
COMPOSITIONAL CHARACTERIZATION OF OBSERVABLE
PROGRAM PROPERTIES (°)

by 8. STEFFEN (1), C. BARRY JAY (2) and M. MENDLER (3)

Communicated by G. LoN<JO

Abllract. - In 1/tis ~' we modc!I bo11t program Hlraoiovrs and ab11rac1ioru HIWttll 11tem as
la:o /1111c1or1, wlti€1r g-ra/ize abs1rac1 inlttrprtlalioru by up/oiling IM flQllU'al DTdering of progrant
proper1ies. TlliJ grneralizOlion prUDitks a frameworlc in wlticlt corrttctnru (sa/ttly) and comp/el~u
of abs1roc1 ilrl1trpr1t1a1loru naturally oriltt from Iltis ortlttr. F11rtllltrmor1t, it supporl.r madullu and
Jlepwür r1frnnnen1· giwn a program Mlraoiour, ils cluuacterizatlon, wllich is o "bu1'" corrttct and
complltl• dmototionol JltlflOlllics for ir, con H Mlltrmilrttd in a camposiliono/ way.

llesume. - DG1U ctt arri€1t nou.s modiliJons d la Jois /es comporrtmtnts des progr-s 1t1 l1t1
abSlroctionl ttnlre eu:o comme MS foncrions qui g#Nra/isenl /1t1 ilrterprltations ab11rai11ts ttn 1iran1
profit tk /'ordre nalurttl tks propriJtis MS programnt1ts. Ceue ghrlralisotion offre "" codre dan.s
/~/ la corrttction (.nlreti) lt/ /a complirllile MS in11trprita1ion.1 abJtrairrs rind11tn1 noture/1-nt
tk cltl ordre. Dtt phu, ttUtt au1oris1t lt raff111tmtnt modulaire et pas tl pas: itant "-i lt
comport_,,t d'un programme, sa caracliri.ration, qui ttst 1111e :rima111;qw dino1a1imrntl/1t comp/illt
ltl avui corrtcrtt que possibltt, peut ilrtt dberminh par compositlon.

1. INTRODUCTION

Abstract interpretation is a method for analyzing program behaviours, i.e.
the relationship betwecn programs and their observable propcrties [CC77a,
CC77b, Nie86, AH87, JN90]. lt abstracts from Standard (denotational) seman-
tics for programming languages to non-standard semantics, which arc
intendcd to retain correct (safe), but not necessarily completc, information
about givcn properties of intcrest. This intention is hard to spccify without a
prccise notion of behaviour, which, dcspitc its primacy, was missing in the
framcwork of abstract intcrprctation.

(") Rec:eived June 1991, reviJcd August 1991.
(

1
) Univenity of Aarhus, Denmark.

(2) LFCS, Universily of Edinburgh, Scotland.
(') lnslilUle for Computer Aided Circuil Design, Umvcnity of Erlangen, Germany.

https://doi.org/10.20378/irbo-52664

404 B. STEFFEN, C. BARRY JAY, M. MliNl>LER

In this paper, thc notion of bchaviour is defincd formally as a simple
gcneralization of abstrac:t interpretation, in which operations (spccificaUy,
scquential composition) are preservcd up to a notion of inequality, which,
intuilively, expresses precision of information. lt can then bc used to specify
the properties of programs, which must be rcspectcd, both by abstract
interpretations and the abstractions betwcen them. This notion of behaviour
is not restricted to programming languages, nor need it be derivcd from a
standard denotational semantics. For example, abstractions bctwccn seman-
tics can also bc vicwcd as behaviours in our framework, so preserving their
direction and composition. This contrasts with logical relations [Plo80], which
are symmetric and do not composc, counter to intuition [MJ86].

Moreover, this precision ordcring on properties defines a partial order on
behaviours so that correctness and completeness of one behaviour for another
arise naturally. By treating abstract interrretations as behaviours this provides
an intuitive and simple notion of correctness and completcness of one abstract
interpretation for another, generalizing the approach using cor~ectness corres-
pondences [JN90, MJ86], which aside from being complicated, yields a non-
transitive notion of correctness.

Unlike denotational semantics or abstract interpretations, behaviours are
not, in general, compositional. However, compositionality can bc systemati-
cally recovered by applying the characterization functor, which maps a behavi-
our to the abstract interpretation that identifies those programs which bchave
idcntically in any context. This construction preserves simultaneous observa-
tion and stepwise construction of bchaviours and therefore permits the hie-
rarchical development of abstract interpretations from behavioural specifica-
tions.

The development of this paper is bascd on the categorical framework for
two reasons. First, it provides a vcry general and wcll-developed mathematical
background for computer sciencc in gencral, and typed programming lan-
guagcs in particular. Second, the inequalities which are central lo our concept
of behaviour have been studicd extensively as lax functors [KS74). Howevcr,
neither of thcsc rcasons for using categories is imperative, as the point is
that behaviours preserve operations up to inequality. This is equally meaning-
ful for untyped languages, where the programs form a set equippcd with
some operations, and our behaviours arc a form of "weak" homomorphism.

Altogether, thc paper is structurcd as follows. After sketching our model
in Section 2, we devclop our notion of behaviour in Scction 3. We introduce
simulation relations in Scction 3. 1 in order to motivate the subsequent deve-
lopmenl, wherc behaviours arc defincd as lax functors (Scction 3. 3) between

lnfonuatique thwriquc et Appliations{Thcon:tical lnformatics and Applications

COMPOSITIONAL CllARACTERIZAT!ON 405

ordered catcgories (Section 3. 2). Subsequently, we define the dual notions
of corrcctness and completeness of one behaviour (abstract intcrpretation)
wrt another in Section 3 .4. Scction 4 presents (Section 4. 1) and illustrates
(Section 4. 2) the main result of this papcr, as weil as two corollarics, which
establish the modularity and functoriality of our framcwork (Section 4. 3).
Finally, Sections 5 and 6 mcntion conclusions and directions for futurc work.

2. THEMODEL

Our model consists of ordcred categorics (similar to 0-categories (SP82)),
with behaviours corresponding to morphisms between them. lt can be sket-
ched by means of the following diagram:

!t' is a catcgory which wc identify with a programming languagc: its objects
are typcs and its morphisms are programs. Denotational scmantics and
abstract interpretations D : !t' -+ !!) arc both structure-prcscrving functors
(into, say, a category of domains). For the purposcs of this exposition, we
consider the simplest casc, where the only structure of !t' is composition.

(!) is an ordered catcgory of observations or propcrties, i. e. its morphisms
are ordered in a way compatible with composition, with smaller morphisms
reprcscnting stronger properties. For example, for strictncss analysis one
usually considcrs (!) = 0 (cf: Example 3. 5-3) whicb has one objcct and two
morphisms .l (renecting strictness wrt thc parametcr undcr consideration)
and T (rcflecting that no information could be inferred) satisfying .L ;:;!T.

A behaviour B: !t' - l'J is an assignment of properties to programs which
is wcakly functorial or compositional, i. e. is a lax functor (Section 3. 3). For
example, the strictness of a composite program /; g cannot be inferred from
the strictness of its components f and g. Rather, we have for strictness

vol. 26, n' S, 1992

406 8. STEFFEN, C. BARRY JAY, M Ml!NDLER

behaviour B

B(./;g)~Bf..Bg

which allows us to infer corrcct, but incomplete infonnation about /; g from
the behaviours of f aod g, e. g. if fand g are both strict then so is f.. g, but
otherwise no infonnation can be deduced.

Let now B': !!J ,._.. (!} be a given behaviour (lax functor) for thc semantics
D (e.g. strictness for continuous fuoctions betwcen domains). Then D is
corrcct for B if

B~D;B'

Completcncss is cxactly dual, i. e. D is complctc for B if D; B' ~ B. Thus, D
is corrcct and complctc for B if D; B' • B, as indicatcd by thc diagram above.

The Characterization Theorem 4. 6 states that cvcry behaviour B has a
"best" corrcct and complete abstract intcrpretation !i B which is its charactc-
ri7.ation. More prccisely, wc factorizc thc lax functor B as a functor !i B
followcd by a lax functor Es· Data types are prcscrvcd by !1 B, i. e. it is
injcctive on objccts, and it is computationally relevant, i.e. surjcctivc on
morphisms. Its cfTcct is to idcntify those programs which have thc same
behaviour in any context. Thal !l B is thc "best" possible such abstract
interpretation refers to thc following universal property:

Let D be anothcr abstract intcrpretation for B which is corrcct and complctc,
datatype prescrving, and computationally relevant (Scction 4. 1). Thcn !i B
factors through D in a uniquc way.

Bchaviours may have structure themsclves: they may either represent thc
simultancous observation of somc more primitive behaviours, or they may

lnfonnalique thtorique et Applications{Theorctical lnformatics and Applications

COMPOSJTIONAL CHAJlACTERIZATION 407

be constructed by stepwise abstraction. In fact, this structure is preserved by
the characterization functor ..2, as can be easily derived from the Characteriza-
tion Theorem 4. 6:

First, !J. is modular, i. e. the characterization of a behaviour, which is the
simultaneous observation of a pair of behaviours B1 and B2 , is obtained
from their characterizations using categorical products.

Second, .fl isfunctorial. Hence, the characterization of the stepwise abstrac-
tion B1; B2 along two behaviours factors through the characterization of
Bi (1).

Thus correct and complete abstract interpretations can be constructed
hierarchically along the structure of their behavioural specifications which is
reminiscent of the well-known paradigm of software development.

Related. Approaches

[CC79, Ste87, Ste89] are concerned with the systematic development of
abstract interpretations for imperative languages. Cousot/Cousot consider
only the phenomenon of simultaneous observation. Moreover, they do not
aim to obtain an abstract interpretation which satisfies a spccific bchaviour.
Rather, they consider a given abstraction function, and try to mimic the
complete 11.eman.tics (static semantics) on the corresponding codomain as
precise as possible.

In contrast, like this paper, [Ste87, Ste89] are conccrned with developing
an abstract interpretation that satisfies a given prograrn behaviour, or in
their terminology which cannot bc distinguished from its specitication on a
given level of observation. Whereas [Ste87) only deals with functoriality,
[Ste89] also considers modularity.

The categorical approach presented here generalizes and simplifies these
approachcs.

3. BEHA VIOURS OF PROGRAMS

A programming language is represented by a category IR in our setting;
the types of the language are its objects (or if untyped then it has a single

(') This is particularly useful for data flow analysis since one can successively abstract from
certain program properties, until the universal model <fl is decidable. Of course,_properties like
decidability are not covered by our framework. They must be investigated separately.

vol. 26, n· S, 1992

408 8. STEFFEN, C. BARRY JAY, M. MENDLER

object) and the programs are its morphisms. Usually, the language will have
further structure (e.g. 1..-abstraction or fixpoints) which we would expect
semantics to preserve (see Section 6), but here, for the sake of simplicity, we
will refrain from assuming more than sequential composition and empty
programs, which are the composition and identiries, respectively, of !t'. (But
see [Jay90a, Jay90e, Jay91] for related treatments of handling more structure.)

Thus, a denotational semant.ics for Je is a functor Je-+'$. Typically, f?G is
thc category of domains Dom or, alternatively, one of its full subcategories.
For some authors (e.g. [BHA86]) the semantics is represented as a single
domain + !14., which is the coalesced sum of the objecls of f?G, but this
suppression of typing info1mation obscures the functoriality of the scmantics.
Abstract interpretations are also functors, and may be thought of as non-
standard denotational semantics.

Each family of observable properties of !t' (e. g. { "strict",. "no-
information"}) is naturally ordered by implication so thal these properties,
or observations, form an ordered category (Section 3. 2).

A behaviour maps programs (or perhaps dcnotations) into an ordered
category of properties, or observations. The only behaviours of interest are
those for whieh the property of a composlte program is at least as strong as
thal determine<l by its parts, whence a behaviollr is a lax functor
(Section 3. 3). Lax functors also arise as abstractions between abstract inter-
pretations, e.g. the abstraction map abs for strictness of [BHA86]. Once the
nature of behaviour is made cxplicit, the definilion of corrcctness, and the
dual notion of completeness, arise naturally from the ordering.

To motivate our definition of bchaviours as lax functors into ordered
categories we will begin with simulatic:m relations which generate an important
class of bchaviours.

3 .1. Simulation Relation

DEFTNmON 3. l: Let .!J!f ahd f!i be categories. A simulation relation
R: .sil .,.._..&fl from d to rJI consists qf

(i) a function, also denoted R, from objects of d to objects of EIJ, and
(ii) for each pair of object.1· A and A' of d, a relation

R..t,..t':d(A,A~ -....(M(RA,RA')

between the homsets of d and rJI which together satisfy

Informatique tbeoriquc et ApplicationsfTheoretical lnformatics and Applications

COMPOSITIONAL CffARACTERIZATION 409

(iii) geRf and g'eRj" implies g; g'e RU;J')/or morphisms

RA !. RA'~ RA"

(iv) for any ohject A in .JJI then idaA e RA. A (id_.).
Note that the simulation relations that arc (partial) functions on the homsets
are just (partial) functors.

EXAMPLE 3. 2: A subcatcgory d' of .JJI which contains all of the objects of
.JJI is called s/im . .JJI' may bc thoughl of as lhe collcction of morphisms
(programs) having some property satisfied by idcntities and prescrved by
composition. Then therc is a simulation rclation R: .JJI ,.._ 1 (1 is the terminal
category with one object • and whosc sole morphism is id•) defined by

(i) RA=,, • for all objects A

{
{ 'd } if f in Jil'

(ii) if/:A B then R.uf"',, {' 1• othcrwise

Conversely, such a simulation relation R determines a slim subcategory of .JJI,
whosc morphisms are those related to id• by R. Thus simulation relations
with codomain 1 directly correspond to program properties that are satisfied
by identities and pre5erved by composition. More complicated behaviours
for .JJI are obtained by expanding the codomain of R.

Simulation rclations compose, and so can bc used to model stepwise
abstraction. Let R: .JJI -fJI and S: 91 - ~ be simulation rclations. Then
R; S: .r;I -'(! is the simulation relation defined by

(i) (R;S)A=" S(R(A))
(ii) if f:A-+ B then (R;S),u/=,1 U {S1u,uKlgeR_., 8 f}.
For example, R may represent a translation into anothcr programming

languagc, whose behaviour is given by S (Section 4. 3). Note that fJI plays
the rote of observations for R and also that of a language for S. This
phenomenon leads us lo model observations by categories.

Mycroft and Jones [MJ86] modclled abstraction using logical relations
which are like simulation relations, except that they use a relation betwecn
lhe objects of the two categories instead of a function. This additional
freedom allows a single type to be abstracted to a family of types, which is
counter-intuitive for abstraction, as is the fact that compositcs of logical
relations are not necessarily logical relations. We will introduce a notion of

vol. 26, n• S, 1992

410 B. STEFFEN. C. BARRY JAY. M. Ml!NOLER

abstraction that gcncralizes simulation relations whilc avoiding these problcms
(Definition 3. 9).

Catcgorical products arc uscd to rcprescnt a pair of morphisms B: !t' -.. (IJ

and B' : !t' - (IJ' by a single morphism (B, B') : !t' ,...._. (IJ x (IJ'. The original
morphisms are recovcred by projection. Thus, if thc morphisms are bchavi-
ours thcn the induccd behaviour into thc product rcprescnts thcir simultanc-
ous obscrvation. Therefore, we bclicvc that any adcquate catcgory of bchavi-
ours must havc products in order to allow thc modular construction of
complex bchaviours from its componcnts. This cxcludes thc catcgory of
simulation relations:

PROPOSITION 3. 3: The category of simulation relations does not have binary
products.

Proof lt suffices to show that thcre is no product of 1 with itsclf, i. e.
thcre is no catcgory !!" such that for cach category 4, thc simulation relations
JJI -.!" arc in bijcction with pairs of slim subcatcgories of d
(Examplc J. 2). Assumc that such a category X cxists. 1 has a uniquc slim
subcatcgory. Thus thcrc is a unique simulation relation 1 ,!", whicb forccs
.!' to havc a unique object •, whosc monoid of endomorphisms .!"(•, •) has
a uniquc submonoid, i. e. is trivial. Thus .!' is isomorphic to 1. On the
other band, simulation rclations into 1 arc in bijcction with individual slim
subcatcgorics, which yiclds a contradiction. 0

In ordcr to guarantce thc modularity of the framcwork, onc must gencralize
from relations to lax f unctors betwccn ordered catcgorics, whose dcfinition is
our next goal.

3 .1. Ordered Catqorles

Onc abstract interpretation is corrcct (or safc) wrt anothcr if the denota-
tions of thc formcr have wcakcr (fewer) properties. To capture this ordering
of propcrtics wc interprct programming languages in ordcred categorics which
generalizc categories of domains.

DEFINITION J. 4: An ordered catcgory is a category, whose homsets are
partia/ly ord.ered, with composition preserving the ord.er, i. e. if f ~g: A B
and f' ~g': B C then /; f' ~g; g': A -+ C. In short, an ord.ered cotegory is a
category enriched over partial ord.ers [KS74).

lnformatiquc theoriquc et ApplicalioßS(Theoretical Informalic:a and Applications

COMPOSITIOl'IAL CHARACTERl7.ATI01'1 411

EXAMPLE 3. 5.

1. Let Dom be thc category of domains. With thc pointwisc ordcring of
continuous functions it is an ordcrcd category.

2. Let /9 be any category. Thcn itspower category Pl9 has the samc objccts
as 19 with homscts given by thc powerscts of those of 19

ordcrcd by subsct inclusion. Tbc idcntity for an objcct A is { idA} and
composition is computcd pointwise: givcn two morphisms/== {J;!ie !} :A-+ B
and g= {KJUeJ}: B C of Pl9 thcn

f;g= ,1 {f;;gJI ie/,jeJ}.

For instance, lct 1 be the terminal category with one objcct • and whose sole
morphism is id•. Theo 2""' ,1 PI is thc catcgory with onc object • and two
morphisms { } ~ { id• }. If 19 is a catcgory ofpropcrties thcn P19 is a category
of families of propcrties, with larger morphisms rcpresenting morc propcrtics.

3. If !II is an ordcrcd catcgory thcn !Ir, thc local dWJl of «'J, is the ordcrcd
catcgory obtaincd by rcvcrsing thc ordcrs on the homsets. Thus the local
duals of power categories rcprcscnt stronger propcrtics by smaller morphisms,
as is usual. For cxamplc, in r• we havc { id•} :ii { }. This ordcrcd catcgory
will be uscd to rcpresent a singlc property, and so descrves special termino-
logy: wc call it n and dcnotc { id•} by .Land { } by T.

4. Any ordinary catcgory !J' may bc cocrced to a discrete ordered category
by giving its homsets thc discrcte ordcr, i.e./:iig iff /=g. Then, It-=!J'.

S. Catcgories and simulation rclations form an ordcrcd category in the
obvious way: Composition is defined in Section 3. l and clearly, thc idcntity
functors are the identity simulation rclations. Simulation relations arc ordcrcd
by letting

if they agrcc on objccts and if RA. af S SA. J for cvcry morphlsm /: A -+ B.

3.3. Lax Functors

Lax functors arc a wcak notion of functor appropriatc to ordcrcd catcgorics
and thc study of behaviour. Thc laxncss of the functor reflects the loss of

vol. 26, n• 5, 1992

412 8. STEFFEN, C. BllRRY JAY, M. MENDLER

information that arises whcn approximating thc behaviour of a !arge program
by composing the bchaviours of its parts.

DEFINITION 3. 6: Let s:/ and a be ordered categories. .A lax functor or
behaviour F: s:I -...91 consists of

(i) a function, also called F,from ohjects of s:I 10 objects of UI, and

(ii) for each pair of objects A and A' of s:I, an order preserving function

F„ . .<': JI/ (A, A') -+ 91 (FA, FA')

which 1oge1her satisfy
(iii) given morphismsf: A ... A' and g: A'-+ A" then

F(f;g)~Ff; Fg

(iv) given an object A of sl then

Fid„~id,„

If these inequalitics arc actually cqualities thcn Fis an ordered or rigid functor.
Also, ifthc incqualitics (iii) and (iv) arc rcvcrsed (so that Ff; Fg~F(f; g) and
id„„~Fid„) thcn F is called a colax functor. Note, the colax functors
F:sl ,..._ßlarejustlaxfunctors.Qf"' ,..__..ßlf'°.

Given a lixcd start state, a typical bchaviour for an imperative languages
would be simply to consider the cffects of programs on a distinguished
variable that we regard as input-output parameter. This bchaviour is certainly
not compositional (i. e. does not dcfine a rigid functor), bccause sidc effects
of the lirst program part on other variables may change the effcct of thc
second program part. Thus the behaviour of a composite cannot bc infcrrcd
from its component bchaviours. However, it can be safely approximated by
"no information", which guarantces thc propcrties of a lax functor. Another
example is the strictness behaviour of functional languages. We will concen-
trate on this example in the sequel:

EXAMPLE 3. 7

1. Strictness ([AH87]) for Dom is given by the lax functor B' : Dom -n
which maps all domains to • and which is delined for a continuous function
f:X-+ Yby

B't={ ~ if /(l.)= l.
otherwise

lnformatique rhCoriquc cl Applications{Thcorctical lnformatics and Applications

COMPOSITIONAL CHARACTERIZA TION 413

Subcategorics of Dom inherit this behaviour, by composition with the inclu-
sion functor.

2. Let !i' be a programming language, i. e. a di!iercte ordercd calcgory.
Then cvcey denotational semantics D: !i' -+ Dom yiclds a strictness behaviour
for !i':

D; B':!i'-n

3. Any functor F: .#-+ ßl is a lax functor if we regard # and fil as discrctc
ordcred categories.

4. Compositcs of lax functors are lax. Thcy can be used foe stepwise
construction of behaviours. For examplc, if T: .!t'-+ !i'' is a functor (say
rcalizing a translation from !i' into !i'') and B': !i'' ,........ B is a behaviour for
!i'' thcn 1', 8' is a behaviour for .!t' (sec Scction 4. 3).

5. Let R: !i' - (!I be a simulation rclation. lt can be thought of as a
colax functor !i' ,._.p(!I or equivalcntly, a lax functor !i' -...PU0 (since !i'
is discrctc). For cxample, slim subcategorics of !i' corrcspond to lax functoes
!l'-n.

Thc ordcrcd catcgories and lax functors themsclves form an ordcred
catcgory Oed, whcrein F~ G: .PI ._ 91 if F and G agrcc on objccts and
Ff~ G/for cach moephism/ In contrast lo Simulation rclations, lax functors
can ecpeescnt simultancous obscrvations, as can be inferred from:

PROPOSITION 3. 8: Ord has car1esian products. The cartesian product of
ordered categories (!) and (!)' lv their cartesian producl tri x (f)' as ordinary
categories with pointwise ordering on the homsets.

Proof: First notc that thc pointwise oedcring in () x ()' cnsurcs that thc
ordinary projcctions 1t 1 : (!) x ()' -+ (!I and 1t2 : (!I x (!)' -+ ()' aec lax. in facl, rigid
functors. Now let F:'olf .,._.(fJ and F':<i ,._....f!I' be lax functors. Then, point-
wise pairing of objects and moephisms defincs a lax functor

(F,F') :'1-...()x(f)'

ll is easy to cstablish that this lax functor has thc universal peopcrtiC5 that
makc f!J x (!)' into a catcgorical product in Oed. LJ

This proposition can be cxtcnded to arbitrary limits, so that gcncral
methods of combinipg obscrvations are possible, e. g. pullbacks could bc uscd
to rcprescnt sharing tonstraints.

vol. 26, n• 5. 1992

414 B. STEFFEN, C. BARRY JAY, M. MENDLER

Lax functors are the promised elaboration of simulation relations (c.f.
Example 3. 7-5), which constitute an adequate notion of abstraction between
behaviours, and in particular, abstract interpretations:

DEFINITION 3. 9: Let B: !l' ,.__(ll and B': !l' ,._..(!)' be behaviours for !l'.
An abstraction F: B' ,.__.. B is a lax functor making the fo/lowing diagram
commute:

The behaviours for !l' and the abstractions between them form its category of
behaviours, denoted B(!l'). lt is also known as the comma category !l'/Ord.

3. 4. Correctness and Completeness

Let B, B' : 9! ,.._ (!) be two behaviours. As established above, we consider
small morphisms in (!) to be more informative than !arge ones. Thus B' is
correct (or safe) for B if

B;;;B'

Dually, it is complete for B if B'~B. Correctness implies that B' yields no
more information than B, while completeness implies that it yields at least as
much.

Now, fix a programming language !l' which we regard as a discrete ordered
category and consider the following diagram of lax functors:

0

Then D is correct and complete for B itT there is a lax functor B' such that
D; B' is both correct and complete for B, i. e. iff there exists a morphism

Informatique theorique et Applications/Thcoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZA TJON 415

8': D __.. 9 in 8(9'). Of particular interest are decidable correct and com-
plcte abstract interpretations for e. because they specify complete data now
analysis algorithms for 8.

lt does not malce sense to definc either correctness or completcness sepa-
ratcly, without first specifying 8', e.g. strictness for domains, since almost
every abstract interpretation D would be correct (complete) for some bebavi-
our on r!J. This is true in all approacbes, though ofien the behaviour is merely
implicit. Logical relations improve on the general situation, but still account
for 8' indirectly, at the technical level of domain equations (JN90, MJ86}.
Here 8' is accounted for directly, which yields greater clarity and nexibility:
D is correct (complete) for B if D; B' is correct (complcte) for B. This
definition of correctness (completeness) is transitive and non-symmetric, as
can be illustratcd by thc following cxample, involving higher-ordcr strictncss
analysis. The formalism used here is new: the proofs are in the original paper
[BHA86].

Let 9' be a programming language gencrated from a single type A and
equipped with a denotational semantics D: 9' _. !'J, where SI is thc full
subcatcgory of Dom gencrated by the image of .A in Dom. The standard
strictncss behaviour B' for !i inheritcd from Dom (faample 3. 7 (2)) yiclds
strictncss for 9' via

Thus, D is correct and complete for B by definition. Let • be thc full
subcategory of domains gc:ncrated by 2 ~ ,1 { .L ~ T } . There is an abstraction
abs: !i ,._.. • which is correct for thc strictncss behaviour B'.

c

~
B

z,B~
1)

B'

0

From this (or directly) can be construcll:d a (smallcst) rigid functor (an
abstract intcrpretation) D': 9' _. • which is correct for D; abs. A short dia-

vol. 26, n' S, 1992

416 8. STEFFEN, C. BARRY JAY. M. MENDLER

gram-chase now shows that D' is also correct for B since D'; B' ~ D; abs;
8'!1:;0; B'=B.

Correctness is the critical notion for abstract interpretation, because the
safety of a program transfonnation depends on thc correctness of the proper-
ties it is based on. Completeness naturally arises as the exact dual of correct-
ness in our framework. Of course, for "standard bchaviours", complete
abstract interpretations are usually undecidable, and so completeness was
neglectcd. However, there may weil be dccidablc abstract interpretation for
"nonstandard bchaviours". Thus, completeness can express useful minimal
requiremcnts for data flow analysis algorithms. Further, there are Situations,
where completeness is critical. For example, in data relinement (e.g. [HJ88J)
an implementation must have at least the properties of thc specifying abstract
data type. We conjecture that these propenies define a behaviour in our
framcwork for which successful data refinement is simply completeness.

4. CHARACTERIZA TION OF BEHA VIOUR

We wish to construct an abstract interpretation from a behaviour. Each
behaviour yields an cquivalcnce rclation on thc programs obtained by relating
thosc programs which behave identically. Abstract interpretations are behavi-
ours thal arc characterized by yielding a congruence relation.

The poinl of the characterization functor is to associate to each behaviour
an abstract interpretation that corrcsponds to thc largest congruence which
refines the equivalence relation of the behaviour, i. e. which relates programs
that have thc same behaviour in any context. This yields a categorical
congruence (sec below) on thc category of progrdms, whose quotient will bc
the desired characterization of thc original behaviour.

4.1. The Characterization Functor

DEFINmON 4.1: Let q be a category. A congrucnce on q [Mac71, BW85) is
afami/y E.t.• of equiva/ence relations on the homsets q(A, 8) (where EA., a(/./')
is writtenf=f' when the congruence Eis understood) satisfying.for f.f': A--+ B
and g,g' :B-+ C

f=f' and g=ag' imply f; g::f'; g'

lnformatique thCorique et Applicatioru(Theoretical lnformalics and Applications

COMPOSITIONAL CHARACTERIZA TION 417

Given a congruence E on a category <i there is a quotient category '# (E)
having the same objects as <i whosc morphisms are the equivalence classes
of morphisms in 'I.

Of coursc, there is also a quotient functor Q: <i '# (E), which maps each
morphism to its congruence class. lt is injcctive on objects (preserves data-
types) and is also surjective on objects and morphisms (is computationa//y
relevant). The category of quotients Q (.SI') is the full subcategory of B (.SI') of
quotient functors, where we consider quotient functors as lax functors
between discrete ordered categories (sec Example 3. 3. 3). The universal pro-
perty of quotient functors is given by

PRoPOSmON 4. 2: Let E be a congruence on <i with quotient Q. lf H: <i -(!]
is a lax functor such that for all morphi.sms f. f' : A B in <i

f sf' implies Hf== Hf'

then there is a unique lax functor H' : '# (E) -(!7 satisfying Q: Ir= H.

0 --- -- --~C(E) H'
Moreover, if His a rigid functor then H' is a rigid functor too.

Proof" (Sketch) H' agrees with H on objects, and maps a congruence class
UJ of morphisms to Hf 0

EXAMPLE 4. 3. - Let D: .SI' -+ fJ be a denotational semantics and define
two parallel morphisms f and f' to be denotationally equivalent, written
E0 (f./'), if D/= D/'. Then D factorizes through the corresponding quotient
functor !I. D in a uniquc way:

vol. 26, n' S, 1992

J;

/~
'D -------- C(.En) F

418 B. STEFFEN, C. BARRY JAY, M. MENDLl!R

We have:

PROPOSITION 4.4: Q(9') is a meet semi-lattice.

Proof- Let !l, : !e -+ 'Pt and !l,' : !e __. tl//' be quotient functors arising from
congruenoes E and E respective!y. It follows from Proposition 4. 2 that there
is at most one lax functor F:t7/t >0-+'W' satisfying !l; F=!l,', which must then
be a quotient. We then say .2;i.2'. Such an F exists iff Es E that is, E(f,f')
implies E (f.f'}. The meet of 9- and !J.' (their categorical cartesian product)
is the quotient corresponding to E n E. 0

DEFINITION 4.5: Let B: .!e .__....(!} be a behaviour. Morphismsf,f' :A __.Bin
!e are bchaviourally congruent if for all morphisms g: A'-> A and h: B-+ B'
we have

B(g;f; h)=B(g;j'; h),

that is f and /' have the same behaviour in every (input-output) context.
Then the quoti.ent functor f1. B: !e-+ t1// corresponding 10 this congruence is the
characterization of the behaviour B.

Applying Proposition 4. 2 to the behavioural congruence on !e generated
by B ·with H = B shows that B = !l, B; t 8 for some behaviour t:8 , i. e. !l, B is
correct and complete for B. This characterization of behaviours is the object
part of the functor !l specified in the following theorern:

THEOREM 4. 6. (Characterization Theorem): Q (!e) is a coreflective subcate-
gory of B (9'). i. e. the inclusion of Q (9') in B (9') has a right adjoint !l,, called
the characterization functor.

Proof Let B: .!e ,._. (!) be a behaviour. Then its image under !l is defined
to be the quotient functor !l B: 9' -> 'W as described in Definition 4. 5.

Informatique theoriquc et Applications{fheorctical Informatics and Applications

COMPOSITIONAL CHARACTERIZA TION 419

Thc counit of thc coreflection is t:1 : !l 8 ,.._ 8. To sec its universal property,
lct !l': !t'-+ 'fl'' be anothcr quoticnt functor which is correct and complctc
for 8, i. e . .J'; B' „ 8 for somc behaviour 8'. Thcn J' f • !i.' g implies that f
and gare behaviourally congrucnt since J' is a functor. Thus, !l B (/) = !l 8 (g)
and so applying Proposition 4. 2 with !l' as quoticnt shows thcre is a unique
functor F: lfl' -+ 4r making all triangles in the diagram abovc commutc. 0

Note that thc universal property is more gcneral than it may at first appear,
since Examplc 4. 3 shows that cvcry abstract intcrpretation factorises through
some quoticnt functor.

The Charactcrization Theorem 4.6 gcoerali7.CS thc wcll-known rcsult that
thcrc cxists a unique largest congrueoce rclatioo in cvery cquivalence rclation.
Let us now illustrate the situation obtaincd so far by mcans or strictness
analysis.

4. 2. s~ Aaalysis

Thc behaviour or a program is usually givco by the behaviour or its
denotatioo, but may also bc determincd in other ways, e.g. by first maoipulat-
ing the syntax. Hcrc both mcthods are uscd to obtain strictness analyscs
[AH87) for somc simple languagcs which illustrate the main fcatures of this
framcwork. First, WC considcr thc behaviour or the dcnotations.

Let fl be thc full subcategory or domains gencratcd by N.l thc flat natural
numbers. lts behaviour 8': Si ,._..Q is induccd by thc strictncss behaviour
or Dom (Example 3. 7 (2)). The structure or Dom is so rich that it prevents
identifications through behavioural congrucnce (unlilcc many languagcs):

LEMMA 4. 7: The characterizationfor 1he s1ric1ness behaviour B' :Dom -n
on domains is the identity.

Proof' Let f. g: D -+ D' be continuous functions which arc behaviourally
congrucnt. Givcn x e D lct h : D' 2 be thc unique continuous function
such that h- 1 (l.) is thc down-closurc or /(x) in D'. Theo f•g implics
8' (h/(x))= 8' (hg(x)) whcnce g(x):af(x). By symmctry, /(x)~g(x) and so
/(x)•g(x). 0

Considcr a simply typcd A.-calculus which is rrcely gcneratcd by a type N
(of natural numbers) equippcd with zero 0: N and successor s: N-+ N, and
perhaps some othcr constants. Let !t' be the corresponding category whosc
objects are thc types, and whosc morphisms X-+ Y are cquivalence classes
undcr a-convcrsions of tcnns t: Y equippcd with a contcxt r of type X.
Additional convcrsions (e.g. the ~ and ri-convcrsions which would make

vol. 26, n• S, 1992

420 B. STEFFEN, C. BARRY JAY, M. MENDLER

the category cartesian closed [LS86]) are not imposed since they are not
syntactic, but arise from the behaviour.

The standard denotational semantics for fi' is given by D: fi'-+ ~. where
N is mapped to N.L and constants, including zero and successor, receive their
standard interpretation as lifted functions (though non-detenninistic choice
requires powerdomains, see below). The behaviour for fi' is then given by
B=,1 0; B':..s!'-n.

The constant numerals of fi', e.g. 0, sO, ... , when regarded as morphisms
N-+ N with free variable x: N, e. g. X x. 0, /.. x. s 0, ... are all non-strict, while
the denotation of a variablex is the identity, which is strict. Thus, numerals
and variables are not behaviourally congnient. If the language is pure, i. e.
there are no other constant symbols, then an inductive argument shows that
the constant numerals are all behaviourally congruent. However, in the
presence of additional constants, more distinctions can be made. Consider,
for cxample

(i) addition, + : N x N-+ N

(ii) bottom, J_ :N

(iii) non-detenninistic cboice, 1 : N x N-+ N
(The denotation of non-determin1stic choice requires powcrdomains, though
its strictness behaviour is clear: it is strict iff both of its arguments arc.)

There arc now six separate congrucnce classes of morphisms N x N-> N
(equivalently, N-+ N-+ N), represented by the following A.-tenns:

>.xy.O

>.xy.x 1 y

/ ""' A:vy.x >.xy.y

/
>.xy.x + 11

>.xy. J_

They corrcspond to the strictness valucs of Burn, Hankin and Abramsky
[BHA86] for this type, which form the domain 2 _, 2 2. However, if the

lnformatique theorique et Applicationsffheoretical Informatic:s and Applications

COMPOSITIONAL CHARACTERJZA TION 421

language has fewcr conslants then thcrc are fewer congruence classcs, which
is not reflcctcd in thcir model since it is indcpendent of thc language.

Converscly, morc constants may yield morc distinctions. For example, let
fl! also have a conditional, c: N-+ N-+ N-+ N, whosc denotation is given by

D(c)bmn• {;
if b•l
if b=O
otherwise

Then truth values (where 1rue and false arc rcpresentcd by l and 0 respcc-
tivcly) are distinguishcd from each othcr and from thc othcr constant nume-
rals. By contrast, thcir abstraction abs (Scction 3. 4) idcntifics all thc numcr-
als. Thus abs is incomplete for B, or morc prcciscly, D; abs; B' > B.

Note that oftcn the strictncss of tirst-order functions is all that wc arc
intercsted in. However, the charactcrization of the corrcsponding behaviour
is thc samc as that of B since highcr-ordcr morphisms yield first-order
morphisms in appropriate contcxts. Thus, the behaviour of intcrcst may bc
extrcmcly simple, and yct spccify complicated abstract intcrprctations.

4. 3. CompositionaUty of the Characterlzadoa

Bchaviours may bc constructed by mcans of simultancous obscrvation
(8, B') and step-wisc abstraction 8'; 8". In this scction such structurc is
uscd to construct the charactcrization of bchaviours hicrarchically by means
of two corollaries to the Characterization Theorem 4 . 6.

CoROLLAR.Y 4. 8 (Modularity): 1. prtserves all limils in B(fl!). In particular,
given two behaviours B : fl! ,._.. ~ and 8' : fl! ,,__ ~· then the chOl'acterization
Q (8, B') of their simu/taneous observation is the meet of !J B and !J B'.

Prool Right adjoints preservc limits. D
This result gcncralizes the well·known fact that thc intcrscction of two

congruencc relations is a congruencc rclation itself.

ExAMPU! 4. 9. - Let ff be the riebest language considercd in Scction 4. 2.
Form >0 wc define a non-standard denotational scmantics D„: !&' ff} which
differs from D in that D (s) is the successor mod m, i. e. thc lifted function
ni-+n+ 1 (modm). Let B„•,1D„; B' be the corrcsponding bchaviour of !&'.
Then the congruence classcs of numerals arc thosc of mod-m arithmctic and
{ .L }. These cannot bc idcntilied sincc every numcral can be mapped to the
congruencc class of 0(• "false") by sufficient applications of s.

vol. 26, n' S, 1992

422 8. STEFFEN. C. BARRY JAY, M. MENDLER

Simultaneous obscrvation of B. and B. is characterized by !l B„ whcrc q
is the least common multiple of "' and n. Note that !l 84 distinguishes only
thosc programs which nccd to be distinguished for rcalizing simultancous
mod-m and mod-n obscrvations.

CoROLLARY 4.10 (Functoriality): Let ßs:B'; 8":2 ,._..(') -(')' be a
composite of lax functors. Then we lrave

JB=!l8'; fl8 ., 8 (8")•!l8'; 9(&8.;B")

In particu/ar, !l B factors through !l B'.

Proof The lax functor B": B' ,._.. 9 is a morphism of B (.sr). Sim:e functors
prcscrvc domain and codomain of morphisms, we have 18 -, 1 (8"): !l 8' !l B,
which yields thc result. 0

Stcpwise abstraction of bchaviours ariscs naturally in thc scarch for thc
right levcl of abstraction. Consider data flow analysis: dccidable abstract
interprctations dircctly spccify data flow analysis algorithms. Usually how-
cver, the abstract interpretation associated with a ccrtain data flow problem
is not dccidablc. Thus further abstractioos arc nccessary. A common such
abstraction step is to interpret conditional branching by non-dctcrministic
choice. lt can bc rcalized by a syntactic translation as in thc following.

ExAMPLE 4. 11: Tbc conditional c x y z can be translated ioto the non-
dctcrministic choicc y 1 z. This syntactic translation dctcrmincs a functor
T: IL' IL' (which is not mirrored by any cndo-functor on the catcgory of
denotations). lt yiclds a new bchaviour 8 1 =T; Bon 2 which is corrcct for 8
without bcing complctc for it. Thus, given &81 thcn !l 8 1 is corrcct for B and
completc for 8 1 • Now functoriality shows that !l 8 1 dccomposcs as !l (T);
!l (Sy; B), which may thus simplify its calculation.

S. CONCLUSION

We havc prcscnted a languagc indepcndcnt framcwork for abstract intcr-
prctation that cxplicitly dcals with behaviours of programs, with thc benefit
that thc notion of corrcctncss is simplified and thc notion of complctcncss
naturally ariscs as its dual. These improvcments do not rcquirc considcring
observations (propcrties) as morphisms of a category. Thc usual relational
approach with sets of observations would do. Howcvcr, our framcwork
additionally supports thc hicrarchical dcvclopmcnt of abstract intcrprctations
and data flow analysis algorithms along the structure of the spccifying

lnformatique tlteorique et Applicationl{Theore~ lnformatics and Applic:aliona

COMPOSmONAL CHARACTERIZA TION 423

program behaviour, by means of stcpwisc and modular rcfincmcnt in the
catcgorical framcwork. All these featurcs have been illustrated by means of
some simple strictness analyses.

6. FUTVRE WOllK

In this paper thc charactcrization of a behaviour is universal amongst
quoticnt functors. lt thcrcforc focuscs on substitution as a languagc construct
and on datatype prcscrving abstract intcrprctations. This suggcsts two dircc-
tions for gencralizations. First, othcr language constructs such as fixpoints,
products, gcneral limits, or i..-abstraction should bc considcrcd. We belicve
that the devclopmcnt in this paper can be rcformulatcd for quotient functors
that also prcscrvc these languagc constructs, to achicvc this gencralization.
Second, one could gcncraliu to abstract interprctations that do not ncccs-
sarily preservc data typcs. Herc an approach using "cocqualiurs" rathcr than
"quoticnt functors" sccms appropriate.

ACKNOWLEDOEMENTS

Tbc devclopmcot of thi• paper bas becn strongly innuenced by dilcuui<>111 with Eugcnio
Moggi. Furthermore, wc would like 10 thank Yv« Lafont, Don S&nnella and Terry Stroup fos
helpful commcnts, and Norbert Götz for sivina us a band in lyping tbc manuscript.

[AH87]

[BHA86)

[BW8S}

(CC77a}

(CC77b)

(CC79)

(HJ88)

REFERENCES

S. A8RAMSKY and C. L. HANKIN, eds, Abstract Interpretation of Declara-
tive Languages, Ellis-Horwood, 1987.
G. L. BuaN, C. L. HANKIN, and S. AIRAMSKY, Tbe Tbeory of Strictness
Analysis for Higher Order Functions, Sei. Comput. Progrommillg, 1986,
7, PP· 249-278.
M. DARR and C. Wi;LLS, Toposes, Triples and 'Jbeories, Springer Verlag,
1985.
P. CousoT and R. Cousm, Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fupoints. In 4th P.O.P.L., 1977, pp. 238·252.
P. Cousor and R. Cousm, Automatie Syntbesis of Optimal Invariant
Assertions: Mathematical Foundations. A.C.M. Sigplan Notices, 1977,
12, pp. 1-12.
P. Cousm and R. Cousor, Systematic Design of Program Analysis
Framework. In 6th P.O.P.L., 1979, pp. 269-282.
C. A. R. HOARE and H. J1FEN0, Data Relinemcnt in a Categorical Setting.
Technical Report, Oxford Univ. Computing Lab., f"ebruary 1988.

vol. 26, n' S, 1992

424

(Jay90a}

(Jay90e)

llay9l)

llN90)

[KS74)

[LS86)

(Mac71)

[Ml86)

[Nie86)

[Plo80)

(SP82)

(Ste87)

{Ste89)

8. STEFFEN, C. BARRY JAY, M. MENDU!R

C. B. JAv, Extending Properties to Categories of Panial Maps. Tech.
Rep. E.C.S.-L.F.C.S.-90-101, University of Edinburgh, 1990.
C. B. JAY, Partial Functions, Ordered Categories, Limits and Cartcsian
Closure. ln: G. B1atw1m.r. (ed.) IV Higher OrMr Worlcsltop, Banf!, 1990,
Springer, 1991.
C. B. }AY, Modelling Reduction in Confiuent Categories. Teclt. Rep.
E.C.S.·L.F.C.S.-91-181, University of Edinburgh, 1991.
N. D. JoNES and F. N1EUON, Abstract Interpretation: A Semantics BaKd
Tool for Program Analysis. In Handbook of 1.ogic in Computer Science.
G. M. Kntv and R. STll~T, Review of tbe Elements of 2..Categories.
In G. M. KELLY, ed„ Pmceedings Sydney Category Theory Seminar
1972/1973, Springer-Verlag, 1974, pp. 75-103.
J. LAMBECX and P. J. Scorr, lnlroduction to Higher·Order Categorical
Logic, vol. 7 of Cambridge Studies in Adwmced Mathematics. Cambridge
Un/W!rsity Preu, 1986.
S. MAcl..ANE, Categories for the Working Mathematician. Springer Ver·
lag, 1971.
A. MvCJtoFT and N. 0. lo1'ES, A Relational Frameworlc for Abstract
Interpretation. In Proceedings, 'Programs as Data Objects ". Springer
Verlag, L.N.C.S. 217, 1986.
F. N1EUON, A Bibliography on Abstract Interpretations. A.C.M. Sigplan
Notices, 1986, 2 J, pp. 31 ·38.
G. D. Pwrx1N, Lambda Definability in tbe Full Type Hierarcby. In
R. Hn<oLP.Y and J. Saon1, eds„ To H. B. Curry: Essays in Combillatory
Logic, Lambda Calculus and Formalisms. AcaMmic Preu, 1980.
M. SMnH and G. PumuN, The Category-theorctic Solution of Recunive
Domain Equations. S.l.A.M. J. Comput„ 1982, 11.
B. STEFl'EN, Optimal Run Time Oplimization-Pro>ed by a New Look at
Abstract Interpretations. In T.A.P.S.O.F. T. '81, L.N.C.S. 249, 1987, pp. S2-68.
B. STEFFE.N, Optimal Data Flow Analysis via Observable Equivalena:. In
M.F.C.S. '89, 1989.

lnfonnatique theorique et Applications/Tbeoretical lnformatica and Applic:ations

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22

