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Abstract Dare2Del is an assistive system which facilitates
intentional forgetting of irrelevant digital objects. For an as-
sistive system to be helpful, the user has to trust the system’s
decisions. Explanations are a crucial component in estab-
lishing this trust. We will introduce different types of expla-
nations which can vary along different dimensions such as
level of detail and modality suitable for different applica-
tion contexts. We will outline the cognitive companion sys-
tem Dare2Del which is intended to support users managing
digital objects in a working environment. Core of Dare2Del
is an interpretable machine learning mechanism which in-
duces decision rules to classify whether a digital objects is
irrelevant. In this paper, we focus on irrelevance of files. We
formalize the decision making process as logic inference. Fi-
nally, we present a method to generate verbal explanations
for irrelevance decisions and point out how such explana-
tions can be constructed on different levels of details. Fur-
thermore, we show how verbal explanations can be related
to the path context of the file. We conclude with a short dis-
cussion of the scope and restrictions of our approach.

Keywords Irrelevant digital objects · verbal explanations ·
Inductive Logic Programming

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – SCHM 1239/10-1 within the
priority program SPP 1921 Intentional Forgetting.

M. Siebers
Cognitive Systems, University of Bamberg, Germany
E-mail: michael.siebers@uni-bamberg.de

U. Schmid
Cognitive Systems, University of Bamberg, Germany
E-mail: ute.schmid@uni-bamberg.de

1 Introduction

Digitalization, or the information age, has lead to an in-
crease of stored data. While the world’s total digital storage
capacity (adjusted for optimal compression) was estimated
at about 21.000 TB for 1997, that number grew to around
277 million TB in 2007 [14]. This explosion of information
permeates our whole society, from data collected about in-
dividuals [44] over available research data and reports [15]
to organisations and industry [7].

Research has shown that an information overload in the
form of excessive amounts of digital objects (for example,
files or emails) increases employees’ stress levels, decreases
job satisfaction, and hampers decision making [7,41]. In
psychological research, it has been shown that unwanted ef-
fects of memory content can be decreased by intentional for-
getting [3]. Intentional forgetting is a goal-directed mecha-
nism to impair the recall of memory content unwanted or
irrelevant for the current task. We propose to transfer the
notion of intentional forgetting from mental representation
to the world of digital objects. We assume that deletion of
files and other digital objects can help individual employees
as well as organisations to reduce information overload in
work environments.

In an interdisciplinary collaboration with work and or-
ganizational psychology1 we develop the prototypical as-
sistive system Dare2Del which will support employees to
manage digital objects more effectively. The system will in-
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fer if some digital object is irrelevant in the given (task) con-
text. Then, this assessment can be exploited to assist the user
in intentional forgetting. For example, Dare2Del might pro-
pose to delete or archive files or it might fade-out or hide
task-irrelevant information [29,40]. In this paper, we will fo-
cus on the use case of permanent deletion of irrelevant files.
Dare2Del is designed with the intention to reduce cognitive
load for the user by pre-selecting candidate files for dele-
tion. Dare2Del is designed as a companion system [9] that
is human and system work together to realize a shared goal,
namely efficient management of digital objects. System de-
cisions are made transparent by allowing the user to demand
an explanation for the system’s proposal. The final decision
whether a proposed file is really irrelevant and should thus
be deleted lies with the user. User feedback is used to incre-
mentally adapt the decision model of Dare2Del to individual
criteria of irrelevance.

For a system to be supportive for a user it is necessary
that system proposals are trusted [31]. This is true for knowl-
edge based systems [4,46] as well as for machine learned
classifiers [28,34]. One way to promote trust is explaining to
the user why Dare2Del concludes that some file is irrelevant.
Explanations have been researched extensively in the con-
text of knowledge based systems [4,35,43]. However, the
topic of explanation generation has only recently been rec-
ognized as relevant in the context of machine learning [21].

A core property of digital objects is that they relate to
each other. For example, an email has several recipients, a
phone number belongs to a contact, which in turn is in some
address book, a file is older than another file, and a file is
stored in a directory which belongs to a drive. Such kinds of
relations can naturally be represented in first order logic. A
logic framework also allows to make use of powerful infer-
ence mechanisms. For example, a transitivity rule could be
exploited for such relations as older or includes.

In the next section, we will detail how irrelevance deci-
sions are taken and how the necessary knowledge is mod-
elled. In Section 3 we briefly describe two Inductive Logic
Programming systems to provide a short intuition how the
knowledge necessary may be generalized from decision ex-
amples. In Section 4 we localize our research within re-
lated work on explanations. Additionally, we describe how
Dare2Del explains its decisions using natural language. Fi-
nally, we conclude with a discussion how to evaluate and
improve our approach.

2 Modelling Relational Irrelevance Classifications

As mentioned above, Dare2Del pre-selects candidate files
for deletion. Files are only proposed if the system decides
that they are irrelevant. Before detailing the underlying de-
cision process, we will give a summary of the used notation.

2.1 Terminology

Variables, predicate symbols, and function symbols are rep-
resented as string of letters, numbers, and underscores where
variables must start with an upper case letter and predicate
and function symbols with a lower case letter. The arity of
a function or predicate symbol is the number of arguments
it takes. A function which takes zero arguments is called a
constant.

Every variable is a term. A function symbol of arity n
followed by a bracketed n-tuple of terms is also a term. For
constants, empty brackets may be omitted. A variable free
term is called ground. A predicate symbol of arity n fol-
lowed by a bracketed n-tuple of terms is called an atom, or a
positive literal. The negation of an atom is called a negative
literal. The negation symbol is not . A literal is called ground
if all terms in its n-tuple are ground.

A clause is an implication where the antecedent is a
conjunction of literals and the consequent is an atom. We
write the implication reversed, as H ← L1 ∧ . . .∧Lm. If the
conjunction of literals is empty (m = 0), we write H ←>.
The consequent of a clause C is called its head, head(C).
Its antecedent is called the body of the clause, body(C). If
body(C) =>, we call C a fact and say that its body is empty.
A clause is called ground when all its literals are ground. A
set of clauses is called a (clausal) theory.

A substitution is a complete mapping from variables to
terms. We denote a substitution by {x1 7→ t1, . . . ,xk 7→ tk}
where x1, . . . ,xk are variables and t1, . . . , tk are terms. A sub-
stitution is applied to a term by simultaneously replacing all
xi in the term by the corresponding ti’s. A substitution is ap-
plied to a literal by applying it to all terms in the literal. A
substitution is applied to a clause by applying it to all literals
in the clause. We denote the application of the substitution θ

to a term, literal, or clause X by Xθ .
If some literal or conjunction of literals K is true given a

clausal theory T , we say that T models K, or T |= K. The-
ory T models an atom A if there exists a clause C ∈ T and a
substitution θ such that A = head(C)θ and T |= body(C)θ .
Using negation by failure, a clausal theory T models every
negative literal not A unless T models A. A theory T models



Please Delete That! Why Should I? 3

Table 1 Excerpt of data predicate symbols available to Dare2Del.
Shown are example atoms with their descriptions.

Atom Description

access time(I,T ) Item I was last accessed at time T .
change time(I,T ) Item I was last changed at time T .
in directory(I,D) Item I resides in directory D.
media type(F,M) File F contains data of the media

type M.
name(I,N) Item I has the name N.
newer(F1,F2) File F1 was created after file F2.
similarity(F1,F2,S) File F1 and F2 have a similarity of S.
size(F,S) File F has S bytes.

a conjunction of literals L1 ∧ . . .∧ Ln if there is a substitu-
tion θ such that T models Liθ for 1 ≤ i ≤ n. By definition,
the empty conjunction > is true given any theory.

2.2 Irrelevance Decisions

In order to infer the irrelevance of files, Dare2Del uses two
clausal theories, one to represent the file system which may
contain irrelevant files (background knowledge) and one to
model irrelevance.

Background knowledge consists of information on files
and directories, collectively referred to as items. Every item
can be characterized by a set of attributes—like its name (as
usually displayed in a file manager), the time it was last ac-
cessed, or its size—and its relations to other items—for ex-
ample, which directory a file is in or if files are similar. Items
are represented by unique identifiers. Tables 1 and 2 contain
some predicate symbols available to the system along with
their interpretation.

Background knowledge is split in two parts: facts en-
coding information on individual objects (data, BD), like the
distance between files, and general clauses building on those
facts (domain theory, BT ). For example, one file is larger
than another if its size is greater than the other file’s size.
This separation is similar to knowledge representation in
description logics which is split into assertional knowledge
(ABox) and terminology (TBox) [1]. An excerpt of domain
theory clauses can be seen in Figure 1.

Additional to the background theory, Dare2Del has a
clausal theory for irrelevance I. This theory mainly con-
tains clauses with the head irrelevant(F) for some vari-
able F . Additionally, I may contain auxiliary clauses where
the head’s predicate symbol is neither irrelevant nor used
in the background theory. Dare2Del considers a file with
unique identifier f irrelevant if and only if BD ∪BT ∪ I |=

Table 2 Excerpt of domain theory relations. Shown are example atoms
with their descriptions.

Atom Description

accessed ago(I,S) Item I was last accessed S sec-
onds ago.

common infix(F1,F2, I) I is a common infix of the names
of files F1 and F2.

filename extension(F,E) File F’s name has extension E.
in same directory(F1,F2) Files F1 and F2 are in the same

directory.
larger(F1,F2) File F1 has a higher file size than

File F2.
not accessed since(F,W ) File F was not accessed within

the last W seconds.
prefix length(F1,F2,L) The names of files F1 and F2 start

with the same L letters.
very similar(F1,F2) Files F1 and F2 are very similar

to each other.

in same directory(F1,F2) ← in directory(F1,D)∧
in directory(F2,D)

larger(F1,F2) ← size(F1,S1)∧size(F2,S2)∧ >(S1,S2)
not accessed since(F,W ) ← accessed ago(I,S)∧ >(S,W )
prefix length(F1,F2,L) ← name(F1,N1)∧name(F2,N2)∧

prefix(N1,L,Sub)∧prefix(N2,L,Sub)

Fig. 1 Example clauses from domain theory. prefix(S0,L,S1) holds
if S1 is a prefix of S0 with length L. > is the usual ordering on numbers.

irrelevant(F)←not accessed since(F,31536000) (1)

irrelevant(F)←in same directory(F,F2)∧ (2)

very similar(F,F2)∧newer(F2,F)∧
prefix length(F,F2,5)

irrelevant(F)←in directory(F,D)∧name(D,”tmp”) (3)

Fig. 2 Example irrelevance theory clauses

irrelevant( f ). Some example irrelevance theory clauses
are shown in Figure 2.

3 Inductive Logic Programming for Learning
Relational Irrelevance Classifications

Dare2Del may be equipped with a hand-crafted irrelevance
theory. For example, a company might rule, that every copy
of a file from the corporate network drive which has not been
accessed within the last 30 days is irrelevant. Though such
theories are useful, there is a need to learn irrelevance the-
ories. On the one hand, rules may be too complicated to be
manually expressed as clauses. On the other hand, the com-
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panion system should adapt to the user’s individual criteria
of irrelevance.

In both cases, an irrelevance theory must be learned from
given irrelevance decisions on individual files. As usual in
machine learning, these decisions are called examples where
irrelevant files are positive examples and non-irrelevant files
are negative examples. In order to adapt to the user’s cri-
teria, these decisions are elicited by Dare2Del: given some
initial (possibly hand-crafted) irrelevance theory Dare2Del
decides that some files are irrelevant and proposes to delete
these. Then, the user decides which of these to delete. We
assume that this decision is solely based on the irrelevance
of the file. Thus, deleted files form positive examples and not
deleted files form negative examples for irrelevance. For-
mally, we represent positive examples and negative exam-
ples as sets of ground atoms.

Dare2Del uses Inductive Logic Programming methods
to learn irrelevance theories. Inductive Logic Programming
is a sub-field of symbolic machine learning which deals with
learning clausal theories from examples. Additionally to ex-
amples, a background knowledge theory is provided to In-
ductive Logic Programming algorithms. The learned irrele-
vance theory together with the background knowledge the-
ory must model all positive examples and no negative ex-
amples. Since introducing the whole field goes beyond the
scope of this paper, we will shortly introduce two example
Inductive Logic Programming systems with regard to learn-
ing irrelevance theories. Extensive overviews over the field
are provided by De Raedt and Muggleton [6,26].

3.1 Aleph

Aleph is a highly configurable software suite which is able to
emulate several Inductive Logic Programming systems [42].
In the basic variant, Aleph learns a theory by learning one
clause after the other. Each clause is learned by iteratively
appending literals to the clause body.

Theory learning follows a user-defined language bias,
limiting the set of possible theories. The language bias is
given as so called mode definitions [25] and restricts the ar-
guments a literal appended to the body may take. On the
one hand, a type is assigned to every argument. On the other
hand, argument terms must either be input, output, or con-
stant. Output terms are variables which do not appear in
any literal left of the one under consideration where every
variable may only be used for a single type. Input terms
are variables which appear in some body literal left of the
one under consideration or in the head. Constant terms must

be ground. For example, if size may take as first argu-
ment an input term of type file and as second argument an
output term of type number, size(F,S) is a valid literal to
extend irrelevant(F)← >. In contrast, size(G,S) and
size(F,1024) are not valid since G did not appear before
and 1024 is not a variable.

To learn a single clause, Aleph first selects a positive ex-
ample as seed. For that, it iteratively constructs the most-
specific clause from literals adhering to the mode defini-
tions. That is, assuming irrelevant( f ) is selected as seed,
Aleph starts with the fact irrelevant( f )← >. Then, all
atoms modelled by the background theory using only f as
input term are collected. All terms substituted for output
variables are extracted. In the next iteration, f and the ex-
tracted terms may be used as input terms. The process it-
erates a pre-specified number of times. Finally, f and all
extracted terms within the literals are replaced by variables
such that each variable corresponds to a given type in the
mode definitions. Given the most-specific clause, a clause
which models at least one positive example (the seed) and
no negative example is searched. The body of this clause
may only contain literals from the body of the most-specific
clause and must adhere to the mode definitions. Finally, all
positive examples modelled by the new clause are removed
from the set of positive examples. If no more positive exam-
ples remain, the algorithm terminates. Otherwise, the next
clause is constructed.

3.2 Metagol

Unlike Aleph, Metagol [5,27] does not learn clauses inde-
pendently one after another. Instead it learns a set of clauses
simultaneously. As language bias, every single clause must
follow a template, called metarule. Every metarule gives the
number and arity of literals in the clause body and explicitly
states their argument terms which may contain or be vari-
ables. Variables are either explicitly existentially quantified
or implicitly universally quantified. Valid clauses are con-
structed from metarules by finding predicate symbols of ap-
propriate arity and substituting existentially quantified vari-
ables by ground terms. For instance, Metagol could learn the
clause irrelevant(A) ← size(A,1024), when provided
with the metarule ∃B.P(A)← Q(A,B). However, if this is
the only available metarule, irrelevant(A)← size(A,B)
and irrelevant(A) ← size(A,1024)∧ name(A,C) may
not be learned since B must be substituted by a constant and
the clause body may only contain one literal. But usually
there is more than one metarule available to Metagol.
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Before Metagol can learn a theory, the user has to fix
the maximal number of clauses that shall be learned. Then,
Metagol searches for a theory modelling all positive exam-
ples in a depth-first fashion. If some positive example is not
modelled by the current theory and the maximal number of
clauses is not reached, Metagol selects a metarule to follow,
selects which predicate symbols to use and which constants
to substitute for, and adds the resulting clause to the theory.
When all positive examples are modelled, it tests whether
any negative example is modelled. If this is not the case,
Metagol terminates successfully. Otherwise, it backtracks,
trying the next possible predicate symbols, constants, and
metarules. Furthermore, Metagol invents additional auxil-
iary predicate symbols which may be used when construct-
ing clauses from metarules. Thus, more complex rules can
be build up from several simple clauses/metarules.

4 Explaining Relational Irrelevance Classifications

After learning an irrelevance theory, Dare2Del can apply
this theory to determine which files are irrelevant and sug-
gest the deletion of these files to the user. In the following,
we will present how Dare2Del explains the suggestions to
the user. First, we will define and and categorize explana-
tions. Then, we detail which type of explanations are em-
ployed in Dare2Del and present function to generate such
explanations. Finally, we show how explanations may be
presented to the user and how interactive learning will be
realized.

4.1 Dimensions of Explanations

In human-human interaction, if a person proposes an action
to take or utters an opinion which we do not understand, we
typically ask for an explanation. An explanation is defined
as the act of making something clear by giving a detailed
description, a reason, or a justification [20]. By explication,
the line of reasoning of the other person becomes transpar-
ent and comprehensible to us. We can decide whether the
explanation is convincing and consequently whether we will
follow the given advice or not [30]. The relevance of expla-
nations in human-computer interaction has been recognized
over a long time in different domains. To our knowledge
the first proposal for automated explanation generation has
been made by Clancy [4] in the context of expert systems.
He introduced a mechanism for collecting the trace of rule
applications during inference of a diagnosis.

4.1.1 Functions of Explanations

Explanations have been studied quite extensively in the con-
text of recommender systems. Tintarev [46] pointed out the
different pragmatic functions of explanations: (a) providing
transparency by detailing how the system reached some de-
cision, (b) providing scrutability by allowing the user to re-
view and correct system decisions, (c) increasing trust, and
(d) increasing effectiveness by supporting good user deci-
sions. The first function is directly addressed by Clancey’s
approach. The second function is in accordance with the
notion of companion systems [2,9,40]. In contrast to AI
research aiming at replacing humans by (super-)intelligent
systems [13], research on companion systems follows the
goal to provide assistive systems which support humans to
deal with the ever increasing complexity of everyday life
and of work environments. When such a companion system
incorporates machine learning, there are specific demands,
especially that learning has to be incremental and interac-
tive [8,40].

That trustworthiness is crucial for acceptance of AI sys-
tems in many application domains has been recognized more
and more during the last years, especially in the context of
black-box classifiers induced by (deep) neural networks [13,
22]. One of the most well-known approaches is the LIME
system [34] which provides explanations for classification
decisions by providing local linear approximations. In the
context of image classification, explanations are given by
highlighting the areas in the input images which contributed
most to the classifier decision. In the case of text classifica-
tion, explanations are given as bag of relevant words of the
input text.

That explanations are crucial in inducing trust has also
been shown in the context of interpretable machine learn-
ing, that is, machine learning approaches where the learned
classifiers are represented symbolically. Examples for such
approaches are decision tree and decision set learners [10,
18] as well as inductive programming [12,39]. That provid-
ing classification rules in symbolic form results in more ef-
fectiveness has been shown in the context of inductive logic
programming [28]. For a fictitious chemistry domain, users
who had to induce the characteristics of a chemical sub-
stance from some positive and negative examples on their
own classified significantly less test cases correctly as users
who have been provided with the rules which have been
learned from the initial examples. One of the pioneers of
machine learning, Donald Michie had proposed that besides
predictive accuracy operational effectiveness is an important
evaluation criterion for machine learning approaches [24].
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Approaches to explainable AI, such as LIME [34], pro-
vide explanations of the classification decision for a cur-
rent instance, that is, they answer the question “Why is in-
stance X classified as Y?”, for example, “Why is this im-
age classified as a dog?” or “Why is this file classified as ir-
relevant?” In contrast, approaches to interpretable machine
learning address the comprehensibility of the learned classi-
fier itself, that is, they answer the question “What is Y?”,
for example, “What is a dog?” or “What is an irrelevant
file?” Interpretable machine learning thereby is strongly re-
lated to cognitive theories of categorization [17,50]. In the
following, we will discuss why a restriction to one type of
explanations—for instance, visual highlighting—often will
not be adequate and why an explanation is not the same as
interpretable machine learning.

4.1.2 Types of Explanations

Humans are adept to provide different kinds of explana-
tions depending on the situational context or the assumed
mental state of the recipient of the explanation. The relative
merit of providing examples versus general rules as expla-
nation has been researched extensively in educational con-
texts [19,33,37,49]. In research on analogical reasoning, it
has been observed that for generalizing the relevant struc-
ture of a concept, it is helpful to align an example with a
structurally similar example which does not belong to a cat-
egory [23]. This same principle has been proposed in early
AI by Winston [48] for learning structural descriptions from
near misses. This idea has recently come back into focus
within deep learning with the concept of generative adver-
sarial networks [11]. In the context of recommender sys-
tems, explanations addressing different aspects of a deci-
sion have been discussed. For instance, a film recommender
system investigated by Tintarev [45] provides explanations
which can be generic (e.g., “this film is one of the top 100”),
feature-based (e.g., “this film belongs to the genre drama”),
or personalised feature-based (e.g., “this film features your
favourite actor”). Depending on the user’s cognitive abili-
ties, time pressure, and emotional state, explanations might
be more or less detailed [16].

Under the label of explainable AI currently mostly vi-
sual explanations are discussed [22,34] which is due to the
fact that the most well-known and successful applications
of black-box (deep) learning approaches are for image clas-
sification. In contrast, explanations in the context of rule-
based inference and learning systems focus on explanations
in form of rules—be it explication of a reasoning trace [4] or
presentation of the learned classifier [28]. Supported by ev-

idence on concept learning in the tradition of the dual code
theory [36], we believe that combining visual and symbolic
explanations can be helpful. Given a highly expressive sym-
bolic language such as first order logic, explanations can
grasp relevant information which cannot be directly trans-
ported in images. For instance, a relation such as “the stone
is left of the stick” cannot be distinguished from a conjunc-
tion “there is a stone and a stick” using only visual highlight-
ing. If the absence of an object is crucial for a classification,
highlighting cannot provide this information [38]. There is a
recent proposal to combine LIME with inductive logic pro-
gramming to generate more expressive explanations [32].

4.1.3 Explanations in Dare2Del

In the context of Dare2Del, we apply inductive logic pro-
gramming as a highly expressive approach to learn rules
to classify whether digital objects are irrelevant. Our cur-
rent focus is the generation of verbal explanations for irrel-
evance decisions concerning files. Similar to Clancey’s ap-
proach [4], we present explanations in form of traces. How-
ever, in our context, the rules are learned from examples and
not pre-defined. Furthermore, a trace is not presented in the
given (Prolog) representation but rewritten in a natural lan-
guage explanation. We address several aspects of explana-
tion generation discussed above. First, explanations can be
given in different detail: The most shallow explanation is
to only take into account the relations given in the body of
the rule which evaluated to be true for the file under con-
sideration. In a next step, the relations in the body can be
expanded by their respective rule definitions. Expansion ter-
minates with the ground facts. By negating specific facts in
such a way that the resulting instance cannot be classified
by any of the classification rules, counterexamples could be
constructed.

Such verbal explanations can be combined with specifics
of the domain under discourse. In the context of application
domains where the domain under discourse is based on im-
ages, for example aerial views of grave sites [32] or facial
expressions of pain [38], we combine textual explanations
with this visual information. In the context of irrelevance de-
cisions for files, we relate the verbal explanation with spe-
cific views of the file system as domain of discourse. We
believe, that grounding textual explanations in this way can
heighten trust stronger than the verbal explanation alone.
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Tnewer(s1,s2) = s1 ·" is newer than " · s2

Tnot newer(s1,s2) = s1 ·" is as old as or older than " · s2

T1
newer(t) = "file " ·n iff B∪ I |= name(t,n)

T2
newer(t) = T1

newer(t)

Taccessed ago(s1,s2) = s1 ·" was accessed " · s2 ·" ago"

Tnot accessed ago(s1,s2) = s1 ·" was not accessed " · s2 ·" ago"

T1
accessed ago(t) = T1

newer(t)

T2
accessed ago(t) =


t/86400 ·" days" if t mod 86400 = 0
t/3600 ·" hours" if t mod 3600 = 0
t ·" seconds" otherwise

TL
(
newer( f ile 1, f ile 2)

)
= Tnewer

(
T1
newer( f ile 1),T2

newer( f ile 2)
)

= Tnewer("file foo","file bar")
= "file foo" ·" is newer than " ·"file bar"
= "file foo is newer than file bar"

Fig. 3 Sample mapping functions for predicate symbols newer and
accessed ago and a sample application. It is assumed that the back-
ground knowledge contains clauses name( f ile 1,"foo") ← > and
name( f ile 2,"bar")←>.

4.2 Generating Verbal Explanations

Dare2Del considers a file with identifier f as irrelevant if
and only if irrelevant( f ) is modelled by its clausal the-
ory. To explain this decision we transform the clause(s) and
substitution(s) involved into a string in natural language.
Given a finite set of symbols, called alphabet, a string, or
word, is a finite sequence of symbols from the alphabet. Let
the alphabet Σ be the set of Unicode characters. We will en-
close strings within quotation marks, as in "this is a string".
Let λ denote the empty string. The concatenation of two
words w1 and w2 is denoted by w1 ·w2. The set of all strings
over the alphabet Σ is denoted by Σ ?.

For each predicate symbol p with arity n we define two
functions from n words to a single word, Tp : Σ ?n→ Σ ? and
Tnot p : Σ ?n→Σ ?. Additionally, we define a family of partial
functions mapping ground terms to strings,

(
Ti
p

)
1≤i≤n : G→

Σ ? where G is the set of all ground terms. The functions
Tp, Tnot p, and

(
Ti
p

)
1≤i≤n can be seen as string templates for

predicate symbol p and its arguments. An example template
is shown in Figure 3. A string template is applied to a literal
using the mapping function TL : G→ Σ ? defined as:

TL(L)=

{
Tp

(
T1
p(t1), . . . ,Tn

p(tn)
)

if L = p(t1, . . . , tn)

Tnot p
(
T1
p(t1), . . . ,Tn

p(tn)
)

if L = not p(t1, . . . , tn)
.

We extend the application from literals to a conjunction of
literals, defining the function TC as

TC(>) = λ

TC(L) = TL(L) where L is a literal

TC(L1∧ . . .∧Lm) = TL(L1) ·" and " · . . . ·" and " ·TL(Lm).

Finally, we can give an algorithm generating natural lan-
guage explanations for irrelevance decisions. Given back-
ground knowledge B, an irrelevance theory I, and a posi-
tive literal A, find a clause C ∈ B∪ I and a substitution θ

such that head(C)θ = A and B∪ I |= body(C)θ . Without
loss of generality we may assume that Cθ is ground.2 Then,
TL(A) ·" because " ·TC(body(C)θ) is an explanation for A.

The combination of clause and substitution may be not
unique. There may be more than one trace justifying the de-
cision that a file is irrelevant. Given the irrelevance theory
given in Figure 2 a file in folder “tmp” which was not ac-
cessed within the last year may be classified as irrelevant
using clause (1) or clause (3). Consequently, the algorithm
may produce more than one explanation.

4.3 An Explanation Interface

Figure 4 depicts a prototypic realization of Dare2Del. When
suggesting the deletion of files, Dare2Del presents a list of
multiple files which may be deleted. For each suggestion,
the user is offered an explanation why the system consid-
ers this file as irrelevant. The explanation combines a ver-
balization of the reasoning trace with the file manager. The
file under consideration and additional files or folders refer-
enced in the explanation are highlighted in distinct colours
in the text as well as in the file manager.3

The user can decide whether he or she wants to follow
the system proposal or not. In some cases, the explanation
will convince the user, in others not. In these cases, the user
can override the system’s classification and the system will
modify the classifier by adapting the rules to the new in-
formation. While typically in such interactive learning sce-
narios [8] the interaction is restricted to a correction of the
class, we believe that adaptation of the classification rules
can profit by more information from the user. The user can
mark parts in the explanations which are contradictory from

2 If Cθ is not ground we may substitute every variable in Cθ with a
unique constant.

3 In order to realize coloured highlighting we designed the string
templates to produce valid HTML strings. These are rendered by the
displaying component.
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Fig. 4 Screenshot of deletion suggestions in Dare2Del. Deletion suggestions (top right) are shown together with an explanation why the selected
file may be deleted (bottom right). Simultaneously, the relevant part of the file system is shown on the left. Colour highlightings are used to
establish coherence between the explanation and the domain of discourse.

his or her perspective. That is, the interactive companion
Dare2Del will be based on mutual explanations.

5 Conclusions

We outlined the cognitive companion system Dare2Del in-
tended to support users managing digital objects in a work-
ing environment. We focused on irrelevance of files. First,
we presented clausal theories as knowledge representation
language. We distinguished background knowledge on indi-
vidual objects, general domain background knowledge, and
the irrelevance theory encapsulating clauses on the irrele-
vance of objects. Then we introduced Inductive Logic Pro-
gramming to facilitate learning an irrelevance theory from
user feedback. Finally, we discussed explanations in general
and presented a method to generate verbal explanations for
irrelevance decisions. We have shown how verbal explana-
tions can be related to the path context of the file.

Though we have expounded the usefulness of explana-
tions in general, we have not presented an evaluation of our

approach. Regarding the usefulness of explanations in the
Dare2Del file deletion scenario, we are currently working on
a user study similar to the study by Wang & Benbasat [47].
There, we will investigate how verbal explanations and re-
lating them to the domain of discourse influence the trust
in a companion system. Evaluating the generated verbal ex-
planations themselves is arduous, as there is no objective
measure for the quality of explanations. We have to con-
duct a user study evaluating explanations generated by our
approach regarding soft criteria, like comprehensibility or
naturalness. In any case, we see one handicap of our ap-
proach: the one-to-one correspondence of terms to strings.
Currently, the mapping only depends on the term itself. But,
sentences using pronouns and relative clauses, like “File a
may be deleted because file b which is in the same folder is
newer than it.”, do sound more natural. Realizing his would
require keeping track of already verbalized terms and literals
and referring back to them accordingly.

As an additional aspect, our trace-based approach could
be extended to offer more general verbal explanations, sim-
ilar to the proposal of Tintarev [45]. Explanations of irrel-
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evance propositions could address general features, for ex-
ample this file is old, be comparative, for example yesterday
file x, which is similar to the current file, was deemed irrel-
evant, or user-specific, for example you deleted several files
like this one.

Another line of research is strengthening the bond be-
tween verbal explanation and the file system context. Cur-
rently, we only highlight file and folder names. Depending
on the predicates involved in the explanation, other infor-
mation might be highlighted. For example, if newer is in
the clause, the string "is newer than" and the change dates
of the involved files could be highlighted.
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