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Abstract
The recent evolution of the Internet of Things into a cyber-physical reality has spawned various challenges from a data 
management perspective. In addition, IoT platform designers are faced with another set of questions. How can platforms 
be extended to smoothly integrate new data management functionalities? Currently, data processing related tasks are typi-
cally realized by manually developed code and functions which creates difficulties in maintenance and growth. Hence we 
need to explore other approaches to integration for IoT platforms. In this paper we cover both these aspects: (1) we explore 
several emerging data management challenges, and (2) we propose an IoT platform integration model that can combine 
disparate functionalities under one roof. For the first, we focus on the following challenges: sensor data quality, privacy in 
data streams, machine learning model management, and resource-aware data management. For the second, we propose an 
information-integration model for IoT platforms. The model revolves around the concept of a Data-Sharing Market where 
data management functionalities can share and exchange information about their data with other functionalities. In addition, 
data-sharing markets themselves can be combined into networks of markets where information flows from one market to 
another, which creates a web of information exchange about data resources. To motivate this work we present a use-case 
application in smart cities.

Keywords  Internet of Things · Infrastructure Design · Information Integration · Data Management Systems · Resource-
Awareness · Data Quality · Privacy · Machine Learning Model Management

1  Introduction

Over the last years, the Internet of Things has evolved from 
a high-level vision of always-connected devices to a real 
cyber-physical system class that appears in many applica-
tion domains, from healthcare Pike et al. (2019) over smart 
cities Zanella et al. (2014) to smart farming and precision 
agriculture Kamilaris et al. (2016). IoT has introduced radi-
cal changes in the way data are processed. The amount of 
IoT data, the velocity of change, and variety of sources/for-
mats implies new challenges to process and inter-operate 
between heterogeneous data sources and formats Elsaleh 
et al. (2020).

In addition, we are faced with another set of challenges 
on platform design level. Assuming these emerging data 
management challenges are solved, how can we extend IoT 
platforms to smoothly integrate new data management func-
tionalities? This is an especially pressing problem since vari-
ous available IoT platforms are not easily extendable beyond 
the original use-cases assumed by their designers. We have 
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had firsthand experience with several IoT platforms12 and 
have faced various issues related to extending platforms with 
data management functionalities. Currently, data processing 
related tasks are typically realized by manually developed 
code and functions which are deployed smart devices (AKA 
edge nodes), in the cloud, or on in-between on so-called fog 
nodes. This creates future difficulties in maintenance and 
growth of the platforms. Hence it is needed to explore other 
approaches to designing IoT platforms that can be extenda-
ble to integrate emerging functionalities. Overall these chal-
lenge relate to devising approaches, techniques, and system 
platforms that ease the development and maintenance for the 
developer and operator of systems.

In this paper we cover both these aspects: (1) we explore 
several emerging data management challenges, and (2) we 
propose an IoT platform integration model that can combine 
disparate functionalities under one roof.

We call the IoT integration model we develop the 
Information Basin (IB) model. The IB model is informa-
tion-driven in the sense that data is shared by exchanging 
information that describes the data. We model each data 
management functionality/component as an agent that 
describes its data and shares its descriptions with other 
agents. The IB model revolves around the concept of a data-
sharing market which is a shared information space where 
multiple agents contribute by curating and ‘advertising’ their 
data resources and discovering those of others. So for the 
IoT platform use case, various IoT functionalities integrate 
by exchanging the data descriptions of their inputs and out-
puts within data-sharing markets. To allow more sophisti-
cated organizations of data exchange and integration, the IB 
model has a distributed network structure, where vertices 
are data-sharing markets and directed edges are information 
flow between them where data descriptions travel from one 
market to another. This enables more complex hierarchies of 
data-sharing markets to form. We will discuss the IB model 
in more details in the approach section in this paper.

Regarding the data management challenges we explore, 
let us first look at the landscape of IoT data management 
challenges. Abbasi et al. (2017) present a set of data manage-
ment challenges In the IoT, their list includes: standardiza-
tion, data storage management, confidentiality and privacy, 
integrity, energy constraints, device mobility and heteroge-
neity, device security and backup, availability, and internal 
adversaries. From the big data side we have the four Vs of 
volume, velocity, variety, and veracity. The challenge we 
discuss in this paper intersect with several of those topics. 
The topics we do not cover include: security, data volume, 

integrity, and standardization. Next we introduce the set of 
data management challenge covered in this paper. 

1.	 CQuality. Many IoT applications are based on sensor 
data which is never perfect; we have to deal with data 
quality issues which might even change depending on 
the context of the sensor. Hence, the need for method-
ologies that model sensor data quality for processing and 
decision making open the door to the challenge we call 
the CQuality challenge.

2.	 CPrivacy. IoT devices are ubiquitous, sensors are pre-
sent in more devices that produce continuous streams of 
data about their environment. This leads to the situation 
where people are not aware of the information they share 
with others, which paves the way for the challenge of 
privacy preserving data stream processing, which we 
refer to as the CPrivacy challenge.

3.	 CModel. Recently there has been work in utilizing 
machine learning to train models that then replace 
manually programmed or modeled functions, e.g., for 
activity recognition. We consider the life-cycle manage-
ment of these models as part of a (higher-level) data 
management. We refer to this challenge as the CModel 
challenge.

4.	 CResource. Data management is distributed geographi-
cally between the sensor/actuators, gateways up to the 
cloud. This distribution leads to a high heterogeneity 
between the processing nodes in terms of computing 
resources, system security and connectivity; this cre-
ates the opportunity for building solutions that tackle the 
management problem from a resource-aware approach, 
which we call the CResource challenge.

The rest of the paper is structured as follows: in Sect. 2 we 
present a motivating use-case for the paper, and in Sect. 3 
we discuss our approach to IoT platform design. Next we 
present the challenges: in Sect. 4 the CQuality challenge, in 
Sect. 5 we highlight issues related to the CPrivacy challenge, 
and in Sect. 6 we discuss the CModel challenge. In Sect. 7 
we cover the CResource challenge, in Sect. 8 we discuss 
related work, and wrap up in Sect. 9 with conclusions and 
future work.

2 � Use case

The establishment of smart cities can be supported by the 
Internet of Things (IoT) platforms with sensors collecting 
data and improve the life quality and resource efficiency in 
future cities. Many smart city applications use their gathered 
data to measure city-wide processes like mobility, energy, 
or environmental factors like air quality. Various challenges 
arise in managing this huge amount of data consistently.

1  ThingsBoard, https​://thing​sboar​d.io/.
2  Cumulocity, https​://www.softw​areag​.cloud​/site/produ​ct/cumul​ocity​
-iot.html.

https://thingsboard.io/
https://www.softwareag.cloud/site/product/cumulocity-iot.html
https://www.softwareag.cloud/site/product/cumulocity-iot.html
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To define the challenges, explain and provide appropri-
ate solutions first, we describe our use-case, a smart city 
platform, the so-called Living Lab Bamberg. This testbed 
provides a user-centric environment to test and use different 
sensing systems. The Living Lab is open for industry part-
ners and citizens who help us receive new sensor systems 
and find installations locations. Furthermore, the University 
of Bamberg is not a campus university with the advantage 
that we can place lots of sensors in different buildings inside 
the city.

In general, we use different kinds of stationary and mobile 
sensors systems. An example of a stationary sensor is a peo-
ple-counting camera, and an example for a mobile sensor 
is a sensor box in a city bus to measure air quality. These 
sensing systems produce data that we use in our different 
application scenarios. We describe some of these application 
scenarios below.

One application scenario is indoor and outdoor locali-
zation management. Every year many people visit a lot of 
street festivals in the world’s cultural heritage, Bamberg. 
Bamberg is a medieval city with many narrow alleys and 
small lanes that make it difficult to plan events with a lot of 
visitors. The goal was to flow-track the movement of visi-
tors in the area of the festival, as well as learn movement 
models of the civilians and groups of people. This can help 
on a short term basis to predict escape routes on the fly, or 
in retrospect to plan for future planning of street festivals.

For the measurement, we used a combination of different 
sensing technologies like manual counting, camera-based 
counting, and Wi-Fi tracking of mobile phones. In addition, 
the people tracking camera system helps us to collect trajec-
tories from people inside buildings (an example of indoor 
localization would be an iBeacon network). In this environ-
ment, we can simulate tourist information panels inside the 
university or guides for city museums.

Already in such a scenario we have several data manage-
ment challenges arising. We also highlight the information-
drivne aspect of each challenge since this is the key property 
we use in the proposed information integration model, the 
Information Basin (IB) model. 

1.	 Festival Sensor Data Quality. The above sensors, like 
most other sensors, produce readings that are never per-
fect. However for it should be possible to build quality 
models for data–using sensor models and environmental 
context–to enrich them with quality information. This 
can greatly help in correcting some kinds of faultiness 
or at least in describing the nature of the faultiness of 
the sensor data. Such quality information can be invalu-
able for developing machine learning models for exam-
ple (see below). The CQuality challenge we present in 
this paper forms an instance of studying this problem. 
It must be noted that in the above approach sensor qual-

ity models, as well as quality information attached to 
data sets (ex. metadata) are both structured information, 
which can be represented, exchanged and processed by 
others in the IB network.

2.	 Visitors’ Privacy. As data is collected about festival 
attendees, vulnerability of the visitors’ privacy is the 
Wi-Fi tracking of mobile phones arises. How can we 
collect data from the festival attendees while protect-
ing their identities? The CPrivacy covers this aspect of 
the problem. Although not as information-driven as the 
sensor data quality challenge, information representing 
which parts of the data are privacy sensitive, or what 
algorithms and parameters to run on them, are structured 
information that drives privacy data processing.

3.	 Festival Attendees Movement Models. Developing 
movement models helps to predict, mange emergen-
cies and support the planning of future festivals. Sensor 
data and its quality information can be used to develop 
these models which in part are also structured informa-
tion that can be processed by different systems. This 
forms the CModel investigation in this paper. Examples 
of strucutre information driving this data management 
functionality include, training datasets used, learning 
parameters, and the learned models themselves are all 
structured information that are key to driving machine 
learning model management.

4.	 Resource-aware Computation of Festival Data. So far 
we have assumed that computation is managed locally or 
by some high-performance machine. But the IoT reality 
has given us many options to run computations. For pri-
vacy, it can greatly benefit if data is for example pseudo 
anatomized on the fog node, or the nearest gateway, if it 
has such computational capabilities. Also for developing 
machine learning models, resource-aware computation 
can provide various alternatives to pre-process, clean-
up, or run jobs across nodes. This challenges, as opposed 
to the three above, is a service challenge that supports 
other data management functionalities.

5.	 Integration. Various data management functionalities 
arise in this use-cases, and IoT platforms suffer from 
a lack of fluidity when new features or functions are 
added to the platform. So with discussing all the above 
challenges, a natural question arises, how can we inte-
grate such functionalities together? Towards this end 
we present an information-driven paradigm for IoT 
platform design. We model the data management func-
tionalities referenced above as agents, which processes 
data and consumes and produces information about this 
data. Then integrating the different functionalities into 
a common framework by sharing and exchanging all this 
information. We present this model in the next section.
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Mobility sensing is just one use case for smart cities. With 
such a small use-case, we already see various motivating 
requirement for the challenges and approach presented in 
this paper. Similar challenges can be found in other applica-
tions as well in such as environmental sensing, using distrib-
uted air quality measurements and analysis.

3 � Platform integration: the information 
basin model

We have introduced several IoT platform functionalities so 
far. From a platform design perspective we model each func-
tionality as a functional dimension of the IoT platform, as 
defined below.

Definition 1  (Functional Dimension) A functional dimen-
sion is a component of an IoT platform that: (1) adds inde-
pendent functionality or value of its own (i.e. processing, 
input to output dynamics), and (2) is expected to integrate 
with the platform (ex. by producing or consuming data/
information).

Sensor data quality management (CQuality) is an exam-
ple of functional dimension of an IoT platform since it adds 
an independent functionality (processing sensor data and 
sensor information and producing data quality models, etc.) 
and it must integrate into a larger platform so that its results 
can be used by other systems. Machine learning model man-
agement (CModel) shares a similar structure to CQuality as 
a functional dimension, and so on.

Distributed resource-aware computing (CResource) can 
also be understood as a functional dimension in the sense 
that it adds functionality and produces results/data back to 
the platform. A similar argument can be made about CPri-
vacy in the sense of adding functionality and integrating into 
the larger system.

Faced with expanding requirements, innovations, and 
functionalities of IoT platforms, we must find ways to design 
platforms so that they can handle multiple functional dimen-
sions as well as be extendable to integrate new ones. To 
achieve this we use a model we are developing3 called the 
Information Basin (IB) model, which revolves around the 
concept of a data-sharing market.

Definition 2  (Data-Sharing Market) A data-sharing market 
is a shared information space where multiple organizations 
can describe and ‘advertise’ their data resources as well as 
discover those of others.

Online open-data repositories are one example of a 
data-sharing market, however their underlying model for 
information representation (i.e. list + keywords) might be 
primitive for more sophisticated applications. The informa-
tion representation model we currently use is more akin to a 
lightweight semantic graph model driven by shared domain 
models.

Definition 3  (The Information Basin (IB) Model) The IB 
model is a platform design model for enabling data-sharing 
and exchange networks across multiple groups, users, or sys-
tems. The basic building block of the IB model is (1) a set 
of data-sharing markets and (2) information flow between 
them. The IB model is ‘information-driven’ in the sense 
that data is shared by exchanging information about data. 
An IB network is ‘animated’ when (1) information about 
new data resources is added to a market, or (2) information 
flows from one market to another, thereby creating a kind 
of living web-of-markets. Since we are dealing with (struc-
tured) information here, if we assume that markets can have 
different domain models, information flow must include a 
mapping stage from the source domain model to the destina-
tion model.

Continuing with the online open-data repository exam-
ple, implementing an IB network using them will require 
establishing a mechanism whereas some selection of entries 
from one repository can be propagated to other repositories, 
where each repository might have a different set of users, 
visibility etc.

So how can we apply the IB model to establish an expand-
able IoT platform with multiple functional dimensions? 
We can design a simple IB network where each functional 
dimension has its own internal data-sharing market, and in 
addition declare an IoT platform-wide market where infor-
mation flows from the respective feature dimension markets 
to the main one.

A primitive IB network would be a single IoT platform-
wide market shared by all functional dimensions, and 
although this can work, this assumes that all the dimensions 
must adhere to the same domain model of information, as 
well as being forced to share all produced data to this mar-
ket. Usually functional dimensions would have some local/
private data that is not meant to be shared, in addition to 
having domain models that are specialized differently. So for 
these reasons we will opt for a multi-market IB network. Fig-
ure 1 depicts this IB network, where IoT-Mark is the name 
of the IoT-wide shared market. Regarding the contributors 
in the different markets, we can assume that each functional 
dimension market is accessible only by users/systems of that 
functional dimension and the IoT-Mark market is accessible 
and writable by all the users/systems of all the functional 
dimension.3  Submitted, awaiting review.
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Next we will looking at the example of how the above 
IB network can support an IoT platform with the multiple 
functional dimensions covered in this paper. First regarding 
domain models across markets, we can give the IoT-Mark 
market an abstract domain model that is specialized by each 
market differently. By specialized we mean the abstract 
model is extended by adding new types that must be a sub-
type of some element in the abstract model. Figure 2 depicts 
one such model, where the ‘p:’ prefix denotes that the type 
comes from the PROV W3C provenance recommendation4.

The CQuality market can further specialize the above 
model by defining a rich sub-hierarchy of sensors and sen-
sor quality models, the CModel market on the other hand 
can define a rich sub-hierarchy of type DataSet above, and so 
on. Let us look at a concrete example of how the functional 
dimensions can integrated within the IoT platform.

Example 1  The CQuality solution processes a DataSet and 
its context and produces a reliability model. Let’s assume 
this reliability model is defined in the abstract domain model 
on the DataSet type, hence it is understood by the other 
groups. The CQuality market would have a forwarding rule 
to the IoT-Mark market for all new reliability information, 

and hence this piece of information about this particular 
DataSet instance will be propagated. In the IoT-Mark market 
the CModel group can query for all DataSets with reliability 
information and use that information as parameters to their 
learning algorithms and produce a learning model where 
they declare that the DataSet above has been used as train-
ing data. Let’s say that hypothetically, a problem occurs with 
the learning model and someone would like to diagnose the 
possible reasons, with the information about which DataSets 
where used in the training they can trace this same DataSet 
back to the CQuality group and can explore more informa-
tion about how the reliability information was derived, and 
so on.

In essence, a functional dimension = (structured) infor-
mation + operations (that use and produce more informa-
tion). And an IB network = information models / mappings 
+ markets + information flow.

We will not go into more details regarding the approach 
due to scope. The goal of this section was to show an IoT 
platform model where a set of IoT functionalities can be 
combined under a common roof collaborate and exchange 
information and data to achieve the goals of an IoT platform. 
The remainder of this paper will dive into the various chal-
lenges introduced earlier.

Fig. 1   The IoT platform IB 
network with clouds denoting 
markets and arrows denoting 
information flow

Fig. 2   Abstract shared model, with arrows denoting the type-of relation

4  https​://www.w3.org/TR/prov-overv​iew/.

https://www.w3.org/TR/prov-overview/
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4 � CQuality: data quality challenges in IoT 
environments

This challenge revolves around the quality of data in the 
context of IoT. Most applications deal with data coming 
from different sources. These sources can be human or 
non-human. Non-human data can come from other similar 
devices or from sensors that capture the phenomena happen-
ing around and quantifying them.

To show the importance of data quality, we can relate 
to the use cases in Sect. 2, where machine learning models 
are created on the basis of sensors. If these datasets are not 
checked for quality, the models created could give a skewed 
view on the actual observation/behavior. Any predictions 
based on the learned models from raw data will result in 
wrong predictions. In this section, we focus on the main 
challenges of data quality in IoT environments with regards 
to the stream processing applications. Since most of the 
data in IoT context is generated from sensors, we know 
how faulty can the data be. Besides, we note that decision-
making is made on the fly. Those two aspects make the data 
quality an important issue in the process of data evaluation 
and usage. First, we start by enumerating the different chal-
lenges that face the developers of IoT applications and then 
we describe them individually in this section.

When we talk about data quality, we have to precisely 
define what quality means. This definitions can be defined 
by introducing the dimensions that make up the data quality. 
This challenge is concerned with the definition of data qual-
ity. After having a clear idea of the quality dimensions and 
their metrics, we have to determine the values of those met-
rics. This poses the second challenge of data quality compu-
tation. We also want to make the use of quality-aware data 
processing as easy as possible by having an easy integration 
for application developers.

To summarize, this challenge focuses on the following 
research question: How can we integrate quality-aware data 
processing in IoT applications through semi-automatic and 
automatic methods?

4.1 � Related work

In this part, we give a background on the relevant research 
that addresses the different aspects of data quality in IoT 
environments.

4.1.1 � Data quality definition

The first challenge is to clearly define what data quality is. 
According to Buchholz and Schiffers (2003), quality is “Any 
information that describes the quality of information that is 

used as context information”. Batini et al. define the data 
quality in terms of specific dimensions Batini et al. (2006) 
like accuracy, completeness, volatility and timeliness. Klein 
and Lehner (2009) define data quality as the accuracy and 
resolution of the data as it goes though the steps of a data 
processing chain. With these definitions of data quality, we 
have to distinguish between inherent quality dimensions and 
domain-specific dimensions.

The inherent quality dimensions can be automatically 
computed like those given by Batini. However, the domain-
specific dimensions must be defined by the application 
developers. This makes the task of data quality definition 
using a specific tool a little bit tricky.

In order to deal with data quality representation, we can 
use semantic tools like ontologies to define both types of 
quality dimensions. The inherent quality dimensions can 
have their own terms in an ontology like the SSN ontology 
Compton et al. (2012). The domain-specific dimensions can 
be expressed through extensions of ontologies or by enabling 
the inclusion of user-defined terms to include these. How-
ever, the definition of any data quality dimension or process 
must be simple and clear to encourage any users to adopt it.

4.1.2 � Data quality processing

The challenges in the area of data processing are numer-
ous. Should the quality dimensions be computed online or 
offline? Do we output data with quality annotations or meta-
data about the quality?

The online approaches are mostly present in applica-
tions that process the data on the fly as an incoming stream. 
Geisler et al. (2016) introduces a Data Quality ontology-
based framework for data stream applications. The ontology 
gives quality metrics for content, queries and applications. 
The framework is based on an ontology for the description 
of sensor and quality dimensions. Kuka and Nicklas (2014) 
give an approach for quality-aware sensor data processing 
based on the SSN ontology Compton et al. (2012). The 
ontology is used to describe context information about the 
sensors deployed. The Gaussian Mixture Models are used 
to assess the probability of a data element being an outlier.

Schmidt et al. (2004) adopt a deterministic data stream 
processing approach with a system called QStream. Klein 
and Lehner (2009) propose a flexible model of data quality 
processing and propagation in a stream processing network 
for sensor data in a smart environment. We also applied 
online data stream processing for quality estimation of sen-
sor data in Benabbas et al. (2018, 2019, 2020); Aboubakr 
et al. (2017a).

The mentioned approaches process the data on the fly and 
can be also applied offline. These approaches include pro-
cesses for the computation of the said quality dimensions. 
The user-defined quality dimensions come with user-defined 
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procedures to determine the values of the quality dimen-
sions. Besides, we need to consider the trade-off between 
the accuracy of the computed quality and the costs in terms 
of computation overhead and delay. Some of the approaches 
need a training-set to develop a model for their quality-aware 
processing Wu et al. (2007), while some do not need any 
training to start their process. These two variants give the 
user a choice between a delay-free quality-aware process-
ing and one with an up-start time. The challenge is to find a 
hybrid approach that enables the choice between the differ-
ent models and the activation/deactivation of quality com-
putation processes.

4.1.3 � Data quality integration

This challenge builds on the first two challenges. Given that 
all the challenges above are solved, how do we make the 
integration of quality aware processing as easy and as seam-
less as possible? From the above discussion, we note that 
most systems deal with data quality as a parallel process or 
a pre-processing step before passing the data to the actual 
application. This challenge implies that for any quality-
aware solution to be adopted, it must be simple enough and 
intuitive enough to be wide-spread over all the IoT applica-
tions. This gives rise to the following two challenges:

•	 Simplify the use of semantic models to describe the 
quality-aware processes.

•	 Automatically generate the processes from the semantic 
descriptions.

4.2 � Our approach

The first challenge must be addressed through the introduc-
tion of processing patterns, which can be deduced from the 
basic structures of the participating data sources in the IoT 
applications. The second challenge can be solved by having 
processes in the background to perform the translation from 
the semantic model to the actual quality-aware processes. 
A first step towards these goals is done in a previous con-
tribution Benabbas et al. (2020), where we define the first 
processing patterns and their use with an automatic genera-
tion of the quality-aware processes. The target is to be able 
to provide templates of sensor models to be used by the IoT 
application developers to deal with the quality issues wher-
ever applicable. Besides, we want to leverage large scale 
models that contain multiple sensors to find the target groups 
for data quality checks.

Figure 3 shows the cycle of data quality integration into 
IoT platforms. Developers design their applications by hav-
ing models of the data sources and sensors they have. To 
write the models, we can use the aforementioned SSN ontol-
ogy. The models are fed to the Data Quality Management 

Tool that extracts the data quality processing patterns from 
the model. The patterns can be identified through the seman-
tic relationships between the sensors and other spatially col-
located sensors or with other data sources. The automatic 
recognition of such quality patterns and the generation of 
the queries should solve the second challenge. The process-
ing patterns indicate the method of checking the data qual-
ity. Then, the process of quality-aware processing queries 
generation.

The output of the process are quality-aware queries, 
which can be deployed on data stream management sys-
tems (DSMS) to perform the data quality metrics compu-
tation. The results of those queries are quality-annotated 
data, which are ready to be used by the IoT applications. 
Any changes in the application model can be updated in the 
model and this triggers a chain of updates on the queries to 
reflect the change in the model.

The third challenge of Data Quality Integration is the 
long term goal for IoT applications, where the above steps 
of model creation and query generation should be standard-
ized and made as a part of any IoT development platform. 
The developers should have all the necessary tools to make 
quality-aware processing a permanent part of the develop-
ment of applications.

5 � CPrivacy: privacy‑preserving data stream 
processing

IoT devices are ubiquitous. Sensors are present in more and 
more devices not just in smart phones or wearables. This 
leads to the problem that the people are not aware what 
information about their daily lives they share with others. 
An example like a fitness tracking app that gives away loca-
tion of secret US army bases Hern (2020) seems funny, but 
there are too many privacy fails that this problem could be 
ignored.

Fig. 3   Cycle of data quality integration in IoT applications
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Recently laws are being published to ensure the security 
and privacy features of IoT devices. For example, the federal 
state of California has prohibited the use of standard pass-
words (2020). This is a good first step to define standards 
for private IoT devices.

The problem is that nowadays you can be monitored by 
sensors without knowing that. Especially if companies like 
supermarkets use systems to track customer to analyze their 
shops. In 2018 the European GDPR was launched and pro-
vided a good foundation for privacy. Since that time super-
markets were not allowed anymore to store private informa-
tion like the mac addresses of the customer’s mobile devices 
in plain text.

We want to analyze stream of stakeholders of a street 
festival to create new security and safety concepts. How 
can we set up long-running city-wide sensor campaigns and 
share the data without compromising the citizen’s privacy? 
We integrate different state-of-the art privacy methods to 
reduce the risk of leaks in data publication to a minimum. In 
a next step we adopt our prototype to data streams. We will 
refer this challenge as the privacy-preserving data stream 
processing challenge.

To summarize, this challenge focuses on the following 
research question: How can we process privacy-preserving 
data streams without publishing sensitive information’s?

5.1 � Related work

We already defined our privacy-preserving architecture for 
our smart city testbed in Steuer et al. (2016). One of the 
main challenges is the publication anonymous data. Privacy-
Preserving Data Publishing (PPDP) is a good fundamen-
tal for our research in this domain. Fung et al. treated also 
moving object data in their survey Fung et al. (2010) as 
privacy in location-based services (LBS). “Location privacy 
is defined as the ability to prevent untrusted third parties to 
reveal current or past location[s] of an individual” Pelekis 
and Theodoridis (2014). There are two general approaches 
to prevent re-identification in trajectories: spatial cloaking 
and perturbation Pelekis and Theodoridis (2014).

In the cloaking approach the generalization increases the 
query region until the region contains at least k users. The 
probability of de-identification is not higher then 1/k. Exam-
ples for cloaking are based on k-anonymity like Always-
Walk-with-Others. The cloaking approach is just possible 
if we have a high number of trajectories, if we do not have 
this then we need perturbation like in the Never-Walk-Alone 
approach or decide not to publish data sets Pelekis and Theo-
doridis (2014).

In data publication we focus on k-anonymity because we 
have just slightly sensitive data that can be anonymized eas-
ily without much risk. Our goal is to use k-anonymity also 
for data streams. There have been several scientific articles 

over the years, which try to extend the concept of k-anonym-
ity to streaming data. The Continuously Anonymizing Data 
Streams algorithm (Castle), presented in Cao et al. (2011), 
has the most similarities to our approach.

Existing privacy-preserving techniques such as k-ano-
nymity are designed for static data sets. The adaption to data 
streams is challenging because of the differences to classical 
data bases. In data streams the data input is continues and 
does not stop. Furthermore the data arrives in real time in 
an ordered sequence of items Golab and Özsu (2003). In our 
use case in Sect. 2 entities can appear more than one time if 
a visitor enters a new region and then immediately returns.

5.2 � Our approach

In our approach, we decided to use generalization with 
k-anonymity. In the first step, we analyze our stored data set 
from the crowd monitoring use case in Sect. 2. The identi-
fiers in our data set are the mac address and a combination 
of time stamps and location points, which makes it possible 
to encrypt stakeholders.

Mac address is the sensitive attribute that we protect via 
pseudonymisation with hashing. Regarding the quasi iden-
tifier time stamp and location, we conclude that we need a 
location point (e.g. City Hall) and a time stamp categoriza-
tion (morning, afternoon, evening and overnight) as clusters. 
The trajectories just consist of these cluster set of elements. 
A typical trajectory looks like:

City Hall[morning] - Lower Bridge[morning] - Upper 
Bridge[morning]

Our goal is to see, how k-anonymity can be applied to 
data streams with the data set from our crowd monitoring 
use case presented in Sect. 2. Towards enable privacy-pre-
serving data stream processing, we want to extend our data 
stream management system (DSMS) Odysseus Appelrath 
et al. (2012). Therefore, we want to implement a standard 
operator, so that adding anonymization to data streams 
becomes easy for developers and can be enforced easily.

Hence, very similar to the static data set, the identifying 
information of stakeholders the mac address is removed. 
After that, we focus on the following questions: (1) How 
many tuples are stored temporarily before they get published 
as clusters? (2) What should be a good window size, so that 
we can guarantee the privacy in the diversity of trajectories 
and that we do not lose too much data sets? After answering 
the questions (1) and (2), we can use a predicate window 
with a predefined size so that tuples have to fulfill the predi-
cate cluster_size ≥ k to get published.

The anonymization operator is optimized for one data set 
in one specific use case. In order to make it useful for devel-
opers, more crowd sensing use cases have to be supported. 
For this end, we want to define a set of the most probably 
scenarios and define the concrete parameters for them.
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6 � CModel: ML model management

IoT platforms are made of a huge number of different sen-
sory devices that produce a huge volume of data. There are 
different applications of IoT in different environments, like 
the smart city described in Sect. 2. Many different services 
can be defined in such environments as smart mobility 
monitoring, smart traffic management, and smart build-
ings. These different services should provide appropriate 
knowledge and insight into the environment and support 
domain experts in making critical decisions.

For example, in the smart city scenario, all the people 
can use a traffic management service, which suggests the 
shortest path to the destination based on different possible 
paths’ traffic load.

The word machine learning refers to a computer pro-
gram that is said to optimize a learning criterion using 
example data and post experiences Alpaydin (2020). 
Machine learning (ML) and data analytics techniques are 
powerful tools that provide us the ability to extract knowl-
edge from transmitted data. Based on the requirements, 
different ML and data analytics techniques should be 
applied to provide a service in an IoT platform Samie et al. 
(2019); Cui et al. (2018). To design the best ML model 
framework that manages all the ML models in our IoT 
platforms, first, we have to define the challenges related to 
ML model management. This section reviews the related 
works for ML model development and management in an 
IoT platform, and then we define and discuss the chal-
lenges related to ML model management. In the end, we 
describe our approach and explain how we can overcome 
the challenges and answer the research question.

The research question for ML model management 
would be: how we can integrate and manage a variety of 
ML models with different properties in an IoT platform in 
a unified and scalable framework?

6.1 � Related work

A variety of ML and data analytics techniques have been 
introduced to deal with a massive amount of heterogene-
ous data gathered by the IoT infrastructure Samie et al. 
(2019); Cui et al. (2018). Different ML models can extract 
different patterns and knowledge needed by applications. 
Based on the application demands, the appropriate ML 
model with the proper properties can be defined.

Data should go through stages of ML pipeline and 
sometimes combined with context knowledge to gain 
the appropriate knowledge. ML pipeline consists of dif-
ferent ML techniques for data cleaning, preprocessing, 
data segmentation, feature selection, processing, and 

postprocessing. So many related works focused on devel-
oping different ML models and combining the ML models 
from different stages of pipeline to extract the accurate 
results Chin et al. (2017); Patil and Thorat (2016); Mah-
davinejad et  al. (2018). Some mature works like Vla-
cheas et al. (2013) introduced an ML model management 
framework with some level of automation for selecting 
the ML models. Besides, combining the context knowl-
edge like what has been done in Sasidharan and Somov 
(2014) improved the accuracy of ML models. However, 
all the mentioned works are developed for some limited 
applications.

In addition, each ML model has its evolution life-cycle. 
This means that every time an ML model is developed, it 
must be evaluated and deployed Schelter et al. (2018). The 
life-cycle of an ML model produces different versions of an 
ML with other properties.

The rapid speed of growing IoT platforms and matura-
tion of ML techniques address the need to have a unified 
framework for managing the ML models and correspond-
ing metadata and connections for each model to overcome 
the aforementioned challenges. The ML model manage-
ment should allow us to integrate new ML models to the 
framework, elevate existing models, track and access differ-
ent ML models with corresponding metadata, and decide 
which model should be used to extract the desirable knowl-
edge. Such an ML management framework should be able 
to overcome the challenges of managing ML models that 
can be divided into three main categories. In the following, 
we explain each challenge, describe the related works, and 
discuss the shortcomings and new insights.

6.1.1 � ML models for different applications

IoT platforms can cover a vast area like a city Steuer et al. 
(2016), a building Elmamooz et al. (2017), or a farm Kami-
laris et al. (2016). Different users and agents with different 
demands can be defined in an IoT covered environment. For 
example, taxi drivers, tourists, and citizens of a city can ben-
efit from smart mobility monitoring service with different 
applications Zanella et al. (2014). A taxi driver needs the 
fastest path to the destination, a tourist needs a recommen-
dation for the next interesting place in the city, and a user 
can use a traffic load app to decide on the hours for shop-
ping. So many different ML techniques have been introduced 
to extract relevant knowledge for an application. The ML 
techniques can be categorized into three main categories of 
supervised learning, unsupervised learning, and reinforce-
ment learning Kavakiotis et al. (2017). Different techniques 
are introduced to extract hidden knowledge from data. This 
knowledge can be in the form of classified data, frequent 
patterns, sequential patterns, and so forth. This knowledge 
should be presented in an understandable way for the end 
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user. Moreover, based on the application demands, different 
ML models should be executed offline or online over differ-
ent data segments Zorbas et al. (2015). In some cases, it is 
needed to execute an ML model over various window sizes 
to extract the hidden patterns and anomalies in different time 
and space granularities.

Most of the recent works focus on developing the algo-
rithms that fit best to the specific demand like Mahdavine-
jad et al. (2018); Kavakiotis et al. (2017); Sasidharan and 
Somov (2014). However, managing ML models should not 
just focus on developing the most efficient models but also 
on model management efficiently. This means that an ML 
model management framework should be developed in a 
scalable way to make the integration of new models easier. 
In addition, different components of a framework can be (re)
used for other domains and applications.

6.1.2 � Pipeline of ML models

The data transmitted from sensory devices in big IoT plat-
forms are completely heterogeneous and full of noise and 
missing values, as mentioned in Sect. 4. Moreover, each 
bunch of raw data gathered from a specific kind of sensor 
has its own characteristics like the type of data and num-
ber of fields. Gathered data from heterogeneous sensors 
in different places and time should be processed to return 
the desired result. The process of converting raw data into 
knowledge consists of different steps called ML pipeline 
Schelter et al. (2018). These stages are data cleaning, data 
preprocessing, data segmentation, feature selection, process-
ing, and postprocessing.

Each step in the pipeline includes one or more ML model 
that receives an input dataset and converts it to the output 
dataset. In the cleaning and preprocessing step, some ML 
models should be used to leverage the quality of data for 
further usage like noise reduction, data segmentation, and 
resampling. In data segmentation and feature extraction, the 
data is divided into batches based on time and space, and 
different features of a batch can be selected based on their 
effects on the evaluation of the model. In the processing step, 
based on the application, different supervised, unsupervised, 
or reinforcement ML models can be chosen to extract the 
knowledge out of data. As the last step, in some cases, the 
result of the second step of the pipeline should be further 
processed to produce understandable knowledge.

It should be mentioned that combinations of different ML 
models can change the evaluation results. For example, some 
preprocessing techniques like discretization can enhance the 
accuracy of some ML models that cannot work with con-
tinuous values Zhu and Collette (2015). Therefore, the ML 
model management framework should be able to keep and 
retrieve different ML models in different stages of the pipe-
line based on the connections between the models. Such a 

framework should help choose a suitable (combination of) 
ML model(s) to get the desirable results.

6.1.3 � The life‑cycle of ML model evolution

Developing an ML model is a continuous task. This means 
that every time an ML model is developed, the model should 
be validated with the data and be improved based on the 
validation results. Figure 4 illustrates the life-cycle of ML 
models.

The life-cycle of an ML model consists of three stages, 
including model development, model evaluation, and model 
deployment Schelter et al. (2018). After defining the train-
ing data, selecting the features, and training the model with 
the training dataset, the model should be evaluated with test 
datasets. In most cases, an ML model is a combination of 
feature transformation and a learning algorithm with tuned 
parameters. An ML model is implemented and integrated to 
accept domain specific input data and return reliable results. 
Therefore, the selection of features and tuning the param-
eters can be made based on the distribution of data. The 
performance and accuracy of an ML model can change over 
time and space with changes in the data distribution. To keep 
the results of ML models reliable, ML models should be 
validated and improved over time.

The continuous life-cycle of ML models raises the 
demand to keep the trace and information about different 
ML over time and space. Introduced ML model management 
frameworks mostly keep the current version of ML models 
Mahdavinejad et al. (2018). Keeping the current version of 
ML models without the history of evolution is not enough 
for most of the recent IoT platforms. Keeping the trace of 
the ML model evolution helps us to use and compare differ-
ent versions on different datasets and produce new versions 
without losing the previous versions.

6.2 � Our approach

Based on the discussed challenges, various ML models 
with different properties can be developed for an IoT plat-
form. These properties can include information about the 
input, output, parameters, evaluation results, and con-
nections to other models. Besides, ML models might be 

Fig. 4   Life-cycle of ML models
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developed in different development environments. To be 
able to integrate all ML models that are implemented in 
different environments, we need to define an efficient ML 
model management framework that can fulfill the follow-
ing goals:

–	 The framework should be scalable
–	 The framework should manage several executions of 

ML models on different input
–	 The framework should keep the metadata for different 

ML models

One of the main capabilities of the ML model management 
framework is scalability. This means the development and 
integration of new ML models in the framework should be 
possible. Such a framework should be easily extended to 
consider new data sources and new ML models that can 
deal with the data from new sources. As an example, we 
can mention continuous ML models in the form of queries 
for streams of data and incremental ML models for batches 
of input data.

The second goal is to have a framework that can manage 
the execution of one or more ML models on the data with 
different spatio-temporal granularity. The combination of 
the results of several executions brings new knowledge 
and insight into the data. To make it understandable, a 
simple ML model like detection of the top points of inter-
est from the trajectory of tourists in smart city use-case 
can be considered. The top ten points of interest (POIs) 
during the week-days might differ from the top ten POIs 
at the weekend. Weather conditions, festivals, and school 
time can also change the top ten POIs in a city. By com-
bining the results from several executions of the top POIs 
detection model, we can discover the mobility patterns of 
tourists in the city.

In addition, to integrate different ML models and track 
different versions of an ML model, the framework should 
be able to keep the metadata of each ML model and con-
nections between ML models. Metadata in the form of 
connections can be defined between different ML models. 
For example, an ML model can have different evolutionary 
versions that should be traceable. Moreover, a combination 
of some special ML models can have a noticeable effect 
on accuracy. As the framework supports the scalability and 
reusability of ML components, different adapted versions 
of an ML model on heterogeneous data can be developed. 
Each version of an ML model has its own properties, as 
mentioned before.

One of the main future goals in the context of ML model 
management framework is to reuse the framework and com-
ponents in different IoT platforms with minor changes for 
adapting ML models to manage and automate all the ML 
related tasks.

7 � CResource: resource‑aware data 
management

The data that needs to be managed in an IoT ecosystem 
steadily grows in all of its three big data dimensions: vol-
ume, velocity and variety. The volume increases due to 
the elevating amount of data generating devices Atzori 
et al. (2010); Gubbi et al. (2013) and velocity by advances 
in communication technologies like 5g Rath and Kumar 
(2018). Kaur et al. even calls it Internet-of-Big-data (IoBd) 
Kaur et al. (2020).

The processing of this huge amount of data utilizes 
many resources. Current IoT platforms are mainly cen-
tralized and lack the feature of resource-aware processing 
in the sense of edge and fog processing Mineraud et al. 
(2016). Centralized processing is generally sub-optimal 
since it uses the WAN bandwidth highly inefficiently due 
to sending all data to the cloud in order to process it there. 
Furthermore, cloud computing induces high latency, high 
energy consumption and arises privacy concerns. There 
exists a rule of thumb that you prefer computation over 
communication when considering resource-awareness. 
Properly positioning the processing along the way from 
the data sources to the sinks is the intended strategy. Ena-
bling edge and fog processing is crucial for being resource 
efficient and for real-time low latency applications. The 
data processing in IoT is geographically distributed by the 
nature of the ecosystem Chandra et al. (2018); Heintz et al. 
(2015).

To summarize, this challenge focuses on the following 
research question: How can a global query be distributed 
in a geographically-distributed data stream management 
system considering the limitations of the IoT ecosystem?

7.1 � Related work

In data stream query optimization a query is optimized to 
improve runtime performance in the sense of throughput, 
latency and resource usage. The throughput is wanted to 
be as high as possible and states how many data points 
can be processed in a specific time unit. The latency is 
wanted to be as less as possible and states the time it takes 
from a data point entering the processing pipeline until 
the very same data point being reflected in the results. 
The resource usage is wanted to be as low as possible and 
states the usage of CPU, RAM, network bandwidth and 
even battery-/energy-consumption.

Data stream query optimization approaches can be cate-
gorized in 11 classes. An optimization technique can either 
change the data flow/operator-graph or leave it unchanged, 
can either change the semantics of a query, which means 
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that the output will differ from the original one, or leave it 
unchanged and can be applied statically before runtime or 
dynamically during runtime. An overview of all the query 
optimization categories is shown in Table 1.

The data stream query optimization category, which the 
resource-awareness of data stream processing in IoT fits best, 
is operator placement. This kind of optimization usually 
assigns data stream operators to hosts and cores reducing 
either resource usage due to less communication or better 
utilizes available resources Schneider et al. (2013); Hirzel 
et al. (2014, 2018).

According to Sharma et al. (2019) who did a survey on 
cost-based distributed query optimizers there are two types 
of query optimization procedures which are either cost-
based or heuristic.

Daum et al. proposed a framework called Data Stream 
Application Manager (DSAM) Lauterwald et al. (2012) to 
control a network of heterogeneous data stream management 
systems. A cost model Daum et al. (2011) is used to mini-
mize the overall processing and communication costs where 
the operator placement query optimization is modelled as a 
task assignment problem.

Xu et al. optimize data stream queries for distributed/
edge processing to minimize latency providing a framework 
called QueryGuard Xu et al. (2018). They are also using a 
cost model and a dynamic programming enumeration algo-
rithm in combination with heuristic rules to prune unsatis-
fied branches in the search space. This approach also guar-
antees preserved privacy for edge computing.

Pietzuch et al. (2006) propose a virtual stream-based 
overlay network using a multidimensional metric space to 
find a good latency bandwidth trade-off for operator place-
ment. A spring relaxation algorithm minimizes the network 
utilization of a query while keeping the latency low.

Fan et al. (2020) used reinforcement learning to dynami-
cally allocate resources to IoT tasks based on historical data. 
The sub-optimal decisions made in real time aim to mini-
mize computational and communication delay.

7.2 � Our approach

To enable resource-awareness in the IoT ecosystem a dis-
tributed data stream management system (DDSMS) is devel-
oped. As a base, an existing data stream management system 
(DSMS) is used which already provides mechanisms and 
abstractions to gain control over the data flow. Data stream 
management systems provide semantics for data streams and 
data steam operators enabling high-level query languages 
and data stream query optimization.

The network of distributed data stream processing nodes 
consist of DSMS nodes and smart sensors. Those nodes are 
controlled by a central unit, which provides holistic control 
for the whole network and is aware of all node and network 
properties like bandwidth utilization and latency. The DSMS 
nodes are fully fledged data stream management systems 
and capable of processing streaming data using predefined 
operators. Whereas the smart sensors provide an interface 
in order to remotely configure basic edge processing on the 
sensor itself including select, aggregate and filter operators.

In the central unit, different distribution strategies can 
be implemented which optimize the resource utilization for 
specific parameters according to a cost model like proposed 
by Wang et al. (2009). A resource monitor tracks the per-
formance of a global query executed under a certain distri-
bution strategy. The monitoring enables the evaluation of 
different operator placement strategies for specific use cases 
to minimize resource utilization for constrained devices or 
the overall system.

The existing data stream management system Odys-
seus Appelrath et al. (2012) is extended to implement this 
approach.

7.2.1 � Resource‑aware dairy cattle activity monitoring

For demonstration purpose the approach above is applied to 
the dairy cattle activity monitoring.

Table 1   Query optimization 
categories

# Optimization Graph Semantics Dynamic

1 Operator reordering Changed Unchanged (Depends)
2 Redundancy elimination Changed Unchanged (Depends)
3 Operator separation Changed Unchanged Static
4 Fusion Changed Unchanged (Depends)
5 Fission Changed (Depends) (Depends)
6 Placement Unchanged Unchanged (Depends)
7 Load balancing Unchanged Unchanged (Depends)
8 State sharing Unchanged Unchanged Static
9 Batching Unchanged Unchanged (Depends)
10 Algorithm selection Unchanged (Depends) (Depends)
11 Load shedding Unchanged Changed Dynamic
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The models trained in the training pipeline are used to 
monitor the cattle behavior in the prediction pipeline. The 
prediction pipeline consists of the following steps: 

1.	 Measurement via sensor system
2.	 Segmentation
3.	 Feature Calculation
4.	 Prediction

In this pipeline, there are many parameters, which need to be 
tuned to be resource-efficient. In step 1 the data is generated 
and it may be best for prediction accuracy to get as many 
data as possible but for resource-efficiency you want to have 
a good trade-off between data frequency and accuracy.

In step 2 the sensor data is segmented into windows 
where a good window size depends on the duration of the 
activities to recognize. However, the window stride param-
eter, which configures the amount of window overlap, has 
a direct impact on the computational costs. Here you want 
to have a good window stride/accuracy trade-off reducing 
computational costs arising from window overlap.

In step 3 the data points segmented in windows are aggre-
gated to features. Optimizing the resource-efficiency of the 
feature calculation relies on a good feature selection strategy. 
You will get a higher accuracy including more features to 
the model but there might be a minimal feature subset which 
has a nice feature/accuracy trade-off reducing computational 
costs and still fulfilling accuracy needs.

In step 4 the trained models are fed with the features and 
the activity is predicted. Machine learning algorithms differ 
in computational prediction costs. Therefore, choosing a ML 
approach providing less accuracy but reducing resource uti-
lization significantly is a viable optimization strategy in this 
step. As project complexity grows the amount of training 
models and their associated information becomes complex 
and usually re-usability and sharing drops due to lack of 
framework to manage this ML life-cycle process, paving the 
way to the CModel challenge.

Besides the distribution-agnostic resource optimizations 
mentioned above there is another important point to think 
about. It is crucial to decide where which computation will 
take place. The cloud processing approach which sends all 
the data from step 1 to the cloud and performs steps 2-4 
there is obviously not optimal due to network bandwidth 
utilization. Computing steps 2-3 on the edge and step 4 in 
the fog or even steps 2-4 on the edge will perform better 
according to resource utilization.

The different processing steps in the prediction pipe-
line are implemented as data stream operators in a DSMS. 
According to the proposed approach above different distri-
bution strategies can be evaluated in the monitoring sys-
tem of the distributed data stream management system to 
find a resource-saving setup. Also the data stream operators 

implementing steps 1-4 can be parameterized to evaluate 
parameter settings for the single processing steps.

8 � Related work

The landscape of the work related to our discussion here 
is varied and multi-dimensional. It includes topics such 
as: IoT, smart cities, data management, analytics, sensor 
networks, communication protocols, and others. One way 
we can understand this space would be to simplify it into a 
two-dimensional vertical and horizontal space. Vertically, 
we will use the IoT architectural structure of: sensor/actua-
tor, device, gateway, middleware and application provided in 
Guth et al. (2016) as a guide, as well as the definitions they 
provide for these components.

Sensors and actuators are hardware components, whereas 
a sensor measures parameters of its physical environment, 
an actuator acts, controls or manipulates its environment. A 
device is a hardware component as well that connects to a 
sensor/actuator, it can process data from sensors or control 
actuators. Gateways can be used to compensate communi-
cation limitations of devices. IoT (Integration) middleware 
serves as a middle point between applications and devices/
gateways, by processing or evaluating received data or send-
ing commands to be executed by actuators Guth et al. (2016). 
Horizontally we can place orthogonal fields of study that 
intersect with IoT such as smart cities, big data analytics, 
distributed data processing, sensor networks, etc. Figure 5 
depicts one possible interpretation of the related work space.

Gubbi et al. (2013) present an overall vision of IoT is 
presented that is influenced by wireless sensor networks. In a 
similar vain Pike et al. (2019) applies the intersection of IoT 
and sensor networks to the domain of healthcare. Alavi et al. 
(2018) apply the IoT approach to the smart cities domain and 

Fig. 5   Related work space



89Data‑sharing markets for integrating IoT data processing functionalities﻿	

1 3

focus on the middleware and application side of the problem, 
while using the motivating scenarios of smart cities to drive 
the design of their vision.

Moving on in the distributed data processing pipelines 
and streams, Hernandez et al. (2020) models intelligent data 
pipelines using an actor-based model for IoT-based applica-
tions. The focus here is to support application developers 
in building intelligent data processing actors in a common 
ecosystem. To continue the look into data streams in IoT, 
Elsaleh et al. (2020) present a lightweight ontology to model 
IoT data streams to support easy data analytics and event 
detection services.

Turning to existing IoT platforms that are beyond research 
work, we have recently been experimenting with Things-
Board5 and Cumulocity6 and the possibilities of using them 
in our stack. Both these solutions implement the basic IoT 
requirements, and in retrospect we don’t see our work as 
competing with them but as integrating with them to ben-
efit from the rich support for communication protocols, and 
dashboarding.

Another horizontal dimension of work focuses on the 
representation of domain entities & assets relevant to the 
IoT platform, be they sensors, actuators, users, or others. 
For example, Mormul and Stach (2020) present a context 
model for holistic monitoring and management of complex 
IT environments, to be used in conjunction with the larger 
IoT platform. On the other hand, Sasidharan and Somov 
(2014) propose a framework where these assets are modeled 
as either: real world objects, virtual objects or composite 
virtual objects. In many ways such solutions have a similar 
aim in representing data about domain entities at different 
levels of the IoT platform.

The challenges we tackle here can be positioned in the 
space depicted in Fig. 5. The CResource challenge covers 
the continuous space of device, gateway, sensor networks, 
and middleware. The CQuality challenge touches on sensor, 
device, gateway, middleware, sensor networks, smart cities 
as well as linked data. The CModel challenge, touches on 
analytics, smart cities, middleware, applications, and linked 
data. Our approach toward the CPrivacy challenge crosses 
the IoT stack from sensors up to middleware. And finally, 
the approach we develop to IoT platform design falls in the 
linked data, middleware, and applications.

As distinguished from the related work discussed ear-
lier, in this paper, we combine paradigms and focus on a 
set of data management problems at different levels of the 
data management stack. For example although an IoT plat-
form is used as a hub for many of the data streams it is not 
the end goal in itself. Smart city scenarios act as a problem 

scenario to motivate the choice of problems to solve. Data is 
processed at different locations in the web of devices. With 
our focus on enriching data quality information, provenance 
and data descriptions, we provide new opportunities to work 
with data. Integrating that with the model management and 
learning, it becomes and multi-function data management 
tool-set that is applicable to both research and industry use 
cases.

The work presented here extends our previous discus-
sion in Steuer et al. (2016) and adds new challenges such 
as model management, sensor data quality and knowledge 
management.

9 � Conclusion and future work

From the discussion in this paper, we can see that there are 
many research challenges left for data management in IoT 
that go beyond the discussion of big data processing.

To optimize data flows across the available edge-fog-
cloud infrastructure (CResource) to save energy and band-
width, the system needs to be aware of the operator seman-
tics. Techniques from the well-known relational algebra 
can be applied to regain control over these heterogeneous 
environments. However, the cost models used in this optimi-
zation step need to be re-defined to cover novel aspects like 
energy-consumption of operators or privacy constraints (if 
certain raw data is not allowed to leave a processing node). 
In addition, the algebra might need to be extended to cover 
novel operators like ML model based prediction.

Since most IoT systems are based on sensors, the achiev-
able data quality needs to be considered not only during 
installation, but also online during operation of IoT sys-
tems (CQuality). If we leave this task to the applications, 
system-wide and consistent data quality control will hardly 
be achievable. While certain dimensions of data quality 
are application-specific, we can model general data qual-
ity dimensions and how they depend on installation context 
for sensors. This model can then be used to auto-generate 
online quality assessment within large-scale IoT infrastruc-
tures, thus dis-burdening the application developers from 
this tedious step.

Since more and more sensor-based IoT applications are 
based on machine learning (ML) techniques, ex. for activ-
ity recognition, the management of the trained ML models 
become part of the data management challenges (CModel). 
As we can see from the use case of mobility analytics and 
the dairy cattle use case, the continuous life-cycle of ML 
models raises the demand to keep the information about dif-
ferent ML over time and space, so that we can manage and 
automate all ML related tasks.

A crosscutting concern of large-scale IoT system is pri-
vacy (CPrivacy), since devices often collect raw data that 

5  https​://thing​sboar​d.io/.
6  https​://www.softw​areag​.cloud​/site/produ​ct/cumul​ocity​-iot.html.

https://thingsboard.io/
https://www.softwareag.cloud/site/product/cumulocity-iot.html
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could be used to derive sensitive information, which is not 
always needed or even allowed. We discussed that issue 
within the use case of mobility data: While individual mobil-
ity is highly sensitive, aggregated mobility is not. To fully 
leverage the insights that we could get from such aggregated 
mobility data, we need to develop trustable online tech-
niques for anonymization. As with data quality, the task of 
proper data anonymization should be provided as standard 
functions from an IoT infrastructure so that its application is 
not dependent on the programming skill of single developer 
teams.

Finally, an approach to IoT platform design is needed to 
be able to integrate such heterogeneous data management 
functionalities under one roof. The approach we follow is 
influenced by meta-data management approaches to enable a 
higher level of system support within the IoT infrastructure. 
In many IoT application domains (ex. smart cities), these 
infrastructures span different organizations and stakeholders. 
Hence, we propose the IB model and data-sharing markets 
to support multiple groups, systems, and functionalities and 
integrate their data in an information-driven manner. The 
such structured information can be used both by automa-
tion system (ex. distributed query optimizers or data quality 
assessment) and by human stake-holders, like developers, 
operators, or even end users (ex. to gain transparency about 
installed systems in their work environment).

As we can see from this discussion, data management for 
large-scale IoT systems has still many unsolved challenges. 
While they all could be tackled by individual software devel-
oped and within application-code, it is key for long-term 
operation, maintenance, and transparency of such systems 
to get more and more support by frameworks and higher-
level programming concepts like query languages. Like a 
database system that hides many implementation details like 
data distribution or index usage, future IoT infrastructures 
might as well provide a high-level interface with pre-build 
support for resource-aware query optimization, online qual-
ity assessment, ML model management, privacy-preserving 
data aggregation, and a cross-organizational knowledge 
management.
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