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Abstract
When data analysts use linear mixed models, they usually encounter two practical problems: (a) the true model is unknown
and (b) the Gaussian assumptions of the errors do not hold. While these problems commonly appear together, researchers
tend to treat them individually by (a) finding an optimal model based on the conditional Akaike information criterion (cAIC)
and (b) applying transformations on the dependent variable. However, the optimal model depends on the transformation and
vice versa. In this paper, we aim to solve both problems simultaneously. In particular, we propose an adjusted cAIC by using
the Jacobian of the particular transformation such that various model candidates with differently transformed data can be
compared. From a computational perspective, we propose a step-wise selection approach based on the introduced adjusted
cAIC. Model-based simulations are used to compare the proposed selection approach to alternative approaches. Finally, the
introduced approach is applied to Mexican data to estimate poverty and inequality indicators for 81 municipalities.

Keywords Box-Cox transformation · Empirical best predictor · Indicators · Small area estimation

1 Introduction

The linearmixedmodel is a broadly used statisticalmodel for
analyzing clustered or longitudinal data. When data analysts
use these models, they often face two practical problems:
(a) the true model for explaining the response variable is
unknown and (b) the model assumptions, especially the
Gaussian assumptions of the error terms, are violated.

As the true model is unknown, data analysts find suit-
able/optimalmodels for explaining the dependent variable by

B Timo Schmid
timo.schmid@uni-bamberg.de

Yeonjoo Lee
yeonjoo.lee@uni-bamberg.de

Natalia Rojas-Perilla
natalia.rojas@uaeu.ac.ae

Marina Runge
marina.runge@fu-berlin.de

1 Institute of Statistics, University of Bamberg, Bamberg,
Germany

2 Department of Analytics in the Digital Era, United Arab
Emirates University, Al Ain, UAE

3 Institute of Statistics and Econometrics, Freie Universität
Berlin, Berlin, Germany

using variable selection procedures. One popular approach in
this context is the Akaike information criterion (AIC) intro-
duced by Akaike (1973). For linear mixed models, there are
different versions of AIC (Müller et al. 2013). They can be
divided into two groups: marginal types of AIC (mAIC) and
conditional types of AIC (cAIC). ThemAIC is the common
AIC for linear mixed models which uses marginal density
and is one of the most widely used selection criteria (Müller
et al. 2013).However, themAIC is only appropriatewhen the
model parameters are fixed (Burnham and Anderson 2010)
and the use of mAIC as selection criterion is problematic
for linear mixed models (Han 2013). Vaida and Blanchard
(2005) introduced the cAIC as a more proper selection cri-
terion for linear mixed models. cAIC uses the conditional
density in contrast to mAIC . Vaida and Blanchard (2005)
derive cAIC in case that the (scaled) covariance matrix of
random effects is known and recommend to use a plug-in
estimator for the covariance matrix of the random effects in
practice. Liang et al. (2008) derive a more general cAIC
that accounts for the estimation of the covariance matrix of
the random effects. However, their conditional AIC can be
computationally demanding in situations with large sample
sizes and many potential variables (Greven and Kneib 2010).

Linearmixedmodels regularly rely onparametric assump-
tions such as normality for the random effects and the error
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terms. These assumptions may be violated in many applica-
tions, for instance,with skewedvariables like consumption or
income. One possible way to tackle this issue is to use robust
mixed models. Such models are robust in various aspects,
including the violation of the Gaussian assumptions. They
allowmoreflexible distributions (Verbeke andLesaffre 1997;
Zhang and Davidian 2001; Sinha and Rao 2009) or apply a
Bayesian framework (Rosa et al. 2003; Lachos et al. 2009).
Jiang (2019) gives an overview of further models which deal
with this problem. Another way to solve this problem is to
apply fixed logarithmic or data-driven transformations for
the dependent variable. The latter transformations are gen-
erally based on an adaptive transformation parameter λ that
depends on the particular shape of the data. Among differ-
ent data-driven transformations, the Box-Cox transformation
(Box and Cox 1964) is widely used, as it includes various
power transformations and the logarithmic transformation
as a special case. Gurka et al. (2006) extend the use of the
Box-Cox transformation to linear mixed models. They apply
the residual maximum likelihood (REML) approach to esti-
mate the transformation parameter λ from the data based on
linear mixed model with fixed auxiliary variables.

However, the optimal data-driven transformation depends
on the fixed model and the optimal model depends on the
selected data-driven transformation. In particular, to select
the optimal data-driven transformation parameter λ by the
REML approach, the linear mixed model should be fixed;
and to perform a variable selection based on the cAIC ,
the dependent variable should be fixed using an appropri-
ate (data-driven) transformation parameter λ. A first naive
approach which is typically used in applications would be
to perform the transformation and variable selection in a
specific order. First, find an appropriate working model on
the original/untransformed scale and keep this fixed when
selecting the optimal data-driven transformation parameter.
However, this may not offer the best way to the variable
selection as the selected variables are not optimal on the
transformed scale. In this paper, we aim to find the optimal
model and the optimal transformation parameter simultane-
ously. This would allow for enjoying the advantages of both
data-driven transformations and the optimal model for the
transformed data.

Hoeting and Ibrahim (1998) and Hoeting et al. (2002) dis-
cuss methods for transformation and variable selection based
on posterior probabilities in linear models. They focus on
change-point transformations to transform the predictors of
the linear model. Bunke et al. (1999) discuss the selection of
the optimal transformation and the optimal model based on
cross validation for the nonlinear model. To the best of our
knowledge, none of the existing literature provides a joint
solution when variable selection based on the cAIC and
estimation of the data-driven transformation parameter are
simultaneously applied to linear mixed models. From a the-

oretical perspective, we present an approach to concurrently
choose the optimal linear model and the optimal transforma-
tion parameter. Since the cAIC is scale dependent, we can
not directly compare different models with differently trans-
formed response variables. Therefore, we adjust the cAIC
using the Jacobian of the corresponding data-driven transfor-
mation such that different model candidates with differently
transformed response variables can be compared. Although
the paper focuses on the Box-Cox transformation as a par-
ticular data-driven transformation, the proposed approach is
applicable to data-driven transformations in general. From a
computational perspective, we provide a step-wise selection
approach based on the proposed adjusted cAIC .

The structure of the paper is as follows: In Sect. 2 we pro-
vide an overview of linear mixed models and the cAIC . In
Sect. 3, we derive the Jacobian adjusted cAIC for trans-
formed linear mixed models and introduce the step-wise
selection approach. In Sect. 4, we examine the performance
of the proposed selection approach by using model-based
simulations. In Sect. 5, the proposed selection approach is
applied to data from Guerrero in Mexico for estimating
poverty and inequality indicators at municipal level. Finally,
we discuss our results and further directions of research in
Sect. 6.

2 Variable selection using conditional AIC
for linear mixedmodels

In this sectionwebriefly introduce the existing variable selec-
tionmethods for linearmixedmodels. In Sect. 2.1,we present
a general notation of linear mixed models and in Sect. 2.2,
we introduce and compare the cAIC byVaida andBlanchard
(2005) and Liang et al. (2008).

2.1 The linear mixedmodel

Assume there is a finite population divided into D clusters.
Let yi be a vector of the response variable for the i-th cluster
for i = 1, · · · , D, which is modeled with a linear mixed
model

yi = Xiβ + Ziui + εi .

Ni is the cluster size of the i-th cluster, Xi and Zi are known
Ni × p and Ni × q design matrices for the fixed and random
effects, β includes p fixed effects, ui is a vector of q random
effects, and εi is a vector of errors in the i-th cluster. ui and
εi are assumed to be independent and normally distributed

ui ∼ N (0,G), εi ∼ N (0, σ 2 INi ),
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with INi , the Ni×Ni identitymatrix.G is theq×q covariance
matrix of random effects in the i-th cluster and depends on
a set of variance components η. Let N = ∑D

i=1 Ni be the
population size and θ = (β, σ, η) be the vector of parameters
in the model. The model is described for the population as
follows

y = Xβ + Zu + ε, (1)

where X = (XT
1 , · · · , XT

D)T is a N × p matrix, Z =
diag(Z1, · · · , ZD) is N × r block-diagonal matrix with
r = D · q, u = (uT1 , · · · , uTD)T and ε = (εT1 , · · · , εTD)T . ε
and u are independent and normally distributed with E(ε) =
E(u) = 0, Var(ε) = σ 2 IN and Var(u) = G0, where
G0 = diagD(G) is block-diagonal matrix with D blocks of
G on the diagonal. As u ∼ N (0,G0) and ε ∼ N (0, σ 2 IN ),
the covariance matrix of y is given by

Cov(y) = V = σ 2 IN + ZG0Z
T .

2.2 Conditional Akaike information criterion for
linear mixedmodels

Assume there are P possible explanatory variables in the
data. Since the number of all possible combinations of P
variables is M = 2P , there are M possible model candi-
dates which can be fitted to the data. In order to find the
optimal model among them, the variable selection should
be performed based on an appropriate selection criterion. In
this study, we focus on the variable selection based on the
cAIC for linear mixed models. While this study focuses on
the cAIC , the mAIC is briefly explained first to provide a
better understanding of the cAIC .

The mAIC is derived from the Kullback-Leibler (K-L)
divergence between the density of the true model and the
density of a candidate model (Akaike 1973). Assume that the
truemodel has the same form as Eq. (1) with true parameters.
Thevector of true parameters is denotedby θ0 = (β0, σ0, η0).
Let f (·) be the density function of the true generating model
and g(·|θ) be the density of the approximating model with
model parameters θ for fitting the data. If the true distribution
f belongs to the class of model candidates and θ = θ0 then
g(·|θ0) = f (·). The mAIC measures the K-L divergence
between f (·) and g(·|θ).

The idea behind the cAIC derivation is the same as for
the mAIC . While the mAIC measures the K-L divergence
between two marginal densities, cAIC measures the K-L
divergence between the true conditional density and the con-
ditional density of a model candidate. The true conditional
density is denoted by f (·|u0) with the true random effects
(u0) and the conditional density of a model candidate is
denoted by g(·|θ, u). Let y∗ be generated from the true con-
ditional density and y be the observed data, also from the

true conditional density. They are independent conditional on
random effects, which means that y∗ and y share the random
effects and only differ in error terms (i.e., y∗ = Xβ+Zu+ε∗
and y = Xβ + Zu + ε with ε∗ ∼ N (0, σ 2 IN ) and
ε ∼ N (0, σ 2 IN )). The K-L divergence between f (y∗|u0)
and g(y∗|θ, u) with respect to f (y∗|u0) is defined by

I [(θ0, u0), (θ, u)] =E f (y∗|u0)
[

log
f (y∗|u0)
g(y∗|θ, u)

]

=E f (y∗|u0)[log f (y∗|u0)]
− E f (y∗|u0)[log g(y∗|θ, u)].

The discrepancy between the conditional generating model
and the conditional approximation model is given by

d[(θ0, u0), (θ, u)] = E f (y∗|u0)[−2 log g(y∗|θ, u)].

By using the given definition of the discrepancy, the K-L
divergence can be written as follows

2I [(θ0, u0), (θ, u)] =2E f (y∗|u0)[log f (y∗|u0)]
+ d[(θ0, u0), (θ, u)].

Since 2E f (y∗|u0)[log f (y∗|u0)] does not depend on θ and
u from the approximating model, the ranking of candidate
models based on d[(θ0, u0), (θ, u)] is equivalent to the rank-
ing of candidates based on 2I [(θ0, u0), (θ, u)]. Therefore,
the fitted candidate models can be evaluated by using the
discrepancy with θ̂ and û,

d[(θ0, u0), (θ, u)] = d[(θ0, u0), (θ, u)]|
θ=θ̂ ,u=û,

where θ̂ includes the estimates of model parameters (i.e.
θ̂ = (β̂, σ̂ , η̂)) and û = E(u|θ̂ , y) contains the predicted
random effects based on the empirical Bayes estimation.
Hence, the selection problem based on K-L divergence can
be solved by comparing d[(θ0, u0), (θ, u)]|

θ=θ̂ ,u=û values of
the candidate models. As the model parameters and random
effects are estimated based on observed data, the expected
estimated discrepancy should be used as the selection cri-
terion (Burnham and Anderson 2010). This is also often
denoted as conditional Akaike Information (cAI ) (Vaida and
Blanchard 2005; Liang et al. 2008; Han 2013)

cAI =E f (y,u)E f (y∗|u)[−2 log g(y∗|θ̂ , û)].

− log g(y|θ̂ , û) is a biased estimator of E f (y,u)E f (y∗|u)

[− log g(y∗|θ̂ , û)]. As a consequence, the cAIC consists of
the conditional log-likelihood and the bias correction term
K

cAIC = −2 log g(y|θ̂ , û) + 2K ,

123



27 Page 4 of 17 Statistics and Computing (2023) 33 :27

where

log g(y|θ̂ , û) = −N

2
log(2πσ̂ 2) − 1

2σ̂ 2 (y − ŷ)T (y − ŷ),

and ŷ is the fitted vector ŷ = X β̂ + Zû.
Vaida and Blanchard (2005) derive two different bias cor-

rection terms under different assumptions. When σ 2 and G0

are assumed to be known, the K equals ρ, which is the effec-
tive degrees of freedom (Hodges and Sargent 2001)

Ka =ρ = tr

[(
XT X XT Z
ZT X ZT Z + σ−2G0

)−1(XT X XT Z
ZT X ZT Z

)]

.

When it is assumed that σ 2 is unknown and σ−2G0 is known,
K is calculated by

KMLE = N (N − p − 1)

(N − p)(N − p − 2)
(ρ + 1)

+ N (p + 1)

(N − p)(N − p − 2)
. (2)

The detailed derivation of Ka and KMLE can be found in
Vaida and Blanchard (2005).

Vaida and Blanchard (2005) derive the cAIC under the
assumption that G0, the covariance matrix of the random
effects, or σ−2G0, the scaled covariance matrix of the ran-
dom effects, are known.However, in practice they are usually
unknown. In the case of the unknown random effects covari-
ance matrix, Vaida and Blanchard (2005) suggest to use
KMLE for the cAIC with the estimated σ−2G0, since the
derivation of the bias correction term for the case of unknown
σ−2G0 is analytically complicated and the effect of estima-
tion can be asymptotically ignored.

Liang et al. (2008) propose a general cAIC for known σ 2,
regardless of whether the covariance of random effects are
known or unknown. Under these assumptions, Liang et al.
(2008) derive the bias correction term using the first deriva-
tives of ŷ subject to y. In their technical report, they also
derive an additional bias correction term for cAIC assum-
ing more realistically that neither σ 2 nor the covariance of
random effects are known.

In practice, the true value of σ 2 and the trueG0 are usually
unknown. Therefore, it seems reasonable to use the cAIC of
Liang et al. (2008). However, Liang et al. (2008) show in
the simulation part that their bias correction term is close to
Ka and it is also shown in their technical report that the bias
correction term under more realistic assumptions is close to
KMLE . Moreover, Greven and Kneib (2010) point out that
the use of cAIC by Liang et al. (2008) as a selection criterion
poses severe computational difficulties, since the calculation
of the bias correction term of Liang et al. (2008) requires at
least N additional model fits to calculate derivatives. If there

are M different model candidates, at least N × M model
fits are required to calculate cAIC derived by Liang et al.
(2008), which is hard to implement for large N and M . As a
result, this study focuses on the cAIC ofVaida andBlanchard
(2005), and in particular on the cAIC with KMLE that allows
for unknown σ 2. The optimal model is the model which has
the minimum value of cAIC among all M model candidates.

3 Variable selection for linear mixedmodels
with transformations

In this section, we propose a step-wise variable selection
approach for linear mixed models which allows compar-
ing model candidates with differently transformed response
variables. First, we give a general notation of linear mixed
modelswith theBox-Cox transformation.Although thepaper
focuses on the Box-Cox transformation as a particular trans-
formation, the proposed approach is applicable to data-driven
transformations in general. In Sect. 3.2, we derive the Jaco-
bian adjusted cAIC based on cAIC by Vaida and Blanchard
(2005), which can compare model candidates with differ-
ently transformed data. In Sect. 3.3, we introduce a bootstrap
method to estimate the bias correction term for Jacobian
adjusted cAIC . From a computational perspective, we sug-
gest to use step-wise selection with adjusted cAIC in Sect.
3.4

3.1 Linear mixedmodels with transformations

Assume that the original y variable is non-normal and there
exists a transformation parameter of the Box-Cox transfor-
mation for which the transformed data follows the Gaussian
assumption. The one-to-one Box-Cox transformation (Box
and Cox 1964) of y is defined by

Tλ(yi j ) =
{

(yi j+s)λ−1
λ

if λ �= 0,

log(yi j + s) if λ = 0,

i = 1, ..., D and j = 1, ..., Ni , (3)

where λ denotes the transformation parameter which has
to be estimated and s denotes the shift parameter s =
|min(y)| + 1 only when min(y) < 0. Let ỹ be the vector
of transformed y. Then, ỹ is modeled as

Tλ(y) =ỹ = Xβ + Zu + ε (4)

with u ∼ N (0,G0) and ε ∼ N (0, σ 2 IN ). The covariance
matrix of the transformed y is

Cov(ỹ) = V = σ 2 IN + ZG0Z
T .
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Gurka et al. (2006) use the REML approach to estimate
λ, as the REML approach is recommended when the focus is
the estimation of variance components (Verbeke and Molen-
berghs 2000). Moreover, Rojas-Perilla et al. (2020) compare
the REML estimator of λ with other estimators and show
that the REML approach has a smaller variability than alter-
native estimators. Accordingly, the optimal λ is estimated in
this study with the REML approach. The optimal λ maxi-
mizes the residual log-likelihood function of a given model.
However, the estimated optimal λ is only optimal for the
given model. This means that each model candidate has its
own optimal λ. As we do not knowwhich model candidate is
the optimal and which λ is the optimal for the corresponding
model, we should select the model and the λ concurrently.

To simultaneously select the best model based on cAIC
and obtain the optimal λ, we estimate it for each potential
model in a first step. With P possible x variables there are
M = 2P model candidates. The m-th model is defined by

Tλm (y) =ỹ (m) = X (m)β + Zu + ε,

m = 1, ..., M, (5)

where X (m) is the design matrix of the m-th model and
λm is the optimal transformation parameter for the m-th
model. Based on the model in Eq. (5) the optimal transfor-
mation parameter is estimated using the REML approach
and λ̂m denotes the estimated optimal transformation param-
eter for the m-th model. Further details about the estimation
of λm using the REML approach are explained in Gurka
et al. (2006). In the second step, all model candidates with
their own λ̂m should be compared. However, AIC-type cri-
teria cannot compare models with differently transformed
target variable (Burnham and Anderson 2010). Therefore,
an adjustment with the Jacobian to the cAIC should be
performed first such that these M different models can be
compared.

3.2 Jacobian adjusted cAIC for linear mixedmodels

Assume that f (·|u0) is the true conditional density func-
tion with the true model parameters θ0 and the true random
effects u0, while g(·|θ, u) denotes the conditional density
of an approximating model. Let ỹ∗ = Xβ + Zu + ε∗ be a
realization from the true conditional density function with
ε∗ ∼ N (0, σ 2). Then, the cAI for the transformed model is
given by

cAI =E f (ỹ,u)E f (ỹ∗|u)[−2 log g(ỹ∗|θ̂ , û)],

where θ̂ is the vector of estimated model parameters and û
is the vector of predicted random effects. − log g(ỹ|θ̂ , û) is
a biased estimator of E f (ỹ,u)E f (ỹ∗|u)[− log g(ỹ∗|θ̂ , û)] =

0.5 · cAI . The bias is obtained by

bias = E f (ỹ,u)[− log g(ỹ|θ̂ , û)] − 0.5 · cAI .

To obtain an unbiased estimator of 0.5 · cAI , the bias cor-
rection term (BC) should be added as follows

BC = − E f (ỹ,u)[− log g(ỹ|θ̂ , û)] + 0.5 · cAI
=E f (ỹ,u)[log g(ỹ|θ̂ , û)]

− E f (ỹ,u)E f (ỹ∗|u)[log g(ỹ∗|θ̂ , û)]
=E

[
1

2σ 2 [(ỹ∗ − ̂̃y)T (ỹ∗ − ̂̃y) − (ỹ − ̂̃y)T (ỹ − ̂̃y)]
]

,

(6)

where ̂̃y = X β̂ + Zû.
Under the assumption that σ 2 is unknown, the BC in Eq.

(6) can be replaced by KMLE from Eq. (2). Consequently,
the cAIC for the transformed model is given by

cAIC = − 2 log g(ỹ|θ̂ , û) + 2KMLE , (7)

where

log g(ỹ|θ̂ , û) = −N

2
log(2πσ̂ 2) − 1

2σ̂ 2 (ỹ − ̂̃y)T (ỹ − ̂̃y).

However, this cAIC of the transformed model cannot be
used to compare differently transformed model candidates.
The cAIC measures theK-Ldistance between the true condi-
tional density and a conditional density of amodel candidate.
In the case of linear mixed models without a transformation,
the optimal model can be chosen using the cAIC by Vaida
and Blanchard (2005), since all model candidates have the
same response variable y. The model with the smallest dis-
tance (i.e., the smallest cAIC) is the optimalmodel among all
candidates.However, for linearmixedmodelswith a transfor-
mation we estimate for eachmodel candidate its own optimal
transformation parameter. As the transformation parameter
differs from model to model, the transformed y differs too.
Consequently, the response variables of themodel candidates
are no longer the same (i.e., ỹ(1) �= ỹ(2) �= · · · �= ỹ(M)).
Therefore, the cAIC in Eq. (7) of a model candidate is in
fact not the distance of the model from the true density of
y, but the distance from the true density of ỹ. As ỹ differs
from candidate to candidate and cAIC is scale dependent,
the model candidates cannot be compared with the cAIC .
To allow for comparing model candidates using the cAIC ,
it needs to be adjusted, so that the adjusted cAIC of a model
candidatemeasures the divergence of themodel from the true
density of y. Akaike (1978) shows that this adjustment can
be done by adding the Jacobian of the transformation to the
AIC value of time series models.
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The Jacobian adjusted cAIC denoted by JcAIC is
derived from theK-Ldivergence between the true conditional
density and the model conditional density of the original
y, and not of the transformed y. To define the K-L diver-
gence between the true and a candidate model of y, the
true and model conditional densities of y should be defined.
As we know the conditional densities of the transformed y,
the conditional densities of y can be derived by multiplying
the Jacobian of the transformation. Let h(y|u0) be the true
conditional density of y and l(y|θ, u) the conditional model
density, which are defined with the Jacobian of the Box-Cox
transformation J (λ, y) as

h(y|u0) = f (ỹ|u0) · J (λ, y),

l(y|θ, u) =g(ỹ|θ, u) · J (λ, y), (8)

where

J (λ, y) =
∣
∣
∣
∣
∂ ỹ

∂ y

∣
∣
∣
∣ =

D∏

i=1

Ni∏

j=1

∂ ỹi j
∂ yi j

=
D∏

i=1

Ni∏

j=1

(yi j + s)λ−1. (9)

Let y∗ be a realization of the true conditional density h(y|u)

and ỹ∗ be the vector of transformed y∗. Then, the K-L diver-
gence between conditional densities of y∗ becomes

I [(θ0, u0), (θ, u)] =Eh(y∗|u)

[

log
h(y∗|θ0, u0)
l(y∗|θ, u)

]

=Eh(y∗|u)[log h(y∗|θ0, u0)]
− Eh(y∗|u)[log l(y∗|θ, u)].

The discrepancy is defined by d[(θ0, u0), (θ, u)] = Eh(y∗|u)

[−2 log l(y∗|θ, u)]. Therefore, the K-L divergence can be
formulated using discrepancies as follows

2I [(θ0, u0), (θ, u)] =2Eh(y∗|u)[log h(y∗|θ0, u0)]
+ d[(θ0, u0), (θ, u)].

The ranking of d[(θ0, u0), (θ, u)] is equivalent to the rank-
ing of 2I [(θ0, u0), (θ, u)], since the first term 2Eh(y∗|u)[log h
(y∗|θ0, u0)] is constant for all model candidates. The Jaco-
bian adjusted cAI (JcAI ) is

JcAI =Eh(y,u)Eh(y∗|u)[−2 log l(y∗|θ̂ , û)].

− log(l(y|θ̂ , û)) is a biased estimator of 0.5· JcAI . To obtain
an unbiased estimator of 0.5 · JcAI , the bias should be cor-
rected by the following bias correction term (BC):

BC = −
(
Eh(y,u)[− log(l(y|θ̂ , û))] − 0.5 · JcAI

)

=Eh(y,u)[log(l(y|θ̂ , û))]
− Eh(y,u)Eh(y∗|u)[log(l(y∗|θ̂ , û))].

l(y|θ̂ , û) is defined as in Eq. (8). Then, l(y∗|θ̂ , û) can be
defined by g(ỹ∗|θ̂ , û) · J (λ̂, y∗) using the same relation as
in Eq. (8). By inserting these terms into the BC , we get

BC =Eh(y,u)[log(g(ỹ|θ̂ , û) · J (λ̂, y))]
− Eh(y,u)Eh(y∗|u)[log(g(ỹ∗|θ̂ , û) · J (λ̂, y∗))]

= E

[

− N

2
log(2πσ̂ 2) − 1

2σ̂ 2 (ỹ − ̂̃y)T (ỹ − ̂̃y)

+ log(J (λ̂, y))

]

−E

[

− N

2
log(2πσ̂ 2) − 1

2σ̂ 2 (ỹ∗ − ̂̃y)T (ỹ∗ − ̂̃y)

+ log(J (λ̂, y∗))
]

. (10)

The Jacobian term of y is defined in Eq. (9) and the Jaco-
bian term for y∗ is given by

∏D
i=1

∏Ni
j=1(y

∗
i j + s)λ−1 leading

to

BC = E

[

− N

2
log(2πσ̂ 2) − 1

2σ̂ 2 (ỹ − ̂̃y)T (ỹ − ̂̃y)

+ (λ̂ − 1)
D∑

i=1

Ni∑

j=1

log(yi j + s))

]

−E

[

− N

2
log(2πσ̂ 2) − 1

2σ̂ 2 (ỹ∗ − ̂̃y)T (ỹ∗ − ̂̃y)

+ (λ̂ − 1)
D∑

i=1

Ni∑

j=1

log(y∗
i j + s)

]

. (11)

3.3 Estimation of the bias correction

We propose a parametric bootstrap - following the ideas of
Donohue et al. (2011) and Rojas-Perilla et al. (2020) - to esti-
mate the BC for the JcAIC . The bootstrap captures not only
the uncertainty due to the estimation of themodel parameters
but also the additional uncertainty due to the estimation of
the transformation parameter λ (Rojas-Perilla et al. 2020). In
addition,we use a resampling approach because the bootstrap
variants of AIC are comparable with analytic approxima-
tions of the AIC (Donohue et al. 2011) and perform better
than analytic approximations in terms of the model choice
(Shang and Cavanaugh 2008; Marhuenda et al. 2014).

The BC in Eq. (11) consists of two expectation terms.
Each expectation term is estimated by averaging the values
over the B bootstrap replicates. The steps of the proposed
bootstrap are as follows:

1. Estimate the optimal λ defined as λ̂ using REML for the
model candidate and transform the y to the ỹ with the
estimated λ̂.
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2. Fit the model in Eq. (4) to obtain estimates of model
parameters θ̂ .

3. Generate u(b) ∼ N (0, Ĝ0) and ε(b) ∼ N (0, σ̂ 2) and
create a bootstrap ỹ using ỹ(b) = X β̂ + Zu(b) + ε(b).

4. Refit the model with the bootstrap sample ỹ(b) and obtain
the bootstrap estimates of the model parameters θ̂ (b) and
û(b).

5. Calculate the second expectation term of the BC for each
bootstrap using θ̂ (b) and û(b). The unobserved (true) ỹ∗
and y∗ are replaced by ỹ and y respectively. Note that
ỹ and y are treated as realizations from the true trans-
formed/untransformed density with corresponding λ̂.

6. Back-transform ỹ(b) using λ̂ to obtain y(b) on the original
scale. Re-estimate λ̂(b) based on y(b) and re-transform
the y(b) using λ̂(b). The re-transformed bootstrap y(b) is

denoted by ỹ(λ̂(b),(b)).

7. Refit the model with the bootstrap sample ỹ(λ̂(b),(b)) and
obtain the bootstrap estimates of the model parameters

θ̂ (λ̂(b),(b)) and û(λ̂(b),(b)). Note that the estimates depend
on the re-estimated transformation parameter indicated
by the superscript λ̂(b).

8. Calculate the first expectation term of the BC for each

bootstrap using θ̂ (λ̂(b),(b)), û(λ̂(b),(b)), λ̂(b), ỹ(λ̂(b),(b)) and
y(b).

The bootstrap estimate of the BC is then obtained by

BC = 1

B

B∑

b=1

[

− N

2
log

(
2πσ̂ 2(λ̂(b),(b))) − 1

2σ̂ 2(λ̂(b),(b))
·

(

ỹ(λ̂(b),(b)) − X β̂(λ̂(b),(b)) − Zû(λ̂(b),(b))
)T

(

ỹ(λ̂(b),(b)) − X β̂(λ̂(b),(b)) − Zû(λ̂(b),(b))
)

+ (
λ̂(b) − 1

) D∑

i=1

Ni∑

j=1

log
(
y(b)
i j + s

)
]

− 1

B

B∑

b=1

[

− N

2
log

(
2πσ̂ 2(b)) − 1

2σ̂ 2(b)
·

(

ỹ − X β̂(b) − Zû(b)
)T(

ỹ − X β̂(b) − Zû(b)
)

+ (
λ̂ − 1

) D∑

i=1

Ni∑

j=1

log
(
yi j + s

)
]

. (12)

Then, the JcAIC is estimated by

JcAIC = − 2 log(l(y|θ̂ , û)) + 2BC

=− 2 log(g(ỹ|θ̂ , û))−2 log(J (λ̂, y))+2BC (13)

with BC defined in Eq. (12).

The JcAIC is the measure of the K-L divergence of a
model candidate from the true model on the original y scale.
Therefore, model candidates can be compared with JcAIC
despite of their different response variable. A model with the
minimum JcAIC is the optimal model with the correspond-
ing optimal transformation parameter.

Using the derived JcAIC for the Box-Cox transforma-
tion, we will compare model candidates whose response
variables are Box-Cox transformed with different transfor-
mation parameters. However, JcAIC can be also derived
for other types of transformations, such as a logarithmic or
dual-power transformation (Yang 2006). The JcAIC always
measures the divergence of a candidate model from the
true model on the original y scale independent of how the
response variable of the model is transformed. Therefore,
the JcAIC can compare not only model candidates that
use the same transformation with different transformation
parameters, but also the models with different types of trans-
formations.

3.4 Simultaneous selection of optimal
transformation andmodel formula

As a consequence of the previous sections, we propose the
following algorithm to simultaneously select the optimal λ

of a Box-Cox transformation and the optimal model among
several model candidates. As explained above, considering
all possible theoretical M model candidates is often not fea-
sible in practice due to the computational burden. Therefore,
the usual step-wise algorithms can be applied where the
algorithm stops, if no further improvement can be achieved.
In the following, we have chosen backward elimination as
the exemplary model selection direction. The exchange to
forward or the extension to forward-backward are possible
without any difficulties and were done for the simulation
experiment in Sect. 4 and the application in Sect. 5.

(1) Start with the full model including all P possible x-
variables in the data. For the start, the full model is set as
the optimal model. Estimate λ̂ based on the full model to
initiate the backward model selection.

(2) For each step s = 1, ..., S:

(i) Consider all possiblemodel candidateswhich exclude
an explanatory variable from the previous optimal
model.

(ii) Estimate λ̂ based on the reduced model formulas and
transformed y values ỹ = T

λ̂
(y) for each model can-

didate.Calculate the JcAIC value fromEq. (13)with
the estimated λ̂ for each candidate.

(iii) Compare all JcAIC values. The model with the
smallest JcAIC value is chosen as the new optimal
model for the step.
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(3) Compare the JcAIC value of the new optimal model
in step s with the JcAIC value of the previous optimal
model in step s − 1. If the JcAIC value of the new
optimal model is smaller than the previous one, step 2) is
repeated until there is no further improvement in terms
of JcAIC values.

4 Model-based simulation experiment

To support our theoretical findings and the proposed frame-
work from the previous section we conduct simulation
studies, which include several settings. The aim of the study
is to show that under known data settings with a given trans-
formation and model formula, the presented simultaneous
algorithm for optimal model and transformation selection
depicts the true model for a linear mixed model. The set-
tings include four scenarios: Normal (1), Normal (2), Log
andBox-Cox, eachwith three explanatory variables. The sce-
narios are oriented to the simulation study of Rojas-Perilla
et al. (2020). The distributions of the explanatory variables
are chosen to be representative of both, numeric and cate-
gorical variables coded as dummies. The first scenario with
normally-distributed random effects and error terms (Nor-
mal (1)) has an explanatory power of around 40%, and the
second (Normal (2)) has an explanatory power of 85%, as
well as the Log and Box-Cox scenario. The exact definition
of the data settings is given in Table 1. In each simulation run
(Monte Carlo replication), the explanatory variables, random
intercepts and error terms are generated by drawing from the
corresponding distributions. Thus, a new pseudo population
is created in each simulation run. A total of 500 Monte Carlo
replications are generated for each setting. Each of the finite
populations consists of N = 10, 000 units evenly divided
into D = 50 clusters. Within each cluster, a simple random
sample is drawn.The cluster-specific sample sizes range from
0 to 29, so that the total sample size sums up to n = 565. The
distribution of yi j of one population is shown in theAppendix
in Table 9 and Fig. 4.

In addition to the explanatory variables x1,i j , x2,i j and
x3,i j , the random intercepts ui and the error terms ei j , an
additional variable zi j ∼ N (1, 0.12) is generated in each
Monte Carlo replications, which is used to estimate the linear
mixed model (but not included in the true data generating
mechanism):

Tλ(yi j ) = ỹi j =
β0 + β1x1,i j + β2x2,i j + β3x3,i j + β4zi j + ui + ei j , (14)

where T denotes the Box-Cox transformation defined in Eq.
(3). In each simulation run, the model selection is performed
with four approaches, where the dependent variable y is on
different scales:

• on theoriginal scale (no transformation), so thatTλ(yi j ) =
yi j (denoted by Original),

• on the log scale, so that Tλ(yi j ) = log(yi j+s) (λ = 0)
(denoted by Log),

• on the Box-Cox scale, so that T (yi j ) = (yi j+s)λ−1
λ

for
λ ∈ [−2, 2] and λ �= 0; log(yi ) for λ = 0 (denoted by
Box-Cox Opt),

where s denotes the shift parameter s = |min(y)| + 1 only
when min(y) is a negative number. A naive approach which
is typically used in applications is

• to perform the model selection on the original scale and
afterwards estimate the optimal λ for a Box-Cox trans-
formation (denoted by Box-Cox Naive).

In the Box-Cox Opt approach the optimal model and the
optimal transformation parameter λ are determined simulta-
neously as described in Sect. 3.4. For each setting, the linear
mixed model from (14) and a null model without covariates
are estimated. The model selection is than performed with a
step-wise algorithm using backward and forward directions
based on the cAIC or JcAIC . For the Original approach
(which operates on the untransformed scale), the cAIC is

Table 1 Overview of data settings, i = 1, ..., d, j = 1, ..., Ni

Data setting yi j x1,i j μi x2,i j x3,i j ui ei j

Normal (1) 400 − 10x1,i j + 100x2,i j −
10x3,i j + ui + ei j

N (μi , 32) U[−3, 3] Bin(1, 0.8) N (0, 1) N (0, 302) N (0, 602)

Normal (2) 400 − 10x1,i j + 100x2,i j −
10x3,i j + ui + ei j

N (μi , 32) U[−3, 3] Bin(1, 0.8) N (0, 1) N (0, 102) N (0, 202)

Log exp(10 − x1,i j + x2,i j −
0.5x3,i j + ui + ei j )

N (μi , 22) U[2, 3] Bin(1, 0.8) N (0, 1) N (0, 0.42) N (0, 0.82)

Box-Cox [(10 − x1,i j + x2,i j −
0.5x3,i j + ui +
ei j )(−0.5) + 1] 1

−0.5

N (μi , 22) U[2, 3] Bin(1, 0.8) N (0, 1) N (0, 0.42) N (0, 0.82)
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calculated and the JcAIC in Eq. (13) is calculated for the
other approaches (which operate on the transformed scale).
They can be directly compared, as cAIC equals the JcAIC
for the Original approach. As analytic approximations of
the AIC can exhibit negative bias for small sample sizes
(Marhuenda et al. 2014), we also use bootstrap versions to
estimate the bias correction in the JcAIC/cAIC when a log
transformation or no transformation is used. This ensures a
fair comparison in the simulation experiment with the esti-
mated JcAIC for a Box-Cox transformation. The bootstrap
algorithms to estimate the cAIC for the Original and the
JcAIC for the Log approach are described in the Appendix.
The bootstrap algorithms were executed with B = 200 repli-
cations. In the following, we always refer to JcAIC , as in
the case of no transformation the cAIC equals the JcAIC .

There are three points of interest in the simulation: First,
choice of the correct approach for the model selection, sec-
ond, choice of the transformation parameter and third, choice
of the correct transformation and correctmodel specification.
To begin with, we want to evaluate whether the model with
the correct approach based on the JcAIC is chosen in agree-
ment with the data setting. For this, we look at the calculated
JcAIC values and in relation to this, we also check whether
in the case of the Box-Cox transformation the correct asso-
ciated λ is estimated. Then, we focus on the proportion of
simulation runs where the correct transformation is selected
and the proportion of correctly specified model formula.

The parameter λ of the Box-Cox transformation is esti-
mated with the REML algorithm and the simulation is
implemented in the statistical programming language R (R
Core Team 2021). For each combination of data settings
and approaches the calculated JcAIC are compared and
the model with the minimal JcAIC is chosen as optimal.
Table 2 contains summary statistics of the JcAIC values
over the 500 Monte Carlo replications. We observe that in

the Normal (1) and Normal (2) data settings, the calculated
JcAIC values of the model with no transformation (Orig-
inal), the Box-Cox transformation (Box-Cox Opt), and the
Box-Cox Naive approach are very close. Often, the calcu-
lated JcAIC values for Box-Cox Opt and Box-Cox Naive
are identical. This makes sense considering the correspond-
ing estimated λs in Table 3, which are very close to one for
both approaches and the resulting distribution close to nor-
mality. The deviations of the estimated parameters from one
can be explained by the finite population sample from the
normal distribution. Looking at the Log data setting we see
that the distributions of the JcAIC values using the Log
and the Box-Cox Opt approach are very close to each other.
Again this makes sense as the estimated λs (see Table 3) are
close to zero, which results in a log transformation of the
data. The JcAIC values of the Box-Cox Naive approach are
slightly higher. In the case of the Box-Cox data setting, the
JcAIC values of theBox-CoxOpt approach are the smallest,
followed by the Box-Cox Naive approach. Again, the corre-
sponding estimated λs match the true λ of −0.5 in this case.
Thevalues of theLog andOriginal approach are considerably
higher, which is reasonable given the underlying distribution
of the data in this setting. In each setting, the magnitudes and
ordering of the values correspond to the underlying distribu-
tions of the data and thus to our expectations.

Table 4 shows the proportions of selected optimal
approaches/ transformations and model formulas. For each
data setting, the model with the transformation underlying
in the data-generating process is selected mostly as opti-
mal, i.e., has the smallest JcAIC values. In the two Normal
data settings the calculated JcAIC are in around 64% and
69% the smallest, when no transformation is used (Origi-
nal), therefore it is chosen as optimal. This corresponds to
the underlying data generating process. In the other cases,
Box-Cox Opt and Box-Cox Naive are chosen as optimal with

Table 2 Summary statistics of
JcAIC over 500 Monte Carlo
replications

Data setting Approach Min 1Q Median Mean 3Q Max

Normal (1) Original 6275 6418 6478 6484 6543 6790

Box-Cox Opt 6271 6418 6478 6484 6543 6786

Box-Cox Naive 6271 6418 6478 6484 6543 6786

Normal (2) Original 5046 5185 5245 5245 5299 5559

Box-Cox Opt 5047 5184 5244 5246 5299 5562

Box-Cox Naive 5047 5184 5244 5246 5299 5562

Log Log 10350 10802 10907 10917 11036 11542

Box-Cox Opt 10351 10802 10905 10917 11037 11543

Box-Cox Naive 10435 10878 11001 10993 11101 11726

Box-Cox Original −296 2603 4497 4821 6434 19141

Log −1909 −1597 −1439 −1436 −1301 −792

Box-Cox Opt −2572 −2056 −1973 −1969 −1882 −1500

Box-Cox Naive −2280 −1961 −1866 −1866 −1775 −971
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Table 3 Summary statistics of
optimal transformation
parameter λ̂ over 500 Monte
Carlo replications

Data setting Approach Min 1Q Median Mean 3Q Max

Normal (1) Box-Cox Opt 0.4980 0.8800 0.9780 0.9810 1.0970 1.3940

Box-Cox Naive 0.4980 0.8800 0.9760 0.9810 1.0960 1.3890

Normal (2) Box-Cox Opt 0.4500 0.8830 0.9890 0.9940 1.1140 1.5620

Box-Cox Naive 0.4500 0.8830 0.9890 0.9940 1.1140 1.5620

Log Box-Cox Opt −0.0319 −0.0060 −0.0004 −0.0006 0.0051 0.0230

Box-Cox Naive −0.0312 −0.0029 0.0037 0.0034 0.0098 0.0309

Box-Cox Box-Cox Opt −0.5600 −0.4930 −0.4810 −0.4790 −0.4660 −0.3890

Box-Cox Naive −0.5510 −0.4940 −0.4810 −0.4790 −0.4650 −0.4070

Table 4 Proportions [%] of approaches and formulas selected as optimal

Data setting Original Log Box-Cox Opt Box-Cox Naive Box-Cox Opt & Naive x1 + x2 x1 + x2 + x3 x1 + x2 + x3 + z1 Other

Normal (1) 64.1 0.8 0.0 35.1 24.4 60.8 12.0 2.8

Normal (2) 68.9 0.2 0.0 30.9 1.4 86.1 12.5 0.0

Log 70.9 23.2 0.0 5.8 0.6 83.0 14.3 2.1

Box-Cox 0.0 0.0 83.6 0.0 16.4 0.2 81.3 17.3 1.2

identical JcAIC values and also very similar estimated λ’s,
when looking at Table 3. This makes sense due to the under-
lying normal distribution. For normal data, it should make
no difference whether the optimal model formula without a
transformation is chosen first and then an optimal λ close to
one is estimated, or whether the model formula and trans-
formation parameter are chosen simultaneously, as in the
Box-Cox Opt approach. In the Log setting in 71% out of the
500 samples (simulation runs) the true underlying transfor-
mation (Log) is chosen as optimal.While inmostly the rest of
the samples, the Box-Cox Opt approach with optimal λ̂ near
zero, which corresponds to a log transformation, outperforms
the Box-Cox Naive approach. In 5.8% JcAIC values are
identical for both Box-Cox approaches. The advantage of the
Box-Cox Opt approach is further illustrated in the Box-Cox
data setting, where this approach is outperforming the other
approaches in 83.6% of cases. Looking at the second part
of Table 4, it can be seen that in settings with high explana-
tory power (Normal (2), Log, Box-Cox), the correct model
formula (x1 + x2 + x3) is selected in over 85% of the sim-
ulation runs. However, in the Normal (1) setting with lower
explanatory power in 60.8% of the samples the correct model
formula is selected. This result seems justifiable since, if the
explanatory power of the underlying true model is lower, it
is more difficult to identify the true underlying relationship.
The results emphasize that the presented approach allows for
the selection of the optimal transformation parameter for the
Box-Cox transformation and detects the true transformation.
In addition, it enables the selection of the correct model for-
mula, whereby the degree depends on the explanatory power
of the underlying model.

5 Case study: poverty and inequality in
municipalities of Guerrero

In this section, the proposed selection approach is applied to
data from the stateGuerrero inMexico for estimating poverty
and inequality indicators at municipal level. To provide reli-
able estimates of these indicators at the municipal level, it is
necessary to use small area estimation. In order to demon-
strate the proposed selection approach, we use a particular
small area method - the empirical best predictor (EBP) by
Molina and Rao (2010) - which is based on a linear mixed
model. In Sect. 5.1, we provide a brief overview of the small
area estimation and theEBP. In Sect. 5.2, we describe the data
and the problemof simultaneously finding the optimal (linear
mixed) model and the transformation parameter. We apply
our proposed selection approach and two naive approaches
and present the results of the indicators in Sect. 5.3.

5.1 Small area estimation and the empirical best
predictor

Many surveys are designed to study total populations. For a
sample of the total population, direct estimators, for instance
the Horvitz-Thompson estimator (Horvitz and Thompson
1952) can provide reliable estimates due to enough observa-
tions/units in the sample.However, direct estimationmethods
are appropriate only with a sufficient sample size for every
domain/area of interest, which is often not the case on a dis-
aggregated regional level. Furthermore, estimators cannot be
calculated for domains with no sample data (i.e., out of sam-
ple domains) or estimators have too large standard errors
for domains with only few sample data (Rao and Molina
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2015). When direct estimation cannot provide adequate pre-
cision for a domain of interest because of insufficient data,
the domain is defined as small and is called small area/small
domain (Rao and Molina 2015; Tzavidis et al. 2018). One
way to improve direct estimates is by small area estima-
tion. Small area methods aim to improve the efficiency of
the estimation by combining sample data with data from the
census/register basedon amodel (Rao andYu1994; Jiang and
Lahiri 2006). The census/register contains auxiliary variables
that may be correlated with the dependent variable and may
be used to improve the direct estimates. This is a more com-
plex task as it depends on model building and diagnostics.
The model building may include the use of transformation,
the selection of the covariates or non-normal error terms.

Since there is no proper survey data which can produce
reliable direct estimates of poverty and inequality indicators
at municipal level in Guerrero, we use the EBP approach.
The approach uses the nested error linear regression model
by Battese et al. (1988). This model is a special linear mixed
model which includes only random (area specific) intercepts.
In the following,we briefly introduce the EBP. Further details
are available in Molina and Rao (2010) and Rojas-Perilla
et al. (2020).

Assume a finite population of size N divided into D
domains. Ni denotes the size of the i-th domain for i =
1, · · · , D. Let y be the target welfare variable (e.g. income)
and yi j is the welfare measure of j-th unit in i-th domain
where j = 1, · · · , Ni . The sample data does not include all
N units in the population but only a part of the population.
The sample has a size of n and this sample can also be divided
into D domains. ni denotes the sample size of the i-th domain
and it results in n = ∑D

i=1 ni . Then, the nested error linear
regression model is given by

yi j =xTi jβ + ui + εi j , (15)

ui
iid∼ N (0, σ 2

u ), εi j
i id∼ N (0, σ 2

ε ),

where ui denotes the area random effects and εi j denotes
the error term. Let θ = (β, σu, σε) be a vector of model
parameters. The EBP approach is shortly outlined as follows:

1. Fit the model using the sample data to obtain θ̂ =
(β̂, σ̂ 2

u , σ̂ 2
ε ) and ûi .

2. For l = 1, ..., L , generate

ε̃
(l)
i j ∼ N (0, σ̂ 2

ε ), ũ(l)
i ∼ N (0, σ̂ 2

u (1 − γ̂i ))

for in sample domains,

ε̃
(l)
i j ∼ N (0, σ̂ 2

ε ), ũ(l)
i ∼ N (0, σ̂ 2

u )

for out of sample domains, using θ̂ with γ̂ = σ̂ 2
u

σ̂ 2
u +σ̂ 2

ε /ni
.

3. Obtain L pseudo-populations by plugging in the explana-
tory variables in the auxiliary data (i.e. xi j ) with β̂, ûi ,
ũi and ε̃i j obtained in previous steps into the following
model

y(l)
i j =xTi j β̂ + ûi + ũ(l)

i + ε̃
(l)
i j , l = 1, ..., L

for in sample domains,

y(l)
i j =xTi j β̂ + ũ(l)

i + ε̃
(l)
i j , l = 1, ..., L

for out of sample domains.
4. Calculate the poverty or inequality indicator for each

domain and pseudo population I (l)
i , i = 1, ..., D and

l = 1, ..., L .
5. Take the mean over the L Monte Carlo runs to estimate

the EBP of the indicator

Î E BP
i = 1

L

L∑

l=1

I (l)
i .

The EBP with data-driven transformed y is obtained simi-
larly to the described EBP above. The detailed estimation of
the EBPwith data-driven transformations and corresponding
uncertainty measures based on MSE of the EBP are further
explained in Rojas-Perilla et al. (2020).

5.2 Data and problem

This study uses survey data from the 2010 Encuesta Nacional
de Ingresos y Gastos de los Hogares (ENIGH - National
Survey of Household Income and Expenditure) as sample
data.This survey is performedevery twoyears by the Instituto
Nacional de Estadística y Geografía (INEGI - The National
Institute of Statistics and Geography) and contains socio-
demographic information of households, which are also the
units of data. INEGI also performs the national population
and housing census every ten years. As auxiliary data, the
census 2010 data is used for the further application.

Guerrero is located in Southwestern Mexico and borders
the Pacific ocean. The state is divided into 81 municipalities.
40municipalities are in the survey data and 41municipalities
are not in the sample. Table 5 shows a summary of the num-
ber of households per domain in the survey and census data.

Table 5 Number of households per domain in survey and census data

Min 1Q Median Mean 3Q Max

Survey 13 19 26 45 38 582

Census 585 901 1118 1925 2372 7629
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1801 households are observed in the sample and on average
there are 45 observations per domain. The survey and census
data contain a large number of socio-demographic variables.
The total household per capita income inMXN (i.e.,ictpc)
is used as the measurement of welfare. As we used the
linear mixed model in Eq. (15) to explain ictpc, the Gaus-
sian assumptions of random effects and errors are required.
However, the histogram of ictpc in Fig. 1 shows that
the distribution of ictpc is very right skewed. Therefore,
we apply the Box-Cox transformation to the target variable
ictpc, such that the violation can be corrected/reduced.
For the Box-Cox transformation the optimal transformation
parameter λ should be found.

In the survey data there are 34 possible explanatory vari-
ables after excluding variables which are highly/perfectly
correlated with other variables. We do not know which vari-
ables should be included to optimally explain the response
variable, therefore, a variable selection should be performed.
Consequently, we have two problems to solve: obtaining the
optimal transformation parameter λ and finding the optimal
model. To solve these problems simultaneously, the opti-
mal transformation parameters are estimated by the REML
approach for each model candidate and all model candi-
dates with their own transformed data are compared with the
JcAIC introduced in Sect. 3. There are 34 possible explana-
tory variables in the data, therefore, we theoretically have 234

model candidates.However, fitting thesemodels is unfeasible
because of the computational intensity. Instead, a step-wise
variable selection proposed in Sect. 3.4 is applied to find the
optimal model. With the chosen optimal model the EBP of
poverty and inequality indicators are estimated.

To evaluate the EBP based on our optimal model, we
apply two naive approaches which are typically used in
applications. The first one takes the simple logarithmic
transformation to avoid the problem of finding the opti-
mal transformation and performs variable selection based on
cAIC on the log-scale. The second specification performs
the variable selection initially on the original y scale to find

the optimal model. Afterwards, the optimal transformation
parameter is chosen based on the optimal model for the orig-
inal y. Consequently, we have three different EBP estimates:
Box-CoxOpt denotes the EBP based on our selectionmethod
based on the JcAIC as described in Sect. 3, Log denotes the
first alternative EBP approach and Box-Cox Naive denotes
the second alternative EBP approach. These three EBP esti-
mates are compared to show that the use of our proposed
selection approach based on the JcAIC can improve the
predictive power and reduce the uncertainty of the poverty
and inequality estimates.

5.3 Results

First, the chosen variables for the optimal model and the
optimal transformation parameters of each approach are
compared. Table 6 shows the chosen variables of each
approach and the estimated transformation parameter for
models with the Box-Cox transformation. We can see that
the results of variable selection can be strongly affected by
the response variable. The Box-Cox Opt approach performs
the variable selection on Box-Cox transformed y and Log
performs the variable selection on logarithmic transformed
y. For these two approaches, a transformation is used to cor-
rect the violation of the Gaussian assumptions and then the
optimal model is chosen with transformed y. As a result, the
chosen variables for the model of Box-Cox Opt and Log are
very similar. In the meantime, the model of Box-Cox Naive
choose the variables on the original y despite the violation of
the Gaussian assumptions in the error terms. As a result,Box-
Cox Naive has different variables in the model in comparison
to the other models. Interestingly, optimal transformation
parameters forBox-Cox Opt and forBox-Cox Naive only dif-
fer slightly even though they have many different variables
in the models.

Second, in order to compare the predictive power of
each model, marginal R2 and conditional R2 (Nakagawa
and Schielzeth 2013) are calculated and summarized in

Fig. 1 Distribution of the total
household per capita income in
MXN (ictpc)
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Table 6 Chosen variables and
optimal transformation
parameters

EBP approach Chosen Variables λ̂

X1, X2, X3, X4, X5, X6, X7, X8, X9,

Box-Cox Opt X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, 0.1764

X20, X21, X22, X23

X1, X2, X3, X4, X5, X6, X7, X8, X9,

Log X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, –

X24, X25

Box-Cox Naive X1, X2, X3, X4, X5, X6, X7, X8, X9, 0.1888

X20, X21, X22, X23, X26, X27, X28

Table 7 R2 of models used for each approach

Marginal R2 Conditional R2

Box-Cox Opt 0.5997 0.6244

Log 0.5538 0.5878

Box-Cox Naive 0.5630 0.6023

Table 7. Themarginal R2 measures the proportion of variance
explained by fixed effects and the conditional R2 provides
the proportion of variance explained by both the fixed and
random effects. It is shown that the models with the Box-
Cox transformation (i.e., Box-Cox Opt and Box-Cox Naive)
have the higher predictive power than the model with the
logarithmic transformation (i.e., Log). When we compare
Box-Cox Opt and Box-Cox Naive, we can see that the Box-
Cox Opt, whose model is optimal for transformed y, has
a higher marginal and conditional R2 than Box-Cox Naive,
whose model is optimal for the original y scale.

Since the linear mixed model relies on Gaussian assump-
tions and we decided to use a transformation to correct the
violation of the Gaussian assumptions, each approach should
be examined concerning whether the violation is corrected.
For the examination, the skewness, kurtosis of residuals,
and p-value of the Shapiro-Wilk normality test (Shapiro
and Wilk 1965) on residuals are calculated (Table 8). We
observe that the logarithmic transformation performs worse
than theBox-Cox transformations. For further detailswe pro-
vide quantile-quantile (Q-Q) plots of residuals from the three
approaches in Fig. 5 in the Appendix. The household level
residuals are clearly closer to the normal distribution with
transformations. The Box-Cox transformation corrects the
violation in household level residuals rather well, however,
the residuals slightly deviate in the tails. From the models
with the Box-Cox transformation we can at least observe
that the municipal level residuals are very close to the nor-
mal distribution.

Finally, we want to assess if the improvement in the pre-
dictive power of the model due to the proposed simultaneous
selection of the transformation and the covariates (Box-Cox

Opt) translates to more precise small area estimates com-
pared to the two alternative approaches (Log and Box-Cox
Naive). Therefore, we estimate the mean income, head count
ratio (HCR) (Foster et al. 1984), and Gini coefficient (Gini
1912) for the municipalities in Guerrero. To compare the
efficiency of these three different approaches, the root mean
squared error (RMSE) of the municipal indicators is esti-
mated by a bootstrap (Rojas-Perilla et al. 2020). The RMSE
values are visualized in Fig. 2. Figure 2 shows that the
Box-Cox Opt is the most efficient approach, since for all
three indicators it has the smallest estimated RMSE . When
the naive approaches are compared, we cannot say which
approach is more efficient because for some indicators Log
has the smaller RMSE and for other indicators Box-Cox
Naive has the smaller RMSE . It seems that the model and
transformation selection is especially important for parame-
ters associated with the tails of the distribution.

Figure 3 shows EBP estimates of mean income, HCR,
and Gini of municipalities in Guerrero based on Box-Cox
Opt approach. The southwestern part of Guerrero, which
resembles the coastline (CostaGrande region andAcapulco),
features a tourism industry which contributes to the munic-
ipalities having a higher mean income. Furthermore, along
a north-south axis between Chilpancingo in the south and
Taxco in the north, numerous industries are concentrated.
These industries focus on the production of handcrafted
items using local resources. This also contributes to a higher
income in these municipalities. Consequently, the HCR and
Gini coefficient in these municipalities are lower than the
others. This means, that the people in these municipalities
earn more money than in other municipalities and the wealth
is more equally distributed compared to other municipalities.
On the other hand, the eastern part of Guerrero is suffering
from higher levels of poverty and inequality. Municipalities
in the region are coveredwithmountains andwhen compared
to all other regions of Guerrero, these municipalities exhibit
the highest number of indigenous people living there.

123



27 Page 14 of 17 Statistics and Computing (2023) 33 :27

Table 8 Skewness, kurtosis and
p-value of Shapiro-Wilk test for
the household and municipal
level residuals

Household level residuals Municipal level residuals
Skewness Kurtosis p-value Skewness Kurtosis p-value

Box-Cox Opt 0.2737 6.3376 0.0000 −0.0893 3.0488 0.7696

Log −1.4323 13.4906 0.0000 −1.1643 5.9753 0.0089

Box-Cox Naive 0.2329 6.0788 0.0000 −0.0837 3.1332 0.8087

Fig. 2 RMSE of EBP estimates for mean income, HCR and Gini

Fig. 3 EBP estimates for mean
income, HCR and Gini based on
Box-Cox Opt approach

6 Conclusions and future research directions

The main purpose of this study was to find a solution to
two practical problems in the context of linear mixed mod-
els: (a) the true model for explaining the response variable
is unknown and (b) the model assumptions, especially the
Gaussian assumptions of the error terms, are violated. Since
these problems commonly appear together, we provide a
solution to find the optimal model and the optimal trans-
formation simultaneously. We focus on one of the most
commonly used transformations, the Box-Cox transforma-
tion. Since the cAIC is scale dependent, we provide an
adjusted cAIC by using the Jacobian of the transforma-
tion such that different models with differently compared
transformed response variables can be compared. As a large
number of possible explanatory variables increases compu-
tational costs, we propose an optimal simultaneous selection

approach based on Jacobian adjusted cAIC (JcAIC), which
is also feasible for a large number of variables. Our model-
based simulation studies show that the proposed selection
approach chooses the true model with a transformation
parameter close to the true value in most cases and performs
better compared to naive selection approaches. The proposed
simultaneous selection approach can be used in many dif-
ferent areas of research. As an example, we provide a case
study where we apply the selection approach for estimat-
ing poverty and inequality indicators at municipal level in
Mexico. We observe that the model selected by the proposed
simultaneous approach has a higher predictive power than
other approaches. The improvements in terms of predictive
power and model building translate to more precise small
area estimates of the poverty and inequality indicators.

Further research should be shifted towards alternative
variable selection criteria. For instance, Bunke et al. (1999)
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show that the cross validation selection criterion can simulta-
neously select the optimal parametric model and the optimal
transformation parameter of the Box-Cox transformation
for nonlinear regression models. Furthermore, Fang (2011)
proves that the cAIC is asymptotically equivalent to the
leave-one-observation-out cross validation for linear mixed
models. Therefore, deriving the cross validation selection cri-
terion for the linear mixed model and comparing the results
with the JcAIC might be a promising avenue for further
research. The selection based on cross validation criterion
may improve the quality of the prediction. Moreover, it is
also possible to derive the JcAIC for other transformations
which require the estimation of the transformation parameter.
The use of JcAIC as a selection criterion between different
transformationswith different optimalmodels is also a poten-
tial research direction. However, it should be noted that the
use of our proposed approach is less useful when the point
of interest is to interpret the effect of the chosen explana-
tory variables on the original scaled data. Gurka et al. (2006)
introduce a bias corrected beta coefficient for linear mixed
models under the Box-Cox transformation which produces
a more precise interpretation of the beta coefficients. How-
ever, the interpretation does only hold for the transformed
response variable. On the original scaled response, it is not
clear how strong the effects of the explanatory variables are.
To enable interpreting the effects of explanatory variables
on the original data, further research is needed for general
regression models with the Box-Cox transformed response
variable.
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7 Appendix

7.1 Bootstrap forOriginal and Log approach

A. Bootstrap for Original

1. Fit the model in Eq. (1) to obtain estimates of model
parameters θ̂ .

2. Generate u(b) fromN (0, Ĝ0) and ε(b) fromN (0, σ̂ 2) and
create bootstrap y using

y(b) = X β̂ + Zu(b) + ε(b).

3. Refit the model with the bootstrap sample y(b) and obtain
bootstrap estimates of model parameters θ̂ (b) and û(b).

4. Obtain the BC by

BC = 1

B

B∑

b=1

[

− 1

2σ̂ 2(b)

(

y(b) − X β̂(b) − Zû(b)
)T

(

y(b) − X β̂(b) − Zû(b)
)]

+ 1

B

B∑

b=1

[
1

2σ̂ 2(b)

(

y − X β̂(b) − Zû(b)
)T

(

y − X β̂(b) − Zû(b)
)]

.

B. Bootstrap for Log

1. Transform the y to the ỹ using ỹ = log(y + s).
2. Fit the model with ỹ to obtain estimates of model param-

eters θ̂ .
3. Generate u(b) fromN (0, Ĝ0) and ε(b) fromN (0, σ̂ 2) and

create bootstrap ỹ using

ỹ(b) = X β̂ + Zu(b) + ε(b).

4. Re-fit the model with bootstrap sample ỹ(b) and obtain
bootstrap estimates of model parameters θ̂ (b) and û(b).

5. Back-transform ỹ(b) to obtain y(b). y(b) is obtained by
y(b) = exp(ỹ(b)) − s.

6. Obtain the BC by

BC = 1

B

B∑

b=1

[

− N

2
log

(
2πσ̂ 2(b)) − 1

2σ̂ 2(b)
·

(

ỹ(b) − X β̂(b) − Zû(b)
)T
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(

ỹ(b) − X β̂(b) − Zû(b)
)

+ J (y(b))

]

− 1

B

B∑

b=1

[

− N

2
log

(
2πσ̂ 2(b)) − 1

2σ̂ 2(b)
·
(

ỹ − X β̂(b)

− Zû(b)
)T(

ỹ − X β̂(b) − Zû(b)
)

+ J (y)

]

,

with

J (y(b)) = −
D∑

i=1

Ni∑

j=1

log(y(b) + s),

J (y) = −
D∑

i=1

Ni∑

j=1

log(y + s).

7.2 Graphics and tables

See Table 9, Figs. 4 and 5.

Table 9 Summary statistics of the dependent variable (yi j ) in the first
Monte Carlo population

Data setting Min 1Q Median Mean 3Q Max

Normal (1) 131 416 476 475 535 831

Normal (2) 247 442 484 477 517 669

Log 0 793 3732 48861 17384 15769695

Box-Cox 0.019 0.066 0.103 5.064 0.183 25978.438
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Fig. 4 Density of the dependent variable (yi j ) in the first Monte Carlo
population. Note that a base-10 log scale is used for the x-axis for the
Log and Box-Cox setting

Fig. 5 Q-Q plots for household level and municipal level residuals of
different EBP approaches
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