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The formal foundation of an evolutionary theory of 16 

reinforcement 17 

Abstract 18 

Reinforcement learning is often described by analogy to natural selection. However, there is no 19 

coherent theory relating reinforcement learning to evolution within a single formal model of 20 

selection. This paper provides the formal foundation of such a unified theory. The model is based on 21 

the most general description of natural selection as given by the Price equation. We extend the Price 22 

equation to cover reinforcement learning as the result of a behavioral selection process within 23 

individuals and relate it to the principle of natural selection via the concept of statistical fitness 24 

predictors by means of a multilevel model of behavioral selection. 25 

The main result is the covariance-based law of effect, which describes reinforcement learning on a 26 

molar level by means of the covariance between behavioral allocation and a statistical fitness 27 

predictor. We further demonstrate how this abstract principle can be applied to derive theoretical 28 

explanations of various empirical findings, like conditioned reinforcement, blocking, matching and 29 

response deprivation. 30 

Our model is the first to apply the abstract principle of selection to derive a unified description of 31 

reinforcement learning and natural selection within a single model. It provides a general analytical 32 

tool for behavioral psychology in a similar way that the theory of natural selection does for 33 

evolutionary biology. We thus lay the formal foundation of a general theory of reinforcement as the 34 

result of behavioral selection on multiple levels. 35 

Keywords: selection by consequences, behavioral selection, natural selection, reinforcement learning, 36 

Price equation, multilevel model of behavioral selection 37 
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1 Introduction 38 

It is a long held belief that reinforcement learning can be characterized by analogy to evolution by 39 

natural selection (e.g., Broadbent, 1961; D. T. Campbell, 1956; Gilbert, 1970; Herrnstein, 1964; 40 

Pringle, 1951; Skinner, 1966; Thorndike, 1900). For example, Staddon and Simmelhag (1971), state 41 

that the ‘Law of Effect […] can best be understood by analogy with evolution by means of natural 42 

selection’ (p. 40). Skinner (1981) even claims that natural selection and reinforcement learning are 43 

two instances of the same underlying causal principle: selection by consequences. The selectionist 44 

account of reinforcement has also found its way into textbooks on behavioral psychology as the 45 

Darwinian metaphor (Baum, 2005; Staddon, 2016) and is now a popular theme in theoretical work on 46 

behavior analysis (e.g., Baum, 2017, 2018; Becker, 2019; Borgstede, 2020; Donahoe, 2011; Donahoe, 47 

Burgos, & Palmer, 1993; Hull, Langman, & Glenn, 2001; Richerson, 2019; Simon & Hessen, 2019). 48 

The appeal of the Darwinian metaphor conceivably stems from its generality: given selection by 49 

consequences is a fundamental principle of behavior, it might constitute the foundation of a unified 50 

theory of behavior. Such a theory would provide a general analytical framework for behavioral 51 

psychology in a similar way that the theory of natural selection does for evolutionary biology. A 52 

theoretical description of fundamental behavioral principles that goes ‘beyond the collection of 53 

uniform relationships’ (Skinner, 1950, p.215) could offer a theory-driven explanation of the basic 54 

laws of learning. This would help to understand why the regularities in empirical findings of 55 

behavioral psychology – for instance, the matching law – are to be expected and might even 56 

generate new testable hypotheses. 57 

However, the theoretical status of ‘selection by consequences’ has been subject to criticism (e.g., the 58 

open peer commentaries to Skinner, 1984; also Burgos, 2019; Pennypacker, 1992; Tonneau & 59 

Sokolowski, 2000 for more recent accounts). Apart from an ongoing debate about the ontological 60 

status of the Darwinian metaphor, there are three recurring questions concerning the adequacy of 61 

the analogy between natural selection and reinforcement learning: the first one addresses the 62 
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hereditary particles of behavioral selection1 (i.e., a gene analogue), the second one tackles the 63 

problem of a fitness equivalent on the behavioral level (i.e., some kind of reinforcer value), and the 64 

third one is about the units of selection (i.e., the question of what is selected). While the question of 65 

a gene analogue for behavioral selection is surely interesting (cf. Donahoe et al., 1993), it is not 66 

essential for selectionist theory, because it is possible to describe evolutionary change on a 67 

phenotypic level without loss of generality (Frank, 1997, 1998; Grafen, 2014). The second and third 68 

question, however, are crucial for the Darwinian metaphor to make sense – if there is no fitness 69 

equivalent on a behavioral level, there is no criterion for selection, and if the units of selection are 70 

unclear, we do not know what is selected.  71 

The question of a behavioral fitness equivalent has been clarified from a maximization perspective 72 

(Borgstede, 2020): if there is a behavioral maximand (‘reinforcer value’) that reinforcement selects 73 

for, and if maximization of this value leads to maximization of evolutionary fitness, reinforcer value 74 

must be proportional to marginal fitness (i.e., fitness change per unit change in behavioral 75 

allocation). However, Borgstede (2020) does not link the maximization principle to the dynamics of 76 

change. Hence, whilst providing a valid mathematical definition of reinforcer value, the implications 77 

for reinforcement learning as a process of selection by consequences remain open.  78 

The issue of the units of selection in the context of reinforcement learning has been addressed 79 

explicitly by McDowell (2013), who models reinforcement learning by means of an evolutionary 80 

algorithm that is applied to a population of ‘behaviors’. In this view, behaviors relate to learning in 81 

the same way that individuals relate to evolution. However, in the context of learning, behavior is 82 

often treated as the target of selection, as well (Hull et al., 2001). Hence the analogy between 83 

learning and evolution is at least vague in this respect: do we conceptualize learning as selection of 84 

behaviors or as selection for behaviors (cf. Sober, 1984)? 85 

                                                           
1 In this paper, we use the term ‘behavioral selection’ exclusively for behavioral adaptations by means of 
reinforcement learning. We do not refer to behavior being the target of evolution by natural selection. 
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In this paper, we aim to resolve the conceptual ambiguities of the analogy between learning and 86 

evolution by formally integrating reinforcement learning with natural selection in a unifying model 87 

that captures both levels of selection simultaneously. We build our model around the most abstract 88 

description of selection by means of the Price equation (Price, 1970, 1972). The main result is a molar 89 

account of reinforcement learning in terms of selection that applies to different levels on different 90 

time scales. In this view, reinforcement learning can be described as a Darwinian process where the 91 

units of selection are individuals showing behavioral variability and the target of selection is the 92 

relative allocation of behavior over time within a specified context. This process is universal in that it 93 

does not depend on the specific (molecular) mechanisms involved in learning but constitutes a 94 

general invariance principle which we call the covariance based law of effect. The dynamics of 95 

reinforcement are thus re-conceptualized in a molar way, shifting the focus from contiguity between 96 

single behavioral instances (Thorndike, 2010/1911) to the correlation between behavior and 97 

reinforcement (Baum, 1973). When applied to different experimental paradigms, the covariance 98 

based law of effect explains why conditioned reinforcers work (Skinner, 1969), why conditioning is 99 

sometimes blocked by previous reinforcement (Kamin, 1969), why response deprivation can establish 100 

reinforcers (Timberlake & Allison, 1974), and why individuals tend to match relative behavioral 101 

allocation to relative reinforcement in concurrent variable interval schedules (Herrnstein, 1961), 102 

Our model integrates these empirically well-established regularities in a mathematically rigorous way 103 

by means of a single theoretical principle that is derived from the theory of evolution by natural 104 

selection. We thus lay the foundation for a general theory of behavior that is of ‘greater generality 105 

than any assemblage of facts’ (Skinner, 1950, p.216). 106 
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2 Natural selection and the Price equation 107 

The Price equation provides a mathematical description of evolutionary processes on the most 108 

general level by partitioning the change in mean character value from one generation to the next 109 

generation into a covariance term and an expectation term (Price, 1970)2: 110 

 𝑤𝑤�∆𝑧𝑧̅ = Cov(𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖) + E(𝑤𝑤𝑖𝑖∆𝑧𝑧𝑖𝑖) (1.)  

Here, 𝑧𝑧𝑖𝑖  refers to an arbitrary character (usually an allele frequency) and 𝑧𝑧̅ designates the arithmetic 111 

mean of 𝑧𝑧 over all individuals 𝑖𝑖. There is nothing special about gene frequencies here. 𝑧𝑧 may be any 112 

quantitative character (e.g., body size or parental investment). Also, 𝑖𝑖 does not necessarily refer to 113 

individuals, but can designate the members of an arbitrary set (e.g., groups). In order to define ∆𝑧𝑧̅ 114 

one needs to relate the first set (the ‘parent population’) to a second set (the ‘offspring population’): 115 

∆𝑧𝑧̅ is defined as ∑𝑞𝑞𝑖𝑖′𝑧𝑧𝑖𝑖′ − ∑𝑞𝑞𝑖𝑖𝑧𝑧𝑖𝑖, where 𝑞𝑞𝑖𝑖 refers to the frequency of the value 𝑧𝑧𝑖𝑖  in the parent 116 

population and 𝑞𝑞𝑖𝑖′ refers to the frequency of value 𝑧𝑧𝑖𝑖′ in the offspring population. The index 𝑖𝑖 does 117 

not refer to the individuals in the offspring population but to the parent population. This means that 118 

𝑞𝑞𝑖𝑖′ is the number of elements in the offspring population that originate from parents of type 𝑖𝑖 and 𝑧𝑧𝑖𝑖′ 119 

is their corresponding character value.  120 

Mathematically, the Price equation builds on the existence of a right-total relation (i.e., a mapping) 121 

between two sets. Using this relation it is possible to define the fitness 𝑤𝑤𝑖𝑖 as the contribution of a 122 

type 𝑖𝑖 parent to the offspring population, resulting in 𝑞𝑞𝑖𝑖′ = 𝑞𝑞𝑖𝑖𝑤𝑤𝑖𝑖/𝑤𝑤� , where 𝑤𝑤�  is the mean fitness of 123 

the parent population. 𝑧𝑧𝑖𝑖′ is also defined with respect to the parent population, which means that it 124 

refers to the average character value 𝑧𝑧 of descendants from parent type 𝑖𝑖. The change in 𝑧𝑧 from 125 

parent to offspring is defined accordingly: ∆𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖. The Price equation is valid given these 126 

definitions (mathematical proofs can be found in Frank, 1998, Gardner, 2020 and elsewhere). The 127 

change in mean character value can always be partitioned into one covariance term and one 128 

                                                           
2 Price used a different notation in his original paper. However, the notation adapted in this paper has become 
more common in the literature. Compare Luque (2017) for a review of the many different versions of the Price 
equation. 
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expectation term. In biological models, the covariance term captures the change in character value 129 

due to natural selection, whereas the expectation term refers to changes from parent to offspring 130 

due to imperfect transmission or environmental factors.  131 

It is possible to extend the formalism to capture different genetic architectures, class structured 132 

populations, stochasticity and inclusive fitness (e.g., Frank, 1998; Grafen, 2000; Taylor, 1990). 133 

Moreover, the second term can be further partitioned by inserting the Price equation recursively into 134 

the expectation term. Taking individuals to be nested within groups and adding a new index 𝑔𝑔 for 135 

these groups, one may partition the change in mean character value within groups, 𝑧𝑧𝑔𝑔, into a within 136 

group covariance term and a within group expectation term:  137 

 𝑤𝑤𝑔𝑔Δ𝑧𝑧𝑔𝑔 = Cov�𝑤𝑤𝑔𝑔𝑔𝑔, 𝑧𝑧𝑔𝑔𝑔𝑔� + E𝑖𝑖�𝑤𝑤𝑔𝑔𝑔𝑔∆𝑧𝑧𝑔𝑔𝑔𝑔� (2.)  

Here, 𝑧𝑧𝑔𝑔𝑔𝑔  and 𝑤𝑤𝑔𝑔𝑔𝑔 stand for the individual character value and fitness of individual 𝑖𝑖 in group 𝑔𝑔. 𝑧𝑧𝑔𝑔 138 

and 𝑤𝑤𝑔𝑔 refer to mean character value and mean fitness in group 𝑔𝑔. Taking the expectation of mean 139 

change 𝑤𝑤𝑔𝑔Δ𝑧𝑧𝑔𝑔 over groups, one can extend the Price equation to capture selection within groups and 140 

selection between groups at the same time: 141 

 𝑤𝑤�∆𝑧𝑧̅ = Cov�𝑤𝑤𝑔𝑔, 𝑧𝑧𝑔𝑔� + E𝑔𝑔 �Cov�𝑤𝑤𝑔𝑔𝑔𝑔, 𝑧𝑧𝑔𝑔𝑔𝑔� + E𝑖𝑖�𝑤𝑤𝑔𝑔𝑔𝑔∆𝑧𝑧𝑔𝑔𝑔𝑔�� (3.)  

This multilevel Price equation is useful to model fitness trade-offs between the individual and the 142 

group, thereby explaining, how a trait that is harmful to the individual can spread in a population by 143 

positively affecting average fitness on a group level (Price, 1972).  144 

3 The Price equation and behavioral selection 145 

Price himself noted that his formal account of selection was not restricted to natural selection acting 146 

on gene frequencies but might well be applied to other areas such as operant learning (Price, 1995, 147 

written ca. 1971). The Price equation has been applied to such diverse fields as probability theory, 148 

particle physics and information theory (Frank, 2017, 2018, 2020). Especially the application of a 149 

selectionist framework to the field of information theory seems to imply that there might be an 150 
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intricate relationship between selection and learning. Nevertheless, whilst there have been various 151 

attempts to apply the Price equation to cultural evolution (see Nettle, 2020 for an overview), its 152 

potential for behavioral psychology and reinforcement learning in particular remained largely 153 

unnoticed until a recent publication by Baum (2017).  154 

Baum (2017) identifies the objects in the ‘parent population’ with operant behavior in a fixed time 155 

interval, and the objects in the ‘offspring population’ with operant behavior in a later time interval of 156 

equal length. These time intervals correspond to different trials in a behavioral experiment, where 157 

the individual is repeatedly confronted with the same reinforcement contingencies. In order to 158 

construct the necessary ‘parent-offspring’ relation between the two sets he argues that behaviors 159 

recur in the sense that a behavior emitted in interval one may be emitted in interval two, as well. 160 

Following this rationale, recurrence in behavioral selection means ‘to occur again’. However, this 161 

understanding of recurrence departs from the conceptual foundation of the Price equation: ‘to occur 162 

again’ is by no means sufficient to establish a right-total relation between two sets of behavioral 163 

episodes. Baum further elaborates his position by linking reinforced behavior to Phylogenetically 164 

Important Events (PIE3). Following Baum, a PIE like, e.g., the availability of food induces PIE-related 165 

behavior like feeding and foraging. Thus, behaviors in interval one recur because they co-vary with a 166 

PIE, which in turn induces the same behaviors in interval two (Baum, 2012, 2017). 167 

Even though induction possibly plays an important role for the allocation of behavior, it does not 168 

account for recurrence in the sense of a ‘parent-offspring’ relation as required by the Price equation. 169 

The indices in the Price equation always refer to the parent population – this means that 𝑧𝑧𝑖𝑖  170 

designates the mean character value of objects descending from parent type 𝑖𝑖. Therefore, in order to 171 

apply the mathematical apparatus of the Price equation it is necessary that every object in the 172 

offspring population can be individually linked to an object in the parent population. Applying Baum’s 173 

claim that behaviors recur due to induction, we need to identify which behavioral instance in interval 174 

                                                           
3 A PIE is an event that directly affects an individual’s evolutionary fitness, e.g., the availability of food or the 
presence of a physical threat (Baum, 2012). 
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one induces which behavioral instance(s) in interval two. But this is not possible. Therefore, the 175 

presented account of behavioral recurrence by means of induction remains unclear.  176 

Even though Baum’s model is formally consistent for some special cases (namely, when there are no 177 

sources of behavioral change apart from selection), it is impossible to retrieve the original meaning 178 

of ‘fitness’ as the contribution from one generation to the next generation because the necessary set 179 

mapping (a right-total relation) does not exist. Moreover, formally treating behavioral selection as 180 

analogous to natural selection does not provide a functional relation between both levels of 181 

selection, thereby missing the opportunity to integrate learning and evolution within the same 182 

model.   183 

4 A multilevel model of behavioral selection 184 

As shown in the previous section, behaviors do not recur in the sense that one could establish a 185 

‘parent-offspring’ relation between behaviors occurring in one time interval and behaviors occurring 186 

in a future time interval. Therefore, it is not possible to derive a coherent definition of fitness from 187 

the recurrence of behaviors themselves. We solve this issue by not defining fitness on the level of 188 

single behaviors, but on the level of the whole organism (i.e., in the standard way the Price equation 189 

is applied in biological models of natural selection). Thus, we do not conceptualize behavioral 190 

selection as a process similar to natural selection, but as a part of natural selection itself. In this view, 191 

behavioral selection is not a ‘Darwinian metaphor’ but a theoretically derived scientific fact: 192 

behavioral selection is literally a part of evolution by natural selection as described by the Price 193 

equation. 194 

If the objects used in the Price equation are whole organisms instead of behaviors, several challenges 195 

arise. First, natural selection and behavioral selection are usually taken to act on different time 196 

scales. This poses a formal problem since the Price equation only deals with the change from one 197 

generation to the next. Second, natural selection and behavioral selection are mediated by different 198 

mechanisms of inheritance (or recurrence). Evolving characters may be influenced by both, 199 
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genetically transmitted components, as well as learned components (for which the mechanisms of 200 

transmission are yet to be understood). Third, since fitness is defined on the level of the individual 201 

(i.e., fitness refers to the contribution of an individual to the future population), it needs to be 202 

clarified how evolutionary fitness relates to reinforcement in order to make sense of assigning values 203 

of evolutionary fitness to behavior. We will provide solutions to each of the above problems by 204 

integrating natural selection and behavioral selection using a multilevel extension of the Price 205 

equation and linking evolutionary fitness to reinforcement via the concept of statistical fitness 206 

predictors. The general idea is that reinforcement learning can only be effective to the degree that 207 

the average outcome of reinforcement (i.e., the learned behavior) contributes to expected 208 

evolutionary fitness (Borgstede & Simon, under review). 209 

The formal aspects of our model are very general in that they apply to any kind of behavior and that 210 

they are independent of specific learning algorithms. In fact, we do not attempt to model molecular 211 

mechanisms at all. Instead, we adopt a molar view that treats behavior as being extended over time 212 

and over contexts (Rachlin, 1978). Hence, when we speak of behavior, we mean the relative 213 

allocation of competing behavioral options over time within a certain context, which in itself is 214 

defined by a certain structure of contingencies. In the course of reinforcement learning, behavior 215 

becomes controlled by context-specific discriminative stimuli. This molar view implies that we 216 

analyze behavior in terms of allocated time per interval while in a certain context. Therefore, we do 217 

not need to worry about the measurement units of specific behaviors, which may very well vary 218 

between behaviors. We call these context-specific intervals ‘behavioral episodes’ to stress the fact 219 

that behavior is not measured at a point in time but extended over time within a specified context. A 220 

behavioral episode is thus defined with respect to the structure of contingencies that are effective in 221 

a specified environmental context. From the perspective of behavioral psychology, one may think of 222 

behavioral episodes as the trials in a reinforcement experiment, exposing the individual to the same 223 

contingencies again and again. However, the concept can also be applied to settings outside the 224 

laboratory. Here, we may identify behavioral episodes with recurring contexts the animal 225 
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encounters, for example, different food patches, whose contingency structures are signaled by the 226 

presence of certain discriminative stimuli.  227 

To keep the mathematical derivation as simple as possible, we restrict our analysis to learning within 228 

only one type of behavioral episode. In other words, we treat learning separately in different 229 

contextual settings. Thus, when we calculate the mean behavioral allocation over several episodes, 230 

these need not be adjacent in time, but instead are recurring instances of the same contingency 231 

structure. Similarly, when we speak of statistical fitness predictors, we refer to predictors that are 232 

valid within the current class of behavioral episodes (i.e., they are context-dependent). This is in line 233 

with reinforcement learning as well as extinction being context-specific4. 234 

4.1 The covariance based law of effect 235 

The first step to integrate natural selection and behavioral selection is to partition the expectation 236 

term of the Price equation using recursive expansion (cf. section 2). However, here the two levels of 237 

selection are not individuals nested within groups but behavioral episodes nested within individuals. 238 

Like in the simple Price equation, we designate individuals by the index 𝑖𝑖. Behavioral episodes are 239 

designated by the index 𝑗𝑗. We use the letter 𝑏𝑏 to refer to the behavioral allocation within a 240 

behavioral episode. Behavioral allocation is measured as relative time spent at a certain behavior 241 

within a given behavioral episode5. For reasons of simplicity, we only deal with one type of behavior 242 

here. Hence, 𝑏𝑏𝑖𝑖𝑖𝑖 refers to the behavioral allocation of individual 𝑖𝑖 in episode 𝑗𝑗.  243 

To capture the rather small time scale of learning, we formally treat surviving individuals as if they 244 

were their own offspring. Even though this treatment of survival may be counter-intuitive, it is not 245 

uncommon in biological models, since it provides a mathematically simple way to capture the 246 

survival part of evolutionary fitness (cf. Taylor, 1990). Moreover, since we focus only on the learned 247 

                                                           
4 It would be possible to include several contexts into the model by introducing a class structured version of the 
Price equation (cf. Taylor, 1990). However, this would inflate the mathematical formalism and distract the 
reader from the general import of the model. 
5 Actually, the model allows for different measures of behavior, as well, e.g., relative response rate, running 
speed, spatial position, or even neural activity. However, for reasons of consistency, we restrict ourselves to 
cases where behavior is measured as the relative allocation over time. 
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components of behavior, we restrict the analysis to the survival part of fitness, thereby excluding the 248 

actual offspring of the individuals6. This means that, strictly speaking, 𝑏𝑏 does not refer to behavioral 249 

allocation per se, but to the part of behavioral allocation that is ‘transmitted’ within individuals from 250 

one set of behavioral episodes to a second set of behavioral episodes . The mechanisms of 251 

transmission certainly involve some kind of neural processing and might be referred to as ‘memory’. 252 

We do not imply the notion of a cognitive process of ‘storing’ and ‘retrieving’ here, but use the term 253 

‘memory’ for any mechanism that integrates past experiences with present behavior. However, since 254 

the model does not depend on these supposed mechanisms, we prefer to speak of ‘behavior’ 𝑏𝑏. 255 

Formally, this definition of 𝑏𝑏 is an analogue to the biological concept of ‘breeding value’ or ‘additive 256 

genetic value’, which is defined as the component of the evolving character that is genetically 257 

transmitted. Using breeding value instead of the actual character comes without loss of generality 258 

when using the Price equation to describe natural selection (Frank, 1998). Effectively, treating 259 

surviving individuals as their own offspring provides a way to bridge the time scales between natural 260 

selection and reinforcement learning because no matter how short the interval between the two sets 261 

of behavioral episodes, if fitness is defined by surviving individuals, the Price equation still describes 262 

(a part of) natural selection. At the same time, restricting the analysis to the survival component of 263 

fitness circumvents the problem of different mechanisms of transmission.  264 

We can thus model several time steps on an evolutionary scale within the life span of a single 265 

individual. There are no formal constraints on the choice of the time scale, hence we can choose the 266 

level of analysis to fit our experimental requirements. Conceptually, this corresponds to a multiscale 267 

view of behavior analysis as advocated by Baum (2018). Note, however, that no matter how small we 268 

choose our evolutionary time scale to be, behavior is still understood as extended over time with 269 

several behavioral episodes occurring in each (evolutionary) time step.  270 

                                                           
6 Including transmission by reproduction would require a separation of hereditary mechanisms on the different 
levels of the Price equation. Although this might help to understand how the levels of selection interact and 
influence one another, it is not necessary in order to derive the general structure of behavioral selection. 

https://doi.org/10.1016/j.beproc.2021.104370


This manuscript has been accepted for publication in Behavioural Processes. The final publication can be retrieved from: 
https://doi.org/10.1016/j.beproc.2021.104370 

13 
 

Within this conceptual framework, we can now describe average behavioral change simultaneously 271 

for individuals and for the whole population by means of a multilevel Price equation: 272 

 𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖 �Cov�𝑤𝑤𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�𝑤𝑤𝑖𝑖𝑖𝑖∆𝑏𝑏𝑖𝑖𝑖𝑖�� (4.)  

Using behavioral allocation 𝑏𝑏 as an evolving character and focusing on a time scale small enough to 273 

capture behavioral adaptations on an individual level, the two terms on the right hand side can be 274 

interpreted as follows: the covariance term over individuals 𝑖𝑖 designates the survival part of natural 275 

selection; the expectation term over individuals 𝑖𝑖 designates behavioral changes within the 276 

individuals. The latter term is further partitioned into one selection part on the level of behavioral 277 

episodes 𝑗𝑗 and one expectation part referring to changes within behavioral episodes. Individual 278 

fitness 𝑤𝑤𝑖𝑖 is defined in the usual way as the contribution of individuals to the future population 279 

(because the only ‘offspring’ in this model are the individuals themselves, this is essentially survival). 280 

Since we are mainly interested in the selection part, we can simplify our notation by treating the 281 

within individual expectation term as a residual term 𝛿𝛿, defining E𝑗𝑗�𝑤𝑤𝑖𝑖𝑖𝑖∆𝑏𝑏𝑖𝑖𝑖𝑖� = 𝛿𝛿. Due to the 282 

recursive extension of the Price equation, change in behavioral allocation within each individual can 283 

now be expressed as: 284 

 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = Cov�𝑤𝑤𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + 𝛿𝛿 (5.)  

Although fitness can be explicitly defined on an individual level, it is difficult to make sense of the 285 

‘fitness’ ascribed to behavioral episodes 𝑤𝑤𝑖𝑖𝑖𝑖. Since it is always the whole organism that dies or 286 

survives (or, more formally, has a certain survival probability), it is not reasonable to attribute 287 

evolutionary fitness to a behavioral episode (note that we are talking about fitness in a literal way 288 

here – thus, it would be inconsistent to invoke a metaphorical interpretation). Moreover, it is unlikely 289 

that individuals adapt their behavior with regard to their actual fitness, since this would require 290 

information about their future survival. Therefore, it is reasonable to assume that individuals adapt 291 

their behavior with regard to fitness proxies 𝑝𝑝. These fitness proxies are essentially statistical 292 

predictors of evolutionary fitness. In some cases, they may coincide with the aforementioned PIEs, 293 
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but this is not necessarily the case. Formally, we predict fitness 𝑤𝑤 by a context-dependent linear 294 

regression of the form 𝑤𝑤 = 𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝 + 𝜀𝜀. The regression is calculated over all individuals that are 295 

exposed to the contextual factors that constitute the class of behavioral episodes. This means that 296 

we calculate separate regressions for each context in accordance with the definition of context by its 297 

contingency structure.  298 

We now use these regression coefficients to obtain statistical estimates of the expected fitness for 299 

each behavioral episode. Formally, we substitute the fitness of each behavioral episode 𝑤𝑤𝑖𝑖𝑖𝑖  with the 300 

corresponding predicted value from the regression model: 301 

 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = Cov�𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + 𝛿𝛿 (6.)  

Since the regression coefficients are calculated on a between individuals level, they can be treated as 302 

constants within individuals. Therefore we can simplify to get7: 303 

 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = 𝛽𝛽𝑤𝑤𝑤𝑤Cov�𝑝𝑝𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖� + 𝛿𝛿 (7.)  

This means that the change in behavior for an individual 𝑖𝑖 equals the covariance between behavioral 304 

allocation 𝑏𝑏 and a linear fitness predictor 𝑝𝑝, weighted by the statistical regression effect of the fitness 305 

proxy 𝑝𝑝 on evolutionary fitness, with 𝛿𝛿 being a residual term capturing all changes in behavior that 306 

are not caused by selection. We call this the covariance based law of effect, since it provides the 307 

conditions under which behavior is changed by reinforcement learning: the change in mean 308 

behavioral allocation due to selection is proportional to the covariance between the behavior and a 309 

reinforcer. Furthermore, the coefficient 𝛽𝛽𝑤𝑤𝑤𝑤 acts as a weighting factor to scale the covariance term. 310 

This means that behavioral change is also proportional to the degree to which a reinforcer is 311 

predictive for evolutionary fitness. Therefore, 𝛽𝛽𝑤𝑤𝑤𝑤 is called the reinforcing power of a 𝑝𝑝 (cf. 312 

Borgstede, 2020). 313 

                                                           
7 See Appendix 1 for the complete derivation. 
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5 Application of the model 314 

The covariance based law of effect is a theoretical description of reinforcement learning on the most 315 

abstract level. It provides a quantitative account of behavioral selection that formally links the level 316 

of individual learning to the level of natural selection. We will now demonstrate how this abstract 317 

principle can be applied to various experimental paradigms. Using the method of path analysis, we 318 

will partition the reinforcing effects of behavioral selection into different components8. The first 319 

application deals with the implications of our model for steady state behavior. The second 320 

application is concerned with the factors that constitute a reinforcer.  321 

5.1 Path analysis 322 

The covariance based law of effect describes reinforcement by means of behavioral selection. The 323 

covariance term stresses the understanding of learning as a selection process as described by the 324 

Price equation. However, it is useful to translate the law of effect into a form that is more easily 325 

tractable in practical applications. Therefore, we introduce an alternative formulation of the same 326 

law by means of a statistical path model. 327 

Because, by definition, 𝛽𝛽𝑝𝑝𝑝𝑝 = Cov�𝑝𝑝𝑖𝑖𝑖𝑖,𝑏𝑏𝑖𝑖𝑖𝑖�
Var�𝑏𝑏𝑖𝑖𝑖𝑖�

, the covariance based law of effect can be equivalently 328 

stated as:  329 

 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝Var�𝑏𝑏𝑖𝑖𝑖𝑖� + 𝛿𝛿 (8.)  

Here, 𝛽𝛽𝑝𝑝𝑝𝑝 and 𝛽𝛽𝑤𝑤𝑤𝑤 are the partial linear effects from a path model where the effect of behavior 𝑏𝑏 on 330 

evolutionary fitness 𝑤𝑤 is fully mediated by a fitness proxy 𝑝𝑝 (see Figure 1). The parameter 𝛽𝛽𝑤𝑤𝑤𝑤 refers 331 

to the reinforcing power of the fitness proxy. It corresponds to the expected change in evolutionary 332 

fitness per unit change in reinforcement. The parameter 𝛽𝛽𝑝𝑝𝑏𝑏 is the slope of the feedback function of 333 

                                                           
8 Path analysis is routinely applied to partition different fitness effects on evolutionary fitness in biological 
models of selection (cf. Okasha and Otsuka, 2020; Scheiner and Gurevitch, 2001). The difference here is that, 
apart from the fitness effects of the fitness proxies, we use within individual regressions to calculate the 
contextual effects that are effective in the current class of behavioral episodes. 
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the schedule of reinforcement. It thus captures the expected gain in reinforcement per unit change 334 

in behavior at the current point of behavioral allocation.  335 

Using the technique of statistical path analysis, we can calculate the total effect 𝛽𝛽𝑤𝑤𝑤𝑤 of behavior 𝑏𝑏 on 336 

fitness 𝑤𝑤 by multiplication of the two partial regression slopes, which gives 𝛽𝛽𝑤𝑤𝑤𝑤 = 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝. This total 337 

effect corresponds to the marginal value of a change in behavioral allocation in terms of evolutionary 338 

fitness. According to Borgstede (2020), this may be regarded as marginal reinforcer value 𝑟𝑟(𝑏𝑏) of 339 

behavior 𝑏𝑏. We may thus state the covariance based law of effect in terms of reinforcer value9: 340 

behavioral selection equals the product of reinforcer value and behavioral variance. 341 

If we calculate the path model using standardized variables, behavioral variance will be one, leaving 342 

us with the standardized total effect of behavior on fitness. We can thus investigate different 343 

components of reinforcement by partitioning the reinforcer value of a behavior into partial 344 

regression effects. Similarly, we can start with a given partitioning and retrieve the corresponding 345 

expression of 𝑟𝑟(𝑏𝑏) by summing up the products of the partial regression coefficients for each path 346 

(Shipley, 2016). This method can be applied to analyze the structure of different contexts from the 347 

perspective of behavioral selection. 348 

 349 

Figure 1: Path diagram depicting the statistical relation between behavior 𝑏𝑏, fitness proxy 𝑝𝑝 and evolutionary fitness 𝑤𝑤. 𝛽𝛽𝑝𝑝𝑝𝑝  350 

and 𝛽𝛽𝑤𝑤𝑤𝑤 designate the slopes of linear regression models that predict 𝑝𝑝  from behavior 𝑏𝑏, and fitness 𝑤𝑤 from 𝑝𝑝 controlling 351 

for 𝑏𝑏, respectively. Statistically, the total effect of 𝑏𝑏 on 𝑤𝑤 equals the product of 𝛽𝛽𝑝𝑝𝑝𝑝  and 𝛽𝛽𝑤𝑤𝑤𝑤. 352 

                                                           
9 Note that in Borgstede (2020), 𝑟𝑟(𝑏𝑏) refers to the partial effect of behavior on fitness, whereas here, we refer 
to the total effect, which is the sum of the partial effects over all paths from 𝑏𝑏 to 𝑤𝑤. 
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5.2 Steady state behavior 353 

Our first application deals with several mutually exclusive behaviors that compete for time within 354 

behavioral episodes. Formally, behavioral allocation of behaviors 𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑛𝑛 is subject to a fixed time 355 

budget constraint such that the relative time spent at each behavior sums up to one. From this it 356 

follows that any increase in mean behavioral allocation towards one behavior will result in an equal 357 

amount of decrease in the sum over all other behaviors.  358 

In the following, we will focus on the dynamics of only one behavior 𝑏𝑏. Like before, the amount of 359 

behavioral selection is determined by the corresponding reinforcer value. In contrast to the simple 360 

mediation model of the previous section, we now have to incorporate the time constraint when 361 

calculating the total effect of behavior 𝑏𝑏 on fitness 𝑤𝑤. Figure 2 depicts the simplest case with only 362 

one additional behavior (we call this second behavior 𝑏𝑏′)10. In the path model, we account for the 363 

time constraint by adding a path from behavior 𝑏𝑏 to 𝑏𝑏′ (dashed line in Figure 2). The corresponding 364 

partial regression coefficient 𝛽𝛽𝑏𝑏′𝑏𝑏 expresses the expected change in behavior 𝑏𝑏′ per unit change in 𝑏𝑏. 365 

Due to the above budget constraint, it holds that 𝛽𝛽𝑏𝑏′𝑏𝑏 = −1. Consequently, we can calculate the 366 

marginal reinforcer value of behavior 𝑏𝑏 as: 367 

 𝑟𝑟(𝑏𝑏) = 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝 − 𝛽𝛽𝑤𝑤𝑤𝑤′𝛽𝛽𝑝𝑝′𝑏𝑏′ (9.)  

This means that we have to subtract the partial fitness effect of behavior 𝑏𝑏′ from the partial fitness 368 

effect of behavior 𝑏𝑏 to predict behavioral selection on 𝑏𝑏.  369 

We can use this result to derive a general equilibrium condition for behavioral selection. Behavioral 370 

equilibrium (or ‘steady state behavior’) is characterized by a constant behavioral allocation (i.e., the 371 

absence of change due to reinforcement). Formally, this means that behavior 𝑏𝑏 is at a steady state, if 372 

                                                           
10 We restrict ourselves to this minimal example to avoid unnecessary complexity of the path model. This does 
not restrict the generality of the analysis, however, because we only consider the point of behavioral 
equilibrium here. This means that, even if behaviors 𝑏𝑏 and 𝑏𝑏′ do not take up the whole time interval at the 
beginning of the experiment, in the absence of selection on other behaviors, they will eventually compete for 
the whole available time. 
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and only if behavioral selection on 𝑏𝑏 equals zero (i.e., 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = 0). The equilibrium condition thus 373 

becomes: 374 

 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝 = 𝛽𝛽𝑤𝑤𝑤𝑤′𝛽𝛽𝑝𝑝′𝑏𝑏′ (10.)  

Hence, behavior is stable if and only if the marginal fitness effects of competing behaviors are equal. 375 

This result is equivalent to the one derived in Borgstede (2020). However, we did not assume a 376 

tendency to maximize reinforcer value, but derived the same condition for steady state behavior 377 

from the covariance based law of effect.  378 

It has been shown that in concurrent variable interval schedules of reinforcement, the condition of 379 

equal marginal reinforcer value coincides with the matching law (Baum, 1981). However, this is not 380 

the case for all schedules of reinforcement, since the resulting behavioral allocation depends on the 381 

shape of the corresponding feedback functions. Hence, the matching law is best understood as a 382 

special case of the above equilibrium condition and therefore follows from the covariance based law 383 

of effect. 384 

 385 

Figure 2: Path diagram for behavioral selection on a behavior 𝑏𝑏 that is constrained by a temporal budget. In addition to the 386 

direct path from behavior 𝑏𝑏 to fitness 𝑤𝑤, the time constraint induces a negative correlation with behavior 𝑏𝑏′. At the point of 387 

behavioral equilibrium, this results in a second path from 𝑏𝑏 to 𝑤𝑤 that is mediated by 𝑏𝑏′. 388 
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5.3 The nature of reinforcement 389 

Let us now consider a case where behavioral allocation of behavior 𝑏𝑏 has reached an equilibrium 390 

state (we may call this the ‘baseline condition’). Effectively, this means that there is no behavioral 391 

change due to selection. Given behavioral variance does not equal zero, this is equivalent to a 392 

marginal reinforcer value of zero, yielding 𝑟𝑟(𝑏𝑏) = 0. In other words, there is no benefit in terms of 393 

evolutionary fitness when behavioral allocation is changed. 394 

We now imagine a second behavior 𝑏𝑏′ that we try to reinforce by pairing it with 𝑏𝑏, thereby 395 

establishing a positive covariance between 𝑏𝑏 and 𝑏𝑏′ (this is indicated by the dashed line in Figure 3). 396 

We can easily see that this will not affect 𝑏𝑏′ because, under baseline conditions, the marginal 397 

reinforcer value of 𝑏𝑏′ is: 398 

 𝑟𝑟(𝑏𝑏′) = 𝛽𝛽𝑏𝑏𝑏𝑏′𝑟𝑟(𝑏𝑏) = 0 (11.)  

We can now constraint the behavior 𝑏𝑏, thereby disturbing the equilibrium state we observed under 399 

baseline conditions. Following the principle of diminishing returns (i.e., assuming that the marginal 400 

effect of a change in behavioral allocation becomes smaller for higher values of 𝑏𝑏), this will result in a 401 

positive reinforcer value for behavior 𝑏𝑏. Therefore, if we make 𝑏𝑏 contingent on a second behavior 𝑏𝑏′, 402 

the reinforcer value of 𝑏𝑏′ becomes positive, as well, which in turn results in behavioral selection. This 403 

explains why response deprivation can establish constrained behaviors as reinforcers (Timberlake 404 

& Allison, 1974).  405 

The covariance based law of effect provides us with a general definition of a reinforcer as a context-406 

dependent fitness predictor. This implies that behaviors may become reinforcers, given they predict 407 

an expected gain in fitness, which will be the case for most constrained behaviors. Under the 408 

assumption that high-probability behaviors are often constrained by the environment (i.e., 409 

individuals would engage even more in high-probability behaviors, if they could), this also explains 410 

Premack’s principle, which states that usually, behaviors that occur at a high probability under 411 
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baseline conditions, function as reinforcers for behaviors that occur with a lower probability 412 

(Premack & Premack, 1963). 413 

 414 

Figure 3: Path diagram for the reinforcing effects of a behavior 𝑏𝑏 for a different behavior 𝑏𝑏′. Assuming diminishing returns of 415 

fitness proxy 𝑝𝑝 for increasing values of 𝑏𝑏, constraining behavior 𝑏𝑏 below baseline will raise the value of 𝛽𝛽𝑝𝑝𝑝𝑝. This, in turn, will 416 

establish the constrained behavior as a reinforcer for 𝑏𝑏′. 417 

We can extend the method of path analysis to even more complex scenarios, such as the 418 

establishment of conditioned reinforcers. In this paradigm, a formerly neutral stimulus (e.g., a 419 

flashing light) is repeatedly paired with the availability of food (or any other reinforcer). The pairing 420 

of a stimulus with a reinforcer corresponds to establishing an empirical covariance between the 421 

stimulus 𝑠𝑠 and a fitness proxy 𝑝𝑝. Given there is variation in 𝑠𝑠, we can thus calculate a linear 422 

regression of 𝑝𝑝 on 𝑠𝑠. Since the stimulus is made contingent on behavior 𝑏𝑏, this results in a mediation 423 

model with 𝑠𝑠 being a mediating variable between 𝑏𝑏 and 𝑝𝑝. The total fitness effect of behavior 𝑏𝑏 (i.e., 424 

its reinforcer value) thus becomes: 425 

 𝑟𝑟0(𝑏𝑏) = 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝𝛽𝛽𝑠𝑠𝑠𝑠 (12.)  

When a second discriminative stimulus 𝑠𝑠′ is added to the experiment, we establish a new path in the 426 

predictive model (this is indicated by the dashed lines in Figure 4). Given 𝑠𝑠 has already been 427 

established as a discriminative stimulus, the statistical effect of behavior 𝑏𝑏 on the new stimulus 𝑠𝑠′ is 428 

completely mediated by 𝑠𝑠. Therefore, the total fitness effect of the behavior can be partitioned as 429 

follows: 430 

https://doi.org/10.1016/j.beproc.2021.104370


This manuscript has been accepted for publication in Behavioural Processes. The final publication can be retrieved from: 
https://doi.org/10.1016/j.beproc.2021.104370 

21 
 

 𝑟𝑟1(𝑏𝑏) = 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝𝛽𝛽𝑠𝑠𝑠𝑠 + 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝′𝛽𝛽𝑠𝑠′𝑠𝑠𝛽𝛽𝑠𝑠𝑠𝑠 (13.)  

𝛽𝛽𝑝𝑝𝑝𝑝′ corresponds to the partial effect of 𝑠𝑠′ on 𝑝𝑝 when controlled for the effect of 𝑠𝑠. As long as 𝑠𝑠′ 431 

always occurs together with 𝑠𝑠, there is no additional variance in 𝑝𝑝 explained when 𝑠𝑠′ is added to the 432 

regression. Consequently, 𝛽𝛽𝑝𝑝𝑝𝑝′ will be zero. If we now stop presenting the first stimulus, the expected 433 

fitness gain of behavior 𝑏𝑏  reduces to the second path:  434 

 𝑟𝑟2(𝑏𝑏) = 𝛽𝛽𝑤𝑤𝑤𝑤𝛽𝛽𝑝𝑝𝑝𝑝′𝛽𝛽𝑠𝑠′𝑠𝑠𝛽𝛽𝑠𝑠𝑠𝑠 (14.)  

Since 𝛽𝛽𝑝𝑝𝑝𝑝′ = 0, the reinforcer value of 𝑏𝑏 becomes zero. Therefore, we do not expect the second 435 

stimulus to affect behavior in the absence of the first one. 436 

This phenomenon has been demonstrated repeatedly in classical and operant conditioning 437 

experiments and is known as the blocking effect (Kamin, 1969). Note that applying the covariance 438 

based law of effect to this special case does not only explain the blocking effect, but also makes a 439 

quantitative prediction about the amount of reinforcer value when 𝑠𝑠 and 𝑠𝑠′ are not perfectly 440 

correlated (i.e., if . 𝛽𝛽𝑝𝑝𝑝𝑝′ ≠ 0). By partitioning the predictive effects of a behavior in a given context, 441 

we can thus explain how conditioned reinforcers acquire control over an individual’s behavior. The 442 

general rule is that new stimuli affect the current reinforcer value (and thus the amount of 443 

reinforcement) to the degree that they provide additional information about the availability of 444 

fitness proxies (cf. Rescorla & Wagner, 1972). Thus, we can understand the well-known Rescorla-445 

Wagner-Model as a molecular model that follows the general principle of reinforcement as described 446 

by the covariance based law of effect. 447 
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 448 

Figure 4: Path diagram to illustrate the principle of conditioned reinforcement and the blocking effect. If a stimulus 𝑠𝑠 is 449 

paired with a fitness proxy 𝑝𝑝, it will become predictive of fitness 𝑤𝑤 and can then act as a reinforcer itself. However, if we pair 450 

an additional stimulus 𝑠𝑠′ with the fitness proxy 𝑝𝑝, there will be no gain in predictive power, as long as 𝑠𝑠′ is presented 451 

alongside with the previously established conditioned reinforcer 𝑠𝑠 (i.e., the second stimulus is ‘blocked’ by the first one). 452 

6 Discussion 453 

This paper deals with the question how reinforcement learning can be formally described as a 454 

Darwinian process. We present an evolutionary model of behavioral selection using the formalism of 455 

the Price equation, thereby clarifying some common conceptual ambiguities. The model treats 456 

behavioral selection (by means of reinforcement learning) as a part of natural selection, rather than a 457 

process that is merely analogous to natural selection. Hence, the ‘Darwinian metaphor’ advocated by 458 

many behavioral scientists is replaced by the view that behavioral selection literally is a Darwinian 459 

process (i.e., a part of evolution by natural selection). Therefore, in contrast to existing approaches to 460 

behavioral selection (e.g., Baum, 2017; Donahoe et al., 1993; McDowell, 2004), the presented 461 

multilevel model of behavioral selection is more than a re-statement of standard learning theories 462 

using a selectionist vocabulary – it is a true integration of behavioral psychology and evolutionary 463 

biology.  464 

https://doi.org/10.1016/j.beproc.2021.104370


This manuscript has been accepted for publication in Behavioural Processes. The final publication can be retrieved from: 
https://doi.org/10.1016/j.beproc.2021.104370 

23 
 

The model is used to derive the covariance based law of effect, which describes reinforcement 465 

learning as a selection process that is proportional to the covariance between behavioral allocation 466 

and a fitness proxy, weighted by the corresponding statistical fitness effect. We further showed how 467 

this abstract principle of behavioral selection can be applied to various experimental paradigms, 468 

thereby integrating such diverse empirical regularities as conditioned reinforcement, response 469 

deprivation, the blocking effect and the matching law. We thus lay the formal foundation for a 470 

general theory of reinforcement that is grounded in the theory of evolution by natural selection. 471 

The covariance based law of effect also provides a formal definition of a ‘reinforcer’: a reinforcer is 472 

anything that is statistically predictive of evolutionary fitness. Due to the statistical nature of 473 

reinforcers, it does not matter whether we conceive them as external events (e.g., the availability of 474 

food), activities of the individual (e.g., eating), or perceptions (e.g., taste). Hence, we might just as 475 

well attribute the reinforcing power of a 𝑝𝑝 to the feeding behavior that it induces, or to the resulting 476 

taste perception. A reinforcer is not a ‘thing’ that somehow changes the individual , it is essentially a 477 

(context-dependent) statistical fitness predictor.  478 

Since the multilevel model of behavioral selection translates behavioral change into statistical terms 479 

like covariances, variances and regression coefficients, behavioral selection is inherently linked to the 480 

concept of prediction. In fact, it has been shown that natural selection as described by the Price 481 

equation maximizes Fisher Information11 (Frank, 2009). This means that evolutionary change can be 482 

understood as a mechanism that maximizes predictive power with regard to the environment. 483 

Adopting this view, we interpret behavioral selection as a mechanism to optimize the predictions of 484 

an organism about the environment. This is in line with the theory of predictive coding (Helmholtz, 485 

1909) and the Bayesian brain hypothesis (Clark, 2013). Although the formal integration of the 486 

‘predictive brain’ hypothesis and the principle of behavioral selection has yet to be accomplished, the 487 

link between the Price equation and information theory provides a promising approach towards a 488 

                                                           
11 Fisher information is a statistical measure of how much information observations provide about an unknown 
parameter of a probability distribution. 
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general theory of learning that explains the structure of learning processes by means of a universal 489 

selection principle.  490 

Of course, the high level of generality of the presented model is limited by the underlying 491 

assumptions. First, we did not model the hereditary mechanisms that mediate behavioral selection. 492 

Treating surviving individuals as their own offspring and leaving aside the contribution to the 493 

population by reproduction, it was formally possible to leave the question of hereditary mechanisms 494 

open. However, this means that the ‘offspring population’ only consists of surviving individuals, 495 

thereby ignoring all behavioral changes that stem from (genetical) transmission and reproduction. 496 

This means that newborn individuals are not counted to calculate evolutionary fitness. Therefore, 497 

strictly speaking, the model only refers to the survival component of evolutionary fitness and thus 498 

does not capture the whole effect of natural selection. However, since reinforcement occurs only 499 

within individuals, omitting the reproduction part of evolutionary fitness does not pose a major 500 

problem. Nevertheless, it would be interesting to investigate the effects of different hereditary 501 

mechanisms on different levels of selection. Apart from the genetic part, in social species, cultural 502 

mechanisms (like imitation, model learning, or verbal instruction) partly mediate the transmission of 503 

behavior from parent (in the usual meaning) to offspring. Moreover, individual learning invokes at 504 

least one more mechanism of transmission (some kind of ‘memory’). Disentangling these effects 505 

requires a careful mathematical treatment and will be targeted in subsequent work.  506 

Finally, it should be mentioned that the Price equation in its original form implies a homogeneous 507 

population, thereby assuming inter-individual variation negligible. This assumption has been made 508 

here to keep the mathematical notation as simple as possible. Inter-individual variation can be added 509 

using a class structured version of the Price equation. This introduces additional weighting factors for 510 

the classes, where each class refers to a ‘type’ of individual, defined by a certain combination of 511 

characteristics (Taylor, 1990). In population biology, these weighting factors are the reproductive 512 

values of the different types of individuals and depend on the demography and long-term dynamics 513 

of the population (cf. Caswell, 2001). If the aim is to make specific predictions about adaptive 514 

https://doi.org/10.1016/j.beproc.2021.104370


This manuscript has been accepted for publication in Behavioural Processes. The final publication can be retrieved from: 
https://doi.org/10.1016/j.beproc.2021.104370 

25 
 

behavior, at least some kind of population structure has to be modelled. However, as long as one is 515 

mainly concerned with the fundamental principles of selection, class structure can be ignored. 516 

Therefore, here we stick to the most general form of the Price equation, resulting in a most general 517 

account of behavioral selection. Incorporating inter-individual variation will be the objective of 518 

subsequent work. 519 

Despite these limitations, this paper provides a consistent quantitative account of reinforcement 520 

learning on a molar level. It integrates behavioral selection with natural selection and provides new 521 

insights into the quantitative relation between reinforcement, behavioral allocation and evolutionary 522 

fitness. This is an important step towards a general account of learning and of behavior in general, 523 

based on the theory of evolution by natural selection. 524 
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9 Appendix 532 

9.1 Derivation of the covariance based law of effect 533 

We start with the elementary Price equation for mean individual behavioral allocation 𝑏𝑏𝑖𝑖: 534 

𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖(𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖) 535 

Applying the logic of the multilevel Price equation, the expectation term can be separated into a 536 

within individual covariance term and a within individual expectation term: 537 
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𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = Cov�𝑤𝑤𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�𝑤𝑤𝑖𝑖𝑖𝑖∆𝑏𝑏𝑖𝑖𝑖𝑖� 538 

By substitution, we arrive at the multilevel Price equation for behavioral selection: 539 

𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖 �Cov�𝑤𝑤𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�𝑤𝑤𝑖𝑖𝑖𝑖∆𝑏𝑏𝑖𝑖𝑖𝑖�� 540 

We now assume a statistical fitness predictor 𝑝𝑝 of the form 𝑤𝑤 = 𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝 + 𝜀𝜀 and substitute the 541 

𝑤𝑤𝑖𝑖𝑖𝑖 with the predicted values from this regression: 542 

𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖 �Cov�𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�(𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖)∆𝑏𝑏𝑖𝑖𝑖𝑖�� 543 

This can be rearranged to: 544 

𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖 �Cov�𝛽𝛽0,𝑏𝑏𝑖𝑖𝑖𝑖� + Cov�𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�(𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖)∆𝑏𝑏𝑖𝑖𝑖𝑖�� 545 

Since 𝛽𝛽0 is a constant, Cov�𝛽𝛽0,𝑏𝑏𝑖𝑖𝑖𝑖� equals 0. This results in: 546 

𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖 �Cov�𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�(𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖)∆𝑏𝑏𝑖𝑖𝑖𝑖�� 547 

Rearrangement yields: 548 

𝑤𝑤�∆𝑏𝑏� = Cov(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖 �𝛽𝛽𝑤𝑤𝑤𝑤Cov�𝑝𝑝𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�(𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖)∆𝑏𝑏𝑖𝑖𝑖𝑖�� 549 

Because the expectation term in the Price equation is taken over the fitness weighted changes in 550 

behavioral allocation 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖, which has been separated into Cov�𝑤𝑤𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�𝑤𝑤𝑖𝑖𝑖𝑖∆𝑏𝑏𝑖𝑖𝑖𝑖� above, all 551 

rearrangements of the multilevel Price equation within this expectation term equally apply to 𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖. 552 

Therefore, we can write the change in behavioral allocation within individuals as: 553 

𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = 𝛽𝛽𝑤𝑤𝑤𝑤Cov�𝑝𝑝𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + E𝑗𝑗�(𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖)∆𝑏𝑏𝑖𝑖𝑖𝑖� 554 

Defining 𝛿𝛿 = E𝑗𝑗�(𝛽𝛽0 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖𝑖𝑖)∆𝑏𝑏𝑖𝑖𝑖𝑖� we arrive at the covariance based law of effect: 555 

𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = 𝛽𝛽𝑤𝑤𝑤𝑤Cov�𝑝𝑝𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖� + 𝛿𝛿 556 
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