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Abllract. - In 1/tis ~' we modc!I bo11t program Hlraoiovrs and ab11rac1ioru HIWttll 11tem as 
la:o /1111c1or1, wlti€1r g-ra/ize abs1rac1 inlttrprtlalioru by up/oiling IM flQllU'al DTdering of progrant 
proper1ies. TlliJ grneralizOlion prUDitks a frameworlc in wlticlt corrttctnru (sa/ttly) and comp/el~u 
of abs1roc1 ilrl1trpr1t1a1loru naturally oriltt from Iltis ortlttr. F11rtllltrmor1t, it supporl.r madullu and 
Jlepwür r1frnnnen1· giwn a program Mlraoiour, ils cluuacterizatlon, wllich is o "bu1'" corrttct and 
complltl• dmototionol JltlflOlllics for ir, con H Mlltrmilrttd in a camposiliono/ way. 

llesume. - DG1U ctt arri€1t nou.s modiliJons d la Jois /es comporrtmtnts des progr-s 1t1 l1t1 
abSlroctionl ttnlre eu:o comme MS foncrions qui g#Nra/isenl /1t1 ilrterprltations ab11rai11ts ttn 1iran1 
profit tk /'ordre nalurttl tks propriJtis MS programnt1ts. Ceue ghrlralisotion offre "" codre dan.s 
/~/ la corrttction (.nlreti) lt/ /a complirllile MS in11trprita1ion.1 abJtrairrs rind11tn1 noture/1-nt 
tk cltl ordre. Dtt phu, ttUtt au1oris1t lt raff111tmtnt modulaire et pas tl pas: itant "-i lt 
comport_,,t d'un programme, sa caracliri.ration, qui ttst 1111e :rima111;qw dino1a1imrntl/1t comp/illt 
ltl avui corrtcrtt que possibltt, peut ilrtt dberminh par compositlon. 

1. INTRODUCTION 

Abstract interpretation is a method for analyzing program behaviours, i.e. 
the relationship betwecn programs and their observable propcrties [CC77a, 
CC77b, Nie86, AH87, JN90]. lt abstracts from Standard (denotational) seman-
tics for programming languages to non-standard semantics, which arc 
intendcd to retain correct (safe), but not necessarily completc, information 
about givcn properties of intcrest. This intention is hard to spccify without a 
prccise notion of behaviour, which, dcspitc its primacy, was missing in the 
framcwork of abstract intcrprctation. 
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In this paper, thc notion of bchaviour is defincd formally as a simple 
gcneralization of abstrac:t interpretation, in which operations (spccificaUy, 
scquential composition) are preservcd up to a notion of inequality, which, 
intuilively, expresses precision of information. lt can then bc used to specify 
the properties of programs, which must be rcspectcd, both by abstract 
interpretations and the abstractions betwcen them. This notion of behaviour 
is not restricted to programming languages, nor need it be derivcd from a 
standard denotational semantics. For example, abstractions bctwccn seman-
tics can also bc vicwcd as behaviours in our framework, so preserving their 
direction and composition. This contrasts with logical relations [Plo80], which 
are symmetric and do not composc, counter to intuition [MJ86]. 

Moreover, this precision ordcring on properties defines a partial order on 
behaviours so that correctness and completeness of one behaviour for another 
arise naturally. By treating abstract interrretations as behaviours this provides 
an intuitive and simple notion of correctness and completcness of one abstract 
interpretation for another, generalizing the approach using cor~ectness corres-
pondences [JN90, MJ86], which aside from being complicated, yields a non-
transitive notion of correctness. 

Unlike denotational semantics or abstract interpretations, behaviours are 
not, in general, compositional. However, compositionality can bc systemati-
cally recovered by applying the characterization functor, which maps a behavi-
our to the abstract interpretation that identifies those programs which bchave 
idcntically in any context. This construction preserves simultaneous observa-
tion and stepwise construction of bchaviours and therefore permits the hie-
rarchical development of abstract interpretations from behavioural specifica-
tions. 

The development of this paper is bascd on the categorical framework for 
two reasons. First, it provides a vcry general and wcll-developed mathematical 
background for computer sciencc in gencral, and typed programming lan-
guagcs in particular. Second, the inequalities which are central lo our concept 
of behaviour have been studicd extensively as lax functors [KS74). Howevcr, 
neither of thcsc rcasons for using categories is imperative, as the point is 
that behaviours preserve operations up to inequality. This is equally meaning-
ful for untyped languages, where the programs form a set equippcd with 
some operations, and our behaviours arc a form of "weak" homomorphism. 

Altogether, thc paper is structurcd as follows. After sketching our model 
in Section 2, we devclop our notion of behaviour in Scction 3. We introduce 
simulation relations in Scction 3. 1 in order to motivate the subsequent deve-
lopmenl, wherc behaviours arc defincd as lax functors (Scction 3. 3) between 
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ordered catcgories (Section 3. 2). Subsequently, we define the dual notions 
of corrcctness and completeness of one behaviour (abstract intcrpretation) 
wrt another in Section 3 .4. Scction 4 presents (Section 4. 1) and illustrates 
(Section 4. 2) the main result of this papcr, as weil as two corollarics, which 
establish the modularity and functoriality of our framcwork (Section 4. 3). 
Finally, Sections 5 and 6 mcntion conclusions and directions for futurc work. 

2. THEMODEL 

Our model consists of ordcred categorics (similar to 0-categories (SP82)), 
with behaviours corresponding to morphisms between them. lt can be sket-
ched by means of the following diagram: 

!t' is a catcgory which wc identify with a programming languagc: its objects 
are typcs and its morphisms are programs. Denotational scmantics and 
abstract interpretations D : !t' -+ !!) arc both structure-prcscrving functors 
(into, say, a category of domains). For the purposcs of this exposition, we 
consider the simplest casc, where the only structure of !t' is composition. 

(!) is an ordered catcgory of observations or propcrties, i. e. its morphisms 
are ordered in a way compatible with composition, with smaller morphisms 
reprcscnting stronger properties. For example, for strictncss analysis one 
usually considcrs (!) = 0 (cf: Example 3. 5-3) whicb has one objcct and two 
morphisms .l (renecting strictness wrt thc parametcr undcr consideration) 
and T (rcflecting that no information could be inferred) satisfying .L ;:;!T. 

A behaviour B: !t' - l'J is an assignment of properties to programs which 
is wcakly functorial or compositional, i. e. is a lax functor (Section 3. 3). For 
example, the strictness of a composite program /; g cannot be inferred from 
the strictness of its components f and g. Rather, we have for strictness 
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behaviour B 

B(./;g)~Bf..Bg 

which allows us to infer corrcct, but incomplete infonnation about /; g from 
the behaviours of f aod g, e. g. if fand g are both strict then so is f.. g, but 
otherwise no infonnation can be deduced. 

Let now B': !!J ,._.. (!} be a given behaviour (lax functor) for thc semantics 
D (e.g. strictness for continuous fuoctions betwcen domains). Then D is 
corrcct for B if 

B~D;B' 

Completcncss is cxactly dual, i. e. D is complctc for B if D; B' ~ B. Thus, D 
is corrcct and complctc for B if D; B' • B, as indicatcd by thc diagram above. 

The Characterization Theorem 4. 6 states that cvcry behaviour B has a 
"best" corrcct and complete abstract intcrpretation !i B which is its charactc-
ri7.ation. More prccisely, wc factorizc thc lax functor B as a functor !i B 
followcd by a lax functor Es· Data types are prcscrvcd by !1 B, i. e. it is 
injcctive on objccts, and it is computationally relevant, i.e. surjcctivc on 
morphisms. Its cfTcct is to idcntify those programs which have thc same 
behaviour in any context. Thal !l B is thc "best" possible such abstract 
interpretation refers to thc following universal property: 

Let D be anothcr abstract intcrpretation for B which is corrcct and complctc, 
datatype prescrving, and computationally relevant (Scction 4. 1 ). Thcn !i B 
factors through D in a uniquc way. 

Bchaviours may have structure themsclves: they may either represent thc 
simultancous observation of somc more primitive behaviours, or they may 
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be constructed by stepwise abstraction. In fact, this structure is preserved by 
the characterization functor ..2, as can be easily derived from the Characteriza-
tion Theorem 4. 6: 

First, !J. is modular, i. e. the characterization of a behaviour, which is the 
simultaneous observation of a pair of behaviours B1 and B2 , is obtained 
from their characterizations using categorical products. 

Second, .fl isfunctorial. Hence, the characterization of the stepwise abstrac-
tion B1; B2 along two behaviours factors through the characterization of 
Bi (1). 

Thus correct and complete abstract interpretations can be constructed 
hierarchically along the structure of their behavioural specifications which is 
reminiscent of the well-known paradigm of software development. 

Related. Approaches 

[CC79, Ste87, Ste89] are concerned with the systematic development of 
abstract interpretations for imperative languages. Cousot/Cousot consider 
only the phenomenon of simultaneous observation. Moreover, they do not 
aim to obtain an abstract interpretation which satisfies a spccific bchaviour. 
Rather, they consider a given abstraction function, and try to mimic the 
complete 11.eman.tics (static semantics) on the corresponding codomain as 
precise as possible. 

In contrast, like this paper, [Ste87, Ste89] are conccrned with developing 
an abstract interpretation that satisfies a given prograrn behaviour, or in 
their terminology which cannot bc distinguished from its specitication on a 
given level of observation. Whereas [Ste87) only deals with functoriality, 
[Ste89] also considers modularity. 

The categorical approach presented here generalizes and simplifies these 
approachcs. 

3. BEHA VIOURS OF PROGRAMS 

A programming language is represented by a category IR in our setting; 
the types of the language are its objects (or if untyped then it has a single 

(') This is particularly useful for data flow analysis since one can successively abstract from 
certain program properties, until the universal model <fl is decidable. Of course,_properties like 
decidability are not covered by our framework. They must be investigated separately. 
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object) and the programs are its morphisms. Usually, the language will have 
further structure (e.g. 1..-abstraction or fixpoints) which we would expect 
semantics to preserve (see Section 6), but here, for the sake of simplicity, we 
will refrain from assuming more than sequential composition and empty 
programs, which are the composition and identiries, respectively, of !t'. (But 
see [Jay90a, Jay90e, Jay91] for related treatments of handling more structure.) 

Thus, a denotational semant.ics for Je is a functor Je-+'$. Typically, f?G is 
thc category of domains Dom or, alternatively, one of its full subcategories. 
For some authors (e.g. [BHA86]) the semantics is represented as a single 
domain + !14., which is the coalesced sum of the objecls of f?G, but this 
suppression of typing info1mation obscures the functoriality of the scmantics. 
Abstract interpretations are also functors, and may be thought of as non-
standard denotational semantics. 

Each family of observable properties of !t' (e. g. { "strict",. "no-
information"}) is naturally ordered by implication so thal these properties, 
or observations, form an ordered category (Section 3. 2). 

A behaviour maps programs (or perhaps dcnotations) into an ordered 
category of properties, or observations. The only behaviours of interest are 
those for whieh the property of a composlte program is at least as strong as 
thal determine<l by its parts, whence a behaviollr is a lax functor 
(Section 3. 3). Lax functors also arise as abstractions between abstract inter-
pretations, e.g. the abstraction map abs for strictness of [BHA86]. Once the 
nature of behaviour is made cxplicit, the definilion of corrcctness, and the 
dual notion of completeness, arise naturally from the ordering. 

To motivate our definition of bchaviours as lax functors into ordered 
categories we will begin with simulatic:m relations which generate an important 
class of bchaviours. 

3 .1. Simulation Relation 

DEFTNmON 3. l: Let .!J!f ahd f!i be categories. A simulation relation 
R: .sil .,.._..&fl from d to rJI consists qf 

(i) a function, also denoted R, from objects of d to objects of EIJ, and 
(ii) for each pair of object.1· A and A' of d, a relation 

R..t,..t':d(A,A~ -....(M(RA,RA') 

between the homsets of d and rJI which together satisfy 
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(iii) geRf and g'eRj" implies g; g'e RU;J')/or morphisms 

RA !. RA'~ RA" 

(iv) for any ohject A in .JJI then idaA e RA. A (id_.). 
Note that the simulation relations that arc (partial) functions on the homsets 
are just (partial) functors. 

EXAMPLE 3. 2: A subcatcgory d' of .JJI which contains all of the objects of 
.JJI is called s/im . .JJI' may bc thoughl of as lhe collcction of morphisms 
(programs) having some property satisfied by idcntities and prescrved by 
composition. Then therc is a simulation rclation R: .JJI ,.._ 1 (1 is the terminal 
category with one object • and whosc sole morphism is id•) defined by 

(i) RA=,, • for all objects A 

{ 
{ 'd } if f in Jil' 

(ii) if/:A ...... B then R.uf"',, {' 1• othcrwise 

Conversely, such a simulation relation R determines a slim subcategory of .JJI, 
whosc morphisms are those related to id• by R. Thus simulation relations 
with codomain 1 directly correspond to program properties that are satisfied 
by identities and pre5erved by composition. More complicated behaviours 
for .JJI are obtained by expanding the codomain of R. 

Simulation rclations compose, and so can bc used to model stepwise 
abstraction. Let R: .JJI -fJI and S: 91 - ~ be simulation rclations. Then 
R; S: .r;I -'(! is the simulation relation defined by 

(i) (R;S)A=" S(R(A)) 
(ii) if f:A-+ B then (R;S),u/=,1 U {S1u,uKlgeR_., 8 f}. 
For example, R may represent a translation into anothcr programming 

languagc, whose behaviour is given by S (Section 4. 3). Note that fJI plays 
the rote of observations for R and also that of a language for S. This 
phenomenon leads us lo model observations by categories. 

Mycroft and Jones [MJ86] modclled abstraction using logical relations 
which are like simulation relations, except that they use a relation betwecn 
lhe objects of the two categories instead of a function. This additional 
freedom allows a single type to be abstracted to a family of types, which is 
counter-intuitive for abstraction, as is the fact that compositcs of logical 
relations are not necessarily logical relations. We will introduce a notion of 
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abstraction that gcncralizes simulation relations whilc avoiding these problcms 
(Definition 3. 9). 

Catcgorical products arc uscd to rcprescnt a pair of morphisms B: !t' -.. (IJ 

and B' : !t' - (IJ' by a single morphism ( B, B' ) : !t' ,...._. (IJ x (IJ'. The original 
morphisms are recovcred by projection. Thus, if thc morphisms are bchavi-
ours thcn the induccd behaviour into thc product rcprescnts thcir simultanc-
ous obscrvation. Therefore, we bclicvc that any adcquate catcgory of bchavi-
ours must havc products in order to allow thc modular construction of 
complex bchaviours from its componcnts. This cxcludes thc catcgory of 
simulation relations: 

PROPOSITION 3. 3: The category of simulation relations does not have binary 
products. 

Proof lt suffices to show that thcre is no product of 1 with itsclf, i. e. 
thcre is no catcgory !!" such that for cach category 4, thc simulation relations 
JJI -.!" arc in bijcction with pairs of slim subcatcgories of d 
(Examplc J. 2). Assumc that such a category X cxists. 1 has a uniquc slim 
subcatcgory. Thus thcrc is a unique simulation relation 1 ....... ,!", whicb forccs 
.!' to havc a unique object •, whosc monoid of endomorphisms .!"(•, •) has 
a uniquc submonoid, i. e. is trivial. Thus .!' is isomorphic to 1. On the 
other band, simulation rclations into 1 arc in bijcction with individual slim 
subcatcgorics, which yiclds a contradiction. 0 

In ordcr to guarantce thc modularity of the framcwork, onc must gencralize 
from relations to lax f unctors betwccn ordered catcgorics, whose dcfinition is 
our next goal. 

3 .1. Ordered Catqorles 

Onc abstract interpretation is corrcct (or safc) wrt anothcr if the denota-
tions of thc formcr have wcakcr (fewer) properties. To capture this ordering 
of propcrtics wc interprct programming languages in ordcred categorics which 
generalizc categories of domains. 

DEFINITION J. 4: An ordered catcgory is a category, whose homsets are 
partia/ly ord.ered, with composition preserving the ord.er, i. e. if f ~g: A .... B 
and f' ~g': B .... C then /; f' ~g; g': A -+ C. In short, an ord.ered cotegory is a 
category enriched over partial ord.ers [KS74). 
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EXAMPLE 3. 5. 

1. Let Dom be thc category of domains. With thc pointwisc ordcring of 
continuous functions it is an ordcrcd category. 

2. Let /9 be any category. Thcn itspower category Pl9 has the samc objccts 
as 19 with homscts given by thc powerscts of those of 19 

ordcrcd by subsct inclusion. Tbc idcntity for an objcct A is { idA} and 
composition is computcd pointwise: givcn two morphisms/== {J;!ie !} :A-+ B 
and g= {KJUeJ}: B .... C of Pl9 thcn 

f;g= ,1 {f;;gJI ie/,jeJ}. 

For instance, lct 1 be the terminal category with one objcct • and whose sole 
morphism is id•. Theo 2""' ,1 PI is thc catcgory with onc object • and two 
morphisms { } ~ { id• }. If 19 is a catcgory ofpropcrties thcn P19 is a category 
of families of propcrties, with larger morphisms rcpresenting morc propcrtics. 

3. If !II is an ordcrcd catcgory thcn !Ir, thc local dWJl of «'J, is the ordcrcd 
catcgory obtaincd by rcvcrsing thc ordcrs on the homsets. Thus the local 
duals of power categories rcprcscnt stronger propcrtics by smaller morphisms, 
as is usual. For cxamplc, in r• we havc { id•} :ii { }. This ordcrcd catcgory 
will be uscd to rcpresent a singlc property, and so descrves special termino-
logy: wc call it n and dcnotc { id•} by .Land { } by T. 

4. Any ordinary catcgory !J' may bc cocrced to a discrete ordered category 
by giving its homsets thc discrcte ordcr, i.e./:iig iff /=g. Then, It-=!J'. 

S. Catcgories and simulation rclations form an ordcrcd category in the 
obvious way: Composition is defined in Section 3. l and clearly, thc idcntity 
functors are the identity simulation rclations. Simulation relations arc ordcrcd 
by letting 

if they agrcc on objccts and if RA. af S SA. J for cvcry morphlsm /: A -+ B. 

3.3. Lax Functors 

Lax functors arc a wcak notion of functor appropriatc to ordcrcd catcgorics 
and thc study of behaviour. Thc laxncss of the functor reflects the loss of 
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information that arises whcn approximating thc behaviour of a !arge program 
by composing the bchaviours of its parts. 

DEFINITION 3. 6: Let s:/ and a be ordered categories. .A lax functor or 
behaviour F: s:I -...91 consists of 

(i) a function, also called F,from ohjects of s:I 10 objects of UI, and 

(ii) for each pair of objects A and A' of s:I, an order preserving function 

F„ . .<': JI/ (A, A') -+ 91 (FA, FA') 

which 1oge1her satisfy 
(iii) given morphismsf: A ... A' and g: A'-+ A" then 

F(f;g)~Ff; Fg 

(iv) given an object A of sl then 

Fid„~id,„ 

If these inequalitics arc actually cqualities thcn Fis an ordered or rigid functor. 
Also, ifthc incqualitics (iii) and (iv) arc rcvcrsed (so that Ff; Fg~F(f; g) and 
id„„~Fid„) thcn F is called a colax functor. Note, the colax functors 
F:sl ,..._ßlarejustlaxfunctors.Qf"' ,..__..ßlf'°. 

Given a lixcd start state, a typical bchaviour for an imperative languages 
would be simply to consider the cffects of programs on a distinguished 
variable that we regard as input-output parameter. This bchaviour is certainly 
not compositional (i. e. does not dcfine a rigid functor), bccause sidc effects 
of the lirst program part on other variables may change the effcct of thc 
second program part. Thus the behaviour of a composite cannot bc infcrrcd 
from its component bchaviours. However, it can be safely approximated by 
"no information", which guarantces thc propcrties of a lax functor. Another 
example is the strictness behaviour of functional languages. We will concen-
trate on this example in the sequel: 

EXAMPLE 3. 7 

1. Strictness ([AH87]) for Dom is given by the lax functor B' : Dom -n 
which maps all domains to • and which is delined for a continuous function 
f:X-+ Yby 

B't={ ~ if /(l.)= l. 
otherwise 
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Subcategorics of Dom inherit this behaviour, by composition with the inclu-
sion functor. 

2. Let !i' be a programming language, i. e. a di!iercte ordercd calcgory. 
Then cvcey denotational semantics D: !i' -+ Dom yiclds a strictness behaviour 
for !i': 

D; B':!i'-n 

3. Any functor F: .#-+ ßl is a lax functor if we regard # and fil as discrctc 
ordcred categories. 

4. Compositcs of lax functors are lax. Thcy can be used foe stepwise 
construction of behaviours. For examplc, if T: .!t'-+ !i'' is a functor (say 
rcalizing a translation from !i' into !i'') and B': !i'' ,........ B is a behaviour for 
!i'' thcn 1', 8' is a behaviour for .!t' (sec Scction 4. 3). 

5. Let R: !i' - (!I be a simulation rclation. lt can be thought of as a 
colax functor !i' ,._.p(!I or equivalcntly, a lax functor !i' -...PU0 (since !i' 
is discrctc). For cxample, slim subcategorics of !i' corrcspond to lax functoes 
!l'-n. 

Thc ordcrcd catcgories and lax functors themsclves form an ordcred 
catcgory Oed, whcrein F~ G: .PI ._ 91 if F and G agrcc on objccts and 
Ff~ G/for cach moephism/ In contrast lo Simulation rclations, lax functors 
can ecpeescnt simultancous obscrvations, as can be inferred from: 

PROPOSITION 3. 8: Ord has car1esian products. The cartesian product of 
ordered categories (!) and (!)' lv their cartesian producl tri x (f)' as ordinary 
categories with pointwise ordering on the homsets. 

Proof: First notc that thc pointwise oedcring in () x ()' cnsurcs that thc 
ordinary projcctions 1t 1 : (!) x ()' -+ (!I and 1t2 : (!I x (!)' -+ ()' aec lax. in facl, rigid 
functors. Now let F:'olf .,._.(fJ and F':<i ,._....f!I' be lax functors. Then, point-
wise pairing of objects and moephisms defincs a lax functor 

(F,F') :'1-...()x(f)' 

ll is easy to cstablish that this lax functor has thc universal peopcrtiC5 that 
makc f!J x (!)' into a catcgorical product in Oed. LJ 

This proposition can be cxtcnded to arbitrary limits, so that gcncral 
methods of combinipg obscrvations are possible, e. g. pullbacks could bc uscd 
to rcprescnt sharing tonstraints. 
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Lax functors are the promised elaboration of simulation relations (c.f. 
Example 3. 7-5), which constitute an adequate notion of abstraction between 
behaviours, and in particular, abstract interpretations: 

DEFINITION 3. 9: Let B: !l' ,.__(ll and B': !l' ,._..(!)' be behaviours for !l'. 
An abstraction F: B' ,.__.. B is a lax functor making the fo/lowing diagram 
commute: 

The behaviours for !l' and the abstractions between them form its category of 
behaviours, denoted B(!l'). lt is also known as the comma category !l'/Ord. 

3. 4. Correctness and Completeness 

Let B, B' : 9! ,.._ (!) be two behaviours. As established above, we consider 
small morphisms in (!) to be more informative than !arge ones. Thus B' is 
correct (or safe) for B if 

B;;;B' 

Dually, it is complete for B if B'~B. Correctness implies that B' yields no 
more information than B, while completeness implies that it yields at least as 
much. 

Now, fix a programming language !l' which we regard as a discrete ordered 
category and consider the following diagram of lax functors: 

0 

Then D is correct and complete for B itT there is a lax functor B' such that 
D; B' is both correct and complete for B, i. e. iff there exists a morphism 
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8': D __.. 9 in 8(9'). Of particular interest are decidable correct and com-
plcte abstract interpretations for e. because they specify complete data now 
analysis algorithms for 8. 

lt does not malce sense to definc either correctness or completcness sepa-
ratcly, without first specifying 8', e.g. strictness for domains, since almost 
every abstract interpretation D would be correct (complete) for some bebavi-
our on r!J. This is true in all approacbes, though ofien the behaviour is merely 
implicit. Logical relations improve on the general situation, but still account 
for 8' indirectly, at the technical level of domain equations (JN90, MJ86}. 
Here 8' is accounted for directly, which yields greater clarity and nexibility: 
D is correct (complete) for B if D; B' is correct (complcte) for B. This 
definition of correctness (completeness) is transitive and non-symmetric, as 
can be illustratcd by thc following cxample, involving higher-ordcr strictncss 
analysis. The formalism used here is new: the proofs are in the original paper 
[BHA86]. 

Let 9' be a programming language gencrated from a single type A and 
equipped with a denotational semantics D: 9' _. !'J, where SI is thc full 
subcatcgory of Dom gencrated by the image of .A in Dom. The standard 
strictncss behaviour B' for !i inheritcd from Dom (faample 3. 7 (2)) yiclds 
strictncss for 9' via 

Thus, D is correct and complete for B by definition. Let • be thc full 
subcategory of domains gc:ncrated by 2 ~ ,1 { .L ~ T } . There is an abstraction 
abs: !i ,._.. • which is correct for thc strictncss behaviour B'. 

c 

~ 
B 

z,B~ 
1) 

B' 

0 

From this (or directly) can be construcll:d a (smallcst) rigid functor (an 
abstract intcrpretation) D': 9' _. • which is correct for D; abs. A short dia-
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gram-chase now shows that D' is also correct for B since D'; B' ~ D; abs; 
8'!1:;0; B'=B. 

Correctness is the critical notion for abstract interpretation, because the 
safety of a program transfonnation depends on thc correctness of the proper-
ties it is based on. Completeness naturally arises as the exact dual of correct-
ness in our framework. Of course, for "standard bchaviours", complete 
abstract interpretations are usually undecidable, and so completeness was 
neglectcd. However, there may weil be dccidablc abstract interpretation for 
"nonstandard bchaviours". Thus, completeness can express useful minimal 
requiremcnts for data flow analysis algorithms. Further, there are Situations, 
where completeness is critical. For example, in data relinement (e.g. [HJ88J) 
an implementation must have at least the properties of thc specifying abstract 
data type. We conjecture that these propenies define a behaviour in our 
framcwork for which successful data refinement is simply completeness. 

4. CHARACTERIZA TION OF BEHA VIOUR 

We wish to construct an abstract interpretation from a behaviour. Each 
behaviour yields an cquivalcnce rclation on thc programs obtained by relating 
thosc programs which behave identically. Abstract interpretations are behavi-
ours thal arc characterized by yielding a congruence relation. 

The poinl of the characterization functor is to associate to each behaviour 
an abstract interpretation that corrcsponds to thc largest congruence which 
refines the equivalence relation of the behaviour, i. e. which relates programs 
that have thc same behaviour in any context. This yields a categorical 
congruence (sec below) on thc category of progrdms, whose quotient will bc 
the desired characterization of thc original behaviour. 

4.1. The Characterization Functor 

DEFINmON 4.1: Let q be a category. A congrucnce on q [Mac71, BW85) is 
afami/y E.t.• of equiva/ence relations on the homsets q(A, 8) (where EA., a(/./') 
is writtenf=f' when the congruence Eis understood) satisfying.for f.f': A--+ B 
and g,g' :B-+ C 

f=f' and g=ag' imply f; g::f'; g' 
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Given a congruence E on a category <i there is a quotient category '# (E) 
having the same objects as <i whosc morphisms are the equivalence classes 
of morphisms in 'I. 

Of coursc, there is also a quotient functor Q: <i .... '# (E), which maps each 
morphism to its congruence class. lt is injcctive on objects (preserves data-
types) and is also surjective on objects and morphisms (is computationa//y 
relevant). The category of quotients Q (.SI') is the full subcategory of B (.SI') of 
quotient functors, where we consider quotient functors as lax functors 
between discrete ordered categories (sec Example 3. 3. 3). The universal pro-
perty of quotient functors is given by 

PRoPOSmON 4. 2: Let E be a congruence on <i with quotient Q. lf H: <i -(!] 
is a lax functor such that for all morphi.sms f. f' : A .... B in <i 

f sf' implies Hf== Hf' 

then there is a unique lax functor H' : '# (E) -(!7 satisfying Q: Ir= H. 

0 --- -- --~C(E) H' 
Moreover, if His a rigid functor then H' is a rigid functor too. 

Proof" (Sketch) H' agrees with H on objects, and maps a congruence class 
UJ of morphisms to Hf 0 

EXAMPLE 4. 3. - Let D: .SI' -+ fJ be a denotational semantics and define 
two parallel morphisms f and f' to be denotationally equivalent, written 
E0 (f./'), if D/= D/'. Then D factorizes through the corresponding quotient 
functor !I. D in a uniquc way: 
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We have: 

PROPOSITION 4.4: Q(9') is a meet semi-lattice. 

Proof- Let !l, : !e -+ 'Pt and !l,' : !e __. tl//' be quotient functors arising from 
congruenoes E and E respective!y. It follows from Proposition 4. 2 that there 
is at most one lax functor F:t7/t >0-+'W' satisfying !l; F=!l,', which must then 
be a quotient. We then say .2;i.2'. Such an F exists iff Es E that is, E(f,f') 
implies E (f.f'}. The meet of 9- and !J.' (their categorical cartesian product) 
is the quotient corresponding to E n E. 0 

DEFINITION 4.5: Let B: .!e .__....(!} be a behaviour. Morphismsf,f' :A __.Bin 
!e are bchaviourally congruent if for all morphisms g: A'-> A and h: B-+ B' 
we have 

B(g;f; h)=B(g;j'; h), 

that is f and /' have the same behaviour in every (input-output) context. 
Then the quoti.ent functor f1. B: !e-+ t1// corresponding 10 this congruence is the 
characterization of the behaviour B. 

Applying Proposition 4. 2 to the behavioural congruence on !e generated 
by B ·with H = B shows that B = !l, B; t 8 for some behaviour t:8 , i. e. !l, B is 
correct and complete for B. This characterization of behaviours is the object 
part of the functor !l specified in the following theorern: 

THEOREM 4. 6. (Characterization Theorem): Q (!e) is a coreflective subcate-
gory of B (9'). i. e. the inclusion of Q (9') in B (9') has a right adjoint !l,, called 
the characterization functor. 

Proof Let B: .!e ,._. (!) be a behaviour. Then its image under !l is defined 
to be the quotient functor !l B: 9' -> 'W as described in Definition 4. 5. 
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Thc counit of thc coreflection is t:1 : !l 8 ,.._ 8. To sec its universal property, 
lct !l': !t'-+ 'fl'' be anothcr quoticnt functor which is correct and complctc 
for 8, i. e . .J'; B' „ 8 for somc behaviour 8'. Thcn J' f • !i.' g implies that f 
and gare behaviourally congrucnt since J' is a functor. Thus, !l B (/) = !l 8 (g) 
and so applying Proposition 4. 2 with !l' as quoticnt shows thcre is a unique 
functor F: lfl' -+ 4r making all triangles in the diagram abovc commutc. 0 

Note that thc universal property is more gcneral than it may at first appear, 
since Examplc 4. 3 shows that cvcry abstract intcrpretation factorises through 
some quoticnt functor. 

The Charactcrization Theorem 4.6 gcoerali7.CS thc wcll-known rcsult that 
thcrc cxists a unique largest congrueoce rclatioo in cvery cquivalence rclation. 
Let us now illustrate the situation obtaincd so far by mcans or strictness 
analysis. 

4. 2. s~ Aaalysis 

Thc behaviour or a program is usually givco by the behaviour or its 
denotatioo, but may also bc determincd in other ways, e.g. by first maoipulat-
ing the syntax. Hcrc both mcthods are uscd to obtain strictness analyscs 
[AH87) for somc simple languagcs which illustrate the main fcatures of this 
framcwork. First, WC considcr thc behaviour or the dcnotations. 

Let fl be thc full subcategory or domains gencratcd by N.l thc flat natural 
numbers. lts behaviour 8': Si ,._..Q is induccd by thc strictncss behaviour 
or Dom (Example 3. 7 (2)). The structure or Dom is so rich that it prevents 
identifications through behavioural congrucnce (unlilcc many languagcs): 

LEMMA 4. 7: The characterizationfor 1he s1ric1ness behaviour B' :Dom -n 
on domains is the identity. 

Proof' Let f. g: D -+ D' be continuous functions which arc behaviourally 
congrucnt. Givcn x e D lct h : D' .... 2 be thc unique continuous function 
such that h- 1 (l.) is thc down-closurc or /(x) in D'. Theo f•g implics 
8' (h/(x))= 8' (hg(x)) whcnce g(x):af(x). By symmctry, /(x)~g(x) and so 
/(x)•g(x). 0 

Considcr a simply typcd A.-calculus which is rrcely gcneratcd by a type N 
(of natural numbers) equippcd with zero 0: N and successor s: N-+ N, and 
perhaps some othcr constants. Let !t' be the corresponding category whosc 
objects are thc types, and whosc morphisms X-+ Y are cquivalence classes 
undcr a-convcrsions of tcnns t: Y equippcd with a contcxt r of type X. 
Additional convcrsions (e.g. the ~ and ri-convcrsions which would make 
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the category cartesian closed [LS86]) are not imposed since they are not 
syntactic, but arise from the behaviour. 

The standard denotational semantics for fi' is given by D: fi'-+ ~. where 
N is mapped to N.L and constants, including zero and successor, receive their 
standard interpretation as lifted functions (though non-detenninistic choice 
requires powerdomains, see below). The behaviour for fi' is then given by 
B=,1 0; B':..s!'-n. 

The constant numerals of fi', e.g. 0, sO, ... , when regarded as morphisms 
N-+ N with free variable x: N, e. g. X x. 0, /.. x. s 0, ... are all non-strict, while 
the denotation of a variablex is the identity, which is strict. Thus, numerals 
and variables are not behaviourally congnient. If the language is pure, i. e. 
there are no other constant symbols, then an inductive argument shows that 
the constant numerals are all behaviourally congruent. However, in the 
presence of additional constants, more distinctions can be made. Consider, 
for cxample 

(i) addition, + : N x N-+ N 

(ii) bottom, J_ :N 

(iii) non-detenninistic cboice, 1 : N x N-+ N 
(The denotation of non-determin1stic choice requires powcrdomains, though 
its strictness behaviour is clear: it is strict iff both of its arguments arc.) 

There arc now six separate congrucnce classes of morphisms N x N-> N 
(equivalently, N-+ N-+ N), represented by the following A.-tenns: 

>.xy.O 

>.xy.x 1 y 

/ ""' A:vy.x >.xy.y 

/ 
>.xy.x + 11 

>.xy. J_ 

They corrcspond to the strictness valucs of Burn, Hankin and Abramsky 
[BHA86] for this type, which form the domain 2 _, 2 .... 2. However, if the 
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language has fewcr conslants then thcrc are fewer congruence classcs, which 
is not reflcctcd in thcir model since it is indcpendent of thc language. 

Converscly, morc constants may yield morc distinctions. For example, let 
fl! also have a conditional, c: N-+ N-+ N-+ N, whosc denotation is given by 

D(c)bmn• {; 
if b•l 
if b=O 
otherwise 

Then truth values (where 1rue and false arc rcpresentcd by l and 0 respcc-
tivcly) are distinguishcd from each othcr and from thc othcr constant nume-
rals. By contrast, thcir abstraction abs (Scction 3. 4) idcntifics all thc numcr-
als. Thus abs is incomplete for B, or morc prcciscly, D; abs; B' > B. 

Note that oftcn the strictncss of tirst-order functions is all that wc arc 
intercsted in. However, the charactcrization of the corrcsponding behaviour 
is thc samc as that of B since highcr-ordcr morphisms yield first-order 
morphisms in appropriate contcxts. Thus, the behaviour of intcrcst may bc 
extrcmcly simple, and yct spccify complicated abstract intcrprctations. 

4. 3. CompositionaUty of the Characterlzadoa 

Bchaviours may bc constructed by mcans of simultancous obscrvation 
( 8, B') and step-wisc abstraction 8'; 8". In this scction such structurc is 
uscd to construct the charactcrization of bchaviours hicrarchically by means 
of two corollaries to the Characterization Theorem 4 . 6. 

CoROLLAR.Y 4. 8 (Modularity): 1. prtserves all limils in B(fl!). In particular, 
given two behaviours B : fl! ,._.. ~ and 8' : fl! ,,__ ~· then the chOl'acterization 
Q ( 8, B' ) of their simu/taneous observation is the meet of !J B and !J B'. 

Prool Right adjoints preservc limits. D 
This result gcncralizes the well·known fact that thc intcrscction of two 

congruencc relations is a congruencc rclation itself. 

ExAMPU! 4. 9. - Let ff be the riebest language considercd in Scction 4. 2. 
Form >0 wc define a non-standard denotational scmantics D„: !&' ..... ff} which 
differs from D in that D (s) is the successor mod m, i. e. thc lifted function 
ni-+n+ 1 (modm). Let B„•,1D„; B' be the corrcsponding bchaviour of !&'. 
Then the congruence classcs of numerals arc thosc of mod-m arithmctic and 
{ .L }. These cannot bc idcntilied sincc every numcral can be mapped to the 
congruencc class of 0( • "false") by sufficient applications of s. 
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Simultaneous obscrvation of B. and B. is characterized by !l B„ whcrc q 
is the least common multiple of "' and n. Note that !l 84 distinguishes only 
thosc programs which nccd to be distinguished for rcalizing simultancous 
mod-m and mod-n obscrvations. 

CoROLLARY 4.10 (Functoriality): Let ßs:B'; 8":2 ,._..(') -(')' be a 
composite of lax functors. Then we lrave 

JB=!l8'; fl8 ., 8 (8")•!l8'; 9(&8.;B") 

In particu/ar, !l B factors through !l B'. 

Proof The lax functor B": B' ,._.. 9 is a morphism of B (.sr). Sim:e functors 
prcscrvc domain and codomain of morphisms, we have 18 -, 1 (8"): !l 8' .... !l B, 
which yields thc result. 0 

Stcpwise abstraction of bchaviours ariscs naturally in thc scarch for thc 
right levcl of abstraction. Consider data flow analysis: dccidable abstract 
interprctations dircctly spccify data flow analysis algorithms. Usually how-
cver, the abstract interpretation associated with a ccrtain data flow problem 
is not dccidablc. Thus further abstractioos arc nccessary. A common such 
abstraction step is to interpret conditional branching by non-dctcrministic 
choice. lt can bc rcalized by a syntactic translation as in thc following. 

ExAMPLE 4. 11: Tbc conditional c x y z can be translated ioto the non-
dctcrministic choicc y 1 z. This syntactic translation dctcrmincs a functor 
T: IL' .... IL' (which is not mirrored by any cndo-functor on the catcgory of 
denotations). lt yiclds a new bchaviour 8 1 =T; Bon 2 which is corrcct for 8 
without bcing complctc for it. Thus, given &81 thcn !l 8 1 is corrcct for B and 
completc for 8 1 • Now functoriality shows that !l 8 1 dccomposcs as !l (T); 
!l (Sy; B), which may thus simplify its calculation. 

S. CONCLUSION 

We havc prcscnted a languagc indepcndcnt framcwork for abstract intcr-
prctation that cxplicitly dcals with behaviours of programs, with thc benefit 
that thc notion of corrcctncss is simplified and thc notion of complctcncss 
naturally ariscs as its dual. These improvcments do not rcquirc considcring 
observations (propcrties) as morphisms of a category. Thc usual relational 
approach with sets of observations would do. Howcvcr, our framcwork 
additionally supports thc hicrarchical dcvclopmcnt of abstract intcrprctations 
and data flow analysis algorithms along the structure of the spccifying 

lnformatique tlteorique et Applicationl{Theore~ lnformatics and Applic:aliona 



COMPOSmONAL CHARACTERIZA TION 423 

program behaviour, by means of stcpwisc and modular rcfincmcnt in the 
catcgorical framcwork. All these featurcs have been illustrated by means of 
some simple strictness analyses. 

6. FUTVRE WOllK 

In this paper thc charactcrization of a behaviour is universal amongst 
quoticnt functors. lt thcrcforc focuscs on substitution as a languagc construct 
and on datatype prcscrving abstract intcrprctations. This suggcsts two dircc-
tions for gencralizations. First, othcr language constructs such as fixpoints, 
products, gcneral limits, or i..-abstraction should bc considcrcd. We belicve 
that the devclopmcnt in this paper can be rcformulatcd for quotient functors 
that also prcscrvc these languagc constructs, to achicvc this gencralization. 
Second, one could gcncraliu to abstract interprctations that do not ncccs-
sarily preservc data typcs. Herc an approach using "cocqualiurs" rathcr than 
"quoticnt functors" sccms appropriate. 
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