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Background
Reducing energy consumption is the best sustainable long-term answer to the challenges 
associated with increasing demand for energy, fluctuating oil prices, uncertain energy sup-
plies, and fears of global warming (European commission 2008; Wenig et al. 2015). Since 
the household sector represents around 30 % of the final global energy consumption (Inter-
national Energy Agency 2014), customized energy efficiency measures can contribute sig-
nificantly to the reduction of air pollution, carbon emissions, and economic growth. There 
is a wide range of potential courses of action that can encourage energy efficiency in dwell-
ings, including flexible pricing schemes, load shifting, and direct feedback mechanisms 
(Sodenkamp et al. 2015). The major challenge is however to decide upon the appropriate 
energy efficiency measures in the circumstances when household profiles are unknown.

Abstract 

This paper presents a supervised classification model, where the indicators of correla-
tion between dependent and independent variables within each class are utilized 
for a transformation of the large-scale input data to a lower dimension without loss 
of recognition relevant information. In the case study, we use the consumption data 
recorded by smart electricity meters of 4200 Irish dwellings along with half-hourly 
outdoor temperature to derive 12 household properties (such as type of heating, floor 
area, age of house, number of inhabitants, etc.). Survey data containing characteristics 
of 3500 households enables algorithm training. The results show that the presented 
model outperforms ordinary classifiers with regard to the accuracy and temporal char-
acteristics. The model allows incorporating any kind of data affecting energy consump-
tion time series, or in a more general case, the data affecting class-dependent variable, 
while minimizing the risk of the curse of dimensionality. The gained information on 
household characteristics renders targeted energy-efficiency measures of utility com-
panies and public bodies possible.
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In recent years, several attempts have been made toward mechanisms of recogni-
tion of energy-consumption-related dwelling characteristics. Particularly, unsupervised 
learning techniques group the households with similar consumption patterns in clusters 
(Figueiredo et  al. 2005; Sánchez et  al. 2009). Indeed, interpretation of each cluster by 
an expert is required. On the other hand, the existing supervised classification of pri-
vate energy users relies upon the analysis of consumption curves and survey data (Beckel 
et al. 2013; Hopf et al. 2014; Sodenkamp et al. 2014). Hereby, the average prediction fail-
ure rate with the best classifier (support vector machine) exceeds 35 %. The reasons for 
this low performance seem to stem from the fact that energy consumption is generally 
assessed in relation to a number of other relevant variables, such as economic, social, 
demographic and climatic indices, energy price, household characteristics, residents’ 
lifestyle, as well as cognitive variables, such as values, needs and attitudes (Beckel et al. 
2013; Santos et al. 2014; Elias and Hatziargyriou 2009; Santin 2011; Xiong et al. 2014). 
Practically, one can include all prediction-relevant data, independently on its intrinsic 
relationships, into a classification task in the form of features. This leads, however, to a 
high spatio-temporal complexity, and incurs a significant risk of curse of dimensionality.

In predictive analytics, the classification (or discrimination) problem refers to the 
assignment of observations (objects, alternatives) into predefined unordered homogene-
ous classes (Zopounidis and Doumpos 2000; Carrizosa and Morales 2013). Supervised 
classification implies that the function of mapping objects described by the data into cat-
egories is constructed based on so called training instances—data with respective class 
labels or rules. This is realized in a two-step process of, first, building a prediction model 
from either known class labels or using a set of rules, and then automatically classifying 
new data based on this model.

In practice, the problem of finding functions with good prediction accuracy and low 
spatio-temporal complexity is challenging. Performance of all classifiers depends to a 
large extent on the volume of the input variables and on interdependencies and redun-
dancies within the data (Joachims 1998; Kotsiantis 2007). At this point, dimensionality 
reduction is critical to minimizing the classification error (Hanchuan et al. 2005).

Feature selection is the first group of dimensionality reduction methods that identify 
the most characterizing attributes of the observed data (Hanchuan et  al. 2005). More 
general methods that create new features based on transformations or combinations 
of the original feature set are termed feature extraction algorithms (Jain and Zongker 
1997). Indeed, by definition all dimensionality reduction methods result in some loss of 
information since the data is removed from the dataset. Hence it is of great importance 
to reduce the data in a way that preserves the important structures within the original 
data set (Johansson and Johansson 2009).

In environmental and energy studies, the need to analyze large amounts of multivari-
ate data raises the fundamental problem: how to discover compact representations of 
interacting and high-dimensional systems (Roweis and Saul 2000).

The existing prediction methods that treat multi-dimensional data include multi-
variate classification based on statistical models (e.g., linear and quadratic discriminant 
analysis) (Fisher 1936; Smith 1946), preference disaggregation (such as UTADIS and 
PREFDIS) (Zopounidis and Doumpos 2000), criteria aggregation (e.g., ELECTRE Tri) 
(Yu 1992; Roy 1993; Mastrogiannis et  al. 2009), model development (e.g., regression 
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analysis and decision rules) (Greco et al. 1999; Srinivasan and Shocker 1979; Flitman 
1997), among others. The common pitfall of these approaches is that they treat obser-
vations independently, and neglect important complexity issues. Correlation-based 
classification (Beidas and Weber 1995) considers influence between different subsets 
of measurements (e.g., instead of using both subsets correlation between them is com-
puted and is then used instead), but use them as features only. The correlation-based 
classifier also does not consider the possibility of the correlation being dependent on 
class labels.

In this work, we propose a supervised machine learning method called DID-Class 
(Dependent-independent data classification) that tackles magnitudes of interaction (cor-
relation) among multiple classification-relevant variables. It establishes a classification 
machine (probabilistic regression) with embedded correlation indices and a single nor-
malized dataset. We distinguish between dependent observations that are affected by 
the classes, and independent observations that are not affected by the classes but influ-
ence dependent variables. The motivation for such a concept is twofold: first, to enable 
simultaneous consideration of multiple factors that characterize an object of interest 
(i.e., energy consumption affected by economic and demographic indices, energy prices, 
climate, etc.); and second, to represent high-dimensional systems in a compact way, 
while minimizing loss of valuable information.

Our study of household classification is based on the half-hourly readings of smart elec-
tricity meters from 4200 Irish households collected within an 18-month period, survey 
data containing energy-efficiency relevant dwelling information (type of heating, floor 
area, age of house, number of inhabitants, etc.), and weather figures in that region. The 
results indicate that the DID-Class recognizes all household characteristics with better 
accuracy and temporal performance than the existing classifiers.

Thus, DID-class is an effective and highly scalable mechanism that renders broad anal-
ysis of electricity consumption and classification of residential units possible. This opens 
new opportunities for reasonable employment of targeted energy efficiency measures in 
private sector.

The remaining of this paper is organized as follows. “Supervised classification with 
class-independent data” describes the developed dimensionality reduction and classi-
fication method. “Application of DID-Class to household classification based on smart 
electricity meter data and weather conditions” presents application of the model for the 
data. The conclusions are in “Conclusion”.

Supervised classification with class‑independent data
Problem definition and mathematical formulation

Supervised classification is a typical problem of predictive analytics. Given a training set 
N̄ =

{(

x̄1, y1
)

, . . . ,
(

x̄n, yn
)}

 containing n ordered pairs of observations (measurements) 
x̄i with class labels yi ∈ J  and a test set M̄ = {x̄n+1, . . . , x̄n+m} of m unlabeled observa-
tions, the goal is to find class labels for the measurements in the test set M̄.

Let X̄ = {x̄i} be a family of observations, and Y = {yi} be a family of associated true 
labels. Classification implies construction of a mapping function x̄i �→ f (x̄i) of the input, 
i.e. vector x̄i ∈ X̄, into the output, i.e. a class label yi.
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A classification can be either done by a single assignment (only one class label yi is 
assigned to one sample x̄i), or as a probability distribution over J  classes. The latter algo-
rithms are also called probabilistic classifiers.

Some elements of vector x̄i can be differentiated, if they are not related to yi. Let 
S = {si} be a subset of X̄ with si ⊂ x̄i that are statistically independent from Y :

We define a family S of measurements si as independent. Simply put, observations si 
are not influenced by class labels yi. The remaining observations are called dependent, 
and are defined as X = {xi} with xi = {z ∈ x̄i|z /∈ si}.

Independent variables can influence the dependent ones and thus be relevant for pre-
diction. Figure 1 shows an example for this. The two different classes are represented by 
o and x. The x-axis shows the dependent variable, the y-axis the independent variable. 
The objects in blue colour show that the classification with only the dependent variable 
would be impossible. On the other hand using both the dependent and independent data 
it is possible to linearly separate the two classes. For each independent value there are 
two observations with different class labels (i.e., the class label does not depend directly 
on S). On the other hand the class labels change depending on the values X, but only 
with combination of X and S do the classes become linearly separable.

We implement the given notation of dependent and independent variables in our DID-
Class prediction methodology.

A training set N  of DID-Class takes the form of the set of three-tuples:

A test set M is then extended to the ordered pairs:

Figure 2 visualizes relationships between variables in a conventional classification and 
in the DID-Class graphical model.

(1)P(y = j|s = z) = P(y = j),∀j ∈ J , z ∈ {s1, . . . , sn}

(2)N =
{(

x1, s1, y1
)

, . . . ,
(

xn, sn, yn
)}

.

M = {(xn+1, sn+1), . . . , (xn+m, sn+m)}.

X 

S 

Fig. 1  Class partition with independent data and conventional classification
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The DID‑class model

In this section we describe the proposed three-step algorithm in detail. In Fig. 3 we have 
attempted to capture the main aspects of the DID-Class model discussed in this section.

Step 1: Estimation of interdependencies between the datasets

DID-class is a method that makes use of the fact of relationships between input variables 
of the classification. Therefore, once the input datasets are available, it is necessary to 
test underlying hypotheses about associations between the variables. Throughout this 
note, the following two assumptions will be made.

Assumption 1  The independent variables S are statistically independent of the class 
labels Y , as defined by (1).

In other words, classification based on si is random.

Assumption 2  Independent variables S affect the dependent variables X and this influ-
ence can be measured or approximated.

Correlation coefficients can be found by solving a regression model of X expressed 
through regressors S and class labels Y .

DID-class relies upon the multivariate generalized linear model, since this formulation 
provides a unifying framework for many commonly used statistical techniques (Dobson 
2001):

X = f (Y )

X = f (Y,S)

a

b

Fig. 2  Relationships between variables in conventional prediction (a) and in DID-Class (b)
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The error term εi captures all relevant but not included in the model variables, because 
they are not observed in the available datasets. dij are the dummy variables for the class 
labels:

The most important assumption behind a regression approach is that an adequate 
regression model can be found (Zaki and Meira 2014). A proper interpretation of a 
linear regression analysis should include the checks of (1) how well the model fits the 
observed data, (2) prediction power, and (3) magnitude of relationships.

1.	 Model fit Depending on the choice of forecasting model and problem specifics, any 
appropriate quality measure [e.g., coefficient of determination R2 or Akaike informa-
tion criterion (D’Agostino 1986)] can be used to estimate the discrepancy between 
the observed and expected values.

2.	 Generalizing performance The model should be able to classify observations of 
unknown group membership (class labels) into a known population (training 
instances) (Lamont and Connell 2008) without overfitting the training data.

3.	 Effect size If the strength of relationships between the input variables is small, then 
the independent data can be ignored and application of DID-class is not necessary. 

(3)
xi =

∑

j∈J
dijfj(si)+ εi.

dij =
{

1 for yi = j
0 for yi �= j

.

Fig. 3  Overview of the DID-class algorithm
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The effect size is estimated in relation to the distances between classes using appro-
priate indices (e.g., Pearson’s r or Cohen’s f 2).

The functions fj describe how the dependent variables can be calculated from the 
independent ones and class labels. These functions are utilized in later steps of the pre-
sented algorithm to normalize response measures and eliminate predictor variables. The 
unknown functions fj are typically estimated with maximum likelihood approach in 
an iterative weighted least-squares procedure, maximum quasi-likelihood, or Bayesian 
techniques (Nelder and Baker 1972; Radhakrishna and Rao 1995). Thus, a unique fj is set 
in a correspondence to each class j ∈ J . A single relationship model can be built for the 
set of all classes, by adding dummy variables of these classes.

If X linearly depends on S, then (3) can be rewritten as follows:

Correlation coefficients α and β can be calculated using the ordinary least squares 
method. If the relationships are not linear, then a more complex regression model can be 
used. For instance, for the polynomial dependency, variables with powers S can be added 
on the right side of Eq. (4). In this case, networks with mutually dependent variables can 
be taken into account, as shown in Fig. 2.

Step 2: Integration of dependent and independent measurements

In order to take the correlation coefficients revealed on the previous step into consid-
eration, and transform the multivariate input data to a lower dimension without loss of 
classification-relevant information, we normalize the dependent variables with respect 
to the independent ones. Normalization means elimination of changes in the dependent 
measurements that occur due to the shifts in the independent values, and transforma-
tion of X into X ′.

Since the relationships of X and S are different for each class, the normalization is also 
class-dependent. Each measurement xi in the training set N  is normalized according to 
the corresponding class label yi.

Model (3) expresses regression for each single class label. fj are used as the normaliza-
tion functions. The normalized training set takes the following form:

with

Every x′i is the normalized representation of the dependent measurement xi. The 
term fyi(si)− fyi(s1) describes the expected difference between si and s1, by the cho-
sen regression model. Hereby, s1 is the default state and no normalization is needed for 
xi with si = s1. As a result, there are a normalization functions for a class labels. Without 
loss of generality, any value can be chosen as the default value. However, a data-specific 
value may allow for better interpretation of the results.

(4)
xi =

∑

j∈J
dij(αj + βj × si)+ εi.

(5)N ′ =
{(

x′1, y1
)

, . . . ,
(

x′n, yn
)}

x′i = xi − fyi(si)+ fyi(s1).
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Figure 4 provides a simple example for the normalization, where dependent measure-
ments are time series that must be classified between two categories. Additionally, there 
is a discrete independent variable with 3 possible values. In this case, the normalization 
functions can be computed as the difference of the time series.

Step 3: Classification

Once all classification-relevant input datasets are integrated into one normalized set, it 
can be used as an input for a probabilistic classifier (further referred to as C) that returns 
distribution probability over the set of class labels.

To enable prediction of the class for a new observation it is necessary to normalize 
its value. The challenge is however to choose the appropriate normalization function fj 
from the a functions constructed on the step 1. But since the class labels for the test data 
are unknown, there is no a priori knowledge on which normalization function should be 
used. It is possible to apply any fj, but the classification is more likely to be successful if 
the correct fj was chosen (i.e., the test data belongs to the class from which the normali-
zation function was derived). Therefore, DID-class tests all functions for a new observa-
tion and chooses the solution with the highest probability for each individual class. After 
that, the test-set-measurement is transformed and classified a times. Finally, the averages 
of the resulting probabilities for each class are derived. The observation belongs to the 
class with the highest resulting probability.

The prediction process is formally described below.
A normalized measurement is derived for each unlabeled element and each class. The 

test set takes the following form:

where

This transformed test set is used as in input of the trained probabilistic classifier C that 
is chosen at the beginning of Step 3. Its output is a probability vector of a values for each 

{xj
′

i }i∈{n+1,...,m}, j∈J

x
j′

i = xi − fj(si)+ fj(s1).

yi =1 yi =2

si=1

si=2

si=3

f1(2) – f1(1) =
x2 – x1

f2(2) – f2(1) = 
x5 – x4

x1

x2

x3

x4

x5

x6

f1(3) – f1(1) =
x3 – x1

f2(3) – f2(1) = 
x6 – x4

Class labels, Y Normalization functions 

In
de

pe
nd

en
t v

ar
ia

bl
es

, S

Fig. 4  An example of normalization functions construction
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normalized measurement. Thus, the following probability matrix is set to each unlabeled 
value in correspondence:

where pikl designates the probability of element xi to belong to the class l after normali-
zation according to the class k. Prediction of the class label of xj

′

i  is naturally biased for 
j , but this is compensated by the prediction being done for all a classes. The aggregated 
probability for class l is Pi

l =
Σkp

i
kl

a .

This process results in a probabilistic classifier for the measurements from the test set. 
We can also label the measurements as belonging to the class with the greatest prob-
ability. The resulting figures Pi

l are biased probabilities of element i belonging to class 
l , which means that DID-Class should be used as a non-probabilistic classifier. Figure 5 
visualizes an example of the classification step for two class labels.

Temporal complexity of classification depends on the dimension of included variables 
(Lim et al. 2000).

Classification training with DID-Class uses normalized set N ′ with n variables of 
dimension dx. A classification without DID-Class would use the initial training set N , 
with the dimension of dx + ds, where dx and ds stand for the dimensions of variables in X 
and S respectively.

The prediction using DID-Class is done for a× n variables with dimension dx. A clas-
sification without DID-Class would be done for only n variables, but with higher dimen-
sion, namely dx + ds. Hence, DID-Class can perform better or worse than a classifier 
that analyzes all data in its initial form (without correlation information), depending on 
the number of categories a and dimension of independent variables. Particularly, DID-
class is more efficient compared to the algorithms where training complexity is higher 

Pi =
(

pikl

)

{k ,l∈J}

yi = 1 yi = 2 

pi
11 pi

12 

pi
21 pi

22 

yi = ? 

xi

pi
1 = ½ (pi

11 + pi
21) 

pi
2 = ½ (pi

12 + pi
22) 

Unknown 
class 

Independent 
measurement 

si = 2 

xi
1' 

xi
2' 

Normalized
measurement 

for class yi 

Probability of 
belonging to class yi 

Fig. 5  Example of probability distribution over classes for an unlabeled time series calculated by DID-class
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than the prediction complexity, which is valid for the majority of commonly used classi-
fiers (e.g., support vector machines (SVM), Adaboost, Random Forest, Linear Discrimi-
nant Analysis, etc.).

The proposed algorithm is described in Table 1.

Verification of DID‑class

In this section, we show that the proposed methodology yields linearly separable catego-
ries of objects, under the specified conditions.

Theorem 1  Let N  be the training set of a classification problem as described by Eq. (2).

Further suppose that the model for the dependency (3) of S on X is known (i.e., the 
functions fj are known in advance) and let δ be an upper bound on the errors εi in the 
model:

Let then N ′ be the training set normalized with the correct functions (5).
If there exists an index lj for each class label j ∈ J , such that the distance between the 

chosen normalized measurements is greater than 4δ

then the classes in the normalized training set are linearly separable.

(6)δ = max
i

� xi − fyi(si) � .

� x′l1 − x′l2 �> 4δ, ∀l1, l2 ∈
{

lj
}

j∈J , l1 �= l2,

Table 1  The algorithm of DID-Class

Input: training data set {(x1, s1, y1), . . . , (xn , sn , yn)} and test examples {(xn+1, sn+1), . . . , (xn+m , sn+m)}
Output: probability distributions 

{

Pn+1, . . . , Pn+m
}

 over the classes

1. Show that the correlation between independent and dependent measurements exists

2. Show that the independent measurements are not affected by the class labels

3. Compute the influence (fj) of different independent measurements on distinct class labels, by solving the 
generalized linear model

4. xi =
∑

j∈J
dij fj(si)+ εi

5. For each i ∈ {1, . . . , n} compute the normalized measurements:

6. x′i = xi − fyi (si)+ fyi (s1)

7. Create the probabilistic classifier C with the training set 
{(

x′1, y1
)

, . . . ,
(

x′n , yn
)}

8. For each i ∈ {n+ 1, . . . , n+m}
9. For each j ∈ J compute the normalized measurements for unlabelled data as each possible class

10. xj
′

i = xi − fj(si)+ fj(s1)

11. Apply the classifier C to the normalized measurements

12. ∀k ∈ Jletpijk := probability of xj
′

i  belonging to class k

13. Let Pil =
Σkp

i
kl

a  be the probability of xi belonging to class l

14. Return 
{

Pn+1, . . . , Pn+m
}
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Proof  All the normalized measurement of a single class j are contained in the 2δ-neigh-
borhood of the normalized measurement x′lj since, for yi = j: 

This means that every normalized measurement for different classes is contained in a 
convex compact ball of radius 2δ centered on the normalized measurements xlj. The dif-
ferent balls are disjoint since the distance between the centers of the balls is greater then 
4δ, and therefore the distance between balls is greater than 0. Hence there exists a hyper-
plane separating any two classes.� �

An analogous statement can be proven if the model is unknown, but the kind of 
dependency is known. The estimation of errors in this case is inherent to the model. 
Theorem  2 proves this statement for the case of linear dependency. Other regression 
models can be treated in a similar manner.

Theorem 2  Let N be the training set of a classification problem as described by Eq. (2).

Further suppose that the model (3) is unknown (i.e., the functions fj have to be esti-
mated based on the data), and let δ be an upper bound on the error εi in (6).

If there exists an index lj for each class label j ∈ J , such that the distance between the 
chosen normalized measurements is greater than 4

√
nδ

then the classes in the normalized training set are linearly separable.

Proof  Let f ′j  be the estimated functions of the linear model. The sum of squared errors 
for the estimated model is bounded by the sum of squared errors for the actual model: 

Therefore we get an upper bound for a single error in the estimated model:

� x′i − x′lj � =� xi − fj(si)+ fj(s1)− xlj + fj

(

slj

)

− fj(s1) �

=� xi − fj(si)− xlj + fj

(

slj

)

�

≤� xi − fj(si) � + � xlj − fj

(

slj

)

�

≤ δ + δ

= 2δ.

� x′l1 − x′l2 �> 4
√
nδ, ∀l1, l2 ∈

{

lj
}

j∈J , l1 �= l2,

∑

il

� xi − f ′yi(si) �
2≤

∑

i

� xi − f ′yi(si) �
2≤ nδ.

� xi − f ′yi(si) �
2 ≤

∑

i

� xi − f ′yi(si) �
2≤ nδ2

� xi − f ′yi(si) �≤
√
nδ.
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Analogously to the proof of Theorem 1 we can now show, that each normalized meas-
urement of the class j is contained in the 2

√
nδ neighbourhood of the normalized meas-

urement xlj ′ :

This means that every normalized measurement for different classes is contained in a 
convex compact ball of radius 2

√
nδ centered on the normalized measurements xlj. The 

different balls are disjoint since the distance between the centers of the balls is greater 
then 4

√
nδ, and therefore the distance between balls is greater than 0. Hence there exists 

a hyperplane separating any two classes.�  �
We have shown that if (a) Assumptions 1 and 2 are satisfied, (b) regression model 

describing relations of input variables is reasonable, and (c) different classes are far from 
each other, then the normalized training set yielded by DID-Class is a linearly separable 
set.

Application of DID‑Class to household classification based on smart electricity 
meter data and weather conditions
In this section we present a classification of residential units based on smart electric-
ity meter data and weather variables by DID-Class. Results indicate that DID-Class 
outperforms the best existing classifier with regard to the accuracy and temporal 
characteristics.

Data description

Our study is based on three following samples.

(a)	The power consumption data of 30-minutes granularity that originates from the Irish 
Commission for Energy Regulation (CER) (ISSDA. Data from the commission for 
energy regulation 2014). It was gathered during a smart metering trial over a 76-week 
period in 2009–2010, and encompasses 4200 private dwellings. It is a dependent data 
set X, according to the definition given in “Problem definition and mathematical for-
mulation”.

(b)	The respective customer survey data containing energy-efficiency-related attributes 
of households (such as type of heating, floor area, age of house, number of residents, 
employment, etc.). It is a data set of known object categories Y , according to the defi-
nition given in “Problem definition and mathematical formulation”. For the classifica-
tion problem we consider 12 different household properties, which are presented on 
the left hand side of Table 2. The classification is made for each property individually. 
The properties can take different values (“class labels”) that are presented on the right 
hand side of Table 2. For example, each household can be classified as either “electri-

� x′i − x′lj � = � xi − f ′j (si)+ f ′j (s1)− xlj + f ′j

(

slj

)

− f ′j (s1) �

= � xi − f ′j (si)− xlj + f ′j

(

slj

)

�

≤ � xi − f ′j (si) � + � xlj − f ′j

(

slj

)

�

≤
√
nδ +

√
nδ

= 2
√
nδ.
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cal” or “not electrical” with respect to the property “type of cooking facility”. The con-
tinuous values are divided into discrete intervals [e.g., property “age of building” is 
expressed by two alternative class labels “old”(>30 years) and “new” (≤30 years)]. For 
three household properties “age of house”, “floor area” and “number of bedrooms” 
the discrete class labels were defined according to the training data (surveys). For the 
properties “number of residents” and “number of devices”, the classes were defined to 
have a roughly equal distribution of households (Beckel et al. 2013).

(c)	Multivariate weather data, including outdoor temperature, wind speed, and precipi-
tation of 30-min granularity in the investigated region provided by the US National 
Climatic Data Center (NCDC 2014). It is an independent multivariate data set S, 
where S1 = outdoor temperature, S2 = wind speed, and S3 = precipitation.

In the current implementation, we assume that an observation refers to a 1-week data 
trace (including weekend), because it represents a typical consumption cycle of inhabit-
ants. One week of data at a 30-min granularity implies that an input trace contains 336 
data samples for each variable.

Table 2  The properties and their class labels

Household property Classes and their labels

Number of appliances and entertainment devices (N_devices) Low (<8)

Medium (8–11)

High (>11)

Number of bedrooms (N_bedrooms) Very low (1–2)

Low (3)

High (4)

Very high (>4)

Type of cooking facility (cooking) Electrical

Not electrical

Employment of chief income earner (employment) Employed

Not employed

Family (family) Family

No family

Floor area (floor_area) Small (<100 m2)

Medium (100–200 m2)

Big (>200 m2)

Children (children) Children

No children

Age of building (age_house) Old (>30 years)

New (<30 years)

Number of residents (N_residents) Few (<3)

Many (> 2)

Single (single) Single

Not single

Retirement status of chief income earner (retirement) Retired

Not retired

Social class of chief income earner according to NRS social grades (social_class) A or B

C1 or C2

D or E
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Since the CER data set does not contain any facts about household locations or about 
the geographical distribution of households, we calculated the average of independent 
variables over all 25 weather stations in Ireland

Prediction results

In the present study, we split the input data into training and test cases in the proportion 
80–20  %. The training instances are used to estimate the interdependencies between 
electricity consumption and outdoor temperature and then train the classifier. The test 
instances are then used to evaluate accuracy of the classification results.

Step 1: Influence estimation

First, we check if Assumptions 1 and 2 hold for the given variables.

Assumption 1  The condition of independency of weather (S) from household proper-
ties (Y ) is trivially satisfied, since the weather is equal for all dwellings.

Assumption 2  A regression model must be found to approximate the influence of 
weather (S) on energy consumption (X).

A lot of work has been done on electricity demand prediction and therefore also 
modeling of the energy consumption based on external factors (e.g., weather) (Zhongyi 
et al. 2014; Veit et al. 2014; Zhang et al. 2014). In the present study to show the appli-
cation of the method we will construct only a simple linear regression model for elec-
tricity consumption and corresponding outdoor temperature. Previous studies showed 
a major relation of power consumption and temperature (Apadula et al. 2012; Suckling 
and Stackhouse 1983). Therefore, we start constructing a regression based on these two 
variables. In housing situations with air conditioning energy consumption is lowest at 
the temperature range 15–25 °C and increases for both then the temperature increases, 
due to the air conditioning devices and then the temperature decreases, due to heating 
devices. Due to the medium climate in the region under consideration, there are typi-
cally no air conditioners in private households (Besseca and Fouquaub 2008), this is why 
the linear approximation for power consumption as given below is justified.

Results of (7) are summarized in Table  3. The model fit of R2 = 0.13 is acceptable, 
where R2 is the coefficient of determination and is defined as the percentage of total 
variance explained by the model (Radhakrishna and Rao 1995). R2 ∈ [0, 1] and R2 = 1 

(7)X = α + β × S1 + ε.

Table 3  Coefficients in the linear regression model (7)

* Significant at <5 %

** Significant at <1 %

*** Significant at <0.1 %

Coefficient Estimate Standard error Significance index*

α 0.5477 0.00298 ***

β −0.00486 0.000273 ***
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reflects a perfect model fit. Further, we observe that increase of temperature by 1  °C 
leads to a drop in consumption by 0.00486 kWh for an average household, which is only 
0.9  % of the average consumption during the corresponding half-hour period. Hence, 
average diurnal temperature change of 8° leads to an increase of energy consumption by 
7 %. Even a greater seasonal effect is observed between summer and winter, where mean 
differences of up to 15 °C can be expected. This leads to the relative change of 13 % in 
power usage.

The regression results are visualized in Fig. 6. It reflects a negative correlation between 
the consumption and outdoor temperature.

Model (7) has a slight bias for the positive correlation, which can be explained by the 
fact that values of both variables are lower during the night. This is accounted for by 
computing the model for each time stamp separately (i.e., “00:00”, “00:30”,…, “23:30”).

The results are summarized in Table 4. The detailed results are presented in Additional 
file 1.

The temperature impact is highly significant for each hour of the day, but the influence 
is much stronger in the evening hours, and the value of R2 attains the highest value of 
0.7313 between 18:00 and 20:00. This influence is visualized in Fig. 7. Usage of heating 
devices that are active at low temperatures is a probable explanation of this correlation.

Fig. 6  Scatterplot of temperature and energy consumption with regression line

Table 4  Coefficients in model (7) for different times of the day

* Significant at <5 %

** Significant at <1 %

*** Significant at <0.1 %

Time R2 β Sig. Ind.

05:00 0.2142 −0.0016 ***

09:00 0.3691 −0.0069 ***

19:00 0.7135 −0.0391 ***
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Besides the actual air temperature, the apparent temperature is an important indica-
tor affecting energy consumption by individuals. Therefore, we add this influence in the 
model (7). Apparent temperature depends on the relative humidity and wind speed. Due 
to the lack of high-quality observations for relative humidity we only consider a wind 
speed component (S2). As a result, (7) can be rewritten as follows:

The results of (8) are summarized in Table 5. This model improves R2 to 0.2257. The 
coefficients for temperature and wind speed are close, but the standard error is larger. 
Since the typical range of values is smaller for wind speed, its effect size on consumption 
is also smaller.

The half-hour results of model (8) are presented in Table  6. The influence of wind 
speed is much lower than that of the temperature and the coefficients β2 are mostly not 
significant, except evening hours where R2 attains its maximum value.

At the final stage of relationships estimation, we add daily precipitation (S3) to (8). This 
variable has two special properties: first, its values are only available at a daily granu-
larity; second, there are two different kinds of precipitation—rain and snow—that may 
have different effects on energy consumption. Nevertheless, we use an aggregate precipi-
tation variable and compute the following linear model:

(8)X = α + β1 × S1 + β2 × S2 + ε.

(9)X = α + β1 × S1 + β2 × S2 + β3 × S3 + ε.

Fig. 7  Scatterplot of temperature and energy consumption with regression line at 7 p.m

Table 5  Summary of model (10)

* Significant at <5 %

** Significant at <1 %

*** Significant at <0.1 %

Estimate Standard error Sig. Ind.

α 0.5013 0.00405 ***

β1 −0.00589 0.00028 ***

β2 0.00527 0.00031 ***
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The results are summarized in Table 7.
The coefficient β3 for daily precipitation is not significant. The values of daily precipi-

tation vary minimally—between 0 and 0.02 mm per 30 min.
To summarize, we have shown that temperature is a strong predictor of energy con-

sumption. Moreover, the prediction power also depends on the time of the day. Other 
factors, like wind speed and precipitation, are less relevant in predicting energy demand.

Step 2: Integration of dependent and independent measurements

Based on the results of previous step, we choose predictor (7) and consider different 
times of the day.

Further the model (7) is completed with dummy variables for different classes:

We expect the influence of weather to be notably different for at least some class labels 
(e.g., households with large floor area or many residents use more heating energy).

We use mean temperature as the default independent measurement (s1) for normal-
ization. This way the normalized consumption values correspond to the consumption 
expected at mean temperature.

Step 3: Classification

At this step, we compare accuracy and temporal complexity of DID-class with SVM, and 
then with CLASS (Beckel et al. 2013).

1.	 Comparison of DID-class with a baseline classifier.
	 First, we show the advantages of the DID-Class method over a Naïve classification 

with respect to the accuracy and runtime complexity. As a Naïve classification, we 

xi =
∑

j∈J
dij

(

αj + βj × s1i
)

+ εi.

Table 6  Summary of model (8) for different hours

* Significant at <5 %

** Significant at <1 %

*** Significant at <0.1 %

R2 β1 Sig. Ind. for β1 β2 Sig. Ind. for β2

09:00 0.369 −0.0039 *** 0

19:00 0.7387 −0.0223 *** 0.0082 ***

05:00 0.2337 −0.0009 *** 0.0005 ***

Table 7  Result of the complete linear model (9)

* Significant at <5 %

** Significant at <1 %

*** Significant at <0.1 %

Estimate Standard error Sig. Ind.

Α 0.6069 0.00779 ***

β1 −0.0032 0.0001555 ***

β2 0.0049 0.0003382 ***

β3 0.6884 0.6558081
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consider one that simply uses all observation variables as features [i.e., it tries to find 
the classification function f with Y = f(X,S)]. We have chosen SVM as a baseline clas-
sifier for comparison, because it is currently the best-known algorithm for prediction 
of energy-efficiency related characteristics of residential units (Beckel et al. 2013). To 
ensure objective comparison, we first tuned SVM to achieve the best accuracy, and 
only then used this SVM version in the core of DID-class.

	 Since the independent variables (weather) are identical for all households for each 
observation (1 week), considering these variables will not have influence on the single-
week classification results based on a conventional algorithm (with weather taken as 
features). To cope with this challenge, it is possible to include several observations into 
analysis. In our experiments, we used the data from three consecutive weeks for the 
training of both baseline classifier and DID-class. Moreover, we repeated the compari-
son for four different timespans to ensure stability of the results. These (calendar) weeks 
are: 47–49 (November) in 2009, 5–7 (January–February) in 2010, 11–13 (March–April) 
in 2010, and 31–33 (August) in 2010. The comparison results are shown in Table 8. It 
can be seen, that DID-Class performs either better or the same on all runs.

	 For clarity reasons, we calculated the average accuracy on four runs. Table  9 (col-
umns 2–3) indicates that DID-Class achieves better accuracy for 11 out of 12 proper-
ties, and the same accuracy for only one property (“cooking”). In other words, DID-
class reduces the error rate by 2.8 % on average, maximum by up to 5.6 % for the 
property “retirement”.

	 A single experiment computations by SVM took 95 min on average, while the clas-
sification by DID-class on average took 25 min on the same laptop with 1.7 GHz Intel 
Core i7 CPU and 8 GB 1600 Hz RAM. The asymptotic complexity is O(n3) for both 
algorithms, but large dimension of the training set raises the runtime of SVM classi-
fier (Sreekanth et al. 2010).

2.	 Comparison of DID-class with the state-of-the-art household classifier called CLASS 
(Beckel et al. 2013).

Table 8  Results with SVM (S) and SVM-based DID-class (SD)

Italic values indicate the highest classification accuracy

Property Weeks Weeks Weeks Weeks

47–49/09 05–07/10 11–13/10 31–33/10

S SD S SD S SD S SD

Single 80.1 81.1 80.6 81.6 80.4 81.4 79 79.8

N_devices 50.7 50.9 50.8 51 50.7 50.8 50.6 50.8

Cooking 73 73 72.7 72.8 72.5 72.5 73.3 73.3

Family 75 75.8 75.7 76.4 75.9 76.8 75.6 76.3

Children 74 74.6 73.7 74.4 74.7 75.3 73.6 74.1

Age_house 56.7 57.9 57.9 59.2 57.4 58.4 57.1 58.4

Social_class 50.5 50.8 51.8 52.3 51.1 51.3 50.5 50.6

Floor area 62.9 64.1 62.8 64.1 63.6 64.6 61.8 63

N_residents 71.4 72.6 71.3 72.4 69.9 71.1 71.9 73.1

N_bedrooms 48.2 49.2 47.8 48.9 48.6 49.7 49.3 50.3

Employment 66.8 67.8 66.9 67.9 65.9 67 66.2 67.2

Retirement 69.9 71.5 70.1 71.7 71.2 72.8 71.2 72.8
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	 In their work, Beckel et  al. (2013) applied SVM tuned with feature extraction and 
selection. The algorithm run on the calendar week number 2 in 2010. For compari-
son reasons, we use the same data and the same SVM version in the core of DID-
Class.

	 Similarly to the previous case, we repeat the experiment four times and average the 
results (see Tables 9 and 10). The results shown in Table 8 indicate that DID-Class 
improves the classification accuracy on 1–3 % compared to the CLASS algorithm. 
Especially floor area can be predicted more precisely, which seems to be natural 
because a larger household requires more heating at cold temperatures.

	 In both cases, DID-Class performs better.

Conclusion
Findings suggest that targeted feedback doubles the energy savings from smart meter-
ing from 3 percent of conventional systems to 6 percent when targeted feedback is used 
(Loock et al. 2011). This amounts to an additional efficiency gain of about 100 kWh per 
year and household, with its beauty being the scalability to virtually all households with 
of-the-shelf smart metering systems. Moreover, the tools allow for allocating resources 
for energy conservation and load shifting campaigns to households given their charac-
teristics are known.

This research goes beyond the state-of-the-art by providing a method to effectively 
reduce the dimensionality of the consumption data time series and additional power-
usage-relevant data (e.g., weather, energy price, GDP, holidays and weekends, etc.) while 
minimizing information losses and enhancing accuracy of results, which forms a corner 
stone of subsequent policy analysis through personalized smart-metering-based inter-
ventions on a usable level.

The satisfactory performance of the DID-Class method in the validation datasets illus-
trates its ability to classify potentially any household equipped with smart electricity 

Table 9  The average classification results as accuracy in  % for each class

Italic values indicate the highest classification accuracy

Property Comparison with trivial approach Comparison with the best known 
household classifier

SVM DID-Class with SVM CLASS DID-class with CLASS

Single 79.9 80.8 83.3 83.5

N_devices 50.6 50.8 52.9 53.5

Cooking 72.9 72.9 72.7 73

Family 75.1 75.9 77.1 77.6

Children 73.9 74.5 74.5 74.8

Age_house 56.9 58.1 61.5 61.6

Social_class 50.7 51 50.9 51.3

Floor area 62.9 64.1 63.5 65.2

N_residents 71.7 72.9 72.8 73.8

N_bedrooms 48.3 49.3 49.2 49.5

Employment 66.7 67.8 68.3 69.2

Retirement 70.1 71.7 71.9 72.7



Page 20 of 22Sodenkamp et al. Decis. Anal.  (2016) 3:1 

meter. Additionally, any energy-consumption related data can be encompassed and con-
tribute to the performance elevation.

The developed model could also be used for other classification problems with avail-
able “external” information. For instance, license plate recognition based on images from 
highway cameras, with illumination conditions and current daytime as independent var-
iables, or credit scoring based on customer information, credit history, and loan appli-
cations with additional information on economic values like GDP, unemployment rate, 
price index as independent observations.

Future research can be directed toward extension of the model to the cases with spe-
cific non-linear relationships between the pairs of dependent and independent variables. 
Additionally future research could enhance DID-class toward extension of the set of 
properties, integration of other energy consumption figures (gas and warm water), com-
binations with other methods (multidimensional scaling, Isomap, diffusion maps, etc. 
(Lee et al. 2010)), and development of a tool for a real-world setting. In the long-term, 
empirical validation of targeted interventions made by using the gained information 
could show the value of the developed methodology and tool.

Nomenclature
a: Number of different class labels; C: Classifier; d: dummy variables; fj: normalization function for class j; J: set of all pos-
sible class labels; M̄,M: unlabelled test set; m: number of elements in the test set; N̄,N: labelled training set; N′: normalized 
training set; n: number of elements in the training set; pikl: probability of xk

′
i  to belong to class l ; Pij : probability of xi 

to belong to class j ; S: family of all independent measurements; si: independent measurement; x̄i: measurement; xi
: dependent measurement; x′i : normalized measurement xi; x

j′

i : measurement xi normalized as class j ; X̄ : Family of all 
measurements; X: family of all dependent measurements; X ′: family of the normalized dependent measurements; Y: fam-
ily of all class labels; yi: class label.

Table 10  Results with CLASS (C) and CLASS-based DID-class (DC)

Italic values indicate the highest classification accuracy

Property Week Week Week Week

46/09 02/10 16/10 37/10

C DC C DC C DC C DC

Single 83.3 83.6 84 84.2 82.4 82.6 83.4 83.6

N_devices 53.1 53.9 53.5 54.4 53.8 54.4 51.2 51.4

Cooking 73 73.3 72.2 72.4 73.3 73.6 72.2 72.6

Family 76.4 77 78.8 79.1 77.3 78 76 76.5

Children 74.7 75.2 75.5 75.6 74.1 74.1 73.4 74.1

Age_house 61.1 61.5 61.3 61.2 62 62.2 61.4 61.4

Social_class 51.5 51.9 51.1 51.3 49.7 50.4 51.3 51.5

Floor area 63.5 65.2 63.1 64.7 63.9 65.7 63.6 65

N_residents 72.8 73.7 71 72.2 72.1 72.9 75.2 76.4

N_bedrooms 49.7 50 49.4 49.5 49.5 49.9 48.3 48.5

Employment 68.4 69.2 67.4 68.4 69.2 70 68.4 69.4

Retirement 71.4 72.3 71.5 72.3 72.3 73.1 72.3 73

Additional file

Additional file 1. Correlation between temperature and energy consumption for different hours.
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