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Modeling and Analysis of Communication Systems 
Based on Computational Methods for 

Markov Chains 
UDO R. KRIEGER, BRUNO MÜLLER-CLOSTERMANN, AND MICHAEL SCZITTNICK 

AblllWCl-We describe a compulatlOlllJ approac.h for modeling and 
8D8lyzing modera communicatlon systems blsed on aumerical meth-
ods for Markov cbins. Advanced direct and itentin procedures for 
the akulatlon of tlae stationary clistribution of a boulogeneous dls-
crele- or continuous-time Markov cbaln wit• finite state space are pre-
sented. They are implemented in a coavenient softtvare lool for Inter· 
octlve modellng aad performaace evaluatlon ot communlcalion systema. 
The veruitllity of tllese algorithms is Ulustrated by tlieir applicatlon lo 
Mlll'kovlan queuel111 modeb derived from lclecemmnnicatlon oet· 
works. 

J. lNTRODUCTION 

MODELING of communication systems by means of 
hornogeneous discrete- or continuous-time Markov 

chains is a current technique that bas grown out of Er-
lang 's pioneering work [13J in this field. Erlang's inves-
tigations have initiated a rapid developrnent of probability 
theory and its applications. 

Recently, considerable attention has been devoted to a 
new branch of this theory, namely, the analysis of Mar-
kov chains by numerical methods (cf. [1]). Frorn a prob-
abilistic point of view, the problem of computing the 
steady-state distribution of an ergodic homogeneous Mar-
kov chain has already been solved since the stationary dis-
tribution may be calculated by the solution of a system of 
linear equations called steady-state balance equations. 
Therefore, it is not very attractive to probability theorists 
any more. In practice, however, the application of the 
theory of Markov chains to the field of modeling and per-
formance analysis of telecommunication systems raises a 
lot of difficulties. Considering Markoviao models of prac-
tical interest, analytic solutions of the steady-state distri-
butions of the Markov chains are rarely available. 

On the other hand, nowadays we have to cope with the 
investigation of complex, distributed technical systems 
such as telecomrnunication networks within an ISDN en-
vironment or SPC exchanges. Although Markov model-
ing techoiques are still useful, the construction of explicit 
analytical solutions of the relevant model characteristics 
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such as steady-state distributions are normally not poss-
ible any rnore. Therefore, numerical solution methods for 
Markov chains are the only feasible approach besides 
simulation which is a rather expensive method. 

Regarding the successful development of Markovian 
techniques in the past, we are convinced that the Mar-
kovian approach still deserves our attention, despite all 
difficulties concerning its application in practice. More-
over, the software techniques for the construction of mod-
eling tools are available at present, and numerical rneth-
ods for computing either transient or stationary 
characteristics of a model are provided to an abundant ex-
tent by numerical mathematics. Furthennore, the knowl-
edge of principles applicd to the decomposition and ag-
gregation of models has been improved. Last but not least, 
an adequate hardware and software environment is now 
available on the desks of teletraffic engineers and network 
designers. Workstations with graphical interfaces provide 
the basis for the interactive construction of models and 
the graphical representation of the calculated results. 

From a practical point of view, it is desirable that nu-
merical techniqucs for Markov chains arc supported by 
convenient software tools which facilitate the use of the 
various algorithrns. AJthough there are several softwarc 
packages such as NUMAS or QNAP2 which offer nu-
merical solution techniques for Markovian queueing 
models, these software tools are often based on old-fash-
ioned methods such as thc deftatioo approach (cf. [88], 
[90], [89), (16}, (125]). 

We iotended to overcome this deficit. For this reason, 
a software package called MACOM was developed by the 
Deutsche Bundespost Telekom and the Computer Scicnce 
Depanment at the University ofDortmund (cf. [91], [92)). 
lts capabilities arc tailored to the requirements arising 
from the perfonnance evaluation of modern comrnunica-
tion systems. The only analysis techniques ernployed are 
efficient numerical procedures for the solution of finite 
Markov chains. The package can cope with !arge models 
comprising up to 100 000 states. lt is irnplernented in C 
and running on a SUN3 workstation. 

MACOM provides the user with a predetined Mar-
kovian rnodel world describing modern telecomrnunica-
tion networks with adaptive routing schernes and ad-
vanced congestion-control mechanisms. The structure of 
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its modeling components guarantees the Markovian na-
ture of a specified model. The basic elements consist of 
links, specific routing elements, called conexes, offering 
probabilistic and state-dependent routing, queueing Sta-
tions with multiple, homogcneous servcrs and queues with 
finite capacities, different service disciplines (infinite 
server, processor sharing, random, nonpreemptive prior-
ity), and general Coxian service-time distributions, as well 
as versatile arrival streams such as phase-type renewal and 
Markov-modulated Poisson processes. Hence, the result-
ing class of queueing models includes Markovian 
queueing networks with state-dependent routing which do 
not possess a steady-state distribution of product fonn. 

The model world of MACOM is provided by means of 
a graphical user interface, i.e., MACOM models are 
spccified by a graphical editor (see Fig. 1). The resulting 
network graph is interactively constructed from prede-
fined elements, more specifically, sources, sinks, loss ex-
its, Stations, conexes, and links (see Fig. 2). Moreover, 
further textual infonnation is added to the model elements 
by means of pop-up menus which are activated by a 
mouse. The text comprises the types of the distribulions 
(Coxian, Erlang, hyperexponential, exponential) of the 
service and arrival process and the parameters of a Sta-
tion, i.e., ils name, the service discipline, the number of 
processors, the service spced, which may depend on the 
population, and thc capacity of the station defined as the 
number of customers which can be held simultaneously. 
Furthennore, the attributes of the routing elements have 
to be described. 

Advanced direct and iterative methods for the compu-
tation of the steady-state vector of a continuous-time Mar-
kov chain (CTMC) (cf. [45}, [35}, [57}, [7], [71]) con-
stitute the numerical solverofMACOM. Furthermore, the 
package offen; the evaluation of different perfonnance 
measures of the constructcd models which arc specified 
by the user. 

The tool MACOM combines state-of-the-art techniques 
for systcms modeling and analysis by finite Markov 
chains, software methods for the specification of models 
by graphical rneans and for the enhanced support of the 
user by menu techniques, and the advanced technology of 
modern workstations (cf. [109), [110], [92)). 

In this paper we present the advanced numerical meth-
ods which are employed for the analysis of the con-
structed Markovian models in the tool MACOM. We fcel 
that there is no elementary, modern guide on computa-
tional methods for Markov chains and their applications. 
Therefore, it is our main objective to summarize some 
recommended algorithms from the literature within a 
unifying mathematical framework and to illustrate their 
application to several models derived from actual tele-
communication networks. This paper does not claim to 
present new mathematical results or to givc a comprehen-
sive survey of the issue. Readers who are intercsted in thc 
mathematical background of the proposed algorithms are 
referred to Barker's excellent survey [5] (see also (71], 
l99]). Although this paper's references cannot be exhaus-

tive, it is comprehensive enough to provide sources from 
the litcrature for furthcr study of thc subjcct. 

Thc paper is organized as follows: Section II provides 
the mathematical basis for calculating the steady-state 
distribution of a finite Markov chain and a classification 
of computational methods. In Section III we present the 
most important direct methods. Section IV is concerned 
with advanced point and block iterative procedures based 
on matrix splittings for singular M-matrices. Last but not 
least, the proposed methods are applied lo some teletraffic 
models arising from the analysis of modern telecommu-
nication networks. 

ff. THE MATHEMATICAL BACKGROUND OF 
COMPUTATIONAL MF.THOOS 

In practice, telecommunication system behavior is often 
described by Markovian models with discrete valued, fi-
nite state spaces S == { 1, 2, · · · , n} (see Section V and 
[68], [57). [83]). lt is a major objeclive to calculate the 
steady-statc distributions of such discrete- or continuous-
time Markov chains. For this purpose, computational so-
lution methods must be employed if the models do not 
belong to special classes such as product-fonn networks 
(cf. (60]) or matrix-geometric models (cf. [94]) since ana-
lytical solutions are rarely available. 

In this section, we provide the mathematical back-
ground of these computational methods. lt is based on a 
unifying mathematical framework derive.d from the theory 
of nonnegative matrices and M-matrices (cf. 19]). Fur-
thennorc, we show that, from the computational point of 
vicw, discrete- and continuous-time Markov chains may 
be treaied in the same way. 

We assume the reader tobe familiar with the theory of 
homogeneous discrete- and continuous-time Markov 
chains with finite state spaces, abbreviated DTMC and 
CTMC, respectively, to the extent of the books of Hey-
man and Sobel [54, eh. 7, 8] and Kemeny and Snell [62]. 
Furthennore, we shall adopt the tcnninology of Heyman 
and Sobcl and wc usc the following notation of Bcnnan 
and Plemmons (9, eh. 2, p. 26] w.r.t. vector and matrix 
orderings: Let x e W, then x >> 0 # X; > 0 for each i 
e { 1, · · · , n } , x > 0 # X; 2: 0 for each i e { 1, · · · , 
n } and x1 > 0 for some j e { l , · · · , n } , x 2: 0 <* x; 2: 
0 for each i e { 1 , · · · , n } . 

For an irreducible DTMC { Y., n 2: 0} with a finite 
state space S = { 1, 2, · · · , n } and an irreducible tran-
sition probability matrix (t.p.m.) P, a solution of the 
stated problem is provided by Markov's well-known theo-
rem (cf. [54, corollary 7-4, p. 231), !24, corollary 2.11, 
p, 153]). The stationary distribution r is the unique so-
lution of the linear system 

z' = z'P, L: z, = 1, zi 2: 0 for all i e S. 
ieS 

{2.1) 

Considering an irreducible CTMC {X(t), t 2: O} with 
finite state space S and the conseivative generator matrix 
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Q = ( q;1 ), its steady-state distribution p is detennined by 
the solution of the linear system 

x'Q = 0, :E x1 = l, x1 Ci!: O for all i e S 
ieS 

(2.2) 

(cf. [54, theorem 8-6, p. 304]). 
Moreover, it is weil known that the existence of these 

steady-state distributions can be proved by algebraic re-
sults, only (cf. (38, §13.7, 431ff], [9, theorem 8.3.11]). 
In this context, a major mathematical tool is provided by 
the famous theorem of Perron-Frobenius for nonnegative 
matrices (cf. [9, eh. 2), [38, §13.2, p. 397f], [112, theo-
rem 1.5, p. 20], [24, appendix, sec. 4), [123, theorem 
2.1, p. 30]). This set of nonnegative matrices, especially 
the subset of probability matrices, is very important in 
computational probability tbeory. 

lt is weil known that under appropriate regularity con-
ditions (i.e„ for conservative, uniformizable MC's-cf. 
[54, §8-7]) homogeneous, continuous-time and discrete-
time Markov chains with denumerable state spaces satisfy 
a close stochastic relation. There is a natural way to as-
sociate an embedded DTMC { r., n 2: 0}, called the jump 
chain, with each standard CTMC possessing a generator 
matrix Q. This transformation of a CTMC into its asso-
ciated embedded DTMC is called uniformization or ran-
domization (cf. (56, p. 228), [60, p. 3), [54, pp. 290, 
310)). lt is obtained from the CTMC by observing its 
states only immediately after a state transition. Thus the 
transition probabilities p11 = P ( Yn + 1 = j 1 Yn = i ) of Y. 
are just the conditionaJ probabilities of a transition of X ( t) 
from state i to statej given that a transition occurs, i.e., 

[
qij/q; i * j 

Pii = O i=j 

where q; = - q;; = r.1,1 ;1o; qii. Hence, the t.p.m. P = 
( P;i) of { Y. } is defined by 

P = v- 1 • B (2.3) 

where Q = ( q11 ) = - D + B is a decomposition into the 
negative diagonal part of Q, D = -diag (q11 );= 1.· .. ,n = 
diag (q;)i= 1„ „ ••• and the nonnegative otf-diagonal ele-
ments B. Here, we introduce the convention that diag (x) 
= D generates a diagonal matrix from a vector x by set-
ting D11 = x1• Moreover, let e denote the vector of all 
ones. 

If z is the stationary distribution of the jump chain sat-
isfying e1D-1z = 'f,;z/q1, we conclude from (2.3) thatp 
= D- 1z/(e'D- 1z) is a probability vector for which the 
relation 0 = p'Q = p 1(B - D) = z'(D-1B -
l)j(e 1D- 1z) holds. 

If the parameters q1 of the exponential sojoum times in 
the states do not depend on j, i.e., q1 = ">-., then the jump 
epochs of the embedded chain form a Poisson process with 
rate 'A and the equilibrium distribution of the jump chain 
coincides with thc stcady-state vector of thc CTMC (cf. 
[54, thcorcm 8-5, p. 303)). 

A unifying mathematical framework. of computational 
methods for Markov chains is based on thc theory of 
M-matrices (cf. [9, eh. 6]). A matrix A = (a;1) e ~·><• 
is called M-matrix if aif :S 0 holds for all i, j with i '#: j 
and if A can be represented in the form A = sl - B, s > 
0, B 2: 0, s ~ p(B), where p(B) is the spectral radius 
of B and 1 denotes the identity matrix. A is a regular 
M-matrix if s > p(B) holds and a singular M-matrix for 
s = p(B). An important subset of thc class of singular 
M-matrices is given by the Q-matrices. A Q-matrix Q = 
(qli) e ll1!" x n satisfies the conditions qiJ :S 0 for all i, j 
with i ':f:. j and E7= 1 q;1 = 0 for allj with 1 s j s n. Thus 
the negative transpose A = -Q' of the generator matrix 
Q of a CTMC is a Q-matrix (cf. [101]). Funhennore, the 
matrix A = 1 - P' is also a singular M-matrix witb zero 
column sums, i.e., a Q--matrix, if Pis the t.p.m. of a 
DTMC. 

lt is our objective to calculate the steady-state vector of 
an irreducible Mark.ov chain with finite state space. As 
we have already seen, it is suflicient to study a system of 
linear equations of the fonn 

A·x=O, Ae!Rlnx•,xe~n (2.4) 

where A is an irreducible Q-matrix. lt is necessary to 
compute a positive solution x of (2.4) that satisfies the 
additional nonnalization condition 

e1 
' X = :E X; = l 

i=I 
(2.S) 

where e denotes the vector of all oncs. If A is reducible, 
the problem may be reduced to this case by transforming 
A into the weil-known block-triangular canonical form (cf. 
[9, p. 39], [38, §13.4)). From the mathematical theory 
we know that the problem (2.4), (2.5) has a unique posi-
tive solution (cf. [9, theorem 6.4.16, p. 156]). Further-
more, it can be shown that A = 0 is a simple eigenvalue 
of A with one-dimensional eigenspaces spannec:I by a posi-
tive right and left eigenvector, respectively. In the follow-
ing, unless otherwise stated, we assume A to be an irre-
ducible Q-matrix. 

A simple solution technique for the singular system 
(2.4) is provided by the transfonnation into a regular sys-
tem of linear equations. An approach frequently usec:I is 
the substitution of the normalization condition (2.5) for 
the last equation of (2.4) which yields an inhomogeneous 
system A' • x = (0, · · · , 0, 1) 1 with a unique positive 
solution x. An alternative method is given by a deftation 
technique proposed by Kemeny (61] (see also [62, VIII, 
p. 211 ff], (51)). lt is a rank-1 modification that may be 
applied to any matrix A with a simple eigenvalue 0. 

Regarding the issue of calculating the steady-state dis-
tribution of a Markov chain, computational methods pro-
posed in the literature may be classified according to the 
representation of the problem and the numerical technique 
applied for its solution. We divide the procedures into the 
following categories: 
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TABLE 1 TABLE II 
ÜVERVIEW OF CoMPUTATIONAL METHODS CRITERIA FOR THE CHOICE Of A PROCEDURE 

1) Procedures based on a representation by a systcm 
of linear equations 

0 = A. X, A E fR'."x", XE Rin (2.6) 

given A = -Q1 or A = l - P' where Q is the ir-
reduciblc gcnerator matrix of a CTMC and P the 
irreducible t.p.m. of a DTMC with n states. 

ll) Procedures based on a reprcscntation by an eigen-
value problem 

X= T· X (2.7) 

given T = P' or T = 1 + Q' n-t = B' v- 1 with Q 
= - D + B and its negative diagonal part D 
= -diag (Q;;);s 1,„„. or D = }\/, )\ 2: max; 
( -Qu) (uniformization procedure for CTMC's). 

In the following, we restrict our attention to procedures 
of the first category since they are ernployed in MACOM 
onJy. The computational procedures may be divided into 
the classes of direct and iterative methods. An overview 
is provided by Table 1. 

The choice of an appropriate aJgorithm is directed by 
the properties of the Q-matrix A and the properties of the 
selected procedure. Some criteria are listed in Table II. 
The advantages and disadvantages of direct and iterative 
procedures are discussed by Evans [31, sec. 3, p. 45f] 
(cf. also [121)). Computational aspects conceming the ef-
ficient implementation of iterative methods on a vector 
computer are treated by Kincaid et al. [63]. 

III. DIRECT METHODS 

In this section we study the solution of the homoge-
neous system of linear equations (2.4) by direct methods, 
i.e., variants ofthe Gaussian elimination technique. After 
the solution phase, vector x must be normalized such that 
(2.5) is satisfied. Subsequently, we shall show that it is 
not necessary to proceed to a regular system by deflation 

1 Jl~oarandcd Metio4s 
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ordei" 
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block mact1red .., .... for addidouJ IÜlldUJf' gH.raß7 n!COllUlll!C~ 
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well·co•dit10Hd 1ailable 
ill-coaditiot.td ilcladil.1 NC!).toe 
l>roMJtj,e. of th procedue 

, ~.,..,,,,.{HA,,+ o, 1 ~; ~ •ll 
w.r.t. time O(J/.Jft~) 
w.r.t. 11H1m.ory O(n2l 
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O(n )( 1} per 1lep 
Olnxs) 

•1atri1.wdar r.ch.em.e 
11.a&ric:et."donor 

apatM> slnrAie IC„emt ,.. 

or rank-1 modification techniques which are proposed in 
the literarure (cf. [97), [89]). 

Solution techniques from numerical mathematics that 
reduce the ordern ofthe linear system (2.4) are very often 
discussed in the literature (cf. [41), [45], [53], [57), [64], 
f67], (72), (77), [97], [104], [113], [128]). All these pro-
cedures are based on a block decomposition of the irre-
ducible Q-matrix A 

(3.l) 

with A11 E [Rlkl xk1, A12 E !f,;ki xk2, Az1 e ~Rlk2Xk1, Az2 E 
Flk:!xb, and k2 <!:: 2. Obviously, A11 and A22 are regular 
M-matrices and A12 and A21 are nonpositive. 

Based on this decomposition, a block elimination 
scheme may be applied to reduce the solution of Ax = 0 
to the analysis of srnaller subproblems. This rank-reduc-
tion technique is recommended if the structure of matrix 
A can be exploited (cf. [50J, [57)). 

A. Block LU-Algorithm 
A classical nurnerical approach is given by the follow-

ing block Gaussian elimination procedure (cf. [43, sec. 
5.5, p. 1 lOff], [72), (104], [67}, [39]): 

1) Choose a nontrivial partition 

ACll = A = (A11 A12) 
A21 A22 

of the irreducible Q-matrix A. 
2) Compute a factorization A \ \ > == L \ \ > U\ \ l by Gauss-

ian elimination without pivoting. 
3) Calculate a solution R( 2> of R( 2' LW u\:> = - A~~i 

by forward elimination and back substitution (taking into 
account Rm :?: 0, erR( 21 = e' as accuracy check). 
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4) Set 

5) Solve 

(3.3) 
6) Compute a solution vector x< 11 of A\:lx< 1l = 

Li:> ul:Jx 01 = (-AlP)x( 2J by forward elimination and 
back substitution. 

7) Normalize the resulting vector 

= (X(ll) 
X (2) 

X 

rithm is the matrix inversion, which is necessary to cal· 
culate R' 21 , and has to be performed vcry carefully. 
Le Boudec [78], for instance, proposes to use a special 
inversion algorithm for strictly substochastic matriccs. lt 
is based oo the representation of the inverse by a power 
series. In conclusion, we recommend either to avoid suc· 
cessive reduction or to apply only a few steps of this block 
LU·algorithm exploiting the structure of A as mcntioned 
by Kaufman [57] or Le Boudec [78]. 

A major advantage ofthe proposed block LU-aJgorithm 
is its inherent probabilistic interprctation (cf. Schassber· 
ger [104], Grassmann et a/. [45], Grassmann et al. [44], 
Kohlas [64], Gaver et al. [39], Krieger [71]). 

by settingp = x/(e 1x). D B. Grassmann 's Algorithm 

Obviously, one step of this elimination scheme yields A< 1 l 
= A = L < 

1 > u< 1 J with the regular M·matrix 

(1) - (/ 
L - AOlAm-1 

21 II 

and the singular M·matrix 

AC2l = u<ll = A11 A12 
( 

(1) (1)) 

0 Agl 

where the irreducible Q-matrix Aii> = A22 + 
( -A21 Ajj1)A12 is called the Schur complement of A11 (cf. 
[43, P4.2-3, p. 58]). If we perfonn k1 steps of the normal 
Gaussian elimination procedurc on matrix A, the rcsulting 
submatrix Ai~'+ I) obviously coincides with the Schur 
complement (3.2) (cf. [43, P4.2-3, p. 58]). 

As i 0 > is a rcgular matrix, the solution of A(l>x = 0 
is equivalent to that of A<2lx = 0. In order to solve the 
linear system (3.3), the same reduction step may be ap-
plied to the resulting submatrix Ag1 or any other direct or 
iterative solution technique for singular linear systems can 
be employed, for instance, the direct-iterative approach 
of Funderlic and Plemmons [35). The successive appli· 
cation of this reduction process is stopped after m - 1 
steps, yielding a submatrix A~l of order l with rank I -
l. Then, we fix one component ofthe solution vector xCmJ 
resulting from the decomposition of x according to the 
block partition of A, for instance, its last one xlm> = l, 
and solve the linear system A~~lx<ml = 0. The back sub-
stitution yields the other component vectors x<m- 1>, 
• • • , XCI) Of X. 

The computation of A~l may be improved by exploiting 
its Q-matrix structure. As R< 2> is noMegative, A\~l :;; 0 
and Ag) is a Q·matrix, the olf-diagonal elements of Ai~) 
are computed from nonpositive elements only, whereas 
the diagonal elements are given by the negative column 
sums ofthe olf-diagonal elements. Hence, there is no loss 
of significance due to canccllation errors while perform-
ing thcse additions. This computation of A~~> according 
to (3.2) is a rather stable process. Considering the propa· 
gation of rounding errors, the crucial step of the algo-

Choosiog a block decomposition of A with k1 = l, we 
may successively apply the proposed block. elimination 
procedure to the generated block matrices A ~>. If we cal· 
culate the negative va!ues of its diagonal elements by 
means of relation e1 A~~) = 0 as sum of the off-diagonal 
elements, we obtain a numerical procedure that does not 
contain any subtractions or additions of numbers with dif· 
ferent signs. Thus, the algorithm avoids cancellation er· 
rors, a main difficulty of Gaussian elimination, although 
it coincides with the result of the Gaussian elimination 
without pivoting applied to A. This procedure is due to 
Grassmann et al. [45] and called Grassmann 's algorithm. 
Grassmann et al. [45) proved the feasibility of this ap-
proach for DTMC's by probabilistic arguments. Further· 
more, its application to CTMC's has been studied in [44) 
(see also [64J, [72]). The corresponding algorithm reads 
as follows: 

Assumptions: Given a homogeneous, irreducible Mar-
kov chain with a finite state space S = { l, · · · , n } set 
A = Q' e l~nxn for a CTMC or A = P' - I fora DTMC. 

Algorithm: 

l) Gaussian elimination: 

For k = l to n - 1 do 
diag = ti=HI Aik 
Forj=k+ltondo 

AkJ = A1;;/diag 
Endfor 
For j = k + l to n do 

For i = k + 1 to n do 
A1; = A;; + A1tAt;; 

Endfor 
Endfor 

2) Norm= 1 

x. = 1 

3) Back substitution: 
For i = n - 1 to 1 do 

x, = I:Z=I+ 1 A;k • Xt 
Nonn = Norm + X; 

Endfor 
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4) Nonnalization: 

For k = 1 to n do 
xk = xklNorm 

Endfor 
0 

The pmposed algorithm requires 0(2/311 3 ) flops and 
0(" 2 ) amount of memory for computing lhe steady-state 
vector x. Moreover, iL has the advantage of preserving the 
band structure of a matrix. An implemcntation based on 
a sparse matrix storage scheme is also possible for banded 
or sparse matrices. The Storage scheme should support 
access to matrix clcments by rows and columns (cf. [27]). 

C. LU-Factorization of Singular M-Matrices 
From the mathematical literature il is known that only 

in the last elimination step of the Gaussian elimination 
without pivoting, a zero pivot occurs if we decompose an 
irreducible singular M-matrix (cf. (37, cor. 1), [9, cor 
6.4.17]). Therefore, the Crout algorithm may be em-
ployed for the factorization of a diagonally dominant 
Q-matrix specifying the steady-state distribution of a 
Markov chain (cf. [34]). Let us summarize this algorithrn, 
called direct factorization method (cf. (50], [51]): 

1) Decompose the irreducible Q-matrix A e !Pl"x" by 
Gaussian elimination without pivoting (Crout algo-
rithm) according to Funderlic, Mankin [34]: 
For k = 1, 2, · · · , n - 1 do 

1.1 L: A;k = A;k - E~-:.1 1 A;m • A„b 
i=k „. n 

1.2 Üv: At; = Ait1 
' (Aki - E~-=. 1 1 Akm • A„;), 

i=k+l,···,n 

2) Transform ÜD into a regular matrix U0 : A •• = 1 

3) Solve U0 • x = e. by back substitution: 

3.1 x. = 1 
3.2 X;= (-Ej.;i- 1 A;; · x;). i = n - 1, · · ·, \. 

4) Nonnalize the resulting vector x: 

4.1 a = l/I:j_l X; 
4.2 X; = a ·X;, i = 1, · · · , n 

D. Further Reading 

0 

Further block LU procedures for block tridiagonal ma-
trices A have been studied by Basharin (cf. {41, §12, p. 
390ffj), Wikarski {128], Kramer [67], Krieger [72], Her-
zog et al. [53J, and Gaver et al. [39]. Meyer (cf. (85], 
(86]. (80]) has recently extended the concept of block LU 
factorization to ncarly decomposable systems which are 
also known as nearly completely decomposable (NCD) 
models (cf. [25]). His method, called stochastic comple-
mentation, uncouples a Markov chain in several smaller 
independent chains. lt is weil suited for parallel compu-
tation (cf. [80]). Other variants of rank-reduction tech-
niques that exploit especially the sparsity structure of ma-

trix A and propenies of separablc matriccs are discussed 
by Kaufman (57]. 

Results conceming the factorization of a (singular) 
M-matrix A into a (singular) upper triangular M-matrix U 
having the same rank as A and a regular, lower triangular 
M-matrix L are well known in numerical mathematics (cf. 
[32], [9, theorem 6.2.3, p. 135], [76], [34], [37], (124, 
theorem 3, p. 182], [2]). Although a singular M-matrix A 
does not possess an LU decomposition in general ( see 
[124, (1.15), p. 183]), it is known thata factorization into 
M-matrices always exists for a permuted version PAP' (see 
Kuo (76, theorem 2], also (9, theorcm 6.4.18], [37, cor. 
1, p. 106]). In general, the LU decomposition into 
M-matrices is not unique. In the special case of an irre-
ducible singular matrix, however, uniqueness of the fac-
torization may be established. 

lt is weil known that, even in the case of a singular 
linear system, this LU factorization is a stable method (cf. 
[36]. [50, theorem 1], [51]). Furthennore, Barlow [8] has 
shown that a transformation of the singular system (2.4) 
into a regular inhomogeneous system by specifying a 
component of the solution vector x and deleting thc cor-
responding row of A will not improve the condition of the 
linear system. Similar observations based on extensive 
numerical comparisons have been reported by Harrod and 
Plemmons [50] and Kaufman [57]. 

An alternative direct method is given by the QR-fac-
torization algorithm for singular M-matrices. Information 
about this procedure and its probabilistic rclevance is pro-
vided by Golub and Meyer [42]. From the computational 
point of view, however, this technique is not superior to 
the factorization methods mentioned above. 

Further applications of LU-factorization algorithms are 
studied in the context of combined direct-iterative meth-
ods such as incomplele factorization procedures. The in-
terested reader is referred to Funderlic and Plemmons (35] 
as weil as Buoni ll5] and Meijerink and van der Vorst 
[84). 

E. Applicability of Direct Methods 
In conclusion, we recommend the application of cither 

the proposed LU-factorization method or Grassmann' s al-
gorithm, which has the additional advantage of avoiding 
cancellation errors. Both methods have a similar com-
plexity of 0(2/3n 3 ) flops and norrnally provide compa-
rable accuracy for small matrices (see Table III-cf. [72]). 
The application of these direct methods is only limited by 
memory constraints and rounding errors. But they are 
suitable for computing the stationary distribution of small 
Markov chains with up to 500 states if the latter do not 
belong to the special class of nearly completely decom-
posable systems. 

IV. ITERATIVE METHODS 

We may also employ iterative methods to solve the lin-
ear system (2.4) for a given irreducible, always unsym-
metric Q-matrix A E IF\"x". These methods are preferable 
for banded, sparse or !arge generator matrices with more 
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TABLE III 
COMPARISON OF GRASSMANN'S ALOORITHM AND THE DIRECT LU 

FACTORIZA TION METHOD BASED ON COMPLETEL Y FlLU!D 01!NERA TOR 
MATRICl!S WITH N "' 200 STATl!S WHOSE l'!LEMENTS ARE GENERATIID AT 

RANDOM. THE ERRORS ARE DEPINED IN TERMS OP THE MAXIMUM NORM OF 
THE STF.ADY-STATE VECTORS. THE DATA ABISE FROM A FORTRAN 

RSAL* 8 IMPLEMBNTATION ON AN IBM 3090 Vf. THE ExACT DATA OFTHE 
STl!ADV-STATI! VECTORS HAVE BEEii CALCULATED BY MEANS OPTHE 

PACKAGE ACRITH [SSJ WHICH i'ROVIDl!S H10H·ACCURACY ARITHMETIC 

Grutm&lll '• algorillun Dir.et fadoiiatioa m•I-
CorffCI ....... tt nl&lift cottecl alllO.lale relalift 
didls enor . ...,. diaffo error error 

14 O.S8945D-15 0.65454])..13 13 0.2512TD-H 0.42232D-12 
H O.S69611D-15 0.65013D-13 13 0.236101).14 Ul541D-12 
14 0.37383D-15 0.65111])..13 13 0.24173])..H o.t2558D· 12 
14 0.379900-15 0.65179D-13 13 0.24061])..H 0.412800-12 
14 0.38424])..15 0.81188])..13 13 0.24251D-H 0.41761])..12 
14 8.354750.15 0.613301"13 13 0.22580D-H 0.390030-12 
H 0.380'77D-l& 0.6H94D-13 13 0.347891)..H 8.426380-12 
H 1.379MD-15 0.65127]).13 13 0.2f035D-H D.416140-12 
H 0.392911>-15 0.8M06D-13 13 O.U954D-H D.435T2D-12 
14 0.38598]).15 0.66331))..13 13 0.24659D-14 U23T'ID-12 

than 1000 states. To apply an iterative procedure, its con-
vergence must be guaranteed. As A is singular now, a 
straightforward application of standard results developed 
for regular matrices is impossible. Based on the unifying 
framework of M-matrices, the required generalization of 
the classical convergence theory to singular M-matrices 
has fortunately been developed over the last decade (cf. 
[105], (101], (93), [14), (57), (71)). 

Usually the classical iteration procedures are based on 
an additive decomposition of matrix A, called matrix 
splitting. lt has the fonn A = M - N, M e 11'.l"x", Ne 
1'R n x" with a regular matrix M yielding the iteration ma-
trix T = M- 1 • N. lf Ne: 0 and M- 1 C!:: 0, then T = l 
- M - iA C: 0 holds and the splitting is called regular 
splitting. Note that an M-matrix M satisfies M-1 <?: 0. 
The corresponding regular splittings are called 
M-splinings (cf. [105, def. 2.3, p. 410)). Then an itera-
tion procedure may be defined by M · x<k+ 1 > = N · x<kJ 
or 

x<k+I) = T • xlkl k = 0, · · · , (4.1) 

respectively. Furthennore, il is easy to see that Ax = 0 
is cquivalent to x = Tx (cf. [57, lemma 4.1]), i.e„ each 
nontrivial solution of the homogeneous system (2.4) is 
also a right eigenvector corresponding to the maximal ei-
genvalue p ( T) = 1 of Tand vice versa. 

A. Point Iteration Methods 
In the following, let A = D - L - U be a point split-

ting into a diagonal matrix D, a strictly lower triangular 
matrix L, and a strictly upper triangular matrix U, respec-
tively. 

1) 1he Point Jacobi Procedure: The Jacobi procedure 
Dx(m+I) = (L + U)x(m) m = 0, 1, · · · (4.2) 

results from the M-splitting M = D, N = L + U. As the 
diagonal D of an irreducible M-matrix is positive ((9, 
theorem 6.4.16, p. 156]), this splitting with the Jacobi 
iteration matrix J = D - 1( L + U) is weil defined. Ob-

viously, the Jacobi procedure is equivalent to the power 
method applied to D- 1A = 1- D- 1(L + U). 

lt is known that any eigenvalues on the unit circle apart 
from p ( T) = 1 prevent the convergence of the scheme 
(4.1) derived from any regular splitting A = M - N of 
an irrcducible, singular M-matrix. On the other band, 
there is the simple idea of shifting these eigenvalues into 
the unit circle by an appropriate transformation Ta = a T 
+ ( 1 - a)I = I - aM- 1A, 0 < a < 1, of T called 
stationary first-order Richardson e,ii;trapolation (cf. Ke-
meny and Snell [62, eh. V: Brgodic Markov Chains, theo-
rem 5.1.1, p. 99), Kaufman [57, p. 540), and Neumann 
and Plemmons (93, p. 273 ff]). Then the resulting ex-
trapolated Jacobi method (JOR) x<.1:+ 1

> = J°' • x<k> = 
[aJ + (1 - a)J]H 1 · x<0> converges to a oontrivial 
solution of Ax = 0, which depends on x< 0 J, for each 0 < 
a < 1 and each initial vector xcoi >> 0 (cf. [14, theorem 
3.4, p. 191], (93, p. 273 ff]). 

Furthermore, in some special cases the optimal extra-
polation parameter a has been determined by Neumann 
and Plemmons [93, theorem 7, p. 275) (cf. (9, theorem 
8.4.32, p. 234J, (46), (47J). 

2) 1he Point Gauss-Seidel Procedure: There are two 
possible Gauss-Seidel iteration proccdures for the solu· 
tion of the homogencous system (2.4): the forward 
Gauss-Seidel iteration 

(D - L)x<m+I) = Ux<ml m = 0, 1, · · · (4.3) 

with the iteration matrix Ti = (D - L)- 1 U and the back· 
ward Gauss-Seidel iteration 

(D - U)x<m+I) = Lx<ml m = 0, l, · · · (4.4) 

with the iteration matrix Tu = (D - U)- 1L. Note that 
the Gauss-Seidel splitting of an irreducible M-matrix is 
an M-splitting. 

Simple examples reveal that the convergence of these 
schemes is not guaranteed for arbitrary M-matrices A. But 
it can be shown that a Gauss-Seidel scheme is conver-
gent, too, if the iteration matrix T (the index of T is omit-
ted) has no further eigenvalues on the unit circle apart 
from the maximal eigenvalue p ( T) = 1, i.e„ if ö ( T) = 
max { 1 XI: Xe u(T), X :P. 1} < 1 holds (cf. [7l, §6.1), 
[6], [105), (101)). Here, u( T) denotes the spectrum of 
T. This criterion may be verified a priori by a simple 
analysis of the zero structure of A (cf. (6, theorem 1, p. 
394]). But there are some simple sufficient conditions for 
the convergence of the point Gauss-Seidel procedures 
which can easily be verified by the inspection of the zero 
structure of matrix A, too (cf. [6, cor. 1, p. 394], [105, 
cor 3.6), [101, cor. 2]). 

Recall that a sequence 0t = (i0, ii. · · · , i1, i0 ) of dis-
tinct nodes (except the end point) in the directed matrix 
graph r(A) associated with Ais called a monotone cycle 
if a 1 = (i0, ii. · · · , i1) is monotone with either i1 < io 
for decreasing a 1 or i1 > i0 for increasing a 1 (cf. [101], 
[6]). 

Result 1: lfthe directed graph r (A) ofthe irreducible, 
singular M-matrix A has a monotone decreasing cyc/e, 
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then the forward Gauss-Seidel iteration converges for 
each x<0 >. 

lf r (A) has a monotone increasing cycle, then the 
backward Gauss-Seidel iteration converges for each x< 0 >. 

We state another useful criterion for matrices with sym-
metric zero structures (cf. [35], [57]). These matrices A 
have the property that A;; * 0 for i * j implies A1; * 0. 

Result 2: If the irreducible M-matri.x A has a symmetric 
zero structure, both the f orward and backward Gauss-
Seidel iterations are conver1:ent. 

To avoid expensive divisions during the execution of 
the Jacobi or Gauss-Seidel procedure, we prefer to apply 
the schemes to the irreducible M-matrix A • D- 1 = l -
i · 0-1 - Ü · 0- 1 = / - L - U. lt is derived by scaling 
the columns of A by means of the diagonal matrix 0- 1 > 
0 (cf. (117], [87]). This transformation is equivalent to 
the transition from a CTMC to its embedded jump chain 
with the t.p.m. P = I + 0- 1 • Q = (L + U)'. The 
scaling of Ais associated with a scaling ofthe steady-state 
distribution -..: A · D- 1 

• (D · -..) = 0, x = D · ?T. Thus, 
this steady-state vector may be calculated from tbe vector 
x resulting after convergence of the iterative scheme by 
tbe modified normalization-.. = D- 1 • x/(e' · n- 1 • x) 
provided that x > 0 holds. An eflicient implementation 
of an accelerated version of this Gauss-Seidel scheme has 
bcen described by Stewart and Goyal [117). 

B. The Block Gauss-Seidel Procedure and R-Regular 
Splittings 

An important class of iterative methods is based on a 
block partition A = (A;;)i:s;.;:sp• p > 1, of a given 
Q-matrix A. Regarrling the corresponding block iterative 
schemes, Rose [101] has established some convergence 
results. They are based on a generalization of the block 
Gauss-Seidel splitting technique, called R-regular split-
ting (cf. [IOI, p. 138]). Constructing the splitting by this 
technique, appropriate LU decomposition schemes re-
sulting from special factorization methods for sparse ma-
trices, e.g., an incomplete LU decomposition, can be 
taken into consideration. A variant of the corresponding 
iterative algorithm which is acceJerated by relaxation 
reads as follows. 

Assumprions: Let A E ~9i n X n be the Q-matrix associated 
with a Markov chain. Definc a block partition A = 
(A;)i:siJsp• given p > 1, and extend it to the steady-
state vector x specified by (2.4), (2.5). Choosc an 
R-regular block splitting A = M - N = (D - D(N)) -
(L + L(N)) - U(N) which has the following proper-
ties: 

(1) D = diag (D;; )1 :s i:sp and D(N) are block-diagonal 
matrices with D(N) 2: 0. Land L(N) are strictly 
lower block-triangular matrices such that L 2: 0, 
L(N) 2: 0. U(N) is a strictly upper block-trian-
gular matrix with U ( N ) 2: 0. 

(2) D;/ 1 >> 0 for 1 ~ i ~ p. (IfO < w < 1 holds, 
only Dii 1 > 0 is required.) 

(3) M = D - Lisa lower block-triangular matrix. 

(4) N = L(N) + U(N) + D(N) 2: 0. 
(5) A0 = D - L - U(N) is ineducible. 
( 6) The block matrix graph r ( A0 ) = ( V, E ) has a 

monotone decreasing cycle, this is a sequence c = 
( i1, i2, • • • , i1, i1) of adjacent nodes with tbe prop-
erty i1 * i1 and i; 2: i1+ 1• 1 s j :s I - 1. Recall 
that the block matrix graph r ( A0) = ( V, E ) is a 
directed matrix graph with nodes V = { Vi 1 1 s i 
s p} and directed edges (V;, J'i) e E. Vi results 
from the partition of the index set { 1, · · · , n } 
according to the block partition. (V;. ij) e E iff Aii * 0, that means there are indices l e V;. m e ~ 
such that (/, m) e Er(A) is an edge in the matrix 
graph of A. 

Algorithm: 

1) lnitialization: 
Select an initial vector x<0> >> 0, e.g., x(0

> = 
M- 1e/n, 0 < t < !, and an appropriate relaxation 
parameter 0 < w < 2. Set k = 0. 

2) Iteration step: 

For i = 1 to p do 
SolveD„ · t\k+I) = E~- 11 L„ · x(k+I) „ l j== lj J 

+ Ef=1 Nij 'xjk> 
xlk+ 1> = (I - w) • xjk> 

endfor 
(LetEJ; 1 ;;0.) 

3) Convergence test: 

+ "' . xik+ 1) 

If lix<k 11 >-x<*lll/llx(k)ll <E then 
goto step 4 

eise 
goto step 2 

endif 

4) Normalization: 

Normalize the resulting vector 

(
x\k+IJ) 

X(k+I)= : >0 
x<k+IJ 

p 

D 
Obviously, every R-regular splitting is also a regular 

splitting. lf all diagonal blocks Du are M-matrices, it is 
an M-splitting. Without loss of generality we assume that 
D;; are irreducible regular M-matrices which implies (2) 
and the irreducibility of A (cf. [101)). The monotony of 
a cycle (6) existing due to the irreducibility of A can be 
enforced by an appropriate block perrnutation (cf. [101, 
prop. 3, p. 138)). 

The importance of R-regular splittings stems from 
Rose's result [101, theorem 1, p. 138] that each R-regular 
splitting A = M - N of an irreducible, singular M-matrix 
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A e lf.i" "•, e. g., the Q-matrix of an irreducible Markov 
chain, generates a convergent iterative scheme. 

Ernploying this special splitting technique, Rose has 
also shown that there always exists a convergent block 
Gauss-Seidel splitting of the irreducible Q-matrix corre-
sponding to an irreducible Markov chain with appropri-
ately ordered states (cf. (101, theorem 1, p. 138]). In this 
context, the following sufficient convergence criterion 
may often be employed in practice (cf. [101, cor. 2, p. 
139]). 

Result 3: Let A e fPl" "" be an irreducible, singular M-
matrix, e.g., a Q-matrix, and A = M - N = (D - L) 
- U (N) a block Gauss-Seidel splitting with irreducible 
block matrices D11 along the diagonal of M. Furthermore, 
suppose there exist block matrices Ar:; -:f:. 0 and Ai; -:f:. 0 
for i, j e { 1, · · • , n }, i * j. Then the block Gauss-
Seidel method converges. 

Other sufficient convergence criteria conceming the 
block Jacobi and block Gauss-Seidel method as well as 
their implementation by a two-step iterative procedure .de-
rived from an A/D scheme are provided by Counois [26) 
(see Section IV-C). These methods are particularly suit-
able for NCD models. 

C. The IAD Procedure 
In this section we present a universal iterative solution 

procedure which can be used as a building block of an 
analysis program for Markov chains. Let A = M - N be 
a regular splitting of the irreducible Q-matrix associated 
with an irreducible finite Markov chain. Denote the non-
negative iteration matrix by J = M-'N and the corre-
sponding extrapolated iteration matrix by J„ = ( 1 - w)l 
+ wl, 0 < w < 1. A standard convergence-acceleration 
technique besides the relaxation method mentioned pre-
viously is given by the insertion of some aggregation/dis-
aggregation (A/D) steps during the iteration (cf. [106], 
[108], (52], [22], [23], [90]). In order to guarantee con-
vergence ofthe scheme in this case (cf. [108, theorem 4, 
p. 328)), we have to define a fallback procedure x<H 1 > 

= T · x<k>_ lt is based on a stochastic matrix T that con-
verges to the normalized eigenvector x* corresponding to 
the eigenvalue p ( T) = 1 which is related to the stationary 
distribution p of the Markov chain by some transforma-
tion (see (4.8)-cf. (87, p. 126]). 

Usually, neither J nor J„ is stochastic. In order to con-
struct a stochastic iteration matrix, we proceed to a non-
oegative matrix T, called dual iteration matrix, by a simi-
larity transfonnation T = M · J • M- 1 = N · M- 1 or T„ 
= M • J„ · M-1 = (1 - w)l + wT, 0 < w < 1. Then 
T,,,, 0 < w :s 1, is column stochastic and II r„ II 1 = p ( T„) 
= 1 holds. Furthennore, T„, 0 < w < l, determines a 
convergent scheme and p ( T„) = .1 is a simple eigenvalue. 
Subsequently, the subscript w will be omitted. Let x* > 
0 denote the unique normalized eigenvector correspond-
ing to the spectral radius p(T) = 1. 

We choose a partition r = { 11, • • • , J„} of the state 
space S = { 1, · · · , n } into m ~ 2 disjoint sets J; with 

n; 2: 1 elements each. Without loss of generality, we as-
sume the elements of these sets to be enumerated in a 
consecutive order such that i < j holds if i e J1, j e lt, l 
< k. Furthermore, w.l.g. Jet Tand x*' = (xt', · · · , 
x:,') be arranged according to this state space partition 
and ordering. Following the approach of Chatelin and 
Miranker (cf. [23], (52], (22)), we define an aggregation 
matrix Re !Rl"' xn by 

R·· = [l 
IJ 0 

ifj e 1; 

otherwise 

For a fixed probability vector 

1 s i s m, 1 s j :s n. 

(4.5) 

i.e„ e 1 • X = 1, the prolongation matrix P(x) e fRl n )( m is 
given by 

if i e Ji 

otherwise 
1 :s i s n, 1 s j s m 

where the vector 

is defined for j e { l, · · · , m} as follows: 

ifx1 >0 

if.tj = 0 

with a<x>i = e' · x1 

(4.6) 

Ycxl; comprises the conditional probabilities of the states 
in the aggregate j and y is called the vector of the intra-
aggregate probabilities. Based on these matrices 

(1 
0 I) >O. 
e' 

R= 

0 e' 

c 
0 !) , 0 P„, = r Y2 

0 Ym 
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we define a stochastic aggregated iteration matrix by 
B = B<xJ = R • T • Pcxi e ~1mxm. (4.7) 

In a way, B describes the behavior of a new system ap-
proximating the original one. lt results from the aggre-
gation of the original state space S into a smaller set { 1, 
· · · , m} of macrostates determined by the partition r = 
{J i. • • • , J m } • Hence, there exists a probability vector 
a = <Xcxi = (a(xli• · · · , a<x>.Y > 0 in Rl"' satisfying 
B<x> • a<xi = aexi and e' · a<x> = 1. a is called the vector 
of interaggregate probabilities. This steady-state infor-
mation about the aggregated system is extended to the 
whole state space by the generation of the disaggregated 
probability vector icxl e R." defined by .i<.r> = P(xJ · a<xl 
~ 0. lt can be used as an approximation of the required 
steady-state vector. 

Regarding this approach. we may construct a corre-
sponding iterative A/D algorithm. lt is based on a scheme 
developed by Schweitzer and Kindle (cf. [108, p. 326f]) 
and called dual IAD-algorithm. 

Assumption: Let A = M - N be a regular splitting of 
the irreducible Q-matrix A e r:~ n X n with an extrapolated 
dual iteration matrix T = 1 - wAM- 1 for some w E 
(0, 1 ). Choose a partition r = {11, • • • , J„} of { 1, 
· · · , n} into m ~ 2 disjoint sets. Define r (x) = II (l -
T) • xll 1, x E ~.:". 

Algorithm: 

1) Initialization: 

Select an initial vector x< 01 >> 0, e1x< 01 = 1, and 
three real numbers 0 < e, c1, c2 < 1. Construct the 
matrices p(' ) E ~. X m, R e IR1 m X.' T E [;~. X n and 
B,.l e :Rl'"xm according to (4.6), (4.5), (4.7). Set 
k = 0. 

2) A/D step: 

Solve 
subject to 
and compute 

3) Iteration step: 

B,,„,> · a<x'k'' = a<,{"> 
e' · a<x'"l = 1, a(,1111 > 0 
x = P<•"'l · a<,m> 

Compute x<k+ 1> = T · x 
4) Convergence test: 

If r (i) s c1 • r (x'*» 
then goto step 5 
eise computex<HJ> =Tm· x<kl 

with m = m(x<.t>) e ~,~such that 
r (x<k+ 1 l) :S c2 · r (x<k>) 

endif 

5) Termination test: 
If II x<k+ 1 > - x<k> 111/IJx<•> 111 

= 1Jx<k+1l _x!k1ll 1 < e 
then goto step 6 
eise k = k + l 

goto step 2 
endif 

6) Normalization: 

M-• . x<•+1) 
p = e' · M-1 • x<k+l) (4.8) 

Given the irreducible Q-matrix A associated with an ir-
reducible finite Markov chain, we chuose a regular split-
ting A = M - N, c.g„ an M-splitting like the point or 
block Gauss-Seidel splitting A = (D - L) - U. Then it 
can be shown that the proposed dual IAD-algorithm con-
verges to the steady-state distribution p of the Markov 
chain for any initial vector xc0> >> 0 with e1x< 0> = 1. 
Moreover, r(x<k+ll) :S max (c„ c2 ) • r(x<k». k ~ 0 
holds (cf. [108, theorem 4], [70]). 

D. Further Reading 

As in the case of regular matrices, all iterative methods 
for singular systems are variants of the power method 
([43, sec. 7.3, p. 209]). Considering the splitting A = M 
- N of a regular matrix A, its convergence is guaranteed 
ifthespectral radiusofT= M- 1Nsatisfiesp(T) < 1 
(cf. Varga 023, 3.2, p. 6lff]). In the case of singular 
systems, however, other conditions are necessary to guar-
antee the convergence of the scheme ( 4 .1) because the 
spectral radius p(T) of Tis equal to 1 (cf. [9, ex. 6.4.9, 
p. 152, lemma 7.6.9, p. 197], (101, prop. l, p. 136]). 

Necessary and sufficient conditions guarantccing thc 
convergence of standard iterative schemes applied to sin-
gular M-matrices, like the Jacobi or Gauss-Seidel proce-
dure, have been derived by Rose (101], Schneider [105], 
Barker and Plemmons [6], and Barker and Yang [7] among 
others. 

Considering the block or point Gauss-Seidel splitting 
A = (D - L) - U of an irreducible M-matrix, it is con-
venient to acceleratc thc Gauss-Seidel procedure by ap-
plying standard over- or underrelaxation techniques (cf. 
[57], [123], [6]) or by employing a semi-itcrativc tcch-
nique such as the stationary or nonstationary Chebyshev 
method or Eiermann' s stationary fourth-order scheme (cf. 
[123, §5], (29], (96), (30, lemma 8.4, p. 28], [7]. (46), 
[47]). The main difficulty w.r.t. these procedures is the 
determination of "optimal" relaxation parameters. As 
there is no a priori infonnation about the location of the 
eigenvalues ofthe iteration matrices, heuristic procedures 
estimating approximately optimal parameters seem to be 
the only practicable approach (cf. [48, §9.5, p. 223ff], 
[117], [111], [46], [47]). 

The convergence of the Jacobi underrelaxation scheme 
has been established by Varga et al. (14, theorem 3.4, p. 
191] who generalized the classical theorem of Stein-Ro-
senberg [123, theorems 3.15, 3.16, p. 90ff] to singular 
M-matrices A with positive diagonal elements. Further-
more, these authors have shown that the Gauss-Seidel un-
derrelaxation scheme with the iteration matrix T„ = ( D 
- wl)- 1 ((1 - w)D + wU), 0 < w < l, is also con-
vergent if it is applied to an irreducible, singular 
M-matrix. A corresponding result was also proved by 
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Barker and Plemmons [6, cor. 3, p. 395). Therefore, both 
methods may be employed for the solution of (2.4). 

Applying a continuity argument, we conclude that the 
accelerated iteration procedure associated with an 
R-regular splitting converges for w > 1 if the scheme of 
the R-regular splitting converges for w = 1 (cf. [123, p. 
109)). But suitable formulas for the detennination of the 
optimal relaxation parameter w e ( l, 2) only exist for 
special cases (cf. [123, §4.3), [48, §9), [46], [47)). 

Semi-iterative variants of the Gauss-Seidel procedure 
for singular M-matrices have been studied by Kaufman 
[57), Eiennann, Varga, and Niethammer [30), and Eier-
mann, MareJc, and Niethammer [29] among others. For 
details the reader is referred to these articles and the ref-
erences therein. We especially recommend the survey ar-
ticle of Eiennann et al. [29). 

Regarding the iterative A/D procedure, an error analy-
sis conceming the error reduction of an A/D step and the 
gain of an iteration step following the A/D step has been 
provided by Krieger [70). Other A/D methods have been 
studied by Courtois (25), Vantilborgh [122), Koury et al. 
[66), Haviv [52), Cao and Stewart (18), Chatelin [22], 
Sumita et al. (119), Schweitzer [106), Schweitzer and 
Kindle [108). Especially Chatelin [22), Schweitzer [107], 
and Haviv [52) provide excellent surveys of this topic. 
The reader interested in this subject is referred to their 
contributions. 

Last but not least, it is worthwhile to mention that both 
the power method and the point Jacobi procedure have a 
stochastic interpretation (cf. [87, p. 122], [71, p. 56)). 
Moreovcr, the point Gauss-Seidel procedure has a prob-
abilistic interpretation, too. lt has been pointed out by Mi-
tra and Tsoucas (87] for the tirst time. Krieger (cf. [71, 
p. 60), [70, §4.3)) has described an equivalent, rather 
simple approach based on Grassmann 's state space reduc-
tion technique (cf. [45)) which is also applicable to the 
block Gauss-Seidel procedure. 

E. Applicability of Iterative Methods 

In conclusion, we recommend to apply variants of the 
dual IAD-algorithm as basic iterative procedures. They 
should be based on an appropriate regular splitting A = 
M - N which yields an efficiently solvable linear system 
Mx<k+ 1

> = Nx<*> such as the block orpoint Gauss-Seidel 
splitting or an R-regular splitting. Furthennore, a careful 
choice of the relaxation parameter w e ( O, 2) is required 
which may be supported by a heuristic procedure (cf. r48, 
§9.5, p. 223ff]). During the iteration process, the inser-
tion of a few expensive, but effective A/D steps is useful, 
especially in the initial phase. Both the splitting and the 
partition of the state space should be adapted to the natu-
ral structure of a model and its associated Q-matrix A. 

Basically, a procedure of this kind can be applied to all 
banded, sparse or large matrices and to all NCD-type 
models. 

Fig. 1. The graphical user Interface showlng a mutual overflow model. 

V. THE APPUCATION OF NUMERICAL METHODS TO 
MARKOVIAN MODELS 

In this section we illustrate the versatility of the pre-
sented computational approach by the application of some 
numerical methods to Markovian models which are de-
rived from modern telecommunication networks. 

A. A Model of Alternative Routing 

In the last decade, considerable attention has been de-
voted to the analysis of advanced routing schemes in cir-
cuit-switched digital networks based on efficient modern 
signaling systems such as CCITT CCS No. 7. There are 
several intcresting telctraffic modcls which arc the build-
ing blocks of a network analysis (cf. [4], [17], [28], [40], 
[59], (68), (3), [130)). 

The analysis of a circuit-switched network with alter-
native routing is a classical issue of teletraffic theory (cf. 
[129], [120]). In this context, a well-Jcnown model is pro-
vided by a single, fully available trunk group that carries 
both direct traflic and multiple overftow traffic streams (cf. 
[10), [65], [12]). This model describes apart of the net-
work where several origin-destination pairs 0 - D„ 
· · · , 0 - Dn share the same overftow tnmk group 0 -
T which carries additional direct traffic (cf. Fig. 3). The 
direct traffic streams corresponding to 0 - D; overftow 
to the common trunk group 0 - T with n trunks if the 
corrcsponding direct routes are blocked. 

If the offered streams are modeled by independent Pois-
son processes and the call holding times are mutually in-
dependent, exponentially distributed random variables 
with a common mean, no explicit analytical representa-
tion of the steady-state distribution of the resulting Mar-
kovian model exists for more than one overftow stream. 
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For one overflow stream, however, its steady-state distri-
bution has been derived by Brockmeyer [12). Recently 
Pearce [98] has generalized the corresponding results. 
Kosten [65] derived a partial analytical representation of 
the steady-state distribution based on a reduction ap-
proach. But it has no completely closed fonn since some 
tenns have to be calcuJated from the solution of a system 
of linear equations. 

lf the overllow strcams are approximated by special re-
current point processes with hyperexponentially distri-
buted interarrival times known as interrupted Poisson pro-
cesses (IPP), an analytical solution ofthe steady-state dis-
tribution of this model has been provided by Kuczura 
among others (cf. [75), [100)). 

Recently, Meier-Hellstem [83) has presented a numeri-
cal solution based on an MMPP / M / n / n loss model. lt 
exploits the representation of an IPP by a Markov-modu-
lated Poisson process (MMPP) and the property that the 
superposition of independent MMPP's is still an MMPP 
(cf. [95], [83]. [82]). 

Considering this model, we want to demonstrate the use 
of an iterative method based on an R-regular splitting. We 

'Y2 

mutuaHy independent Markov-modulated Poisson pro-
cesses (MMPP's l and 2) with the generator matrices 

- (--y, 'YI) - (-'Y2 'Y2) Q, - • Q2 -
W1 -w, W2 -w2 

and the rate vectors 

(cf. [82], [83], [81}, [95], [74]). Here, }..1 > 0 is the in-
tensity of the Poisson process associated with the IPP 
stream i, l /y1 its mean on-time and l / w1 its mean off-
tirne, i E { 1, 2} (cf. [74, p. 438)). Obviously, each Pois-
son stream may be regarded as an MMPP, too. 

Let us denote the phase of the controlling CTMC in the 
MMPP representation of the IPP i E { 1, 2} at time t ::!:: 
0 by Y; (t). lts associated irreducible generator matrix is 
Q;. As the superposition uf independent MMPP's is still 
an MMPP, the Markovian cnvironment rcsulting from the 
composition of the arrival streams is given by Y(t) = 
(Y1(t), Y2(t)). lt possesses thc irreducible generator ma-
trix 

'Y1 0 

Q = 01 © Q1 = W2 
c,-„ -y, - Wi 0 'Y1 

) E C-'• 
W1 0 

0 w, 

assume that the common Overflow trunk group consists of 
n trunks. The number of busy trunks at time t 2: 0 in this 
fully available group will be denoted by X(t). The olfered 
load consists of a Poisson stream ( stream 0) with inten-
sity ).. 0 > 0 and two overflow streams (l and 2). These 
streams are assumed to be independent of each other. The 
mean call holding time is denoted by l / µ. 

Following a standard approach in leletraffic lheory (cf. 
[82], [83]), the overflow streams are modeled by two in-
tenupled Poisson processes (IPP's) resulting from a two-
moment approximation. They will be represented by two 

" ' -w, - 'Y2 'Y2 

W2 -wl - W2 

m = 4. lts states Y(t) = (ki. k2 ) = k will be ordered 
lexicographically and enumerated by integers k e { 1, 2, 
3, 4}. The rate vcctor of thc resulting MMPP is given by 
X= ( :>. 0 + :>. 1 + X2. >-. 0 + >-.,, Xo + >-. 2, >-.o)' >> 0. 

Then the model of alternative routing may be regarded 
as M / M / n / n loss system in a Markovian environment. 
lt can be described by an irreducible CTMC Z ( t) = 
(X(t), Y(t)), t ~ 0, with a finite state space S = { (i, 
k) l 1 s k s 4; 0 s i s n }. 

lf we suppose a lexicographical ordering of states, the 
negative transpose A = -Q' E l+LxL, L = m · (n + l ), 
of the irreducible generator matrix a associated with z ( r) 
has the following block tridiagonal structure: 

0 0 

-A 

0 

-Q' + 1µ/4 + A -2µ/4 

-A 
A= (5.1) 

0 

0 0 -A -Q' + nµh 
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Here, Ao = 'Ao/4, A1 = diag ( X1, X1, 0, 0), A2 = diag 
( X2. 0, X2, 0) are the arrival rate matriccs ofthe Poisson 
strearn and the two IPP' s. A = Ao + A1 + A2 is thc arrival 
rate matrix of the MMPP resulting from their superposi-
tion and /* denotes the identity matrix of order k. 

Taking advantage of the block structure of A, the 
steady-state vector 1f of Z(t) may be computed either by 
a block iterative scheme derived from an R-regular split-
ting of A or by an accelerated point iterative scheme such 
as JOR or SOR (cf. [71], [lOlJ, [83J). 

Such an R-regular splitting tecbnique has been sug-
gested by Meier-Hellstem [82, §3], [83], but without a 
rigorous mathematical proof of the convergence of the re-
sulting iterative scheme. The proposed procedure is based 
on the following block splitting A = M - N: 

-Q' + J\ + nµ.l4 0 

hold, where e denotes the vector of all ones. ® is the 
Kronecker product of two matrices defined by A ® 8 = 
(Ay • B) (cf. [94, p. 53]). Thus, D;; = - Q' + A + np./4 
is an irreducible, column diagonally dominant, rcgular 
M-matrix. Hence, Dii' >> 0 holds (cf. [9, theorem 6.2.7, 
p. 141)). 

The matrix A0 = D - l - U ( N) has the same zero 
structure as A. Thus, it is an irreducible, block tridiagonal 
M·matrix. The corresponding block matrix graph r ( Ao) 
possesses a monotone decreasing cycle, for instance, [ l, 
0, 1) since (Ao)1o = -A. :/< 0 and (Ao)o1 == -µ14 * 0 
hold. 

Therefore, the proposed block splitting A = M - N 
defined by (5.2), (5.3) is an R-regular splitting. More-

0 

-A 
0 

-Q' + A + nµ./4 

M= 
0 

0 0 -A -Q' + A + nµl4 

=zD- L (5.2) 

np./4 114/4 0 0 

0 (n - 1 )µ./4 2µ./4 

N= 0 

0 lµ./4 nµ.[4 

0 0 A 

= L(N) + U(N) + D(N) ~ 0 

Obviously, L(N) = 0, D = (Dii)1~0„ „,n = In+ 1 ® 
(-Q' + A + nµ.14 ) and D(N) =: diag (nµ.e', (n -
1 )µe', · • · , lµe', X') ~ 0, 

0 0 0 

1 0 

L= 0 ®A~ 0, 

0 0 

0 0 0 

0 1µ 0 0 

2µ 

U(N) = 0 

nµ 

0 0 

(5.3) 

over, it is an M-splitting since the diagonal bloclcs of M 
are regular M-matrices. Hence, we conclude from Rose's 
convergence theorem [101, theorem l, p. 138] that the 
resu)ting block iterative procedure x < k + 1 > = M - 1 N x < k l, 
k "" 0, 1, · · · converges for eacb initial vector x<0l >> 
0 to the steady-state vector T of the CTMC Z(t) if the 
iteration vector x<t + 1 l is nonnalized after convergence. 

Of course, this algorithm may be accelerated by insert-
ing several aggregation/disaggregation steps during the it-
eration according to the IAD scheme (see Sections IV-C 
and V-B). 

In comparison with the block Gauss-Seidel scheme, the 
proposed R-regular splitting procedure has the advantage 
that all diagonal blocks of the matrix M are identical. 
Therefore, it is necessary to decompose only one small 
matrix D;; and to store its inverse during the iteration pro-
cess. The resulting algorithm is weil suited for an imple-
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Service Source Sink Conex Loss Link 
Station Exlt 

Fig. 2. The elerncnts of the MACOM model world. 

mentation on a vector processor. Experimental results of 
the scheme have been provided by Meier-Hellstem [82). 

B. A Loss System with Mutual Overflow and External 
Traffic 

The next example concerns thc study of an adaptive 
routing strategy in circuit-switched networks. We con-
sider a network consisting of a local exchange (EXo) and 
two exchanges of the long-distance network (EX1, EX2) 
which are oonnected to each other by two both-way trunk 
groups. The traffic outgoing from the local exchange is 
split into two portions and each portion is offered to an 
outgoing group. These partial traffic streams are routed 
according to an adaptive routing scheme called mutual 
overflow routing (cf. [68], [69), [79], [33]). Additionally 
each trunk group carries extemal traffic (cf. Fig. 4). 

The network may be described by a loss system com-
posed of two fully available trunk groups called systems 
1 and 2 with N1 and N2 lines. Two originating traffic 
streams ( streams 2 and 3) representing the portions of the 
outgoing traffic and two incoming extemal traffic streams 
(streams 1 and 4) are offered to the loss system. These 
arrival proccsses are modeled by mutually independent 
Poisson processes with positive rates >. 2, X3 and Xi. X4• 

The extemal traffic streams 1 and 4 offered to systems 
1 and 2 follow a random hunting scheme for free lines. 
Their calls are lost without further impact on the system 
if the corresponding trunk group is busy upon arrival. The 
outgoing streams 2 and 3 follow a mutual overflow rout· 
ing scheme. This means that, upon arrival at system 1, a 
call of ftow 2, for instance, is searching for a free line. If 
possible, a free trunk is selected in a random manner and 
occupied. lf system 1 is busy and there are free lines in 
system 2, the incoming call of ftow 2 will immediately 
overflow to system 2 upon arrival and occupy a line se-
lected at random. If both systems are busy, the call will 
be blocked and lost without further impact on the system 
Oost calls cleared). 

Call holding times are considered to be mutually inde-
pendcnt, cxponcntially distributed random variables with 
a common finite mean 1 / ~· They are also assumed to be 
independent of the arrival processes. 

lt is obvious that the occupation process of both trunk 
groups in this loss system can be modeled by an irredu-
cible CTMC X(t) = (X1(t), X2(t}), t i2: 0 with finite 
state spaceS = {(i,j)jO s i s N1; 0 s j s N2}, 
where the state variables X; (t). i == 1, 2, denote the num· 
ber of busy trunks in group i at time r. 

Hierarch7 

LeYel 2 

Fig. 3. Part of a 2-lcvcl circuit·switchcd nctwork with alternative routing. 

Fig. 4. Network with mutual ovcrflow routing. 

We assume a lexicographical ordering of states and de-
note the negative transpose of the corresponding genera-
tor matrix Q of X(t) by A = -Q' e IR'N><N, N == (N1 + 
1) · (N2 + 1 ). lt is an irreducible Q-matrix and has a 
block tridiagonal structure 

Co 0 0 

0 

(5.4) 
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B; = 80 + iµ. • 1, i = 0, · · · , N1 - 1, of order Ni + 1 
along the diagonal. Tue off-diagonal matrices D; = - diag 
(ai. · · · ,ai. a3), i = 1, ···,Ni. C; = -(i + l)µ • 
l, i = 0, · · · , N, - 1, have diagonal structures. Here, 
we have set a1 = X1 + X2 > 0, a2 = X3 + X4 > 0, a3 
= >..1 + X2 + A3 ~ a1> a4 = X2 + X3 + X4 ~ a2, a = 
>.., + X2 + A3 + X4 = a1 + a2 and A; denotes the inten-
s,ity of the offered Poisson stream i e { 1, · · · , 4 } . 1 / µ 
is the mean call holding time and /the identity matrix. 

Hence, A is a consistently ordered 2-cyclic Q-matrix 
w.r.t. this block partition ((123, p. 102)). Moreover, it 
can be shown thatA is also a consistently ordered 2-cyclic 
matrix w.r.t. the point partition and that it has property A 
(cf. (71), (123, p. 187), [101], [9]). Thus, the point Ja-
cobi matrix J = v- 1(L + U) is cyclic of index 2, i.e„ 
the greatest common divisor of the lengths of all proper 
cycles in the matrix graph of A is 2. According to [6, 
prop. l, p. 392] the Jacobi procedure is not convergent 
(see also (9, theorem 2.2.30, p. 35), [71, theorem 29, p. 
56]), whereas the corresponding JOR and SOR proce-
dures with the iteration matrices J „ = (1 - w) l + wJ 
and L„ = (D - wl)- 1 ((1 - w)D + wU) are conver-
gent for cach relaxation parameter w e (0, 1) (see (7, 
theorem 3.9], (71, p. 73), (6, cor. 3, p. 395], (14, theo-
rem 3.4, p. 191]). 

As A has a symmetric zero structure, we conclude from 
Result 2 that the point Gauss-Seidel procedure is conver-
gent, too (see also [101, cor. 2, p. 139], [105, cor. 3.8, 
p. 417], [71, theorem 35, p. 66]). Taking into account 
Mi1 = (D - Lhi = -a2 < OandN12 == U12 == µ. > 0, 
this rcsult also follows immediately from Result 1. This 

point iteration may be accelerated by applying the stan-
dard overrelaxation technique (cf. [57], [117)) or a semi-
iterative technique such as the stationary or nonstationary 
Chebyshev method or Eiennann's stationary fourth-order 
scheme (cf. (123, §5), [29), [96), [30, lemma 8.4, p. 28], 
[7], [46], (47]). The main difficulty w.r.t. these proce-
dures concems the determination of "optimal" relaxation 
parameters w. As there is no a priori infonnation about 
the location of thc eigenvalues of the itcration matrices, 
heuristic procedures estimating approximately optimal 
parameters are the only practicable approach (cf. [48, 
§9.5, p. 223ff). [111], [46], [47)). But in the case of a 
consistently ordered 2-cyclic matrix the well-lmown re-
lation (X + w - 1 )2 = )\ui2µ. 2 (see [123, theorem 4.3, 
p. 106]) between the eigenvalues µ. and X of thc (block) 
Jacobi and SOR iteration matrix may be exploited (cf. 
(123, §4.3, p. 109)). 

An alternative is provided by block iterative schemes 
such as the block Gauss-Seidel procedure or its modified 
versions based on Rose's R-regular splitting (see (83], 
[73]). According to Result 3, the block Gauss-Seidel 
scheme derived from the given block tridiagonal structure 
(5.4) of A is convergent since the diagonal blocks are ir-
reducible, regular M-matrices. 

All methods may be combined with A/D steps if 
Schweitzer's IAD procedure is used (see Section IV-C-
cf. (90], [66], [119]). The transfonnation of each block 
of A into a single scalar is a very natural way of aggre-
gation. This procedure corresponds to the aggregation of 
each macrostate {(i, j) 1 0 !i j ~ Ni } , 0 !i i ~ N" into 
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TAllLH IV 
COMPARISON OF THF SOLUTION METHnos BASEO ON THE Loss SYSTEM WITH 
MUTUAL OVERFLOW A)ID EXTERNAL TRAFFIC WITH A1 = 40, Ai a 30, A3 
= 60, >., = 10, 11. = 1, N, = 30, N, ~ 60. THEMOOBL HAS N = 1891 

STATES AND THE GE~ERAfOR MATRIX HAS 9271 NONZF.RO F.lF.MF.NTS. THF. 
REQUIRED ACCURACV OF THE PorNT ITERATION PROCEDURES IS t = 10-6. 
THE DATA ARE COMPUTED DY THE PACKAGF. MACOM ON A SUN 31470 

WJTH FLOATING POINT ACCELERATOK 

M•thod ! Relu.atioa li umher of 1 Number of Tim• for the 
parametcr A/D steps •tera•iona 90}utinn in 11ec 

SOR 1.2 180 16.8 
1 T.3 1--

124 JJ . 
1.4 144 13 -· dyaamic 100 9.1 

SOR·A/D, J.0 10 102 16.2 
1.2 10 116 16.1 
1.3 2 ··-~· 104 13.9-

dyn&mic 3 140 19.6 
JOR·A/D 0.9 1 51 2ff ·-38.3-

dynamic 4.1 101 33 
:-·JOR 0.9 > 500 
Grassm61ln's algorilluo 1 Fiß-in 1.37 l'f 67 
dited LU-C..Cturu•lion Fiß.in 1.37 ~ 64.8 

a single state i~ In this way, a simple birth-death process 
is generated. Its aggregated steady·stute distribution a 
may be calculated from an explicit analytical representa-
tion in an efficient way. 

A comparison of different solution techniques yields the 
results shown in Table IV. 

All experiments performed so far confirm our view that 
lhe JOR and SOR procedures with optional aggregation-
disaggrcgation are suitable solution techniques for !arge 
telecommunication models. Similar observations have 
been reponed by Kaufman (57], [58), too. Funhermore, 
Chan's theoretical investigations [20), [21) have proved 
that SOR methods are superior to CG-type procedures and 
projection techniques if rnodels of this type are consid-
ered. In conclusion, we recommend to use the proposed 
direct and iterative methods as universal procedures for 
finite Markov chains. 

VI. CoNCLUs10Ns A~D PEKSPl::CTJVES 

We have presented a computational approach for mod-
eling and analyzing advanced communication systems 
based on numerical solution techniques for finite Markov 
chains. From a practical point of view, it is dcsirablc that 
these solution techniques are supported by convenient 
soflware tools which facilitatc the use of the various al-
gorithms. For this reason, a software package called MA-
COM has been dcveloped. 

MACOM provides the user with a predefined Mar-
kovian model world describing modern telecommunica-
tion networks with adaptive routing schernes and ad-
vanced congestion-contml mechanisms. The packuge is 
endowed with a user-friendly graphical interface that fa. 
cilitates the interactive specification of models. A Markov 
chain is automatically generaled frorn this graphical spcc· 
ification and its steady-state distribution is computed by 
advanced direct or iterative numerical proccdures. In this 
context, we have discussed the algebraic background of 

some direct and iterative solution methods which may be 
employed to calculate the stationary distribution of an ir-
rcducible, homogcneous, discretc- or continuous-time 
Markov chain with finite state space. The direct 
LU·factorization method, Grassmann's algorithm, and the 
point iteration methods JOR and SOR with optional ag-
gregation-disaggregation according to the IAD scherne 
constitute the numerical solver of the package MACOM. 
At present, the incorporntion of block solulion techniques 
such as the block LU-factorization and the block SOR 
procedure is considered. Regarding ehe analysis, one of 
these methods may be applied to investigate the Mar-
kovian queueing models describing advanced telecom-
munication systems. 

The package also offers the evaluation of different per-
fonnance characteristics of a model which are specified 
by the user. Moreover, it supports the representation of 
the calculated results. 

MACOM can cope with !arge Markovian models. The 
versatility of the computational approach implemented by 
MACOM has been illustrated by the application of the 
proposed algorilhms to some examples arising from mod-
ern telecommunication networks (cf. [57), (69), [70), 
[83)). 

At present, a prototype of the package is available on a 
SUN3 workstation. lt is employed for modeling and per-
formance analysis of adaptive routing schemes in circuit-
switched networks. Further development of the tool in-
cludes the improvement of thc graphical specification and 
the representation of results, as well as the extension of 
the model world. 
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