
An Asynchronous Process Algebra with
Multiple Clocks

Henrik Reif Andersen and Michael Mendler

Technical University of Denmark, Department of Computer Science,
Building 344, DK-2800 Lyngby, Denmark.

E-mail: {hra,mvm}<Oid.dth.dk.

Abstract. In this paper we introduce a novel approach to the specification
of real-time behaviour with process algebras. In contrast to the usual pattern,
involving a fixed, measurable, and global notion of time, we suggest to rep-
resent real-time constraints indirectly through uninterpreted clocks enforcing
broadcast synchronization between processes. Our approach advocates the use
of asynchronous process algebras, which admit the faithful representation of
nondeterministic and distributed computations.

Technically, we present a non-trivial extension of the Calculus of Commu-
nicating Systems CCS [Mil89a) by multiple clocks with associated timeout and
clock ignore operators. We illustrate the flexibility of the proposed process
algebra, called PMC, by presenting examples of rather different nature. The
timeout operators generalize the timeout of ATP [NS90] to multiple clocks.
The main technical contribution is a complete axiomatization of strong bisim-
ulation equivalence for a dass of finite-state processes and a complete axiom-
atization of observation congruence for finite processes.

1 Introduction

According to consolidating tradition in timed process algebras a real-time system is
perceived to operate under the regime of a global time parameter constraining the
occurrence of actions [NS91b]. Time has algebraic structure, typically a totally ordered
commutative monoid, to express quantitative timing constraints. The semantics of a
timed process then is given as a transition system enriched by quantitative timing
information such as the absolute duration of actions or their time of occurrence.

This paper puts forward yet another process algebra; why bother? Most of the
salient approaches, such as [MT90, Wan90, Lia91, NS91a, Klu91, SDJ+91], primarily
aim at describing completely the global real-time behaviour of timed systems in a
fairly realistic fashion. The means for abstracting from real time is restricted to the
choice of the time domain; for instance, instead of working with real numbers one
may decide to go for rational or discrete time. We believe that these approaches are
often overly realistic with disadvantages for both the specification and the modelling
of real-time systems. Firstly, for specifying a timed process, complete quantitative
information about the intended timing behaviour of the implementation is required.
This includes not only the specification-relevant, i.e. safety-critical timing, but also
specification-irrelevant timing parameters which, so we believe, constitute the major-
ity in practice. Being forced to include a Iot of irrelevant timing information, which

https://doi.org/10.20378/irbo-52645

59

can be left well up to the implementation, is unfortunate as this is unnecessarily
cutting down the design space, perhaps even preventing the designer from finding a
reasonable implementation at all. Secondly, many real-time process algebras require
to give exact numbers for the duration of actions, such as "3.141 time units to enter a
valid login response". Examples are Timed-ACP as described in [Klu91), Timed-CSP
[SDJ+91), ATPD [NS91a), or [Wan90). But exact delays are in general very difficult
to implement due to uncontrollable fabrication parameters, operating conditions such
as circuit temperature or external events. At best we can hope to implement delay
intervals. A process algebra using delay intervals rather than exact time was proposed
by Liang [Lia91). Such an algebra, however, suffers even more from being cluttered
up with irrelevant timing information. Another process algebra with interval dura-
tions is CIPA [AM93a). A disadvantage of time intervals are the severe problems they
cause for simulation, in particular where time is dense: lt is not feasible faithfully to
simulate time intervals for the purpose of timing validation.

In this paper we propose a rather abstract approach to the specification and
modelling of real-time systems that captures the nature of timing constraints through
the use of multiple clocks. Clocks enforce global synchronization of actions without
compromising the abstractness of time by referring to a concrete time domain which
is globally fixed once and for all.

The concept of time underlying the use of clocks is abstract, qualitative, and
local. Firstly, it is abstract since it does not prejudice any particular way of realizing
a clock. We are free to interpret a clock as the ticking of a global real-time watch
measuring absolute process time, as the system clock of a synchronous processor, or
as the completion signal of a distributed termination protocol. Clocks are a general
and flexible means for bundling asynchronous behaviour into intervals. Secondly, the
concept of time underlying the use of clocks is qualitative since it is not the absolute
occurrence time or duration of actions that is constrained but their relative ordering
and sequencing wrt. clocks. Our approach postpones the analysis of timing inequations
until a concrete realization is fixed assigning specific delays to actions and clock
distances. For timing-critical aspects, of course, a particular delay constraint would
be imposed on a particular clock already at specification time. Finally, clocks admit
a local notion of time since in different subprocesses independent clocks can be used,
which may or may not be realized referring to the same time base.

The contribution of this paper is to introduce the syntax and semantics of the
process algebra PMC, which is a non-trivial extension of CCS [Mil89a) by multiple
clocks. The semantics of PMC is based on transition systems with separate action
and clock transitions. Actions are insistent, so that local constraints on the progress
of clocks can be expressed. The important features of PMC demonstrated in this
paper are its fiexibility in expressing timing constraints, and the fact that it admits a
complete axiomatization of strong bisimulation equivalence for a class of finite-state
processes and of observation congruence for finite processes.

60

2 Syntax and Semantics of PMC

In PMC concurrent systems are described by their ability to perform actions and
synchronize with clocks. As in CCS we assume a set of action names A and their
complemented versions A. Let - be a bijection between A and .Ä whose inverse is
also denoted by -. We assume an additional silent action r, which is not in Au .Ä
and take the set of actions to be Act =der AU Ä U { r}. Communication takes place
as a synchronization between complementary actions a and ä; the actions a E A are
considered to be input actions and the actions ä to be output actions. In the sequel
we let a:, ß, ... range over Act.

In addition to the ordinary actions of CCS, PMC assumes a finite set of clocks
E the elements of which are ranged over by p, u, u', <T1 etc. Whereas the actions are
used for two-by-two synchronization between parallel processes, the clocks enforce
broadcast synchronization in which all processes of a parallel composition must take
part. In fact, clocks mimic the properties of time in that the effect of a clock tick
reaches through almost all syntactic operators.

Let x range over a set of process variables. Process terms t are generated from the
following grammar:

t::=O 1a:.t1to+t11t\a1Lt0Ju(t1)1ttu1x1 recx.t

Roughly, the meaning of the process Operators, in terms of their ability to perform
actions or to take part in clock ticks, is as follows. Nil: 0 is the process which can do ·
nothing, neither an action nor does it admit a clock tick. Insistent prefix: a:.t is the
process which performs a: and then behaves as t; it prevents all clocks from ticking,
which motivates calling it 'insistent' prefix. The term 'insistent' is taken from Hen-
nessy [Hen93]. Prefixes that stop time from progressing also have been called urgent
[BL91] or immediate [NS9la]. Sum: t0 + t1 is the process which must behave as any
of t0 or t1 , the choice being made with the first action. Composition: to 1 t1 represents
t0 and t1 performing concurrently with possible communication. Restriction: t \ a
behaves like t but with actions a, ä not allowed to occur. Each one of the processes
t0 + t1, t0 1 t1, and t \ a takes part in a clock tick u by having all of its components
t0 ,t1 ,t take part in it. Timeout: Lt0Ju(ti) is the process which behaves like t0 if an
initial action of t0 is performed or a clock tick different from u occurs; if however <T

occurs first it is transformed into t1 , whence the name 'timeout'. lgnore: The process
t tu behaves just like t but it will always take part in au clock tick without changing
its state. Recursion: rec x.t is a distinguished solution of the process equation x = t.

The notion of a closed term and the set of free variables of a term are defined as
usual. A variable x is weakly guarded in a term t if each occurrence of x is within a
subexpression t' oft which is in the scope of a a:.t' or of a l·Ju(t'). If we require a: ;j:. r
in this definition, then x is strongly guarded in t. A term t is weakly/strongly guarded
if every variable occurring in t is weakly /strongly guarded. We will use the symbol =
to denote syntactic equality.

The semantics of PMC is given by a labelled transition system T = (P,L,-t),
where P is the set of closed process terms, L =der Act U E is the set of labels,
and -t~ P x L x P is the transition relation. In distinguishing between pure action

61

a.p~p
" I p--+ p

p+q ~ p'

a 1 q--+ q

p.!:+p' q~q'
p 1 q 2i- p' 1 q'

Q I p--+ p " I q--+ q

a I

p--+ p (a f a, a # ä)
p\a~p'\a

t[rec x.t/x] ~ p
rec x.t ~ p

" I p--+ p a / p--+ p
[pJa(q) ~ p'

Fig. 1. Action rules.

and pure clock/time transitions the semantics follows the popular pattern for timed
process algebras [NS91b). Of course, there are other ways of incorporating time. We
mention ICPA [AM93a) where the transitions carry both action and time information.
The transition relation --+ of PM C is defined in Plotkin style as the least relation closed
under the set of action rules and clock progress rules given in Figs. 1 and 2.

U f CF 1 p--+p q--+q er / u / p--+p q--+q
p+q.::'.+p'+q' p 1q.::'.+p'1 q'

CF I p--+ p
p\a.::'.+p'\a

' CF 1

t[rec x.t/x] .::'.+ p
rec x.t .::'.+ p

[pJo(q) ~ q p--+ p
(o # 0

1
)

[pJo(q) ~ p'

'
p ~ p' (a =/: a')

pto~p'ta

Fig. 2. Clock progress rules.

The action rules (Fig. 1) for the processes a.p,p + q,p 1 q,p \ a, and rec x.t follow
the usual rules for CCS. Also, the clock progress rules (Fig. 2) for these processes
require little comment. The idea is that a clock tick is a global time synchronization
which synchronously affects all subterms of a process. The action and clock progress
rules for p tu and lP J u(q) reflect the informal explanation given above.

lt will be convenient to extend the timeout operator to (possibly empty) sequences
Q. = u1 ···an of clocks by the following inductive definition:

LtJ = t
LtJa1(ui) · · ·un(un) = LltJa1(u1) · · ·an-1(un-1)Jan(un)·

62

We shall sometimes use the vector notation ltfa(y) to abbreviate LtJu1 (u1) · · · un(un)·
The following is a !ist of some important derived constructions which are all special

cases of timeout:

o~ =d.r rec x.LOJu1(x) · · · un(x),
a =~ t =d.r rec x. La.tJu1 (x) · · · O"n(x)

u.t =de1 LOJu(t)
O" =~ t =d.1 rec x.LOJu1(x) · · · O"n(x)u(t)

(relaxed nil)
(relaxed prefix)

(wait)
(relaxed wait)

For the clock progress rules of Fig. 2 we notice the absence of a rule for nil and
prefix. They both stop all clocks; 0 has the rather dramatic effect of stopping all
clocks indefinitely, it is a time-lock. In contrast, the process Oo- in the above table is a
relaxed version of nil which does not perform any action but äilows the clocks in fl. to
proceed. The maximally relaxed nil process, which enables all clocks, is abbreviated
by 1, i.e. 1 =d.r Oa- 1 „.o-N• where E = {u1, ... ,uN}· If Eis empty, then 1 and 0
coincide. The process a =~ t above is a relaxed version of a prefix: it lets clocks fl. tick
away freely without changing its state, until an a action occurs which transforms it
into t. The derived process u.t may be the most common construct in applications: it
waits for the clock u before proceeding with t, and in doing so it is stopping all other
clocks. Finally, u =~ t is a relaxed wait: it waits for clock u but allows. all clocks in fl.
to tick.

lt should be mentioned that by a generalization of the above constructions for 're-
laxing' processes the ignore p t u actually can be eliminated from closed processes by
induction on the structure of p. This does not mean that t is redundant syntactically,
since it is not a derived operator and the elimination does not work on open terms.

3 Example: Signal Analyzer

The initial ideas and motivation leading to PMC developed from an attempt formally
to specify the Brüel & Kjrer 2145 Vehicle Signal Analyzer.1

The Brüel & Kjrer 2145 Vehicle Signal Analyzer is an instrument for measuring
noise from machines with rotating objects such as cars and turbines. The instrument
receives input from microphones and tachometers, computes running spectra of ampli-
tudes of frequencies, and presents the results on a screen. Various measuring scenarios
and presentation modes are available. The analyzer is operated in real-time and the
results are visualized on the screen as they are computed.

In this example, to illustrate an application of PMC, we will simplify the real
design and describe only that part of the instrument that collects sound samples
from one microphone, speed pulses from one tachometer, and computes a speed-
related spectrum. Figure 3 gives an overview of the simplified system. lt features seven
communication channels represented by the solid lines, and three clocks represented
by dashed lines. The signal analyzer reads in sound samples along channel s, tacho
pulses along p, and outputs on channel srsp the speed-related spectrum computed
1 This case study is clone in co-operation with the manufacturing company and is part of

the Co-design Project at the Department of Computer Science, DTH.

63

s ----- <lf
- - - -r- - - -- - --1- -- - Gms

'----.....--' 1
filter

srsp
ms

1
p ----...

'--~.....-... -~
r ' 1

watch - -'- - - <lw

Fig. 3. The Signal Analyzer.

from the samples and the tacho information. The clocks reflect central timing aspects
of the system behaviour. The sampling rate is modelled by the clock a1 which ticks
with a fixed frequency determined by the input bandwidth. Another clock aw is used
for measuring the time between tacho pulses. lt also ticks with a fixed frequency
determining the precision by which time is measured in the instrument. A third clock
a ms is used for synchronizing the exchange of information between the three processes
'filter', 'tacho' and 'ms'.

Abstracting away from the actual values sent along the channels and concentrating
on the communication patterns and the real-time aspects, the system consists of the
following four processes:

• The process 'filter' reads after each tick of CJ 1 a sample on s, computes a spectrum
(modelled by a r) and then either delivers the spectrum on sp in response to a tick
of ams or waits for the next sample to arrive.

• The process 'watch' keeps track of the time based on ticks of the clock aw. lt
can be reset using channel r and the current time can be read on channel t.

• The process 'tacho' records the number of tacho pulses arriving on p and, when-
ever the clock ams ticks, delivers the pulse count on tp together with the time distance
since the last delivery (as measured by 'watch'). For safe real-time operation 'tacho'
must occasionally prevent CJw from ticking.

• The measuring process 'ms' collects, with every tick of the clock CJm„ a spectrum
on sp, a tacho count and time distance on tp. From these it computes a speed-related
spectrum finally delivered on srsp. Depending on the spectrum received and the value
of the tacho count, this can be more or less involved. We model this by the 'ms' process
making an internal choice between delivering the result immediately or performing
some lengthy internal computation (modelled by a sequence of r's below) before doing
so.

The following is a PMC description of the system:

filter = LCJJ. s. r. filterJams(sp. filter)
watch = Lr. watch + t. watchJaw(watch)
tacho = LP :.,.,., tachoJam.(t :.,.,., r-. tp :.,.,., tacho)

ms = ums . sp . tp . (T • srsp . ms + r . · · · r . srsp . ms)

The filter, tacho, and watch processes constitute the input system

INP = (filtert<Jw) 1 (tachotCJJ lwatchtCJ1tCJms)\t\r

64

and the complete system is

SYS = (INP 1 ms t O" w t O" 1) \ sp \ tp.

With the formal description of the system at hand we can make precise the röle of
the three clocks O" w' O" m5' O" f.

For correct real-time operation it is important to make sure that with every input
action t 'tacho' obtains the exact number of O"w ticks arrived since the last time
it read the watch. This implies that no tick of O"w must fall between reading the
current time of the watch with action t and resetting it with action 'f. This real-time
requirement is conveniently dealt with in PMC by using an insistent prefix after r in
the tacho process, which prevents O"w from ticking between reading and resetting of
the watch. Using ordinary actions instead of a clock to distribute time signals, this
mutual exclusion between the tacho and the watch process would have to be encoded
~~a~~. {

The clock O"ms ensures that whenever 'filter', 'tacho' and 'ms' are ready1 consistent
pairs of spectra and tacho values are sent. This relies on the broadcast feature of clocks
forcing all parties to synchronize. Using normal actions an effect like this requires a
rather complex protocol, and it is quite hard to ensure that the values from 'filter'
and 'tacho' never arrive out of synchrony.

Finally, the clock O" f also plays some röle. lt might be argued that as long as the
samples from the environment arrive at the right speed on the channel s, the clock
O" f is unnecessary. However, if the samples are available from the environment as the
values of a state variable that can always be read, it is important that this happens
only at certain well-defined points. This is enforced by the clock. Moreover, one could
imagine adding another filter process sampling a parallel input channel in synchrony
with the first one. The synchronization of both filters, which comes for free with the
clock O" 1 , otherwise would have to be encoded via a protocol.

4 Example: Synchronous Hardware

In hardware design one is dealing frequently with architectures consisting of a num-
ber of interconnected synchronous systems that are all driven by independent, i.e.
local clocks. Such systems are called multi-clock synchronous systems or globally-
asynchronous, locally-synchronous machines [Cha87]. The synchronous subsystems
exchange data via communication buffers which decouple the computations and com-
pensate for different relative clock speeds. The simplest case of a communication buffer
is the input synchronizer as shown in Fig. 4.

The input synchronizer S is prepared to accept input data on x from the envi-
ronmen:t at any time, and offers it to the synchronous system at its output y only
on the next tick of the local clock 0"2 • Of any sequence of input data arriving before
the clock tick only the most recent input is transmitted. Since the output value the
synchronizer offers on y may change with every clock tick the output behaviour will
not be preserved by clock transitions. lt can be shown [AM93b] that this cannot be
expressed merely with wait, nil, or prefixes, be they relaxed or not. However, with the

~-----------""• 1
1

65

clock a1 clock a2
1 1 ·------------4 ·-------------------------

Synchronous System 1 Synchronous System 2

Fig. 4. An input synchronizer.

general timeout operator the synchronizer can be defined:

S(v,w) =def lx?d. S(d,w) + y!w. S(v,w)Ja2(S(v,v)),

where we encode value-passing as in CCS by the abbreviations

y!w · P =def Yw · p,

assuming that D is a finite domain of values and x, y families of distinct actions
indexed by the elements d, w ED. The synchronizer process S(v, w) has two param-
eters: the first one, v, represents the state of the input line which can be changed to
a new value d by an x?d action at any time. The second parameter w is the state of
the output line. lt is passed on to the synchronous system with y!w at any time, and
is updated with the value of the first parameter whenever clock a2 ticks.

The input synchronizer can be used to connect up two single-clock synchronous
systems, say SC1 and SC2, running with independent clocks a1,a2:

How single-clock synchronous systems can be modelled in PMC is explained in
[AM93b). The idea is to use the insistent prefixes to synchronize the function blocks
globally and force the timing constraint upon the clock signal. This leads to a com-
positional calculus of synchronous systems, in which all the subcomponents of sei
themselves are special cases of synchronous systems.

5 Axiomatization

Having set up the syntax and semantics of PMC, we are now going to present a formal
calculus for reasoning about equivalence of PMC processes. We wish to axiomatize
two notions of equivalence, viz. strong bisimilarity and observation congruence. These
notions carry over naturally from CCS [Mil89a) by treating clock and ordinary action
transitions in the same way:

Definition 1. A relation S ~ P x P is a strong bisimulation if it is symmetric, and
for all (p, q) E S and l E L = Act U E, whenever p !. p' then for some q', q !, q'
and (p', q') E S. Two processes p and q are strongly bisimilar if p ~ q, where ~ is the
union of all strong bisimulations.

66

Example 1. The following processes are equivalent formulations of filter and watch
from Sec. 3:

filter' =: rec X. CJ j :crm, S . 7. X + CJms :cr1 Sp . X

watch' = (rec x. r . x + t . x) t CJ w,
i.e. we have filter ,..., filter' and watch ,..., watch'. Notice that the latter equivalence
holds only because we are abstracting away from values. If values were considered our
watch surely would not ignore time.

To define observation congruence we need a few auxiliary concepts: If s E .C* =
(ActUL')* then § E (.C\ -r)* is the sequence obtained from s by deleting all occurrences
of T. For s = s1 · · · sn E C (n ;::: 0), we write p ~ q if p ~ · · · .~ q, and p ='* q if
p _.; * ~ _.; * · · · ~ _.; *q. Note in particular, p => p.

Definition 2. A relation S ~ P x P is a weak bisimulation if it is symmetric, and for
l i all (p, q) E S and l E .C, whenever p -+ p' then for some q', q => q' and (p', q') E S.

Two processes p and q are weakly bisimilar if p ::::J q, where ::::J is the union of all
weak bisimulations. Observation congruence, written ::::Je, is the largest congruence
contained within ::::J.

We extend both equivalences to open terms in the usual way by stipulating tEu
if for every substitution B of closed terms for the free variables, t[B]Eu[B], where Eis
one of ,..., , ::::Je. For processes p, q without clock transitions the definitions coincide with
the corresponding notions for CCS, whence no extra equivalences are introduced for
the CCS sublanguage of PMC. In other words, PMC is a conservative extension of
ccs.

One can show that the offset between ::::J and ::::Je is almost of the same nature as
for CCS.

Lemma 3. p :::::e q iff one of the following three equivalent properties holds:

- For all r, p + r ::::J q + r.
- If p ~ p' then for some q', q ~ q' and whenever p' ~ p" then q' ~ q11 for some

q" such that p" ::::J q"; the same holds symmetrically with p and q interchanged.
- (p, q) E S where S is any symmetric binary relation on P with the property that

for all (r, s) E S, a E Act, CJ E L',
(i) if r ~ r' then for some s', s ~ s' and r' ::::J s',
{ii) if r ~ r' then for some s', s ~ s' and (r', s') E S.

According to the first characterization the reason why :::::: fails to be a congruence
can be localized in the sum operator. In this respect the situation is precisely as in
CCS. The second characterization brings up the difference: while in CCS congruent
processes need a strong match for the first -r actions in PMC they need to match
any initial clock sequence followed by a T. The third characterization coincides with
one given by Moller and Tofts for observation congruence in TCCS [MT92J. The
equivalence between the last two characterizations is due to the following property:

Sl
S2
S3
S4
85

Bl
B2
B3
B4

CR

Cl

C2

C3
C4

67

t+u=u+t
t+(u+v)=(t+u)+v

t+t=t
a.t + 0 = a.t

t + 1 = t

LltJa(u)Ja(v) = ltJa(v)
l lt Ja(u)Ja' (v) = llt Ja' (v)Ja(u)

ltJa(u) + lvJa(w) = lt+ vJa(u + w)
ltJa(u) + lOJQ:.(:g) = t + lOJQ:.(11)

if a.u = a.v then a.ltJa(u) = a.ltJa(v)

O\a = 0

(a.t)\a= {~.(t\a)
(t + u) \ a = t \ a + u \ a
ltJa(u) \ a =lt\ aJa(u \ a)

11 Ota=lOJa(Ota)
12 (a.t) t a = la.(t t a)Ja((a.t) t a)
13 (t + u) t a = t t a + u t a
14 ltJa'(u)ta= lttaJa'(uta)a(ltJa'(u)ta)

a-=faa 1

a <'t Q.

a = a or a = ä
otherwise

Fig. 5. Equational laws for sum, timeout, restriction, and ignore.

where t, u are terms

such that Pi = a; for 1 :::; i:::; k, and Pi # aj for k < i or k < j, and r is the term

r = L a;.(ti 1 u) + Lßj-(t 1 Uj) + L r.(ti 1 Uj).
1 J o:i=Bi

Fig. 6. The expansion law.

RO rec x.t = rec y.t[y/x] y not free in rec x.t
Rl rec x.t = t[rec x.t/x]
R2 if u = t[u/x] then u = rec x.t x guarded* in t
R3 rec x.(lxJQ.(3!:) + t) = rec x.(lOJQ:.(g) + t)

* \l\1eakly guarded if = is interpreted as ~, strongly guarded if it stands for ::::::c. In
the latter case t must be regular too.

Fig. 7. Laws for recursion.

68

Tl O:.T.t = o:.t
T2 T.t+t=T.t
T3 o:.(t + lT:ufa(.'.!!.)) + o:.u = o:.(t + lT.ujQ.(1!.))
T4 G<.lT.lrJo-(lT.s + tJ_e(g)) + vfo(N) = o:.lT.lrJa(lT.S + tj_e(g)) + vja(s).t;.('.!Q)

Fig. 8. Tau laws.

Proposition 4 Clock Determinism. IJ p ~ q and p ~ r, then q = r.

By definition, :::;c is a congruence 'i\Tt. all operators, including the recursion oper-
ator rec x. lt is not difficult to verify that ,...., also is a congruence wrt. all operators.
Congruicity is important, since it shows that in an axiomatization of both equiva-
lences, ,....,, :::;c, Leibniz' rule of 'substituting equals for equals' is sound, that is, if we
have proven t = u then t and u can be interchanged in any context. We shall use the
symbol f- to denote that an equality f- t = u is derivable using equational reasoning
and the special laws that we shall consider in the sequel.

Theorem 5 Soundness. The laws of Fig. 5-7 are sound for,...., and :::;c. The T laws
of Fig. 8 are sound for :::;c.

Example 2. Let us prove, by equational reasoning from our axioms, the equivalence
in example 1 for the watch process:

watch' =At CJw
=(r.A+t.A)tCJw Rl
=(r.A)tCJw + (t.A)tCJw 13
= lr. watch1JCJw((r. A) t CJw) + lt. watch1JCJw((t. A) t CJw) 12
= lr. watch' + t. watch'Ja((r. A) t iiw + (t. A) t CJw) B3
= lr. watch' + t. watch'jCJ(watch') 13, Rl.

By rule R2 we conclude f- watch' = watch.

Definition 6. A term t is said to be regular if it is built from nil, prefix, sum, time-
out, variables and the recursion operator. A process term t is rs-free (rs abbreviates
'recursion through §tatic operators') if every subterm rec x.u oft is regular. A process
p is finite if it does not contain any recursion or ignore operators.

Theorem 7 Completeness. If p and q are rs-free processes with p ,...., q then f- p = q
using equational reasoning from the laws of Figs. 5-7 (without CR). If p and q are
finite processes and p :::;c q, then f- p = q using equational reasoning from the laws of
Figs. 5-8.

The proof of completeness for ,...., can be found in [AM93b] and for :::;c it will appear
elsewhere. The proofs are basically an adaptation ofMilner's technique [Mil84, Mil89a]
but rather more involved due to a more complicated normal form representation and
the !arger gap between ::::: and :::;c.

69

In view of the completeness theorem one might hope that a Jot of the mathematical
theory of CCS can be carried over easily to PMC. But the situation is not quite so
simple. There are some subtle technical complications making PMC a non-trivial
extension of CCS.

Firstly, th.e standard approach extending completeness from finite to finite-state
processes [Mil89b] builds on the fact that in CCS unguarded processes can always be
transformed into guarded ones. Unfortunately, this property fails to hold for PMC,
with the consequence if ::::ic can be completely axiomatized for finite-state processes
then a new proof strategy must be found. For instance, take the unguarded process
p = rec x. LT. LT. xJa(l)Ja(O). In every state of p reachable through, possibly zero, T

actions there is a weak a transition both to 0 and to 1. This property must be enjoyed
by any process q weakly bisimilar top. However, to fulfill this property q must either
be infinite state or have a T loop. To see why, consider a state q0 such that q => q0
and q0 ~'* 0 which must exist by assumption. But there must also be a state q1 such
that q1 ~'* 1 and q1 is reachable from qo through a sequence of T's. This sequence
cannot be empty for otherwise q1 = qo and we would have qo ~'* 1 contradicting
clock-determinism (Prop. 4). Hence we must have q0 ~ q1 . Now the same argument
applies to q1 , so we could go on constructing a sequence q0 ~ q1 ~ q2 ~ · · ·. But
this means that q either has a T loop or is infinite state.

Secondly, the sum + which is a dynamic operator in CCS, has static behaviour
wrt. time steps, i.e. it does not disappear after any number of clock transitions. So,
to obtain the transition system of p + q from the transition systems of p and q we
take the disjoint union with respect to ordinary action transitions, but the product
with respect to clock transitions. This means that in the equational characterization of
sums p+q more equations must be added than are needed for the pure CCS fragment.
In connection with recursion the situation becomes even more involved: Because of
the static nature of + wrt. to clock transitions there are regular processes with infinite
syntactic unfolding. For instance the process P = rec x. L 0 Ja (x + (p t a)) admits the
infinite transition sequence

P ~ P+pta ~ ··· ~ P+pta+···+pta ~···

producing bigger and bigger terms. In the pure CCS fragment, on the other hand,
a regular process always has a finite syntactic unfolding. Nevertheless regular PMC
processes have a finite number of states modulo ,...., (cf. [AM93b]).

6 Related Work

We begin with a remark on terminology. The most distinguished feature of PMC is
the notion of 'clock'. Formost purposes this term would denote a means for measuring
time in order to time-stamp observations. In the process language CIPA [AM93aJ or
in the timed automata of Alurand Dill [AD91] clocks are used in this sense. In PMC,
however, the intended interpretation of 'clock' is more like that of a hardware clock,
viz. a global signal used to synchronize asynchronous computations in a lock-step
fashion.

70

We believe that in the context of asynchronous process calculi the concept of mul-
tiple synchronization clocks - in our sense - is novel. Yet, it is not entirely new
as it has been used already in synchronous real-time description languages. LusTRE
[HPOG89] is, a language for synchronous data-fiow with multiple clocks, where all
clocks are derived from a master clock through boolean expressions. LUSTRE was de-
veloped originally for real-time programming but is used also for describing digital
circuits. Another quite successful real-time language with a multi-form notion of time
is ESTEREL [BC84). lt must be noted however, that in both these languages clocks
are not built-in; they are ordinary signals or variables, not an independent seman-
tical concept as in PMC. A synchronous language where clocks do possess genuine
semantical meaning with an associated 'clock calculus' is SIGNAL [BBG93].

The obvious - albeit not stringent - path towards a technical comparison with
other published work is to view PMC with a single clock as a discrete time process
algebra, where a time delay of size n corresponds to n successive clock ticks. For
instance, if we fix a particular clock a we can define timing operators (n).t and ö.t as
follows

(0).t = t
(n + l).t = a. (n).t
ö.t = rec x. ltJa(x)

with n ranging over natural numbers. For every n, the process (n).t waits n clock
transitions of a before it evolves into t, and until then it remains quiet. The process ö.t
is a delayed version oft which allows a to proceed until such time as the environment
is ready to communicate with it. These constructs are taken as primitives in the
timed process calculus TCCS of Moller and Tofts [MT90J. In [MT92] a complete
axiomatization for TCCS of observation congruence on finite, sequential processes is
presented. Both PMC and TCCS use insistent action prefixes, but where PMC has
a timeout operator to produce relaxed actions, relaxed behaviour is introduced in
TCCS by a different nonstandard primitive, the weak sum pffiq. lt behaves exactly as
p + q for ordinary actions, but in contrast to + forces both components to take part
in a time transition only if both can do a time transition together. If one of p and
q does not admit a time transition it is considered stopped, in which case the other
process can engage in a time step all by itself while the stopped process is simply
dropped from the computation. As hinted at in [MT90J the EB plays an important
role in obtaining an expansion law for TCCS, which in turn is crucial for proving
completeness. lt is interesting to note that the equational axiomatization of PMC
seems to be considerably simpler than that of TCCS where the expansion law for
parallel composition has to consider various special cases (to do with EB) while in
PMC one single equation scheme suffices.

lt is possible to view discrete time TCCS as a subcalculus of PMC modulo the
following syntactic encoding of EB:

{

u
s* + Lt* Ja(l) if s* -% and t* ft

(s EB t)* =def Ls* ju(l) + t* if s* ./+ and t* -%
s* + t* otherwise.

71

The TCCS constructs (n).t and 6.t are replaced by the definitions given above. All
other constructs are represented in PMC by their respective equivalents. lt can be

" shown that the condition ft in the encoding of E9 can be decided on the syntactic
structure, so that o· is in fact a well-defined syntactic Operation [AM93b] on closed
terms. We coi:i.jecture that for dosed TCCS processes p with all variables guarded the
operational behaviour of the encoding p* in PMC is precisely the one obtained for p
in TCCS.

A rather different dass of timed process algebras is that with relaxed actions and
maximal progress [Wan90, HR91]. These principles reflect a rigid two-phase view of
real-time execution: In the first phase a component is allowed to perform an arbitrary
but finite number of internal communications at zero time cost. When all internal
chatter has ceased, i.e. the component has stabilized, time is allowed to proceed in
the second phase. The duration of the second phase is the amount of time elapsing
until the component again becomes internally unstable. In [NS9lb] this two-phase
model is generalized to an arbitrary set of urgent actions for which maximal progress
is enforced. These urgent actions play the role of internal communication in that these
actions must be performed before time is allowed to proceed.

This two-phase model cements a globally-synchronous, locally-asynchronous type
of behaviour. The major mode is synchronous operation since the phases of asyn-
chronous cooperation are bundled together when all subcomponents of a process
synchronize to let time advance. In PMC we adopt a more flexible scheme which
allows us to localize the notion of time and progress. We can thus obtain simpler and
more abstract specifications fcir distributed systems covering not only globally syn-
chronous, locally asynchronous systems but also the dass of globally-asynchronous,
locally-synchronous behaviour (cf. Sec. 4). lt might be possible to extend the maxi-
mal progress approach in this direction, an idea suggested in [Hen93], but not without
major modification such as 'localizing' maximal progress in some appropriate way.

Some remarks on the timeout operators are in order. Our timeouts are an exten-
sion to multiple clocks of Nicollin and Sifakis' timeout introduced originally with the
process algebra ATP. In [NS90] they present a complete axiomatization for ATP of
strong bisimulation equivalence. ATP is rather like a single dock version of PMC but
there are some notable differences. ATP is restricted to rs-free guarded processes with-
out time-locks but has a generalized restriction and parallel composition. We mention
that although the syntax of PMC is more involved due to multiple dock constructs
the normal form representation seems tobe more uniform than in ATP. In PMC only
one normal form scheme needs to be handled while in ATP three different cases are
treated separately.

There are other "time-insistent" variants of timeouts used in the literature which
differ from our's basically in that for [pja(q) to perform a a time step the process p
must not prevent time from progressing, which is not the case here. Examples are the

d
constructs p 1> q of Nicollin and Sifakis [NS91a] and [pj (q) of Hennessy and Regan
[HR91). The relaxed time behaviour of [pJa(q) wrt. p is important for PMC as it
allows us to derive from it a number of useful "time-relaxed" constructs such as relaxed
prefixes. With a time-insistent timeout these relaxed prefixes would have to be added

72

to the language as primitives, resulting in additional axioms and more complicated
normal forms. For instance, in [NS91a] the normal form has to treat separately three
different cases. Another central design decision simplifying the normal form of PMC
processes is that the clock transitions of [pJa(q) for clocks a' -:f: a are treated in the
same way as ordinary actions of p, i.e. they remove the timeout.

7 Conclusion

We have presented an extension of CCS by multiple clocks, timeout, and ignore oper-
ators, and we have given a complete axiomatization of strong bisimulation equivalence
for a dass of finite-state processes and of observation congruence for finite processes.
The process algebra PMC was developed to capture the quantitative nature of real-
time constraints and it is aimed at applications in which real-time requirements are few
but essential. We believe that PMC offers a promising compromise between expressive-
ness and realizability or executability. PMC is currently being used as a specification
language in an industrial case study at the Department of Computer Science, DTH.
A prototype implementation of a value-passing version of PMC is under development,
using the ML-Kit [BRTT93).

Acknow ledgement

The authors would like to thank Anders P. Ravn, Matthew Hennessy, Gerard Berry,
and Faron Moller for various comments, Anders in particular for his encouragement.
Thanks are also due to the referees for their criticism and various suggestions for
irnproving the paper. Both authors have been supported by The Danish Technical
Research Council, the second author also by the European Human Capital and Mo-
bility Program, network EuroFORM.

References

[AD91]

[AM93a]

[AM93b]

[BBG93]

[BC84]

R. Alur and D. Dill. The theory of timed automata. In de Bakker et al.
(dBHdRR91], pages 45-73.
L. Aceto and D. Murphy. On the ill-timed but well-caused. In E. Best, editor,
Proc. Concv.r'93, pages 97-111. Springer LNCS 715, 1993.
H. R. Andersen and M. Mendler. A process algebra with multiple clocks. Tech-
nical Report ID-TR:1993-122, Department ofComputer Science, Technical Uni-
versity of Denmark, August 1993.
A. Benveniste, M. Le Borgne, and P. Le Guernic. Hybridsystems: The SIGNAL
approach. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors,
Hybrid Systems, pages 230-254. Springer LNCS 736, 1993.
G. Berry and L. Cosserat. The ESTEREL synchronous programming lan-
guage and its mathematical semantics. In S. D. Brookes, A. W. Roscoe, and
G. Winskel, editors, Seminar an Concv.rrency, pages 389-448. Springer LNCS
197, 1984.

[BK90)

[BL91)

73

J.C.M. Baeten and J.W. Klop, editors. Proceedings of CONCUR '90, volume
458 of LNCS. Springer-Verlag, 1990.
T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions
and a unique powerful binary operator. In de Bakker et al. [dBHdRR91), pages
124-148.

[BRTT93) L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner. The ML Kit, Version 1.

[Cha87)
Technical Report, DIKU, March 1993.
Daniel M. Chapiro. Reliable high-speed arbitration and synchronization. IEEE
Transaction on Computers, C-36(10):1251-1255, October 1987.

(dBHdRR91) J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors.

[Hen93]
Real-Time: Theory in Practice, volume 600 of LNCS. Springer-Verlag, 1991.
M. Hennessy. Timed process algebras: A tutorial. Technical Report 93:02,
Department of Computer Science, University of Sussex, January 1993.

[HPOG89J N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.-C. Glory. Specifying, pro-

[HR91]

[Klu91]

[Lia91]

[Mil84]

[Mil89a]
[Mil89b]

[MT90]

[MT92]

[NS90]

[NS9la]

[NS9Ib]

[SDJ+91]

[Wan90]

gramming and verifying real-time systems using a synchronous declarative lan-
guage. In Workshop on automatic verification methods for finite state systems,
Grenoble, France, June 12-14 1989. Springer LNCS 407.
M. Hennessy and T. Regan. A process algebra for timed systems. Computer
Science Technical Report 91:05, Department of Computer Science, University
of Sussex, April 1991. To appear in Information and Computation.
A. S. Klusener. Abstraction in real time process algebra. In de Bakker et al.
[dBHdRR91], pages 325-352.
Chen Liang. An interleaving model for real-time systems. Technical Report
ECS-LFCS-91-184, Laboratory for Foundations of Computer Science, Univer-
sity of Edinburgh, November 1991.
Robin Milner. A complete inference system for a dass of regular behaviours.
J. of Computer and System Sciences, 28(3):439-466, June 1984.
Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
Robin Milner. A complete axiomatisation for observational congruence of
finite-state behaviours. Information and Computation, 81:227-247, 1989.
Faron Moller and Chris Tofts. A temporal calculus of communicating systems.
In Baeten and Klop [BK90], pages 401-415.
F. Moller and Ch. Tofts. Behavioural abstraction in TCCS. In W. Kuich,
editor, Proc. ICALP'92, pages 559-570. Springer LNCS 623, 1992.
X. Nicollin and J. Sifakis. The algebra of timed processes ATP: theory and ap-
plication. Technical Report RT-C26, LGI-IMAG, Grenoble, France, December
1990.
X. Nicollin and J. Sifakis. From ATP to timed graphs and hybrid systems. In
de Bakker et al. [dBHdRR91], pages 549-572.
X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In de Bakker et al. [dBHdRR91], pages 526-548.
S. Schneider, J. Davies, D.M. Jackson, G.M. Reed, J.N. Reed, and A.W.
Roscoe. Timed CSP: Theory and practice. In de Bakker et al. [dBHdRR91],
pages 526-548.
Yi Wang. Real-time behaviour of asynchronous agents. In Baeten and Klop
[BK90].

