https://doi.org/10.20378/irbo-52664

COMPOSITIONAL CHARACTERIZATION OF OBSERVABLE
PROGRAM PROPERTIES (°)

by B. SteFren (!), C. BArrY Jay (%) and M. MenDLER (%)

Communicated by G. Lonco

Abstract. ~ In this paper we model both program behamows and abstractions between them as
lax functors, which generalize absiract interpr by exploiting the natural ordering of program
properties. This generalization provides a framework in which correctness (safety) and completeness
of abstract mlerpma:lom naturally awe Jrom this order. Furthermore, it supports modhdar and

p ofi gm a prog A , its characterization, which is a “'best”’ correct and

plete de i s for it, can be determined in a compositional way.

Résumé. — Dans cet article nous modélisons & la fois les comp des progr et les
abstractions entre eux comme des fonctions qui généralisent les wlerprélalwn: abmmm en tirant
profit de Uordre naturel des propriéiés des prog Celtte généralisation offre un coadre dans
lequel la correction (sireté) et la complé des interprétations abstraites résultent naturellement
de cet ordre. De plus, elle autorise le raffinement modulaire et pas d pas: élam domé e
comporiement d'un programme, sa caractérisation, qui est une sé q np
€t aussi correcte que possible, peut étre délerminée par composition.

1. INTRODUCTION

Abstract interpretation is a method for analyzing program behaviours, i.e.
the relationship between programs and their observable properties [CC77a,
CC77b, Nie86, AH87, IN9O]. It abstracts from standard (denotational) seman-
tics for programming languages to non-standard semantics, which are
intended to retain correct (safe), but not necessarily complete, information
about given properties of interest. This intention is hard to specify without a
precise notion of behaviour, which, despite its primacy, was missing in the
framework of abstract interpretation.

(‘) Received June 1991, revised August 1991.

(*) University of Aarhus. Denmark.

(?) LFCS, University of Edinburgh, Scotland.

(*) Institute for Computer Aided Circuit Design, University of Erlangen, Germany.

404 B. STEFFEN, C. BARRY JAY, M. MENDLER

In this paper, the notion of behaviour is defined formally as a simple
generalization of abstract interpretation, in which operations (specifically,
scquential composition) are preserved up to a notion of inequality, which,
intuitively, expresses precision of information. It can then be used to specify
the properties of programs, which must be respected, both by abstract
interpretations and the abstractions between them. This notion of behaviour
is not restricted to programming languages, nor need it be derived from a
standard denotational semantics. For example, abstractions between seman-
tics can also be viewed as behaviours in our framework, so preserving their
direction and composition. This contrasts with logical relations [Plo80], which
arc symmetric and do not compose, counter to intuition [MJ86].

Moreover, this precision ordering on properties defines a partial order on
behaviours so that correctness and completeness of one behaviour for another
arise naturally. By treating abstract interpretations as behaviours this provides
an intuitive and simple notion of correctness and completeness of one abstract
interpretation for another, generalizing the approach using correctness corres-
pondences [IN90, MJ86], which aside from being complicated, yields a non-
transitive notion of correctness.

Unlike denotational semantics or abstract interpretations, behaviours are
not, in general, compositional. However, compositionality can be systemati-
cally recovered by applying the characterization functor, which maps a behavi-
our to the abstract interpretation that identifies those programs which behave
identically in any context. This construction preserves simulianeous observa-
tion and stepwise construction of behaviours and therefore permits the hie-
rarchical development of abstract interpretations from behavioural specifica-
tions.

The development of this paper is based on the categorical framework for
two reasons. First, it provides a very general and well-developed mathematical
background for computer science in general, and typed programming lan-
guages in particular. Second, the inequalities which are central to our concept
of behaviour have been studied extensively as lax functors [KS74). However,
ncither of these rcasons for using categories is imperative, as the point is
that behaviours preserve operations up to inequality. This is equally meaning-
ful for untyped languages, where the programs form a set equipped with
some operations, and our behaviours are a form of “weak” homomorphism.

Altogether, the paper is structured as follows. After sketching our model
in Section 2, we devclop our notion of behaviour in Section 3. We introduce
simulation relations in Section3.1 in order to motivate the subsequent deve-
lopment, where behaviours are defined as lax functiors (Section 3. 3) between

Informatique théorique et Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 405

ordered categories (Section 3.2). Subsequently, we define the dual notions
of correctness and completeness of one behaviour (abstract interpretation)
wrl another in Section 3.4. Section4 presents (Section 4. 1) and illustrates
(Section 4.2) the main result of this paper, as well as two corollaries, which
establish the modularity and functoriality of our framework (Scction 4.3),
Finally, Sections 5 and 6 mention conclusions and directions for future work.

2. THE MODEL

Our model consists of ordered catcgories (similar to O-categories [SP82]),
with behaviours corresponding to morphisms between them. It can be sket-
ched by means of the following diagram:

£ is a category which we identify with a programming language: its objects
arc types and its morphisms are programs. Denotational semantics and
abstract interpretations D: ¥ — 2 arc both structure-preserving functors
(into, say, a category of domains). For the purposes of this exposition, we
consider the simplest case, where the only structure of & is composition.

0 is an ordered category of obsesvations or properties, i.e. its morphisms
are ordered in a way compatible with composition, with smaller morphisms
representing stronger properties. For example, for strictness analysis one
usually considers ¢ =0 (c¢f. Example 3.5-3) which has one object and two
morphisms L (reflecting strictness wrt the parameter under consideration)
and T (reflecting that no information could be inferred) satisfying 1 T,

A behaviour B: & »— 0 is an assignment of properties to programs which
is weakly functorial or compositional, i.e. is a lax functor (Section3.3). For
example, the strictness of a composite program f; g cannot be inferred from
the strictness of its components f and g. Rather, we have for strictness

vol. 26, n* 5, 1992

406 B. STEFFEN, C. BARRY JAY, M. MENDLER

behaviour B
B(/ig)sB/ Bg

which allows us to infer correct, but incomplete information about f; g from
the behaviours of f and g, e.g. if fand g are both strict then so is f; g, but
otherwise no information can be deduced.

Let now B’: 2 »— (@ be a given behaviour (lax functor) for the semantics
D (e.g. strictness for continuous functions between domains). Then D is
correct for B if

BsD; B

Completeness is exactly dual, i.e. D is complete for B if D; B’<B. Thus, D
is correct and complete for B if D; B’ =B, as indicated by the diagram above.

The Characterization Theorem 4.6 states that every behaviour B has a
“pest"™ correct and complete abstract interpretation 2B which is its characte-
rization. More precisely, we factorize the lax functor B as a functor 2B
followed by a lax functor g5. Data types are preserved by 2B, ie. it is
injective on objects, and it is computationally relevant, i.e. surjective on
morphisms. Its effect is to identify those programs which have the same
behaviour in any context. That 2B is the “best” possiblc such abstract
interpretation refers to the following universal property:

L
2r b
QB
B u D
;)
B
o

Let D be another abstract interpretation for B which is correct and complete,
datatype preserving, and computationally relevant (Section 4.1). Then 2B
factors through D in a unique way.

Behaviours may have structure themselves: they may cither represent the
simultancous observation of some more primitive behaviours, or they may

Informatique théorique et Applications/Theoretical informatics and Applications

COMPOSITIONAL CHARACTERIZATION 407

be constructed by stepwise abstraction. In fact, this structure is preserved by
the characterization functor 2, as can be easily derived from the Characteriza-
tion Theorem 4.6;

First, 2 is modular, i.e. the characterization of a behaviour, which is the
simultaneous observation of a pair of behaviours B, and B,, is obtained
from their characterizations using categorical products.

Second, 2 is functorial. Hence, the characterization of the stepwise abstrac-
tion B,; B, along two behaviours factors through the characterization of
B, ().

Thus correct and complete abstract interpretations can be constructed
hierarchically along the structure of their behavioural specifications which is
reminiscent of the well-known paradigm of software development.

Related Approaches

[CCT79, Stc87, Ste89] are concerned with the systematic development of
abstract interpretations for imperative languages. Cousot/Cousot consider
only the phenomenon of simultaneous observation. Moreover, they do not
aim to obtain an abstract interpretation which satisfies a specific behaviour.
Rather, they consider a given abstraction function, and try to mimic the
complete semantics (static semantics) on the corresponding codomain as
precise as possible.

In contrast, like this paper, [Ste87, $1e89] are conccrned with developing
an abstract interpretation that satisfies a given program behaviour, or in
their terminology which cannot be distinguished from its specification on a
given level of observation. Whereas [Ste87] only deals with functoriality,
{Ste89}] also considers modularity.

The categorical approach presented here generalizes and simplifies these
approaches.

3. BEHAVIOURS OF PROGRAMS

A programming language is represented by a category ¥ in our setting;
the types of the language are its objects (or if untyped then it has a single

(*) This is particularly useful for data flow analysis since one can successively abstract from
certain program properties, until the universal model % is decidable. Of course, propettics like
decidability are not covered by our framework. They must be investigated separately.

vol. 26, »° 5, 1992

408 B. STEFFEN, C. BARRY JAY, M. MENDLER

object) and the programs are its morphisms. Usually, the language will have
further structure (e.g. A-abstraction or fixpoints) which we would expect
semantics to preserve (see Section 6), but here, for the sake of simplicity, we
will refrain from assuming more than sequential composition and empty
programs, which are the composition and identities, respectively, of 2. (But
see [Jay90a, Jay90e, Jay91] for related treatments of handling more structure.)

Thus, a denotational semantics for & is a functor & — 2. Typically, 2 is
the category of domains Dom or, aiternatively, one of its full subcategories.
For some authors (e.g. [BHAS86]) the semantics is represented as a single
domain +2,, which is the coalesced sum of the objects of 2, but this
suppression of typing information obscures the functoriality of the semantics.
Abstract interpretations are also functors, and may be thought of as non-
standard denotational semantics.

Each family of observable properties of & (e.g. {*“strict”, “no-
information™ }) is naturally ordered by implication so that these properties,
or observations, form an ordered category (Section 3.2).

A behaviour maps programs (or perhaps denotations) into an ordered
category of properties, or observations. The only behaviours of interest are
those for which the property of a composite program is at least as strong as
that determined by its parts, whence a behaviour is a lax functor
(Section 3.3). Lax functors also arise as abstractions between abstract inter-
pretations, e.g. the abstraction map abs for strictness of [BHA86). Once the
pature of behaviour is made cxplicit, the definition of corrcctness, and the
dual notion of completeness, arise naturally from the ordering.

To motivate our definition of behaviours as lax functors into ordered
categories we will begin with simulation relations which generate an important
class of behaviours.

3.1. Simulation Relation

Dermimion 3.1: Let of and B be categories. A simulation relation
R: oA »—B from o to B consists of

(i) a function, also denoted R, from objects of o to objects of B, and
(ii) for each pair of objects A and A’ of £, a relation

Ry 408 (A,A) B (RA, RA")
between the homsets of o and # which togeiher satisfy

Informatique théorique ct Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 409

(iii) ge Rf and g’ € Rf" implies g; g'€ R(JS: [} for morphisms

ALA'L;A"

RASRA'L RA”

(iv) for any object A in of then idy € R, ,(id,).
Note that the simulation relations that arc (partial) functions on the homsets
are just {partial) functors.

ExampLE 3.2: A subcategory .of' of o which contains all of the objects of
& is called slim. o' may be thought of as the collection of morphisms
(programs) having some property satisfied by identities and preserved by
composition. Then there is a simulation relation R: .f »—1 (1 is the terminal
category with one object * and whosc sole morphism is id,) defined by

(i) RA=,, » for all objects 4

e _ {id,} if f ing

(i) iff:A— Bthen R, of=,, {{ } otherwise
Conversely, such a simulation relation R determines a slim subcategory of &,
whose morphisms are those related to id, by R. Thus simulation relations
with codomain 1 directly correspond to program properties that are satisfied
by identitics and preserved by composition. Morc complicated behaviours
for of are obtained by expanding the codomain of R.

Simulation rclations compose, and so can be used to model stepwise
abstraction. Lct R:of »—+ 4% and S:# »— € be simulation relations. Then
R; §: of »—%€ is the simulation relation defined by

@) (R;) A=, S(R(4)

(i) if f14 — B then (R;8), 5 /=,,U {SRA.ng‘gERA.Df}'

For example, R may represent a translation into another programming
language, whose behaviour is given by § (Section 4.3). Note that # plays
the role of observations for R and also that of a language for S. This
phenomenon leads us to model observations by categories.

Mycroft and Jones [MJ86) modclled abstraction using logical relations
which are like simulation relations, except that they use a relation between
the objects of the two categories instcad of a function. This additional
freedom allows a single type to be abstracted to a family of types, which is
counter-intuitive for abstraction, as is the fact that composites of logical
relations are not necessarily logical relations. We will introduce a notion of

vol. 26, n° 5, 1992

410 B. STEFFEN, C. BARRY JAY, M. MENDLER

abstraction that generalizes simulation refations while avoiding these problems
(Definition 3.9).

Categorical products are used to represent a pair of morphisms B: & »— 0@
and B': & »— @' by a single morphism (B,B’) : & »— @ x @', The original
morphisms are recovered by projection. Thus, if the morphisms are behavi-
ours then the induced behaviour into the product represents their simultane-
ous obscrvation. Therefore, we believe that any adequate category of behavi-
ours must have products in order to allow the modular construction of
complex behaviours from its components. This excludes the category of
simulation relations:

PRroPOSITION 3.3: The category of simulation relations does not have binary
products.

Proof: 1t suffices to show that there is no product of 1 with itself, i.e.
there is no category Z such that for cach category &, the simulation relations
o % are in bijection with pairs of slim subcategories of o
(Example 3.2). Assume that such a category 2 exists. 1 has a unique slim
subcategory. Thus there is a unique simulation relation 1 »— 2, which forces
4 to havc a unique object », whose monoid of endomorphisms & (¢, *) has
a unique submonoid, i.e. is trivial. Thus 4 is isomorphic to 1. On the
other hand, simulation relations into 1 are in bijection with individual slim
subcategories, which yiclds a contradiction.)

In order to guarantee the modularity of the framework, one must generalize
from relations to lax functors between ordered categories, whose definition is
our next goal.

3.2. Ordered Categories

One abstract interpretation is correct (or safe) wrt another if the denota-
tions of the former have weaker (fewer) properties. To capture this ordering
of properties we interpret programming languages in ordered categories which
generalize categories of domains.

DEFINITION 3.4 An ordered category is a category, whose homsets are
partially ordered, with composition preserving the order, i.e. if fSg:A— B
and 'S8 B~ Cthenf: f'Sg; g A C. In short, an ordered category is a
category enriched over partial orders [KS74).

Informatique théorique et Applications/Th ical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 411

ExAMPLE 3. 5.

1. Let Dom be the category of domains. With the pointwise ordering of
continuous functions it is an ordered category.

2. Let © be any category. Then its power category P @ has the same objects
as @ with homsets given by the powersets of those of @

PO(A,B)=,, P(O(4, B))

ordered by subset inclusion. The identity for an object A is {id,} and
composition is computed pointwise: given two morphisms f={f,liel}: 4 - B
and g={g,ljeJ}: B~ Cof PO then

./:'334[{/}:g,liel,jel}.

For instance, let 1 be the terminal category with one object #+ and whose sole
morphism is id,. Then 2=_, Pl is the category with one object * and two
morphisms { }<{id, }. If @ is a category of propertics then P @ is a category
of families of properties, with larger morphisms representing more properties.

3. If # is an ordered category then @, the local dual of €, is the ordered
category obtained by reversing the orders on the homsets. Thus the local
duals of power categories represent stronger properties by smaller morphisms,
as is usual. For cxarple, in 2° we have {id,}S{ }. This ordered category
will be used to represent a single property, and so deserves special termino-
logy: we call it R and denote {id,} by Land { }byT.

4. Any ordinary category & may be coerced to a discrete ordered category
by giving its homsets the discrete order, i.e. fSg iff f=g. Then, = 2.

S. Categories and simulation relations form an ordered category in the
obvious way: Composition is defined in Section 3.1 and clearly, the identity
functors are the identity simulation relations. Simulation relations are ordered
by letting

RS o ~—B

if they agree on objects and if R, »/'S S, a/f for every morphism f: 4 — B.

3.3. Lax Functors

Lax functors are a weak notion of functor appropriate to ordered categories
and the study of behaviour. The laxness of the functor reflects the loss of

vol. 26, n” §, 1992

412 B. STEFFEN, C. BARRY JAY, M. MENDLER

information that arises when approximating the behaviour of a large program
by composing the behaviours of its parts.

DEeFINITION 3.6 Let of and @ be ordered categories. A lax functor or
behaviour F: o »— @ consists of
(i) afunction, also called F, from objects of o to objects of R, and

(ii) for each pair of objects A and A’ of o4, an order preserving function
Fo 4 (A A') - B(FA,FA')

which together satisfy
(iii) given morphisms {4 — A’ andg: A’ — A" then

F(f.e)SFf Fg
(iv) given an object A of o then
Fid, S idp

If these inequalitics are actually equalities then F is an ordered or rigid functor.
Also, if the inequalities (iii) and (iv) arc reversed (so that Ff; Fg< F(/: g) and
idp S Fid,) then F is called a colax functor. Note, the colax functors
F: of »— 2 arejustlax functors of“® »— #F.

Given a fixed start state, a typical bechaviour for an impcrative languages
would be simply to consider the cffects of programs on a distinguished
variable that we regard as input-output parameter. This behaviour is certainly
not compositional (i.e. does not define a rigid functor), because side effects
of the first program part on other variables may change the effect of the
second program part. Thus the behaviour of a composite cannot be inferred
from its component behaviours. However, it can be safely approximated by
“no information”, which guarantees the properties of a lax functor. Another
example is the strictness behaviour of functional languages. We will concen-
trate on this example in the sequel:

ExampLe 3.7

1. Strictness ({[AH87]) for Dom is given by the lax functor B’: Dom »—Q
which maps all domains to * and which is defined for a continuous function
J: X Yby

T otherwise

B.f={¢ i =1

Informatique théorique ct Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 413

Subcategorics of Dom inherit this behaviour, by composition with the inclu-
sion functor.

2. Let & be a programming language, i.e. a dicrete ordered catcgory.
Then every denotational semantics D: % — Dom yiclds a strictness behaviour
for .Z:

D; B % »—Q

3. Any functor F: of - @ is a lax functor if we regard of and 9 as discrete
ordered categories.

4. Composites of lax functors are lax. They can be used for stepwise
construction of behaviours. For example, if T:.% —» %' is a funcilor (say
realizing a translation from & into &’) and B': ¢ »— B is a behaviour for
2’ then T; B’ is a behaviour for 2 (see Scction 4. 3).

5. Let R: ¥ »—+0 be a simulation relation. It can be thought of as a
colax functor & »—P @ or equivalently, a lax functor & »—+ P @ (since &
is discrete). For example, slim subcategories of .# correspond to lax functors
L s,

The ordered categories and lax functors themselves form an ordered
category Ord, wherein FSG:.of »— 4 if F and G agree on objects and
Ff< G ffor each morphism /. In contrast to simulation relations, lax functors
can represent simultancous obscrvations, as can be inferred from:

ProrositioN 3.8: Ord has cartesian products. The cartesian product of
ordered categories O and O' is their cartesian product G xO' as ordinary
categories with pointwise ordering on the homsets.

Proof. First note that the pointwise ordering in @ x @’ cnsures that the
ordinary projections n, :@X @' — @ and n,: @ x 0" — @' are lax, in fact, rigid
_functors. Now let F: % »— @ and F': ¢ »— 0 be lax functors. Then, point-
wise pairing of objects and morphisms defines a lax functor

(F,F'):€ s Ox0

It is easy to establish that this lax functor has the universal propertics that
make ¢ x @' into a categorical product in Ord. [

This proposition can be extended to arbitrary limits, so that genera!
methods of combining observations are possible, e. g. pullbacks could be used
to represent sharing tonstraints.

vol. 26, n* §, 1992

414 B. STEFFEN, C. BARRY JAY, M. MENDLER

Lax functors are the promised elaboration of simulation relations (¢ /.
Example 3.7-5), which constitute an adequate notion of abstraction between
behaviours, and in particular, abstract interpretations:

DEFINITION 3.9: Let B: & »—r0 and B': & »— 0 be behaviours for ¥ .
An abstraction F:B' »—B is a lax functor making the following diagram

conmute.
£
ZEAN
v N
Ov———x

F

The behaviours for ¥ and the abstractions between them form its category of
behaviours, denoted B (). It is also known as the comma category £ [Ord.

3.4. Correctness and Completeness

Let B,B':.Z »— @ be two behaviours. As established above, we consider
small morphisms in @ to be more informative than large ones. Thus B’ is
correct (or safe) for B if

B=p

Dually, it is complete for B if B’ <B. Correctness implies that B’ yields no
more information than B, while completeness implies that it yields at least as
much.

Now, fix a programming language & which we regard as a discrete ordered
category and consider the following diagram of lax functors:

Then D is correct and complete for B iff there is a lax functor B’ such that
D; B’ is both correct and complete for B, i.e. iff there exists a morphism

Informatique théorique et Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 415

B’:D »~B in B(.%). Of particular interest are decidable correct and com-
plete abstract interpretations for B, because they specify complete data flow
analysis algorithms for B.

It does not make sense to define either correctness or completeness sepa-
rately, without first specifying B’, e.g. strictness for domains, since almost
every abstract interpretation D would be correct (complete) for some behavi-
our on 2. This is true in all approaches, though often the behaviour is merely
implicit. Logical relations improve on the general situation, but still account
for B’ indirectly, at the technical level of domain equations {JN90, MJ86].
Here B’ is accounted for directly, which yields greater clarity and flexibility:
D is correct (complete) for B if D; B’ is correct (complete) for B. This
definition of correctness (completeness) is transitive and non-symmetric, as
can be illustrated by the following example, involving higher-order strictness
analysis. The formalism used here is new: the proofs are in the original paper
[BHAS6].

Let & be a programming language gencrated from a single type 4 and
equipped with a denotational semantics D: ¥ — 2, where @ is the full
subcategory of Dom gencrated by the image of A4 in Dom. The standard
strictness behaviour B’ for 2 inheritcd from Dom (Example 3.7(2)) yields
strictness for & via

B-‘, D; B’
Thus, D is correct and complete for B by definition. Let # be the full

subcategory of domains generated by 2=,,{ L £T}. There is an abstraction
abs: @ =+ 4 which is correct for the strictness behaviour B'.

c
3
D
D\, A
B B~
B v
B'
Q

From this (or directly) can be coastructed a (smallest) rigid functor (an
abstract interpretation) D’: ¥ — & which is correct for D; abs. A short dia-

vol. 26, n* 5, 1992

416 B. STEFFEN, C. BARRY JAY, M. MENDLER

gram-chase now shows that [)' is also correct for B since D'; B'ZD; abs;
B'2D; B'=B.

Correctness is the critical notion for abstract interpretation, because the
safety of a program transformation depends on the correctness of the proper-
ties it is based on. Completeness naturally arises as the exact dual of correct-
ness in our framework. Of course, for “standard bchaviours”, complete
abstract interpretations are usually undecidable, and so completeness was
neglected. However, there may well be decidable abstract interpretation for
“nonstandard behaviours”. Thus, completeness can express useful minimal
requirements for data flow analysis algorithms. Further, there are situations,
where completeness is critical. For example, in data refinement (e. g. [HJ88))
an implementation must have at lcast the properties of the specifying abstract
data type. We conjecture that these properties definc a behaviour in our
framework for which successful data refinement is simply completeness.

4. CHARACTERIZATION OF BEHAVIOUR

We wish to construct an abstract interpretation from a behaviour. Each
behaviour yields an equivalence relation on the programs obtained by relating
thosc programs which behave identically. Abstract interpretations are behavi-
ours that arc characterized by yielding a congruence relation.

The point of the characterization functor is to associate to each behaviour
an abstract interpretation that corresponds to the largest congruence which
refines the equivalence relation of the behaviour, i. e. which relates programs
that have thc same behaviour in any context. This yields a categorical
congruence (see below) on the category of programs, whose quotient will be
the desired characterization of the original behaviour.

4.1. The Characterization Functor

DeriNITION 4. 1: Let € be a category. A congruence on € [Mac71, BW85] is
a family E,_» of equivalence relations on the homsets € (4, B) (where E, »(f./)
is written f= " when the congruence E is understood) satisfying, for f,f': A -+ B
and g, g’ :B—-C

Sfsf and g=g imply f; g=f". ¢

Informatique théorique ct Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 417

Given a congruence E on a category ¥ there is a quotient category € (E)
having the same objects as € whose morphisms are the equivalence classes
of morphisms in €.

Of course, there is also a quotient functor Q : € — € (E), which maps each
morphism to its congruence class. It is injective on objects (preserves data-
types) and is also surjective on objects and morphisms (is computationally
relevani). The category of quotients Q (&) is the full subcategory of B(#) of
quotient functors, where we consider quotient functors as lax functors
between discrete ordered categories (see Example 3.3.3). The universal pro-
perty of quotient functors is given by

PROPOSITION 4.2: Let E be a congruence on € with quotient Q. If H:€ =0
is a lax functor such that for all morphisms f,f':A — B in €

J=[implies Hf=H [’

then there is a unique lax functor H' : € (E) »— @ satisfying Q;: H'=H.

/\

O = —— ——-xC(E)

Moreover, if H is a rigid functor then H' is a rigid functor too.

Proof: (Sketch) H' agrees with H on objects, and maps a congruence class
i/} of morphisms to Hf. O

ExampLE 4.3. — Let D: % — 2 be a denotational semantics and define
two parallel morphisms f and [’ to be denotationally equivalent, written
Ey(f,/), if Df=Dy". Then D factorizes through the corresponding quotient
functor 2D in a unique way:

vol. 26, n* §, 1992

418 B. STEFFEN, C. BARRY JAY, M. MENDLER

We have:

PROPOSITION 4.4: Q (%) is a meet semi-lattice.

Proof- Let 2:.% - % and 2': ¥ —» ¥’ be quotient functors arising from
congruences £ and E' respectively. It follows from Proposition 4.2 that there
is at most one lax functor F: % »— %' satisfying 2; F= ', which must then
be a quotient. We then say 25.9". Such an Fexists iff £ ¢ £ that is, E(f,f")
implies £ (f,f'). The meet of 2 and 2’ (their categorical cartesian product)
is the quotient corresponding to ENE. O

DEFINITION 4.5; Let B: & »— @ be a behaviour. Morphisms f, f':A — B in
& are behaviourally congruent if for all morphisms g: A"~ A and h:B— B’
we have '

Big /=B S5,

that is f and [’ have the same behaviour in every (input-output) context.
Then the quotient functor 2B ¥ — U corresponding to this congruence is the
characterization of the behaviour B.

Applying Proposition 4.2 to the behavioural congruence on & generated
by B with =B shows that B=2B;&; for some behaviour &5, i.e. 2B is
correct and complete for B. This characterization of behaviours is the object
part of the functor 2 specified in the following theorem:

TreoreM 4. 6. (Characterization Theorem): Q () is a coreflective subcate-
gory of B(ZL), i.e. the inclusion of Q (¥) in B(X) has a right adjoint 2, called
the characterization functor.

L
x
Q'
QB
B u 7 u
¢B
Bl
(v

Proof: Let B: % »— @ be a behaviour. Then its image under 2 is defined
to be the quotient functor 2 B: % — % as described in Definition 4. 5.

Informatique théorique et Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 419

The counit of the coreflection is g5 : 2 B »— B. To see its universal property,
let 2': % -4 be another quotient functor which is correct and complete
for B, i.e. 2'; B’=B for some behaviour B'. Then 2'f=4'g implies that f
and g are behaviourally congruent since 2’ is a functor. Thus, 2B(/)=2B(g)
and so applying Proposition 4.2 with 2' as quotient shows there is a unique
functor F: %’ — « making all triangles in the diagram above commute. O

Note that the universal property is more general than it may at first appear,
since Example 4.3 shows that every abstract interpretation factorises through
some quotient functor.

The Characterization Theorem 4.6 generalizes the well-known result that
there exists a unique largest congruence relation in every equivalence relation.
Let us now illustrate the situation obtained so far by means of strictness
analysis.

4.2, Strictness Asalysis

The behaviour of a program is usually given by the behaviour of its
denotation, but may also be determined in other ways, e. g. by first manipulat-
ing the syntax. Here both methods are used to obtain strictness analyses
[AH87] for some simple languages which illustrate the main features of this
framework. First, we consider the behaviour of the denotations.

Let 9 be the full subcategory of domains generated by N, the flat natural
numbers. Its behaviour B': @ »—-Q is induced by the strictness behaviour
of Dom (Example 3.7(2)). The structure of Dom is so rich that it prevents
identifications through behavioural congruence (unlike many languages):

LemmMma 4.7 The characterization for the strictness behaviour B’ : Dom »—
on domains is the identity.

Proof: Let f, g: D — D’ be continuous functions which are behaviourally
congruent. Given xeD let h: D' -2 be the unique continuous function
such that h='(l) is the down-closure of f(x) in D'. Then f=g implies
B’ (hf(x))=B'(hg(x)) whence g(x)Sf(x). By symmetry, f(x)Sg(x) and so
S()=¢g(x). O

Consider a simply typed A-calculus which is freely generated by a type N
(of natural numbers) equipped with zero 0: N and successor s: N — N, and
perhaps some other constants. Let & be the corresponding category whose
objects are the types, and whose morphisms X - Y are equivalence classes
under a-conversions of terms ¢:Y equipped with a context I" of type X.
Additional conversions (e.g. the - and n-conversions which would make

vol. 26, n® §, 1992

420 B. STEFFEN, C. BARRY JAY, M. MENDLER

the category cartesian closed [LS86]) are not imposed since they are not
syntactic, but arise from the behaviour,

The standard denotational semantics for & is given by D: & — 2, where
N is mapped to N, and constants, including zero and successor, receive their
standard interpretation as lifted functions (though non-deterministic choice
requires powerdomains, see below). The behaviour for & is then given by
B=,D; B2 »—0Q.

The constant numerals of &£, e.g. 0, 50, . . ., when regarded as morphisms
N — N with frec variable x: N, e.g. Ax.0,A x.50,... are all non-strict, while
the denotation of a variable x is the identity, which is strict. Thus, numerals
and variables are not bebaviourally congruent. If the language is pure, ie.
there are no other constant symbols, then an inductive argument shows that
the constant numerals are all behaviourally congruent. However, in the
presence of additional constants, more distinctions can be made. Consider,
for example

(i) addition, + :Nx NN
(i) bottom, L: N

(iii) non-deterministic choice, {: Nx N— N
{The denotation of non-deterministic choice requires powerdomains, though
its strictness behaviour is clear: it is strict iff both of its arguments are.)

There arc npow six separate congrucnce classes of morphisms NxN-— N
(equivalently, N —+ N — N), represented by the following A-terms:
Azy.0

Azy.xly

2N

Azy.z Ary.y

~ S

Azy.z + ¥

Azy. L

They correspond to the strictness values of Burn, Hankin and Abramsky
[BHASG6) for this type, which form the domain 2 —2 - 2, However, if the

Informatique théorique et Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 421

language has fewer constants then there are fewer congruence classes, which

is not reflected in their model since it is independent of the language.
Conversely, more constants may yield more distinctions. For example, let

2 also have a conditional, ¢c: N -+ N —+ N = N, whose denotation is given by

m if b=1
D(c)bmn={ n if b=0
1 otherwise

Then truth values (where frue and false are represented by 1 and 0 respec-
tively) are distinguished from each other and from the other constant nume-
rals. By contrast, their abstraction abs (Section 3.4) identifies all the numer-
als. Thus abs is incomplete for B, or more precisely, D; abs; B’ >B.

Note that often the strictness of (irst-order functions is all that we are
interested in. However, the characterization of the corresponding behaviour
i3 the samc as that of B since highcr-order morphisms yield first-order
morphisms in appropriate contexts. Thus, the behaviour of interest may be
extremely simple, and yet specify complicated abstract interpretations.

4.3. Compositionality of the Characterization

Behaviours may be constructed by means of simultanecus observation
{B,B’) and step-wisc abstraction B’; B”. In this section such structure is
used to construct the characterization of behaviours hierarchically by means
of two corollaries to the Characterization Theorem 4.6.

CoroLLarY 4.8 (Modularity): 2 preserves all limits in B(Z). In particular,
given two behaviours B: £ w—+ @ and B’ : L »—+ @' then the characterization
Q (B, B') of their simultaneous observation is the meet of 2B and 2B'.

Proof: Right adjoints preserve limits. O
This result gencralizes the well-known fact that the intersection of two
congruence relations is a congruence relation itself.

Examrie 4.9, — Let & be the richest language considered in Section 4.2.
For m>0 we define a non-standard denotational semantics D, : & — @ which
differs from D in that D(s) is the successor modm, i.e. the lifted function
nresn+1 (modm). Let B,=,.D,. B’ be the corresponding behaviour of £.
Then the congruence classes of numerals are those of mod-m arithmetic and
{ L}. These cannot be identified since every numeral can be mapped to the
congruence class of 0(="false”") by sufficient applications of s.

vol. 26, n° $, 1992

422 B. STEFFEN, C. BARRY JAY, M. MENDLER

Simultaneous observation of B,, and B, is characterized by 2B,, where g
is the least common muitiple of m andn. Note that 2B, distinguishes only
those programs which need to be distinguished for realizing simultaneous
mod-m and mod-n observations.

CoroLLary 4.10 (Functoriality): Let B=B’, B": ¥ »—0 w0 be a
composite of lax functors. Then we have

2B=2PB'; 2, 3(B")=2B'; 2(¢y;B")
In particular, 2B factors through 2B'.

Proof: The lax functor B”: B’ »—+B is a morphism of B(Z). Since functors
preserve domain and codomain of morphisms, we have 2, 4(B""): 2B’ —» 2B,
which yields the result. O

Stepwise abstraction of behaviours arises naturally in the search for the
right level of abstraction. Consider data flow analysis: decidable abstract
interpretations directly specify data flow analysis algorithms. Usually how-
ever, the abstract interpretation associated with a certain data flow problem
is not decidable. Thus further abstractions are necessary. A common such
abstraction step is to interpret conditional branching by non-deterministic
choice. It can be realized by a syntactic translation as in the following.

ExampLe 4.11: The conditional cxyz can be translated into the non-
deterministic choice y|z. This syntactic translation determines a functor
T:.% — & (which is not mirrored by any endo-functor on the category of
denotations). It yiclds a new behaviour B, =T; B on £ which is correct for B
without being complete forit. Thus, given g5, then 2B, is correct for B and
complete for B,. Now functoriality shows that 2B, decomposes as 2 (T);
2 (&r; B), which may thus simplify its calculation.

§. CONCLUSION

We have presented a language independent framework for abstract inter-
pretation that explicitly deals with behaviours of programs, with the benefit
that the notion of correctness is simplified and the notion of completeness
naturally arises as its dual. These improvements do not require considering
observations (properties) as morphisms of a category. The usual relational
approach with sets of observations would do. However, our framework
additionally supports the hierarchical development of abstract interpretations
and data flow analysis algorithms along the structure of the specifying

Informatique théorique et Applications/Theoretical Informatics and Applications

COMPOSITIONAL CHARACTERIZATION 423

program behaviour, by means of stepwise and modular refinement in the
categorical framework. All these features have been illustrated by means of
some simple strictness analyses.

6. FUTURE WORK

In this paper the characterization of a behaviour is universal amongst
quotient functors. It therefore focuses on substitution as a language construct
and on datatype preserving abstract interpretations. This suggests two direc-
tions for generalizations. First, other language constructs such as fixpoints,
products, general limits, or A-abstraction should be considered. We believe
that the development in this paper can be reformulated for quotient functors
that also preserve these language constructs, to achieve this generalization.
Second, one could generalize to abstract interpretations that do not neces-
sarily preserve data types. Herc an approach using ‘“‘cocqualizers” rather than
“‘quotient functors” seems appropriate.

ACKNOWLEDGEMENTS

The development of this paper has been strongly infl d by di i with E
Moggi. Furthermore, we would like to thank Yves Lafont, Don Sa.nnelh and Terry Suoup for
helpful comments, and Norbert G5tz for giving us a hand in typing the manuscript.

REFERENCES

[AH87] S. Asramsky and C. L. Hankin, eds, Abstract Interpretation of Declara-
tive Languages, Ellis-Horwood, 1987.

[BHA86) G. L. Burn, C. L. Hankin, and S. Assamsxy, The Theory of Strictness
Analysis for Higher Order Functions, Sci. Comput. Programming, 1986,
7, pp. 249-278.

[BW8S) r»; Barr and C. WeLLs, Toposes, Triples and Theories, Springer Verlag,
1985.

{CC77a} P. Cousor and R. Cousor, Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In éth P.O.P.L., 1977, pp. 238-252.

[CCT7b) P. Cousor and R. Cousor, Automatic Synthesis of Optimal Invariant
Azsscnions: Mathematical Foundations. A.C.M. Sigplan Notices, 1977,
12, pp. 1-12.

{CC79) P. Cousor and R. Cousor, Systematic Design of Program Analysis
Framework. In 6tk P.O.P.L., 1979, pp. 269-282.

[HI88} C. A. R. Hoare and H. Jireng, Data Refinement in a Categorical Setting.
Technical Report, Oxford Univ. Computing Lab., February 1988.

vol. 26, n* $, 1992

424

{Jay90a}
{Jay90¢}

[ay9i]
[IN90)
{KS74)

{LS86]

{Mac71}
M386)

{Nie86]
[Plo80]

{SP82}
[Ste87)
{81239}

B. STEFFEN, C. BARRY JAY, M. MENDLER

C. B. Jav, Extending Propertics to Categories of Partial Maps. Tech.
Rep. E.C.S.-L.F.C.S.-90-107, University of Edinburgh, 1990.

C. B. Jay, Partial Functions, Ordered Categories, Limits and Cartesian
Closure. In: G. Bixtwistie (ed.) IV Higher Order Workshop, Banff, 1990,
Springer, 1991.

C. B. Jay, Modeiling Reduction in Confluent Categories. Tech. Rep.
E.C.S-L.F.C.8.-91-187, University of Edinburgh, 1991.

N. D. Jones and F. Nieuson, Abstract Interpretation: A Semantics Based
Tool for Program Analysis. In Handbook of Logic in Computer Science.
G. M. KriLy and R. Streer, Review of the Elements of 2-Categories.
In G.M. KeLLy, ed., Proceedings Sydney Category Theory Semir
1972/1973, Springer-Verlag, 1974, pp. 75-103.

J. Lameeck and P. J. Scorr, Introduction to Higher-Order Categorical
Logic, vol. 7 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1986.

S. MA9C7LANE, Categories for the Working Mathematician. Springer Ver-
lag, 1971

A. Mycrorr and N. D. Jones, A Relational Framework for Abstract
Interpretation. In Proceedings, ‘Programs as Data Objects’. Springer
Verlag, LN.C.S.217, 1986,

F. NieLson, A Bibliography on Abstract Interpretations. A.C. M. Sigplan
Notices, 1986, 21, pp. 31-38.

G. D. Prorxin, Lambda Definability in the Full Type Hierarchy. In
R. Hinorey and J. SeLow, ods To H B. Curry: Essays in Combinarory
Logic, Lambda Calcull For Acad Press, 1980.

M. Smrrh and G. Prorxin, The Category-theoretic Solution of Recursive
Domain Equations. S.1.4.M. J. Compur., 1982, 11.

B. SterrEN, Optimal Run Time Optimization—Proved by a New Look at
Abstract Interpretations. In 7.4.P.5.0.F.T.'87, LN.CS. 249, 1987, pp. 52-68.

B. STEFFEN, Optimal Data Flow Analysis via Observable Equivalence. In
M.F.C.8."89, 1989.

Informatique théorique et Applications/Theoretica!l Informatics and Applications

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22

