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Abstract
Based on the seminal asset-pricing model by Brock and Hommes (J Econ Dyn Con-
trol 22:1235–1274, 1998), we analytically show that higher wealth taxes increase 
the risky asset’s fundamental value, enlarge its local stability domain, may prevent 
the birth of nonfundamental steady states and, if they exist, reduce the risky asset’s 
mispricing. We furthermore find that higher wealth taxes may hinder the emergence 
of endogenous asset price oscillations and, if they exist, dampen their amplitudes. 
Since oscillatory price dynamics may be associated with lower mispricing than 
locally stable nonfundamental steady states, policymakers may not always want to 
suppress them by imposing (too low) wealth taxes. Overall, however, our study sug-
gests that wealth taxes tend to stabilize the dynamics of financial markets.

Keywords  Asset price dynamics · Wealth taxes · Heterogeneous expectations · 
Nonlinear dynamics · Stability and bifurcation analysis

JEL Classification  D84 · G12 · G18 · G41

1  Introduction

The detailed historical accounts offered by Galbraith (1994), Kindleberger and 
Aliber (2011) and Shiller (2015) reveal that the boom-bust nature of financial mar-
kets, mainly driven by the trading behavior of heterogeneous and boundedly rational 
speculators, may be quite harmful for the real economy. In the aftermath of financial 
and economic downturns, voices habitually arise requesting the imposition of a tax 
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on speculators’ wealth to accommodate for the economic damage caused by specu-
lators’ trading frenzy. Occasionally, these requests are associated with the hope that 
wealth taxes may be used to mitigate economic inequality, as outlined by Piketty 
(2014).1 Unfortunately, the relationship between speculative asset price dynamics 
and wealth taxes has received only scant academic attention so far. One important 
question in this respect is whether policymakers may unintentionally render finan-
cial markets even more unstable by taxing speculators’ wealth. Based on a behav-
ioral asset-pricing model, we find, fortunately, that a tax imposed on the wealth of 
speculators tends to have a stabilizing effect on the dynamics of financial markets. In 
particular, our analysis reveals that wealth taxes penalize speculators applying cheap 
destabilizing technical expectation rules more strongly than speculators relying on 
costly stabilizing fundamental expectation rules, thereby prompting a shift towards 
the use of stabilizing expectation rules. Needless to say, policymakers may generate 
substantial revenues by imposing wealth taxes, though this aspect is not at the core 
of our paper.

As a workhorse for our study, we use the seminal asset-pricing model by Brock 
and Hommes (1998). A key insight of their paper is that the trading behavior of 
boundedly rational and heterogeneous speculators, switching between a destabiliz-
ing technical and a stabilizing fundamental expectation rule, subject to their evolu-
tionary fitness, may create complex endogenous asset price dynamics. Most notably, 
Brock and Hommes (1998) demonstrate that speculators’ rule selection behavior 
may create a rational route to randomness. Since simple technical expectation rules 
are cheaper than more sophisticated fundamental expectation rules, they produce 
higher steady-state profits. As long as speculators react only weakly to the fitness 
differential of their expectation rules, the market impact of the technical expecta-
tion rule remains relatively modest, allowing the asset price to converge towards its 
fundamental value. However, if speculators start to pay more attention to the expec-
tation rules’ fitness differential, the technical expectation rule gains more followers 
and may cause the birth of locally stable nonfundamental steady states. If specula-
tors’ intensity of choice increases even further, the popularity of the technical expec-
tation rule continues to grow. Consequently, the nonfundamental steady states even-
tually become unstable and give rise to oscillatory asset price dynamics.

We extend the model by Brock and Hommes (1998) along two lines. First, we 
consider the eventuality of policymakers imposing a tax on speculators’ wealth. 
Second, we follow Hommes et  al. (2005) and Anufriev and Tuinstra (2013) and 
allow the supply of (outside) shares of the risky asset to be positive. Assuming a 
positive supply of (outside) shares of the risky asset implies that the fundamental 
value of the risky asset entails a risk premium (which is, for simplicity, absent in 
the original model by Brock and Hommes 1998). Since the risk premium depends 
negatively on wealth taxes, higher wealth taxes increase the risky asset’s fundamen-
tal value. Moreover, the difference in the steady-state fractions of the fundamental 

1  Many countries around the world impose some form of wealth tax. See Cowell and van Kerm (2015), 
Vermeulen (2016) and Kuypers et  al. (2019) for surveys about wealth inequality, wealth taxation and 
redistribution policies. Bach et al. (2014) explore the use of wealth taxes to bring down public debt.
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and technical expectation rule depends positively on wealth taxes and negatively 
on speculators’ intensity of choice and the costs associated with using the funda-
mental expectation rule. As discussed above, an increase in speculators’ intensity of 
choice has the effect that more of them select the destabilizing technical expectation 
rule, rendering the risky asset’s fundamental value unstable and causing the birth of 
locally stable nonfundamental steady states or even the emergence of endogenous 
oscillatory price dynamics. Interestingly, policymakers may reverse this process 
and re-establish market stability by imposing higher wealth taxes. To put it plainly, 
policymakers may turn speculators’ rational route to randomness into a tax route to 
stability. As a cautionary note, however, we must add that oscillatory price dynam-
ics may be associated with lower mispricing—defined as the deviation between the 
price of the risky asset and its fundamental value—than locally stable nonfunda-
mental steady states. Hence, policymakers may not always want to suppress them by 
imposing (too low) wealth taxes.

In recent years, the asset-pricing model by Brock and Hommes (1998) has 
received great empirical support from scholars such as Boswijk et al. (2007), Anu-
friev and Hommes (2012), Hommes and in’t Veld (2017) and Schmitt (2020). More-
over, Brock et  al. (2010), Anufriev and Tuinstra (2013), Dercole and Radi (2020) 
and Schmitt et al. (2020) and Schmitt and Westerhoff (2021), amongst others, have 
successfully used their model to address a number of relevant policy questions; see 
Hommes (2013) and Dieci and He (2018) for general surveys.

Of course, different forms of financial market taxes exist. Westerhoff and Dieci 
(2006), Mannaro et al. (2008) and Jacob Leal and Napoletano (2019) analyze how 
a small tax on speculators’ transactions may affect the stability of financial mar-
kets. A major difference between transaction taxes and wealth taxes is that trans-
action taxes aim at penalizing aggressively trading speculators, while wealth taxes 
essentially reduce speculators’ total investment funds. From a technical perspective, 
however, our paper is more related to the following papers. In particular, Anufriev 
et  al. (2018) experimentally test the asset-pricing model by Brock and Hommes 
(1998) and report that a reduction in the cost of stabilizing expectation rules tends 
to produce more stable asset price dynamics, lending the main channel that drives 
our analytical insights at least some indirect empirical credit. Moreover, Schmitt 
and Westerhoff (2015) explore how profit taxes may shape the dynamics of the cob-
web model by Brock and Hommes (1997) in which farmers switch between rational 
and naïve expectation rules, depending on the rules’ past profitability. Schmitt et al. 
(2017) show that profit taxes may also stabilize the dynamics of market entry mod-
els by reducing profit differentials between competing markets. Finally, Martin et al. 
(2021) explore how policymakers may stabilize the dynamics of housing markets 
by adjusting the tax code. As far as we are aware, however, the relationship between 
speculative asset price dynamics and wealth taxes has not yet been explored in this 
line of research. Given the relevance of this topic, we seek to make some progress in 
this direction.

We continue as follows. In Sect. 2, we extend the asset-pricing model by Brock 
and Hommes (1998) as outlined above. In Sect. 3, we present our main analytical 
results and illustrate them numerically. In Sect. 4, we discuss a number of more sub-
tle issues related to the imposition of wealth taxes. In Sect. 5, we conclude our paper 
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and point out some avenues for future research. Appendix A1 to A5 contain our 
main proofs and a number of additional simulations.

2 � The model

Brock and Hommes (1998) assume that speculators can invest in a safe asset, paying 
the risk-free interest rate r , and in a risky asset, paying an uncertain dividend Dt . For 
simplicity, they specify the dividend process of the risky asset as

where �t ∼ N(0, �2
�
) . While the price of the safe asset is fixed, the price of the risky 

asset changes with respect to speculators’ trading behavior. Let Pt be the price of the 
risky asset (ex-dividend) at time t . The end-of-period wealth of speculator i can be 
expressed as

where Zi
t
 stands for speculator i ’s demand for the risky asset and 0 ≤ 𝜏 < 1 denotes 

the tax rate imposed by policymakers on speculators’ wealth. Parameter C ≥ 0 repre-
sents possible (fixed) trading costs and will be discussed in more detail below.2 Note 
that we regard all variables indexed with t + 1 as random and assume that Wi

t+1
> 0  

for all i and t . Since speculators are myopic mean–variance maximizers, speculator 
i ’s demand for the risky asset follows from

where Ei
t

[
Wi

t+1

]
 and Vi

t

[
Wi

t+1

]
 denote his belief about the conditional expectation and 

conditional variance of his wealth, respectively, and parameter 𝜆 > 0 stands for his 
risk aversion. Hence, speculator i ’s first-order condition reads as

and his optimal demand for the risky asset results in

(1)Dt = D + �t,

(2)Wi
t+1

= (1 − �)
(
(1 + r)Wi

t
+ Zi

t

(
Pt+1 + Dt+1 − (1 + r

)
Pt

)
− C

)
,

(3)max
Zi
t

[
Ei
t

[
Wi

t+1

]
−

�

2
Vi
t

[
Wi

t+1

]]
,

(4)(1 − �)
(
Ei
t

[
Pt+1

]
+ Ei

t

[
Dt+1

]
− (1 + r)Pt

)
− (1 − �)2Zi

t
�Vi

t

[
Pt+1 + Dt+1

]
= 0

(5)Zi
t
=

Ei
t

[
Pt+1

]
+ Ei

t

[
Dt+1

]
− (1 + r)Pt

(1 − �)�Vi
t

[
Pt+1 + Dt+1

] .

2  Clearly, our modeling of wealth taxes affects speculators’ total wealth, consisting of their investments 
in the safe asset and in the risky asset, where possible trading costs are deductible. Moreover, speculators 
have to pay their wealth taxes at the end of the current period, after the price of the risky asset has been 
determined. Future work may consider that policymakers impose different tax rates on wealth allocated 
to different asset classes or discuss the issue of market interactions, crowding out effects and capital 
flight within an asset-pricing model that contains multiple domestic and foreign asset markets.
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As indicated by (4), wealth taxes affect speculator i ’s wealth expectations lin-
early, while their effect on his risk perception is quadratic. Consequently, speculator 
i ’s demand for the risky asset increases in line with the tax rate.

For analytical tractability, Brock and Hommes (1998) introduce the following 
simplifying assumptions. There are N speculators in total, believing that 
Ei
t

[
Dt+1

]
= D and Vi

t

[
Pt+1 + Dt+1

]
= �2 . We can therefore express speculators’ 

aggregate demand for the risky asset as Zt =
∑N

i=1
Zi
t
= N

1

N

∑N

i=1
Ei
t[Pt+1]+D−(1+r)Pt

(1−�)��2
 . 

Moreover, denoting speculators’ average expectation about the risky asset’s next 
period price by Et

�
Pt+1

�
=

1

N

∑N

i=1
Ei
t

�
Pt+1

�
 yields

Note that speculators’ demand for the risky asset increases in line with their price 
and dividend expectations and decreases with the risk-free interest rate, the current 
price of the risky asset, their risk aversion and variance beliefs. Moreover, higher 
wealth taxes increase speculators’ demand for the risky asset.

Market equilibrium requires that the demand for the risky asset equals the total 
supply of the risky asset, that is

The total supply of the risky asset, i.e., the number of (outside) shares issued by 
firms, is constant, given by

where S represents the (average) number of available (outside) shares of the risky 
asset per speculator.3 Combining (6), (7) and (8) indicates that the price of the risky 
asset is determined by.

where �t reflects additional random disturbances with �t ∼ N
(
0, �2

�

)
 . Note that (9) 

implies that Pt increases in line with speculators’ price and dividend expectations 
and decreases with the risk-free interest rate, their risk aversion and variance beliefs. 
More importantly for our purpose, however, (9) reveals that higher wealth taxes 
decrease the value of risk-adjusted dividend payments, where the risk-related reduc-
tion of dividend payments is given by (1 − �)��2S . We may grasp the economic 
intuition behind this result by interpreting (9) as a no-arbitrage condition. Since 
lower risk-adjusted dividend payments make the risky asset more attractive, 

(6)Zt = N
Et

[
Pt+1

]
+ D − (1 + r)Pt

(1 − �)��2
.

(7)Zt = St.

(8)St = Ŝ = NS,

(9)Pt =
Et[Pt+1] + D − (1 − �)��2S

1 + r
+ �t,

3  Hommes et al. (2005) and Anufriev and Tuinstra (2013) assume a positive supply of (outside) shares of 
the risky asset, too. We remark that it may be interesting to relax the assumption that Ŝ is constant, e.g., 
by considering random supply shocks or by allowing firms to buy back shares or to issue new shares.
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speculators’ demand for the risky asset increases, as indicated by (6). A higher 
demand for the risky asset, in turn, increases the price of the risky asset, up to the 
point where speculators are again indifferent between holding the risky asset and the 
safe asset. Recall that Brock and Hommes (1998) assume that there is a zero supply 

of (outside) shares of the risky asset, i.e., St = 0 , implying that Pt =
Et[Pt+1]+D

1+r
 . 

Clearly, such a setup does not entail a risk premium.
In line with empirical and experimental evidence, summarized by Menkhoff and 

Taylor (2007) and Hommes (2011), speculators may use a technical or a fundamen-
tal expectation rule to forecast the price of the risky asset. The market shares of 
speculators following the technical and fundamental expectation rule are given by 
NC
t

 and NF
t
= 1 − NC

t
 . Speculators’ average price expectations are defined by

Speculators compute the risky asset’s fundamental value F by discounting 
future risk-adjusted dividend payments, that is F =

D−(1−�)��2S

r
=

D

r
− RP , where 

RP =
(1−�)��2S

r
 denotes the risky asset’s risk premium. Note that this solution can 

easily be deducted from (9), assuming that Pt = Et[Pt+1] = F . Speculators applying 
the technical expectation rule, also called chartists, expect the deviation between the 
price of the risky asset and its fundamental value to increase. Their expectations are 
formalized by

where 𝜒 > 0 denotes the strength of chartists’ extrapolation behavior. Speculators 
using the fundamental expectation rule, also called fundamentalists, believe that the 
price of the risky asset will approach its fundamental value. As usual, their expecta-
tions are written as

where 0 < 𝜙 ≤ 1 indicates fundamentalists’ expected mean reversion speed. Note 
that both expectation rules predict the price of the risky asset for period t + 1 at the 
beginning of period t , based on information available in period t − 1 . Consequently, 
speculators have to predict the price of the risky asset two periods ahead.

Brock and Hommes (1998) consider speculators switching between the technical 
and fundamental expectation rule with respect to their evolutionary fitness, meas-
ured in terms of past realized profits, arguing that profits are what speculators care 
most about.4 Since our goal is to explore the effects of wealth taxes, we measure 
the expectation rules’ evolutionary fitness via their effects on speculators’ wealth 
dynamics. As we will see in more detail in the sequel, what really matters to specu-
lators is the difference in the wealth dynamics associated with their two expecta-
tion rules. Moreover, these rule-dependent wealth differences are equal among all 

(10)Et[Pt+1] = NC
t
EC
t
[Pt+1] + NF

t
EF
t
[Pt+1].

(11)EC
t

[
Pt+1

]
= Pt−1 + �(Pt−1 − F),

(12)EF
t

[
Pt+1

]
= Pt−1 + �(F − Pt−1)

4  However, herding behavior may also matter, as discussed in Bischi et al. (2006). For a general survey 
of evolutionary models in economics and finance, see Bischi (2014).
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speculators, and, for � = 0 , equal to the rules’ profit differentials, as in Brock and 
Hommes (1998). In fact, straightforward computations reveal that the difference 
between the fitness of the fundamental and technical expectation rule of speculator i 
boils down to

where

and

Note that the time structure of the model implies that the last observable fitness 
differential of the two expectation rules depends on speculator i ’s hypothetically 
experienced wealth differential in period t − 1 , had he either used the fundamental 
or the technical expectation rule in period t − 2 . With a slight abuse of notation, we 
assume in the derivation of (13) that the cost differential between using the funda-
mental and technical expectation rule, introduced in (2) as possible trading costs, is 
represented by parameter C > 0 , a term that Brock and Hommes (1998) prominently 
call (constant per period) information costs.5

Finally, the market shares of chartists and fundamentalists are modeled using 
the well-known discrete choice approach. Let us from now on assume that there is 
a continuum of speculators with mass N . We thus obtain for the market shares of 
chartists and fundamentalists

and

(13)
A
F,i

t
− A

C,i

t
= W

F,i

t−1
−WC,i

t−1
= (1 − �)

((
P
t−1 + D

t−1 − (1 + r)P
t−2

)(
Z
F

t−2
− Z

C

t−2

)
− C

)
= A

F

t
− A

C

t
,

(14)ZC
t−2

=
EC
t−2

[
Pt−1

]
+ D − (1 + r)Pt−2

(1 − �)��2
,

(15)ZF
t−2

=
EF
t−2

[
Pt−1

]
+ D − (1 + r)Pt−2

(1 − �)��2
.

(16)NC
t
=

exp[�AC
t
]

exp
[
�AC

t

]
+ exp[�AF

t ]
=

1

1 + exp[�(AF

t
− AC

t )]

(17)NF
t
=

exp
[
�AF

t

]

exp
[
�AC

t

]
+ exp

[
�AF

t

] = 1 − NC
t
.

5  A surprising property of our model is that the expectation rules’ fitness differential simplifies for 
D

t−1 = D to AF

t
− A

C

t
=
(
P
t−1 + D

t−1 − (1 + r)P
t−2

) (�+�)(F−P
t−3)

��2
− (1 − �)C . In the absence of divi-

dend shocks, a wealth tax thus affects the expectation rules’ fitness differential only via the information 
costs parameter C . In a situation in which the price of the risky asset mirrors its fundamental value, say 
F = P

t−3 , we even have that AF

t
− A

C

t
= −(1 − �)C . This observation will be helpful when we discuss the 

model’s steady state and stability implications.
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The intensity of choice parameter 𝛽 > 0 measures how quickly the mass of specu-
lators switches to the more successful expectation rule. For � → 0 , speculators do 
not observe any fitness differentials between the two expectation rules, implying that 
NC
t
= NF

t
= 0.5 . For � → ∞ , speculators observe fitness differentials perfectly and 

all of them will choose the expectation rule that yields the higher fitness. Accord-
ingly, the higher the intensity of choice parameter, the more speculators will select 
the superior expectation rule. In this sense, speculators display a boundedly rational 
learning behavior, an important ingredient for behavioral models to combat the lurk-
ing wilderness-of-bounded-rationality critique, as pointed out by Hommes (2013).

3 � Main analytical and numerical results

In the absence of exogenous shocks, i.e., for �2
�
= 0 and �2

�
= 0 , the dynam-

ics of our model is driven by the iteration of a three-dimensional nonlin-
ear deterministic map. In fact, introducing the difference in market shares, 
i.e., mt = NF

t
− NC

t
= tanh[

�

2
(AF

t
− AC

t
)] , and noting that NC

t
= (1 − mt)∕2 and 

NF
t
= (1 + mt)∕2 , yields the map.

where yt = Pt−1 is an auxiliary variable.
Propositions 1 and 2, proven in the appendix, summarize our main results for 

S = 0 and S > 0 , respectively, where an overbar denotes steady-state quantities. We 
are particularly interested in how an increase in parameter � may affect the levels and 
stability domains of the model’s steady state(s) and how that relates to parameter �.

Proposition 1:  (S = 0 ): Map (18) may possess up to three steady states, a fundamen-
tal steady state, given by FSS1 =

(
P1, y1,m1

)
= (

D

r
,P1,−tanh[

(1−�)�C

2
]) , and two 

nonfundamental steady states, given by 

NFSS2,3 =
(
P2,3, y2,3,m2,3

)
= (P1 ±

√
��2((1−�)�C−2arctanh[

2r+�−�

�+�
])

r�(�+�)
,P2,3,−

2r+�−�

�+�
  ) , 

with NFSS2 ≥ NFSS3 . FSS1 always exists. Assume that r < 𝜒 < 2r + 𝜙 . For 

0 < 𝛽 < 𝛽P ∶=
2arctanh[

2r+𝜙−𝜒

𝜒+𝜙
]

(1−𝜏)C
 , FSS1 is locally stable. At � = �P , a pitchfork bifurca-

tion occurs, causing the birth of NFSS2,3 . For 𝛽P < 𝛽 < 𝛽N , NFSS2,3 are locally sta-
ble, where P2,3 are symmetrically located around P1 . As parameter � exceeds 

�N =
(�+�)((1+2r)−

√
1+8r(1+r))+4(r+�)(r−�)arctanh

�
2r+�−�

�+�

�

2(1−�)C(r+�)(r−�)
 , NFSS2,3 become simultaneously 

unstable due to a Neimark–Sacker bifurcation, giving rise to oscillatory dynamics. 
Higher values of parameter � increase the gaps between P1 and P2,3 and P2 and P3 . 
An increase in parameter � causes the opposite and increases the critical bifurcation 
values �P and �N.

(18)

M ∶=

⎧
⎪⎨⎪⎩

Pt =
1

1+r

�
1−mt−1

2
�
�
Pt−1 − F

�
+

1+mt−1

2
�
�
F − Pt−1

�
+ Pt−1 + D − (1 − �)��2S

�

yt = Pt−1

mt = tanh

�
�

2

��
Pt + D − (1 + r)Pt−1

�
(�+�)(F−yt−1)

��2
− (1 − �)C

��
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Figure 1 provides a schematic representation of the levels and stability domains of 
the risky asset’s fundamental and nonfundamental steady-state prices as a function of 
parameter � . The left panels depict the main results of Proposition 1; the right panels 
anticipate those of Proposition 2, to be stated in the sequel. Different colors mark 
the risky asset’s fundamental and nonfundamental steady-state prices. Red (blue) 
tonalities indicate the absence (presence) of wealth taxes. Solid (dotted) lines indi-
cate locally stable (unstable) steady states. From the top left panel to the bottom right 
panel, we assume (1) � = 0 and S = 0 , (2) 𝜏 > 0 and S = 0 , superimposed on � = 0 
and S = 0 , (3) � = 0 and S > 0 and (iv) 𝜏 > 0 and S > 0 , superimposed on � = 0 and 
S > 0 . Note that it may be useful to absorb the results of Proposition 2 in connection 
with Fig. 1, although it does not capture all possible bifurcation scenarios.

Fig. 1   Schematic representation of the levels and stability domains of the risky asset’s fundamental and 
nonfundamental steady state prices as a function of parameter � . Top left: � = 0 and S = 0 . Bottom left: 
𝜏 > 0 and S = 0 , superimposed on � = 0 and S = 0 . Top right: � = 0 and S > 0 . Bottom right: 𝜏 > 0 and 
S > 0 , superimposed on � = 0 and S > 0 . Different colors mark the risky asset’s fundamental and non-
fundamental steady-state prices, where solid (dotted) lines indicate locally stable (unstable) steady states
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Proposition 2:  (S > 0 ): Map (18) may possess up to three steady states, a fundamen-
tal steady state, given by FSS1 =

(
P1, y1,m1

)
= (

D−(1−�)��2S

r
,P1,−tanh[

(1−�)�C

2
]) , 

and two nonfundamental steady states, given by 

NFSS2,3 =
(
P2,3, y2,3,m2,3

)
= (P1 +

(1−�)��2S

2r
±

√
(

(1−�)��2S

2r

)2

+
��2 ((1−�)�C−2arctanh[

2r+�−�
�+�

])

r�(�+�)
,P2,3,−

2r+�−�

�+�
 ), with 

NFSS2 ≥ NFSS3 . FSS1 always exists. Assume that r < 𝜒 < 2r + 𝜙 . For 

0 < 𝛽 < 𝛽 P ∶=
2 arctanh

[
2r+𝜙−𝜒

𝜒+𝜙

]

(1−𝜏)C+r(𝜒+𝜙)𝜆𝜎2

(
(1−𝜏)S

2r

)2 , FSS1 is locally stable. At �= �S , a saddle-

node bifurcation occurs, causing the birth of NFSS2,3 , with NFSS2 as the node and 

NFSS3 as the saddle. For 𝛽S < 𝛽 < 𝛽T ∶=
2arctanh[

2r+𝜙−𝜒

𝜒+𝜙
]

(1−𝜏)C
 , FSS1 remains locally sta-

ble, NFSS2 is at least initially locally stable and NFSS3 is unstable, with 
P2 > P3 > P1 . At � = �T , a transcritical bifurcation occurs, implying that 
P2 > P1 = P3 . As parameter � exceeds �T , FSS1 becomes unstable,NFSS2 may still 
be locally stable and NFSS3 is initially locally stable, with P2 > P1 > P3 . NFSS2,3 
eventually become unstable due to a Neimark–Sacker bifurcation as parameter � 
crosses �N,U and �N,L , respectively, giving rise to oscillatory dynamics, with 
𝛽N,U < 𝛽N,L . When S is sufficiently large, we may observe that 𝛽N,U < 𝛽T . Higher 
values of parameter � increase the gaps between P1 and P2,3 and P2 and P3 . An 
increase in parameter � causes the opposite and increases the critical bifurcation 
values �S , �T , �N,U and �N,L.

In the following, we discuss the main economic implications of Propositions 1 
and 2, highlighting, in particular, the role played by parameters � , � and S.

3.1 � Level of the fundamental steady state

	 (i)	 If the supply of (outside) shares of the risky asset is zero, i.e., S = 0 , the 
risky asset’s risk premium vanishes and its fundamental value is given by 
P1 = F =

D

r
 . Consequently, the risky asset’s fundamental value, corresponding 

to the discounted value of future dividend payments, is independent of wealth 
taxes and speculators’ intensity of choice.

	 (ii)	 For S > 0 , the risky asset’s fundamental steady state depends on wealth taxes, 
although not on speculators’ intensity of choice. Note first that a higher sup-
ply of (outside) shares of the risky asset increases the risky asset’s risk pre-
mium, given by RP =

(1−�)��2S

r
 , and, thereby, decreases its fundamental value 

P1 = F =
D−(1−�)��2S

r
=

D

r
− RP . Since wealth taxes (linearly) shrink the risky 

asset’s risk premium, P1 (linearly) increases in line with parameter � . The eco-
nomic rationale behind this is as follows. Higher wealth taxes reduce the risk 
associated with speculators’ wealth, caused by the risky asset’s price and divi-
dend fluctuations. Since the risky asset thus appears more attractive to specula-
tors, their demand for the risky asset increases, creating, in turn, an increase in 
the price of the risky asset.
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	 (iii)	 Note that the model’s fundamental steady state implies that 
m1 = −tanh

[
(1−�)�C

2

]
 , NC

1
=

1

1+exp[−(1−�)�C]
 and NF

1
=

1

1+exp[(1−�)�C]
 . Hence, the 

expectation rules’ market shares at the fundamental steady state depend on the 
wealth tax, independently of the size of the supply of (outside) shares of the 
risky asset. In particular, the market share of the technical (fundamental) 
expectation rule decreases (increases) in line with the wealth tax. The reason 
for this is as follows. At the fundamental steady state, the expectation rules’ 
fitness differential amounts to AF

1
− AC

1
= −(1 − �)C.6 Hence, higher wealth 

taxes reduce the fitness disadvantage of the fundamental expectation rule, 
making this rule relatively more attractive. For completeness, we remark that 
each speculator holds S shares of the risky asset at the fundamental steady 
state, or, stated more formally, ZC

1
= S = Ŝ∕N  , ZF

1
= S = Ŝ∕N  and 

NC
1
N ZC

1
+ NF

1
N ZF

1
= Ŝ.

3.2 � Stability domain of the fundamental steady state

As demonstrated in Appendix A2, the fundamental steady-state stability condition, 

i.e., 0 < 𝛽 < 𝛽P = 𝛽T =
2arctanh[

2r+𝜙−𝜒

𝜒+𝜙
]

(1−𝜏)C
 , can also be written as NC

1
𝜒 − NF

1
𝜙 < r . From 

the latter expression, it follows immediately that the behavior of chartists is destabi-
lizing while that of fundamentalists is stabilizing. For � → 0 , we obtain 
NC
1
= NC

1
= 0.5 and thus 𝜒 < 2r + 𝜙 . If this condition is violated, the fundamental 

steady state is always unstable. For � → ∞ , we have NC
1
= 1 and NF

1
= 0 , implying 

that 𝜒 < r . If this condition holds, the fundamental steady state is locally stable. In 
between, i.e., for r < 𝜒 < 2r + 𝜙 , we can apply our propositions and conclude that 
an increase in speculators’ intensity of choice may compromise the stability of the 
fundamental steady state.7 However, it is also clear that policymakers can always re-
establish the fundamental steady-state local stability by increasing the tax rate on 
speculators’ wealth. This result holds for S = 0 and S > 0.

3.3 � Levels of nonfundamental steady states

	 (i)	 For S = 0 , we obtain P2,3 = P1 ±

√
��2((1−�)�C−2arctanh[

2r+�−�

�+�
])

r�(�+�)
 or, alternatively, 

P2,3 = P1 ±

√
��2(NC

1
�−NF

1
�−r)

r�(�+�)
 . Accordingly, the model’s pitchfork bifurcation 

gives rise to two additional nonfundamental steady states, symmetrically 
located around P1 . Furthermore, P2,3 indicate that the risky asset’s mispricing 
increases with speculators’ intensity of choice, although policymakers can 

6  Recall that both expectation rules deliver identical predictions at the fundamental steady state and, 
consequently, recommend holding the same amount of the risky asset. The expectation rules’ fitness dif-
ferential thus depends only on wealth taxes and information costs, as can easily be verified by setting 
Z
F

t−2
= Z

C

t−2
 in (13).

7  Empirical work, e.g., by Boswijk et al. (2007), suggests that the relation r < 𝜒 < 2r + 𝜙 holds in real 
financial markets, which is why it forms the basis of our propositions’ stability results.
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decrease the gap between P2,3 and P1 as well as the gap between P2 and P3 by 
raising the wealth tax.

	 (ii)	 For S > 0 , however, the coordinates of P2,3 display a different and, as we 
believe, fascinating behavior. The nonfundamental steady states are born via 
a saddle-node bifurcation when parameter � passes �S , and we have 
P2 > P3 > P1 . Note that the upper (lower) nonfundamental value of the risky 
asset price increases (decreases) in line with parameter � . At the transcritical 
bifurcation, we have (1 − �)�C = 2arctanh[

2r+�−�

�+�
] and the square root’s sec-

ond term of P2,3 equals zero, resulting in P2 = D∕r and P3 = P1 , i.e., the 
difference between the two nonfundamental steady states is given by the risky 
asset’s risk premium, or, in technical terms, P2 − P3 =

(1−�)��2S

r
= RP . Hence, 

for S > 0 and � exceeding �T , we may observe that a loss of the local stability 
of the model’s fundamental steady state triggers a discreet jump from P1 = F 
to P2 = D∕r . While P2 is independent of parameters � and S at the transcriti-
cal bifurcation, P1 = P3 increases (decreases) with the wealth tax (supply of 
(outside) shares of the risky asset), thereby decreasing (increasing) the size of 
the jump. In contrast, P3 is not detached from P1 at the transcritical bifurca-
tion. Furthermore, the distance between the nonfundamental steady states as 
well as the distance between the nonfundamental steady states and the funda-
mental steady state increases with the supply of (outside) shares of the risky 
asset and speculators’ intensity of choice, while the reverse outcome occurs 
when policymakers increase the wealth tax.

	 (iii)	 Interestingly, it follows from m2,3 = −
2r+�−�

�+�
 that the market shares of the 

fundamental and technical expectation rules, given by NF
2,3

=
�−r

�+�
 and 

NC
2,3

=
�+r

�+�
 , respectively, are independent of parameters S , � and �  and iden-

tical at the model’s nonfundamental steady states. Since ZC
2,3

=
S(�+r)

2r
±

Y(�−r)

(1−�)��2
 

and ZF
2,3

=
S(r−�)

2r
±

Y(−(�+r))

(1−�)��2
 with Y ∶=

√(
(1−�)��2S

2r

)2

+
��2

(
(1−�)�C−2 arctanh

[
2r+�−�

�+�

])

r�(�+�)
 , 

we have again that NC
2,3

N ZC
2,3

+ NF
2,3

N ZF
2,3

= Ŝ . Note that chartists are too 
optimistic at the upper nonfundamental steady state and thus buy too much of 
the risky asset. In fact, the yield they obtain from holding the risky asset is 
below the yield they receive from investing in the risk-free asset. By contrast, 
fundamentalists invest less in the risky asset and hold more of the risk-free 
asset. Together, this reduces the fitness disadvantage of the costly fundamen-
tal expectation rule. In mathematical terms, the expectation rules’ fitness dif-

ferential is given by AF
2,3

− AC
2,3

= −
2arctanh[

2r+�−�

�+�
]

�
 , from which it becomes clear 

why parameters S , � and �  do not influence speculators’ choice of expectations 
rules at the upper nonfundamental steady state. Of course, chartists suffer from 
similar investment mistakes induced by their expectation rule at the lower 
nonfundamental steady state.
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3.4 � Stability domain of nonfundamental steady states and beyond

For S = 0 , the nonfundamental steady states are locally stable in the range 
𝛽P < 𝛽 < 𝛽N and subject to a Neimark–Sacker bifurcation as parameter � exceeds 
�N . For S > 0 , the bifurcation structure is more complicated. Interval 𝛽S < 𝛽 < 𝛽T 
starts with the occurrence of a saddle-node bifurcation and we can thus conclude 
that the lower nonfundamental steady state, being the saddle, is unstable while the 
upper nonfundamental steady state, being the node, is locally stable, at least initially. 
Between 𝛽T < 𝛽 < 𝛽N,L , the lower nonfundamental steady state is stable as it has 
exchanged its stability properties with the fundamental steady state. We can express 
the stability domain of the upper nonfundamental steady state by 𝛽S < 𝛽 < 𝛽N,U . 
Since 𝛽N,U < 𝛽N,L , the upper nonfundamental steady state is subject to a Nei-
mark–Sacker bifurcation for lower values of speculators’ intensity of choice than 
the lower nonfundamental steady state. However, �N,U may be larger or smaller than 
�T . Importantly, the nonfundamental steady states eventually become unstable and 
give rise to oscillatory dynamics as the term (1 − �)�C increases, independently of 
whether the supply of (outside) shares of the risky asset is zero or positive. Hence, 
an increase in speculators’ intensity of choice may create endogenous asset price 
dynamics, while an increase in policymakers’ wealth tax may re-establish market 
stability.8 We also remark that each of the two nonfundamental steady states gives 
birth to a separate limit cycle when the Neimark–Sacker bifurcation occurs, i.e., 
there are two coexisting attractors, one originating below the fundamental steady 
state and one above it.

To further illustrate our propositions’ economic implications and to explore the 
model’s out-of-equilibrium behavior, we make use of the following base parameter 
setting. As in Brock and Hommes (1998), we assume that r = 0.1 , D = 1 , �2

�
= 0 , 

� = 1 , �2 = 1 , �2
�
= 0 , � = 0.2 , � = 1 and C = 1.9 Since our main focus rests again 

on parameters � , � and S , we discuss in Fig. 2 the effects of rising values of parame-
ter � on the properties of the risky asset’s price for different constellations of param-
eters � and S . The top left panel of Fig. 2 shows a bifurcation diagram for parameter 
� , assuming that � = 0 and S = 0 . Different colors mark the dynamics of the risky 
asset price for two different sets of initial conditions, selected slightly above and 
slightly below the model’s fundamental steady state. Obviously, the price of the 
risky asset converges towards its fundamental value P1 = F = 10 as long as the fun-
damental steady-state stability condition holds. At the pitchfork bifurcation, i.e., at 
�P
�=0, S=0

= 2.398 , the fundamental steady state becomes unstable and two locally 
stable nonfundamental steady states are born. Depending on the initial conditions, 
the risky asset is then either overvalued or undervalued. Note that the risky asset’s 

8  Interestingly, the gap between �N,U and �N,L increases in line with the supply of (outside) shares of the 
risky asset and decreases with the wealth tax. As a result, we may observe that �N,U becomes smaller 
than �T when S grows. See Appendix A5 for more details.
9  Essentially, the parameter setting by Brock and Hommes (1998) reflects a yearly time scale, a reason-
able choice to model real-world wealth taxation. Since simulated model dynamics only match the behav-
ior of actual financial markets in a qualitative sense, future work may try to bring it closer to the data.
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mispricing increases in line with speculators’ intensity of choice. A Neimark–Sacker 
bifurcation occurs at �N

�=0, S=0
= 3.331 . The two nonfundamental steady states then 

become unstable and give rise to two coexisting limit cycles, one located above the 
risky asset’s fundamental value and one below it. Note that the limit cycles’ ampli-
tudes increase in line with speculators’ intensity of choice.

The bottom left panel of Fig. 2 repeats this experiment for � = 0.08 . While such a 
tax rate may be regarded as relatively high, it enables us to better visualize the impli-
cations of wealth taxes. Of course, similar results can be observed for lower values 
of parameter � , but they are less pronounced. While the risky asset’s fundamental 
steady state is still given with P1 = F = 10 , the pitchfork and the Neimark–Sacker 
bifurcation occur at higher values of speculators’ intensity of choice, namely at 

Fig. 2   Bifurcation diagrams for parameter � and different constellations of parameters � and S . Base 
parameter setting, except that � = 0 and S = 0 (top left), � = 0.08 and S = 0 (bottom left), � = 0 and 
S = 0.05 (top right) and � = 0.08 and S = 0.05 (bottom right). Different colors mark the dynamics of the 
risky asset price for two different sets of initial conditions, selected slightly above and slightly below the 
model’s fundamental steady state
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�P
�=0.08, S=0

= 2.6066 and �N
�=0.08, S=0

= 3.621 . Within this interval, the risky asset’s 
mispricing is lower than in the absence of wealth taxes. The stabilizing effect of 
wealth taxes also becomes apparent by comparing the amplitudes of the risky asset’s 
oscillatory price behavior. For a given value of parameter � , the risky asset fluctu-
ates less wildly when policymakers tax speculators’ wealth. We can thus conclude 
that wealth taxes may also stabilize the risky asset market when it is out of 
equilibrium.

The top right panel of Fig. 2 shows a bifurcation diagram for parameter � , assum-
ing that � = 0 and S = 0.05 . While a positive supply of (outside) shares of the risky 
asset does not affect the local stability domain of the risky asset’s fundamental 
steady state, i.e., �P

�=0, S=0
= �T

�=0, S=0.05
= 2.398 , the risk premium of the risky asset 

becomes positive, resulting in P1 = F = 9.5 . At the transcritical bifurcation, we fur-
thermore have that P2 = 10 and P3 = P1 = 9.5 . Note that the jump from P1 to P2 at 
the transcritical bifurcation is (always) given by the risk premium, that is, in our 
case, by RP = 0.5 . As parameter � increases, the distance between P1 and P2 , P1 
and P3 and, consequently, P2 and P3 increases.10 A Neimark–Sacker bifurcation of 
the upper nonfundamental steady state, leading to oscillatory price dynamics above 
P1 = 9.5 , occurs at �N,U

�=0, S=0.05
= 3.074 , while the Neimark–Sacker bifurcation of the 

lower nonfundamental value occurs at �N,L
�=0, S=0.05

= 3.598 , leading to oscillatory 
price dynamics below P1 = 9.5 . Note that the Neimark–Sacker bifurcation for � = 0 
and S = 0 is located between these two values, i.e., 
𝛽N,U
𝜏=0, S=0.05

< 𝛽N
𝜏=0, S=0

< 𝛽N,L
𝜏=0, S=0.05

 . As in the case of S = 0 , an increase in specula-
tors’ intensity of choice amplifies the limit cycles’ amplitudes and thus has to be 
regarded as destabilizing.

The bottom right panel of Fig. 2 reveals how the picture changes when policy-
makers impose a wealth tax by setting � = 0.08 . First, the imposition of a wealth tax 
increases the risky asset’s fundamental value to P1 = F = 9.54 and enlarges its local 
stability domain. Indeed, the transcritical bifurcation now occurs at 
�T
�=0.08, S=0.05

= �P
�=0.08, S=0

= 2.606 , yielding, at that position, P2 = 10 and 

P3 = P1 = 9.54 . Between the transcritical and the Neimark–Sacker bifurcation, the 
nonfundamental steady states are closer to the fundamental steady state when poli-
cymakers tax speculators’ wealth. The Neimark–Sacker bifurcation occurs either at 
�N,U
�=0.08, S=0.05

= 3.352 (upper branch of the nonfundamental steady state) or at 

�N,L
�=0.08, S=0.05

= 3.899 (lower branch of the nonfundamental steady state), leading 
again to oscillatory price dynamics, albeit with lower amplitudes than in the absence 
of wealth taxes. Analog to the case S = 0 , we have that 
𝛽N,U
𝜏=0.08, S=0.05

< 𝛽N
𝜏=0.08, S=0

< 𝛽N,L
𝜏=0.08, S=0.05

.

10  Since the bifurcation diagrams’ initial conditions are located in the neighborhood of the fundamental 
steady state, the model’s saddle-node bifurcation does not materialize in the top right (and bottom right) 
panel of Fig. 2. We numerically explore a number of intriguing implications associated with the model’s 
saddle-node bifurcation in Appendix A.5.
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4 � Discussion

Once again, we remark that policymakers may—e.g., for redistributive purposes—
generate substantial revenues by taxing speculators’ wealth. However, policymakers 
need to understand how wealth taxes may affect the dynamics of financial markets. 
Our analytical and numerical results presented in the previous section highlight the 
stabilizing potential of wealth taxes. In this section, we discuss a number of more 
subtle issues associated with wealth taxes, occurring near the model’s bifurcations.

4.1 � Qualitative versus quantitative effects

Qualitatively, our results suggest that wealth taxes have a stabilizing effect on the 
dynamics of speculative asset prices. Quantitatively, however, the stabilizing effect 
of wealth taxes may be regarded as weak. In the top right panel of Fig.  2, for 
instance, we observe for � = 0 and S = 0.05 that the upper nonfundamental steady 
state becomes unstable at �N,U

�=0,S=0.05
= 3.074 . To drive the risky asset’s behavior 

from a position slightly right of the Neimark–Sacker bifurcation, say � = 3.1 , to a 
position slightly left of the transcritical bifurcation, policymakers need to impose a 
wealth tax of about 23 percent (since 
(1 − 𝜏)𝛽C = (1 − 0.23) ∗ 3.1 ∗ 1 = 2.387 < 2arctanh

[
2r+𝜙−𝜒

𝜒+𝜙

]
= 2.3979 , the mod-

el’s fundamental steady state would then be locally stable). While the imposition of 
a 23 percent wealth tax seems to be unrealistic, note that lower wealth taxes contrib-
ute to a reduction of the risky asset’s mispricing, too.

However, there are market conditions where the imposition of a tiny wealth tax 
may have pronounced effects on the behavior of the risky asset. For instance, the 
upper nonfundamental steady state of the risky asset price may already imply sub-
stantial mispricing when it is born. Policymakers may suppress this mispricing by 
imposing a rather small wealth tax. In the top line of panels in Fig. 3, we illustrate 
this phenomenon in the presence of different noise levels. The magenta line depicts 
the evolution of the price of the risky asset in the time domain for our base parame-
ter setting, except that � = 2.45 , S = 0.05 , �� = 0.01 and � = 0 . In the absence of 
wealth taxes, the price of the risky asset fluctuates—after a transient period and ini-
tial conditions selected slightly above the unstable fundamental steady state P1 = 9.5

—around its locally stable upper nonfundamental steady state P2 = 10.24 . Clearly, 
the upper (locally stable) nonfundamental steady state starts to exist as parameter � 
crosses �S

�=0,S=0.05
= 2.246 , while the fundamental steady state becomes unstable as 

parameter � crosses �T
�=0,S=0.05

= 2.398 . The cyan line shows the dynamics of the 
risky asset price for � = 0.08 (to be able to visualize our results, we adhere to our 
choice of � = 0.08 , although smaller wealth taxes may produce similar effects). In 
the presence of wealth taxes, the price of the risky asset fluctuates around its new 
and slightly elevated locally stable fundamental steady state P1 = 9.54 . In fact, we 
now have that 𝛽 = 2.45 < 𝛽S

𝜏=0.08,S=0.05
= 2.454 < 𝛽T

𝜏=0.08,S=0.05
= 2.606 , i.e., the 

imposition of wealth taxes has not only stabilized the fundamental steady state, but 
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also suppressed the saddle-node bifurcation’s emergence. The top right panel of 
Fig. 3, based on �� = 0.04 , suggests that this observation is robust with respect to 
higher noise levels. Without question, the imposition of small wealth taxes may sig-
nificantly reduce the risky asset’s mispricing if they prevent the emergence of a sad-
dle-node bifurcation.

4.2 � Volatility versus mispricing

The left panels of Fig. 2 indicate that, when the imposition of wealth taxes reverses 
the Neimark–Sacker bifurcation, oscillatory price dynamics die out and the price 
of the risky asset converges towards one of the two nonfundamental steady states. 
While the volatility of the risky asset is zero at the nonfundamental steady states, 

Fig. 3   Asset price dynamics for different constellations of parameters � , � , S and �� . Base parameter set-
ting, except that � = 2.45 , S = 0.05 and �� = 0.01 (top left), � = 2.45 , S = 0.05 and �� = 0.04 (top right), 
� = 3.6 , S = 0 and �� = 0.01 (bottom left) and � = 3.6 , S = 0 and �� = 0.04 (bottom right). Different 
colors mark the dynamics of the risky asset price for different tax rates (magenta: � = 0 , cyan: � = 0.08)
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it may display marked mispricing. Unfortunately, this constant mispricing may be 
larger than the average mispricing implied by the risky asset’s oscillatory price 
dynamics, although the latter clearly involves excess volatility. In the bottom line of 
panels in Fig. 3, we explore this issue in more detail. The magenta line in the bot-
tom left panel of Fig. 3 shows how the price of the risky asset develops for our base 
parameter setting, except that � = 3.6 , S = 0 , �� = 0.01 and � = 0 . Due to exog-
enous noise, the dynamics of the risky asset price is characterized by alternating 
bull and bear market regimes. While the volatility of the risky asset appears to be 
quite high, the price of the risky asset fluctuates, on average, around its fundamental 
value. The cyan line shows the dynamics of the risky asset price for � = 0.08 . While 
the volatility of the risky asset appears to be much lower, the price of the risky asset 
fluctuates, on average, above its fundamental value. This may not be in the interest 
of policymakers. The bottom right panel of Fig. 3, based on �� = 0.04 , suggests that 
this effect may diminish for higher noise levels. Due to the quadrupling of the exog-
enous noise, the price of the risky asset fluctuates alternately around its upper and 
lower nonfundamental steady state, a fact that brings its average price much closer 
towards its fundamental value.

5 � Conclusions

As reported by Galbraith (1994), Kindleberger and Aliber (2011) and Shiller (2015), 
financial markets regularly display severe bubbles and crashes, frequently associ-
ated with harmful consequences for the real economy. In the aftermath of financial 
and economic meltdowns, various voices from the general public regularly call for 
the imposition of a tax on speculators’ wealth to accommodate for the economic 
damage caused by speculators’ trading frenzy. The issue of economic inequality and 
wealth redistribution has become a heatedly discussed topic, especially since the 
publication of Piketty (2014). While it is obvious that policymakers may raise a sub-
stantial amount of revenue by taxing speculators’ wealth, it seems to us that the rela-
tionship between speculative asset price dynamics and wealth taxes deserves deeper 
academic scrutiny. In particular, policymakers need to know whether the imposition 
of such a tax may further endanger the stability of financial markets. If that were the 
case, taxing speculators’ wealth might not be a good idea.

To address this question, we extend the seminal asset-pricing model by Brock 
and Hommes (1998) in two directions. First, we allow policymakers to tax specula-
tors’ wealth. Second, we consider that the supply of (outside) shares of the risky 
asset is positive. Overall, we find that higher wealth taxes increase the risky asset’s 
fundamental value by reducing its risk premium and, fortunately, tend to foster 
its stability. The latter result is due to the fact that wealth taxes reduce the fitness 
disadvantage of costly stabilizing fundamental expectation rules relative to cheap, 
destabilizing expectation rules, thereby promoting the use of stabilizing expectation 
rules. While the stabilizing effect of wealth taxes may be weak in general, the impo-
sition of a small wealth tax may have a strong positive effect if it can prevent the 
emergence of a saddle-node bifurcation. If one of the risky asset’s nonfundamen-
tal steady states has just undergone a Neimark–Sacker bifurcation, however, wealth 
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taxes may reduce the risky asset’s volatility at the expense of its mispricing. In such 
an environment, policymakers may not want to impose wealth taxes. To sum up, our 
analysis suggests that the imposition of a tax on speculators’ wealth is unlikely to 
pose a threat to the stability of financial markets—on the contrary, it seems that we 
could expect a (weak) stabilizing effect from such a policy.

We conclude our paper by pointing out a number of avenues for future research. 
As in Brock and Hommes (1998), we assume that speculators’ variance beliefs are 
constant. Since wealth taxes alter the risky asset’s dynamics, it would seem worth-
while to endogenize this model component. Gaunersdorfer (2000) and Chiarella 
et  al. (2007) provide useful starting points for such an endeavor. Relatedly, Brock 
and Hommes (1998) focus on the case in which chartists believe in the persistence 
of bull and bear markets. Alternatively, one could consider, for instance, chartists 
using an expectation rule that extrapolates past price changes. Hommes (2011) pro-
vides an inspiring overview of relevant expectation rules. Furthermore, one could 
take into account utility functions that condition speculators’ demand for (or market 
impact on) the risky asset on their wealth levels, as elaborated in Chiarella et  al. 
(2006, 2009). Taking our paper literally, we study the effects of a global wealth tax. 
Against this backdrop, it seems worthwhile to consider an asset-pricing model that 
contains a domestic and a foreign financial market to be able to study the issue of 
wealth-induced market interactions, crowding out effects and capital flight. Relat-
edly, one could explore how wealth taxes affect the dynamics of financial markets 
when speculators are subject to herding behavior and how this would spill over to 
the real economy. See Chiarella et  al. (2005) and Cavalli et  al. (2017, 2018) for 
starting points. Finally, one could study agent-based versions of our model, e.g., by 
following Schmitt’s (2020) agent-based adaptation of Brock and Hommes’ (1998) 
asset-pricing model, and keep track of speculators’ individual wealth levels, thereby 
being able to relax the assumption that their wealth is always positive or that the tax 
rate on speculators’ wealth tax is constant. Hopefully, our paper will stimulate more 
work in this direction and provide help to policymakers.

Appendix

In this appendix, we compute the model’s fundamental and nonfundamental steady 
states, study their local stability domains and present a number of additional simula-
tions. Note that we follow a similar line of reasoning as Brock and Hommes (1998), 
Hommes et al. (2005) and Anufriev and Tuinstra (2013), although we extend their 
analysis by considering wealth taxes.

Appendix A1: The model’s fundamental and nonfundamental steady states

In order to find the model’s fundamental steady state, we set 
P1 = F = Pt = Pt−1 = yt−1 and m1 = mt = mt−1 . Map (18) then immediately reveals 
that the model’s fundamental steady state is given by
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Since AF
1
− AC

1
= −(1 − �)C , we can directly conclude from (16) and (17) that 

NC
1
=

1

1+exp[−(1−�)�C]
 and NF

1
=

1

1+exp[(1−�)�C]
 . Straightforward computations further-

more reveal that ZC
1
= S = Ŝ∕N , ZF

1
= S = Ŝ∕N and NC

1
N ZC

1
+ NF

1
N ZF

1
= Ŝ.

To derive the model’s nonfundamental steady states NFSS2,3 = (P2,3, y2,3,m2,3 ), 
we solve the first equation of map (18) for m2,3 = mt and obtain

Substituting (20) into the third equation of map (18), and solving for 
P2,3 = Pt = Pt−1 = yt−1 yields

Of course, y2,3 = P2,3 . From (20), we can also conclude that  NC
2,3

=
�+r

�+�
 and 

NF
2,3

=
�−r

�+�
 . Furthermore, we have that AF

2,3
− AC

2.3
= −

2arctanh[
2r+�−�

�+�
]

�
 . Since 

ZC
2,3

=
S(�+r)

2r
±

Y(�−r)

(1−�)��2
 and ZF

2,3
=

S(r−�)

2r
±

Y(−(�+r))

(1−�)��2
 with 

Y ∶=

√(
(1−�)��2S

2r

)2

+
��2

(
(1−�)�C−2 arctanh

[
2r+�−�

�+�

])

r�(�+�)
 , we can conclude that 

NC
2,3

N ZC
2,3

+ NF
2,3

N ZF
2,3

= Ŝ is satisfied.

For S = 0 , the nonfundamental steady states start to exist when parameter � 

passes �P ∶=
2 arctanh

[
2r+�−�

�+�

]

(1−�)C
 and P2,3 are then symmetrically located around P1 . For 

S > 0 , the nonfundamental steady states already start to exist when parameter � 

crosses 𝛽S ∶=
2 arctanh

[
2r+𝜙−𝜒

𝜒+𝜙

]

(1−𝜏)C+r(𝜒+𝜙)𝜆𝜎2

(
(1−𝜏)S

2r

)2 < 𝛽T = 𝛽P . Between 𝛽S < 𝛽 < 𝛽T , we have the 

ordering P2 > P3 > P1 , while for 𝛽 > 𝛽T , we can conclude that P2 > P1 > P3 . At 
� = �S , it holds that P2 = P3 = P1 + 0.5RP . At � = �T , we have that P2 = P1 + RP 
and P1 = P3.

Appendix A2: The fundamental steady‑state local stability domain

To study the local stability properties of the model’s fundamental steady state, we 
have to evaluate the Jacobian matrix of (18) at FSS1 , yielding

(19)

FSS1 =
(
P1, y1,m1

)
=

(
D − (1 − �)��2

S

r
,
D − (1 − �)��2

S

r
, tanh

[
−
(1 − �)�C

2

])
.

(20)m2,3 = −
2r + � − �

� + �
.

(21)

P2,3 = P1 +
(1 − �)��2S

2r
±

√√√√√
(
(1 − �)��2S

2r

)2

+
��2((1 − �)�C − 2arctanh[

2r+�−�

�+�
])

r�(� + �)
.
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from which we get the characteristic polynomial

Since two eigenvalues of (23) are always equal to zero, i.e., �1 = 0 and �2 = 0 , 
the stability of the model’s fundamental steady state hinges on the remaining (posi-
tive) eigenvalue �3 = A =

2+�−�+(�+�)tanh[ (1−�)�C
2

]

2(1+r)
 . Hence, the model’s fundamental 

steady state is locally stable if the third eigenvalue is smaller than one, resulting in

Note that the left-hand side of (24) indicates for S = 0 the position of the pitch-
fork bifurcation, while for S > 0 it indicates the position of the transcritical bifurca-
tion, as anticipated by the expressions �P and �T in Appendix A2.

Recall furthermore that m1 = NF
1
− NC

1
= −tanh[

(1−�)�C

2
] and NF

1
+ NC

1
= 1 so 

that 2NF
1
= 1 + m1 = 1 − tanh[

(1−�)�C

2
] and 2NC

1
= 1 − m1 = 1 + tanh[

(1−�)�C

2
] . Since 

eigenvalue �3 can thus be expressed as 

�3 =
2+�(1+tanh

[
(1−�)�C

2

]
)−�(1−tanh

[
(1−�)�C

2

]
)

2(1+r)
=

1+NC
1
�−NF

1
�

1+r
 , we can also check the funda-

mental steady-state stability domain by studying NC
1
𝜒 − NF

1
𝜙 < r.

Appendix A3: The nonfundamental steady‑state local stability domain for S = 0

Tedious computations reveal that the characteristic polynomial of the Jacobian 
matrix of map (19) computed for S = 0 at the nonfundamental steady states NFSS2,3 
is given by

where X = −
(r+�)(r−�)((1−�)�C−2 arctanh

[
2r+�−�

�+�

]
)

r(1+r)(�+�)
 . At the pitchfork bifurcation, we have 

(1 − �)�C = 2arctanh
[
2r+�−�

�+�

]
 . Accordingly, X = 0 and (25) yields the three eigen-

values �1 = 0 , �2 = 0 and �3 = 1 . If parameter � is increased slightly, then X becomes 
slightly positive and (25) yields three eigenvalues inside the unit circle, i.e., the non-
fundamental steady states NFSS2,3 are initially stable. For � → ∞ , however, we 

(22)J(FSS1) =

⎡
⎢⎢⎢⎣

2+�−�+(�+�)tanh[ (1−�)�C
2

]

2(1+r)
0 0

1 0 0

0 0 0

⎤
⎥⎥⎥⎦
,

(23)P(�) = �2(� − A) = 0.

(24)𝛽 <
2arctanh[

2r+𝜙−𝜒

𝜒+𝜙
]

(1 − 𝜏)C
.

(25)P(�) = �3 − �2(1 + X) + �(X(1 + r)) + rX = 0,
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observe that X → ∞ , implying that at least one of the eigenvalues must cross the unit 
circle at some critical value for � . Let us denote this value by �N . As we have 
P(1) = 2Xr > 0 and P(−1) = −2 − 2X < 0 , we can conclude that two eigenvalues 
must be complex, the basis for a Neimark–Sacker bifurcation that gives rise to cycli-
cal dynamics.11 Importantly,X depends on the term (1 − �)�C . Therefore, policymak-
ers may reverse the Neimark–Sacker bifurcation by increasing parameter �.

Appendix A4: The nonfundamental steady‑state local stability domain for S > 0

Even more tedious computations reveal that the characteristic polynomial of the Jac-
obian matrix of map (18) computed for S > 0 at the nonfundamental steady states 
NFSS2,3 may be expressed by

where D2,3 = P2,3 − P1 =
(1−�)��2S

2r
±

√(
(1−�)��2S

2r

)2

+
��2((1−�)�C−2arctanh[

2r+�−�

�+�
])

r�(�+�)
 and 

G = −
�(r+�)(r−�)

(1+r)��2
 . At the saddle-node bifurcation, we have P2 = P3 . Accordingly, 

D2,3 = P2,3 − P1 =
(1−�)��2S

2r
 and (26) yields the three eigenvalues �1 = 1 and 

�2,3 = G

(
(1−�)��2S

)2

8r2
±

√
G2

4

(
(1−�)��2S

2r

)4

− G

(
(1−�)��2S

)2

4r
 . If parameter � is 

increased slightly, one of the nonfundamental steady states should become unstable 
(the saddle), while the other one should become stable (the node). In fact, it seems 
that between �S and �T the eigenvalue �1 is at least initially real and smaller than one 
for NFSS2 and real and larger than one for NFSS3.

At the transcritical bifurcation, we have P1 = P3 . Hence, D2,3 = 0 and (26) yields 
the three eigenvalues �1 = 1 and �2,3 = 0 . As shown in Appendix A.2, the fundamen-
tal steady state becomes unstable for 𝛽 > 𝛽T and NFSS3 should therefore be stable for 

𝛽T < 𝛽 < 𝛽N,U . For � → ∞ , D2,3 converge to (1−�)��
2S

2r
±

√(
(1−�)��2S

2r

)2

+
(1−�)C��2

r(�+�)
 , 

while G converges to plus infinity, implying that at least one of the eigenvalues must 
cross the unit circle at some critical value for � . Moreover, this critical value for � 
must be smaller for NFSS2 than for NFSS3 . Denoting these values by �N,U and �N,L , 
we have 𝛽N,U < 𝛽N,L . Furthermore, note that an increase in parameter S extends the 
distance between �N,U and �N,L , while an increase in parameter � causes the opposite. 
As we have P(1) = GD2,3(2rD2,3 − (1 − 𝜏)𝜆𝜎2S) > 0 and 
P(−1) = −2 − 2(GD2,3 − GD2,3(1 − 𝜏)𝜆𝜎2S) < 0 , we can conclude that two 

(26)
P(�) = �3 − �2

(
1 + GD2,3

2
)
+ �

(
GD2,3

2
)
(1 + r) −

(
GD2,3

)
((1 − �)��2S − rD2,3) = 0,

11  Applying the set of stability and bifurcation conditions derived by Lines et  al. (2020) and Gardini 
et al. (2020), we can conclude from the characteristic polynomial (25) that a Neimark–Sacker bifurca-
tion occurs when the inequality 1 − X(1 + r) − (1 + X)rX − (rX)2 > 0 becomes violated, revealing that 

�N =
(�+�)((1+2r)−

√
1+8r(1+r))+4(r+�)(r−�)arctanh

�
2r+�−�

�+�

�

2(1−�)C(r+�)(r−�)
.
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eigenvalues must be complex, giving rise to a Neimark–Sacker bifurcation and oscil-
latory dynamics. Importantly, policymakers may reverse the Neimark–Sacker bifur-
cation by increasing parameter �.

Fig. 4   Coexisting attractors. The top line of panels shows bifurcation diagrams for parameter � , gener-
ated with our base parameter setting, except that S = 0.15 (top left) and S = 0.21 (top right). Red (blue) 
tonalities indicate that � = 0 ( � = 0.08 ). The bottom right panel depicts simulations of the risky asset 
price for our base parameter setting, except that � = 2.35 , � = 0 and S = 0.21 , using different initial con-
ditions. The bottom left panel visualizes the corresponding basins of attraction of the risky asset’s funda-
mental steady state and its limit cycle
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Appendix A5: Coexisting attractors involving the fundamental steady state

One intriguing feature of our model’s bifurcation structure is the possibility that 
the risky asset possesses a locally stable fundamental steady state, which coexists 
with a locally stable upper nonfundamental steady state, an outcome that may 
occur when speculators’ intensity of choice ranges between 𝛽S < 𝛽 < 𝛽T , as dis-
cussed in Appendix A4. Note that such a coexistence of attractors may give rise 
to intriguing hysteresis effects. In particular, a tiny change in a model parameter 
may have a drastic (jump) effect on the levels of the model’s steady states that 
cannot easily be reversed by a tiny correction of the same model parameter.12 
However, Appendix A4 also reveals that the critical Neimark–Sacker bifurcation 
value �N,U shrinks with the supply of (outside) shares of the risky asset. As a 
result, we may even observe that �N,U falls short of �T when S becomes suffi-
ciently large.

The top left panel of Fig. 4 shows bifurcation diagrams for parameter � , gener-
ated with our base parameter setting, except that S = 0.15 . Red (blue) tonalities 
indicate that the wealth tax is equal to � = 0 ( � = 0.08 ). Recall from Sect. 3 that 
�T and �N,U are given for S = 0.05 by 2.398 and 3.074 when � = 0 and by 2.606 
and 3.352 when � = 0.08 . For S = 0.15 , however, these values are given by 2.398 
and 2.594 for � = 0 and by 2.606 and 2.850 for � = 0.08 , indicating a leftward 
movement of �N,U in the bifurcation diagrams. The top left panel of Fig. 4 repeats 
this exercise for S = 0.21 . We now face a situation in which �N,U , with 2.333, 
is smaller than �T , with 2.398. The same is true for � = 0.08 . For convenience, 

Table 1   Critical bifurcation 
values for parameter �

Base parameter setting, except that parameters S and � are specified 
as above

�S �P �T �N �N,U �N,L

S = 0 , � = 0 – 2.398 – 3.331 – –

S = 0 , � = 0.08 – 2.606 – 3.621 – –

S = 0.05 , � = 0 2.380 – 2.398 – 3.074 3.598

S = 0.05 , � = 0.08 2.589 – 2.606 – 3.352 3.899

S = 0.15 , � = 0 2.246 – 2.398 – 2.594 4.148

S = 0.15 , � = 0.08 2.454 – 2.606 – 2.850 4.472

S = 0.21 , � = 0 2.118 – 2.398 – 2.333 4.482

S = 0.21 , � = 0.08 2.324 – 2.606 – 2.575 4.820

12  Hysteresis effects in economic models are also studied by Agliari et al. (2005, 2006, 2016). Further-
more, Agliari et al. (2016) show that coexisting attractors may lead to path-dependent dynamic regimes, 
i.e., initial conditions may decide whether the dynamics of financial markets settles on a calm or turbu-
lent attractor. See Schmitt et al. (2017) for a deeper discussion of the economic consequences of hyster-
esis effects.
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we report in Table 1 all critical bifurcation values discussed in connection with 
Figs. 2 and 4. Once again, the stabilizing effect of wealth taxes is clearly visible.

Note that the bifurcation diagrams depicted in the top right panel of Fig.  4 
indicate that the fundamental steady state coexists with a limit cycle when specu-
lators’ intensity of choice is somewhat lower than �T (the aforementioned hyster-
esis effects may thus also involve an abrupt jump to a limit cycle). The bottom 
right panel of Fig. 4 confirms this finding by plotting the evolution of the risky 
asset’s price in the time domain for two different sets of initial conditions, using 
our base parameter setting, except that � = 2.35 , � = 0 and S = 0.21 . The bottom 
left panel of Fig. 4 visualizes the corresponding basins of attraction of the risky 
asset’s fundamental steady state and its limit cycle. Further simulation reveals 
that the basin of attraction of the limit cycle first shrinks and finally vanishes as 
policymakers increase the wealth tax. If the tax rate is set sufficiently high, the 
fundamental steady state even becomes the model’s unique steady state.
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