 75
Bibliography 78
A Complete List of the Features and Settings under Test 84
B Complete List of the Test Cases 91
C Complete List of Test Results 96

D List of previous University of Bamberg reports 101

I1I

List of Figures

1 The Web services stack (WS-Stack), simplified illustration 5
2 The WS-ReliableMessaging Protocol, following the Figure at [OAS09b, page 14] 17

3 Comparison of the scopes of security features of WS-Security and HT'TPS, adapted

from [Bro03, page 2] 18
4 WS-Security elements and structure inside a SOAP message 19
5 The WS-Trust model, following [OAS09e, page 12] 20
6 WS-SecurityPolicy elements and structure inside a WSDL document 27
7 Relationship between bindings, policy sets, and policy types in the WAS envi-

ronment (Web service provider) o 32
8 The test setup L 37

9 The four test runs of each test case 39

vV

List of Tables

10

11

The various types of Security Tokens defined by WS-Security Policy

Features and settings of the wsrmp:RMAssertion (WS-RM Policy) element to be
tested

Test plan for the features of the wsrmp:RMAssertion (WS-RM Policy) element .
Test results of the basic test cases L.
Test results of the WS-ReliableMessaging test group
Excerpt of the results of the WS-Security Protection Assertions test group

Excerpt of the results of the WS-Security Token Assertions test group
Excerpt of the results of the WS-Security Security Bindings test group

Message protection requirements and keys required for protection realization
defined by the scenario definitions

Message protection and keys used for protection realization on the Sun GlassFish
Platform o

Message protection and keys used for protection realization on the IBM Web-
Sphere Platform

List of Listings

10
11

12

13
14

15

Example of a SOAP message
Structure of an XML Signature elemento
Structure of an XML Encryption elemento
Structure of a WS-Policy
Example of a WS-Policy expressing the mandatory use of WS-Addressing
Example of a WS-Policy expressing the optional use of WS-Addressing
Structure of a wsrmp:RMAssertion (WS-RM Policy) element
Structure of a sp:SupportingTokens element,
Structure of a wsrmp:RMAssertion (WS-RM Policy) element
Additional sp:SignedElements assertion to sign the wsu:Timestamp
The WS-Policy for the Secure WS-ReliableMessaging Scenario

The sp:BootstrapPolicy of the sp:SecureConversationToken in the Secure
WS-ReliableMessaging Scenario

The WS-SecurityPolicy protection assertions for the input messages
The WS-SecurityPolicy protection assertions for the output messages

The additional WS-SecurityPolicy protection assertions of the IBM WebSphere
Platform o

VI

Notational Conventions

This work uses the following syntax within listings that define the structure of XML elements:

e Characters are appended to elements and attributes to indicate their cardinality. An
element or attribute without one of the following characters occurs exactly once.

— “?” denotes zero or one occurrence
— “4” denotes one or more occurrences

— “x” denotes zero or more occurrences

Wy»
o “

indicates a choice between alternatives

e Items in brackets (“(” and “)”) are treated as group with respect to cardinality or choice.

Listings using this syntax, are marked as “Structure of ...”. Other XML code, such as XML
message examples, does not make use of this syntax.

The syntax defined above follows to the notational conventions of OASIS and W3C documents.

VII

Namespaces

The Table below lists the XML namespaces that are used in this work. The choice of any
namespace prefix is arbitrary and not semantically significant, however the namespace prefixes
defined below are used within the scope of this work.

’ Prefix \ Namespace \ Specification ‘
bpel http://docs.oasis-open.org/wsbpel/2.0/ WS-BPEL
process/executable
ds http://www.w3.0org/2000/09/xmldsig# XML Signature
env http://www.w3.0org/2003/05/soap-envelope SOAP
http://docs.oasis-open.org/ws-sx/ . .
°P ws—-securitypolicy/200702 Wi-SecurityPolicy
wsa http://www.w3.0org/2005/08/addressing WS-Addressing
wsam http://www.w3.0rg/2007/05/addressing/metadata WS-Addressing
use http://docs.oasis-open.org/ws-sx/ WS-Secure-
ws-secureconversation/200512 Conversation
wsdl http://schemas.xmlsoap.org/wsdl WSDL
-Reliable-
wsIm http://docs.oasis-open.org/ws-rx/wsrm/200702 WS Re.1ab ¢
Messaging
wsrmp | http://docs.oasis-open.org/ws-rx/wsrmp/200702 WS-RM Policy
WSp http://www.w3.org/ns/ws-policy WS-Policy
http://docs.oasis-open.org/wss/2004/01/ .
ss 0asis-200401-wss-wssecurity-secext-1.0.xsd W-Security
wst http://docs.oasis-open.org/ws-sx/ws-trust/200512 | WS-Trust

wstl4 | http://docs.oasis-open.org/ws-sx/ws-trust/200802 | WS-Trust
http://docs.oasis-open.org/wss/2004/01/ .
b 0asis-200401-wss-wssecurity-utility-1.0.xsd Wi-Security

xenc http://www.w3.org/2001/04/xmlenc# XML Encryption

http://docs.oasis-open.org/wsbpel/2.0/
process/executable
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2003/05/soap-envelope
http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702
http://www.w3.org/2005/08/addressing
http://www.w3.org/2007/05/addressing/metadata
http://docs.oasis-open.org/ws-sx/
ws-secureconversation/200512
http://schemas.xmlsoap.org/wsdl
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://www.w3.org/ns/ws-policy
http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://docs.oasis-open.org/ws-sx/ws-trust/200802
http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.w3.org/2001/04/xmlenc#

VIII

List of Acronyms

API Application Programming Interface

B2B business-to-business

B2Bi business-to-business integration

BC Binding Component (JBI)

BPEL Business Process Exceution Language, short for WS-BPEL

BPEL4WS Business Process Execution Language for Web services, now WS-BPEL

C14N Canonicalization

CA certification authority

EAI enterprise application integration
ebBP ebXML Business Process

ebXML Electronic Business using XML

EJB Enterprise JavaBeans
ESB Enterprise Service Bus
FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure (HTTP over SSL)
IDE Integrated Development Environment

IuT implementation under test

JAXB Java Architecture for XML Binding

JAX-RPC Java API for XML-Based RPC

JAX-WS Java API for XML-Based Web Services

JBI Java Business Integration

J2EE Java Platform 2, Enterprise Edition, now JEE

JDK Java Development Kit

JEE Java Platform, Enterprise Edition, also Java EE, previously J2EE

JMS Java Message Service

JRE
JSP
J2SE
JSE
JVM
LTPA
MCC
MEP
MIME
MTOM
OASIS
OSGi
OSOA
PC
QName

RAD
REL
RMI
RPC
RST
RSTC
RSTR
RSTRC
SAML
SCA
SCT
SDO

Java Runtime Environment

Java Server Pages

Java Platform 2, Standard Edition, now JSE

Java Platform, Standard Edition

Java Virtual Machine

Lightweight Third-Party Authentication

Message Control and Choreography (RosettaNet)

message exchange pattern

Multipurpose Internet Mail Extensions

SOAP Message Transmission Optimization Mechanism
Organization for the Advancement of Structured Information Standards
Open Services Gateway initiative (Organization), meaning dropped
Open Service Oriented Architecture (Organization)

personal computer

qualified name

quality of service

IBM Rational Application Developer for WebSphere Software
Rights Expression Language

Remote Method Invocation

remote procedure call

wst:RequestSecurityToken element (WS-Trust)
wst:RequestSecurityTokenCollection element (WS-Trust)
wst:RequestSecurityTokenResponse element (WS-Trust)
wst:RequestSecurityTokenResponseCollection element (WS-Trust)
Security Assertion Markup Language

Service Component Architecture

Security Context Token (WS-SecureConversation)

Service Data Objects

IX

SE Service Engine (JBI)
SHA Secure Hash Algorithm
SMTP Simple Mail Transfer Protocol

SOA service-oriented architecture

SOAP Simple Object Access Protocol, meaning dropped since Version 1.2
SSL Secure Sockets Layer

StAX Streaming API for XML

STR Security Token reference

STS Security Token Service (WS-Trust)

SwA SOAP with Attachment

TCP Transmission Control Protocol

TLS Transport Layer Security

UDDI Universal Description, Discovery and Integration
URI Uniform Resource Identifier

W3C World Wide Web Consortium (Organization)
WAS IBM WebSphere Application Server

WESB IBM WebSphere Enterprise Service Bus
WID IBM WebSphere Integration Developer
WPS IBM WebSphere Process Server

WSDL Web Services Description Language
WSIT Web Services Interoperability Technologies
WS-BPEL Web Services Business Process Execution Language, previously BPEL4AWS
WS-1 Web Services Interoperability Organization
WS-Stack Web services stack

XML Extensible Markup Language

XMLNS XML namespace

XPath XML Path Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

1 Introduction

Nowadays, an increasing amount of software is designed in a distributed way. Service-oriented
architecture (SOA) is one of the most important architecture paradigm in distributed systems.
Today, there are various definitions of the term “SOA”. However, nearly every definition refers
to widely accepted central points of service-orientation. These are:

e distributed services as units of logic
e loose coupling of services

e composability of services

On the basis of these central points every author extends his own definition of SOA. A widely
accepted definition of the term SOA is given by the Organization for the Advancement of Struc-
tured Information Standards (OASIS)! in the Reference Model for Service Oriented Architecture
1.0: SOA is “[..] a paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains.” [OAS06b, page 8, lines 128/129]

Other definitions include additional points, but all definitions identify “distributed capabilities”
(better known as services) as essential part of a SOA. The central idea of a SOA is to decompose
a large and complex problem into a collection of smaller and well-understood pieces, the so-
called services. The solutions of these subproblems are then assembled to the solution of the
complex problem.

A service in terms of service-orientation is an independent software program which offers a
certain functionality, requires a specified input and returns a result in a defined format as output.
This information is published in a so-called service contract, a published meta information
document about the service. This contract can also contain additional information about quality
of service (QoS) features, behaviors and limitations of the service.? The service contract is a
formal contract and is the only part of the service that is visible to potential service requesters,
thus, the contract abstracts from the underlying logic.® Due to the fact that services may vary
in their complexity from very simple functions up to complex actions, a service needs to be
composable from other services in order to sustain the idea of simplicity.

However, the SOA concept is still a theoretical concept. Following only the SOA principles listed
above, every company and every software architect would implement their own SOA, but these
SOAs would not tend to be interoperable. Therefore, standards are needed to implement a SOA
across the boundaries of companies. The World Wide Web Consortium (W3C)* provides Web
services [W3C04a] as one possible realization of SOA. The interface of a Web service is defined
by the Web Services Description Language (WSDL) [W3C01], an Extensible Markup Language

"http://www.oasis-open.org

2Thomas Erl, Web Service Contract Design and Versioning for SOA, page 35, Prentice Hall, Upper Saddle
River, New Jersey, USA, 2008.

3Thomas Erl, Service-Oriented Architecture - Concepts, Technology, and Design, pages 298 - 301, Prentice
Hall, Upper Saddle River, New Jersey, USA, 2005.

‘http://www.w3c.org

http://www.oasis-open.org
http://www.w3c.org

2 1 INTRODUCTION

(XML)-based solution to write service contracts for Web services. The WSDL interface of a Web
service contains all the information needed to invoke the service [FF03]. Most programming
languages, development tools, and middleware solutions already support the WSDL as interface
language for Web services [Kre03]. By decoupling implementation and interface, standardizing
the interface description, and providing the interface over the Internet or an intranet, the Web
services technology is ready to provide services in a SOA.

In order to build a SOA, some aspects are still missing. Due to the fact that Web services are
often seen “as the foundation of a new generation of business-to-business (B2B) and enterprise
application integration (EAI) architectures” [Kre03|, the Web services technology needs to be
extended. Web services are not able to solely guarantee all features of a SOA. Therefore, e.g.,
the Web Services Business Process Execution Language (WS-BPEL) [OAS07] provides func-
tionality to create automated business processes (so-called workflows) that orchestrate Web
services and again offer this workflow as a Web service.> Another important standard extend-
ing the Web services technology is the Simple Object Access Protocol (SOAP)S [W3C07b], a
transport protocol used to transmit XML messages between Web services. Besides the trans-
mitted information, SOAP may contain extensions to the message format decoupled from the
application data, e.g., functionality for security, reliability, or object references.” Due to its
independence of operating systems and programming environments, SOAP is the de facto stan-
dard messaging protocol for Web services.® Thomas Erl states that “Contemporary SOA is
intrinsically reliant on Web services - so much so that Web services concepts and technology
used to actualize service-orientation have influenced and contributed to a number of common
SOA characteristics [...]. An understanding of SOA begins with a close look at the overall
framework that has been established by the [...] Web services extensions.”

WSDL, SOAP and WS-BPEL extend Web services to a framework of software, supporting in-
teroperable and fully automatic B2B interactions across the boundaries of companies. However,
this is insufficient for meeting the business requirements for the transmission of critical business
documents. QoS properties like integrity, reliability, interoperability, and confidentiality of the
transmitted messages [OMBO7] are needed. For example, a legal contract sent from company A
to company B has to be protected against disclosure of information to unauthorized individuals
or systems, the reliability of message delivery must be fulfilled, and the non-repudiation of the
exchanged documents may be required [Ros10, pages 20/21] [OASO6a, pages 71-73].

These requirements can be partially met with the help of secured transport protocols (e.g.,
Transport Layer Security (TLS)/Secure Sockets Layer (SSL)), but these security mechanisms
only provide point-to-point protection. Since intermediaries are designated to be used in Web
services communication, a secure and reliable point-to-point connection is insufficient to avoid
message disclosure or message loss. Therefore, mechanisms guaranteeing QoS features on the

5Michael P. Papazoglu, Web Services: Principles and Technology, pages 307 - 369, Pearson Education,
Harlow, England, 2008

6Meaning of the acronym dropped since Version 1.2, since then just SOAP

"Michael P. Papazoglu, Web Services: Principles and Technology, pages 128/129, Pearson Education, Harlow,
England, 2008

8Michael P. Papazoglu, Web Services: Principles and Technology, page 120, Pearson Education, Harlow,
England, 2008

9Thomas Erl, Service-Oriented Architecture - Concepts, Technology, and Design, page 110, Prentice Hall,
Upper Saddle River, New Jersey, USA, 2005.

messaging level (end-to-end) are required [Bro03].

For this reason, a set of open standards, the so-called WS-*! frameworks, has been developed.
These standards bring QoS aspects into the Web services world. The inclusion of QoS features in
Web services shows a certain kind of maturity transformation: Web services have grown from
an experimental technology to an operable business-to-business integration (B2Bi) solution
[Lud03].

The requirement for the use of WS-* standards can be included in the WSDL document using
the WS-Policy framework [W3CO07i]. Typically, most Web services platforms already include
an implementation of the WS-* standards, the so-called Web services stack (WS-Stack). Thus,
a Web services developer can rely on these implementations in order to provide QoS aspects
for Web services.

[Lea04] states that “Web services have no value if they’re not interoperable, and interoperability
is based on standards compliance.” The interoperability of Web services using different plat-
forms, such as the Java Platform, Enterprise Edition (JEE) or the Microsoft .NET Framework,
has already been discussed in scientific publications, e.g., [SV09], but the interoperability of
complete WS-Stack implementations is still a problem. There are different sources for inter-
operability problems, e.g., every implementor of a standard has his own interpretation of the
standard, the implementations are based on different versions of the standard, or the standards
itself are ambiguous. Nonetheless, the interoperability of WS-* implementations has to be
guaranteed in order to meet B2Bi requirements.

This problem has already been recognized by science and industry. For example, the Web
Services Interoperability Organization (WS-I)!! tries to solve this problem by publishing best
practices for the “Web of services”?. The WS-I is “an open industry organization chartered to
establish Best Practices for Web services interoperability, for selected groups of Web services
standards, across platforms, operating systems and programming languages™?. However, the
WS-I only provides best practices for Web services interoperability and does not provide in-
teroperability tests of different WS-* framework implementations. Hence, an interoperability
analysis of different WS-* frameworks is still necessary in spite of accordance with one of the
WS-I profiles.

The WS-I defines, among other things, a “Reliable Secure Profile™* which covers one of the
most important Web services QoS scenarios, the so-called Secure WS-ReliableMessaging Sce-
nario [BMPV06] [GHBO05] [WS-08|. This scenario combines features of WS-ReliableMessaging
[OAS09b] and WS-Security [OAS06f] (including the WS-Trust [OAS09e] and WS-SecureConvers
ation [OAS09¢c| sub-standards), which provide functionalities to guarantee a reliable and secure
transmission of SOAP messages in a Web services environment. This scenario covers typical

Othe term WS-* is a commonly used abbreviation for the set of Web services standards beginning with the
prefix “WS-”

Uhttp://www.ws-1i.org

12€4Web of Services refers to message-based design frequently found on the Web and in enterprise software.
The Web of Services is based on technologies such as HTTP, XML, SOAP, WSDL, SPARQL, and others.”
Taken from http://www.w3.org/standards/webofservices

13Taken from the “WS-I Overview Data Sheet”

4Documents available at http://ws-1i.org/deliverables/workinggroup.aspx?wg=reliablesecure

http://www.ws-i.org
http://www.w3.org/standards/webofservices
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

4 1 INTRODUCTION

QoS requirements in B2Bi for the transmission of business documents, as defined in the Roset-
taNet!® Message Control and Choreography (MCC) - Profile-Web Services [Ros10, pages 20/21]
and the OASIS ebXML Business Process (ebBP) [OAS06a, pages 71-73] specifications.

Therefore, this work provides an interoperability analysis of WS-Security and WS-ReliableMes
saging implementations in different WS-BPEL engines to answer the question: “Is it possible
to establish a secure and reliable connection in a Web services based SOA solution using WS-
Security and WS-ReliableMessaging based on different Web services stack (WS-Stack) imple-
mentations?”

A scientific approach to answer these questions requires the definition of the terms interop-
erability and compatibility in the context of Web services protocols or, more general, in the
context of communication protocols. The main target of this work is to provide a compatibility
analysis which “refers to assessing if two services, characterized by specific protocols, can inter-
operate, and which conversations are and are not possible.” [BCT06] This definition already
includes the term interoperate that expresses the ability of software systems to exchange infor-
mation through compliance with technical (interoperability) specifications'®. Thus, this work
determines whether two Web services frameworks are interoperable and which conversations are
possible between those frameworks. For this reason, the following approach has been chosen.

First of all, the fundamental Web services and XML technologies in the context this work are
briefly introduced in section 2. Section 3 gives a short overview of the test environment, con-
sisting of the hardware and the selected test platforms (IBM WebSphere and Sun GlassFish).
The main contribution of this work is located in sections 4 to 6. At first, a test method for
WS-* interoperability testing is developed in section 4. This method defines the approach to the
tests, i.e., the test setup, the testing sequence, the general setting, etc. Besides simple isolated
function tests, the test method also provides test cases including multiple WS-Security /WS-
ReliableMessaging features and a practical use case, covering the practicability of WS-* frame-
works in a typical B2Bi scenario. Section 5 provides an overview of the necessary preparatory
measures for the test execution, whereas section 6 presents the design and execution of the test
cases. Publications related to this work are presented and discussed in section 7. Section 8
concludes this work by giving a short summary of the results obtained and an outlook to future
work.

YPhttp://www.rosettanet.org
16Following the definition of http://en.wiktionary.org/wiki/interoperability

http://www.rosettanet.org
http://en.wiktionary.org/wiki/interoperability

2 Fundamentals

This section provides an overview of the fundamental SOA technologies that are employed in
this work. This is necessary, since the Web services technology has evolved from a very simple
technology to a complex stack of technologies (see figure 1 for a simplified illustration of the
WS-Stack, the figure does not claim to be complete with regard to concrete protocols).

XML

Business Processes

WS-BPEL

Quality of Service Transactions Security

Reliable Messaging WS-SecureConv.
WS-AT WS-BA

WS-Trust

WS-
ReliableMessaging WS-Coordination WS-Security

Description : WS-Reliable XML Security
WS-Security .

Policy - .glng

WSDL Policy XML Encryption

WS-Policy (- Attachment)

Messaging XML Signature
WS-Addressing

TCP/IP

Figure 1: The Web services stack (WS-Stack), simplified illustration

The Web services technology stack (see Figure 1) is based on two enabling technologies: Trans-
port protocols, on the one hand, and Extensible Markup Language (XML), on the other hand.
Although SOAP is the standard messaging protocol for Web services, it requires an underly-
ing transport protocol for message delivery, such as Simple Mail Transfer Protocol (SMTP),
Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), or Transmission Control
Protocol (TCP). SOAP and any other Web services technology are based on XML. WSDL and
WS-Policy describe the functional and non-functional capabilities of a Web service. By defin-
ing a WS-Policy assertion in a WSDL document QoS aspects (e.g., WS-ReliableMessaging for
reliable message delivery, WS-Security for message security, WS-Coordination for distributed
transaction support) can be guaranteed for Web services invocations. Web services with and
without QoS support can be orchestrated using the Web Services Business Process Execution

6 2 FUNDAMENTALS

Language (WS-BPEL), which provides this orchestration as a Web service (including a WSDL
interface) for invocation in turn.

The further structure of this section is as follows: At first, a collection of references provides an
introduction to XML as basic technology of all SOA technologies in section 2.1. Afterwards,
the core service standards for message transportation (SOAP), service description (WSDL),
and service composition (WS-BPEL) are considered in section 2.2. Section 2.3 presents a short
introduction to XML Signature and XML Encryption as XML Security technologies. Finally,
section 2.4 presents the most important WS-* standards in the context of this work.

2.1 Extensible Markup Language

As already mentioned, the Extensible Markup Language (XML) is a basic technology for the
Web services technology stack. XML is a W3C Recommendation of a formal, human-readable
language for straightforward use over the Internet structuring data in a tree format. This tree
structure consists of nodes which are, i.a., elements or attributes of these elements (attributes
and elements form the so-called markup vocabulary) [W3CO08a].

The XML standard restricts the structure of an XML document by defining simple well-
formedness rules. However, more expressive means to define syntactic validity are needed in
many situations. The XML Schema Definition (XSD) [W3C04b] [W3C04c] [W3C04d] has been
developed for this purpose: it defines a language for XML data type definitions, XML structure
descriptions, and constraints to the contents of an XML document. Thus, XSD adapts the
markup vocabulary of XML to define generally intelligible XML documents and enables the
B2Bi use of XML with XSD-defined schemas.

The markup vocabulary of an XML document may be defined and used by multiple software
modules utilizing the concept of XML namespace (XMLNS). A namespace is identified by
an Uniform Resource Identifier (URI). Qualified Names (QNames) are URI references used
to identify elements and attributes within XML documents instead of namespace definitions
[W3C09].

Based on these core specifications of XML, many other specifications have been developed. One
of these specifications is the XML Path Language (XPath) specification. The concept of this
language is analogous to that of the QNames, as both are employed to identify message parts.

In contrast to QNames, the XML Path Language utilizes the tree structure for selecting nodes
from an XML document [W3CO0Tj].

For a detailed introduction to the technologies mentioned in this section consult the correspond-
ing standards.

2.2 Basic Web Services Technologies 7

2.2 Basic Web Services Technologies

Based on XML, many languages, standards, and recommendations in the SOA environment
have been developed. For the majority of SOA authors, the primary set of Web services stan-
dards consists of WSDL for service description, SOAP as a transport protocol for Web services
XML messages, and UDDI for service publication and discovery. In addition to these three
standards, WS-BPEL, as Web services composition language, is a fundamental prerequisite for
this work. This section successively introduces WSDL, SOAP, and WS-BPEL as basic Web

services technologies'”.

2.2.1 Web Services Description Language (WSDL)

As already discussed, a service in a SOA needs a service contract, which describes the (non-
)functional requirements and capabilities of a service. The service contract must be written in a
generally accepted and machine-readable description language. The XML meets most of these
requirements, employing the XSD language to define the structure of the exchanged messages.
However, this is not sufficient to describe all aspects for service invocation. Web services as a
service realization employ the Web Services Description Language (WSDL) [W3C01] for this
purpose. Although WSDL version 2.0 [W3C07f] [W3C07¢] [W3C07g] is already available, most
platforms primarily support WSDL version 1.1, which is therefore introduced below.

WSDL is an XML-based description language to define the structure of the messages the service
sends and accepts, to describe what the service does, to specify how the service can be invoked,
and to publish where the service can be accessed.

WSDL does not define a distinct vocabulary for the message structure, but uses the XSD stan-
dard. The wsdl:types tag can contain several XSD-conform definitions of data types as well
as a reference to an external XSD document. Using these type definitions, the concrete mes-
sages of a service are described in the wsdl:message tag. A wsdl:message consists of several
message parts, each wsdl:part element corresponds to an XSD type or an XSD element. A
WSDL document can contain several wsdl:message tags, since more than one operation may
be defined within a document. These message types are used to describe the Web service inter-
face, the so-called wsdl:portType element, which envelops a set of operations, each identified
by an wsdl:operation tag. An wsdl:operation is defined by its wsdl:input, wsdl:output,
and wsdl:fault messages, which employ the wsdl:message definitions. WSDL intends four
message exchange patterns (MEPs) for an operation. They are: one-way, request-response,
solicit-response, and notification. Whereas the service acts as receiver in the first two cases,
the latter two send a message to a receiver.

Up to this point the functional capabilities of a Web service are described, a Web service con-
sumer now has information about the messages and operations provided by the service. Thus,

17Although Universal Description, Discovery and Integration (UDDI) definitely belongs to the set of core
service standards it is not used in the scope of this work. Therefore, I desist from introducing UDDI. Consider the
UDDI standard [OAS02] or Michael P. Papazoglu, Web Services: Principles and Technology, Pearson Education,
Harlow, England, 2008, for a detailed introduction to UDDI.

8 2 FUNDAMENTALS

the interface description of the service is complete, but information about which concrete ser-
vice implementation is bound to the interface is still missing. Therefore, WSDL binds the
abstract information in the interface to a concrete implementation using the wsdl:binding
and the wsdl:service element. A wsdl:binding specifies concrete transport protocols for the
wsdl:portType, the wsdl:operation, and the transmission of the wsdl:input, wsdl:output,
and wsdl:fault messages. Each possible Web services transportation protocol, therefore, de-
fines its own binding with its own namespace, e.g., the wsdl:binding for SOAP has the XMLNS
http://schemas.xmlsoap.org/wsdl/soap/ for the WSDL 1.1. The wsdl:service element
binds the Web service to an accessible location in a network. To realize this, the wsdl:service
element contains one or more wsdl:port elements, which represents an endpoint realizing an
interface. A wsdl:port, therefore, references a wsdl:binding.

Thus, WSDL proposes an incremental approach to describe a Web service. At first, the interface
(wsdl:portType) with its operations is defined. Afterwards, concrete protocols are bound to
the operations (wsdl:binding), and a concrete network address for the endpoint is specified
(wsdl:port).

The most common transport protocol in Web services environments is SOAP, which is presented
in section 2.2.2.

2.2.2 SOAP

SOAP [W3C07a] [W3CO07b] [W3C07c| originally stood for Simple Object Access Protocol. How-
ever, the meaning of this acronym has been canceled with SOAP version 1.2 so that there is
currently no meaning behind this acronym. In any case, the SOAP standard defines an XML
based message format that is not bound to a concrete network transport protocol. Therefore,
a SOAP message must be embedded in a transport protocol, such as the well-known Internet
protocols HTTP, SMTP, or TCP, but also transport protocols like Remote Method Invoca-
tion (RMI) or Java Message Service (JMS).

SOAP is designed as a simple, stateless, one-way message exchange protocol between a SOAP
sender and a SOAP receiver, whereas the SOAP W3C recommendation differentiates between
intermediaries and ultimate recipients (sender, recipients, and intermediaries are refered to as
SOAP nodes). For each message transmission between a SOAP sender and a SOAP receiver (the
so-called hop) the SOAP message may be bound to an other transport protocol. It is hence
possible that an initial sender sends a SOAP message to intermediary A via HTTP which
forwards this SOAP message to intermediary B using the TCP. In this case, the ultimate
recipient may receive the SOAP message bound to a JMS message.

But this simple one-way SOAP MEP is only the basic scenario. It is also possible to establish
more complex interaction patterns using application logic behind the SOAP message. In this
way, SOAP is able to realize MEPs from simple request /response transmissions up to multiple,
conversational exchanges. The SOAP W3C recommendation does not provide any specific
communication protocols, so that the concrete realization of those message exchanges can be
developed depending on the type of use.

2.2 Basic Web Services Technologies 9

In contrast to that, the structure of a SOAP message is independent of concrete usage. Each
SOAP message is an XML document with a mandatory root element, the so-called SOAP
env:Envelope. This envelope contains two elements defined by SOAP: the optional SOAP
env:Header and the obligatory SOAP env:Body.

The SOAP env:Header element can contain several namespace qualified header blocks, each
encapsulating meta-information about the message, such as routing information, security exten-
sions, references, etc. The W3C recommendation for the SOAP does not define any limitations
about the content of a header element, except that header blocks must not carry payload in-
formation. Each header block may include several attributes defined in the SOAP namespace,
i.a., the env:mustUnderstand attribute, which is a boolean attribute to indicate whether the
processing of the corresponding header block is optional or not. If this attribute has the value
true (the value “1” is also possible, but not recommended), each SOAP receiver, even interme-
diaries, must process the associated header block. In case the header block cannot be processed
by the recipient, a fault message is returned to the SOAP sender.

Whereas the optional SOAP env:Header contains meta-information about the payload, the
mandatory SOAP env:Body is intended to carry the payload. The payload consists of an arbi-
trary number of body entries, each namespace qualified. One possible body entry is a SOAP
env:Fault. If a SOAP message encapsulates a fault, it must not contain any other payload.
Listing 1 shows an exemplary SOAP message.

1 <env:Envelope>

2 <env:Header>

3 <!-- SOAP message header -->
4 </env:Header>

5 <env:Body>

6 <!-- SOAP message body -->

7 </env:Body>

8 </env:Envelope>

Listing 1: Example of a SOAP message

In practical use, new requirements concerning the message delivery arise. In order to meet
these requirements, extensions to the SOAP are employed. One extension is the SOAP with
Attachment (SwA) [W3C00] which allows the attachment of different kinds of data to a SOAP
message. In this way, SOAP messages are no more limited to XML representations of data, but
can include, e.g., engineering drawing, legal documents, or images.

The versatility of SOAP predestines it for the use in strongly heterogeneous environments. The
modular, simple, and extensible structure of SOAP enable the flexible use in B2Bi. Due to the
wide spread of the HT'TP as standard Internet protocol, “SOAP over HT'TP” is established as
de facto standard transportation protocol in SOAs.

2.2.3 Business Process Execution Language (WS-BPEL)

SOAP and WSDL provide the infrastructure for a Web services call. However, these standards
do not define how services can be composed in order to execute business processes or, to

10 2 FUNDAMENTALS

be more precise, workflows automatically. At this point, the Web Services Business Process
Execution Language (WS-BPEL), often just called BPEL, comes into play. WS-BPEL is an
XML-based [OAS07] flow language for specifying interaction protocols (the so-called WS-BPEL
processes) by orchestrating Web services. Instead of focusing on functionality for application
logic, WS-BPEL concentrates on reusing existing application logic available as services. In order
to deal with the heterogeneity of distributed services, WS-BPEL employs WSDL for abstracting
from service implementation details. Since complex workflows may include hundreds of service
calls and control constructs, WS-BPEL provides a simple strategy to reduce the complexity of
a WS-BPEL process: each WS-BPEL process has its own WSDL interface and is, therefore,
also accessible by another WS-BPEL process or a process consumer as a service.

A WS-BPEL process defines a so-called bpel:partnerLink which is a WSDL interface for
process consumers, via which a SOAP message arrives in the process. The incoming message
is processed in a bpel:receive block. bpel:assign blocks are used to assign incoming val-
ues to process variables (bpel:variables with one or more bpel:variable sub-elements) and
for variable transformations. The bpel:invoke element is employed to call external Web ser-
vices (also called bpel:partnerLink) using the bpel:variables. Another bpel:assign block
assigns the process variables to the result variable of the whole process that is sent back to
the process initiator using the bpel:reply block. This short introduction to the very basic
constructs of the WS-BPEL represents a basic WS-BPEL process. However, the WS-BPEL
provides constructs for more sophisticated processes, e.g., handlers for events and faults, while
loops, switches, or sequences [OASOT].

These constructs allow for the design of more complex business processes as WS-BPEL pro-
cesses. For a detailed introduction to WS-BPEL refer to the specification [OAS07] or the
relevant literature!s.

2.3 Basic XML Security Technologies

Due to the fact that many business processes are based on written, signed documents, any
electronical business (e-business) enhancement, dealing with electronical documents, has to
guarantee the same qualities that are commonly seen in written documents. Traditional busi-
ness correspondence employs signatures and the secrecy of the post to ensure integrity, confi-
dentiality, and authenticity of the corresponding parties. Because of falsification of documents
and forging of signatures, these qualities cannot be guaranteed by written documents. However,
these qualities also have to be guaranteed in e-business [Surl0].

XML as the basis for e-business technologies, provides specifications for these use cases. Two
of these specifications belong to the group of XML security technologies: XML Signature

[W3C08b] and XML Encryption [W3C02]. Both are employed by WS-Security (see section
2.4) to guarantee integrity resp. confidentiality of XML documents.

This section only gives a short overview of the structure and the processing of XML Signature

8For example, Michael P. Papazoglu, Web Services: Principles and Technology, Pearson Education, Harlow,
England, 2008.

2.3 Basic XML Security Technologies 11

and XML Encryption and does not discuss security considerations or the use of certain algo-
rithms. Refer to the corresponding standards or the relevant literature!® for a more detailed
discussion of the XML security standards.

2.3.1 XML Signature

XML Signature defines an XML syntax for the integrity protection of data. Like digital sig-
natures, XML Signatures ensure message integrity, the identity of the signer, and the non-
repudiation of the message. The XML Signature technology can be used to sign almost any
type of resource, XML structures as well as non-XML data?.

An XML Signature may be constructed as a detached, enveloping, or enveloped signature. A
detached signature refers to an XML element or a non-XML file outside the signatures hierarchy.
An enveloping signature encloses the item to be signed in the ds:0bject element inside the
signature. Last but not least, an enveloped signature points to another element under the
parent XML element.

Listing 2 exemplarily shows the structure of an XML ds:Signature element (observing the
notational conventions). The root element of an XML Signature is the ds:Signature element,
which must contain at least the ds:SignedInfo and the ds:SignedValue element and can
optionally have a ds:KeyInfo and one or more ds:0bject elements.

<ds:Signature ID?7>

1
2
3 <ds:SignedInfo>

4 <ds:CanonicalizationMethod/>
5 <ds:SignatureMethod/>

6 (<ds:Reference URI? >

7 (<ds:Transforms>)?

8 <ds:DigestMethod>

9 <ds:DigestValue>

10 </ds:Reference>)+
11 </ds:SignedInfo>

12 <ds:SignatureValue>
13 (<ds:KeyInfo>)?

14 (<ds:0bject ID?>)x*

15
16 </ds:Signature>

Listing 2: Structure of an XML Signature element

The ds:SignedInfo element contains a ds:CanonicalizationMethod (Canonicalization (C14N)
is the way an XML document is normalized to guarantee equivalence on bit-level, even over op-
erating system boundaries), a ds:SignatureMethod (which contains the algorithm to be used

9For example, Jothy Rosenberg and David Remy, Securing Web Services with WS-Security - Demystify-
ing WS-Security, WS-Policy, SAML, XML Signature, and XML Encryption, Sams Publishing, Indianapolis,
Indiana, USA, 2004.

20Jothy Rosenberg and David Remy, Securing Web Services with WS-Security - Demystifying WS-Security,
WS-Policy, SAML, XML Signature, and XML Encryption, page 106, Sams Publishing, Indianapolis, Indiana,
USA, 2004.

12 2 FUNDAMENTALS

for signing documents and verifying signatures), a ds:SignatureValue (the base64-encoded
value of the signature), and several ds:Reference elements.

A ds:Reference refers to resources to be signed by an URI attribute and contains a ds:Digest
Method and a ds:DigestValue. Optionally, the ds:Reference has a ds:Transforms element,
which contains a list of ds:Transform elements. FEach of these ds:Transform elements defines
an algorithm (and parameters for this algorithm, if necessary) that alters the object to be signed.
The output of a ds:Transform is the input for the successive ds:Transform, the output from
the last ds:Transform is the input for the ds:DigestMethod. The ds:DigestMethod defines an
algorithm to calculate the digest of the ds:Reference URI (the only required algorithm is the
Secure Hash Algorithm (SHA1)). The ds:DigestValue element contains the base64-encoded
value of the digest.

The optional ds:KeyInfo element contains information on how the signature validation key
can be obtained. Therefore, this element may include the ds:KeyName, the ds:KeyValue, an
ds:RetrievalMethod, or key data, such as a ds:X509Data element that provides either an
identifier of an X.509 certificate or the X.509 certificate itself. However, as the ds:KeyInfo
element itself, all these child elements are optional, so that a signing party can also assume
that the receiver is in possession of a signature validation key and does not include a ds:KeyInfo
element.

Finally, an ds:0bject element can have different functions. This element can contain the XML
code to be signed (in the case of an enveloping signature), a reference to an object to be signed
(such as an image or the like), a ds:Manifest element (a list of references to objects to be
signed), or a ds:SignatureProperties element (contains additional information about the
signature generation).

At this point, the structure of an XML Signature is clear, but not how different elements of
the signature work together and how a signature is created to provide integrity protection of
an XML document. The procedure for the creation of an XML Signature is as follows:

1. Create the ds:Reference elements for each data to be signed

(a) Apply the ds:Transforms to the data to be signed
(b) Calculate a ds:DigestValue over the data to be signed

(c) Create a ds:Reference element, i.a., containing the ds:DigestValue
2. Create the ds:SignedInfo element, including the created references (at least one)
3. Apply the ds:CanonicalizationMethod to the ds:SignedInfo

4. Calculate the ds:SignatureValue over the ds:SignedInfo element using the
ds:SignatureMethod

5. Create the ds:Signature element as described above

The signature validation is a similar process: the referenced data is collected, transformed, and
a digest value is calculated. If the digest value calculated by the validator is different from

2.3 Basic XML Security Technologies 13

the ds:DigestValue element in the signature, the validation fails. Otherwise, the validator
obtains the validation key according to the ds:KeyInfo element (if present), creates a hash
of the canonicalized ds:SignedInfo element, and verifies the ds:SignatureValue over the
ds:SignedInfo element using the previously obtained key.

2.3.2 XML Encryption

Whereas XML Signature is used to confirm the content of an XML document by a known entity
and to protect the content of the document from unauthorized modification, XML Encryption
has a different approach: It ensures the confidentiality of XML documents or single parts of
these documents using encryption technologies. It is even possible to encrypt different parts of
an XML document with different keys, so that different recipients (or intermediaries) are only
able to decrypt the message part which is intended for them?!.

The XML Encryption specification is used for two confidentiality protection scenarios: the en-
cryption with a shared symmetric key, on the one hand, and the encryption using an xenc:Encry
ptedKey, on the other hand. The former requires that both parties are in possession of the
same key, whereas the latter embeds the asymmetrically encrypted symmetric encryption key
(xenc:EncryptedKey), i.e., the symmetric encryption key is encrypted usually using the public
key of the recipient, so that only the recipient is able to decrypt the xenc:EncryptedKey with
his private key.

Due to the fact that XML Encryption, as well as XML Signature, is a W3C standard, the
structure of both specifications is similar. The root element of an XML Encryption is the
xenc:EncryptedData element. This root element can optionally contain an xenc:Encryption
Method (specifies the encryption algorithm to be used), a ds:KeyInfo element (which has the
same namespace and the same function as in the XML Signature), and an xenc:EncryptionPro
perties element. The only mandatory element of an XML Encryption is the xenc:CipherData
element. The structure of an xenc:EncryptedData is presented in Listing 3.

<xenc:EncryptedData Id? Type? MimeType? Encoding?>

1
2
3 <xenc:EncryptionMethod/>?
4 <ds:KeyInfo>

5 <xenc:EncryptedKey>?

6 <xenc:AgreementMethod>?
7 <ds:KeyName>?

8 <ds:RetrievalMethod>?

9

<ds:*>7
10 </ds:KeyInfo>?
11 <xenc:CipherData>
12 <xenc:CipherValue>?
13 <xenc:CipherReference URI?>7
14 </xenc:CipherData>
15 <xenc:EncryptionProperties>?

16

21Jothy Rosenberg and David Remy, Securing Web Services with WS-Security - Demystifying WS-Security,
WS-Policy, SAML, XML Signature, and XML Encryption, page 148, Sams Publishing, Indianapolis, Indiana,
USA, 2004.

14 2 FUNDAMENTALS

17 </xenc:EncryptedData>

Listing 3: Structure of an XML Encryption element

The algorithm specified in the optional xenc:EncryptionMethod element is used to encrypt
the data of the xenc:CipherData element. If no algorithm is defined in this element, the used
algorithm must be known to the recipient of the encrypted data.

As with XML Signature, the ds:KeyInfo element has the function to provide the encryption
key directly or at least to give a hint on how to retrieve the key. This hint is given via the
ds:RetrievalMethod element. Another possibility to get the encryption key is to make use of
the xenc:AgreementMethod element, which employs an asynchronous key agreement protocol
to generate an encryption key.

The encryption key is often not enclosed in the ds:KeyInfo element directly, but as xenc:Encry
ptedKey. The xenc:EncryptedKey element is another xenc:EncryptedData element, which
is a child of ds:KeyInfo, and holds an encrypted encryption key. This encryption of the
encryption key can be used arbitrarily deeply. The intent of this key encryption is to have
either a shared symmetric key, which is not present in the XML file, or a combined symmetric
and asymmetric key strategy, whereby the shared symmetric key is encrypted by the public
asymmetric key of the recipient.

The xenc:CipherData contains either the encrypted data or an URI reference to this data. The
former is located in a xenc:CipherValue element, the latter employs a xenc:CipherReference
with an URI as attribute. The content of the xenc:CipherValue is base64-encoded, whereas
the xenc:CipherReference is structured as the ds:Reference element of an XML Signature,
including ds:Transforms and URI.

The xenc:EncryptionProperties element is similar to the ds:SignatureProperties element
of the XML Signature: its purpose is to save additional information about the encryption, e.g.,
the timestamp or the serial number of cryptographic hardware used during encryption.

As with the XML Signature, the XML encryption requires a certain procedure:

1. Obtain a key
2. Serialize the data to be encrypted (UTF-8 for XML data, else octets)

3. Encrypt the data to be encrypted using the xenc:EncryptionMethod and the encryption
key

4. Specify the encrypted data type: as xenc:CipherValue for XML-data, otherwise as
xenc:CipherReference

5. Create a corresponding xenc:EncryptedData structure. If an xenc:EncryptedKey is
used, execute the process with an asymmetric key recursively.

The decryption of an xenc:EncryptedData element requires the encryption algorithm (and
related parameters) and the encryption key (either a secret symmetric key or a private asym-
metric key to decrypt the xenc:EncryptedKey element). The key and the algorithm are used

2.4 WS-* Standards 15

to decrypt the xenc:CipherData. Since the decryption produces UTF-8 encoded bytes, the
result of this process must be converted to XML or passed to an application.

2.4 WS-* Standards

The technologies presented in sections 2.1 to 2.3 are sufficient to describe Web services (using
WSDL), establish a Web services connection and exchange messages (using SOAP), implement
workflows (using BPEL), and even to protect the exchanged XML messages using the XML
security specifications. Additional features, such as message routing, transport security, or
reliability of message delivery could be left to the network protocols. This raises the question
why the WS-* standards are declared to the “second-generation Web services specifications?
in contrast to the first generation Web services specifications, such as WSDL or SOAP.

The character of a SOA requires higher-level QoS mechanisms. Since a message exchange may
include multiple request/response messages, involve intermediaries, or be part of a long-term
business transaction extending over several hours or days, message protection on transport
layer is insufficient. In addition to this, Web services communication is not bound to a specific
transport protocol, so not all QoS requirements may be met on transport level. On that account,
the QoS features for Web services communication must be located on (SOAP) message level.

Since “SOAP poses no constraints on the potential scope of such features, example features may
include reliability, security, correlation, routing, and message exchange patterns (MEPs) [...]”
[W3C07b], the WS-* frameworks employ SOAP messages to bring QoS features on message level
in Web services communication. In this way SOAP may be enriched with QoS features like
integrity, confidentiality, reliability, or transaction support without losing its transport protocol
independency.

2.4.1 'WS-Addressing

The WS-Addressing specification enables a transport protocol-neutral transmission of message
addressing information in the SOAP message header. For this purpose, WS-Addressing defines
two concepts: the endpoint reference and the message addressing properties. The former defines
a standardized XML structure to communicate a reference to a Web service endpoint, the
latter provides message addressing information relating to the message delivery, e.g., the sender
(wsa:From), the recipient (wsa:To), or the relationship of the current message to previous
message (wsa:RelatesTo). For the use of WS-Addressing in composition with other WS-*
specifications, the wsa:Action message property is most interesting. This property explains
the semantics of a message by an URI [W3C06a].

Although the WS-Addressing framework is not limited to the use in SOAP messages, the most
common use of WS-Addressing is in conjunction with SOAP. In this case, the WS-Addressing
properties are located in the SOAP message header [W3CO06b].

22Thomas Erl, Service-Oriented Architecture - Concepts, Technology, and Design, page 156, Prentice Hall,
Upper Saddle River, New Jersey, USA, 2005.

16 2 FUNDAMENTALS

2.4.2 'WS-ReliableMessaging

The reliability of message transmission is one of the the most important requirements of any
communication. Although most transport protocols meet this requirement, this is not sufficient
to guarantee the delivery of a series of business documents. For example, if a business document
is intercepted before it reaches the transport channel the transport protocol is not aware of this
document.

The WS-ReliableMessaging protocol [OAS09b] defines a mechanism to guarantee the reliable
delivery of a SOAP message between a WS-ReliableMessaging source (RM Source) and a WS-
ReliableMessaging destination (RM Destination). For this purpose, a WS-ReliableMessaging
sequence (hereafter just sequence) is created by the RM source (message type wsrm:Create
Sequence), the RM Destination confirms the sequence creation (wsrm:CreateSequenceRespon
se). FEach sequence has an unique identifier for its whole lifetime and may optionally in-
clude an expiration date, a behavior for incomplete sequences (wsrm:DiscardEntireSequence,
wsrm:DiscardFollowingFirstGap, or wsrm:NoDiscard), and a delivery assurance. Whereas
the other properties are referenced in the WS-ReliableMessaging block of the SOAP message
header, the delivery assurances are defined in the policy of a service (see section 2.4.4).

After RM Source and RM Destination have agreed upon the sequence creation, each SOAP pay-
load message of the sequence contains a WS-ReliableMessaging header including the sequence
identifier and the number of the message in the sequence. The RM Source may always request
an acknowledgment of the transmitted messages (wsrm:AckRequested), the RM Destination
responds to this request with a wsrm:SequenceAcknowledgement. If the RM Source detects
unacknowledged messages when matching the acknowledged messages with the messages sent,
it retransmits the unacknowledged message(s) according to the incomplete sequence behav-
ior. However, a wsrm:SequenceAcknowledgement does not terminate a sequence. Instead, an
arbitrary number of messages may follow.

In order to close a sequence, the WS-ReliableMessaging standard provides two methods: to close
a sequence and to terminate a sequence. A sequence may be closed by both parties, RM Source
and RM Destination, at any time using a wsrm:CloseSequence and a wsrm: CloseSequenceRes
ponse message, respectively. In contrast to that, a sequence is terminated by the RM Source
when it has completed the message sequence. It then sends a wsrm:TerminateSequence mes-
sage that is confirmed by the RM Destination with a wsrm:TerminateSequenceResponse. Fig-
ure 2 illustrates a WS-ReliableMessaging sequence with three payload messages, in which the
second message is lost and retransmitted according to the wsrm: IncompleteSequenceBehavior
wsrm:NoDiscard.

The sequence management elements, i.e., the sequence creation, termination, and closing mes-
sages, are located in the SOAP message env:Body whereas the other messages are part of the
SOAP message header. However, a sequence is only used for communication in one direction.
So, a second sequence for bilateral reliable communication is needed.

The WS-ReliableMessaging specification is aware of security threats of a sequence, i.a., in-
tegrity threats [OAS09b, lines 1074 - 1088] or sequence hijacking [OAS09b, lines 1115 - 1142],

and, therefore, proposes countermeasures to address these problems. Besides transport layer

2.4 WS-* Standards 17

EndpointA EndpointB

CreateSequence

CreateSequenceResponse(ldentifier: abc)

Sequence(ldentifier: abc, MsgNo: 1)

Sequence(ldentifier: abc, MsgNo: 2)

Sequence(ldentifier: abc, MsgNo: 3)

SequencelAcknowledgement{ldentifier: abc; Ack: 1,3)

Sequence(ldentifier: abc, MsgNo: 2)

SequenceAcknowledgement({ldentifier: abc; Ack: 1- 3)

TerminateSequence(ldentifier: abc)

TerminateSequenceResponse(ldentifier: abc, LastMsgNo: 3)

Figure 2: The WS-ReliableMessaging Protocol, following the Figure at [OAS09b, page 14]

security mechanisms, the WS-ReliableMessaging specification also includes considerations for
a compound WS-Security /WS-Trust/WS-SecureConversation scenario.

2.4.3 'WS-Security

As already discussed in the previous sections, security features, such as integrity or confidential-
ity protection are the most important requirements for B2Bi and even other WS-* standards
recommend the use of security features. This raises the question how security features are
implemented in the Web services world.

In “first generation Web services” it was common to use transport-layer security, such as
Hypertext Transfer Protocol Secure (HTTPS), in order to bring security features to Web ser-
vices. Although transport-level security is a well-known and established concept, this approach
has many disadvantages, e.g., the security features cannot easily be extended to persisted mes-
sages and they are bound to point-to-point communication. In contrast to that, WS-Security
is a transport-protocol independent SOAP message security specification. This has many ben-
efits, i.a., security features are valid from the sender to the ultimate receiver (end-to-end se-
curity), messages are independent of transport protocols, and different security measures may
be combined. Figure 3 illustrates the advantages of message-level security of WS-Security in
comparison to transport-level security of HT'TPS.

18 2 FUNDAMENTALS

End-to-End

S—

WS-Security
XML Signature XML Encryption

SOAP

Point-to-Point i Point-to-Point
(f
Intermediary
(no protection)

=
™
Q.

=
®
S
ﬂ

Figure 3: Comparison of the scopes of security features of WS-Security and HTTPS, adapted
from [Bro03, page 2]

However, WS-Security does not introduce new security features, but defines a framework on
how existing specifications may be combined to fulfill security requirements. Section 2.3 already
introduced the XML security technologies that are employed by WS-Security: XML Signature
(integrity) and XML Encryption (confidentiality) are two of the three pillars of WS-Security,
the third is the Security Assertion Markup Language (SAML) (as security tokens), an XML-
based language for exchanging authentication and authorization information between different
domains [OASO05].

WS-Security determines how these specifications are used in conjunction with SOAP messages.
For that purpose, the WS-Security specification defines the so-called security header, an ele-
ment located in the SOAP message header. The security header may contain security token
definitions, XML Signatures, encrypted keys, or a ReferenceList. Security tokens contain
information for authentication and authorization, e.g., X509 certificates. The WS-Security
specification defines three types of security tokens:

e Username Token

e XML Token

e Binary Token
In this way, WS-Security enables the authorization and authentication with a username/pass-
word combination, XML-based credentials, or binary key information, such as X509 certifi-

cates. Often, a X509 certificate is used as signature validation key. Since WS-Security supports
both encryption types, shared key and encrypted key, the security header may contain an

2.4 WS-* Standards 19

xenc:EncryptedKey. WS-Security enables signing and encrypting arbitrary message parts, ex-
cept the security header or parts of it. However, the message time stamp is an exception. This
element inside the SOAP message header determines the freshness and the validity of a SOAP
message. Besides the creation date of a message it also contains its expiration date (By defini-
tion, expired messages should not be accepted). If a wsu:Timestamp element is present in the
security header, it must be signed [OAS09d, lines 1718 - 1722]. Figure 4 shows schematically
the structure of the security header inside a SOAP message [OASO6f].

<env:Envelope>

<env:Header>

<wss:Security>

<wsu:Timestamp>
<wss:BinarySecurityToken>
<xenc:EncryptedKey>

<ds:KeyInfo>

<ds:Signature>

<ds:Signedinfo>

<ds:Reference>

<ds:Reference> (...)
<ds:SignedValue>

<ds:KeyInfo>

<env:Body>

<xenc:EncryptedData>

Figure 4: WS-Security elements and structure inside a SOAP message

But for all that functionality, the basic WS-Security framework still does not manage to cover
all required security aspects, such as, to build up trust to an unknown party, or to mini-
mize the key-exchange overhead for long-term business transactions with frequent message
exchange. These requirements are met by extensions to the WS-Security specification, namely
WS-Trust [OAS09¢] and WS-SecureConversation [OAS09¢|. Therefore, WS-Trust and WS-
SecureConversation are introduced in sections 2.4.3 and 2.4.3.

20 2 FUNDAMENTALS

WS-Trust

As already mentioned, WS-Trust supports the establishment of trust in Web services commu-
nication. The WS-Trust framework focuses on methods for issuing and exchanging security
tokens, as well as establishing and accessing trust relationships. For this reason, WS-Trust
introduces a new participant to the Web services communication model: The Security Token
Service (STS). In addition to this, the message elements wst:RequestSecurityToken ele-
ment (RST) and wst:RequestSecurityTokenResponse element (RSTR) are defined for the
exchange of security information.

Figure 5 shows the WS-Trust model for providing a STS. Assuming that a Web service requires
that a service requester is in possession of a certain claim, e.g., a certain X509 certificate. Each
message without a proof of possession of this X509 certificate is rejected by the service, and
thus each service requester needs this certificate. It is assumed that the service requester is
not in possession of this key, and, therefore, the requester has to acquire this claim. The
claim may be requested from the token issuer, i.e, either from the Web service itself or from
a third party, the STS. In both cases, the service requester sends a message including a
wst:RequestSecurityTokenCollection element (RSTC), containing one or more RSTs, to the
token issuer, one RST for each requested claim. Of course, this message is subject to the policy
of the token issuer and therefore the message must satisfy the policy of the token issuer. The
RST is answered with a wst:RequestSecurityTokenResponseCollection element (RSTRC)
in the response message, containing at least one RSTR. The RSTR contains the requested
claim, thus the service requester now may use this claim to communicate with the service

[OAS09e].

Security
Token
Service

Service

Requestor

Figure 5: The WS-Trust model, following [OAS09e, page 12]

2.4 WS-* Standards 21

The RSTC and the RSTRC are located in the env:Body of the SOAP message. The request-
response-token framework is extended by WS-SecureConversation (see section 2.4.3). However,
a simple request-response message exchange is not sufficient to build up trust between unknown
parties, so WS-Trust extends the simple RST/RSTR framework to enable exchanges for nego-
tiation and challenges. Both parties, the initiator and the recipient, may challenge the other
party to authenticate. Negotiations/challenges are arbitrarily nestable, however, the message
exchange model is fixed:

1. Initial request, containing a RST, may contain an initial negotiation/challenge informa-
tion

2. Response to the initial request, contains a RSTR with additional negotiation/challenge
information. This message may also return security tokens in a RSTRC

3. If the exchange is not complete, the requester sends a RSTR with additional negotia-
tion/challenge information to the responder

4. For this message there are two possible cases:

e If the negotiation/challenge process is completed, return a RSTR
e Otherwise, go back to step 2 until the challenge/negotiation is completed

The elements within a RST specify the kind of challenge, e.g., a signature challenge (wst:Sign
Challenge) or an user interaction challenge (wst14:InteractiveChallenge).

WS-SecureConversation

The WS-SecureConversation framework employs the RST and RSTR messages of WS-Trust
to provide a mechanism for a secure messaging semantics to be used in multiple messages,
the so-called security context. The two participating parties agree upon a security context,
which contains a shared secret for key derivation. The security context is established using
asymmetric encryption of the SOAP messages (specified in the sp:BootstrapPolicy), whereas
the further communication is performed using symmetric keys. Once the context is established,
both parties derive their signature and encryption keys from the security context in order
to avoid permanent key exchange in long-term business transactions. In contrast to classical
WS-Security message protection using the public key method, the computationally expensive
message authentication and verification are no longer necessary.

The security context may be created in a variety of ways: negotiation of the participating
parties, propagation of the context by one of the parties, or creation of the context by a third
party. In any case, a wsc:SecurityContextToken identifies the security context. This security
token must be referenced in all wsc:DerivedKeyTokens as well as for all operations concerning
the security context, such as amend, renew, or cancel. Due to these context-administration
messages, the WS-SecureConversation specification is not beneficial for scenarios with only a
few messages.

22 2 FUNDAMENTALS

In a way, the security context concept may be compared to the SSL protection, but on message-
level instead of transport-level: both protocols use public-key encryption to agree upon a shared
secret. The shared secret is then used to derive (symmetric) session keys for message protec-
tion.

2.4.4 WS-Policy

Up to this point, the most important WS-* frameworks for a secure and reliable message
exchange have been presented. However, a Web service must explicate the requirement for a
certain WS-* feature in its service contract. The WS-Policy framework provides an extensible
framework “for expressing policies that refer to domain-specific capabilities, requirements, and
general characteristics of entities in a Web services-based system” [W3CO07i, page 3]. A so-called
policy assertion represents one of these “capabilities, requirements, or general characteristics”.
One or more policy assertions are gathered in a policy alternative. A policy in terms of WS-
Policy consists of one or more policy alternatives [W3C07i].

The XML representation of a policy is a policy expression (see Listing 4 for the structure of a
WS-Policy). The root element which identifies the policy is the wsp:Policy element. It has one
child-element, the wsp:ExactlyOne element, which embodies one or more policy alternatives.
Each wsp:All element contains a policy alternative with multiple policy assertions, whereby
each policy assertion may contain a policy expression in turn, i.e., the WS-Policy framework is
arbitrary nestable [W3C07i]. Since each party involved in a Web services communication may
define policies, the WS-Policy specification provides the concept policy intersection to reduce
the number of possible and compatible policies alternatives. For a detailed introduction to
policy intersection, refer to [W3CO0Ti, pages 29 - 33].

1 <wsp:Policy>

2 <wsp:ExactlyOne>

3 (<wsp:All>

4 (<Assertion (wsp:0Optional="true")?>
5 <!-- Assertion -->

6 </Assertion>)*

7 </wsp:All>)*

8 </wsp:ExactlyOne>

9 </wsp:Policy>

Listing 4: Structure of a WS-Policy

A WS-Policy is independent from other Web services specifications and may be bound to ser-
vice descriptions, such as WSDL documents, but also to service directories, such as UDDI
[W3C07h]. However, WS-Policy is primarily used in conjunction with WSDL.

1 <wsp:Policy>

2 <wsp:ExactlyOne>

3 <wsp:All>

4 <wsam:Addressing>
5 <wsp:Policy/>

6 </wsam:Addressing>
7 </wsp:All>
8 </wsp:ExactlyOne>

2.4 WS-* Standards 23

9 </wsp:Policy>

Listing 5: Example of a WS-Policy expressing the mandatory use of WS-Addressing

Since the WS-Policy standard defines an abstract model for expressing policies, it does not
provide concrete syntax for the use of WS-Addressing, WS-Security, WS-ReliableMessaging, or
other specifications - each WS-* standard must define its own policy assertions. For example,
[W3C07d] specifies WS-Policy assertions for WS-Addressing. Listing 5 shows an example of a
WS-Policy assertion that expresses the mandatory use of WS-Addressing.

WS-Policy defines an additional argument for most assertions, the boolean attribute wsp:0Optional.
It indicates whether the use of the corresponding assertion is possible (if the value is true) or
mandatory (if the value is false). Listing 6 shows almost the same policy as Listing 5, however,
this time the use of WS-Addressing is not mandatory but optional.

1 <wsp:Policy>

2 <wsp:ExactlyOne>

3 <wsp:All>

4 <wsam:Addressing wsp:0Optional="true">
5 <wsp:Policy/>

6 </wsam:Addressing>

7 </wsp:All>

8 </wsp:ExactlyOne>

9 </wsp:Policy>

Listing 6: Example of a WS-Policy expressing the optional use of WS-Addressing

Since WS-Addressing is one of the most basic WS-* frameworks, there are not many other pos-
sible settings for WS-Addressing policy expressions. However, the more complex frameworks,
such as WS-ReliableMessaging and WS-Security define a much more sophisticated syntax for
policy expressions. The syntax of these domain-specific policy expression languages is presented
in the subsequent sections.

WS-ReliableMessaging Policy

The WS-ReliableMessaging Policy (WS-RM Policy) defines a policy assertion for the use of
WS-ReliableMessaging, the wsrmp:RMAssertion. This assertion expresses a requirement for
the mandatory use of WS-ReliableMessaging, except if the attribute wsp:0Optional has the
value true [OAS09al.

<wsrmp:RMAssertion (wsp:Optional="true")? ... >
<wsp:Policy>

1
2
3
4 (<wsrmp:SequenceSTR /> |

5 <wsrmp:SequenceTransportSecurity />) 7
6

7

8

9

<wsrmp:DeliveryAssurance>
<wsp:Policy>
(<wsrmp:ExactlyOnce /> |
10 <wsrmp:AtLeastOnce /> |

24 2 FUNDAMENTALS

11 <wsrmp:AtMostOnce />)
12 <wsrmp:InOrder /> 7

13 </wsp:Policy>

14 </wsrmp:DeliveryAssurance> 7
15

16 </wsp:Policy>

17 500
18 </wsrmp:RMAssertion>

Listing 7: Structure of a wsrmp:RMAssertion (WS-RM Policy) element

As Listing 7 shows, the wsrmp:RMAssertion may be used to express security requirements for
the WS-ReliableMessaging sequence. For this purpose, the specification defines the mutually ex-
clusive assertions wsrmp:SequenceSTR and wsrmp:SequenceTransportSecurity. The former
requires to bind a security token to the sequence, whereas the latter makes use of transport-layer
security (e.g., SSL) mandatory for the sequence. Lines 7 - 14 of Listing 7 show how delivery
assurances can be defined in a WS-RM Policy. The supported delivery assurances are:

e ExactlyOnce: Each message is delivered exactly once. The RM Source must ensure that
each message is delivered exactly once, i.e., the RM Source retries to send a message until
it receives an acknowledgment, while the RM Destination refuses to accept duplicates of
already received messages.

e AtLeastOnce: Each message is delivered at least once. The RM Source repeats the
transmission of unacknowledged messages until it receives an acknowledgment.

e AtMostOnce: Each message is delivered at most once. The RM Destination must ignore
duplicate messages, whereas the RM Source may retransmit unacknowledged messages.

e InOrder: The messages of the sequence must be delivered in the correct order according
to the message number.

The wsrmp: InOrder assertion is freely combinable with any other delivery assurance.

WS-Security Policy

Since the WS-Security specification allows much more settings than the WS-ReliableMessaging
or WS-Addressing specifications, the WS-SecurityPolicy standard is more complex than the al-
ready presented domain-specific policy standards. WS-SecurityPolicy formulates requirements
for security features by determining what message parts are to be protected and how the pro-
tection of the message parts is realized. For that purpose, WS-SecurityPolicy defines a set of
pattern that are combined to a valid security policy. These WS-SecurityPolicy patterns are

[0AS09d]:

e Protection Assertions: these assertions identify what is being protected and which
kind of protection is applied to the protected object(s). The objects are either integrity

2.4 WS-* Standards 25

or confidentiality protected, the latter concerns either a whole XML element or only its
content. In addition to this, it is also possible to define required message parts using a pro-
tection assertion. These protection requirements may either be expressed using name and
namespace (sp:SignedParts, sp:EncryptedParts, etc.) of the object to be protected or
by an XPath expression (sp:SignedElements, sp:EncryptedElements, etc.).

e Token Assertions: token assertions are used to describe requirements for a security
token. A security token is a collection of claims, such as a name, an identity, or a key.
Token assertions are used to specify the types of tokens required in a message. The
WS-SecurityPolicy specification defines eleven token types (see Table 1).

e Security Binding Assertions: these assertions describe requirements for different secu-
rity mechanisms of a service, i.e., message protection on transport-level (sp:TransportBi
nding) or on message-level. The protection on message-level is realized using either sym-
metric (sp:SymmetricBinding) or asymmetric keys (sp:AsymmetricBinding). These
message-level security bindings employ security tokens to protect message parts, e.g., a
sp:X509Token containing a X509 certificate to encrypt the env:Body of a message. In
addition, the security binding determines the layout (sp:Layout) of the security header
and the sp:AlgorithmSuite, i.e., algorithms used, key lengths, etc., for the message
exchange with the protected service.

e Supporting Tokens Assertions: security tokens are not only used in conjunction with
security bindings to protect message parts but also to transmit additional claims, such as
a username/password combination, additional certificates, or Digital Rights Management
(DRM) licenses, independent of any binding. For this purpose, the sp: SupportingTokens
assertion is used. Besides an arbitrary number of various security tokens, this asser-
tion may define additional protection assertions (signature and encryption) and an ad-
ditional sp:AlgorithmSuite for the cryptographic operations performed with the sup-
porting tokens. Listing 8 shows the structure of a sp:SupportingTokens assertion. Fur-
thermore, the WS-SecurityPolicy standard allows to express requirements for integrity
and confidentiality protection of the supporting tokens, as well as an integrity protec-
tion of the message signature as supporting tokens. All in all, seven specializations
of the sp:SupportingTokens are defined by WS-SecurityPolicy, e.g., sp:Endorsing-
SupportingTokens, sp:SignedEndorsingSupportingTokens, or sp:SignedEndorsing-
EncryptedSupportingTokens.

1 <sp:SupportingTokens>

2 <wsp:Policy>

3 (<!-- Token Assertions -->) +

4

5 (<sp:AlgorithmSuite>

6 500

7 </sp:AlgorithmSuite>)?

8

9 (<sp:SignedParts> ... </sp:SignedParts> |

10 <sp:SignedElements> ... </sp:SignedElements> |
11 <sp:EncryptedParts> ... </sp:EncryptedParts> |
12 <sp:EncryptedElements> ... </sp:EncryptedElements>)*

13
14 </wsp:Policy>
15

26

2 FUNDAMENTALS

’ Token

\ Token description

|

Sp

:UsernameToken

Describes how a Web service consumer may au-
thenticate his identity using a username and op-
tionally a password, a shared secret, or a password
equivalent [OAS06g] [OAS09d, pages 28 - 30]

Sp

:CreatelssuedToken

Security Token issued by a 3™ party, i.e., a STS
[OAS09d, pages 30 - 32]

Sp

:X509Token

Subtype of a sp:BinarySecurityToken contain-
ing a X509 certificate [ITUO8] [OAS06h] [OAS09d,
pages 32 - 34]

sp:

KerberosToken

Requirement for a Kerberos ticket [IET93]
[OAS06¢c] [OAS09d, pages 34 - 36]

sp:

SpnegoContextToken

Represents a requirement for the execution of a
n-leg SPNEGO (Simple and Protected GSSAPI
(Generic Security Services Application Program
Interface) Negotiation Mechanism) with the Web
service (see WS-Trust) [OAS09d, pages 36/37]

Sp:

SecureConversationToken

A security context that must be retrieved from
a predefined issuer (see WS-SecureConversation)
[OAS09d, pages 37/38]

Sp:

SecurityContextToken

Identifies a security context (see WS-
SecureConversation) [OAS09d, pages 38 -
42]

sp:

SamlToken

A Security Assertion Markup Language (SAML)
assertion as a security token [OASO05] [OASO06e]
[OAS09d, pages 42 - 44|

sp:

RelToken

A Rights Expression Language (REL) assertion as
a security token [OAS06d] [OAS09d, pages 44/45]

sp:

HttpsToken

Requirement for the wuse of HTTPS in a
sp:TransportBinding [OAS09d, pages 45/46]

sp:

KeyValueToken

Represents a requirement for a key value in a secu-
rity token, e.g., a sp:RsaKeyValue [OAS09d, pages
46 - 48]

Table 1: The various types of Security Tokens defined by WS-Security Policy

2.4 WS-* Standards 27

16 </sp:SupportingTokens>

Listing 8: Structure of a sp:SupportingTokens element

e WS-Security and WS-Trust Options: WS-Security and WS-Trust also define addi-
tional aspects that are independent of the assertions defined above. For that purpose, the
WS-SecurityPolicy specification provides optional assertions for WS-Security and WS-
Trust features, e.g., sp:RequireSignatureConfirmation or sp:RequireRequestSecuri
tyTokenCollection.

WSDL Binding Policy

Security Binding Assertion (Asymmetric, Symmetric, Transport)

Token Assertion(s)
Algorithm Suite
Layout
Supporting Tokens
Token Assertion(s)
Algorithm Suite

Protection Assertion(s)

WS-Security & WS-Trust Options

WSDL Message Policy

Protection Assertion(s)

Supporting Tokens

Token Assertion(s)

Algorithm Suite

Protection Assertion(s)

Figure 6: WS-SecurityPolicy elements and structure inside a WSDL document

A WS-SecurityPolicy configuration is composed according to the WS-SecurityPolicy scheme
above. Figure 6 shows the structure of a composed WS-SecurityPolicy: on the one hand there
is a policy that is bound to the wsdl:binding definition, on the other hand one or more
message protection policy for each message definition in a WSDL document (wsdl:input,

28 2 FUNDAMENTALS

wsdl:output, or wsdl:fault). Each Binding Policy must have a Security Binding Assertion
with one or more Token Assertion (according to the type and the options of the binding),
an sp:AlgorithmSuite and optionally a security header layout determination. In addition
to this, the binding policy may contain a sp:SupportingTokens assertion (with one or more
Token Assertions, an optional sp:AlgorithmSuite, and optional Protection Assertions) or/and
WS-Security and WS-Trust options. The WS-SecurityPolicy for a message contains usually one
or more Protection Assertions and may also contain sp:SupportingTokens assertions (same
structure as with the sp:SupportingTokens of the binding policy).

29

3 Platforms

The WS-* frameworks, which have been discussed in the previous section, are just specifica-
tions by the OASIS and the W3C. In the context of this work, a platform, i.a., provides an
implementation of those frameworks and an opportunity to develop, deploy, configure, and
orchestrate applications using those frameworks.

Each platform consists of various parts: an Integrated Development Environment (IDE), for
test application development and configuration, and an application server to deploy the test ap-
plications. The application server either bundles an implementation of (parts of) the WS-Stack
or allows the installation of an additional WS-* implementation. In order to create SOAs for
more complex and practical test cases, Enterprise Service Buses (ESBs) and BPEL-Engines
are employed. Both are either integrated in the platform or available as platform extensions.
Frequently, an ESB includes a BPEL-Engine. In general, ESBs build the backbone of a SOA by
combining the approaches of EAI and Message-Oriented Middleware (MOM). An ESB expands
the classical hub-and-spoke architecture paradigm of EAI by detaching it from determined
message formats and protocols to overcome heterogeneity. Services and other applications
can communicate via the ESB using standardized interfaces, such as WSDL interfaces, and
standardized message protocols, whereby the ESB manages heterogeneity issues. Typical ESB
features are, i.a, message routing, message transformation (mediation), providing application
adapters and security features, or enable process orchestration, e.g., using WS-BPEL [Men(7]
[dLPWO7].

In this section, the test environment (hardware and software environment in which tests will be
run) will be presented. All tests have been conducted on personal computers (PCs) with Intel
Core 2 Duo or Core 2 Quad processors, running Windows XP Professional 32-bit, Service Pack 3.
Each platform includes a BPEL engine to execute workflows as well as a WS-* implementation
(at least including WS-Addressing, WS-ReliableMessaging, WS-Security, WS-Trust, and WS-
SecureConversation) to satisfy the requirements for B2Bi as defined in [Ros10, pages 20/21]
[OASO06a, pages 71-73]. The tested platforms including IDEs, application servers, and additional
software (e.g., Feature Packs, ESBs, or BPEL-Engines) are defined in the subsequent sections.
First, the IBM WebSphere Platform is presented in section 3.1, then the components of the
Sun Microsystems GlassFish Platform are pointed out in section 3.2.

30 3 PLATFORMS

3.1 IBM WebSphere Platform

WebSphere is a software product line for business and application integration, developed and
published by the IBM corporation. The core product of WebSphere is the IBM WebSphere
Application Server (WAS), a proprietary Java Platform, Enterprise Edition (JEE) 5 application
server.

The WAS is based on the Eclipse®® plug-in environment, the Equinox®* framework, which is
an implementation of the OSGi Core Framework R4 specification?>. So the WAS runtime is
designed as a collection of plug-in components. Additional plug-ins can be developed as Eclipse
Plug-In Projects and plugged in the WAS Equinox environment [Ren09, pages 35-43].

As Java Virtual Machine (JVM) for the execution of the WAS components IBM does not make
use of the standard Sun Microsystems JVM (short: Sun JVM), but has developed its own JVM,
called IBM J9, including some features of the open source Apache Harmony JVM?%. In contrast
to the standard Sun JVM, the J9 is optimized for use on IBM hardware (e.g., for the use on
the IBM POWER or z/Architecture platforms) as well as for the support of enterprise features
of an application server [Ren09, pages 15-34].

Since the WAS is a JEE application server, it supports the Application Programming Interface
(API) specifications of JEE, which includes, i.a., JMS, Enterprise JavaBeans (EJB), and Web
services. The latter is realized using Java API for XML-Based RPC (JAX-RPC) and Java API
for XML-Based Web Services (JAX-WS), whereby the WAS employs a plug-in for JAX-WS
support [Ren09, pages 199 and 217-222]. This plug-in includes the open source SOAP-engine
Apache Axis2?" (the Apache Foundation describes it as “a Web Services / SOAP / WSDL
engine”), which supports a wide variety of specifications, transport protocols, and data bindings
for Web services. The most important Axis2 features in the context of this work are:

o JAX-WS support for services and clients
e WSDL, version 1.1 (including SOAP and HTTP binding) and 2.0

e SOAP, version 1.1 and 1.2

WS-Addressing

WS-Policy

As can be seen from the list above, Axis2 only supports two WS-* specifications, which does
not fulfill the requirements for the WS-* implementation. However, Axis2 provides a plug-in
environment for additional Web services features. The Apache Foundation currently provides

23Eclipse is an open source community, developing, i.a., an IDE and a plug-in environment. Projects and
further information are available at http://www.eclipse.org

Havailable at http://www.eclipse.org/equinox

ZFurther information is available at http://www.osgi.org/Released

Z6available at http://harmony.apache.org

2Tavailable at http://ws.apache.org/axis2

http://www.eclipse.org
http://www.eclipse.org/equinox
http://www.osgi.org/Release4
http://harmony.apache.org
http://ws.apache.org/axis2

3.1 IBM WebSphere Platform 31

three plug-ins for Axis2, these are Apache Sandesha2?® for WS-ReliableMessaging, Apache
Rampart? for WS-Security, and Apache Kandula23® for WS-Coordination. The IBM WAS
7 employs the Sandesha2 plugin for WS-ReliableMessaging support and IBM self-developed
implementations of WS-Security and WS-Coordination [Ren09, pages 217-222].

The IBM WS-Security implementation extends the security token types defined in the WS-
Security and WS-SecurityPolicy standards by additional, customized or IBM self-developed
token types, e.g., the Lightweight Third-Party Authentication (LTPA) Token®' and customized
Kerberos and SAML Tokens. The latter token types are defined in the XMLNS http://
www.ibm.com/xmlns/prod/websphere/200605/ws-securitypolicy-ext as specialization of
the WssCustomToken type. IBM introduced the SAML security token type in the WAS 7
with Fix Pack 7 (WAS 7.0.0.7). Fix Pack 9 (WAS 7.0.0.9 improved and extended the SAML
functionality of the WAS. However, the scope of this work only includes Fix Pack 7 since Fix
Pack 9 was released during the test execution phase.

The WAS realizes the policy configuration of a Web service via the so-called policy sets; WS-
Policy declarations in a WSDL document that is directly packaged in a deployable application
are refused by the WAS and thus are not deployable. A policy set defines a set of WS-Policy-
based policy assertions that can be assigned to a service. A policy set consists of a collection
of specific policies, such as a policy (IBM calls it policy type) for WS-ReliableMessaging, WS-
Security, and WS-Addressing, but also non-WS-* QoS definitions like SSL transport. The
information of the policy set is either published in the WSDL document of a service or trans-
mitted using WS-MetadataExchange [W3C10]. The collection of policies is defined in a poli-
cySet.xml file, which is an index of the policy set defining its name an the policy types used in
this set. Each definition of a policy type is defined in a separate file [CLM*09, pages 264-268].

Although the whole policy set definition is based on XML and WS-Policy, the single policy type
definitions are not necessarily built on the corresponding policy specifications for a WS-* stan-
dard. For example, the policy type for WS-Security and standards built on top of WS-Security
is defined using WS-SecurityPolicy, whereas the policy types for WS-ReliableMessaging are not
defined using the corresponding RM-Policy standard. However, the policy set definition of the
WS-ReliableMessaging policy type are converted to WS-ReliableMessaging Policy assertions in
the WSDL document of the service. This suggests that for each possible setting of the WS-
ReliableMessaging policy type assertions a predefined WS-ReliableMessaging Policy assertion
is deposited in the implementation. Interestingly, a Web services client deployed on a WAS
is not able to process a WS-ReliableMessaging Policy other than the WAS-defined policies.
This allows the conclusion that the WAS does not provide full WS-ReliableMessaging Policy
support.

A WAS Web services client may also define an own policy set, the so-called client policy, which
is primarily used to specify transport protocol requirements, since these are not expressible
as WAS-conform policies using a transport binding. However, client policies are also used to

28available at http://ws.apache.org/sandesha/sandesha2

2available at http://ws.apache.org/axis2/modules/rampart/1_2/security-module.html

30not available yet, see project page at http://ws.apache.org/kandula/2

31Further information available at http://www.ibm.com/developerworks/websphere/techjournal/0607_
desprets/0607_desprets.html

http://www.ibm.com/xmlns/prod/websphere/200605/ws-securitypolicy-ext
http://www.ibm.com/xmlns/prod/websphere/200605/ws-securitypolicy-ext
http://ws.apache.org/sandesha/sandesha2
http://ws.apache.org/axis2/modules/rampart/1_2/security-module.html
http://ws.apache.org/kandula/2
http://www.ibm.com/developerworks/websphere/techjournal/0607_desprets/0607_desprets.html
http://www.ibm.com/developerworks/websphere/techjournal/0607_desprets/0607_desprets.html

32 3 PLATFORMS

calculate effective policies (see policy intersection). In this case, the client policy can be further
restricted by the server policy, but the effective policy is definitely acceptable to both partners,
service and client - incompatible policies are refused and thus are not processed.

Due to the fact that policy sets do not include environment-specific information, such as keystore
and truststore definitions, this must be added in another way. The WAS employs bindings
for this purpose. A binding defines the concrete details of a policy, e.g., the signature and
encryption key, properties of UsernameTokens, trusted certificates, or settings concerning the
transport protocols. The WAS employs different bindings for service and client, since both need
an own private key and the requirements on each side can differ. The relationship between
bindings, policy sets, and policy types is depicted in Figure 7 [CLM*09, pages 265-267].

Policy Set

-]
-
-

- ——
-
-

PolicySet.xml

Enable, Disable

Bind

Web Service

Figure 7: Relationship between bindings, policy sets, and policy types in the WAS environment
(Web service provider)

The assignment of policy sets and bindings to services is performed either in the Web interface or
in an IDE for the WebSphere product line. The most common IDEs for the use with WebSphere
products are the IBM Rational Application Developer for WebSphere Software (RAD) and the
IBM WebSphere Integration Developer (WID). Both Eclipse-based tools are employed in the
context of this work for developing Web services and Web services clients. The latter one
also provides a “BPEL designer” for WS-BPEL processes, which may be deployed on the IBM
WebSphere Process Server (WPS), which is the WS-BPEL-engine for the WAS. The WPS is not
only a WS-BPEL-engine, but also provides additional features for business process management,
such as the integration of human tasks in WS-BPEL processes or the Business State Machines,
which supports event-driven business process scenarios. Thus, the WPS makes the WAS ready
for B2Bi use [IJCO8, pages 75-79 and 150-170].

The WPS operates on top of the IBM WebSphere Enterprise Service Bus (WESB), which

3.1 IBM WebSphere Platform 33

enables the EAI. The WESB provides an ESB for the integration of service-oriented, event-
driven, and message-oriented technologies with support of the Service Component Architecture
(SCA) [OSO07] and Service Data Objects (SDO) [OSO06]. Hence, the WESB is a middleware
solution, which abstracts form concrete transport protocols, taking over tasks, such as message
routing, message enrichment, and message transformation [IJCO08, pages 321/322 and 335]
[Ren09, pages 319/320).

In the context of this work, the IBM WebSphere Platform consists of the following components:

e IBM WebSphere Integration Developer (WID) 7.0.0.101

e IBM Rational Application Developer for WebSphere Software (RAD) 7.5.5.1

IBM WebSphere Application Server (WAS) 7.0.0.7, including

— Feature Pack for Service Component Architecture 1.0.1.1
— Feature Pack for XML 1.0.0.3

IBM WebSphere Enterprise Service Bus (WESB) 7.0

IBM WebSphere Process Server (WPS) 7.0.0.1

From here the bundle of software listed above will be referred to as IBM WebSphere Platform.
References to particular parts of the IBM WebSphere Platform will use the full name or the
acronym of the according component.

34 3 PLATFORMS

3.2 Sun Microsystems GlassFish Platform

The other JEE 5 application server in the context of this work is the Sun Microsystems GlassFish
v232 (current version 2.1.1). In contrast to the WAS, GlassFish is an open source project
initiated and supported by Sun Microsystems (short: Sun). Since Sun is also the developer
of Java, the GlassFish application server is frequently designated as reference implementation
of JEE. GlassFish provides support for EJBs, Java Architecture for XML Binding (JAXB),
Streaming API for XML (StAX), Web services, and many more[Sunl10].

To enable Web services and related technology support, the GlassFish application server bun-
dles the Metro Web services stack®?, which is part of the GlassFish project, but can also be
used outside of the GlassFish application server. Metro is built on top of JAXB and therefore
necessarily needs a preinstalled Java Development Kit (JDK), version 1.5.0_14 or higher. The
Metro core implements the JAX-WS API and allows to plug in WS-* implementations. These
implementations are delivered by the Web Services Interoperability Technologies (WSIT)34,
an implementation of Web services features, which has been developed in close collaboration
with Microsoft to guarantee interoperability of Java and .NET application servers. The WSIT
provides implementations for core XML features (XML, XSD, XML Namespaces), Web ser-
vices messaging protocols (SOAP, WS-Addressing, SOAP Message Transmission Optimiza-
tion Mechanism (MTOM)), Web services description specifications (WSDL, WS-Policy, WS-
MetadataExchange), and, of course, an implementation of Web services QoS features [Sun].*

The WSIT includes the following implementations of [Sun]:

e WS-Security including WS-Trust and WS-SecureConversation
e WS-SecurityPolicy
e WS-ReliableMessaging

e WS-Coordination including WS-AtomicTransactions

WS-ReliableMessaging Policy is not listed in the official product descriptions of Metro and
WSIT but has been tested successfully and is therefore used in the context of this work.

The deployment of JAX-WS Web services on the GlassFish application server implies the
packaging of the application logic in a WAR or EAR file, including a WSDL document with
the corresponding interface and binding information. Web services QoS extensions are directly
placed in the WSDL file in WS-Policy format. If a policy definition is not valid or not supported
by the Metro Web services stack, the application server refuses to deploy the service. The
Netbeans IDE?* provides a graphical editor for the creation of Web services, including the

32available at http://glassfish.dev.java.net

33available at http://metro.dev.java.net

34available at http://wsit.dev.java.net

35Thilo Frotscher, Die Qual der Wahl, Javamagazin (2008), no. 2, pp. 108-117.
36available at http://www.netbeans.org

http://glassfish.dev.java.net
http://metro.dev.java.net
http://wsit.dev.java.net
http://www.netbeans.org

3.2 Sun Microsystems GlassFish Platform 35

policy configuration of a service. Netbeans also allows to integrate the GlassFish application
server into the IDE for direct deployment and administration of developed applications.

However, neither GlassFish nor the Metro WS-Stack include a WS-BPEL-engine or an ESB.
Thus, the GlassFish basic version is not ready for B2Bi use. However, due to the open and ex-
tensible predisposition of the GlassFish application server, this functionality can be added easily.
The OpenESB?" project enables the implementation of a SOA in the GlassFish environment,
implementing the Java Business Integration (JBI) specification [Sun05]. JBI is a plug-in envi-
ronment based on WSDL for the integration of external services and the realization of business
logic. The heterogeneity of external services is resolved by using Binding Components (BCs)
for protocol independent communication, e.g., the HI'TP BC or the JMS BC. BCs provide
connectivity to JBI-external services. The JBI specification includes the concept of Service En-
gines (SEs) to bring business logic to the ESB. A SE can consume and provide business logic

as well as provide transformation services. The OpenESB implements, i.a., BCs for HTTP and
JMS and SEs for WS-BPEL and Extensible Stylesheet Language Transformations (XSLT).

OpenESB with a bundled GlassFish application server, including the Metro WS-Stack and a
customized version of the Netbeans IDE is available under the name GlassFish ESB3. All

components of that package are aligned to each other, for example, the Netbeans IDE already
includes the GlassFish server plug-in and has a built-in WS-BPEL editor.

For this work the following components represent the Sun GlassFish Platform, which is equiv-
alent to the GlassFish ESB 2.2:

e Netbeans IDE 6.7.1
e Sun GlassFish Application Server 2.1.1
e OpenESB 2

e Metro 1.4

Although there are newer versions of the GlassFish ApplicationServer and the Netbeans IDE
available, the versions above have been preferred due to support of the OpenESB BPEL engine.
OpenESB 2.2 bundles the Sun GlassFish Application Server 2.1.1 and the Netbeans IDE 6.7.1.

The Sun GlassFish Platform and its components will be referenced analogously to the IBM
WebSphere Platform.

3Tavailable at http://open-esb.dev. java.net
38also available at http://open-esb.dev. java.net

http://open-esb.dev.java.net
http://open-esb.dev.java.net

36 4 TEST METHOD

4 Test Method

The two previous chapters presented the standards to be tested (section 2) and the platforms
under test, including the bundled WS-* standard implementations (section 3). Now, the ap-
proach to the execution of the compatibility test has to be determined.

As already mentioned, compatibility is the ability of two protocols resp. protocol implementa-
tions, such as the WS-* frameworks, to interoperate, i.e., there is at least one possible successful
conversation between two communication partners. This kind of compatibility is sometimes ref-
fered to as partial compatibility in contrast to full compatibility, which means that any possible
conversation generated by a sender A is understood by a recipient B, and vice versa. For the
sake of simplicity, the partial compatibility is just denoted as compatibility in the context of
this work [BCT06].

In order to determine whether two WS-* framework implementations are compatible, policies
(in particular, policies according to WS-Policy) are used to specify concrete test scenarios.
Therefore, the WSDL of a sample Web service is configured with a policy. This policy should
contain exactly one policy alternative to force a communication partner (service consumer) to
use exactly this policy and not any other policy. However, configuring a WS-Policy with exactly
one alternative is not always possible due to platform constraints. In such a case, the amount of
policy alternatives is kept as low as possible. Furthermore, it is possible that the Web services
platform rejects a policy assertion, although it is syntactically and semantically correct. If that
is the case, the feature under test is considered to be malfunctioning.

If a sample Web service, including the policy assertions, is deployed correctly, a service consumer
has to recognize, to understand, and to process the policy. Afterwards, the Web service client®”
has to generate one or more SOAP messages taking the policy into account. These SOAP
messages can contain several elements in the message header with meta information of the WS-
* frameworks. Some frameworks use additional messages without payload containing meta-
information. However, the message headers and the additional messages are transparent to the
end users and the application logic, since the SOAP engine filters these metadata. Clearly, these
messages and message parts provide information whether the client handles the policy correctly,
and therefore the SOAP message headers and the SOAP messages, only containing metadata,
have to be analyzed, too. The SOAP messages transmitted from the client to the server are
not the only messages of interest; the response from the server to the client is important to
determine the interoperability of WS-Stack implementations, too. The server can also reject
client messages and, e.g., ask for more information or abort the communication. Due to the
fact that the WS-* standards under examination define whole message exchange protocols,
including multiple messages, the reason for malfunctioning can be located anywhere in this
communication. Consequently, the whole message exchange between a Web service provider
and a Web service consumer has to be logged and analyzed.

Due to the fact that the SOAP message traffic provides information on how a WS-* framework

39The Web service client is either a standalone Java Platform, Standard Edition (JSE) application including
a runtime from one of the platforms or a Java Platform, Enterprise Edition (JEE) application deployed on one
of the platforms.

37

is actually working (especially the fault messages), the policy of malfunctioning test cases can
be altered in such a way that a QoS-supported communication becomes possible. To this end,
i.a., SOAP test tools (soapUI 3.0.1% and SOAP Sonar Personal Edition 5.0.8%) are used to
inject manually adjusted SOAP messages. This approach allows a more precise and quicker
configuration of the QoS-aspects in SOAP messages than policies do. However, the test tools
are only used to figure out which changes must be applied to a policy to get a test case to work
and not to test the robustness of the implementations.

Figure 8 shows the test setup described above.

Request

Web Service Client [NG

Web Service
Platform/Runtime

Web Service

Aijod-sm

Response
Message

Logging Web Service

‘ Platform

XML-Message
Sequence

3
3

Test Results

& Analyze

Figure 8: The test setup

Some studies, e.g., [PF04], show where Web services are susceptible to incompatibilities. Based
on the results of the relevant publications (see section 7) and the test setup defined above, the
following possible results for a single test run can be expected:

40available at http://www.soapui.org
“lavailable at http://www.crosschecknetwork.com

http://www.soapui.org
http://www.crosschecknetwork.com

38

10.

11.

12.

4 TEST METHOD

Server refuses WS-Policy: The server does not accept the policy of the service, i.e.,
the service cannot be deployed on the server, or the server states to ignore the feature
under test.

Server cannot process WS-Policy correctly: It is possible to deploy the sample
service on the server, but the WSDL file containing the policy cannot be retrieved.

Client refuses WS-Policy: The client can retrieve the WSDL file but cannot process
the policy and therefore no request is sent to the server, or the client states to ignore the
feature under test.

. Client cannot process WS-Policy correctly: The client can retrieve the WSDL file

but cannot process the policy, and therefore a SOAP message without WS-* extensions
is sent to the server. The server returns an error code.

Server and client ignore WS-Policy: Both, server and client ignore the published
policy. The client sends a SOAP message without WS-* extensions, the server responds
to this message with a regular SOAP message, i.e., neither an error code nor a message
including WS-* extensions are returned from the server. This case also includes that parts
of the policy are ignored by server and client.

Server cannot process the initiating client message (initial request) correctly:
The client sends a SOAP message to the server observing the policy requirements, but the
server is not able to process this message correctly. This means that the server responds
with an error code to the client request.

Client cannot process the initiating server message (response to initial re-
quest) correctly: The client sends a SOAP message to the server observing the policy
requirements, the server responds to this message observing the policy requirements, but
the client is not able to process the response from the server.

Client terminates communication: The protocol initiation (client request, server
response) has been performed without problems, but the client terminates the message
exchange with a terminate message, specified in the according WS-* standard, before the
whole communication protocol has been completed.

. Client aborts communication: The protocol initiation has been performed without

problems, but the client aborts the communication with a fault before protocol comple-
tion.

Server terminates communication: The protocol initiation has been performed with-
out problems, but the server terminates the message exchange with a terminate message,
specified in the corresponding WS-* standard, before the whole communication protocol
has been completed.

Server aborts communication: The protocol initiation has been performed without
problems, but the server aborts the communication with a fault before protocol comple-
tion.

Protocol success: The communication protocol has been performed successfully.

39

As already mentioned, a WS-* aware communication has at least two roles: the initiator (Web
service client) and the responder (Web service provider). The initiator establishes the commu-
nication whereas the other party is responsive. Both roles differ significantly, so that, e.g., a
platform can take the role of the responder without problems, but is incapable of being the
initiator. This is the reason why every tested WS-* combination has to be executed with alter-
nating initiator and responder. To determine the functional integrity of a certain WS-* feature
on a platform at all, it is essential to test the features for cross-platform testing on a single
platform before. Hence, there are four test runs for each WS-* feature and feature combination
under test as depicted in Figure 9 (A and B denote the different platform types). Test run 1
(A-A) and 2 (B-B) are platform-internal and determine the functional integrity of the platform,
test run 3 (A-B) and 4(B-A) are cross-platform tests and determine the compatibility of the
two platforms.

Initiator Responder
(Client) (Service)
initiate
> =P
e L
respond ' A
initiate
> =)
< — %
m respond B
initiate
> =P
m respond - B
initiate

L
>

-]

<
m respond

Figure 9: The four test runs of each test case

In general, SOA-Testing is a relatively new field in software testing and thus a hot topic.
Although several authors have examined robustness or performance issues of Web services and
even WS-* frameworks in homogeneous and heterogeneous environments (see the related work
in section 7), there have only been few publications about compatibility issues of different Web
services platforms. For this reason, the test method of this work employs concepts from protocol
and software testing.

40 4 TEST METHOD

Since the tests focus on QoS features, which are characterized as non-functional properties of
a system, the test approach is to perform functional testing of the non-functional properties.
The tests are executed on the basis of the specification of the corresponding WS-* standards
(specification-based) and are designed to cover any defined assertion/element of the WS-* stan-

dards (structural testing). Therefore, the test cases are defined as specification-based structural
testing [ZHMO7].

However, these test cases are not able to achieve the same results as a formal analysis of the
standards and implementations. Yet, they are an adequate way to determine which functions
are compatible and which are not. In addition, the results of the tests does not only provide a
compatibility analysis of two WS-* implementations, but also an analysis of to what extent the
WS-* frameworks under test implement the features intended by the corresponding standards
(coverage analysis).

Considering the test setup and the determination of four test runs for every feature, the How
to test is already clear but not the What to test. Obviously, it makes no sense to start with
complex test cases including a series of policy assertions without assuring that each of these
assertions is processable on both platforms. Therefore, the following test procedure has been
developed: First of all, the functionality of the WS-* frameworks is tested in isolated test
cases (see 4.1). In these cases each feature is tested in isolation (at least as far as possible).
Second, a selection of the most common and most important features of WS-Security and WS-
ReliableMessaging is tested in combined test cases, which is presented in section 4.2. Finally,
the practical suitability of the tested WS-* implementations is verified in section 4.3. Each step
in this test approach is based on the results of the previous step: if an isolated test case detects
an inability to interoperate, the feature will be excluded from the combined test cases. As with
the result of the isolated test cases, the results of the combined feature test cases are employed
for the practical test: malfunctioning features are not included in these practical scenarios.

4.1 TIsolated Function Tests 41

4.1 Isolated Function Tests

The first step in compatibility testing is to determine whether certain functionalities are avail-
able and well-working in each implementation under test. For this reason, each particular
function of a WS-* framework is tested in isolation. This, of course, is not possible for every
feature of the frameworks under test, since some features are only usable in a broader context.
For example, a protection assertion such as signing or encrypting SOAP message parts cannot
be declared in a policy without a valid security binding. In such cases, the related assertions
are tested together.

The first step in compatibility testing needs a basis: the functionalities provided by the WS-
* standards must be analyzed in order to identify every feature to be tested. Based on this
analysis, a test plan containing test cases is developed. Afterwards, these tests are implemented
as executable test cases. The tests are then executed accordingly to the test setup defined above.
The following step-by-step plan describes the steps to be taken for each particular feature in
detail:

1. Analysis of the WS-* frameworks under test to determine the functions to be tested

2. Development of a test plan containing test cases to test all the functions determined in
step 1

3. Development of concrete implementations of the test cases in accordance with the test
plan, consisting of
e a Web service,
e a WS-Policy assigned to this service,

e and a Web service client to invoke the service.
4. Execution of the test cases:
(a) Deployment of the Web service on both platforms on host 1, preparation of the Web

service client on both platforms or using both runtimes on host 2

(b) Invocation of the sample Web service by the Web service client in the following order
(on the left-hand side, host 1 with the Web service client, on the right-hand side,
host 2 with the Web service):

platform A (as client) - platform A (as server)

(
platform B (as client) - platform B (as server
(

)
platform A (as client) - platform B (as server)
)

platform B (as client) - platform A (as server

(c) Documentation of the test execution and the test output

5. Analysis of the test documentation

42 4 TEST METHOD

The result of step 1 and step 2 is a list of functions to be tested and concrete test cases (the
test plan) to validate the availability of these functions. To execute the tests, the test cases
must be implemented in the test environments. A Web service with variable policy features
is developed for this purpose. The test cases are executed in accordance with the test setup
depicted in Figure 9. The preparatory measures and realization strategies for the test cases are
presented in section 5, the implementation of the test cases and the results of the test execution
are discussed in section 6.1.

4.2 Combined Function Tests

After the determination of the compatible features in each implementation under test (IUT), the
next step is to test the functional features in combination. The combination of the features to
be tested can point out new incompatibilities between the IUTSs, due to the fact that additional
features or alternating settings may change the behavior of an implementation. However, the
combination of all available and compatible features may lead to a test case explosion. In order
to prevent this problem the total amount of test cases must be kept as small as possible or
lowered to a reasonable level. Therefore, restrictions to the test cases must be defined.

First, it is necessary to define a test goal for the execution of the combined test cases. Since the
target of this work is to provide a compatibility analysis of WS-Security and WS-ReliableMessag
ing implementations, this goal is already clear: testing combinations of WS-Security and WS-
ReliableMessaging features. In any case, the WS-Security Policy standard provides much more
possible settings than the WS-ReliableMessaging Policy standard does. Therefore, the WS-
SecurityPolicy settings must be restricted to a reasonable level.

Considering the WS-SecurityPolicy standard, five WS-Security test classes are defined:

e Protection Assertions

Token Assertions

Security Bindings

Supporting Tokens

e WS-Security and WS-Trust Options

For each of these patterns reasonable restrictions may be determined. The combination of signed
and encrypted message elements is important in practical use, and thus the protection assertions
should be tested in combination, at least as far as they are available and compatible. Besides
the protection on message level, it is also possible to guarantee the integrity and confidentiality
of a message on transport level. On this account, the SSL/TLS interoperability is tested, too.
Considering the token assertions, the token types used in the combined cases are restricted,
since many of the defined tokens are unusual in practical use. The selected token types are all
used in one version, which will be determined after the isolated test cases have been performed
successfully. The token types to be used in the combined test cases are:

4.2 Combined Function Tests 43

e X509 Token
e Username Token

e SecureConversation Token

The security binding options are limited to one functional sp:AlgorithmSuite, a strict SOAP
security header layout without wsu:Timestamp and an sp:AsymmetricBinding with separate
tokens for the initiator and the recipient. For test cases with symmetric cryptography, a sym-
metric binding will be employed instead of the standard asymmetric binding. Since the sup-
port of sp:SupportingTokens in an IUT has already been proven in the isolated test cases,
the sp:SupportingTokens are not covered in detail. The WS-Security and WS-Trust options
primarily define must support characteristics, which are less interesting, and no compatibility
issues concerning these settings can be expected. Thus, the only relevant feature of this pat-
tern is the sp:RequireSignatureConfirmation assertion that will receive our attention in the
combined test cases.

By analogy with the isolated test cases, the step-by-step plan for the combined test cases looks
as follows:

1. Determination of the compatible features of the WS-* frameworks

2. Development of a test plan in accordance with the results of step 1 and the restrictions
defined above

3. Development of concrete implementations of the test cases in accordance with the test
plan (particular realization as defined in step 3 of the step-by-step plan in section 4.1)

4. Execution of the test cases (particular realization as defined in step 4 of the step-by-step
plan in section 4.1)

5. Analysis of the test documentation

Like in the case of the isolated function tests, section 5 describes the test preparation and
section 6.2 discusses the test cases and test results.

44 4 TEST METHOD

4.3 Practicability Test: Secure WS-ReliableMessaging Scenario

After having done the analysis of the features of the WS-* implementations in isolation and
combination, it is necessary to figure out if the two IUTs are able to work together in a more
complex, practical use case, which employs multiple WS-* features. As mentioned in the
introduction, the Secure WS-ReliableMessaging Scenario [BMPV06] [GHBO05] [WS-08, pages
28-36] defines a combination of QoS features that are frequently required in B2Bi use. This
scenario defines a protocol which is far more complex than the isolated communication pro-
tocol run of a single WS-* framework. It combines the use of WS-Security (in particular
WS-SecureConversation) and WS-ReliableMessaging. Both frameworks are combined in such a
way that the whole WS-ReliableMessaging sequence is completely integrity and confidentiality
protected.

QoS features like document security and reliability are core requirements for B2Bi, which
are also defined by open e-business process standards [Rosl0, pages 20/21] [OAS06a, pages
71-73]. The Secure WS-ReliableMessaging Scenario covers the core requirements of these
e-business standards employing a combination of WS-Security, WS-SecureConversation, and
WS-ReliableMessaging features. However, the combination of security elements is a critical
issue, since many combinations do not maintain the assured QoS properties. On this account,
[BMPVO06] gives a symbolic and cryptographic analysis of the Secure WS-ReliableMessaging
Scenario and proves the formal correctness of this communication protocol. [BMPVO06] proves
the correctness on the basis of the specifications and thus a successful execution of the scenario
also depends on standard compliance of the WS-Stack implementations. Consequently, the
Secure WS-ReliableMessaging Scenario is a practical use case for compatibility testing of WS-*
implementations of different platforms.

Although this test case is much more complex then the previous cases, the approach to the test
is almost the same. The step-by-step plan is defined analogously to the isolated test cases and
the combined ones:

1. Analysis of the scenario definitions:

e Determination of the WS-* features required for the scenario
e Determination of the message sequence
2. Development of a policy in accordance with the results of step 1
3. Platform-specific adaptation of the policy and development of a concrete implementation
of the test case (particular realization as defined in step 3 of the step-by-step plan in

section 4.1)

4. Execution of the test case (particular realization as defined in step 4 of the step-by-step
plan in section 4.1)

5. Analysis of the test documentation

4.3 Practicability Test: Secure WS-ReliableMessaging Scenario 45

Section 5 lists the preparatory measures for the scenario performance, whereas section 6.3 de-
fines the policies for the Secure WS-ReliableMessaging Scenario and presents the test results of
the scenario compatibility analysis with particular reference to standard /scenario compliance.

46 5 TEST PREPARATION

5 Test Preparation

Section 4 has presented the general method of the tests. The section “Test Preparation” es-
tablishes ties between the test method and the execution of the test cases by determining the
features under test in section 5.1 and realizing the preparatory measures on the two platforms
under test in section 5.2.

5.1 Determination of the Features under Test

After the introduction of the standards under test in section 2 and the test method in section
4, the standards are then analyzed to determine what features must be tested to achieve a good
coverage of the isolated test cases. Since the test method stipulates a policy-driven approach
to the compatibility analysis, WS-Policy, WS-ReliableMessaging Policy (WS-RM Policy), and
WS-SecurityPolicy are the base for the test cases. Each of these specifications is used to develop
the test plan for the isolated function tests.

Since the WS-Policy specification does not define any functional restrictions to WS-Security or
WS-ReliableMessaging, it is only a framework for the policy configuration. The WS-RM Policy
and WS-SecurityPolicy are the WS-Policy based specifications to define the WS-Security and
WS-ReliableMessaging features in a Web services communication. Both standards are analyzed
to determine the available features and the possible combinations of features. Each feature may
have multiple settings, e.g., the wsrmp:DeliveryAssurance defined by the WS-RM Policy has
all in all six possible settings. In this case, it must be also determined which combinations of
the features are possible, i.e., whether the settings OR (none, one, or multiple alternatives are
valid), XOR (exactly one alternative is valid), and AND (all alternatives are valid with regard to the
multiplicity) are connected or the features are independent of each other? Besides, some of the
features are mandatory, while others are optional. The mandatory features must not be omitted,
and therefore test cases of other features must include these mandatory features in order to be
functional. For example, if a WS-SecurityPolicy protection assertion is defined in a WS-Policy,
it is mandatory to define a binding assertion in the same policy. In such cases, the mandatory
part of the policy is an already tested standard configuration of the feature so that the focus of
the test case is on the actual feature under test. Additionally, a certain setting may be present
multiple times and therefore the multiplicity of a certain setting has to be considered, e.g., a
WS-SecurityPolicy protection assertion may include none, one, or multiply sp:SignedParts
assertions. For this reason, the following multiplicities for assertions are defined: ’0/1” (none
or exactly one occurrence), 1’ (exactly one occurrence), '0*’ (no occurrence or more), and "1*’
(at least one occurrence).

In order to keep track of things the test plan is structured following the patterns of the WS-
SecurityPolicy standard plus the WS-RM Policy assertions. They are:

e WS-RM Policy Assertions

e WS-SecurityPolicy Protection Assertions

5.1 Determination of the Features under Test 47

e WS-SecurityPolicy Token Assertions
e WS-SecurityPolicy Security Bindings
o WS-SecurityPolicy Supporting Tokens

e WS-SecurityPolicy WS-Security and WS-Trust Options

An example of the approach for generating the test cases is presented for the WS-RM Policy
assertions. The complete list of test cases is located in Appendix B. Based on the assertion
defined by [OAS09a, page 8] (see Listing 9), the functions offered and their combination possi-
bilities are determined.

1 <wsrmp:RMAssertion (wsp:Optional="true")? ... >
2 <wsp:Policy>

3

4 (<wsrmp:SequenceSTR /> |

5 <wsrmp:SequenceTransportSecurity />) 7
6

7 <wsrmp:DeliveryAssurance>

8 <wsp:Policy>

9 (<wsrmp:ExactlyOnce /> |

10 <wsrmp:AtLeastOnce /> |

11 <wsrmp:AtMostOnce />)

12 <wsrmp:InOrder /> 7

13 </wsp:Policy>

14 </wsrmp:DeliveryAssurance> 7

15

16 </wsp:Policy>

17 500
18 </wsrmp:RMAssertion>

Listing 9: Structure of a wsrmp:RMAssertion (WS-RM Policy) element

The wsrmp:RMAssertion defines an optional sequence security policy (feature test # 2) in
lines 4 and 5 of the Listing 9. According to the structure of the wsrmp:RMAssertion, a
WS-ReliableMessaging sequence may be bound either to a security token or to a session of
a transport-level security protocol. Since these assertions are mutually exclusive the logical
operator is an ’exclusive or’ (XOR). Due to the fact that both settings of the feature sequence
security are optional, the multiplicity of the assertions is ’0/1’. The lines 7 - 14 of the List-
ing 9 define the feature delivery assurance (feature test # 3), which is also optional. Tt is
necessary to set one of the delivery assurances wsrmp:ExactlyOnce, wsrmp:AtLeastOnce, or
wsrmp : AtMostOnce when using this feature. Therefore, these settings are connected using the
XO0R operator with the multiplicity '1’, i.e., exactly one of these settings must be selected. Ad-
ditionally, the delivery assurance may require ordered delivery. The wsrmp:InOrder delivery
setting is usable in free combination with other delivery assurance settings, thus the logical
operator to connect the wsrmp:InOrder setting to other wsrmp:DeliveryAssurance settings
is an AND. Since the wsrmp:InOrder assertion may be present or not, the multiplicity of this
setting is '0/1’. However, the test cases do not test the functionality of the delivery assurance
features, but only if the participating parties are able to process the assertion. Since it is outside
the scope of this work to inject errors to the communication, it cannot be determined whether
a message is delivered, e.g., exactly once. Therefore, it is assumed that a delivery assurance

48 5 TEST PREPARATION

test case passes if the assertion is not refused by the service platform and the service client.
This rule applies to any policy assertion that has no effect on the SOAP message.

Table 2 summarizes the results of the analysis of the wsrmp:RMAssertion, where '# 1’ denotes
the basic WS-ReliableMessaging case without optional features, '# 2’ denotes the sequence
security feature, and '# 3’ denotes the delivery assurance feature. The column “definition”
refers to the definition of the setting in the specification.

’ # ‘ Op1l ‘ Op2 ‘ Mul ‘ Setting ‘ Definition ‘
1 - - 1 | Basic RMAssertion [OAS09a, lines 132-134

]
OAS09a, lines 141-144]
OAS09a, lines 263-277]
]
]

0/1 | SequenceSTR

2 | XOR - -
0/1 | SequenceTransportSecurity OAS09a, lines 145-149
OAS09a, lines 278-307
3 | anD XOR 1 | AtLeastOnce OAS09a, lines 168/169

1 AtMosttOnce
0/1 | InOrder

[
[
[
[
1 ExactlyOnce [OAS09a, lines 166/167
[
[
[

]
]
OASO09a, lines 170/171]
OASO09a, lines 172/173]

Table 2: Features and settings of the wsrmp:RMAssertion (WS-RM Policy) element to be tested

The results summarized in Table 2 are the base for the development of the test cases. The logical
operations give information on how many test cases are necessary to cover all possible settings
of a feature. Besides the basic case (an empty wsrmp:RMAssertion), there are the sequence
security properties with two additional cases and the delivery assurance properties with another
six test cases. Table 3 enlists the test cases derived from the standard analysis where each case
is assigned to a feature. The sequence identifier of a test case depends on the sequence identifier
of the feature, e.g., test case 2.2 is a case to test a setting of feature number 2, sequence security.

| # | Feature | Case | Settings |

1 | Basic RMAssertion 1.0 -

2.1 | SequenceSTR

2.2 | SequenceTransportSecurity
3.1 | ExactlyOnce

3.2 | AtLeastOnce

3.3 | AtMostOnce

3.4 | ExactlyOnce + InOrder

3.5 | AtLeastOnce + InQOrder

3.6 | AtMostOnce + InOrder

2 | Sequence Security

3 | Delivery Assurance

Table 3: Test plan for the features of the wsrmp:RMAssertion (WS-RM Policy) element

This approach has been applied to the entire WS-RM Policy and WS-SecurityPolicy standards
in order to develop the test plan for the isolated function tests. The results of the analysis are
located in Appendix B.

5.2 Setup of the Test Environment 49

The determination of the test cases for the combined function tests and the practicability test
is discussed in the sections 6.2 and 6.3, respectively, since these test cases are based on the
results of the isolated function tests, which are presented in section 6.1.

5.2 Setup of the Test Environment

After the test cases for the compatibility analysis have been developed, they are realized on
the platforms to execute the test runs. However, the test platforms have to be prepared before
the tests can be run. These preparatory measures include, i.a., the key exchange, the policy
adaptation to platform-specific conditions, and the service configuration.

As already mentioned in section 2, keys play a special role in WS-Security. For this reason, most
WS-Security scenario descriptions propose the use of keys that are certified by an independent
certification authority (CA). In this way, it is not necessary to confirm the key exchange
between a client and a service explicitly, but if a client C trusts the CA X and a service S has
an key which is certified by CA X, C trusts the key of S, too. In practical use cases of B2Bi
such an approach makes sense, but in a test environment it only causes administration effort.
On this account, it is assumed that both platforms trust the signature and encryption keys of
each other. To realize this, X509 certificates containing the public key(s) are exported from the
keystore of each platform and imported to the truststore of the other platform.

Another platform-specific point is policy adaptation. Whereas this point is almost no problem
for the Sun GlassFish Platform, the IBM WebSphere Platform requires IBM WAS policy set
compliant policies. Therefore, a policy set is developed for each test case including the required
assertions (at least as far as it is possible due to the restrictions of the IBM policy sets). In
addition, the bindings on client and server side of the IBM WebSphere Platform must fit the
requirements of the policy set, e.g., the correct signature and encryption keys must be chosen
or the correct configuration of the incoming and outgoing authentication tokens has to be
guaranteed.

The policy is not the only point that must be adapted to platform-specific conditions, the func-
tional and non-functional properties of the service must also be given on both platforms. To get
a Web services client working with a QoS-aware service, even within platform boundaries, is not
easy at all. The IBM WebSphere Platform as well as the Sun GlassFish Platform provide client
runtimes to enable the QoS-features of the WS-* frameworks. Whereas a preliminary study
verified the availability of the GlassFish runtime for standalone JSE clients for Web services
calls, the WebSphere runtime environment shows weaknesses in WS-Security applications. On
this account, the WebSphere client is a JEE Web application deployed on the WAS, calling
the service via Java Server Pages (JSP). The GlassFish JSE standalone client has been proven
successful, except for the test cases using transport layer security, since the JSE client runtime
is not able to realize SSL. For the transport level security test cases, a Web application with a
JSP-based user interface is deployed on the GlassFish server. Since JAX-RPC does not support
the use of WS-* features, all clients employ JAX-WS for invoking the services.

In addition to the test services, another type of service is set up on both servers, the Security
Token Service (STS). Whereas the IBM WebSphere Platform includes a predefined STS, the

20 5 TEST PREPARATION

STS of the Sun GlassFish Platform is self-developed. The development, deployment, and
integration of a GlassFish STS is described in the Metro Users Guide*? in detail.

In order to analyze the message traffic between client, service, and additional services, such as
the STS, the message traffic is captured, recorded, and visualized. The interception of message
sequences can be realized using various tools. For example, both platforms include a TCP/IP
monitor for message analysis. However, these tools are relatively simple. Thus, the network
package analyzer Wireshark®, version 1.2.6, is employed for logging the SOAP message traffic
between Web service provider and Web service consumer. The logged messages are an evidence
for the functional integrity of the WS-* implementations. The Wireshark trace is the starting
point for the analysis of the SOAP messages. On the basis of the captured message exchange,
the test results are determined.

42available at https://metro.dev.java.net/guide/, section 12.8
43available at http://www.wireshark.org

https://metro.dev.java.net/guide/
http://www.wireshark.org

51

6 Test Results

Now that the test cases are determined and the platforms are configured for the test case
execution, the compatibility analysis is ready to be performed. As defined in section 4, the
analysis is performed in three stages: at first the functions of the WS-* frameworks are tested
in isolation, subsequently the functioning and compatible features of the WS-* frameworks are
combined to larger test cases (in accordance to the restrictions defined in section 4.2), and
last but not least the WS-* implementations are tested for their practical applicability in B2Bi
when the compliance to the Secure WS-ReliableMessaging Scenario is analyzed.

In accordance with the test method defined in section 4, each test case is performed four times
to cover all possible client/service configurations, i.e., WebSphere client - WebSphere service
(test run 1), GlassFish client - GlassFish service (test run 2), WebSphere client - GlassFish
service (test run 3), and GlassFish client - WebSphere service (test run 4). See Figure 9 on
page 39 for a visualization of the four test runs.

However, before a single test case may be carried out, it must be guaranteed that both plat-
forms are able to interact at all. For this reason, the basic case of QoS-unaware Web services
communication via SOAP messages is performed to prove the IBM WebSphere/Sun GlassFish
Web services interoperability. Since there are protection assertions for SOAP with attachments,
a basic SwA case is also considered.

Table 4 gives an overview of the test results of the basic Web services interoperability cases
without use of WS-*. The first two rows define the test environment (Which platform hosts
the service? Which platform acts as client?) and the first column identifies the test case
number according to the complete list of test cases in Appendix B. The results of the test cases
are denoted using the numbers for possible test results defined in section 4 on page 38. The
results in Table 4 show that the Basic SOAP use case be performed successfully for all four
cases, whereas the Basic SwA use case cannot be performed, since both platforms ignore the
corresponding assertions in the WSDL. On implementation level a platform-specific realization
of a SwA message exchange is possible, however, this is outside the scope of this work.

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere

Case Vv
0.1]12 12 12 12
0215 5 5 5)

Table 4: Test results of the basic test cases

52 6 TEST RESULTS

6.1 Isolated Function Tests

Before more sophisticated test cases can be performed, every setting of every feature has to
be tested. Not only does this test procedure answer the question whether the tested feature
is interoperable in the two WS-* implementations, but it answers other questions as well such
as whether the tested feature is implemented in both WS-Stacks, whether the server is able
to deploy the corresponding policy, and whether the client is able to understand the policy
correctly. Thus, apart from the compatibility analysis of the implemented features in both
WS-* implementations is also given.

Due to the numerous features of WS-ReliableMessaging and, especially, WS-Security, the test
execution and the test results are divided into six groups of functional areas. Since the WS-RM
Policy standard only defines sequence security and delivery assurance assertions, it forms the
first test case group (see section 6.1.1). In contrast to this, the WS-SecurityPolicy standard
is much more extensive, so its test cases are divided in five groups according to the patterns
defined in the WS-SecurityPolicy standard: protection assertions, token assertions, security
binding assertions, supporting token assertions, and WS-Security and WS-Trust options. These
subdivisions have already been used in section 5.1 to organize the features under test and the
test cases.

The subsequent sections present the results of the test execution showing extracts from the Table
containing the results of isolated test cases, that is located in Appendix C. The WS-Security
relevant test cases are primarily tested with an sp:AsymmetricBinding and sp:X509Token
types, for each exceptions is given a particular explanation.

6.1.1 WS-ReliableMessaging

After introducing the test execution and the notation of the test results of the isolated function
test cases, the WS-ReliableMessaging section discusses these topics in more detail than the
following sections. Since the approach to the test execution and the notation of the test results
is similar for each test case group, only modifications and specialties are discussed in the
subsequent sections.

As already defined in section 5.1, the test execution starts with a general, basic test case and is
successively specialized to more sophisticated test cases, e.g., the basic WS-ReliableMessaging
test case (1.0) only includes an empty RMAssertion element and is extended with sequence
security (2.x) resp. delivery assurance (3.x) assertions. These cases are converted to policies:
For the Sun GlassFish Platform a WS-Policy with the corresponding WS-ReliableMessaging
assertions, for the IBM WebSphere Platform a corresponding WS-ReliableMessaging policy set.

However, the IBM WAS policy set definition of the WS-ReliableMessaging features is not based
on the WS-RM Policy and is strongly restrictive. Most of the settings intended by the test cases
are not realizable as a policy set and therefore a part of the test cases is not executable on the
IBM WebSphere Platform. Thus, it is impossible to deploy either a policy set corresponding
to the basic test cases or policy sets with sequence security assertions. The IBM WebSphere
Platform only allows the setting wsrmp:ExactlyOnce with the optional setting wsrmp: InOrder,

6.1 Isolated Function Tests 53

and therefore only the test cases 3.1 and 3.4 are able to be carried out since any other assertion
is rejected by the WAS. When the IBM WebSphere Platform acts as service container, these
two cases are executed successfully for test run 1 and 3. However, a WebSphere client is
not able to interpret a WS-ReliableMessaging policy other than the policy set-generated WS-
ReliableMessaging assertions. This means that all cases in test run 4 fail. In contrast to
the IBM WebSphere Platform test runs, the Sun GlassFish Platform-internal test runs are
executed successfully except for test case 2.1. The Wireshark message trace does not prove
the use of a wsrmp:SequenceSTR (as intened by the WS-RM Policy standard). An additional
test case that defines a Security Token in a WS-SecurityPolicy and a wsrmp:SequenceSTR in a
wsrmp:RMAssertion shows that the Sun GlassFish Platform employs the WS-SecurityPolicy-
defined for the wsrmp: SequenceSTR. Table 5 summarizes the test results using the same notation
as in Table 4.

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case Vv
1.1 (1 12 1 4
211 5P 1 4
221 12 1 4
3.1 122 12 122 4
3211 12 1 4
331 12 1 4
3.4] 122 12 122 4
351 12 1 4
361 12 1 4

The configuration of the policy set permits to enable this feature.

b If a WS-SecurityPolicy including a Security Token is defined in addi-
tion to the wsrmp:SequenceSTR assertion, the Sun GlassFish Platform
references this token.

Table 5: Test results of the WS-ReliableMessaging test group

6.1.2 WS-Security Protection Assertions

The WS-SecurityPolicy standard defines seven protection assertions that determine what parts
of a SOAP message are protected or required in a SOAP message. Each protection assertion
is tested in multiple test case considering the message parts to be protected, i.e., the whole
SOAP message env:Body, parts of the SOAP message env:Body, parts of the SOAP message
env:Header, or attachments of a SOAP message. All message parts except the SOAP attach-
ment may be protected either by the QName of the element or using an XPath expression.

Interestingly, the Sun GlassFish Platform does not support the use of XPath expressions in
such policy assertions, as the sp:SignedElements (test cases 5.1 - 5.3), the sp:Encrypted-
Elements assertions (test cases 7.1 - 7.3), the sp:ContentEncryptedElements (test cases 8.1 -

54 6 TEST RESULTS

8.3), and the sp:RequiredElements (test cases 10.1 and 10.2). The IBM WebSphere Platform
supports these protection assertions, however it is not possible to sign a part of the env:Body
(test case 5.1) or to encrypt the whole env:Body. The other XPath-based test cases have
been performed successfully on the IBM WebSphere Platform. Obviously, the XPath-based
protection assertions are not suitable to protect SOAP message sequences between the two
platforms.

On this account, particular focus is put on the QName-based assertions. Since the SwA as-
sertions are not processable by both servers, the sp:SignedParts (test cases 4.1 - 4.3) and
sp:EncryptedParts (test cases 6.1 - 6.3) assertions are only testable with the whole SOAP
message env:Body (test cases 4.1 and 6.1) and parts of the SOAP message header (test cases
4.2 and 6.2). As Table 6 indicates, the IBM WebSphere Platform does not accept the signed
env:Body (test case 4.1) of a SOAP message from the Sun GlassFish Platform. The reason for
this is that the Sun GlassFish Platform signs the first element within the env:Body element,
whereas the IBM WebSphere Platforms signs the env:Body element itself. The Sun GlassFish
Platform accepts both ways of signing the env:Body, the IBM WebSphere Platform on the
other hand requires the signature of the env:Body element itself. Since the WS-SecurityPolicy
standard defines for the sp:SignedParts/sp:Body assertion that the “[...] soap:Body element,
it’s attributes and content |...]"[OAS09d, lines 427-429] are to be integrity protected, the Metro
implementation of this feature is not standard-compliant.

Interestingly, the same problem does not occur with the sp:EncryptedParts/sp:Body assertion
(test case 6.1), since both platforms encrypt the first element in the env:Body in this case.
However, encrypted SOAP messages exchanged across both platforms result in key-specific
problems. The IBM WebSphere Platform is not able to decrypt encryption keys from the Sun
GlassFish Platform (test run 4). In addition to this, the IBM WebSphere Platform rejects any
encrypted message header in a SOAP message from the Sun GlassFish platform.

The sp:ContentEncryptedElements, sp:RequiredParts, and sp:RequiredElements asser-
tions are not implemented on both platforms, so these assertions cannot be tested.

6.1.3 WS-Security Token Assertions

The WS-SecurityPolicy standard defines eleven tokens which are used to protect or bind tokens
and claims to the message. Nevertheless, both platforms do not implement all these token
types. The tokens that are not implemented by both servers are: the sp:SpnegoContextToken,
the sp:SecurityContextToken (not to be confused with the sp:SecureConversationToken),
the sp:RelToken, and the sp:KeyValueToken. In addition, the operating system of the test
environment does not allow to issue a sp:KerberosToken.

Each of the working token types is tested with sensible security bindings, protection assertion,
and sp:SupportingTokens combinations. Since the WS-SecurityPolicy standard also defines
various token versions for some token types, each version is tested in isolation to guarantee full
coverage of all possible isolated function test cases. Additionally, general token settings can
be defined for each token type. The general features such as the token inclusion values or the
token issuer are tested with a standard X509 Token. Since the optional element sp:Claims

6.1 Isolated Function Tests 55

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case ¥

4.1 112 12 9* 6*
4.2 112 12 12 12
5.1 | 6° 3 3 6

6.1 12 12¢ 12¢ 64
6.2 | 12 12¢ 6° 64

2 The IBM WebSphere Platform rejects the message, since the Sun
GlassFish Platforms signs the first element in the env:Body but not
the env:Body itself.

b Rejected with the error message “An error occurred while parsing na-
tive data: The error message is: java.io.lOException: Error Reading
XML.”

¢ Only works with token inclusion value “Never”.

4 Rejected with the error message “Error occurred while decrypting en-
crypted Key; Key used to decrypt encrypted key cannot be null.”

¢ Rejected

Table 6: Excerpt of the results of the WS-Security Protection Assertions test group

may contain an entire new policy and therefore allows hundreds of possible combinations, due
to lack of time and resources, it is only checked whether the platforms accept the sp:Claims
element or not.

More specific features and settings of token types are tested with the corresponding token type,
e.g., sp:RequireKeyIdentifierReference for the X509 Token or sp:RequireExternalUriRef
erence for the sp:SecureConversationToken.

Looking at the general token feature tests (test cases 11.1 - 14.3), it becomes apparent that these
settings are primarily supported by the Sun GlassFish Platform. Especially the token inclusion
values (except the value Once) are supported perfectly. The IBM WebSphere Platform accepts
all token inclusion values (test case 11.1 - 11.5), too, but ignores all assertions and always
includes the security tokens. This behavior causes an abort in the GlassFish - WebSphere
communication in test case 11.1 (token inclusion value Never), whereas the GlassFish Platform
ignores the included tokens in the cases 11.3 and 11.4. Even the derived keys assertions (test
cases 14.1 - 14.3), which have been tested with the sp:SecureConversationToken assertion
and a sp:SymmetricBinding, are due to the IBM WebSphere behavior not fully interoperable.
With the WebSphere Platform as server, the test cases 14.2 and 14.3 are refused and case 14.1 is
not processable by a GlassFish client. However, when a WebSphere client is used, the GlassFish
server rejects the initiating client message, since the env:Body is not encrypted.

The test results reveal that both platforms do not support each token version. The sp:Wss-
X509V3Token10 (test case 17.6) and sp:WssX509V3Tokenll (test case 17.10) are the only two
fully interoperable token versions, any other token type or token version is not supported in all

26 6 TEST RESULTS

four test runs across the platforms (Tested with token inclusion value Always). Interestingly,
the sp:UsernameToken (tested as sp:SupportingTokens assertion) is supported in version 1.0
(test case 15.7) by both platforms. But, the IBM WebSphere Platform does not configure the
token correctly, so that the fields username and password are left empty. Furthermore, the Sun
GlassFish Platform encrypts the sp:UsernameToken, except if the sp:NoPassword option is
selected.

The most interesting token type in the context of the Secure WS-ReliableMessaging Scenario
is the sp:SecureConversationToken (test cases 21.1 - 21.7). Since all test cases of the
sp:SecureConversationToken must include a sp:BootstrapPolicy, the test cases 21.1 to 21.6
focus on the functionality of the token, whereas test case 21.7 focuses on the sp:BootstrapPolicy
compliance. This token type is supported by both platforms, as both platforms require the
use of the sp:SymmetricBinding for this token type. Due to the encryption key problems,
which already arose in the test cases 14.2 and 14.3, a cross-platform communication using a
sp:SecureConversationToken is not possible.

Like with the sp:SecureConversationToken, the sp:HttpsToken (test cases 24.1 - 24.4) re-
quires a special binding, the sp:TransportBinding. The sp:TransportBinding is not sup-
ported by the IBM WebSphere Platform (cf. section 6.1.4), and therefore a sp:HttpsToken
cannot be used. In contrast to that, the GlassFish platform passes all sp:HttpsToken test
cases. Like in the previous section, Table 7 shows an excerpt of the test results of the token
assertions test group with regard to the discussed results.

6.1 Isolated Function Tests

o7

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case ¥
11.1 | 5* 12 6* 42
11.2 | 5* 3P 3P 6"
11.3 | 122 12 122 122
114 | 122 12 122 12?2
11.5 | 12 12 12 12
14.1 | 12 12 3 12
15.7 | 12¢ 12 64 6°
176 | 12 12 12 12
17.10 | 12 12 12 12
22.1] 12 12 6° 6"
222 | 12 12 6° 6"
22.7 | 12 12 6° 6"
*The IBM WebSphere Platform always includes the

sp:BinarySecurityToken.

> The TokenInclusion value Once is not supported by the Sun GlassFish
Plaform.

¢ The IBM WebSphere Platform does not fill in any values, such as
username or password.

4 Rejected since the GlassFish client encrypts the sp:UsernameToken.

¢ The IBM WebSphere Platform returns the fault “Key object was not
obtained.”

! The Sun GlassFish Platform rejects the message, since the env:Body
is not encrypted.

Table 7: Excerpt of the results of the WS-Security Token Assertions test group

o8 6 TEST RESULTS

6.1.4 WS-Security Binding Assertions

The security tokens are not solitary in a WS-SecurityPolicy but often embedded in a security
binding. The WS-SecurityPolicy specification defines three types of security bindings: the
sp:AsymmetricBinding, the sp:SymmetricBinding, and the sp:TransportBinding. Each of
these bindings includes additional properties, such as the sp:Layout of the SOAP security
header or the sp:AlgorithmSuite, to determine algorithms and key lengths for the SOAP
message exchange.

The additional properties are tested in cooperation with an sp:AsymmetricBinding. These test
cases (26.1 - 27.4) show that the IBM WebSphere Platform does not implement the Sha256 algo-
rithm, and therefore the test cases 26.9 to 26.16 fail with WebSphere clients (test runs 1 and 4).
Another interesting point concerning the binding properties is the wsu:Timestamp (test cases
28.2,29.3, and 30.7) support of the IBM WebSphere Platform. Although the WS-SecurityPolicy
standard states that the wsu:Timestamp of a SOAP message must always be signed when
present [OAS09d, lines 1718 - 1722], the IBM WebSphere does not sign the wsu:Timestamp
automatically. In order to create a SOAP message with an integrity protected wsu:Timestamp,
the IBM WebSphere employs an XPath expression inside the sp:SignedElements assertion to
sign the wsu:Timestamp (see Listing 10). Interestingly, the wsu:Timestamp of the IBM Web-
sphere Platform contains no wsu:Expires (used to state the expiration date).

1 <sp:SignedElements>

2 <sp:XPath>/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name
()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and
local -name ()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]/*[namespace
-uri()=’http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility
-1.0.xsd’ and local-name()=’Timestamp’]</sp:XPath>

3 <sp:XPath>/*[namespace-uri()=’http://www.w3.0rg/2003/05/soap-envelope’ and local-name ()=
’Envelope’]/*[namespace-uri()="http://www.w3.0rg/2003/05/soap-envelope’ and local-
name () =’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/0asis
-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]/*[namespace-uri
()="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.
xsd’ and local-name()=’Timestamp’]</sp:XPath>

4 </sp:SignedElements>

Listing 10: Additional sp:SignedElements assertion to sign the wsu:Timestamp

As already stated in section 6.1.3, the sp:TransportBinding (test case 28.1) is not supported
by the WebSphere Platform, and thus none of the cross-platform tests works. Since the SSL-
protection of Web services is an important requirement in B2Bi, the IBM WebSphere Platform
supports the use of SSL-protected Web services connections using a separate policy type. The
results of test case 28.* reveal that it is not possible to create an IBM WebSphere client
consuming a HTTPS-protected Web service. This problem is also reflected in the disability
of the IBM WebSphere IDEs (RAD and WID) to accept a SSL-secured Web service.

The IBM WebSphere Platform only supports the sp:SymmetricBinding with one sp:Pro-
tectionToken (test case 29.2), but none of the other assertions of the sp:SymmetricBind-
ing. However, this assertion does not work in test run 3 due to a key-specific problem and
all assertions of test run 4 are refused by the IBM WebSphere client. Therefore, not a sin-

6.1 Isolated Function Tests 59

gle sp:SymmetricBinding setting is interoperable over both platforms. The sp:Asymmetric-
Binding works for the combination of a separate sp:RecipientToken and sp:InitiatorToken
(test cases 30.1 and 30.3) in all four test runs. In addition, only the IBM WebSphere Platform
supports the use of separated signature and encryption tokens for initiator and recipient (test
cases 30.2 and 30.4). The additional settings of the sp:AsymmetricBinding assertion are not
supported by the IBM WebSphere Platform, whereby test cases 30.5 to 30.7 in test run 4 fail
due to the aforementioned encryption key problem or the client that refuses the policy. An
interesting setting of the sp:AsymmetricBinding is the sp:0OnlySignEntireHeadersAndBody
assertion (test case 30.8), which provides a workaround to handle the problem of test case
4.1. As the platform-internal test run shows, this assertion forces the GlassFish Platform
to sign the env:Body element of a SOAP message itself. Actually, the test run 4 of test
case 31.8 is executed successfully, but the WebSphere Platform refuses policies including the
sp:0nlySignEntireHeadersAndBody assertion. Thus, the problem is not solved for the third
test run.

Table 8 gives a short overview of the results discussed in this section, the complete test results
are located in Appendix C.

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case ¥
28.1 | 1 12 1 3
28.% | 3 - 12 -
282 |1 12 1 3
29.1 | 1 12 1 3
29.2 | 12 12 6* 3
29.5 | 12P 12 6 3
30.1 | 12 12 12 12
30.3 | 12 12 12 12
30.7 | 12P 12 12° 12
30.8 |1 12 1 12
2 The IBM WebSphere Platform returns the fault “Key object was not
obtained.”

> With an XPath-signed Timestamp.

Table 8: Excerpt of the results of the WS-Security Security Bindings test group

60 6 TEST RESULTS

6.1.5 WS-Security Supporting Token Assertions

The WS-SecurityPolicy standard defines eight sp:SupportingTokens assertions. Besides the
basic sp:SupportingTokens (test case 31.1) assertion, the standard defines endorsed, signed,
and encrypted tokens in seven variations and combinations of these properties (test cases 32.1
- 38.1). All these test cases are performed with an sp:UsernameToken, since this is the most
common use case for sp:SupportingTokens assertions. Although the sp:SupportingTokens
assertions permit the definition of a separate sp:AlgorithmSuite and additional protection
assertions, these settings are not tested, since they do not introduce new functionality. It is
assumed that the algorithms and the protection assertions work as with the isolated test cases
to prevent a test case explosion. Therefore, the basic sp:SupportingTokens assertions with an
sp:UsernameToken are tested for deployability on a platform and interoperability with a client.

While the IBM WebSphere Platform rejects all subtypes of the sp:SupportingTokens as-
sertions except the basic assertion in case 31.1, all sp:SupportingTokens assertions are de-
ployable on the Sun GlassFish Platform. The basic sp:SupportingToken assertion is as-
sumend to be functional on the IBM WebSphere Platform. However due to the aforementioned
sp:UsernameToken problem and the rejection of any other token type, it was not possible to
prove the functional integrity of the sp:SupportingTokens assertion for test run 1.

The test cases 33.1, 34.1, 37.1, and 38.1 fail on the Sun GlassFish Platform, since the server
is unable to find a certain reference in the message signature. All these cases are the endors-
ing sp:SupportingTokens and do not contain any sp:SupportingTokens in the WS-Security
header. Interestingly, with the Sun GlassFish Platform as server, the sp:SupportingTokens
assertion in test case 32.1 is also encrypted (in contrast to the policy definition as unen-
crypted token) and the test case 31.1 is not executable without the sp:UsernameToken prop-
erty sp:NoPassword. The results of the previous test cases imply that test run 4 of test
case 31.1 is not functional, since GlassFish encrypts the sp:SupportingTokens (general en-
cryption problem, see section 6.1.2), the sp:NoPassword setting is not available on the IBM
WebSphere Platform, and the IBM WebSphere Platform rejects any other token type than the
sp:UsernameToken as sp:SupportingTokens.

6.1 Isolated Function Tests 61

6.1.6 WS-Security SOAP Message Security and WS-Trust Options

The WS-Security (test cases 39.1 - 40.7) and WS-Trust (test cases 41.1 - 41.9) options define
additional requirements to the platforms that are independent of the other WS-SecurityPolicy
pattern, e.g., whether the platform must support embedded tokens, or interactive challenges.
If these requirements are defined in a policy and the server refuses one of these assertions, the
message sequence is terminated with a fault.

The WS-Security options are divided in two groups: the WS-Security 1.0 options and the
WS-Security 1.1 options. Although all WS-Security 1.0 options are also included in the WS-
Security 1.1 options, both options are tested in isolation (39.1 - 39.4 and 40.1 - 40.4). The
results of these tests show that both are supported to the same degree on both platforms. The
additional assertions of the WS-Security 1.1 options are available on both platforms, except the
requirement that both parties must be able to process references using encrypted key references.
This requirement is not met by a WebSphere client, and thus the test runs 1 and 4 fail. The
Sun GlassFish Platform as well as the IBM WebSphere Platform do not accept any WS-Trust
assertion, no policy containing a WS-Trust option is deployable on both platforms.

62 6 TEST RESULTS

6.2 Combined Function Tests

The definition of and the approach to the combined test cases described in section 4.2 is based
on the assumption that most of the features are compatible. However, the results of the isolated
function test cases show that the amount of available and compatible features for all four test
runs is very low. Considering the limitations of the features in section 4.2, there is hardly any
feature left to be tested for the combined function tests. The main reasons for this are:

e The IBM WebSphere Platform does not support WS-ReliableMessaging Policy
e Most of the WS-Security Protection Assertion tests fail, due to

— Missing XPath support in WS-Policy assertions of the Sun GlassFish Platform
— The cross-platform wss:EncryptedKey problem
— Incorrect integrity protection of the env:Body element of the Sun GlassFish Platform

— Missing support of the sp:0nlySignEntireHeadersAndBody assertion of the IBM
WebSphere Platform

e Incompatibility of the Security Token types, except the basic sp:X509Token

e The IBM WebSphere Platform WS-Stack does not support the sp:TransportBinding,
the WebSphere Platform IDEs are not able to consume a SSL-secured service.

Taking all relevant factors and isolated function test results into account, there is only one
combined function test case left: the combination of SSL and signed (WS-Addressing) message
headers. This case is specified as policy for both servers: for the Sun GlassFish platform a
sp:TransportBinding using the sp:Basic128Rsalb algorithm is specified, whereas the policy
set of the IBM WebSphere Platform employs an sp:AsymmetricBinding with a sp:X509Token
for initiator and recipient and also a sp:Basic128Rsalb algorithm. The SSL-protection is
regulated by another policy type in the IBM WebSphere Platform policy set. In both policies
the use of WS-Addressing is enabled, and the WS-Addressing header parts wsa:MessageID and
wsa:RelatesTo are intended to be signed.

The execution of the test case shows that a GlassFish client is fully interoperable with both
platforms for SSL-secured and message-level integrity protected SOAP messages. Conversely,
it is not possible to execute this test case using a WebSphere client.

6.3 Secure WS-ReliableMessaging Scenario 63

6.3 Secure WS-ReliableMessaging Scenario

Considering the results from the isolated and combined function test cases, it becomes readily
apparent that the Secure WS-ReliableMessaging Scenario is not interoperable in a heteroge-
neous IBM WebSphere/Sun GlassFish environment. However, this scenario is a relevant case
for practical B2Bi use, and thus an analysis of the practicability of this scenario is also interest-
ing for homogeneous environments, because the Secure WS-ReliableMessaging Scenario defines
clear requirements to the message exchange. This raises the question whether it is possible
to combine the WS-* frameworks of the platforms under test to meet the requirements of the
Secure WS-ReliableMessaging Scenario.

The Secure WS-ReliableMessaging Scenario is designed to perform business transactions. In
order to avoid frequent key exchanges in confidential and integrity-protected business trans-
actions, a secure session has to be established. Therefore, a WS-SecureConversation session
(identified by the so-called security contest in terms of WS-SecureConversation) is established.
The bootstrap message exchange for generating the secure conversation must also be integrity
and confidentiality protected. For this purpose client and server are expected to be in pos-
session of each other’s asymmetric keys. These keys are used to encrypt and sign the WS-
SecureConversation bootstrap messages, the recipient decrypts and verifies these bootstrap
messages with the matching key. The emerging security context is identified by a Security
Context Token (SCT) which is referred to in all subsequent messages.

After the generation of the secure session, the WS-ReliableMessaging sequence is initiated.
Once it is open, the exchange of the messages containing the payload is performed. Once
the acknowledgment of all payload-messages has arrived, the active WS-* sessions are closed:
first the WS-ReliableMessaging sequence is terminated and after that the security context is
cancelled.

Due to the fact that the definitions of [BMPV06] and [GHBO05] are based on the WS-Reliable-
Messaging version 1.0 [BEAO05], these definitions do not make use of the wsrm:CloseSequence,
wsrm:CloseSequenceResponse, or wsrm: TerminateSequenceResponse messages which are in-
cluded in the WS-ReliableMessaging standard since version 1.1. On that account, message
number eight wsrm:TerminateSequenceResponse is inserted into the message sequence to
achieve standard conformance as intended by [WS-08, pages 28/29]. The steps of the Secure
WS-ReliableMessaging Scenario communication protocol are listed in the enumeration below,
[GHBO5, pages 34-60] gives a specification of the complete SOAP message structure for each
step.

1. RequestSecurityToken RST: The client sends a message containing a RST to the
server, asking the server to issue a SCT. This message must be signed and encrypted by
the client using the server’s public key.

2. RequestSecurityTokenResponse RSTR: The server responds with a RSTR message,
containing the requested SCT. This message must be signed and encrypted by the server
using the client’s public key. The SCT must be used for signing and encrypting any
message of the subsequent message flow.

64

10.

6 TEST RESULTS

CreateSequence: The client sends a wsrm:CreateSequence message to the server. This
message includes a wss:SecurityContextReference to reference the SCT received in
step 2. This SCT is used to sign the wsrm:CreateSequence message and encrypt the
wss:Signature.

CreateSequenceResponse: The server responds to the CreateSequence request with a
wsrm:CreateSequenceResponse message. This message is also signed and the wss:Signa
ture is encrypted using the SCT.

. Payload Message: The client now sends signed and encrypted messages containing the

payload of this communication. Each payload message contains a WS-ReliableMessaging
sequence header containing at least the sequence identifier and the according message
number of this message in the sequence. In contrast to the previous two and following
five messages, the payload messages have an encrypted env:Body.

SequenceAcknowledgement: The server acknowledges the receipt of the payload mes-
sage(s) with a wsrm: SequenceAcknowledgement. The scenario definition proposes a single
wsrm:SequenceAcknowledgement message with an empty env:Body. The acknowledg-
ment headers are also signed and the wss:Signature is encrypted.

TerminateSequence: As soon as the client has received the acknowledgments for each
message within the message sequence, it closes this sequence using the wsrm:Terminate-
Sequence message defined by WS-ReliableMessaging. This message is signed and the
wss:Signature is encrypted, too.

TerminateSequenceResponse: The server confirms the termination of the sequence
with a signed wsrm:TerminateSequenceResponse message. The wss:Signature of this
message is encrypted.

CancelSecurityToken: After termination of the WS-ReliableMessaging sequence, the
client asks the server for cancellation of the WS-SecureConversation. The WS-Addressing
header elements, the wss:Signature, and the wsu:Timestamp are integrity protected, ad-
ditionally the signature is also encrypted, whereas the message env:Body is not protected.

CancelSecurityTokenResponse: The server confirms the wst:CancelTarget with a
wst:RequestedTokenCancelled message. This message is protected in the same way as
the wst:CancelTarget message.

Once the secure session is started, sender and receiver may create multiple WS-Reliable-
Messaging sessions for message transmission, as the publications do not impose any restrictions
on that. However, in order to fulfill the requirements of the Secure WS-ReliableMessaging Sce-
nario each WS-ReliableMessaging session that is started within the WS-SecureConversation
session must be closed or terminated within the same session. After the security context is
established, all signature and encryption processes are performed using keys derived from the
SCT. The last two messages, canceling the security context, are protected using SCT-derived
keys, too.

Table 9 enlists the requirements of the scenario definitions for confidentiality and integrity
protection. The corresponding message type number is put in the first column. The other

6.3 Secure WS-ReliableMessaging Scenario 65

columns show the key required for encrypting (enc) or signing (sig) the message elements
wss:Signature (Sign), env:Body, wsu:Timestamp (TS), WS-Addressing headers (WS-A), WS-
ReliableMessaging headers (WS-R), and wss:EncryptedKey (EncKey). The entry SKy stands
for a session key, which is usually encrypted using the receivers public key (PuKy). The private
key of a party is abbreviated PrKy. If a wsc:SecurityContextToken is used to derive keys,
these keys are labeled as DKy x. The indices X and Y are variables that are substituted in the
Table. Instead of the X a number is inserted to identify different instances of the corresponding
key type. These instances are independent of the type of party. The index Y determines
whether the client (c) or the service (s) is the owner of the key, e.g., PrKg denotes that the
key used for the specified operation is the private key of the server, while DK stands for a
key derived from a SecurityContextToken by the client. Since multiple derived keys may be
used in a SOAP message, each derived key has an assigned number, here '1’. The o’ symbol
indicates that the corresponding element is present, but not protected, whereas the o’ means
that the corresponding element is not present in this message.

Msg | Sign Body TS WS-A WS-R EncKey
No | enc enc ‘ sig sig sig sig enc
1 SK; PrKc o PuKg
2 SK2 PT’KS e} PUKC
3 DKCI L] DKCQ e} @)
4 DKSI o DKSQ e} @)
5 DKo DKy o
6 DKg ° ° | DKgs o
7 DKCl o DKCQ @)
8 DKSl o DKSQ @)
9 DKCI L] DKCQ @)
10 DKSI o DKSQ @)

Table 9: Message protection requirements and keys required for protection realization defined
by the scenario definitions

The message exchange of the Secure WS-ReliableMessaging Scenario requires honest senders
and receivers. Each message received has to pass successfully through the decryption, the
signature check, and the timestamp check. If one of these steps fails, the communication
must be aborted with a failure. Since this work does not provide robustness tests of the WS-*
implementations, the case when sender or recipient of a message acts unexpected or dishonestly
is out of scope.

Thus, the Secure WS-ReliableMessaging Scenario combines features of the following WS-*
standards:

o WS-Security

o WS-Trust

e WS-SecureConversation

66 6 TEST RESULTS

e WS-ReliableMessaging
e WS-Addressing

In addition to these standards, the scenario also employs WS-Policy, WS-Security Policy, and
WS-ReliableMessaging Policy (Sun GlassFish Platform) resp. the according policy types (IBM
WebSphere Platform) for specifying the policies of the involved services. Unfortunately, none
of the scenario definitions gives a policy configuration. The policy configuration of the Secure
WS-Reliable Messaging Scenario has to be derived from the message sequence and the security
requirements of the scenario descriptions. The policy configuration of this scenario is presented
in section 6.3.1, section 6.3.2 analyzes the results of the test runs with regard to scenario
compliance.

6.3.1 Policy Configuration

Although the Secure WS-ReliableMessaging Scenario is a well-known and practice-relevant
application scenario, no policy configuration meeting the requirements of this use case is pub-
lished. It is for this reason that the policy configuration must be extracted from the specified
requirements in [BMPVO06], the concrete SOAP messages defined by [GHB05], and the message
sequence specified by [BMPV06], [GHB05], and [WS-08, pages 28-36].

The Secure WS-ReliableMessaging Scenario is a combined application scenario of the WS-
* frameworks WS-ReliableMessaging, WS-Security, WS-Trust, and WS-SecureConversation.
First, a secure session using WS-SecureConversation is established, and then a WS-ReliableMes
saging sequence is started. The secure session is established in bootstrap messages, which are
protected using WS-Security assertions (see Listing 12). The protection of the payload message
flow is specified as WS-Security Protection Assertions (see Listing 13 and 14).

Listing 11 shows the policy for a Web service realizing the Secure WS-ReliableMessaging
Scenario. This policy must define the use of WS-ReliableMessaging (lines 5-7) and WS-
Addressing (lines 9-11) as well as the binding for the secure session (lines 13-43). The WS-
ReliableMessaging assertion activates the use of WS-ReliableMessaging within the secure ses-
sion. Neither [BMPV06] nor [GHBO05] allow to draw a conclusion about the delivery assurance
to be used in the scenario or whether the WS-ReliableMessaging sequence should be bound to
a security token using the wsrmp:SequenceSTR assertion. In contrast to the imprecise specifica-
tion for the use of WS-ReliableMessaging, both publications require the use of WS-Addressing.
The WS-Addressing assertion enables the use of message addressing properties, e.g., wsa:To,
wsa:Action, wsa:MessageID, or wsa:RelatesTo. These properties are obligatory for the whole
scenario (messages one to ten).

The setup of the secure session is denoted in the sp:SymmetricBinding assertion, since the
session key is symmetric. A sp:SecureConversationToken is established as protection token.
This token is the base for signature and encryption key derivation (sp:RequireDerivedKeys as-
sertion). The sp:BootstrapPolicy is the policy used to obtain the sp:SecureConversation-
Token from the token issuer (see Listing 12 for a specification of this policy). Within the se-
cure session the sp:Basic128 algorithm is used for encryption, since [BMPV06] and [GHBO5]

6.3 Secure WS-ReliableMessaging Scenario 67

propose 128-bit cryptography. Considering the examples of [GHBO05] message structure, the
sp:Layout of the SOAP messages is a sp:Strict layout (see [OAS09d, pages 52/53]) and a
wsu:Timestamp must be included. Both aspects are not specified in [BMPV06]. A significant
difference between the two scenario specifications is the protection order. Whereas [GHBO05]
states that “signature occurs before encryption” [GHBO05, page 35] (first sign the body and
then encrypt body and signature), [BMPV06] proposes to encrypt the message body first,
then to sign the corresponding message parts including the env:Body, and finally to encrypt
the signature. Since [BMPV06] gives a formal cryptographic analysis of this scenario, the
sp:EncryptBeforeSigning assertion has been chosen. The sp:EncryptSignature assertion
requires to encrypt the wss:Signature.

1 <wsp:Policy wsu:Id="SecureRMSessionBinding">

2 <wsp:ExactlyOne>

3 <wsp:All>

4

5 <wsrmp:RMAssertion>

6 <wsp:Policy />

7 </wsrmp:RMAssertion>

8

9 <wsam:Addressing>

10 <wsp:Policy />

11 </wsam:Addressing>

12

13 <sp:SymmetricBinding>

14 <wsp:Policy>

15 <sp:ProtectionToken>

16 <wsp:Policy>

17 <sp:SecureConversationToken>
18 <wsp:Policy>

19 <sp:RequireDerivedKeys />
20 <sp:BootstrapPolicy>
21 <!--

22 See the XML listing containing the BootstrapPolicy
23 -=>

24 </sp:BootstrapPolicy>
25 </wsp:Policy>

26 </sp:SecureConversationToken>
27 </wsp:Policy>

28 </sp:ProtectionToken>

29 <sp:AlgorithmSuite>

30 <wsp:Policy>

31 <sp:Basic128 />

32 </wsp:Policy>

33 </sp:AlgorithmSuite>

34 <sp:Layout>

35 <wsp:Policy>

36 <sp:Strict />

37 </wsp:Policy>

38 </sp:Layout>

39 <sp:IncludeTimestamp />

40 <sp:EncryptBeforeSigning />

41 <sp:EncryptSignature />

42 </wsp:Policy>

43 </sp:SymmetricBinding>

44

45 </wsp:All>

46 </wsp:ExactlyOne>

68 6 TEST RESULTS

47 </wsp:Policy>

Listing 11: The WS-Policy for the Secure WS-ReliableMessaging Scenario

As mentioned earlier, the issuance of a sp:SecureConversationToken requires a sp:Boots—
trapPolicy. The sp:BootstrapPolicy defines the policy for the sp:SecureConversation-
Token request and the sp:SecureConversationToken issuance. [BMPV06] and [GHBO05] stip-
ulate the use of X509 certificates in the sp:BootstrapPolicy, which are certified by a CA.
This approach is realistic in B2Bi, however, for the sake of simplicity, client and service are in
possession of a trusted X509 certificate of each other. This change of the scenario does not have
any effect on the policy configuration or the SOAP message traffic between client and service,
and is therefore not relevant in this work.

The sp:BootstrapPolicy in Listing 12 uses an sp:AsymmetricBinding (public-key cryptog-
raphy) with a sp:X509Token for the initiator and the recipient. The initiator should send his
public key as wss:BinarySecurityToken to the recipient, whereas the key of the recipient
must not necessarily be transmitted to the client. The sp:AlgorithmSuite, the sp:Layout,
the wsu:Timestamp inclusion, the protection order, and the sp:EncryptSignature instruction
are used as with the sp:SymmetricBinding of the main policy.

1 <wsp:Policy>

2 <sp:AsymmetricBinding>

3 <sp:Policy>

4 <sp:InitiatorToken>

5 <wsp:Policy>

6 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
<wsp:Policy>

N

8 <sp:WssX509V3Tokenl0 />

9 </wsp:Policy>

10 </sp:X509Token>

11 </wsp:Policy>

12 </sp:InitiatorToken>

13 <sp:RecipientToken>

14 <wsp:Policy>

15 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/Never">

16 <wsp:Policy>

17 <sp:WssX509V3Tokenl10O />

18 </wsp:Policy>

19 </sp:X509Token>

20 </wsp:Policy>

21 </sp:RecipientToken>

22 <sp:AlgorithmSuite>

23 <wsp:Policy>

24 <sp:Basic128 />

25 </wsp:Policy>

26 </sp:AlgorithmSuite>

27 <sp:Layout>

28 <wsp:Policy>

29 <sp:Strict />

30 </wsp:Policy>

31 </sp:Layout>

32 <sp:IncludeTimestamp />

33 <sp:EncryptBeforeSigning />

34 <sp:EncryptSignature />

35 </wsp:Policy>

6.3 Secure WS-ReliableMessaging Scenario 69

36 </sp:AsymmetricBinding>

37

38 <sp:SignedParts>

39 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" />
40 <sp:Header Namespace="http://www.w3.0rg/2005/08/addressing" />
41 <sp:Body />

42 </sp:SignedParts>

43

44 <sp:EncryptedParts>

45 <sp:Body />

46 </sp:EncryptedParts>

47 </wsp:Policy>

Listing 12: The sp:BootstrapPolicy of the sp:SecureConversationToken in the Secure WS-
ReliableMessaging Scenario

In addition to the security binding assertions, the sp:BootstrapPolicy specifies the message
elements to be protected. The scenario definition stipulates that the WS-Addressing headers,
the wsu:Timestamp, and the message env:Body are to be signed. The assertion in lines 39
and 40 of Listing 12 indicate that all WS-Addressing headers must be signed (for reasons of
compatibility the XMLNS of two WS-Addressing versions are specified), the assertion in line
41 denotes that the env:Body must be signed. The wsu:Timestamp of a SOAP message must
always be covered by a signature due to the sp: IncludeTimestamp definition in [OAS09d, page
51]. The encryption of the env:Body is regulated by lines 44-46, the encryption of the signature
is mandatory due to the sp:EncryptSignature element in the binding.

The protection assertions of the messages from the client to the service (see Listing 13) and
vice versa (see Listing 14) are similar to the assertions defined in the sp:BootstrapPolicy:
the WS-Addressing headers and the env:Body are intended for integrity protection, and the
env:Body is also encrypted. In addition, the WS-ReliableMessaging header sections are signed.

1 <wsp:Policy wsu:Id="SecureRMSessionInput" >

2 <sp:SignedParts>

3 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
4 <sp:Header Namespace="http://www.w3.0rg/2005/08/addressing"/>

5 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>

6 <sp:Header Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
7 <sp:Body />

8 </sp:SignedParts>

9 <sp:EncryptedParts>

10 <sp:Body />

11 </sp:EncryptedParts>

12 </wsp:Policy>

Listing 13: The WS-SecurityPolicy protection assertions for the input messages

<wsp:Policy wsu:Id="SecureRMSessionOutput" >
<sp:SignedParts>
<sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
<sp:Header Namespace="http://www.w3.o0rg/2005/08/addressing"/>
<sp:Header Namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"/>
<sp:Header Namespace="http://docs.oasis-open.org/ws-rx/wsrm/200702"/>
<sp:Body />
</sp:SignedParts>
<sp:EncryptedParts>
10 <sp:Body />

© N O Uk W N

70 6 TEST RESULTS

11 </sp:EncryptedParts>
12 </wsp:Policy>

Listing 14: The WS-SecurityPolicy protection assertions for the output messages

The policy defined in the Listings 11 to 14 is a standard compliant WS-Policy definition
of the Secure WS-ReliableMessaging Scenario. However, as the test results in section 6.1
show, the IBM WebSphere Platform is not always compliant to the standards. Moreover,
the policy set concept defines other requirements for the protection assertions. Considering
the results of section 6.1.4, the IBM WebSphere Platform is not able to process the asser-
tions sp:EncryptSignature and sp:EncryptBeforeSigning correctly. In addition, the IBM
WebSphere Platform does not automatically sign the wsu:Timestamp, which is a requirement
defined in [OAS09d, page 51]. IBM provides a workaround for those problems concerning the
signing of the wsu:Timestamp and the encryption of the wss:Signature using XPath expres-
sions to define the message elements to be signed and/or encrypted. The XPath expression
to access the corresponding elements is specified in the sp:EncryptedElements (lines 10-17)
and sp:SignedElements (lines 1-8) assertions. In order to guarantee interoperability with dif-
ferent SOAP versions, the assertions are inserted twice with different namespaces. The use
of XPath is mandatory in these assertions, since none of the security header elements, such
as the wsu:Timestamp or the wss:Signature, are accessible in the sp:EncryptedParts and
sp:SignedParts assertions. Interestingly, the IBM WebSphere Platform does not provide any
possibility to specify the protection order of the SOAP message (the sp:EncryptBeforeSigning
assertion must be omitted). Listing 15 shows the protection assertions necessary to meet the
requirements of an integrity protected wsu:Timestamp and an encrypted wss:Signature (the
sp:EncryptSignature assertion is no longer necessary in the policy). The XML code of Listing
15 must be added to the protection assertions in the Listings 12, 13, and 14.

1 <sp:SignedElements>
2 <sp:XPath>
3 /*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/’ and local-name ()=’
Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and
local-name ()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/
0asis -200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]/*[
namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss -
wssecurity-utility-1.0.xsd’ and local-name()=’Timestamp’]
4 </sp:XPath>
5 <sp:XPath>
/*[namespace-uri()="http://www.w3.0rg/2003/05/soap-envelope’ and local-name ()=’
Envelope’]/*[namespace-uri()="http://www.w3.0rg/2003/05/soap-envelope’ and local-
name () =’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/o0asis
-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]/*[namespace-
uri()=’http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility
-1.0.xsd’ and local-name()=’Timestamp’]
7 </sp:XPath>
8 </sp:SignedElements>

(=]

10 <sp:EncryptedElements>

11 <sp:XPath>

12 /*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name ()=’
Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and
local -name ()=’Header’]/*[namespace-uri()="http://docs.oasis-open.org/wss/2004/01/
oasis -200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]/*[
namespace-uri()=’http://www.w3.0rg/2000/09/xmldsig#’ and local-name()=’Signature’
]

6.3 Secure WS-ReliableMessaging Scenario 71

13 </sp:XPath>
14 <sp:XPath>
15 /*[namespace-uri()=’http://wuw.w3.0rg/2003/05/soap-envelope’ and local-name ()=’

Envelope’]/*[namespace-uri()=’http://www.w3.0rg/2003/05/soap-envelope’ and local-
name () =’Header’]/*[namespace-uri()="http://docs.oasis-open.org/wss/2004/01/oasis
-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]/*[namespace-
uri()=’http://www.w3.0rg/2000/09/xmldsig#’ and local-name()=’Signature’]

16 </sp:XPath>

17 </sp:EncryptedElements>

Listing 15: The additional WS-SecurityPolicy protection assertions of the IBM WebSphere
Platform

However, the results presented in section 6.1.2 show that the Sun GlassFish Platform does not
accept the XPath expression of the sp:EncryptedElements and sp:SignedElements. On that
score, these assertions must not be present in the policy deployed on the Sun GlassFish Platform.
Yet, the Sun GlassFish Platform requires an additional change to the policy configuration,
i.e., the sp:RequireKeyIdentifierReference assertion has to be added in the sp:X509Token
assertion of the sp:AsymmetricBinding of the bootstrap policy. Without this amendment the
Sun GlassFish client is unable to resolve the reference to the security token.

6.3.2 Test Execution & Test Result

Considering the platform-specific adaptations needed for WebSphere and GlassFish policies so
far, it is clear that it is not possible to create a single Secure WS-ReliableMessaging Scenario-
policy for both platforms. Moreover, the test results of section 6.1 show that an implementation
of the Secure WS-ReliableMessaging Scenario across these platforms is not possible because the
basic encryption/signature/reliability primitives are not compatible. Therefore, this section
analyzes the SOAP message traffic with regard to scenario and standard compliance for each
platform individually.

The message sequence and the requirements concerning encryption and signature of message
parts, intended by the scenario definitions, have already been discussed in the previous section.
Now, these policies are deployed on the corresponding platforms. The subsequent procedure is
in accordance with the test method of this work (cf. section 4), i.e., invocation of the service by
a QoS-aware client, logging of the SOAP message traffic, and analysis of the captured message
trace.

The analysis of the test run on the Sun GlassFish Platform shows a close match to the scenario
definitions. Yet, the results obtained slightly deviate from the expected results, since the
wss:Signature is not encrypted when the env:Body is not encrypted. This concerns the
message types 3, 4, 7, 8, and 9. Message type 6 contains an encrypted and signed env:Body,
although the scenario definitions intend an empty and unprotected env:Body. Although this
is a deviation from the scenario definition, the behavior of the Metro WS-Stack is standard
compliant since the “primary signature element is NOT REQUIRED to be encrypted [...| when
there is nothing in the message that is covered by this signature that is encrypted.” [OAS09d,
lines 1730/1731]. Surprisingly, the env:Body of message type 10 is encrypted, and therefore
the wss:Signature is also encrypted.

72 6 TEST RESULTS

Interestingly, the Sun GlassFish Platform first sends a wsrm:CloseSequence message and then
a wsrm:TerminateSequence message to terminate the sequence. The opposite party answers
both messages with a corresponding response message. Although the Sun GlassFish Platform
message structure differs from the scenario description, this is a minor deviation since both
message types are protected in exactly the same way and both have the same purpose. There-
fore, the four messages are treated as a two-part message type 7 and 8 in the scenario analysis
below.

Table 10 summarizes the results of the scenario analysis in the Sun GlassFish environment.
The Table shows the protected message parts and the keys used for protection. The notational
conventions correspond to the ones defined for Table 9.

Msg | Sign Body TS WS-A WS-R EncKey
No | enc enc ‘ sig sig sig sig enc
1 SK1 PTKC o PUKS
2 SK, PrKg o PuKe
3 ® DKCQ o e)
4 DKSQ O o}
5 DKe DKco o
6 DKg DKgo o
7 [J DKCQ ¢)
8 ° DKgo o
9 ° DKo o o
10 DKg DKgo o o

Table 10: Message protection and keys used for protection realization on the Sun GlassFish
Platform

Compared to the Sun GlassFish Platform, the results obtained from the test runs on IBM Web-
Sphere Platform deviate significantly from the scenario definitions. Considering the message
sequence of the WebSphere test run, the fact that neither the WS-ReliableMessaging sequence
nor the WS-SecureConversation session is terminated or canceled is striking. On the IBM
WebSphere Platform, sequences or sessions have to be closed explicitly by addressing the WS-
ReliableMessaging sequence in the source code of a client application. As aforesaid, the scope
of this work does not include specific source code adaptations, but only use QoS features that
are transparent to the client application.

However, not only the message sequence is not scenario compliant, but also the structure of
each particular message: the wsu:Timestamp has no expiration date, the message env:Body is
always encrypted, even when the scenario does not intend a confidentiality protection, and the
IBM WebSphere Platforms only uses a wss:SecurityTokenReference instead of an embed-
ded wsc:SecurityContextToken. Similar to the results of the test run on the Sun GlassFish
Platform, message type 6 has an integrity and confidentiality protected env:Body which is not
scenario compliant. Table 11 enlists the protected parts and gives an overview of the keys used
to realize the protection. The notation corresponds to the Tables 9 and 10.

73

Msg | Sign Body TS WS-A WS-R EncKey
No | enc enc ‘ sig sig sig sig enc

1 SK; PrKq o PuKg

2 SK, PrKg o PuK¢

3 DK DKeo) o

4 DKSl DKSQ o O

) DKy DKeo o

6 DKg DKgo o

Table 11: Message protection and keys used for protection realization on the IBM WebSphere
Platform

7 Related Work

“Web service interoperability” and “Web services testing” are current topics in both, science
and industry.

The industry established the WS-I** which is “is an open industry organization chartered to
establish Best Practices for Web services interoperability, for selected groups of Web services
standards, across platforms, operating systems and programming languages.”® The deliver-
ables of the WS-I are the so-called profiles, which provide guidelines on how Web services
specifications should be combined for best interoperability, e.g., the “Basic Security Profile” or
the “Reliable Secure Profile”. However, the WS-I only provides “Best Practices for Web services
interoperability” and does not attend to full compatibility of the WS-* framework implementa-
tions. In contrast to the approach of the WS-1, this work targets to a full compatibility analysis
of the WS-* frameworks, since Best Practices are not always sufficient to meet real B2Bi needs.

Nevertheless, “Web services interoperability” is also a topic in scientific publications. [SV09]
discusses the interoperability issues seen in Web services, focusing on Web services implemented
in different environments (Sun JEE and Microsoft .NET). Even for QoS-unaware Web services
communication, [SV09] detects incompatibility issues and therefore shows that compatibility
testing in up-to-date SOAs is still a compulsory task. Whereas [SV09] focuses on the static
properties of Web services, even the dynamic behavior of Web services may be a reason for in-
compatibility. On that account, e.g., [BSBM04] proposes a formal, state transition-based, model
to determine the compatibility of Web services, whereas [Mar03] proposes a petri net-driven
approach for the same purpose. The publications of [SV09], [Mar03], and [BSBM04] show that
there are two dimensions of compatibility to be regarded in Web services communication: the
structure, on the one hand, and the dynamic behavior, on the other hand. [PF04] summarizes
both issues in his examination of Web services substitutability and establishes four reasons for
incompatibility: structure, value, encoding, and semantics. These publications show why Web
services might be incompatible and what types of incompatibility may occur. Although the
related work presented in this paragraph focuses on the functional properties of Web services,
the non-functional properties are subject to the same problems. However, the WS-* frameworks

“http:/ /www.ws-i.org
4 Taken from the “WS-I Overview Data Sheet”

74 7 RELATED WORK

in current scientific publications on this subject are not under consideration. Therefore, this
work focuses on the determination of the interoperability of the non-functional Web services
properties.

“Interoperability testing” is not extensively researched in the Web services domain. However,
there are publications in the field of communication protocols dealing with interoperability is-
sues. Since most WS-* frameworks specify sophisticated communication protocols to guarantee
QoS features, the works in the field of protocols are related to this work. For example, [LLY04]
discusses the interoperability of protocols using and minimizing formal graphs. Especially the
generation of possible test cases for interoperability testing is a current topic in communication
protocols, e.g., [DV05], [DVO07], and [DV09]. [Kat08] transforms these approaches to generate
test cases for interacting services automatically. These publications show how test cases for
interoperability tests are designed and generated. The general method of these papers has been
adapted for this work to prove the interoperability of the WS-* frameworks.

Although [Kat08] defines a Web services testing approach, QoS aspects for the services are
missing in this consideration. Interestingly, the term quality of service with reference to Web
services has an ambiguous meaning. There are some QoS definitions that are restricted to
quantitatively measurable properties, such as the latency of a service [TGNT03] in contrast to
the QoS definition of this work, which includes, i.a., security and reliability (according to the
QoS definitions of, e.g., [OMBO07], [Men02], etc.).

Very few publications consider SOA-testing with regard to QoS-features. [CP06] and [Ger08]
discuss challenges of SOA testing, but the QoS aspects are limited to quantifiable factors,
such as latency. However, both publications regard building trust between service and client
as a “challenge”, but do not refer to WS-Trust or WS-Security. [BAPO7] proposes a QoS
Test-Bed Generator for Web Services, but only defines latency and reliability as QoS features.
Although [SKO07] provides an evaluation of the WS-Security implementation of the Apache
Axis2 SOAP/WSDL/Web services engine, the paper only considers the processing time and
message size when using different WS-Security features. In contrast to these publications, this
work discusses QoS with respect to Web services according to the definition of [OMBO07] and
tests the compatibility of these features using different implementations.

I0)

8 Conclusion & Future Work

Considering related work, there is no approach that analyzes the QoS frameworks of Web
services, i.e., WS-Security, WS-ReliableMessaging, etc., with regard to interoperability issues.
Therefore, this work establishes a test method for WS-* interoperability testing and applies
this method to two JEE servers using different WS-* implementations.

Based on the SOA definition by OASIS, the distributed services of a SOA “may be under the
control of different ownership domains” [OAS06b, page 8, lines 128/129]. The “different owner-
ship domains” frequently include technical aspects, such as the Web services platforms and thus
also the WS-* implementations. This work and related work (section 7) imply that platform
heterogeneity is one of the central problems of B2Bi in Web services based SOAs. Therefore,
Heather Kreger’s statement that “Web services have no value if they’re not interoperable, and
interoperability is based on standards compliance” [Lea04] retains its validity also for the WS-*
frameworks. Despite having generally accepted specifications, the implementations may deviate
from these specifications or omit some features. The introduction has raised the research ques-
tion whether it is possible to establish a secure and reliable connection in a Web services based
SOA solution using WS-Security and WS-ReliableMessaging based on different Web services
stack (WS-Stack) implementations.

To answer this question, it is necessary to examine the feature coverage and the feature com-
patibility of the implementations. Therefore, this work proposes a test method that employs
the specifications of the WS-* features as the starting point to develop a test plan. First, the
very basic features of the frameworks are analyzed to create a structured test plan containing
all features and settings of a feature of a standard. With regard to interdependencies, each
setting of a feature is mapped to a test case which tests the availability of a setting and a
feature in an implementation (using a platform-internal test run) and its compatibility across
platforms. Second, the available and compatible features are combined to more extensive test
cases regarding sensible restrictions to the test cases to prevent the test case explosion problem.
The test case combination is an iterative process, that ends with highly complex scenarios. In
the context of WS-Security and WS-ReliableMessaging use, the Secure WS-ReliableMessaging
Scenario is a sophisticated practical use case and is therefore employed as final test case.

The test results of the isolated function tests show that a QoS-unaware simple SOAP use case
is realizable in every case. However, the QoS-aware test cases detect several problems, starting
with the unavailability of whole standards on a platform (e.g., WS-RM Policy on the WAS or
XPath on the GlassFish server) up to bugs and other problems in the implementation. The
analysis of the isolated function test results reveals four main reasons for failed tests:

o A feature or a setting of a feature is not implemented, e.g., unimplemented security token
types on both platforms

e Enabling technologies for a feature are not available, e.g.:

— WS-RM Policy on the IBM WebSphere Platform
— XPath on the Sun GlassFish Platform

76 8 CONCLUSION & FUTURE WORK

e The implementation deviates from the standard definition of a feature, e.g.:

— Realization of the SSL-transport of SOAP messages or the sp:KerberosToken im-
plementation on the IBM WebSphere Platform

— Signature of the env:Body element does not cover the whole body on the Sun Glass-
Fish Platform

e Problems with the processing of features or their SOAP representation, e.g., sp:User—
NameToken callback handler does not work on the IBM WebSphere Platform

The variety of failures during the compatibility analysis makes most combined test cases re-
dundant, since hardly any reasonable combination of features is realizable. Although the test
results of the isolated test cases support the conclusion that the Secure WS-ReliableMessaging
Scenario is not executable as a cross-platform test case, the scenario is still performed due to
its practical relevance for the platform-internal test runs. The results of these test runs show
that neither the IBM WebSphere Platform nor the Sun GlassFish Platform is able to imple-
ment the scenario exactly as intended by the definitions. Whereas the Sun GlassFish Platform
reveals minor deviations from the scenario, e.g., regarding the encryption of the env:Body and
wss:Signature elements, the IBM WebSphere Platform overprotects the messages by encrypt-
ing any SOAP env:Body. Regarding the message protection, the IBM WebSphere Platform
overfulfills the scenario requirements, but other scenario requirements are not met: the can-
celation of the secure session and the termination of the WS-ReliableMessaging sequence are
missing. However, no matter how far the test runs on both servers are scenario compliant, both
do not meet the scenario definition exactly and are therefore not 100 % scenario compliant.
Thus, none of both scenarios implements the formally verified scenario of [BMPV06].

Summarizing the results of this work, the answer of the research question is as follows: It
is possible to leverage selected security or reliability features in a Web services based SOA
solution using WS-Security and WS-ReliableMessaging based on different Web services stack
(WS-Stack) implementations. However, it must be stated that this positive result is only valid
for a few combinations of features and for certain service/client relationships of the platforms.
For example, a WebSphere client is not able to consume a GlassFish WS-ReliableMessaging
policy correctly. Hence, interoperability of arbitrary WS-Security or WS-ReliableMessaging
features or combinations thereof cannot be taken for granted.

The results show, that the intended WS-* features must be pinpointed and tested for practical
use in heterogeneous SOA environments (at least for the WebSphere and the Metro imple-
mentation). To this end, the maturity level of the WS-* environments is too low - further
development and adjustment of the WS-Stack implementations may take several years. An-
other option is to leverage WS-* features by using homogeneous WS-Stack implementations,
e.g., Metro may be plugged into different application servers. For example, there have even
been efforts to introduce Metro to the IBM WebSphere Platform®°.

46Nikhil Thaker, Enabling a third-party JAX-WS application in WebSphere Application Server V6.1, IBM De-
veloper Works, available at http://public.dhe.ibm.com/software/dw/wes/1001_thaker2/1001_thaker2.
pdf

http://public.dhe.ibm.com/software/dw/wes/1001_thaker2/1001_thaker2.pdf
http://public.dhe.ibm.com/software/dw/wes/1001_thaker2/1001_thaker2.pdf

7

Certainly, the compatibility analysis should be applied to more WS-Stacks, e.g., the Apache
CXF*" project, in order to get more data for a general examination of the compatibility of
WS-* implementations. The further development of the current WS-Stacks might resolve in-
compatibilities, so that each compatibility analysis should be repeated after the release of a
new version. Since a compatibility analysis is an expensive project, automation of this process
is desirable. In addition to the standards examined in this work, a future approach should
include additional WS-* standards, such as WS-Coordination. Another interesting point in
the area of compatibility /interoperability testing is to examine the behavior of the WS-Stack
implementations in exception cases, e.g., how an implementation reacts when a message in
a WS-ReliableMessaging sequence with the delivery assurance ExactlyOnce disappears? All
these issues may serve as starting points for future work.

As great interest in academia and industry shows, the WS-* frameworks are seen as an enabling
technology for a broader use of Web services in B2Bi. However, interoperability is still one of
the core requirements for B2Bi use and the results of this work show that this requirement
cannot be met by all WS-* implementations. Therefore, the “second-generation Web services
specifications™® are not able to provide comprehensive QoS support, due to the shortcomings
of the tested implementations.

4Tavailable at http://cxf.apache.org
48Thomas Erl, Service-Oriented Architecture - Concepts, Technology, and Design, page 156, Prentice Hall,
Upper Saddle River, New Jersey, USA, 2005.

http://cxf.apache.org

78

REFERENCES

References

[BAPO7]

[BCTO6]

[BEAO5]

[BMPV06]

[Bro03]

[BSBMOA4]

[CLM*09]

[CPO6]

[dLPW07]

Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini. A QoS Test-Bed
Generator for Web Services. In Luciano Baresi, Piero Fraternali, and Geert-Jan
Houben, editors, Proceedings of the 7Tth International Conference on Web Engi-
neering (ICWE 2007), Como, Italy, July 2007, volume 4607 of Lecture Notes in
Computer Science, pages 17-31. Springer Verlag, Berlin/Heidelberg, Germany, July
2007.

Boualem Benatallah, Fabio Casati, and Farouk Toumani. Representing, analysing
and managing Web service protocols. Data & Knowledge Engineering, 58(3):Else-
vier, Amsterdam, Netherlands, pp. 327-357, September 2006.

BEA Systems, IBM Corporation, Microsoft Corporation Inc., TIBCO Software Inc.
Web Services Reliable Messaging Protocol (WS-ReliableMessaging), February 2005.
first specification (Version 1.0).

Michael Backes, Sebastian Modersheim, Birgit Pfitzmann, and Luca Vigano. Sym-
bolic and Cryptographic Analysis of the Secure WS-ReliableMessaging Scenario. In
Luca Aceto and Anna Ingdlfsdottir, editors, Proceedings of the 9th International
Conference on Foundations of Software Science and Computation Structure, vol-
ume 3921 of Lecture Notes in Computer Science, pages 428-445. Springer Verlag,
Berlin/Heidelberg, Germany, March 2006.

Gerald Brose. Securing Web Services with SOAP Security Proxies. In Proceedings of
the International Conference on Web Services 2003 (ICWS 03), Las Vegas, Nevada,
USA, pages 231-234, June 2003.

Lucas Bordeaux, Gwen Salaiin, Daniela Berardi, and Massimo Mecella. When are
Two Web Services Compatible? In Ming-Chien Shan and Umeshwar Dayal, editors,
Proceedings of the 5th International Workshop on Technologies in E-Services (TES
2004), Toronto, Canada, August 2004, volume 3324 of Lecture Notes in Computer
Science, pages 15-28. Very Large Data Base Endowment Inc. (VLDB Endowment),
Springer Verlag, Berlin/Heidelberg, Germany, September 2004.

Henry Cui, Raymond Josef Edward A. Lara, Rosaline Makar, Nicky Moelholm, and
Felipe Pittella Rodrigues. IBM WebSphere Application Server V7.0 Web Services
Guide. IBM Corporation, first edition, August 2009. IBM Redbook, available at
http://www.redbooks.ibm.com/redbooks/pdfs/sg247758.pdf.

Gerardo Canfora and Massimiliano Di Penta. Testing Services and Service-Centric
Systems: Challenges and Opportunities. IEEE IT Pro, (2):10-17, March/April
2006.

Pierre de Leusse, Panos Periorellis, and Paul Watson. Enterprise Ser-
vice Bus: An overview. Technical reports, s.o.c. science, University
of Newcastle upon Tyne, Newcastle, England, July 2007. available at
http://www.cs.newcastle.ac.uk /publications/trs/papers/1037.pdf.

REFERENCES 79

[DV05)

[DVO07]

[DV09)]

[FFO3]

[Ger08]

[GHBO5)

[IET93]
[1JCO8]

[ITUO0S]

[Kat08]

[Kre03]

Alexandra Desmoulin and César Viho. Formalizing Interoperability Testing: Qui-
escence Management and Test Generation. In Farn Wang, editor, Proceedings of
the 25th International Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE 2005), Taipei, Taiwan, October 2005, volume 3731 of
Lecture Notes in Computer Science, pages 533-537. Springer Verlag, Berlin/Heidel-
berg, Germany, October 2005.

Alexandra Desmoulin and César Viho. A New Method for Interoperability Test
Generation . In Alexandre Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang
Grieskamp, editors, Proceedings of the 19th International Conference on Testing
of Software and Communicating Systems (TestCom 2007), Tallinn, Estonia, June
2007, volume 4581 of Lecture Notes in Computer Science, pages 58—73. Springer
Verlag, Berlin/Heidelberg, Germany, June 2007.

Alexandra Desmoulin and César Viho. Formalizing interoperability for test case
generation purpose. International Journal on Software Tools for Technology Trans-
fer (STTT), 11(3):Springer Verlag, Berlin/Heidelberg, Germany, pp. 261-267, July
2009.

Christopher Ferris and Joel Farrell. What are Web Services. Communications of
the ACM, 46(6):p. 31, June 2003.

Gerardo Canfora and Massimiliano Di Penta. Service-Oriented Architecture Test-
ing: A Survey. In Andrea De Lucia and Filomena Ferrucci, editors, Revised Tutorial
Lectures of the International Summer Schools for Software Engineering (ISSSE 2006
- 2008), Salerno, Italy, volume 5413 of Lecture Notes in Computer Science, pages
78-105. Springer Verlag, Berlin/Heidelberg, 2006 - 2008.

Kirill Gavrylyuk, Ondrej Hrebicek, and Stefan Batres. WCF (Indigo) Interop-
erability Lab: Reliable Messaging. Word Document (.doc), 2005. available at
http://131.107.72.15/ilab/RM /WCFInteropPlugFest_RM.doc.

IETF. The Kerberos Network Authentication Service (V5), September 1993.

Ashok Iyengar, Vinod Jessani, and Michele Chilanti. WebSphere Business Integra-
tion Primer: Process Server, BPEL, SCA, and SOA. IBM Press, Upper Saddle
River, New Jersey, USA, first edition, 2008.

ITU-T, IETF. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, May 2008.

Kathrin Kaschner and Niels Lohmann. Automatic Test Case Generation for In-
teracting Services . In George Feuerlicht and Winfried Lamersdorf, editors, Re-
wised Selected Papers of the International Workshops on Service-Oriented Comput-
ing (ICSOC 2008), Sydney, Australia, December 2008, volume 5472 of Lecture Notes
in Computer Science, pages 66-78. Springer Verlag, Berlin/Heidelberg, Germany,
December 2008.

Heather Kreger. Fulfilling the Web Services Promise. Communications of the ACM,
46(6):pp. 29-34, June 2003.

80

[Lea04]

[LLY04]

[Lud03]

[Mar03]

[Men02]

[Men07]

[OAS02]
[OAS05]

[OASO06a]

[OASO6D]
[OAS06¢]
[OASO6d]

[OASO06e]
[OASO6]

[OAS06g]
[OAS06h]
[OAS07]

REFERENCES

Neal Leavitt. Are Web Services Finally Ready to Deliver? IEEE Computer,
37(11):pp. 14-18, November 2004.

David Lee, Christine Liu, and Mihalis Yannakakis. Protocol System Integration,
Interface and Interoperability. In Teruo Higashino, editor, Revised Selected Papers
of the 8th International Conference on Principles of Distributed Systems (OPODIS
2004), Grenoble, France, December 2004, volume 3544 of Lecture Notes in Computer
Science, pages 1-19. Springer Verlag, Berlin/Heidelberg, Germany, December 2004.

Heiko Ludwig. Web Services QoS: External SLAs and Internal Policies - Or: How do
we deliver what we promise? In Proceedings of the Fourth International Conference
on Web Information Systems Engineering Workshops (WISEW’03), Rome, Italy,
pages 115-120. IEEE Computer Society, December 2003.

Axel Martens. On Compatibility of Web Services. Petri Net Newsletter, 65:Special
Interest Group on Petri Nets and Related System Models ot the Gesellschaft fiir
Informatik (GI) e.V., Bonn, Germany, pp. 12-20, October 2003.

Daniel A. Menascé. QoS Issues in Web Services. IEEE Internet Computing, 6(6):pp.
72-75, November 2002.

Falko Menge. Enterprise Service Bus. In Free and Open Source Software Conference
(FrOSCon 2007), Sankt Augustin, Germany, August 2007.

OASIS. UDDI Version 2.04 API Specification, July 2002.

OASIS. Assertions and Protocols for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0, March 2005.

OASIS. ebXML Business Process Specification Schema Technical Specification
v2.0.4, December 2006.

OASIS. Reference Model for Service Oriented Architecture 1.0, October 2006.
OASIS. Web Services Security Kerberos Token Profile 1.1, February 2006.

OASIS. Web Services Security Rights Expression Language (REL) Token Profile
1.1, February 2006.

OASIS. Web Services Security: SAML Token Profile 1.1, February 2006.

OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004),
February 2006.

OASIS. Web Services Security UsernameToken Profile 1.1, February 2006.
OASIS. Web Services Security X.509 Certificate Token Profile 1.1, February 2006.

OASIS. Web Services Business Process Fxecution Language Version 2.0, January
2007.

REFERENCES 81

[OAS09a]

[OAS09b)

[OAS09c]
[0AS09d]
[OAS09e]
[OMBO7]

[0S006]
[0S007]
[PFO4]

[Ren09]

[Ros10]

[SK07]

[Sun05]

[Sun10]

[Surl0]

[SV09]

OASIS. Web Services Reliable Messaging Policy Assertion (WS-RM Policy) Version
1.2, February 2009.

OASIS. Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.2,
February 2009.

OASIS. WS-SecureConversation 1.4, February 2009.
OASIS. WS-SecurityPolicy 1.3, February 2009.
OASIS. WS-Trust 1.4, February 2009.

Liam O’Brien, Paulo Merson, and Len Bass. Quality Attributes for Service-Oriented
Architectures. In Proceedings of the International Workshop on Systems Devel-
opment in SOA Environments (SDSOA), Minneapolis, Minnesota, USA, page 3.
ACM, May 2007.

OSOA. Service Data Objects For Java Specification Version 2.1.0, November 2006.
OSOA. SCA Assembly Model V1.00, March 2007.

Shankar R. Ponnekanti and Armando Fox. Interoperability Among Independently
Evolving Web Services. In Hans-Arno Jacobsen, editor, Proceedings of the In-
ternational Middleware Conference (Middleware 2004), Toronto, Canada, October
2004, volume 3231 of Lecture Notes in Computer Science, pages 331-351. ACM/I-
FIP /USENIX, Springer Verlag, Berlin/Heidelberg, Germany, October 2004.

Colin Renouf. Pro IBM WebSphere Application Server 7 Internals. Springer-Verlag,
New York, New York, USA, first edition, 2009.

RosettaNet. Message Control and Choreography (MCC) - Profile-Web Services
(WS), Release 11.00.00A, June 2010.

M. Shopov and N. Kakanakov. Evaluation of a single WS-Security implementation.
In Proceedings International Conference on Automatics and Informatics, Sofia, Bul-
garia, pages 39-42, October 2007.

Sun Microsystems. Metro Users Guide. available at
https://metro.dev.java.net/guide/.

Sun Microsystems. Java Business Integration (JBI) 1.0, August 2005.

Sun Microsystems. SunGlassFish Enterprise Server v2.1.1 Release Notes, April
2010. available at http://dlc.sun.com/pdf/821-0188/821-0188.pdf.

Ursula Sury. Digitale Signatur - quo vadis. Informatik Spektrum, 33(1):Springer
Verlag, Berlin/Heidelberg, Germany, pp. 82-83, February 2010.

Sujala Shetty and Sangil Vadivel. Interoperability issues seen in Web Services. Inter-
national Journal of Computer Science and Network Security (IJCSNS), 9(8):Seoul,
Republic of Korea, pp. 160-169, August 2009.

82

REFERENCES

[TGNT03] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A Concept for QoS

[W3C00]

[W3C01]

[W3C02]

[W3C04al
[W3C04b)
[W3C04c]
[W3C04d]
[W3C06a]
[W3C06b)
[W3C07a]
[W3C07D]

[W3C07¢]
[W3C07d]
[W3C07e]

[W3C0T1]

[W3C07g]

[W3COT7h]
[W3COTi]
[W3C07j]
[W3C08a)

[W3C08b]

Integration in Web Services. In Proceedings of the jth International Conference
on Web Information Systems Engineering Workshops (WISEW’03), Rome, Italy,
December 2003, pages 149-155. IEEE Computer Society, 2003.

W3C. SOAP Messages with Attachments, December 2000.

W3C. Web Services Description Language (WSDL) 1.1, March 2001.

W3C. XML Encryption Syntax and Processing, December 2002.

W3C. Web Services Architecture, Febuary 2004.

W3C. XML Schema Part 0: Primer Second Edition, October 2004.
W3C. XML Schema Part 1: Structures Second Edition, October 2004.
W3C. XML Schema Part 2: Datatypes Second Edition, October 2004.
W3C. Web Services Addressing 1.0 - Core, May 2006.
W3C. Web Services Addressing 1.0 - SOAP Binding, May 2006.
W3C. SOAP Version 1.2 Part 0: Primer (Second Edition), April 2007.

W3C.
2007.

SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), April

W3C. SOAP Version 1.2 Part 2: Adjuncts (Second Edition), April 2007.

W3C. Web Services Addressing 1.0 - Metadata, September 2007.

W3C. Web Services Description Language (WSDL) Version 2.0 Part 0: Primer,
June 2007.

W3C. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
gquage, June 2007.

W3C. Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts,
June 2007.

W3C. Web Services Policy 1.5 - Attachment, September 2007.
W3C. Web Services Policy 1.5 - Framework, September 2007.
W3C. XML Path Language (XPath) 2.0, January 2007.

W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition), fifth edition, Novem-
ber 2008.

W3C. XML Signature Syntax and Processing (Second Edition), second edition,
June 2008.

REFERENCES 83

[W3C09] W3C. Namespaces in XML 1.0 (Third Edition), third edition, December 2009.
[W3C10] W3C. Web Services Metadata Exchange (WS-MetadataExchange), March 2010.
[WS-08] WS-I1. WS-I RSP WG Usage Scenarios 1.0, December 2008.

[ZHMO97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit Test Coverage
and Adequacy. ACM Computing Surveys (CSUR), 29(4):pp. 366-427, December
1997.

84

A COMPLETE LIST OF THE FEATURES AND SETTINGS UNDER TEST

A Complete List of the Features and Settings under Test

] # ‘ Opl ‘ Op2 ‘ Mul ‘ Setting ‘ Definition
0] - | - | - |Basic SOAP IE
WS-ReliableMessaging Policy Assertions
1 - - 1 | Basic RMAssertion [OAS09a, 1. 132-134]
[OAS09a, 1. 141-144]
o | wor | - 0/1 | SequenceSTR [0AS09a, 1. 263-277]
0/1 | SequenceTransportSecurity [0AS09a, 1. 145-149)
[0AS09a, 1. 278-307]
1 | DeliveryAssurance/ExactlyOnce [OAS09a, 1. 166/167]
5 | ap | OB 1 | DeliveryAssurance/AtLeastOnce [OAS09a, 1. 168/169]
1 | DeliveryAssurance/AtMosttOnce [OAS09a, 1. 170/171]
0/1 | DeliveryAssurance/InOrder [OAS09a, 1. 172/173]
WS-SecurityPolicy Protection Assertions
0* | SignedParts/Body [OAS09d, 1. 427-429]
4 - - 0* | SignedParts/Header [OAS09d, 1. 430-447]
0* | SignedParts/Attachments [OAS09d, 1. 448-460]
5 - - 0* | SignedElements (XPath) [OAS09d, 1. 461-494]
0* | EncryptedParts/Body [OAS09a, 1. 523-527]
6 - - 0* | EncryptedParts/Header [OAS09a, 1. 528-544]
0* | EncryptedParts/Attachments [OAS09a, 1. 545-550]
7 - - 0* | EncryptedElements (XPath) [OAS09d, 1. 551-577]
8 - - 0* | ContEncElements (XPath) [OAS09d, 1. 578-604]
9 - - 0* | RequiredParts/Header [OAS09d, 1. 650-657]
10| - - 0* | RequriedElements (XPath) [OAS09d, 1. 612-635]
WS-SecurityPolicy Token Assertions
0/1 | IncludeToken/Never
0/1 | IncludeToken/Always
11 | XOR - 0/1 | IncludeToken/Once [OAS09d, 1. 663-694]
0/1 | IncludeToken/AlwaysToRecipient
0/1 | IncludeToken/AlwaysToInitiator
ol xor | - 0/1 | Token Issuer [OAS09d, 1. 696-700]
0/1 | Token Issuer Name [OAS09d, 1. 701-710]
3] - | - | 0/1 | Claims [OAS09d, L. 711-720]
0/1 | DerivedKeys [OAS09d, 1. 742-750]
14| XOR | - 0/1 | ExplicitDerivedKeys [OAS09d, 1. 751-754]
0/1 | ImpliedDerivedKeys [OAS09d, 1. 755-758]

Please continue reading on the next page

85

[# [Opl [Op2 [Mul | Setting

\ Definition

WS-SecurityPolicy Token Assertion Types

YOR 0/1 | UNT/NoPassword XOR UNT/HashPassword [OAS09d, 1. 819-826]
51 o 0/1 | UNT/Created OR UNT/Nonce [OAS09d, 1. 827-834]
XOR 0/1 | UNT/WssUsernameToken10 [OAS09d, 1. 846-848|
0/1 | UNT/WssUsernameTokenl1 [OAS09d, 1. 849-851]
16| - - 0/1 | IssuedToken [OAS09d, 1. 852-929]
0/1 | X509/RequireKeyIldentifierReference [OAS09d, 1. 991-993]
OR 0/1 | X609/RequireIssuerSerialReference [OAS09d, 1. 994-996]
0/1 | X609/RequireEmbeddedTokenReference [OAS09d, 1. 997-999]
0/1 | X5609/RequireThumbprintReference [OAS09d, 1. 1000-1002]
0/1 | X509/WssX509V3Token10 [OAS09d, 1. 1003-1005]
17 | OR 0/1 | X509/WssX509Pkcs7Token10 [OAS09d, 1. 1006-1008]
0/1 | X509/WssX509PkiPathV1Token10 [OAS09d, 1. 1009-1011]
XOR | 0/1 | X509/WssX509ViToken11 [OAS09d, 1. 1012-1014]
0/1 | X509/WssX509V3Token11 [0AS09d, 1. 1015-1017]
0/1 | X509/WssX509PkesTToken11 [0AS09d, 1. 1018-1020]
0/1 | X509/WssX509PkiPathViTokenl1 [OAS09d, 1. 1021-1023]
- 0/1 | Kerberos/RequireKeyIdentifierReference | [OAS09d, 1. 1078-1080]
18 | OR YOR 0/1 | Kerberos/WssKerberosV5ApReqTokenl1 [OAS09d, 1. 1081-1083]
0/1 | Kerberos/WssGssKerberosV5ApReqToken1l | [OAS09d, 1. 1084-1086]
0/1 | Spnego/MustNotSendCancel [OAS09d, 1. 1139-1142]
19| OR - 0/1 | Spnego/MustNotSendAmend [OAS09d, 1. 1143-1146]
0/1 | Spnego/MustNotSendRenew [OAS09d, 1. 1147-1150]
20 | oR ~ 0/1 | SecCtx/RequireExternalUriReference [OAS09d, 1. 1201-1203]
0/1 | SecCtx/SC13SecurityContextToken [OAS09d, 1. 1204-1206]
0/1 | SecConv/RequireExternalUriReference [OAS09d, 1. 1327-1329]
0/1 | SecConv/SC13SecurityContextToken [OAS09d, 1. 1330-1332]
21| om ~ 0/1 | SecConv/MustNotSendCancel [OAS09d, 1. 1333-1336]
0/1 | SecConv/MustNotSendAmend [OAS09d, 1. 1337-1340]
0/1 | SecConv/MustNotSendRenew [OAS09d, 1. 1341-1344]
0/1 | SecConv/BootstrapPolicy [OAS09d, 1. 1345-1347]
- 0/1 | Saml/RequireKeyIdentifierReference [OAS09d, 1. 1449-1451]
29 | o 0/1 | Saml/WssSamlV11TokenlO [OAS09d, 1. 1452-1454]
XOR | 0/1 | Saml/WssSamlV1iTokenll [OAS09d, 1. 1455-1457]
0/1 | Saml/WssSamlV20Tokenl1 [OAS09d, 1. 1458-1460]
- 0/1 | Rel/RequireKeyIdentifierReference [OAS09d, 1. 1520-1522]
0/1 | Rel/WssRelV10Token10 [OAS09d, 1. 1523-1525]
23 | OR YOR 0/1 | Rel/WssRelV20Token10 [OAS09d, 1. 1526-1528]
0/1 | Rel/WssRelV10tokenil [OAS09d, 1. 1529-1531]
0/1 | Rel/WssRelV20Token11 [OAS09d, 1. 1532-1534]
0/1 | Https/HttpBasicAuthentication [OAS09d, 1. 1576-1578]
24 XOR - Please continue reading on the next page

86

A COMPLETE LIST OF THE FEATURES AND SETTINGS UNDER TEST

[# [Opl [Op2 [Mul | Setting

\ Definition

0/1 | Https/HttpDigestAuthentication [OAS09d, 1. 1579-1581]
0/1 | Https/RequireClientCertificate [OAS09d, 1. 1582-1584]
25 - 0/1 | RsaKeyValueToken [OAS09d, 1. 1585-1675]

Please continue reading on the next page

87

[# [Opl [Op2 [Mul | Setting

\ Definition

WS-SecurityPolicy Security Binding Assertions

1 | Algorithm/Basic256 [OAS09d, 1. 1858-1860)

1 | Algorithm/Basic192 [OAS09d, 1. 1861-1863]

1 | Algorithm/Basic128 [OAS09d, 1. 1864-1866]

1 | Algorithm/TripleDes [OAS09d, 1. 1867-1869]

1 | Algorithm/Basic256Rsalb [OAS09d, 1. 1870-1872]

1 | Algorithm/Basic192Rsalb [OAS09d, 1. 1873-1875]

1 | Algorithm/Basic128Rsalb [OAS09d, 1. 1876-1878|

YOR 1 | Algorithm/TripleDesRsalb [OAS09d, 1. 1879-1881]

1 | Algorithm/Basic256Sha256 [OAS09d, 1. 1882-1884]

1 | Algorithm/Basic192Sha256 [OAS09d, 1. 1885-1887]

1 | Algorithm/Basic128Sha256 [OAS09d, 1. 1888-1890]

26 | AND 1 | Algorithm/TripleDesSha256 [OAS09d, 1. 1891-1893|
1 | Algorithm/Basic256Sha256Rsalb [OAS09d, 1. 1894-1896]

1 | Algorithm/Basic192Sha256Rsalb [OAS09d, 1. 1897-1899]

1 | Algorithm/Basic128Sha256Rsalb [OAS09d, 1. 1900-1902]

1 | Algorithm/TripleDesSha256Rsal5 [OAS09d, 1. 1903-1905]

0/1 | Algorithm/InclusiveC14N [OAS09d, 1. 1906-1909]

OR 0/1 | Algorithm/InclusiveC14N11 [OAS09d, 1. 1910-1915]

0/1 | Algorithm/SOAPNormalization [OAS09d, 1. 1916-1918|

0/1 | Algorithm/STRTransformi0 [OAS09d, 1. 1919-1921]

0/1 | Algorithm/XPath10 [OAS09d, 1. 1922-1924]

XOR | 0/1 | Algorithm/XPathFilter20 [0AS09d, 1. 1925-1927]

0/1 | Algorithm/AbsXPath [OAS09d, 1. 1928-1930]

1 | Layout/Strict [OAS09d, 1. 1954-1950]

57 | xoR _ 1 | Layout/Lax [OAS09d, 1. 1957-1959]
1 | Layout/LaxTsFirst [OAS09d, 1. 1960-1963]

1 | Layout/LaxTsLast [OAS09d, 1. 1964-1967]

1 | Transport/TransportToken [OAS09d, 1. 1995-1998]

03 | AND _ 1 | Transport/AlgorithmSuite [OAS09d, 1. 2001-2003]
0/1 | Transport/Layout [OAS09d, 1. 2004-2006]

0/1 | Transport/IncludeTimestamp [OAS09d, 1. 2007-2009]

YOR 1 | Symmetric/ProtectionToken [OAS09d, 1. 2065-2072]

1 | Symmetric/EncToken + SigToken [OAS09d, 1. 2052-2064]

1 | Symmetric/AlgorithmSuite [OAS09d, 1. 2073-2075]

0/1 | Symmetric/Layout [OAS09d, 1. 2076-2078]

29 | AND 0/1 | Symmetric/IncludeTimestamp [OAS09d, 1. 2079-2081]
AND | 0/1 | Symmetric/EncryptBeforeSigning [OAS09d, 1. 2082-2084]

0/1 | Symmetric/EncryptSignature [OAS09d, 1. 2085-2087]

0/1 | Symmetric/ProtectTokens [OAS09d, 1. 2088-2090]

0/1 | Symmetric/OnlySignEntireHeadersAndBody | [OAS09d, 1. 2091-2093]

Please continue reading on the next page

88 A COMPLETE LIST OF THE FEATURES AND SETTINGS UNDER TEST
| # | Opl | Op2 | Mul | Setting | Definition
XOR 1 | Asymmetric/InitiatorToken [OAS09d, 1. 2166-2177]
1 | Asymmetric/InitEncToken + InitSigToken | [OAS09d, 1. 2171-2184]
XOR 1 | Asymmetric/RecipientToken [OAS09d, 1. 2185-2191]
1 Asymmetric/RecEncToken + RecSigToken [OAS09d, 1. 2192-2203|
1 | Asymmetric/AlgorithmSuite [OAS09d, 1. 2204-2206]
30 | AND 0/1 | Asymmetric/Layout [OAS09d, 1. 2207-2209]
0/1 | Asymmetric/IncludeTimestamp [OAS09d, 1. 2210-2212]
AND | 0/1 | Asymmetric/EncryptBeforeSigning [OAS09d, 1. 2213-2215]
0/1 | Asymmetric/EncryptSignature [OAS09d, 1. 2216-2218|
0/1 | Asymmetric/ProtectTokens [OAS09d, 1. 2219-2221]
0/1 | Asymmetric/OnlySignEntireHeadersAndBody | [OAS09d, 1. 2222-2224]
WS-SecurityPolicy Supporting Tokens

- 1* | SupportingTokens/ [TokenAssertions] [OAS09d, 1. 2304/2305]
- 0/1 | SupportingTokens/[AlgorithmSuite] [OAS09d, 1. 2306-2309]
31 | amp 0* | SupportingTokens/SignedParts [OAS09d, 1. 2310-2313]
OR 0* | SupportingTokens/SignedElements [OAS09d, 1. 2314-2317]
0* | SupportingTokens/EncryptedParts [OAS09d, 1. 2318-2321]
0* | SupportingTokens/EncryptedElements [OAS09d, 1. 2322-2325]
- 1* | SignedSupTokens/[TokenAssertions] [OAS09d, 1. 2357/2358]
- 0/1 | SignedSupTokens/[AlgorithmSuite] [OAS09d, 1. 2359-2362]
39 | AND 0* | SignedSupTokens/SignedParts [OAS09d, 1. 2363-2366]
OR 0* | SignedSupTokens/SignedElements [OAS09d, 1. 2367-2370]
0* | SignedSupTokens/EncryptedParts [OAS09d, 1. 2371-2374]
0* | SignedSupTokens/EncryptedElements [OAS09d, 1. 2375-2378|
- 1* | EndorsingSupTokens/ [TokenAssertions] [OAS09d, 1. 2412/2413]
- 0/1 | EndorsingSupTokens/[AlgorithmSuite] [OAS09d, 1. 2414-2417]
33 | AND 0* | EndorsingSupTokens/SignedParts [OAS09d, 1. 2418-2421]
OR 0* | EndorsingSupTokens/SignedElements [OAS09d, 1. 2422-2425]
0* | EndorsingSupTokens/EncryptedParts [OAS09d, 1. 2426-2429]
0* | EndorsingSupTokens/EncryptedElements [OAS09d, 1. 2430-2433]
- 1* | EndSigSupTokens/[TokenAssertions] [OAS09d, 1. 2469/2470]
- 0/1 | EndSigSupTokens/[AlgorithmSuite] [OAS09d, 1. 2471-2474]
34 | AND 0* | EndSigSupTokens/SignedParts [OAS09d, 1. 2475-2478]
O0R 0* | EndSigSupTokens/SignedElements [OAS09d, 1. 2479-2482]
0* | EndSigSupTokens/EncryptedParts [OAS09d, 1. 2483-2486|
0* | EndSigSupTokens/EncryptedElements [OAS09d, 1. 2487-2490]

- 1* | SigEncSupTokens/[TokenAssertions]

- 0/1 | SigEncSupTokens/[AlgorithmSuite]
35 | AND O: S%gEncSupTokens/S?gnedParts (OAS09d, 1. 2491-2497]

R 0 SigEncSupTokens/SignedElements
0* | SigEncSupTokens/EncryptedParts

Please continue reading on the next page

89

| # | Opl | Op2 | Mul | Setting | Definition |
’ ‘ ‘ ‘ 0* ‘ SigEncSupTokens/EncryptedElements ‘ ‘
Please continue reading on the next page

90 A COMPLETE LIST OF THE FEATURES AND SETTINGS UNDER TEST
| # | Opl | Op2 | Mul | Setting | Definition
- 1* | EncSupTokens/ [TokenAssertions]
- 0/1 | EncSupTokens/ [AlgorithmSuite]
36 | AND 0% | EncSupTokens/SignedParts [0AS09d, 1. 2498-2511]
O0R 0 EncSupTokens/SignedElements
0* | EncSupTokens/EncryptedParts
0* | EncSupTokens/EncryptedElements
- 1* | EndEncSupTokens/ [TokenAssertions]
- 0/1 | EndEncSupTokens/[AlgorithmSuite]
37 | aAND O: EndEncSupTokens/S?gnedParts [0AS09d, 1. 2512-2518)]
R 0 EndEncSupTokens/SignedElements
0* | EndEncSupTokens/EncryptedParts
0* | EndEncSupTokens/EncryptedElements
- 1* | SigEndEncSupTokens/ [TokenAssertions]
- 0/1 | SigEndEncSupTokens/[AlgorithmSuite]
38 | AND OI S%gEndEncSupTokens/S%gnedParts (0AS09d, 1. 2519-2525]
OR 0 SigEndEncSupTokens/SignedElements
0* | SigEndEncSupTokens/EncryptedParts
0* | SigEndEncSupTokens/EncryptedElements
WS-SecurityPolicy WS-Security and WS-Trust Options
0/1 | Wss10/MustSupportRefKeyIdentifier [OAS09d, 1. 2676-2678|
29| oR _ 0/1 | Wss10/MustSupportRefIssureSerial [OAS09d, 1. 2679-2681]
0/1 | Wss10/MustSupportRefExternalURI [OAS09d, 1. 2682-2684]
0/1 | Wss10/MustSupportRefEmbeddedToken [OAS09d, 1. 2685-2687]
0/1 | Wss11/MustSupportRefKeyIdentifier [OAS09d, 1. 2710-2712]
0/1 | Wss11/MustSupportRefIssureSerial [OAS09d, 1. 2713-2715]
0/1 | Wss11/MustSupportRefExternalURI [OAS09d, 1. 2716-2718]
39| OR - 0/1 | Wss11/MustSupportRefEmbeddedToken [OAS09d, 1. 2719-2721]
0/1 | Wss11/MustSupportRefThumbprint [OAS09d, 1. 2722-2724]
0/1 | Wss11/MustSupportRefEncryptedKey [OAS09d, 1. 2725-2727]
0/1 | Wss11l/RequireSignatureConfirmation [OAS09d, 1. 2728-2730]
0/1 | Wst13/MustSupportClientChallenge [OAS09d, 1. 2821-2823]
0/1 | Wst13/MustSupportServerChallenge [OAS09d, 1. 2824-2826]
0/1 | Wst13/RequireClientEntropy [OAS09d, 1. 2827-2829]
0/1 | Wst13/RequireServerEntropy [OAS09d, 1. 2830-2832]
39| OR - 0/1 | Wst13/MustSupportIssuedTokens [OAS09d, 1. 2833-2835]
0/1 | Wst13/RequireRequestSecurityTokenCol. [OAS09d, 1. 2836-2838]
0/1 | Wst13/RequireAppliesTo [OAS09d, 1. 2839-2841]
0/1 | Wst13/ScopePolicylb [OAS09d, 1. 2842-2844]
0/1 | Wst13/MustSupportInteractiveChallenge | [OAS09d, 1. 2845-2847]

B Complete List of the Test Cases

| # | Feature | Case | Settings

0 | Basic SOAP 0.1 | Basic SOAP

0.2 | SOAP with Attachments

1 | Basic RMAssertion 1.1 -

2.1 | wsrmp:SequenceSTR

2 1S S it
CAUEnEe SeCHmy 2.2 | wsrmp:SequenceTransportSecurity

3.1 | wsrmp:ExactlyOnce

3.2 | wsrmp:AtLeastOnce

3.3 | wsrmp:AtMostOnce

3 | Delivery Assurance
3.4 | wsrmp:ExactlyOnce + wsrmp:InOrder

3.5 | wsrmp:AtLeastOnce + wsrmp:InOrder

3.6 | wsrmp:AtMostOnce + wsrmp:InOrder

4.1 | sp:Body

4 | SignedParts 4.2 | sp:Header

4.3 | sp:Attachments

5.1 | //Body/?

5 | SignedElements 5.2 | //Body
5.3 | //Header/?
6.1 | sp:Body

6 | EncryptedParts 6.2 | sp:Header

6.3 | sp:Attachments

71| //Body/?

7 | EncryptedElements 7.2 | //Body

7.3 | //Header/?

8.1 | //Body/?

8 | ContentEncryptedElements 8.2 | //Body

8.3 | //Header/?

9 | RequiredParts 9.1 | sp:Header

2
10 | RequiredElements 10.1 | //Header/"

10.2 | //Body/?

11.1 | sp:Never

11.2 | sp:0Once

11 | Token Inclusion 11.3 | sp:AlwaysToRecipient

11.4 | sp:AlwaysToInitiator

11.5 | sp:Always

12.1 | sp:Issuer (URL)

12| lssuer 12.2 | sp:IssuerName
13 | Claims 13.1 | sp:Claims
14.1 | sp:DerivedKeys
14 | Token Properties 14.2 | sp:ExplicitDerivedKeys

14.3 | sp:ImpliedDerivedKeys

Please continue reading on the next page

92

B COMPLETE LIST OF THE TEST CASES

| # | Feature

| Case | Settings

15

Username Token

15.1

Basic UNT

15.2

sp:NoPassword

15.3

sp:HashPassword

15.4

sp:Created

15.5

sp:Nonce

15.6

sp:Created + sp:Nonce

15.7

sp:WssUsernameToken10

15.8

sp:WssUsernameTokenll

16

IssuedToken

16.1

Basic IssuedToken

17

X509 Token

17.1

Basic X509Token

17.2

sp:RequireKeyldentifierReference

17.3

sp:RequirelssuerSerialReference

174

sp:RequireEmbeddedTokenReference

17.5

sp:RequireThumbprintReference

17.6

sp:WssX509V3Token10

17.7

sp:WssX509Pkcs7Token10

17.8

sp:WssX509PkiPathV1Token10

17.9

sp:WssX509V1Tokenl1l

17.10

sp:WssX509V3Tokenl1

17.11

sp:WssX509Pkcs7Tokenll

17.12

sp:WssX509PkiPathV1Tokenl1

18

Kerberos Token

18.1

Basic KerberosToken

18.2

sp:WssKerberosV5ApReqTokenl1l

18.3

sp:WssGssKerberosV5ApReqTokenl1l

19

SpnegoContext Token

19.1

Basic SpnegoContextToken

19.2

sp:MustNotSendCancel

19.3

sp:MustNotSendAmend

194

sp:MustNotSendRenve

20

SecurityContext Token

20.1

Basic SecurityContextToken

20.2

sp:RequireExternalUriReference

20.3

sp:3C13SecurityContextToken

21

SecureConversation Token

21.1

Basic SecureConversation Token

21.2

sp:RequireExternalUriReference

21.3

sp:3C13SecurityContextToken

21.4

sp:MustNotSendCancel

21.5

sp:MustNotSendAmend

21.6

sp:MustNotSendRenew

21.7

sp:BootstrapPolicy

22

Saml Token

22.1

Basic SamlToken

22.2

sp:WssSamlV11Token10

22.3

sp:WssSamlV11Tokenl1l

224

sp:WssSamlV20Tokenl1

23.1

Basic SecureConversation Token

23

REL Token

Please continue reading on the next page

93

| # | Feature

| Case | Settings

23.2

sp:RequireKeyldentifierReference

23.3

sp:WssRelV10Tokenl10

23.4

sp:WssRelV20Token10

23.5

sp:WssRelV10Tokenl1

23.6

sp:WssRelV20Tokenl11

24 | Https Token

24.1

Basic Https Token

24.2

sp:HttpBasicAuthentication

24.3

sp:HttpDigestAuthentication

244

sp:RequireClientCertificate

25 | KeyValue Token

25.1

Basic KeyValue Token

25.2

sp:RsaKeyValue

26 | AlgorithmSuite

26.1

sp:Basic256

26.2

sp:Basic192

26.3

sp:Basic128

26.4

sp:TripleDes

26.5

sp:Basic256Rsalb

26.6

sp:Basicl192Rsalb

26.7

sp:Basicl128Rsalb

26.8

sp:TripleDesRsalb

26.9

sp:Basic256Sha256

26.10

sp:Basic1928ha256

26.11

sp:Basic1285ha256

26.12

sp:TripleDesSha256

26.13

sp:Basic2565ha256Rsalb

26.14

sp:Basic1925ha256Rsalb

26.15

sp:Basic128Sha256Rsalb

26.16

sp:TripleDesSha2b6Rsalb

26.17

sp:InclusiveC14N

26.18

sp:InclusiveC14N11

26.19

sp:S0APNormalization

26.20

sp:S3TRTransforml0

26.21

sp:XPathl0

26.22

sp:XPathFilter20

26.23

sp:AbsXPath

27 | Layout

27.1

sp:Strict

27.2

sp:Lax

27.3

sp:LaxTsFirst

274

sp:LaxTsLast

28 | TransportBinding

28.1

Basic TransportBinding

28 %

WebSphere SSL Policy Type

28.2

sp:IncludeTimestamp

29.1

sp:EncryptionToken + sp:SignatureToken

29.2

sp:ProtectionToken

29 SymmetricBinding

Please continue reading on the next page

94 B COMPLETE LIST OF THE TEST CASES

| # | Feature | Case | Settings |
29.3 | sp:IncludeTimestamp
29.4 | sp:EncryptBeforeSigning
29.5 | sp:EncryptSignature
29.6 | sp:ProtectTokens
29.7 | sp:0OnlySignEntireHeadersAndBody
Please continue reading on the next page

95

| # | Feature

| Case | Settings

30

AsymmetricBinding

30.1

sp:

InitiatorToken

30.2

Sp:

InitEncToken + sp:InitSigToken

30.3

sp:

RecipientToken

30.4

sp:

RecEncToken + sp:RecSigToken

30.5

sp:

IncludeTimestamp

30.6

sp:

EncryptBeforeSigning

30.7

sp:

EncryptSignature

30.8

sp:

ProtectTokens

30.9

Sp:

OnlySignEntireHeadersAndBody

31

32

33

34

35

36

37

38

SupportingTokens

31.1

Basic sp:SupportingTokens

32.1

Basic sp:SignedSupportingTokens

33.1

Basic sp:EndorsingSupportingTokens

34.1

Basic sp:SignedEndorsingSupportingTokens

35.1

Basic sp:SignedEncryptedSupportingTokens

36.1

Basic sp:EncryptedSupportingTokens

37.1

Basic sp:EndorsingEncryptedSupportingTokens

38.1

Basic sp:SignedEndorsingEncryptedSupportingT.

39

WSS 1.0 Assertions

39.1

Sp

:MustSupportRefKeyIdentifier

39.2

sp:

MustSupportRefIssuerSerial

39.3

Sp

:MustSupportRefExternalURI

39.4

sp:

MustSupportRefEmbeddedToken

40

WSS 1.1 Assertions

40.1

Sp

:MustSupportRefKeyldentifier

40.2

sp:

MustSupportRefIssuerSerial

40.3

sp

:MustSupportRefExternalURI

40.4

sp:

MustSupportRefEmbeddedToken

40.5

Sp

:MustSupportRefThumbprint

40.6

sp:

MustSupportRefEncryptedKey

40.7

Sp

:RequireSignatureConfirmation

41

WS-Trust Assertions

41.1

Sp:

MustSupportClientChallenge

41.2

Sp

:MustSupportServerChallenge

41.3

sp:

RequireClientEntropy

41.4

Sp

:RequireServerEntropy

41.5

sp:

MustSupportIssuedTokens

41.6

Sp

:RequireRequestSecurityTokenCollection

41.7

sp:

RequireAppliesTo

41.8

Sp

:ScopePolicylb

41.9

Sp:

MustSupportInteractiveChallenges

96

C COMPLETE LIST OF TEST RESULTS

C Complete List of Test Results

Service » | WebSphere | GlassFish | WebSphere| GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case V¥
0.1 12 12 12 12
0215 5 5)
1.1 1 12 1 4
2.1 |1 5 1 4
2201 12 1 4
3.1 |12 12 12 4
321 12 1 4
33 |1 12 1 4
3.4 |12 12 12 4
351 12 1 4
3.6 |1 12 1 4
4.1 |12 12 9 6
4.2 | 12 12 12 12
4.3 | - - - -
5116 3 3 6
52|12 3 3 6
5.3 | 12 3 3 6
6.1 12 12 12 6
6.2 | 12 12 6 6
6.3 | - - - -
7112 3 3 6
7213 3 3 3
7.3 |12 3 3 4
811 2 1 2
82 |1 2 1 2
83 |1 2 1 2
9.1 |1 2 1 2
9.2 |1 2 1 2
10.1 |1 2 1 2
102 |1 2 1 2
11.1 |5 12 6 4
11.2 |5 3 3 6
11.3 | 12 12 12 12
114 | 12 12 12 12
11.5 | 12 12 12 12
1211 12 1 5
122 |1 5 1 5
1311 12 1 12
14.1 | 12 12 3 12

Please continue reading on the next page

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case ¥
142 |1 12 1 6
143 |1 12 1 6
1511 3/6 1 6
152 |1 12 1 3
153 |1 3/6 1 3
154 |1 3/6 1 3
155 |1 3/6 1 3
156 | 1 3/6 1 3
15.7 | 12%* 12 6 6
158 |1 12 1 3
16.1 | 1 12 1 3
1711 12 1 3
172 |1 12 1 4/9
173 |1 12 1 4/9
174 |1 12 1 4/9
175 |1 12 1 4/9
17.6 | 12 12 12 12
1771 12 1 3
178 | 1 12 1 3
179 |1 12 1 3
17.10 | 12 12 12 12
1711 | 1 12 1 3
1712 | 1 12 1 3
181 |1 ¥ 1 ¥
182 |1 ¥ 1 -
183 |1 -k 1 ¥
19.1 |1 3 1 3
19.2 |1 3 1 3
193 | 1 3 1 3
194 | 1 3 1 3
20.1 |1 3 1 3
202 |1 3 1 3
203 |1 3 1 3
21.1 | 12 12 6 6
21.2 | 12 12 3 6
213 |1 5 1 6
214 |1 5 1 6
215 |1 5 1 6
216 |1 5 1 6
21.7 | 12 12 6 6
22.1 |1 12 1/3 3
2221 12 1/3 3

Please continue reading on the next page

97

98

C COMPLETE LIST OF TEST RESULTS

Service » | WebSphere | GlassFish | WebSphere| GlassFish
Client » | WebSphere| GlassFish | GlassFish | WebSphere
Case ¥
223 |1 12 1/3 3
224 |1 12 1/3 3
2311 3 1 3
232 |1 3 1 3
233 |1 3 1 3
234 |1 3 1 3
235 |1 3 1 3
236 |1 3 1 3
24.1 |1 12 12 3
242 |1 12 1 3
243 |1 12 1 3
244 |1 12 1 3
25.1 |1 12 1 5
252 |1 5 1 5
26.1 | 12 12 12 12
26.2 | 12 12 12 12
26.3 | 12 12 12 12
26.4 | 12 12 12 12
26.5 | 12 12 12 12
26.6 | 12 12 12 12
26.7 | 12 12 12 12
26.8 | 12 12 12 12
26.9 | 6 12 12 5
26.10 | 6 12 12 5
26.11 | 6 12 12 5
26.12 | 6 12 12 5
26.13 | 6 12 12 5
26.14 | 6 12 12 5
26.15 | 6 12 12 5
26.16 | 6 12 12 5
26.17 | 6 12 12 12
26.18 | 1 1 1 1
26.19 | 12 1 3 1
26.20 | 12 12 12 12
26.21 | 1 1 1 1
26.22 | 12 1 3 1
26.23 | 1 1 1 1
27.1 | 12 12 12 12
27.2 | 12 12 12 12
27.3 | 12 12 6 9
27.4 | 12 12 9 12
281 |1 12 1 3

Please continue reading on the next page

Service » | WebSphere | GlassFish | WebSphere | GlassFish
Client » | WebSphere | GlassFish | GlassFish | WebSphere
Case ¥
28.% 1 3 - 12 -
282 |1 12 1 3
29.1 |1 12 1 3
29.2 | 12 12 6 3
29.3 | 12 12 12 12
294 |1 12 1 3
295 |1 12 1 3
29.6 | 1 12 1 3
29.7 |1 12 1 3
30.1 | 12 12 12 12
30.2 | 12 2 3 2
30.3 | 12 12 12 12
30.4 | 12 2 3 2
30.5 | 12 12 12 12
30.6 |1 12 1 6
30.7 |1 12 1 6
308 |1 12 1 3
309 |1 12 1 12
31.1 | 6* 12 6 3
3211 12 1 3
33.1 1 6 1 3
34.1 |1 6 1 3
35.1 |1 12 1 3
36.1 |1 12 1 3
371 |1 6 1 3
3811 6 1 3
39.1 | 12 12 12 12
39.2 | 12 12 12 12
39.3 |1 2 1 2
39.4 | 12 2 3 2
40.1 | 12 12 12 12
40.2 | 12 12 12 12
403 | 1 2 1 2
404 | 12 2 3 2
40.5 | 12 12 12 12
406 | 1 12 12 3
40.7 | 12 12 12 12
41.1] 1 2 1 2
41.2 1 2 1 2
413 | 1 2 1 2
414 |1 2 1 2

Please continue reading on the next page

99

100

C COMPLETE LIST OF TEST RESULTS

Service » | WebSphere | GlassFish | WebSphere| GlassFish
Client » | WebSphere| GlassFish | GlassFish | WebSphere
Case ¥
415 | 1 2 1 2
416 | 1 2 1 2
41.7 | 1 2 1 2
418 | 1 2 1 2
419 | 1 2 1 2

D List of previous University of Bamberg reports

Bamberger Beitrage zur Wirtschaftsinformatik

. 1(1989)

.2 (1990)

.3(1990)

. 4(1990)

.5 (1990)

.6(1991)

.7 (1991)

.8(1991)

.9(1992)

.10 (1992)

.11 (1992)

. 12 (1992)

.13 (1992)

.14 (1992)

.15 (1992)
.16 (1992)

.17 (1993)

Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universitdt Bamberg (Nachdruck Dez.
1990)

Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle fiir PROLOG

Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Augsburger W., Rieder H., Schwab J.: Systemtheoretische Représentation von
Strukturen und Bewertungsfunktionen iiber zeitabhéngigen betrieblichen numeri-
schen Daten

Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell fiir eine modulare
Bewertung von Kennzahlenwerten fiir den Endanwender

Schwab J.: Ein computergestiitztes Modellierungssystem zur Kennzahlenbewertung

Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Esswein W.: Das Rollenmodell der Organsiation: Die Beriicksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stiitzten Biirovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Uberwachung von Vorgingen. Dissertation

101

102 D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1%
edition, June 1994

Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2™ edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschéftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universitét als Instrument zur zielgerichte-
ten Lenkung von Universititsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsrdume. Ein Ansatz flir ver-
teilte Flihrungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschiftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestiitzten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschiftsprozesse

Nr. 32 (1995) Gunzenhduser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das GeschiftsprozeBmodell der Unternehmung das unterneh-
mensweite Datenschema abldsen?

Nr. 34 (1995) Sinz E.J.: Ansitze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstiitzung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichworter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Diisseldorf 1996

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

.37 (1996)

.38 (1996)

.39 (1996)

.40 (1997)

.41 (1997)

.42 (1997)

.43 (1997):

. 44 (1997)

. 45 (1998)

.46 (1998)

. 47 (1998)

. 48 (1998)

.49 (1998)

Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Ferstl O.K., Schifer R.: Eine Lernumgebung fiir die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten fiir Portfolio-Ansitze

Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, Miinchen 1997

Sinz E.J.: Analyse und Gestaltung universitirer Geschéftsprozesse und Anwen-
dungssysteme. Angenommen fiir: Informatik *97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft fiir Informatik, Aachen 24.-26.9.1997

Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects —
fachliche Bausteine fiir die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen flir: HMD — Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) — A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2™ Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin — Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. — 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, Miinchen 1998

Sinz E.J.: ProzeBigestaltung und ProzeBunterstiitzung im Priifungswesen. Erschie-
nen in: Proceedings Workshop ,,Informationssysteme fiir das Hochschulmanage-
ment“. Aachen, September 1997

Sinz, E.J.:, Wismans B.: Das , Elektronische Priifungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

103

104 D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems — ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Bohnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems fiir Hochschulen. Angenommen fiir: Workshop ,,Unternechmen Hoch-
schule” im Rahmen der 29. Jahrestagung der Gesellschaft fiir Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfii-
gig modifizierter Fassung angenommen fiir: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, Miinchen
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Bohnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen fiir Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Bohnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Bohnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems fiir das Hochschulwesen. Angenommen fiir:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen fiir: Workshop ,,Unternehmen Hochschule 2001 im Rahmen der
Jahrestagung der Gesellschaft fiir Informatik, Wien 25. — 28. September 2001

Anderung des Titels der Schriftenreihe Bamberger Beitrage zur Wirtschaftsinformatik in Bamberger
Beitrage zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beitrdge zur
Wirtschaftsinformatik to Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

Bamberger Beitrage zur Wirtschaftsinformatik und Angewandten

Informatik

Nr

.61 (2002)

.62 (2002)

. 63 (2005)
. 64 (2005)

. 65 (2006)

. 66 (2006)

. 67 (2006)

. 68 (2006)

. 69 (2007)

.70 (2007)

.71 (2007)

.72 (2007)

.73 (2007)
. 74 (2007)

Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System fiir das Hochschulwesen. Erscheint
in: Beitrdge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut fiir
Hochschulforschung und Hochschulplanung, Miinchen 2002

Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 — 263; Reihe education quality forum, herausgegeben durch
das Centrum fiir eCompetence in Hochschulen NRW, Band 2, Miinster/New
York/Miinchen/Berlin: Waxmann 2005

Schonberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Réglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Marco Fischer, Andreas Griinert, Sebastian Hudert, Stefan Konig, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Thomas Meins: Integration eines allgemeinen Service-Centers fir PC-und
Medientechnik an der Universitdit Bamberg — Analyse und Realisierungs-
Szenarien. Februar 2007

Andreas Griinert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. Mérz 2007

Michael Mendler, Gerald Liittgen: Is Observational Congruence on p-Expressions
Axiomatisable in Equational Horn Logic?

Martin Schissler: out of print

Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beitrige zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

105

106 D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beitrdge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer and Guido Wirtz: Applying Business Process Management
Systems? A Case Study. Bamberger Beitrige zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-
3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beitrige zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer and Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beitrige zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beitrige zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schonberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beitridge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schonberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beitrdge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel and Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beitrige zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mihlberg und Gerald Liittgen: Symbolic Object Code Analysis.
Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

Nr. 86 (2010)

Nr. 87 (2010)

Werner Zirkel and Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation — ein Best Practice Ansatz. Bamberger Beitrige zur Wirtschafts-
informatik und Angewandten Informatik Nr. 86, Bamberg University, August
2010. ISSN 0937-3349.

Johannes Schwalb, Andreas Schonberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beitrige zur
Wirtschafts-informatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

107

	1 Introduction
	2 Fundamentals
	2.1 Extensible Markup Language
	2.2 Basic Web Services Technologies
	2.2.1 Web Services Description Language (WSDL)
	2.2.2 SOAP
	2.2.3 Business Process Execution Language (WS-BPEL)

	2.3 Basic XML Security Technologies
	2.3.1 XML Signature
	2.3.2 XML Encryption

	2.4 WS-* Standards
	2.4.1 WS-Addressing
	2.4.2 WS-ReliableMessaging
	2.4.3 WS-Security
	2.4.4 WS-Policy

	3 Platforms
	3.1 IBM WebSphere Platform
	3.2 Sun Microsystems GlassFish Platform

	4 Test Method
	4.1 Isolated Function Tests
	4.2 Combined Function Tests
	4.3 Practicability Test: Secure WS-ReliableMessaging Scenario

	5 Test Preparation
	5.1 Determination of the Features under Test
	5.2 Setup of the Test Environment

	6 Test Results
	6.1 Isolated Function Tests
	6.1.1 WS-ReliableMessaging
	6.1.2 WS-Security Protection Assertions
	6.1.3 WS-Security Token Assertions
	6.1.4 WS-Security Binding Assertions
	6.1.5 WS-Security Supporting Token Assertions
	6.1.6 WS-Security SOAP Message Security and WS-Trust Options

	6.2 Combined Function Tests
	6.3 Secure WS-ReliableMessaging Scenario
	6.3.1 Policy Configuration
	6.3.2 Test Execution & Test Result

	7 Related Work
	8 Conclusion & Future Work
	Bibliography
	A Complete List of the Features and Settings under Test
	B Complete List of the Test Cases
	C Complete List of Test Results
	D List of previous University of Bamberg reports

