
Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

Transfer of Domain Knowledge in Plan Generation
Learning Goal-dependent Annulling Conditions for Actions

Michael Siebers

Received: date / Accepted: date

Abstract In this paper we present an approach to
avoid dead-ends during automated plan generation. A

first-order logic formula can be learned that holds in a
state if the application of a specific action will lead to a
dead-end. Starting from small problems within a prob-

lem domain examples of states where the application
of the action will lead to a dead-end will be collected.
The states will be generalized using inductive logic pro-
gramming to a first-order logic formula. We will show

how different notions of goal-dependence could be inte-
grated in this approach.

The formula learned will be used to speed-up auto-
mated plan generation. Furthermore, it provides insight
into the planning domain under consideration.

Keywords automated planning · learning domain
knowledge · dead-end states · inductive logic program-
ming

1 Motivation

Automated planning is one of the fundamentals of ar-
tificial intelligence. Using an adequate representation
for states in the world and a pool of actions to modify
the current state modern programs are able to address
lots of problems. A lot of effort was put into developing
different planning algorithms and adequate heuristics
guiding the search for a good plan. There is a competi-
tion at irregular intervals (International Planning Com-
petition, IPC) at the International Conference on Auto-

M. Siebers
Cognitive Systems Group
Faculty Information Systems and Applied Computer Sciences
University of Bamberg, Germany
Tel.: +49-951-863 2863
E-mail: michael.siebers@uni-bamberg.de

Fig. 1 A sample Sokoban board state. The circle denotes
the movable player token. The small squares at B3 and D2
represent boxes. The darker squares (B4 and C2) denote goal
positions. The board is completely surrounded by walls (dark
grey).

mated Planning and Scheduling where leading planning
teams are able to compare their respective planners. For
this competition a library of problems in a standard-
ized language (Planing Domain Description Language,

PDDL) is available. These problems are quite complex.
However, automated planning suffers one major short-
coming: The planning process starts from scratch for
any given problem. Even if the problem description of
a solved problem is only slightly altered the present
plan is discarded completely. No knowledge is gained
or transferred. In this regard humans are still superior
to automated planners.

Consider for instance the single-player full-knowledge
game Sokoban (see Fig. 1): The aim of the game is to
move boxes onto given goal positions. The game board
consists of squares containing either a wall, a box or
the player token. There are as many squares marked as

URN: urn:nbn:de:bvb:473-irb-466353
DOI: https://doi.org/10.20378/irb-46635

2 Michael Siebers

goal positions as there are boxes in the game. No goal
square may contain a wall. However, it may contain a
box or the player token. In every round the player to-
ken may be moved vertically or horizontally onto an
adjacent square. If the target square contains a box it
is pushed in the moving direction. A box may only be
pushed onto an empty square. Moving more than one
box at the same time is not possible. An example board
state is given in Figure 1.

A box in a corner square, that is a square with walls
adjacent in horizontal and vertical direction, can never
be pushed. So pushing a box onto a corner square (for
instance E2 in the example board given) is only sensible
if the corner square is marked as goal position. Any
human player will gain this knowledge in short time. If
not by insight then after erroneously pushing a box on
a corner square for the first time.

The aim of our project is to mimic this human com-
petence. We want to induce knowledge by analyzing

easy problems and transfer this knowledge to more gen-
eral problems within the same problem domain.

In the next section we will give some basic informa-
tion about automated classical planning. In Section 3
we will consider related approaches on learning for au-
tomated planning. In Section 4 we will detail how we

are going to learn and transfer the knowledge sought.
We will conclude by giving our next steps in Section 5.

2 Classical Planning

The aim of classical planning is to find a path from the
known initial state of a problem to some state satisfy-
ing the goal condition. In STRIPS (Fikes and Nilsson,

1971) representation states are formalized as sets of true
positive literals defined over a set of predicate symbols
P and a given set of objects O. The transitions—called
actions—are represented by the precondition list, the
add-list, and the del-list. Some action a is applicable in
a state s if all literals in the precondition (prea) are true
in this state. In the successor state s′ the literals in the
add-list (Adda) are true and the literals in the del-list
(Dela) are false.

s
a−→ s′ ⇔ [prea⊂s ∧ s′=(s∪Adda)∩Dela]

Multiple planning problems are grouped into do-
mains. A domain D = 〈P,A〉 consists of the predicate
symbols necessary to formulate the problem and the

set of actions available to solve the problem. Thus a
planning problem PD = 〈O, s0, g〉 is fully defined by
the available objects O, the initial state s0, and a goal
condition g given as a set of positive literals. A state s
is called goal state if all literals in g are true (g ⊆ s).

Extensions to this formulation (e. g., non-boolean vari-
ables, negation) are often convenient but not essential.

In the planning as search formulation, a problem
PD is solved by path-finding algorithms over the state
space graph G(PD) of the problem. The nodes of the
state space graph represent the states in the model. The
edges (s, s′) correspond to actions. Since the number
of possible states grows exponentially with number of
predicates and objects, even small problems have huge
state spaces. Thus, the state space graph is not build
explicitly. Furthermore, heuristic search is used.

In some way classical planning resembles reinforce-
ment learning (RL). Both seek the best action to apply
in a given state. However, RL aims at finding such as-
signments for every state in the state space, whereas
classical planning only aims at those on the path from
the given starting state to some goal state. Further-
more, RL uses trial-and-error to determine the actions
maximizing some reward, whereas planning relies on
the analysis of the problem at hand and graph search.

3 Related work

To our knowledge we are the first to learn under which
conditions actions lead to dead-ends. However, we are
not the first to learn to guide plan generation.

The planning architecture Prodigy (Minton et al,
1989) includes machine learning approaches to learn
plan generation guiding rules (Minton, 1988). In his

SCOPE-system Estlin (1998) learns domain-specific if-
then-rules for action selection using ILP and explana-
tion based learning. The selection of actions may also

depend on the current goal.

In a more recent approach de la Rosa and McIl-
raith (2011) learn first-order linear temporal logic for-

mulas to guide plan generation. They learn conditions
over state transitions. The learned formulas are used
to prune the search space. They also use a notation of
goal dependence. However, they only support the näıve
approach to goal dependence described in the previous
section. The learned formulas are specifically designed
to be used with TLPlan (Bacchus and Kabanza, 2000).

Mart́ın and Geffner (2004) learn functions which
map states and goals into actions. This function is based
on concepts-languages which have the expressive power
of subsets of first-order logic. However, like SCOPE,
this approach does not provide insight in a domain.

4 Conditional Annulling of Actions

As explained in Section 1 we aim to learn which ac-
tions to avoid in certain situations. In fact we want

Transfer of Domain Knowledge in Plan Generation 3

to learn the conditions under which the application of
an action a will lead to a dead-end. A state is called
a dead-end if there exists no path from this state to
any goal state. Thus, if the annulment condition φa for
action a holds in some state the action must not be
applied. We will learn these annulment conditions from
small problems1 and transfer the generalized knowledge
to the complete domain.

Since states are represented by sets of literals we
will formalize the annulment conditions as function-free
first order logic formulas defined over the set of pred-
icate symbols P . We will use inductive logic program-
ming (ILP) to abstract the states to the formula φa. In
the next sections we will show how this is done. Fur-
thermore, we will show how the states to abstract from
are gathered and how the learned formulas can be used
during planning.

4.1 Learning Annulment Conditions

As the set of objects is specific for a problem but not
for a domain the annulment condition may not con-

tain any objects.2 Thus, we want to induce a function-
free formula that contains no objects and no unbound
variables. If we restrict this to a formula which con-

tains only existential quantifiers this is equivalent to
horn clauses. To learn these clauses any inductive logic
programming algorithm—like FOIL (Quinlan, 1990) or
GOLEM (Muggleton and Feng, 1992)—can be used.

In order to induce such a set of horn clauses we

need background knowledge and positive and negative
example sets. We assume that we have a set of states S+

a

where the application of a leads to a dead-end and a

set of states S−a where this is not the case. How these
sets of states are constructed will be explained in the
next section. Let the predicate to be learned be called
annula. We now can form the set of positive examples
F+
a = {annula(s)|s ∈ S+

a } and the set of negative ex-
amples F−a = {¬ annula(s)|s ∈ S−a }. The background
knowledge B must contain everything we know about
the states in S+

a and S−a . Though states are sets of liter-
als, this cannot be the union of the states in both sets.
The literals in each state are only true within the state.
So the literals are implicitly dependent on the state.
To use the knowledge this dependence must be made
explicit. Every literal p(t1, . . . , tn) in state si must be

1 We consider problems as small if their number of states
is low.
2 The domain specification may be augmented with a set

of constants. Those constants represent objects which are
present in every problem of this domain. Since there are ILP
algorithms (e. g. FOIL) that can induce formulas with specific
objects, this augmentation poses no problem to our approach.

reformulated such that the state—in fact some unique
id—is part of the predicate ps(t1, . . . , tn, si). The union
of the resulting sets is then the background knowledge.

Using any ILP algorithm we can use F+
a , F−a , and

B to infer a set of clauses Ca that explicitly states in
which states to annul a.

If we want to allow universal quantifiers in the for-
mula we must rewrite the background knowledge. Since
all objects of a planning problem are known we can
check for each state si if some predicate p holds for
all possible arguments. If this is the case we can add
the literal pall(si) to the background knowledge. Using
this extended background knowledge simple universal
quantified formulas are possible. Predicates for more
sophisticated formulas can be constructed accordingly.

4.2 Using the Knowledge

Having the set of clauses Ca = {c1, . . . , cm} for an ac-
tion a we can use it during planning. As first step we

construct the function-free formula φa from the set of
clauses. Since, this formula is to be applied on states
we make the state dependence of the clauses implicit

reversing the modification from p to ps. This results in
clauses of the form ¬(l1 ∧ · · · ∧ ln) ∨ annula implicitly
universal quantified over all variables occurring in the
literals. This is equivalent to the formula l1∧ · · ·∧ ln →
annula, implicitly existential quantified over all vari-
ables occurring in the literals. Revoking the universal
quantification predicates pall to explicit universal quan-

tifications we get a set of formulas defining annulment
conditions for the action a. This set can be merged to
a single formula φa or-ing the elements’ premises.

If we allow arbitrary formulas as action precondi-
tions in our planning domain representation we can add
¬φa to the preconditions of action a. Thus, an action
is not applicable if the annulment condition holds and
dead-ends are avoided during planning. If only positive
literals are allowed as preconditions additional predi-

cates modelling the existential and universal quantified
expressions must be introduced. The actions must be
split and modified such that these additional predicates
are taken into account. Since most modern planning
systems support existential and universal quantification
we will not detail these modifications.

4.3 Finding the State Sets

As mentioned before we need a set of positive and a set
of negative example states. Since we are dealing with

simple problems the näıve way to obtain those is an
exhaustive search. Every path from the starting state

4 Michael Siebers

is expanded. If no actions are applicable in any non-
goal-state the state is a dead-end. If all children of a
state are dead-ends the state itself is also a dead-end.
All non-dead-end states where applying action a does
lead to a dead-end form the set of positive examples
S+
a for this action, all non-dead-end states (where a is

applicable) form the set of negative examples S−a .
However, this approach is only feasible for the small-

est of problems. Larger problems can be handled by
using heuristic search counter-intuitively: During path
expansion it is first checked whether its final state is a
dead-end. If so, the next-to-last state is a positive exam-
ple for annulling the last action of the path. Otherwise,
the next-to-last state is a negative example. Dead-ends
are not further expanded. Additionally, paths with a
high heuristic value could be preferred for expansion.
This way the probability of dead-end occurrence might
be increased. Since the search is no more exhaustive,
the identification of dead-ends is still an issue.

4.4 Incorporating Goal-Dependence

As we have seen in the Sokoban example in Section 2
the annulment of actions is not only dependent on the

current state and the action, but it also depends on
the goal definition. Thus, this information must be in-
cluded during learning and exploited during applica-
tion. So our examples for an action are not only the

states, but they are 2-tuples < s, d > of state s and
goal description d.

The näıve choice for the goal description is the goal

condition g of the problem. Using the situation calculus
trick introduced above every literal p(t1, · · · , tn) in g is
extended and renamed to pg(t1, · · · , tn, si). These lit-
erals can be used as additional background knowledge
during learning. The learned φa’s may then contain goal
dependent predicates. These can be pre-evaluated for a
given problem and thus be used during application.

However, using the goal condition might be too re-
strictive. There might be literals which hold as soon
as a goal state is reached but which are not part of

the goal condition. In the Sokoban example this might
be the fact that the player token is at D2. Further-
more, there are literals which must be true to be able
to reach a goal state. In the Sokoban example one ex-
ample is the fact that the player token is at D3. This
two kinds of goal-dependence might also play an im-
portant role when deciding the annulment of actions.
The second approach might be solved using landmarks
(Hoffmann et al, 2004). Landmarks are sets of literals
such that at least one literal of each set must hold once

during each valid plan. The first condition type is still
an open problem.

5 Conclusion and Next Steps

We presented an approach to learn to avoid dead-ends.
We learn first-order logic formulas which hold if apply-
ing an action leads to an dead-end. These formulas can
be used as additional preconditions for actions and thus
serve to prune the search space. Furthermore, these for-
mulas may provide insight in planning domains.

The next step is to implement the system and to test
it on different domains. These will be domains which are
known to contain dead-ends (e. g., rovers or airport

from IPC 2011) and dead-end free domains. The results
will be evaluated for plan generation speed-up. Further
work will include the types of goal-dependence and the
use of heuristics for example extraction.

References

Bacchus F, Kabanza F (2000) Using temporal logics to

express search control knowledge for planning. Arti-
ficial Intelligence 116(12):123–191

Estlin TA (1998) Using multi-strategy learning to im-
prove planning efficiency and quality. PhD thesis,

Artifical Intelligence Laboratory, The University of
Texas at Austin

Fikes RE, Nilsson NJ (1971) Strips: A new approach to

the application of theorem proving to problem solv-
ing. Artificial Intelligence 2(3–4):189–208

Hoffmann J, Porteous J, Sebastia L (2004) Ordered
landmarks in planning. Journal of Artificial Intelli-

gence Research 22:215–278
Mart́ın M, Geffner H (2004) Learning generalized poli-

cies from planning examples using concept languages.

Applied Intelligence 20(1):9–19
Minton S (1988) Learning effective search controll

knowledge: an explanation-based approach. Kluwer
Academic Publishers

Minton S, Knoblock C, Kuokka D, Gil Y, Joseph R,
Carbonell J (1989) Prodigy2.0: the manual and tu-
torial. Tech. rep., Carnegie Mellon

Muggleton S, Feng C (1992) Efficient induction in logic
programs. In: Muggleton S (ed) Inductive Logic Pro-
gramming, Academic Press, pp 281–298

Quinlan J (1990) Learning logical definitions from re-
lations. Machine Learning 5(3):239–266

de la Rosa T, McIlraith SA (2011) Learning domain
control knowledge for TLPlan and beyond. In: Pro-

ceedings of the ICAPS-11 Workshop on Planning and
Learning (PAL)

