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Modeling and Analysis of Communication Systems
Based on Computational Methods for
Markov Chains

UDO R. KRIEGER, BRUNO MULLER-CLOSTERMANN, anpo MICHAEL SCZITTNICK

Abstract—We describe a computational approach for modeling and
analyzing modern communication systems based on mumerical meth-
ods for Markov chains. Advanced direct and iterative procedures for
the calculation of the stationary distribution of a homogeneous dis-
crete- or continuous-time Markov chain with finite state space are pre-
sented. They are implemented in a convenient software tool for inter-
active modeling and performance evaluation of communication systems.
The versatility of these algorithms is illustrated by their application o
Markovian queucing models derived from tclecommanication net-
works.

1. INTRODUCTION

ODELING of communication systems by means of

homogeneous discrete~ or continuous-time Markov
chains js a current technique that has grown out of Er-
lang’s pioneering work [13] in this field. Edang’s inves-
tigations have initiated a rapid development of probability
theory and its applications.

Recently, considerable attention has been devoted to a
new branch of this theory, namely, the analysis of Mar-
kov chains by numerical methods (cf. {11). From a prob-
abilistic point of view, the problem of computing the
steady-state distribution of an ergodic homogeneous Mar-
kov chain has already been solved since the stationary dis-
tribution may be calculated by the solution of a system of
linear equations called steady-state balance equations.
Therefore, it is not very attractive to probability theorists
any more. In practice, however, the application of the
theory of Markov chains to the field of modeling and per-
formance analysis of telecommunication systems raises a
lot of difficulties. Considering Markovian models of prac-
tical interest, analytic solutions of the steady-state distri-
butions of the Markov chains are rasely available.

On the other hand, nowadays we have to cope with the
investigation of complex, distributed technical systems
such as telecommunication networks within an ISDN en-
vironment or SPC exchanges. Although Markov model-
ing techniques are still useful, the construction of explicit
analytical solutions of the relevant model characteristics
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such as steady-state distributions are normally not poss-
ible any more. Therefore, numerical solution methods for
Markov chains are the only feasible approach besides
simulation which is a rather expensive method.

Regarding the successful development of Markovian
techniques in the past, we are convinced that the Mar-
kovian approach still deserves our attention, despite all
difficulties concerning its application in practice. More-
over, the software techniques for the construction of mod-
eling tools are available at present, and numerical meth-
ods for computing either transient or stationary
characteristics of a mode] are provided to an abundant ex-
tent by numerical mathematics. Furthermore, the knowl-
edge of principles applied to the decomposition and ag-
gregation of models has been improved. Last but not least,
an adequate hardware and software environment is now
available on the desks of teletraffic engineers and network
designers. Workstations with graphical interfaces provide
the basis for the interactive construction of models and
the graphical representation of the calculated results.

From a practical point of view, it is desirable that nu-
merical techniques for Markov chains are supported by
convenient software tools which facilitate the use of the
various algorithms. Although there are several software
packages such as NUMAS or QNAP2 which offer nu-
merical solution techniques for Markovian queueing
models, these software tools are often based on old-fash-
ioned methods such as the deflation approach (cf. [88],
(901, (891, [16], {125]).

We intended to overcome this deficit. For this reason,
a software package called MACOM was developed by the
Deutsche Bundespost Telekom and the Computer Science
Depanment at the University of Dortmund (cf. [91], [92]).
Its capabilities arc tailored to the requirements arising
from the performance evaluation of modern commaunica-
tion systems. The only analysis techniques employed are
efficient numerical procedures for the solution of finite
Markov chains. The package can cope with large models
comprising up to 100 000 states. It is implemented in C
and running on a SUN3 workstation.

MACOM provides the user with a predefined Mar-
kovian model world describing modemn telecommunica-
tion networks with adaptive routing schemes and ad-
vanced congestion-control mechanisms. The structure of
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its modeling components guarantees the Markovian na-
ture of a specified model. The basic elements consist of
links, specific routing elements, called conexes, offering
probabilistic and state-dependent routing, queueing sta-
tions with multiple, homogeneous servers and queues with
finite capacities, different service disciplines (infinite
server, processor sharing, random, nonpreemptive prior-
ity), and general Coxian service-time distributions, as well
as versatile arrival streams such as phase-type renewal and
Markov-modulated Poisson processes. Hence, the result-
ing class of queueing models includes Markovian
queucing networks with state-dependent routing which do
not possess a steady-state distribution of product form.

The model world of MACOM is provided by means of
a graphical user interface, i.e., MACOM models are
specified by a graphical editor (see Fig. 1). The resulting
network graph is interactively constructed from prede-
fined elements, more specifically, sources, sinks, loss ex-
its, stations, conexes, and links (see Fig. 2). Moreover,
further textual information is added to the model elements
by means of pop-up menus which are activated by a
mouse. The text comprises the types of the distributions
(Coxian, Erlang, hyperexponential, exponential) of the
service and arrival process and the parameters of a sta-
tion, i.e., its name, the service discipline, the number of
processors, the service spced, which may depend on the
population, and the capacity of the station defined as the
number of customers which can be held simultaneously.
Furthermore, the attributes of the routing elements have
to be described.

Advanced direct and iterative methods for the compu-
tation of the steady-state vector of a continuous-time Mar-
kov chain (CTMC) (cf. (451, [351, [571, {71, [71]) con-
stitute the numerical solver of MACOM. Furthermore, the
package offers the evaluation of different performance
measures of the constructed models which arc specified
by the user.

The tool MACOM combines state-of-the-art techniques
for systems modeling and aralysis by finite Markov
chains, software methods for the specification of models
by graphical means and for the enhanced support of the
user by menu techniques, and the advanced technology of
modern workstations (cf. [109], [110], [92]).

In this paper we present the advanced numerical meth-
ods which are employed for the analysis of the con-
structed Markovian models in the tool MACOM. We feel
that there is no elementary, modem guide on computa-
tional methods for Markov chains and their applications.
Therefore, it is our main objective to summarize some
recommended algorithms from the literature within a
unifying mathematical framework and to illustrate their
application to several models derived from actual tele-
communication networks. This paper does not claim to
present new mathematical results or to give a comprehen-
sive survey of the issue. Readers who are intercsted in the
mathematical background of the proposed algorithms are
referred to Barker's excellent survey [5] (see also [71],
[99]). Although this paper's references cannot be exhaus-

tive, it is comprehensive enough to provide sources from
the litcrature for further study of the subject.

The paper is organized as follows: Section II provides
the mathematical basis for calculating the steady-state
distribution of a finite Markov chain and a classification
of computational methods. In Section IIl we present the
most important direct methods. Section IV is concerned
with advanced point and block iterative procedures based
on matrix splittings for singular M-matrices. Last but not
least, the proposed methods are applied to some teletraffic
models arising from the analysis of modem telecommu-
nication networks.

. THE MATHEMATICAL BACKGROUND OF
CompUTATIONAL METHODS

In practice, telecommunication system behavior is often
described by Markovian models with discrete valued, fi-
nite state spaces § = {1, 2, * -+ , n} (see Section V and
168], [57]. [83)). It is a major objective to calculate the
steady-statc distributions of such discrete- or continuous-
time Markov chains. For this purpose, computational so-
lution methods must be employed if the models do not
belong to special classes such as product-form networks
(cf. [60]) or matrix-geometric models (cf. [94]) since ana-
Iytical solutions are rarely available.

In this section, we provide the mathematical back-
ground of these computational methods. It is based on a
unifying mathematical framework derived from the theory
of nonnegative matrices and M-matrices (cf. [9])). Fur-
thermore, we show that, from the computational point of
vicw, discrete- and continuous-time Markov chains may
be treated in the same way.

We assume the reader to be familiar with the theory of
homogeneous discrete- and continuous-time Markov
chains with finite state spaces, abbreviated DTMC and
CTMC, respectively, to the extent of the books of Hey-
man and Sobel [54, ch. 7, 8] and Kemeny and Snell [62).
Furthermore, we shall adopt the terminology of Heyman
and Sobel and we usc the following notation of Berman
and Plemmons [9, ch. 2, p. 26] w.r.t. vector and matrix
orderings: Let x € B, thenx >> 0 & x; > 0 foreach i
€{l, - ,n}, x>0 x,20foreachiefl, -,
n}andx; > Oforsomejefl, - ,n},x=20ex2
Oforeachie{l, -+ ,n}.

For an irreducible DTMC {Y,, n = 0} with a finite
state space S = {1,2, - -+, n} and an irreducible tran-
sition probability matrix (t.p.m.) P, a solution of the
stated problem is provided by Markov’s well-known theo-
rem (cf. {54, corollary 7-4, p. 231}, |24, corollary 2.11,
p. 153]). The stationary distribution = is the unique so-
lution of the linear system

Zz,=1,

ie§

forallieS.

(2.1)

Considering an irreducible CTMC {X(z), r = 0} with
finite state space S and the conservative generator matrix

=P, 20
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0 = (g;), its steady-state distribution p is determined by
the solution of the linear system

Q=0 Zix,.=1, x;20 forallieS
H

(22)

(cf. [54, theorem 8-6, p. 304]).

Moreover, it is well known that the existence of these
steady-state distributions can be proved by algebraic re-
sults, only (cf. [38, §13.7, 431f], [9, theorem 8.3.11]).
In this context, a major mathematical tool is provided by
the famous theorem of Perron-Frobenius for nonnegative
matrices (cf. [9, ch. 2], [38, §13.2, p. 397f], [112, theo-
rem 1.5, p. 20}, [24, appendix, sec. 4], [123, theorem
2.1, p. 30)). This set of nonnegative matrices, especially
the subset of probability matrices, is very important in
computational probability theory.

It is well known that under appropriate regularity con-
ditions (i.e., for conservative, uniformizable MC’s—cf.
[54, §8-7]) homogeneous, continuous-time and discrete-
time Markov chains with denumerable state spaces satisfy
a close stochastic relation. There is a natural way to as-
sociate an embedded DTMC {Y,, n = 0}, called the jump
chain, with each standard CTMC possessing a generator
matrix Q. This transformation of a CTMC into its asso-
ciated embedded DTMC is called uniformization or ran-
domization (cf. [56, p. 228], [60, p. 3], [54, pp. 290,
310]). It is obtained from the CTMC by observing its
states only immediately after a state transition. Thus the
transition probabilities p; = P(Y,.; = j|¥, = i) of ¥,
are just the conditional probabilities of a transition of X(¢)
from state i to state j given that a transition occurs, i.e.,

Py = {qij/qi i#j
Y 0 i =]'
where g; = — ¢; = L4, q;- Hence, the tp.m. P =
(py) of {1,} is defined by
P=p"' B (2.3)

where Q@ = (g;) = —D + B is a decomposition into the
negative diagonal partof 0, D = —diag (gy)i<y.---.n =
diag (¢;);=1,- .. 4 and the nonnegative off-diagonal ele-
ments B. Here, we introduce the convention that diag (x)
= D generates a diagonal matrix from a vector x by set-
ting D; = x;. Moreover, let e denote the vector of all
ones.

If z is the stationary distribution of the jump chain sat-
isfying e'D”'z = L;z/q;, we conclude from (2.3) that p
= D7'z/(e'D™'z) is a probability vector for which the
relation 0 = p'Q = p'(B — D) = '(D”'B -
1)/(e'D"'z) holds.

If the parameters ¢ of the exponential sojourn times in
the states do not depend on j, i.¢., ¢; = A, then the jump
epochs of the embedded chain form a Poisson process with
rate A and the equilibrium distribution of the jump chain
coincides with the steady-state vector of the CTMC (cf.
[54, theorem 8-5, p. 303)).
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A unifying mathematical framework of computational
methods for Markov chains is based on the theory of
M-matrices (cf. [9, ch. 6}). A matrix 4 = (g;) € B"*"
is called M-matrix if a; < O holds for all i, j with i # j
and if A can be represented in the form A = s/ — B, s >
0, B = 0,5 = p(B), where p(B) is the spectral radius
of B and I denotes the identity matrix. A is a regular
M-matrix if s > p(B) holds and a singular M-matrix for
s = p(B). An important subset of the class of singular
M-matrices is given by the Q-matrices. A Q-matrix @ =
(g;) € R"™" satisfies the conditions g; < 0 for all i, j
withi # jand E7_, ¢q; = Oforall jwith1 < j < n. Thus
the negative transpose A = —~Q' of the generator matrix
Q of a CTMC is a Q-matrix (cf. [101]). Furthermore, the
matrix A = I — P’ is also a singular M-matrix with zero
column sums, i.e., a Q-matrix, if P is the t.p.m. of a
DTMC.

It is our objective to calculate the steady-state vector of
an irreducible Markov chain with finite state space. As
we have already seen, it is sufficient to study a system of
linear equations of the form

A x=0, AeR*™" xeR" (2.4)
where 4 is an irreducible Q-matrix. It is necessary to
compute a positive solution x of (2.4) that satisfies the
additional normalization condition

n
e x=2x=1

i=1

(2.5)

where e denotes the vector of all ones. If 4 is reducible,
the problem may be reduced to this case by transforming
A into the well-known block-triangular canonical form (cf.
{9, p. 39], [38, §13.4]). From the mathematical theory
we know that the problem (2.4), (2.5) has a unique posi-
tive solution (cf. {9, theorem 6.4.16, p. 156]). Further-
more, it can be shown that A = 0 is a simple eigenvalue
of A with one-dimensional eigenspaces spanned by a posi-
tive right and left eigenvector, respectively. In the follow-
ing, unless otherwise stated, we assume A to be an irre-
ducible Q-matrix.

A simple solution technique for the singular system
(2.4) is provided by the transformation into a regular sys-
tem of linear equations. An approach frequently used is
the substitution of the nonmalization condition (2.5) for
the last equation of (2.4) which yields an inhomogeneous
system A’ - x = (0, - - -, 0, 1) with a unique positive
solution x. An alternative method is given by a deflation
technique proposed by Kemeny [61] (see also [62, VIII,
p. 211 ff], [51]). It is a rank-1 modification that may be
applied to any matrix A with a simple eigenvalue 0.

Regarding the issue of calculating the steady-state dis-
tribution of a Markov chain, computational methods pro-
posed in the literature may be classified according to the
representation of the problem and the numerical technique
applied for its solution. We divide the procedures into the
following categories:
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TABLE 1
OVERVIEW OF COMPUTATIONAL METHODS
[Category | Yethods Algorith Re
[Direct | Gansaan Cronl algonithm 43, p.
methods | elimination LU decomposition {34}, {37), [38],
techniques for singular M-matrices | (3, Cor. 6.4.17, p. 157]
Grassmann’s algorithm | [45], [44], 113
rank reduction Block LU algorithms , 139], [49], 43, Sec. 5.5],
techniques 72], {104], (41, §12.4}, }128]
blockwise bordering | [41, 1123
defiation 61, [80], [97], 51]
QR method @3, 3ec. 7.5, p.728], |42
nverse jleration 57], [58], {116
Herative | ptocedures based on | Jacobs procedure 6], [s7], 87
methods | matrix spliftings for | Gauss-Seidel pracedure | [6], [57], [117)
singular M-matrices | JOR 14]
axd their sccelerated | SOR 117), (46]
varianis SSOR 31]
block SOR sv] )
including A/D aigotithan 22), (18], ‘68}, [108), [108, [1}
semi-iterative metbods | Chebyshev algorith 2' 7], ‘123, 47]
rumjugate gradieal GG procedure + (31]
techniques 16CG [u, L, Bec. 3, p.4sfl]
projection methods | power meihod 1029, [00e], 108, ST o, |
(Galerkin methods) | simultancous iterstion | [116), [115}
{ancson’ procadure and
Amoldi's procedure [102], (16}
iterative A / 1) schemes | (22}, [52]
oaltigrid algont AMG 111, Sec. 1, p. 2574], [118]

I) Procedures based on a representation by a system
of linear equations

0=4-x, AecR™, xeR" (26)

given A = —Q"or A = [ — P’ where Q is the ir-
reducible generator matrix of a CTMC and P the
irreducible t.p.m. of a DTMC with n states.

IT) Procedures based on a representation by an eigen-
value problem

=T x 2.7

given T=PorT=1+Q'D""=BD"with ¢
-D + B and its negative diagonal part D
—diag (Qy)ix1,.--.a O D = A, N = max;
(—Qy) (uniformization procedure for CTMC’s).

In the following, we restrict our attention to procedures
of the first category since they are employed in MACOM
only. The computational procedures may be divided into
the classes of direct and iterative methods. An overview
is provided by Table I.

The choice of an appropriate algorithm is directed by
the properties of the Q-matrix 4 and the properties of the
selected procedure. Some criteria are listed in Table II.
The advantages and disadvantages of direct and iterative
procedures are discussed by Evans [31, sec. 3, p. 45f]
(cf. also [121]). Computational aspects conceming the ef-
ficient implementation of iterative methods on a vector
computer are treated by Kincaid ef al. [63).

III. DirecT METHODS

In this section we study the solution of the homoge-
neous system of linear equations (2.4) by direct methods,
i.e., variants of the Gaussian elimination technique. After
the solution phase, vector x must be normalized such that
{2.5) is satisfied. Subsequently, we shail show that it is
not necessary to proceed to a regular system by deflation

TABLE I
CRITERIA FOR THE CHOICE OF A PROCEDURE
Recommended Methods
Criteria Ganselan elimination | [levalive procedures
techniques based os splittings
Properties of Q-matrix A
order n w < 500 n > 500
denee - secommended svitable
banded for ssaall bandwidth for lazge bandwidth
block stractared for addiiional straciure { generally recommended
parse - recommonded
apectral ;m:perhu
‘well-condifioned suilable saitable
illconditioned including NCD-type - recommended
PmElties of the procedure
‘Wgorithmuic complexity: ¥ e gion i, $0.1€5 <)}
w.ri time O(2/3n") Ofn x 5) pet step
w.r.l, memary Ofn?) O(n x s)
ease and eficiency of the implementation:
| Sigorithmic structare trix-vector scheme triv.veclar scheme
data structores matrices, vectors mattices, vactoss or
aparse storage schettie
le o3 parallel tabl yes yes
ACCHTIKCY Bspecis:
mhhty wat. rounding ezrors yes yos
ically fonnded ination test . available

or rank-1 modification techniques which are proposed in
the literature (cf. [97], [89}).

Solution techniques from numerical mathematics that
reduce the order n of the linear system (2.4) are very often
discussed in the literature (cf. [41], [45], [53], [57], [64],
[671, {721, [771, [97], [104], [113], [128]). All these pro-
cedures are based on a block decomposition of the irre-
ducible @-matrix 4

Ay Ap
A= e v onn (3.1)
Ay An
with 4,, eRk'Xk' Ay e Rhx kz 4y e R R %k , Ay €

BRe*R and k, = 2. Obvmusly, A” and Ay are regular
M—matnces and 4, and 4,, are nonpositive.

Based on this decomposition, a block elimination
scheme may be applied to reduce the solution of Ax = 0
to the analysis of smaller subproblems. This rank-reduc-
tion technique is recommended if the structure of matrix
A can be exploited (cf. {50}, [S7]).

A. Block LU-Algorithm
A classical numerical approach is given by the follow-

ing block Gaussian elimination procedure (cf. [43, sec.
5.5, p. 110ff], [72], [104], (671, [39]):

1) Choose a nontrivial partition
An
An

AD = 4= <A|I
AZI
=L(I

of the irreducible Q-matrix A.

2) Compute a factorization A(”
ian elimination without pivoting.

3) Calculate a solution R® of RP'LYUSY = — 43
by forward elimination and back substitution (taking into
account R® = 0, e'R™® = ¢' as accuracy check).

1 by Gauss-
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4) Set
AR = 45 + RD4). (3.2)
5) Solve
‘ AZX® = 0. (3.3)

6) Compute a solution vector x(" of A{x" =
LPUPx = (—43)x? by forward elimination and
back substitution.

7) Normalize the resulting vector

<D
by setting p = x/(e’x).
O

Obviously, one step of this elimination scheme yields 4"
= A = L'V U with the regular M-matrix

L - (1 ] 0
A(I)A(l) I

and the singular M-matrix

] 1
AD = g = A3 Ay
0 49

where the irreducible Q-matrix An = Ay +
(—Ay A ) Ay, is called the Schur complement of Ay, (cf.
(43, P4.2-3, p. 58]). If we perform k, steps of the normal
Gaussian ehmmauon procedure on matrix 4, the resulting
submatrix A35'"" obviously coincides with the Schur
complement (3.2) (cf. [43, P4.2-3, p. 58]).

As LV is a regular matrix, the solution of 4'Vx = 0
is equivalent to that of A®'x = 0. In order to solve the
linear system (3.3), the same reduction step may be ap-
plied to the resulting submatrix Aé or any other direct or
iterative solution technique for singular linear systems can
be employed, for instance, the direct-iterative approach
of Funderlic and Plemmons [35). The successive appli-
cation of this reduction process is stopped after m — 1
steps, yielding a submatrix A3’ of order ! with rank [ —
1. Then, we fix one component of the solution vector x ™
resulting from the decomposition of x according to the
block partition of A, for instance, its last one x{™ = 1,
and solve the linear system A3 x ™ = 0. The back sub-
stitution ?'lelds the other component vectors x"™ "),

of x.

The computanon of A o may be improved by cxploiting
its Q—mamx structure. As R? is nonnegative, A%}’ s 0
and Aﬁ) is a Q-matrix, the off-diagonal elements of A @)
are computed from nonpositive elements only, whcreas
the diagonal elements are given by the negative column
sums of the off-diagonal elements. Hence, there is no loss
of significance due to cancellation errors whlle perform-
ing these additions. This computation of A% according
to (3.2) is a rather stable process. Considering the propa-
gation of rounding errors, the crucial step of the algo-
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rithm is the matrix inversion, which is necessary to cal-
culate R*), and has to be performed very carefully.
Le Boudec [78], for instance, proposes to use a special
inversion algorithm for strictly substochastic matrices. It
is based on the representation of the inverse by a power
series. In conclusion, we recommend either to avoid suc-
cessive reduction or to apply only a few steps of this block
LU-algorithm exploiting the structure of A as mentioned
by Kaufman [57] or Le Boudec [78].

A major advantage of the proposed block LU-algorithm
is its inherent probabilistic interpretation (cf. Schassber-
ger [104], Grassmann et al. [45], Grassmann et al, [44],
Kohlas [64], Gaver et al. [39], Krieger [71]).

B. Grassmann'’s Algorithm

Choosing a block decomposition of A with ky = 1, we
may successively apply the proposed block elunmauon
procedure to the generated block matrices Au If we cal-
culate the negative values of its diagonal elements by
means of relation 'A% = 0 as sum of the off-diagonal
elements, we obtain a numerical procedure that does not
contain any subtractions or additions of numbers with dif-
ferent signs. Thus, the algorithm avoids cancellation er-
rors, a main difficulty of Gaussian elimination, although
it coincides with the result of the Gaussian elimination
without pivoting applied to A. This procedure is due to
Grassmann et al. [45) and called Grassmann’s algorithm.
Grassmann et al. {45] praved the feasibility of this ap-
proach for DTMC’s by probabilistic arguments. Further-
more, its application to CTMC’s has been studied in [44]
(see also [64], [72]). The comesponding algorithm reads
as follows:

Assumprions: Given a homogeneous, irreducible Mar-
kov chain with a finite state space § = {1, , n} set
A=Q'eR"™"foraCTMCord = P' - lfora DTMC.

Algorithm:

1) Gaussian elimination:

Fork=1ton - 1do
diag = Li_¢4) Au
Forj=k + ltondo
Alq = A,q/diag
Endfor
Forj=k + 1tondo
Fori=k+ 1tondo
Endfor
Endfor

2) Norm = 1
X, =1
3) Back substitution:

Fori=n-—-1toldo
%= Liein A" %
Norm = Norm + x;
Endfor
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4) Normalization:

Fork = 1 tondo
X = .X[,/NOITH
Endfor
O

The proposed algorithm requires 0(2/3n°) flops and
O(n?) amount of memory for computing the steady-state
vector x. Moreover, it has the advantage of preserving the
band structure of a matrix. An implementation based on
a sparse matrix storage scheme is also possible for banded
or sparse matrices. The storage scheme should support
access to matrix clements by rows and columns (cf. {27]).

C. LU-Factorization of Singular M-Matrices

From the mathematical literature it is known that only
in the last elimination step of the Gaussian elimination
without pivoting, a zero pivot occurs if we decompose an
irreducible singular M-matrix (cf. [37, cor. 1], [9, cor
6.4.17]). Therefore, the Crout algorithm may be em-
ployed for the factorization of a diagonally dominant
O-matrix specifying the steady-state distribution of a
Markov chain (cf. [34}). Let us summarize this algorithm,
called direct factorization method (cf. [50], [51]):

1) Decompose the irreducible Q-matrix 4 € R"*" by
Gaussian elimination without pivoting (Crout algo-
rithm) according to Funderlic, Mankin [34):

Fork=1,2, ++,n~ ldo
1.1 l:: A,'k=A,‘k- zﬁ;ll Aim 'Amh
izk;"'an

1.2 Up: Ay = Az’ * (A — E52) Aim - A,
i=k+1,:,n

2) Transform Uy, into a regular matrix Up: A4,, = 1
3) Solve Up - x = ¢, by back substitution:

31x, =1
3.2 X,':("E;.,';|A,j'xj),i=ﬂ" I, A ,l.

4) Normalize the resulting vector x:

4.1 a=l/2;_lx]'
42x;=a x,i=1,""",n

D. Further Reading

Further bleck LU procedures for block tridiagonal ma-
trices A have been studied by Basharin (cf. [41, §12, p.
390fF }), Wikarski [128], Kramer [67], Krieger {72}, Her-
zog er al. |53], and Gaver er al. [39]. Meyer (cf. [85],
[86], [80]) has recently extended the concept of block LU
factorization to necarly decomposable systems which are
also known as nearly completely decomposable (NCD)
models (cf. [25]). His method, called stochastic comple-
mentation, uncouples a Markov chain in several smaller
independent chains. It is well suited for parallel compu-
tation (cf. [80]). Other variants of rank-reduction tech-
niques that exploit especially the sparsity structure of ma-

trix A and properties of separablc matriccs are discussed
by Kaufman [57].

Results concerning the factorization of a (singular)
M-matrix A into a (singular) upper triangular M-matrix U
having the same rank as 4 and a regular, lower triangular
M-matrix L are well known in numerical mathematics (cf.
{321, [9, theorem 6.2.3, p. 135}, [76], [34], [37], [124,
theorem 3, p. 182], [2]). Although a singular M-matrix A
does not possess an LU decomposition in general (see
[124, (1.15), p. 183)), it is known that a factorization into
M-matrices always exists for a permuted version PAP' (see
Kuo [76, theorem 2], also [9, theorem 6.4.18], [37, cor.
1, p. 106]). In general, the LU decomposition into
M-matrices is not unique. In the special case of an irre-
ducible singular matrix, however, uniqueness of the fac-
torization may be established.

It is well known that, even in the case of a singular
linear system, this LU lactorization is a stable method (cf.
[36]. [50, theorem 1], [51]). Furthermore, Barlow {8] has
shown that a transformation of the singular system (2.4)
into a regular inhomogeneous system by specifying a
component of the solution vector x and deleting thc cor-
responding row of A will not improve the condition of the
linear system. Similar observations based on extensive
numerical comparisons have been reported by Harrod and
Plemmons [50] and Kaufman {57].

An altemative direct method is given by the QR-fac-
torization algorithm for singular M-matrices. Information
about this procedure and its probabilistic relevance is pro-
vided by Golub and Mcyer [42]. From the computational
point of view, however, this technique is not superior to
the factorization methods mentioned above.

Further applications of LU-factorization algorithms are
studied in the context of combined direct-iterative meth-
ods such as incomplete factorization procedures. The in-
terested reader is referred to Funderlic and Plemmons [35]
as well as Buoni {15] and Meijerink and van der Vorst
[84].

E. Applicability of Direct Methods

In conclusion, we recommend the application of cither
the proposed LU-factorization method or Grassmann's al-
gorithm, which has the additional advantage of avoiding
cancellation errors. Both methods have a similar com-
plexity of 0(2/3n?) flops and normally provide compa-
rable accuracy for small matrices (see Table II—cf. [72]).
The application of these direct methods is only limited by
memory constraints and rounding errors. But they are
suitable for computing the stationary distribution of small
Markov chains with up to 500 states if the latter do not
belong to the special class of nearly completely decom-
posable systems.

IV. ItErativE METHODS

We may also employ iterative methods to solve the lin-
ear system (2.4) for a given irreducible, always unsym-
metric Q-matrix A € B"™". These methods are preferable
for banded, sparse or large generator matrices with more



TABLE 01
COMPARISON OF GRASSMANN'S ALGORITHM AND THE DIRECT LU
FACTORIZATION METHOD BASED ON COMPLETELY FILLED GENERATOR
MATRICES WITH N = 200 STATES WHOSE ELEMENTS ARE GENERATED AT
RANDOM. THE ERRORS ARE DEFINED IN TERMS OF THE MAXIMUM NORM OF
THE STEADY-STATE VECTORS. THE DATA ARISE FROM A FORTRAN
REAL* 8 IMPLEMENTATION ON AN IBM 3090 V{, THE EXACT DATA OF THE
STEADY-STATE VECTORS HAVE BEEN CALCULATED BY MEANS OF THE
Packace ACRITH [55] wHICH PROVIDES HIGH-ACCURACY ARITHMETIC

Grassmann's algorithm Direct factarisation method
correct | absolute relative cotrect | shaolute relative
digits | error erroe digits | error error

14 [0.38945D.15 | 0.65454D-13 | 13 ] 0.25127D-14 | 0,42232D-12
14 | 0.36950D-15 | 0.65013D-13 13 0.23610D-14 | 0.41541D-12
14 [0.37383D-15 | 0.85811D-13 13 0.24173D-14 | 0.42556D-12
14 [0.37990D-15 | 0.65170D-13 13 0.24061D-14 | 0.41280D-12
14 {0.38424D-15 { 0.66166D-13 13 0.24251D-14 | 0.41761D-12
14 | 0.35475D-15 | 0.61330D-13 13 0.22580D-14 | 0.39003D-12
14 | 0.38077D-15 | 0.66494D-13 | 13 | 0.24789D-14 | 0.42638D-12
14 9.37304D-15 | 0.65827D-13 13 0.24035D-14 | 0.41614D-12
14 [0.39291D-15 | 0.68606D-13 13 0.24954D-14 | 0.43573D-12
14 | 0.38598D-15 [ 0.66331D-13 13 0.24659D-14 | 0.42377D-12

than 1000 states. To apply an iterative procedure, its con-
vergence must be guaranteed. As A is singular now, a
straightforward application of standard results developed
for regular matrices is impossible. Based on the unifying
framework of M-matrices, the required generalization of
the classical convergence theory to singular M-matrices
has fortunately been developed over the last decade (cf.
[105}, {101}, [93], [14], [57}, [71)).

Usually the classical iteration procedures are based on
an additive decomposition of matrix A, called matrix
splitting. Tt has the fomA =M — N, M e R"*", Ne
R"*" with a regular matrix M yielding the ireration ma-
risxT=M"-NINz2OandM™' 20,then T =
— M~'4 = 0 holds and the splitting is called regular
spliting. Note that an M-matrix M satisfies M~' = 0.
The corresponding regular splittings are called
M-splittings (cf. {105, def. 2.3, p. 410]). Then an itera-
tion procedure may be defined by M - x**1 = N - x®
or

PLAT, N T (4.1)

respectively. Furthermore, it is easy to see that Ax = 0
is equivalent to x = Tx (cf. {57, lemma 4.1]), i.e., each
nontrivial solution of the homogeneous system (2.4) is
also a right eigenvector corresponding to the maximal ei-
genvalue p(T) = 1 of T and vice versa.

A. Point Iteration Methods

In the following, let 4 = D ~ L — U be a poinz split-
ting into a diagonal matrix D, a strictly lower triangular
matrix L, and a strictly upper triangular matrix U, respec-
tively.

1) The Point Jacobi Procedure: The Jacobi procedure

Dx™*) = (L + U)x™ (4.2)

results from the M-splitting M = D, N =L + U. Asthe
diagonal D of an irreducible M-matrix is positive ([9,
theorem 6.4.16, p. 156]), this splitting with the Jacobi
iteration matrix J = DXL + U) is well defined. Ob-

m=0,1,--
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viously, the Jacobi procedure is equivalent to the power
method appliedto D™'A = I — D™\(L + U).

It is known that any eigenvalues on the unit circle apart
from p(T) = 1 prevent the convergence of the scheme
{4.1) derived from any regular splitting A = M — N of
an irreducible, singular M-matrix. On the other hand,
there is the simple idea of shifting these eigenvalues into
the unit circle by an appropriate transformation 7, = aT
+(1-a) =1-aM'4,0 < a < 1, of T called
stationary first-order Richardson extrapolation (cf. Ke-
meny and Snell [62, ch. V: Ergodic Markov Chains, theo-
rem 5.1.1, p. 99}, Kaufman [57, p. 540], and Neumann
and Plemmons [93, p. 273 ff]). Then the resulting ex-
trapolated Jacobi method (JOR) x*¥*V = J, - x™® =
{ad + (1 — a)}F* - x© converges to a nontrivial
solution of Ax = 0, which depends on x*), for each 0 <
a < 1 and each initial vector x'® >> 0 (cf. [14, theorem
3.4, p. 1911, [93, p. 273 ff]).

Furthermore, in some special cases the optimal extra-
polation parameter o has been determined by Neumann
and Plemmons [93, theorem 7, p. 275] (cf. [9, theorem
8.4.32, p. 234), {46}, [47}).

2) The Point Gauss-Seidel Procedure: There are two
possible Gauss-Seidel iteration procedures for the solu-
tion of the homogeneous system (2.4): the forward
Gauss-Seidel iteration

(D = LYx™*D = gim (4.3)

with the iteration matrix 7, = (D — L) 'U and the back-
ward Gauss-Seidel iteration

(D - U)x("”'” = Lx™ (4‘4)

with the iteration matrix Ty = (D — U)™'L. Note that
the Gauss-Seidel splitting of an irreducible M-matrix is
an M-splitting.

Simple examples reveal that the convergence of these
schemes is not guaranteed for arbitrary M-matrices A. But
it can be shown that a Gauss-Seidel scheme is conver-
gent, too, if the iteration matrix T (the index of T is omit-
ted) has no further eigenvalues on the unit circle apart
from the maximal eigenvalue p(7T) = 1, i.c., if 6(T) =
max {|M: Aeo(T), N # 1} < 1holds (cf. [71, §6.1],
[61, [105], [101]). Here, ¢(T) denotes the spectrum of
T. This criterion may be verified a priori by a simple
analysis of the zero structure of A (cf. [6, theorem 1, p.
394]). But there are some simple sufficient conditions for
the convergence of the point Gauss-Seidel procedures
which can easily be verified by the inspection of the zero
structure of matrix 4, too (cf. [6, cor. 1, p. 394}, [105,
cor 3.6), [101, cor. 2)).

Recall that a sequence & = (iy, iy, ** * , i), iy) of dis-
tinct nodes (except the end point) in the directed matrix
graph T'(A) associated with A is called a monotone cycle
if oy = (ig, 4y, * * * , §;) is monotone with either i} < i
for decreasing a, or i; > iy for increasing a, (cf. [101],
{6)).

Result 1: If the directed graph I (A ) of the irreducible,
singular M-matrix A has a monotone decreasing cycle,

m=01,---

m=0,1, "+
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then the forward Gauss-Seidel iteration converges for
each x%,

If T'(A) has a monotone increasing cycle, then the
backward Gauss-Seidel iteration converges for each x'”.

We state another useful criterion for matrices with sym-
metric zero structures (cf. [35], [57]). These matrices A
have the property that 4; # 0 for i # j implies A; # 0.

Result 2: If the irreducible M-matrix A has a symmetric
zero structure, both the forward and backward Gauss-
Seidel iterations are convergent.

To avoid expensive divisions during the execution of
the Jacobi or Gauss-Seidel procedure, we prefer to apply
the schemes to the irreducible M-matrix A - D! = | ~
L-D'-0-D'=1I-L-U.ltis derived by scaling
the columns of A by means of the diagonal matrix D™! >
0 (cf. {117], [87]). This transformation is equivalent to
the transition from a CTMC to its embedded jump chain
with the tpm. P =1+ D' - Q = (L + U)". The
scaling of A is associated with a scaling of the steady-state
distribution x: 4 - D™' - (D - 1) = 0,x = D * 7. Thus,
this steady-state vector may be calculated from the vector
x resulting after convergence of the iterative scheme by
the modified normalization » = D' - x/(e' - D™' - x)
provided that x > 0 holds. An efficient implementation
of an accelerated version of this Gauss-Seidel scheme has
been described by Stewart and Goyal [117].

B. The Block Gauss-Seidel Procedure and R-Regular
Splittings

An important class of iterative methods is based on a
block partition 4 = (4;)1<;;5p, p > 1, of a given
@-matrix A. Regarding the corresponding block iterative
schemes, Rose [101] has established some convergence
results. They are based on a generalization of the block
Gauss-Seidel splitting technique, called R-regular split-
ting (cf. (101, p. 138]). Constructing the splitting by this
technique, appropriate LU decompesition schemes re-
sulting from special factorization methods for sparse ma-
trices, €.g., an incomplete LU decomposition, can be
taken into consideration. A variant of the corresponding
iterative algorithm which is accelerated by relaxation
reads as follows.

Assumptions: Let A € ®"*" be the Q-matrix associated
with a Markov chain. Definc a block partition A =
(A4;)1sijsps given p > 1, and extend it to the steady-
state vector x specified by (2.4), (2.5). Choosc an
R-regular block splitting A = M — N = (D — D(N)) —
(L + L(N)) — U(N) which has the following proper-
ties:

(1) D = diag (D;)i <i<p and D{N ) are block-diagonal
matrices with D(N) = 0. L and L(N) are strictly
lower block-triangular matrices such that L = 0,
L(N) = 0. U(N) is a strictly upper block-trian-
gular matrix with U(N) = 0.

(2 D;j'>> 0forl <i < p. (If0 < w < 1 holds,
only D;' > 0 is required.)

(3) M = D - L is a lower block-triangular matrix.
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(4) N=L(N)+ U(N) + D(N) = 0.

(5) Ay = D — L — U(N) is irreducible.

(6) The block matrix graph ['(4y) = (¥, £) has a
monotone decreasing cycle, this is a sequence ¢ =
(iy, by, * * + , iy, §y) of adjacent nodes with the prop-
ety ij # iyand § > §;,;, 1 s j 51— 1. Recall
that the block matrix graph I'(A4y) = (V, E) is a
directed matrix graph with nodes V = {V;|1 =< i
< p} and directed edges (V;, V)) € E. ¥, results
from the partition of the index set {1, - -+ , n}
according to the block partition. (V,, ¥)) € Eiff 4;
# 0, that means there are indices [ € V;, m € V,
such that (!, m) € Er (4 is an edge in the matrix
graph of 4.

Algorithm:

1) Initialization:
Select an initial vector x¥ >> 0, e.g., x
M~'e/n, 0 < e < 1, and an appropriate relaxation
parameter 0 < w < 2. Setk = 0.

) -

2) Iteration step:

Fori=1topdo )
Solve D; + 2**V =TIz L, - x{**!
PN
(k+1) + Ei=i N (g’(
i U=l -w)x
+ . f§k+ 1
endfor
(LetL}., = 0.)
3) Convergence test:
I Jx®' D —x®/x®) < ¢ then
goto step 4
else
goto step 2
endif
4) Normalization:
Normalize the resulting vector
I(IkH]
x** D = >0
k+1)
*p

by setting x = x &+ /| x*+ 1]
O

Obviously, every R-regular splitting is also a regular
splitting. If all diagonal blocks D;; are M-matrices, it is
an M-splitting. Without loss of generality we assume that
D;; are irreducible regular M-matrices which implies (2)
and the irreducibility of A (cf. [101]). The monotony of
a cycle (6) existing due to the irreducibility of A can be
enforced by an appropriate block permutation (cf. [101,
prop. 3, p. 138]).

The importance of R-regular splittings stems from
Rose’s result [101, theorem 1, p. 138] that each R-regular
splitting A = M — N of an irreducible, singular M-matrix
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AeR"™" e.g., the Q0-matrix of an irreducible Markov
chain, generates a convergent iterative scheme.

Employing this special splitting technique, Rose has
also shown that there always exists a convergent block
Gauss-~Seide! splitting of the irreducible Q-matrix corre-
sponding to an irreducible Markov chain with appropri-
ately ordered states (cf. [101, theorem 1, p. 138]). In this
context, the following sufficient convergence criterion
may often be employed in practice (cf. [101, cor. 2, p.
139]).

Result 3: Let A € B"™" be an irreducible, singular M-
matrix, e.g., a Q-matrix, and A =M ~ N = (D - L)
— U{N) a block Gauss-Seidel splitting with irreducible
block matrices Dy along the diagonal of M. Furthermore,
suppose there exist block matrices A; + 0 and A; + 0
fori,je{l, - - ,n} i # j Then the block Gauss-
Seidel method converges.

Other sufficient convergence criteria concerning the
block Jacobi and block Gauss-Seidel method as weil as
their implementation by a two-step iterative procedure de-
rived from an A/D scheme are provided by Courtois [26}
(see Section IV-C). These methods are particularly suit-
able for NCD models.

C. The IAD Procedure

In this section we present a universal iterative solution
procedure which can be used as a building block of an
analysis program for Markov chains. Let A = M — Nbe
a regular splitting of the irreducible Q-matrix associated
with an irreducible finite Markov chain. Denote the non-
negative iteration matrix by J = M ~'N and the corre-
sponding extrapolated iteration matrix by J, = (1 — w)/
+ wJ, 0 < w < 1. A standard convergence-acceleration
technique besides the relaxation method mentioned pre-
viously is given by the insertion of some aggregation/dis-
aggregation (A/D) steps during the iteration (cf. [106],
[108], [52], [22], [23], [90]). In order to guarantee con-
vergence of the scheme in this case (cf. [108, theorem 4,
p. 328]), we have to define a fallback procedure x**!
= T - x*) It is based on a stochastic matrix T that con-
verges to the normalized eigenvector x* corresponding to
the eigenvalue o (T) = 1 which is related to the stationary
distribution p of the Markov chain by some transforma-
tion (see (4.8)—cf. [87, p. 126)).

Usually, neither J nor J, is stochastic. In order to con-
struct a stochastic iteration matrix, we proceed to a non-
negative matrix T, called dual iteration matrix, by a simi-
larity transformation T=M - J- M ' =N-M 'or T,
=M-J, M= (1-wl+wl,0<w< 1 Then
T,, 0 < @ < 1, is column stochastic and | T, {l; = p(T.)
= ] holds. Furthermore, 7,, 0 < w < 1, determines a
convergent scheme and o (7,,) = 1 is a simple eigenvalue.
Subsequently, the subscript w will be omitted. Let x* >
0 denote the unique normalized eigenvector correspond-
ing to the spectral radius p(7) = 1.

We choose a partition T' = {J;, -+, J,,} of the state
space § = {1, -+ -, n} into m = 2 disjoint sets J; with
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n; 2 1 elements each. Without loss of generality, we as-
sume the elements of these sets to be enumerated in a
consecutive order such that i < jholdsifie J, jeJy, I
< k. Furthermore, w.l.g. let T and x¥ = (x¥, -+ -,
x%') be arranged according to this state space partition
and ordering. Following the approach of Chatelin and
Miranker (cf. [23], [52], [22}), we define an aggregation
matrix R € ™" by

R 1
"o

For a fixed probability vector

ifjs-’,' . ,
lsismlsjsn
otherwise

(4.5)

£
c]>o0,
x'l
i.e., ' + x = 1, the prolongation matrix P, € R"*" is
given by

). ifield
Pey; = () ' 1sisnlsjsm
! 0 otherwise
(4.6)
where the vector
N
Y=¥o =
Vm
is defined forj e {1, -+ - , m} as follows:
- xj/a(,)j ifx,- >0
&Y 3 Yy = .
/e ifx=0

with Qxy = e X;

Yuy; comprises the conditional probabilities of the states
in the aggregate j and y is called the vector of the intra-
aggregate probabilities. Based on these matrices

e’ 0 oo O
0 ¢
R= . . >0,
N . 0
0 0 ¢
y O 0
0 : :
P(x)_ . 0 >0
0 0 v
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we define a stochastic aggregated iteration matrix by
B=B,=R-T-P,e3" " (4.7)
In a way, B describes the behavior of a new system ap-
proximating the original one. It resuits from the aggre-
gation of the original state space § into u smaller set {1,
-, m} of macrostates determined by the partition I' =
{Ji, «+* ,J.}. Hence, there exists a probability vector
@ = g = (A, 00, A’ > 0in B™ satisfying
B,y * agy = oyand e’ ¢+ ) = 1. ais called the vector
of interaggregate probabilities. This steady-state infor-
mation about the aggregated system is extended to the
whole state space by the generation of the disaggregated
probability vector £,, € R” defined by £, = P,y *
> 0. It can be used as an approximation of the required
steady-state vector.

Regarding this approach, we may construct a corre-
sponding iterative A/D algorithm. It is based on a scheme
developed by Schweitzer and Kindle (cf. [108, p. 326t])
and called dual IAD-algorithm.

Assumption: Let A = M — N be a regular splitting of
the irreducible Q-matrix 4 € £"*” with an extrapolated
dual iteration matrix T = | — wAM ™' for some w €
(@, 1). Choose a partition T' = {J,, -+ , J,} of {1,

+, n}into m = 2 disjoint sets. Define r (x) = [ (I —
T): XNI.XE 2",
Algorithm:

1) Initialization:

Select an initial vector x'© >> 0, ¢'x'? = 1, and
three real numbers 0 < ¢, ¢;, ¢, < 1. Construct the
matrices P., € R"*", R e R™*", T € K"*" and
B,., € R™*™ according to (4.6), (4.5), (4.7). Set
k=0.

2) A/D step:
SOIYC B(xll()) f Qptkry = gy
subjectto €'+ ayuy = 1, agwy > 0

and compute X = P(x(l)) t Oty
3) Iteration step:
Compute x**V=T.%

4) Convergence test:

If r) s ¢ - r(x®)
then goto step 5
else compute x¥*1) = ™ . x 0

with m = m(x'*?) e ¥ such that
r(x**Dy < ¢ r(x™)

endif
5) Termination test:
If fx®*D — x®Y /@],
= x*+ 0~ < <
then goto step 6
else k=k+1
goto step 2
endif
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6) Normalization:

Mgk

P T D “8)

Given the irreducible Q-matrix A associated with an ir-
reducible finite Markov chain, we choose a regular split-
ting A = M — N, e.g., an M-splitting like the point or
block Gauss-Seidel splitting A = (D —~ L) — U. Then it
can be shown that the proposed dual IAD-algorithm con-
verges 1o the steady-state distribution p of the Markov
chain for any initial vector x® >> 0 with e'x® = 1.
Moreover, r (x**") < max (¢, ) - r(x®), k= 0
holds (cf. (108, theorem 4], [70]).

D. Further Reading

As in the case of regular matrices, all iterative methods
for singular systems are variants of the power method
(43, sec. 7.3, p. 209]). Considering the splitting 4 = M
— N of a regular matrix 4, its convergence is guaranteed
if the spectral radius of T = M ~'N satisfies p(T) < 1
(cf. Varga [123, 3.2, p. 61ff]). In the case of singular
systems, however, other conditions are necessary to guar-
antee the convergence of the scheme (4.1) because the
spectral radius o(7') of T is equal to 1 (cf. [9, ex. 6.4.9,
p. 152, lemma 7.6.9, p. 197], {101, prop. 1, p. 136]).

Necessary and sufficient conditions guarantecing the
convergence of standard iterative schemes applied to sin-
gular M-matrices, like the Jacobi or Gauss-Seidel proce-
dure, have been derived by Rose [101], Schneider [105],
Barker and Plemmons [6], and Barker and Yang [7] among
others.

Considering the block or point Gauss-Seidel splitting
A = (D = L) — U of an irreducible M-matrix, it is con-
venient to accelerate the Gauss-Scidel procedure by ap-
plying standard over- or underrelaxation techniques (cf.
{571, [123], [6]) or by employing a semi-itcrative tech-
nique such as the stationary or nonstationary Chebyshev
method or Eiermana’s stationary fourth-order scheme (cf.
[123, §5], [29], [96], [30, lemma 8.4, p. 28], [7]. [46],
{47]). The main difficulty w.r.t. these procedures is the
determination of ‘‘optimal’’ relaxation parameters. As
there is no a priori information about the location of the
eigenvalues of the iteration matrices, heuristic procedures
estimating approximately optimal parameters seem to be
the only practicable approach (cf. [48, §5.5, p. 223},
[117], [111], [46], [47D).

The convergence of the Jacobi underrelaxation scheme
has been established by Varga et al. [14, theorem 3.4, p.
191] who generalized the classical theorem of Stein-Ro-
senberg [123, theorems 3.15, 3.16, p. 90fF] to singular
M-matrices 4 with positive diagonal elements. Further-
more, these authors have shown that the Gauss-Seidel un-
derrelaxation scheme with the iteration matrix 7, = (D
- L)' (1 ~w)D +wlU),0 < w < 1, is also con-
vergent if it is applied to an irreducible, singular
M-matrix. A corresponding result was also proved by
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Barker and Plemmons [6, cor. 3, p. 395]. Therefore, both
methods may be employed for the solution of (2.4).

Applying = continuity argument, we conclude that the
accelerated iteration procedure associated with an
R-regular splitting converges for w > 1 if the scheme of
the R-regular splitting converges for w = 1 (cf. [123, p.
109]). But suitable formulas for the determination of the
optimal relaxation parameter w € (1, 2) only exist for
special cases (cf. [123, 84.3], [48, §9], [46], [47]).

Semi-iterative variants of the Gauss-Seidel procedure
for singular M-matrices have been studied by Kaufman
{57), Eiermann, Varga, and Niethammer [30], and Eier-
mann, Marek, and Niethammer [29) among others. For
details the reader is referred to these articles and the ref-
erences therein. We especially recommend the survey ar-
ticle of Eiermann et al. [29].

Regarding the iterative A/D procedure, an error analy-
sis concerning the error reduction of an A/D step and the
gain of an iteration step following the A/D step has been
provided by Krieger [70]. Other A/D methods have been
studied by Courtois [25], Vantilborgh [122], Koury er al.
[66], Haviv [S2], Cao and Stewart [18], Chatelin [22],
Sumita et al. [119], Schweitzer [106], Schweitzer and
Kindle [108]. Especially Chatelin [22], Schweitzer [107],
and Haviv [52] provide excellent surveys of this topic.
The reader interested in this subject is referred to their
contributions.

Last but not least, it is worthwhile to mention that both
the power method and the point Jacobi procedure have a
stochastic interpretation (cf. [87, p. 122], [71, p. 56]).
Moreover, the point Gauss-Seidel procedure has a prob-
abilistic interpretation, too. It has been pointed out by Mi-
tra and Tsoucas [87] for the first time. Krieger (cf. (71,
p. 60], [70, §4.3]) has described an equivalent, rather
simple approach based on Grassmann’s state space reduc-
tion technique (cf. [45]) which is also applicable to the
block Gauss-Seidel procedure.

E. Applicability of Iterative Methods

In conclusion, we recommend to apply variants of the
dual IAD-algorithm as basic iterative procedures. They
should be based on an appropriate regular splitting A =
M — N which yields an efficiently solvable linear system
Mx** D = Nx® guch as the block or point Gauss-Seidel
splitting or an R-regular splitting. Furthermore, a careful
choice of the relaxation parameter w € (0, 2) is required
which may be supported by a heuristic procedure (cf. [48,
§9.5, p. 223ff]). During the iteration process, the inser-
tion of a few expensive, but effective A/D steps is useful,
especially in the initial phase. Both the splitting and the
partition of the state space should be adapted to the natu-
ral structure of a model and its associated Q-matrix A.

Basically, a procedure of this kind can be applied to all
banded, sparse or large matrices and to all NCD-type
models.
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Fig. 1. The graphical user interface showing a mutual overflow model.

V. THE APPLICATION OF NUMERICAL METHODS TO
MARKOVIAN MODELS

In this section we illustrate the versatility of the pre-
sented computational approach by the application of some
numerical methods to Markovian models which are de-
rived from modemn telecommunication networks.

A. A Model of Alternative Routing

In the last decade, considerable attention has been de-
voted to the analysis of advanced routing schemes in cir-
cuit-switched digital networks based on efficient modemn
signaling systems such as CCITT CCS No. 7. There are
several interesting teletraffic models which are the build-
ing blocks of a network analysis (cf. [4], [17], [28], [40],
(59), {68}, [3], [130D).

The analysis of a circuit-switched network with alter-
native routing is a classical issue of teletraffic theory (cf.
[129], [120]). In this context, a well-known model is pro-
vided by a single, fully available trunk group that carries
both direct traffic and multiple overflow traffic streams (cf.
(10], [65], [12]). This model describes a part of the net-
work where several origin-destination pairs O — D,
*++, 0 — D, share the same overflow trunk group O —
T which carries additional direct traffic (cf. Fig. 3). The
direct traffic streams corresponding to O — D; overflow
to the common trunk group O — T with n trunks if the
corresponding direct routes are blocked.

If the offered streams are modeled by independent Pois-
son processes and the call holding times are mutually in-
dependent, exponentially distributed random variables
with a common mean, no explicit analytical representa-
tion of the steady-state distribution of the resulting Mar-
kovian model exists for more than one overflow stream.
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For one overflow stream, however, its steady-state distri-
bution has been derived by Brockmeyer {12]. Recently
Pearce [98] has generalized the corresponding results.
Kosten [65] derived a partial analytical representation of
the steady-state distribution based on a reduction ap-
proach. But it has no completely closed form since some
terms have to be calculated from the solution of a system
of linear equations.

If the overflow strcams are approximated by special re-
current point processes with hyperexponentially distri-
buted interarrival times known as interrupted Poisson pro-
cesses (IPP), an analytical solution of the steady-state dis-
tribution of this model has been provided by Kuczura
among others (cf. [75], [100]).

Recently, Meier-Hellstern [83] has presented a numeri-
cal solution based on an MMPP /M /n/n loss model. It
exploits the representation of an IPP by a Markov-modu-
lated Poisson process (MMPP) and the property that the
superposition of independent MMPP’s is still an MMPP
(cf. [95], [83], [82]).

Considering this model, we want to demonstrate the use
of an iterative method based on an R-regular splitting. We

1641

mutually independent Markov-modulated Poisson pro-
cesses (MMPP’s 1 and 2) with the generator matrices

- Y2 Y2
Ql=( o m)y Q2=< ¥ >
W =W Wy T

and the rate vectors

() ()

(cf. [82], [83], [81], [95], [74]). Here, A, > O is the in-
tensity of the Poisson process associated with the IPP
stream i, 1/, its mean on-time and 1/, its mean off-
time, i € {1, 2} (cf. [74, p. 438]). Obviously, each Pois-
son stream may be regarded as an MMPP, too.

Let us denote the phase of the controlling CTMC in the
MMPP representation of the IPP i € {1, 2} attime t 2
0 by Y; (r). Its associated irreducible generator matrix is
Q,. As the superposition of independent MMPP’s is still
an MMPP, the Markovian cnvironment resulting from the
composition of the arrival streams is given by Y(r) =
(Y\(D), Ya(2)). It possesses the irreducible generator ma-
tnx

it e &} Y2 4 0
W “n—w 0 T —mxm
=090, = eR"",
@y 0 W T Y2 Y2
0 ) Wy —W) T W

assume that the common overflow trunk group consists of
n trunks. The number of busy trunks at time ¢ 2 0 in this
fully available group will be denoted by X(#). The offered
load consists of a Poisson stream (stream Q) with inten-
sity Ao > 0 and two overflow streams (1 and 2). These
streams are assumed to be independent of each other. The
mean call holding time is denoted by 1 /.

Following a standard approach in teletraffic theory (cf.
[82], [83)), the overflow streams are modeled by two in-
terrupted Poisson processes (IPP’s) resulting from a two-
moment approximation. They will be represented by two

*Q‘ + A _lﬂ14
-A
0 -A
A=
0

m = 4. Its states Y(1) = (k;, k;} = k will be ordered
lexicographically and enumerated by integers k € {1, 2,
3, 4 }. The rate vector of the resulting MMPP is given by
=N+ A + A5 ho+ A Aot Ay Ag) >> 0.

Then the model of alternative routing may be regarded
as M/M/n/n loss system in a Markovian environment.
It can be described by an irreducible CTMC Z(1) =
X(t), ¥(1)), t = 0, with a finite state space § = { (i,
k|1 <k=40<i=<n}

If we suppose a lexicographical ordering of states, the
negative transpose 4 = —Q' e it L=m - (n + 1),
of the irreducible generator matrix J associated with Z(1)
has the following block tridiagonal structure:

—0'+ luly + A =21,

(5.1)

—nply
0 -A "'Ql + np.14
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Here, Ag = Aoly, Ay = diag (X, Ny, 0, 0), A, = diag
{ A2, 0, Ay, 0) are the arrival rate matrices of the Poisson
stream and the two IPP's. A = Ay + A, + A, is the arrival
rate matrix of the MMPP resulting from their superposi-
tion and J, denotes the identity matrix of order £.

Taking advantage of the block structure of A, the
steady-state vector 7 of Z(#) may be computed either by
a block iterative scheme derived from an R-regular split-
ting of 4 or by an accelerated point iterative scheme such
as JOR or SOR (cf. [71], {101}, [83]).

Such an R-regular splitting technique has been sug-
gested by Meier-Hellstern [82, §3], [83], but without a
rigorous mathematical proof of the convergence of the re-
sulting iterative scheme. The proposed procedure is based
on the following block splitting 4 = M ~ N:
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hold, where ¢ denotes the vector of all ones. ® is the
Kronecker product of two matrices defined by A ® B =
(Ay - B) (cf. [94, p. 53]). Thus, D; = - Q" + A + nply
is an irreducible, column diagonally dominant, regular
M-matrix. Hence, D' >> 0 holds (cf. [9, theorem 6.2.7,
p. 141D,

The matrix 4y = D — L ~ U(N) has the same zero
structure as A. Thus, it is an irreducible, block tridiagonal
M-matrix. The corresponding block matrix graph I'(4g)
possesses a monotone decreasing cycle, for instance, {1,
0, 1] since (Ao = —-A # 0and (4g)y = ~ply # 0
hold.

Therefore, the proposed block splitting 4 = M -~ N
defined by (5.2), (5.3) is an R-regular splitting. More-

~0'+ A+ mul, Q 0
~A ~Q' + A + nply
M= 0
0
0 0 -A —-Q +A +ml
=D-1 (5.2)
npl, tul, 0 0
0 {(n—Dul 2l
N=] : ' L0
0 tul, mul,
0 A
=L(N)+UN)Y+D(N)=20 (5.3)

ObVio“SIYa L(N) = 0,D = (Dl‘i)i=0,...,n = Ipy ®
(~Q' + A + nuly) and D(N) = diag (npe’, (n —
1)][8', T, ll‘e‘a i‘) =0,

0 0 R
1 0
L=} 0 |1 ®A=20,
0 0
0 - 1 0
0 1y 0 -+ 0@
D gy .
U(N) = 0 j®L=0
ny
0 0

over, it is an M-splitting since the diagonal blocks of M
are regular M-matrices. Hence, we conclude from Rose’s
convergence theorem [101, theorem 1, p. 138] that the
resulting block iterative procedure x**1 = M~!Nx®,
k=0,1, - converges for each initial vector x'¥ >>
D to the steady-state vector ¥ of the CTMC Z(¢) if the
iteration vector x*** ') is normalized after convergence.

Of course, this algorithm may be accelerated by insert-
ing several aggregation/disaggregation steps during the it-
eration according to the IAD scheme (see Sections IV-C
and V-B).

In comparison with the block Gauss~Seidel scheme, the
proposed R-regular splitting procedure has the advantage
that all diagonal blocks of the matrix M are identical.
Therefore, it is necessary to decompose only one small
matrix D;; and to store its inverse during the iteration pro-
cess. The resulting algorithm is well suited for an imple-
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moD 31O =
Service Source Sink  Conex  Loss Link
Station Exit

Fig. 2. The elements of the MACOM model world.

mentation on a vector processor. Experimental results of
the scheme have been provided by Meier-Hellstern [82].

B. A Loss System with Mutual Overflow and External
Traffic

The next example concerns the study of an adaptive
routing strategy in circuit-switched networks. We con-
sider a network consisting of a local exchange (EX,) and
two exchanges of the long-distance network (EX;, EX,)
which are connected to each other by two both-way trunk
groups. The traffic outgoing from the local exchange is
split into two portions and each portion is offered to an
outgoing group. These partial traffic streams are routed
according to an adaptive routing scheme called mutual
overflow routing (cf. [68], [69], [79], [33]). Additionally
each trunk group carries external traffic (cf. Fig. 4).

The network may be described by a loss system com-
posed of two fully available trunk groups called systems
1 and 2 with ¥; and N, lines. Two originating traffic
streams (streams 2 and 3) representing the portions of the
outgoing traffic and two incoming external traffic streams
(streams 1 and 4) are offered to the loss system. These
arrival processes are modeled by mutually independent
Poisson processes with positive rates A5, A3 and Aj, A,

The external traffic streams 1 and 4 offered to systems
I and 2 follow a random hunting scheme for free lines.
Their calls are lost without further impact on the system
if the corresponding trunk group is busy upon arrival. The
outgoing streams 2 and 3 follow a mutual overflow rout-
ing scheme. This means that, upon arrival at system 1, a
call of flow 2, for instance, is searching for a free line. If
possible, a free trunk is selected in a random manner and
occupied. If system 1 is busy and there are free lines in
system 2, the incoming call of flow 2 will immediately
overflow to system 2 upon arrival and occupy a line se-
lected at random. If both systems are busy, the call will
be blocked and lost without further impact on the system
(lost calls cleared).

Call holding times are considered to be muwually inde-
pendent, cxponentially distributed random variables with
a common finite mean 1/p. They are also assumed to be
independent of the arrival pracesses.

It is obvious that the occupation process of both trunk
groups in this loss system can be modeled by an irredu-
cible CTMC X (1) = (X\(1), X5(£)), t = O with finite
state space § = {(i, j)|0 < i < N;0 <j 5 My},
where the state variables X; (¢), i = 1, 2, denote the num-
ber of busy trunks in group i at time r.
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Hierarchy

Fig. 3. Part of a 2-level circuit-switched network with alternative routing.

modelled
subnetwork
EX1 EX2
2
Route 1 Route 2
wi=[0,1,3 w2 = 0,2, 3]
Z///
EXo / EX3

Direct path

Fig. 4. Network with mutual overflow routing.

We assume a lexicographical ordering of states and de-
note the negative transpose of the corresponding genera-
tor matrix Qof X(r)by A = ~Q'e BRY*V N = (N, +
1) + (Np + 1). It is an irreducible Q-matrix and has a
block tridiagonal structure

By Co 0 v +or om0
D B ¢ :
0 D,
A=§ - . " B
0
' ' ) Cri~1
0 © 0 Dy By
€ By (5.4)
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with irreducible, tridiagonal M-matrices

a =lp 0

-a a+1lp -2

0 —ay
Bo = a+ ky.
0
a4 —l‘l 0
—Qy a, + lﬂ "2#
0 -a
By, = a+kp -
0
Bi=Bo+i[L'I,i=0, ot ’Nl "I,Ofofdeer"l‘l
along the diagonal. The off-diagonal matrices D; = ~ diag
(al’ e 7ahaﬁ)1i= ls"' 7thi= '.(l+ 1)”"
I,i=0, -, N — 1, have diagonal structures. Here,

we have set a; = )‘l + )\2 > 0,02 = )\3 + k“ > 0,03
=’)\] +)\z+)\32a|,a4=)\2+)\3+)\42a2,a=
M+ Ay + A3 4+ Ag = a; + a, and A, denotes the inten-
sity of the offered Poisson stream i e {1, - - - ,4}. 1/p
is the mean call holding time and /-the identity matrix.

Hence, A is a consistently ordered 2-cyclic Q-matrix
w.r.t. this block partition ({123, p. 102]). Moreover, it
can be shown that A4 is also a consistently ordered 2-cyclic
matrix w.r.t. the point partition and that it has property A
(cf. {71], [123, p. 187], [101], [9]). Thus, the point Ja-
cobi matrix J = D™'(L + U) is cyclic of index 2, i.e.,
the greatest common divisor of the lengths of all proper
cycles in the matrix graph of 4 is 2. According to [6,
prop. 1, p. 392] the Jacobi procedure is not convergent
(see also [9, theorem 2.2.30, p. 351, {71, theorem 29, p.
56]), whereas the corresponding JOR and SOR proce-
dures with the iteration matrices J, = (1 — )l + wJ
and L, = (D - wL)™' ((1 = w)D + wU) are conver-
gent for cach relaxation parameter w € (0, 1) (see {7,
theorem 3.9}, [71, p. 73], {6, cor. 3, p. 395], [14, theo-
rem 3.4, p. 191]).

As A has a symmetric zero structure, we conclude from
Result 2 that the point Gauss-Seide! procedure is conver-
gent, too (see also [101, cor. 2, p. 139], [105, cor. 3.8,
p- 4171, [71, theorem 35, p. 66]). Taking into account
M2| = (D —L)2| = =g < OaﬂdN|2 = U|2 =u> 0,
this result also follows immediately from Result 1. This
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0
0
T . . —Ngﬂ.
0 —ay a, +N2”'
0
+ NII" * I:
0

a,+ (N, - Dp =Nop

0 -a N

point iteration may be accelerated by applying the stan-
dard overrelaxation technique (cf. {S7], [117]) or a semi-
iterative technique such as the stationary or nonstationary
Chebyshev method or Eiermann’s stationary fourth-order
scheme (cf. [123, §51, [29], [96], [30, lemma 8.4, p. 28],
7}, (46], [47]). The main difficulty w.r.t. these proce-
dures concems the determination of ‘‘optimal’’ relaxation
parameters . As there is no a priori information about
the location of the eigenvalues of the iteration matrices,
heuristic procedures estimating approximately optimal
parameters are the only practicable approach (cf. [48,
§9.5, p. 223fF). [111], [46], [47]). But in the case of a
consistently ordered 2-cyclic matrix the well-known re-
lation (A + o — 1)* = hw?u? (see [123, theorem 4.3,
p. 106]) between the eigenvalues u and A of the (block)
Jacobi and SOR iteration matrix may be exploited (cf.
[123, §4.3, p. 109]).

An alternative is provided by block iterative schemes
such as the block Gauss-Seidel procedure or its modified
versions based on Rose’s R-regular splitting (see [83],
[73]). According to Result 3, the block Gauss-Seidel
scheme derived from the given block tridiagonal structure
(5.4) of A is convergent since the diagonal blocks are ir-
reducible, regular M-matrices.

All methods may be combined with A/D steps if
Schweitzer's IAD procedure is used (see Section IV-C—
cf. [90], {66], {119]). The transformation of each block
of A into a single scalar is a very natural way of aggre-
gation. This procedure corresponds to the aggregation of
cach macrostate {(i,7)|0<j < N,},0<i < N, into
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TABLE IV
COMPARISON GF THF SOLUTION METHODS BASED ON THE L0SS SYSTEM WITH
MutuaL OVERFLOW AND EXTERNAL TRAFFIC WITH A, = 40, A, = 30, A,
=60,y =10, u =1, N, = 30, N, = 60. THE MODEL HAS N = 189]
STATES AND THE GENERATOR MATRIX HAS 9271 NONZERO ELEMENTS. THE
REQUIRED ACCURACY OF THE POINT ITERATION PROCEDURES i5 ¢ = 1078,
THe DaTA ARE COMPUTED BY THE PACKAGE MACOM oN A SUN 3/470
WITH FLOATING POINT ACCELERATOR

Method | Relaxation | Number of | Number of | Time for the
parameter | A/D steps | iterations | solution in sec
SOR 1.2 - 180 16.8
- 124 11
1.4 - 144 13
[ dyasmic - 160 9.1
SOR-A/D 1.0 10 102 16.2
1.2 10 116 16.1
1.3 2 104 18|
dynamic E] 140 19.6
JOR-A/D 0.9 51 316 |7 383 |
dynamic 45 301 33
“JOR 0.9 - > 500 -
Grassmann’s algorithm , Fillin 1.37 67
direct LU-factorisation TFiﬂ-in 1.37% o 64.8

a single state 7. In this way, a simple birth-death process
is generated. Its aggregated steady-state distribution o
may be calculated from an explicit analytical representa-
tion in an efficient way.

A comparison of different solution technigues yields the
results shown in Table IV,

All experiments performed so far confirm our view that
the JOR and SOR procedures with optional aggregation-
disaggregation are suitable solution techniques for large
telecommunication models. Similar observations have
been reported by Kaufman {57], [58], too. Furthermore,
Chan's theoretical investigations {20], [21} bave proved
that SOR methods are superior to CG-type procedures and
projection techniques if models of this type are consid-
ered. In conclusion, we recommend to use the proposed
direct and iterative methods as universal procedures for
finite Markov chains.

VI. CoNCLUSIONS AND PERSPECTIVES

We have presented 2 computational approach for mod-
eling and analyzing advanced communication systems
based on numerical solution techniques for finite Markov
chains. From a practical point of view, it is desirable that
these solution techniques are supported by convenient
software tools which facilitate the use of the various al-
gorithms. For this reason, a software package called MA-
COM has been developed.

MACOM provides the user with a predefined Mar-
kovian model world describing modemn telecommunica-
tion networks with adaptive routing schemes and ad-
vanced congestion-control mechanisms. The package is
endowed with a user-friendly graphical interface that fa-
cilitates the interactive specification of models. A Markov
chain is automatically generated from this graphical spec-
ification and its steady-state distribution is computed by
advanced direct or iterative numerical procedures. In this
context, we have discussed the algebraic background of
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some direct and iterative solution methods which may be
employed to calculate the stationary distribution of an ir-
reducible, homogeneous, discretc- or continuous-time
Markov chain with finite state space. The direct
LU-factorization method, Grassmann’s algorithm, and the
point iteration methods JOR and SOR with optional ag-
gregation-disaggregation according to the IAD scheme
constitute the numerical solver of the package MACOM.
At present, the incorporation of block solution techniques
such as the block LU-factorization and the block SOR
procedure is considered. Regarding the analysis, one of
these methods may be applied to investigate the Mar-
kovian queueing models describing advanced telecom-
munication systems.

The package also offers the evaluation of different per-
formance characteristics of a model which are specified
by the user. Moreover, it supports the representation of
the calculated results.

MACOM can cope with large Markovian models. The
versatility of the computational approach implemented by
MACOM has been illustrated by the application of the
proposed algorithms to some examples arising from mod-
em telecommunication networks (cf. [57], [69], [70],
(83D.

At present, a prototype of the package is available on a
SUN3 workstation. Tt is employed for modeling and per-
formance analysis of adaptive routing schemes in circuit-
switched networks. Further development of the tool in-
cludes the improvement of the graphical specification and
the representation of results, as well as the extension of
the model world.
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