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Abstract 

19 

Missing data are a common problem in most epidemiological and medical 
studies, including surveys and clinical trials. Imputation, or jilling in the missing 
values, is an intuitive and flexible way to handle the incomplete data sets that 
arise because of such missing data. Here, in addition to imputation, including 
multiple imputation (MI), we discuss several other strategies and their 
theoretical background, as weil as present some examples and advice on com-
putation. Our focus is on MI, which is a statistically valid strategy for handling 
missing data, although we review other less sound methods, as weil as direct 
maximum likelihood and Bayesian methods f or estimating parameters, which 
are also valid approaches. The analysis of a multiply-imputed data set is now 
relatively standard using readily available statistical software. The creation 
of multiply-imputed data sets is more challenging than their analysis but still 
straightforward relative to other valid methods of handling missing data, and 
we discuss available software for doing so. Ad hoc methods, including using 
singly-imputed data sets, almost always lead to invalid inferences and should be 
eschewed, especially when the focus is on valid interval estimation or testing 
hypotheses. 

1. Introduction 

Missing data are a common problem with large databases in general and with 
epidemiological, medical, and health-care databases in particular. Missing data 
also occur in clinical trials when subjects fail to provide data at one or more time 
points or drop out, for reasons including lack of interest or untoward side effects. 
Data may also be "missing" due to death, although the methods described here 

* The findings and conclusions in this chapter are those of the author and do not necessarily rep-
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are generally not appropriate for such situations because such values. are not 
really missing (see Little and Rubin, 2002, Example 1.7; Zhang and Ruhm, 2003; 
Rubin, 2006). 

Epidemiological and medical databases nearly always have missing data. Unit 
nonresponse occurs when a selected unit (e.g., patient, doctor, hospital) does not 
provide any of the information being sought. Item nonresponse occurs when a 
unit responds to some items but not to others. Discussions of many issues related 
to missing data are contained in the three volumes produced by the Panel on 
Incomplete Data of the Committee on National Statistics in 1983 (Madow et al., 
1983a, 1983b; Madow and Olkin, 1983), as well as in the volume stimulated by 
the 1999 International Conference on Survey Nonresponse (Groves et al., 2002). 

A classical textbook on analysis with missing data (Little and Rubin, 1987, 
2002) categorizes methods for analyzing incomplete data into four main groups. 
The first group compri

0

ses simple procedures such as complete-case analysis (also 
known as "listwise deletion") and available-case analysis, which discards the units 
with incomplete data in different ways. Although these simple methods are 
relatively easy to implement, they can often lead to inefficient and biased esti-
mates. The second group of methods comprises weighting procedures, which 
deals with unit nonresponse by increasing the survey weights for responding units 
in an attempt to account for the nonrespondents, who are dropped from further 
analysis. The third group comprises imputation-based procedures, a standard 
approach for handling item nonresponse, especially in databases that are to be 
shared by many users. Imputation methods fi.11 in values that are missing, and the 
resultant completed data are then analyzed as if there never were any missing 
values. 

Of particular interest, multiple imputation (MI) is a method for reflecting the 
added uncertainty due to the fact that imputed values are not actual values, and 
yet still allows using complete-data methods to analyze each data set completed 
by imputation. The final group ofmethods comprises direct analyses using model-
based procedures, in which models are specified for the observed data, and 
inferences are based on likelihood or Bayesian analyses. In general, only MI and 
direct analysis can lead to valid inferences. By valid inferences we mean ones that 
satisfy three criteria: 

(a) approximately unbiased estimates of population estimates (e.g., means, cor-
relation coefficients), 

(b) interval estimates with at least their nominal coverage (e.g., 95% intervals for 
a population mean should cover the true population mean at least 95% ofthe 
time), and 

(c) tests of significance should reject at their nominal level or less frequently when 
the null hypothesis is true (e.g., a 5% test of a zero population correlation 
should reject at most 5% of the time when the population correlation is zero). 

Resampling methods, such as the bootstrap and jackknife, can satisfy criteria 
(b) and (c) asymptotically, but give no guidance on how to satisfy criterion (a) in 
the presence of missing data, but rather implicitly assume that estimates satisfying 
(a) have already been obtained (see Efron, 1994 and the discussion by Rubin, 
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1994). Such methods are only briefly discussed in Section 4.2 because they do not 
represent a complete approach to the problem of missing data. 

This chapter reviews these four classes of approaches to handling missing 
data, with a focus on MI, which we believe is the most generally useful approach 
for medical and epidemiological databases. Before presenting our review of 
approaches, we start with a basic discussion ofmissing-data mechanisms, i.e., the 
processes that govern why certain values are missing and others are observed. 

2. Missing-data mechanisms and ignorability 

When data are missing, it is important to distinguish various missing-data mech-
anisms, which describe to what extent missingness depends on the observed and/ 
of unobserved data values. Many simple methods for dealing with missing data 
are based, either implicitly or explicitly, on the assumption of a particularly 
simple missing-data mechanism, and these methods' behavior can be influenced 
strongly by differences between the assumed and the true mechanisms. More 
formally, let Y represent the N x P matrix of complete data, and let R represent 
the N x P matrix of indicator values for observed and missing values in Y. Then, 
the missing-data mechanism gives the probability of the matrix of indicator var-
iables, R, given Y and possible parameters governing this process, : p(RI Y, ~). 

Key concepts about missing-data mechanisms were formalized by Rubin 
(1976), and following this work, subsequent statistical literature (e.g., Little and 
Rubin, 2002, p. 12) distinguishes three cases: missing completely at random 
(MCAR), missing at random (MAR), and not missing at random (NMAR). This 
language was chosen to be consistent with much older terminology in classical 
experimental design for completely randomized, randomized, and not randomi-
zed studies. 

MCAR refers to missing data for which missingness does not depend on any of 
the data values, missing or observed. Thus, the probability that units provide data 
on a particular variable does not depend on the value of that variable or the value 
of any other variable: p(RI Y, ~) = p(RI~). The MCAR assumption can be unre-
alistically restrictive and can be contradicted by the observed data, for example, 
when men are observed to have a higher rate of missing data on postoperative 
blood pressure than women. 

Often, it is plausible to assume that missingness can be explained by the 
observed values in the data set. For example, in an epidemiological survey, the 
missingness for certain medical variables might depend on completely observed 
variables such as gender, age group, health conditions, social status, etc. If the 
probability of units responding to items depends only on such observed values 
but not on any missing values, then the missing data are MAR, but not nec-
essarily MCAR because of the following possible dependence: p(RI Y, ~) = 
p(RI Yobs, ~), where Yobs are observed values in Y, Y = (Yobs, Ymis), Ymis being 
the missing values in Y. Thus, if the value of blood pressure at the end of a 
clinical trial is more likely to be missing when some previously observed values 
of blood pressure are high, and given these, the probability of missingness is 
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independent of the value of blood pressure at the end of the trial, the missingness 
mechanism is MAR. 

If, even given the observed values, missingness still depends on data values that 
are missing, the missing data are NMAR. This could be the case, for example, 
with final blood pressure, if people with higher final blood pressure tend to be less 
likely to provide their blood pressure than people with lower final blood pressure, 
even though they have the exact same observed values of race, education, all 
previous blood pressure measurements, etc. Obviously, the richer the data set in 
terms of observed variables, the more plausible the MAR assumption becomes. 

In addition to defining formally the concepts underlying MCAR, MAR, 
and NMAR, Rubin (1976) defined the concept of ignorability. Suppose that, 
in a situation with missing data, parametric models have been specified for: 
(1) the distribution of the data that would occur in the absence of missing 
value, p(Y\i/1), and (2) the missing-data mechanism, p(R\ Y, ~). Rubin (1976) 
showed that if the missing data are MAR and the parameters of the data 
distribution, ljJ, and the missing-data mechanism, ~, are distinct (which means, in 
disjoint parameter spaces and, if Bayesian models are used, a priori independent), 
then valid inferences about the distribution of the data can be obtained using 
a likelihood function that does not contain a factor for the missing-data 
mechanism and is simply proportional to p(Yobsli/1) = J p(Y\i/l)dY mis• In this sit-
uation, the missing-data mechanism may be "ignored" for likelihood or Bayesian 
inferences. 

In many cases, it is reasonable to assume that the parameters of the data 
distribution and the missing-data mechanism are distinct, so that the practical 
question of whether the missing-data mechanism is ignorable often reduces to a 
question of whether the missing data are MAR. This argument requires some 
care, however, when using random parameter models, where there can exist 
ambiguity between unknown parameters and missing data (see Shih, 1992). Also, 
even when the parameters are not distinct, if the missing data are MAR, then 
inferences based on the likelihood ignoring the missing-data mechanism are 
still potentially valid in the sense of satisfying criteria (a)-(c) of Section 1, but 
may not be fully efficient. Thus, the MAR condition is typically regarded as the 
more important one in considerations of ignorability. Little and Rubin (2002, 
Section 6.2) include further discussion of these ideas, as does Rubin (1978b) in a 
very simple but instructive artificial example. 

lt is common to make the ignorability assumption in analyses of incomplete 
data even when it is not known to be correct, and it can be advantageous to do so 
for a variety of reasons. First, it can simplify analyses greatly. Second, the MAR 
assumption is often reasonable, especially when there are fully observed covari-
ates available in the analysis to "explain" the reasons for the missingness; further, 
MAR cannot be contradicted by the observed data without the incorporation of 
external assumptions such as exact normality of variables. Third, even when the 
missing data are NMAR, an analysis based on the assumption of MAR can be 
helpful in reducing bias by effectively imputing missing data using relationships 
that are observed. Finally, even if the missing data are NMAR, it is usually not 
at all easy to specify a correct nonignorable model, for the simple reason that any 
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evidence concerning the relationship ofmissingness to the missing values is absent 
because the missing values are, by definition, not observed (for example, see 
Rubin et al., 1995). 

3. Simple approaches to handling missing data 

3.1. Complete-case analysis 

The simplest analysis with incomplete data is to delete all units (cases) with at 
least one missing variable, i.e., to use "complete-case" analysis (sometimes called 
listwise deletion). This approach is generally biased unless the missing data are 
MCAR; the degree ofbias depends on (a) the amount ofthe missing data, (b) the 
degree to which the assumption of MCAR is violated, and (c) the particular 
analysis being implemented. Even when complete-case analysis is unbiased, it can 
be highly inefficient, especially with multivariate data sets. For example, consider 
a data set with 20 variables, each of which has probability of being missing of .05, 
and suppose that missingness on each variable is independent of missingness 
on the other variables. Then, the probability of a unit having complete data is 
(.95)20 = .36, so that complete-case analysis would be expected to include only 
36% of the units, and many of the discarded units have a large fraction of their 
values observed. 

3.2. Available-case analysis 

A simple alternative to the complete-case method is to include all units that have 
complete data on the variables that are needed for the analysis being considered. 
This approach, "available-case" analysis, can be regarded as "complete-case 
analysis restricted to the variables of interest." A vailable-case analysis retains at 
least as many of the data values as does complete-case analysis. However, it can 
be problematic when more than one quantity is estimated and the different 
estimates are compared or combined, because the sample base generally changes 
from one estimated quantity to the next. For example, if summaries of different 
variables are to be compared, the set of units for which each variable is sum-
marized can differ across variables, and the summaries can be incomparable if the 
missing data are not MCAR; an extreme artificial illustration of incomparable 
estimation using available-case analyses would occur if last year's mean choles-
terol were based on males because it was not collected for females, and this year's 
were based on females because it was not collected for males. As an extreme 
example in the context of combining estimates, if the covariance of two variables 
and their individual standard deviations have been estimated using available-
case analyses, when these estimates are combined to estimate the correlation 
between the two variables, the resulting estimated correlation can lie outside the 
range [-1, I]. 

Complete-case analysis and available-case analysis were often the default 
treatments of missing data in older software packages, and they are simple to 
implement, which is undeniably attractive. However, as just discussed, they can 
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have serious deficiencies, which can be avoided when using more modern and 
more appropriate methods. 

3.3. Weighting adjustments 

For the case of unit nonresponse in surveys, a modifi.cation of complete-case 
analysis that can help to remove bias when the missing data are not MCAR is to 
weight the complete cases (i.e., the respondents) based on background informa-
tion that is available for all of the units in the survey. For example, when a 
nonrespondent matches a respondent with respect to background variables that 
are observed for both, the nonrespondent's weight is simply added to the match-
ing respondent's weight, and the nonrespondent is discarded. Because the match 
is defined by observed variables, such adjustments implicitly assume MAR. 

A weighting procedure was used, for example, in the National Health Inter-
view Survey (Botman et al., 2000). Typically, even if there were no adjustments 
for unit nonresponse in a survey, each sampled unit would already be weighted by 
the inverse of its probability of its selection, so that unbiased estimates of certain 
population quantities, such as totals, under repeated sampling could be calculated 
using those weights. The basic idea underlying a weighting adjustment for unit 
nonresponse is to treat unit nonresponse as an extra layer of sampling, which is 
accurate assuming ignorability, and then to weight each responding unit by the 
inverse of its estimated probability of both selection and response. For dealing 
with item nonresponse, the use of weighting adjustments is nearly always prob-
lematic, in large part because discarding the incomplete cases discards additional 
observed data that are not used in creating the weighting adjustment. Therefore, 
the standard method for handling item nonresponse in surveys is imputation, 
discussed in the next two sections. For further discussion ofweighting procedures 
for nonresponse in general, see Bethlehem (2002), Gelman and Carlin (2002), and 
Little and Rubin (2002, Section 3.3). 

4. Single imputation 

Single imputation refers to imputing one value for each missing datum. Singly 
imputed data sets are straightforward to analyze using standard complete-data 
methods, which is again an undeniably attractive feature. Little and Rubin (2002, 
p. 72) offer the following guidelines for creating imputations. They should be: 
(1) conditional on observed variables; (2) multivariate, to reflect associations 
among missing variables; and (3) randomly drawn from predictive distributions 
rather than set equal to means, to ensure that correct variability is reflected. 
Methods for single imputation typically assume ignorability, and for simplicity, 
we concentrate discussion on the ignorable case. 

4. J. Simple imputation methods 

Unconditional mean imputation, which replaces each missing value with the 
mean of the observed values of that variable, meets none of the three guidelines 
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listed above. Regression imputation can satisfy the first two guidelines by 
replacing the missing values for each variable with the values predicted from 
a regression (e.g., least squares, logistic) of that variable on other variables. 
Replacing missing values of each variable with the mean of that variable calcu-
lated within cells defined by categorical variables is a special case of regression 
imputation. Stochastic regression imputation adds random noise to the value 
predicted by the regression model, and when done properly can meet all three 
guidelines for single imputation. 

Hot-deck imputation replaces each missing value with a random draw from a 
"donor pool" consisting of values of that variable observed on units similar to the 
unit with the missing value. Donor pools are selected, for example, by choosing 
units with complete data who have "similar" observed values to the unit with 
missing data, e.g., by exact matching on their observed values or using a distance 
measure (metric) on observed variables to define "similar." When the distance 
is defined as the difference between units on the predicted value of the variable 
to be imputed (Rubin, 1986), the imputation procedure is termed "predictive mean 
matching imputation" (Little, 1988). Hot-deck imputation, when done properly, 
can also satisfy all three of the guidelines listed above for single imputation. 

Suppose that single imputations have been created following the three 
guidelines of Little and Rubin (2002) mentioned above. Then, analyzing such a 
singly imputed data set with standard complete-data techniques is straightfor-
ward and can lead to approximately unbiased point estimates under ignorability. 
This approach then satisfies criterion (a) of Section 1. However, the resulting 
analyses will nearly always result in estimated standard errors that are too 
small, confidence intervals that are too narrow, and p-values for hypothesis 
tests that are too significant, regardless of how the imputations were created, 
thus failing to satisfy criteria (b) and ( c ). The reason is that imputed data are 
treated by standard complete-data analyses as if they were known with no 
uncertainty. Thus, single imputation followed by a complete-data analysis that 
does not distinguish between real and imputed values is almost always statistically 
invalid. 

4.2. Interval estimation after single imputation 

Special methods for variance estimation following single imputation have been 
developed for specific imputation procedures and estimation problems; see, 
for example, Schafer and Schenker (2000) and Lee et al. (2002). However, such 
techniques need to be customized to the imputation method used and to the 
analysis methods at hand, and they often require the user to have information 
from the imputation model that is not typically available in shared data sets. 
A more broadly applicable but computationally intensive approach with singly 
imputed data is to use a replication technique such as balanced repeated 
replication, the jackknife, or the bootstrap for variance estimation, with the 
imputation procedure repeated separately for each replicate; see, for example, 
Efron (1994) and Shao (2002). But, again, such replication methods assume 
criterion (a) has been satisfied by the single imputation method. 
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Multiple imputation (MI), described in Section 5, is a generally valid approach 
(i.e., satisfying criteria (a)-(c)), that is broadly applicable but less computationally 
intensive than the replication approach just mentioned, and it is thus particularly 
useful in the context of creating data sets to be shared by many users. MI simply 
involves repeating the drawing of single imputations several times, but its exact 
validity requires that the imputations are "proper" (Rubin, 1987), or more gen-
erally "confidence proper" (Rubin, 1996), both of which satisfy the three criteria 
of Little and Rubin (2002) for imputation. 

4.3. Properly drawn single imputations 

For notational simplicity, assume ignorability of the missing-data mechanism, 
even though the ignorability assumption is not necessary for MI to be appro-
priate. A proper imputation is often most easily obtained as a random draw from 
the "posterior predictive distribution" of the missing data given the observed 
data, which formally can be written as: p( Y mis \ Y obs) = J p( Y mis, t/11 Y obs)dt/t = 
J p(Y misl Yobs, t/t)p(t/tl Yobs)dt/t. This expression effectively gives the distribution 
of the missing values, Y mis, given the observed values, Yobs, under a model for Y 
governed by t/t, p(Ylt/t)p(t/t), where p(t/1) is the prior distribution on t/1. The 
distribution p(Y misl Yobs) is called "posterior" because it is conditional on the 
observed Yobs, and it is called "predictive" because it predicts the missing Ymis· 
lt can be proper" because it reflects all uncertainty, including in parameter 
estimation, by taking draws of t/1 from its posterior distribution, p(t/tl Yobs), before 
using t/1 to impute the missing data, Ymis, from p(Y misl Yobs, t{!). More details are 
given in Sections 4.4 and 4.5. 

Rubin (1987, Chapter 4) labeled imputation methods that do not account for 
all sources of variability as "improper." Thus, for example, fixing t/t at a point 
estimate ~' and then drawing m imputations for Ymis independently with density 
p(Y mis\ Yobs, ~), would constitute an improper MI procedure. 

For simple patterns of missing data, such as with only one variable subject to 
missingness, the two-step paradigm of drawing t/1 from p(t/11 Yobs) and then draw-
ing Y mis from p( Y mis I Y obs, t/1) is relatively straightforward to implement. F or a 
simple example, Rubin and Schenker (1987) described its use in the context of 
fully parametric imputation involving !ogistic regression models. These steps can 
also incorporate more nonparametric analogs. The simple hot-deck procedure 
that randomly draws imputations for incomplete cases from matching complete 
cases is not proper because it ignores the sampling variability due to the fact that 
the population distribution of complete cases is not known, but rather it is 
estimated from the complete cases in the sample. Rubin and Schenker (1986, 
1991) described a two-step procedure, termed "approximate Bayesian bootstrap 
imputation," which draws a bootstrap sample from the complete cases and then 
draws imputations randomly from the bootstrap sample. The initial bootstrap 
step is a nonparametric analog to the process of drawing a value i/J* with density 
p(i/11 Yobs), and the subsequent hot-deck step is a nonparametric analog to the 
process of drawing a value of Y mis with density p( Y misl Yobs, 1/1*). Dorey et al. 
(1993) combined an initial bootstrap step with a fully parametric second step, 
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whereas Schenker and Taylor (1996) combined a fully parametric first step with 
predictive mean matching imputation at the second step. Finally, Heitjan and 
Little (1991) combined an initial bootstrap step with bivariate predictive mean 
matching imputation at the second step. 

4.4. Properly drawii1g imputations with monotone missingness 

If the missing data follow a monotone pattern, it is straightforward to draw 
random samples from p(Y misl Yabs)- When the missing data are not monotone, 
iterative computational methods are generally necessary, as described in 
Section 4.5. A missing-data pattern is monotone if the rows and columns of the 
data matrix can be sorted so that an irregular staircase separates Yobs and Ymis· 
Figure 1 illustrate monotone missing-data patterns. Missing data in clinical trials 
are often monotone or nearly monotone when data are missing due to patient 
dropout, where once a patient drops out, the patient never returns. Similarly some 
longitudinal surveys have monotone or nearly monotone missingness patterns 
when people who drop out never return. 

Let Y0 represent fully observed variables, Y1 the incompletely observed var-
iable with the fewest missing values, Y2 the variable with the second fewest miss-
ing values, and so on, and assume a monotone pattern of missingness. Proper 
imputation with a monotone missing-data pattern begins by fitting an appropri-
ate model to predict Y1 from Y0 and then using this model to impute the missing 
values in Y1• For example, fit a least squares regression of Y1 on Y0 using the units 
with Y1 observed, draw the regression parameters of this model from their pos-
terior distribution, and then draw the missing values of Y1 given these drawn 
parameters and the observed values of Y0• Next impute the missing values for Y2 
using Y0 and the observed and imputed values of Y1; for example, if Y2 is 
dichotomous, use a logistic regression model for Y2 given (Y0, Y1). Continue to 
impute the next most complete variable until all missing values have been im-
puted. The collection of imputed values is a proper imputation of the missing 
data, Ymis, under this model, and the collection of univariate prediction models 
defines the implied füll imputation model, p( Y misl Yabs)- When missing data are 
not monotone, this method of imputation as described cannot be used directly to 
define p( Y mis J Y obs)-

4.5. Properly drawing imputations with nonmonotone missingness 

Creating imputations when the missing-data pattern is nonmonotone generally 
involves iteration because the distribution p(Y misl Yobs) is often difficult to draw 
from directly. However, the Data-Augmentation algorithm (DA; Tauner and 
Wong, 1987), a stochastic version of the Expectation-Maximization algorithm 
(EM; Dempster et al., 1977), is often straightforward to implement. Briefly, DA 
involves iterating between randomly sampling missing data given a current draw 
of the model parameters and randomly sampling model parameters given a cur-
rent draw of the missing data. The draws of Ymis forma Markov Chain whose 
stationary distribution is p( Y mis I Yobs). 



578 S. Riissler et al. 

Thus, once the Markov Chain has reached effective convergence, a draw 
of Ymis obtained by DA is effectively a single proper imputation of the missing 
data from the correct target distribution p( Y mis I Y obs), the posterior predictive 
distribution of Y mis· Many of the programs discussed in Section 5.3 use DA or 
variants of DA to impute missing values. Other algorithms that use Markov 
Chain Monte Carlo methods for imputing missing values include the Gibbs 
sampler (Geman and Geman, 1984) and the Metropolis-Hastings algorithm 
(Metropolis and Ulam, 1949; Hastings, 1970). See, e.g., Gelman et al. (2003) 
for more details for these algorithms in general, and Schafer (1997) for the 
application of DA for imputation. This general approach is also discussed in 
Section 6. 

An alternative to doing imputation under one specified model is to do impu-
tation under potentially incompatible models, e.g., a potentially incompatible 
Gibbs sampler. These iterative simulation methods run a regression (e.g., least 
squares, logistic) on each variable with some missing data on all other variables 
using previously imputed values for these other variables, and then cycle through 
each variable with missing data. In fact, such regression imputation methods 
that are not necessarily derived from a joint distribution for all of the data have 
been more extensively developed recently, and they provide very flexible tools for 
creating imputations. As we will see in Section 5, such methods have gained 
prominence for the creation of Mis in recent years, although they have a 
relatively long history of application (e.g., Kennickell, 1991; Van Buuren and 
Oudshoorn, 2000; Raghunathan et al., 2001; Münnich and Rässler, 2005; Van 
Buuren et al., 2006). Further research should lead to greater understanding of the 
theoretical properties of such methods as weil as to refinements of the methods in 
practice. 

5. Multiple imputation 

Multiple imputation (MI) was introduced by Rubin (1978a) and discussed in 
detail in Rubin (1987, 2004a, 2004b); it is an approach that retains the advantages 
of single imputation while allowing the uncertainty due to the process of impu-
tation to be assessed directly and included to create valid inferences in many 
situations. MI is a simulation technique that replaces the missing values Y mis with 
m > l plausible values, and therefore reveals and quantifies uncertainty in the 
imputed values. Each set of imputations (i.e., each single imputation Ymis) thus 
creates a completed data set, thereby creating m "completed" data sets: y(l), ... , 
y(I), ... , y<m), where y(I) = ( Yobs, Y~is). Typically m is fairly small; m = 5 is a 
standard number ofimputations to use. Each ofthe m completed data sets is then 
analyzed as if there were no missing data, just as with single imputation, and the 
results of the m analyses are combined using simple rules described shortly. 

Obtaining proper multiple-imputations is no more difficult than obtaining 
a single proper imputation because the process for obtaining a proper single 
imputation is simply repeated independently m times. Schafer (1997) is an 
excellent source for computational guidance on creating multiple-imputations 
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under a variety of models for the data Y. Multiple-imputations can be created 
under both ignorable and nonignorable models for missingness, although the use 
of ignorable models has been the norm, in part based on considerations of the 
type discussed at the conclusion of Section 2. 

5.1. Combining rules Jor proper multiple imputation - scalar point estimates 

Let 0 represent the scalar estimand of interest (e.g., the mean of a variable, a 
relative risk, the intention-to-treat effect, etc.), let e represent the Standard com-
plete-data estimator of 0 (i.e., the quantity calculated treating all imputed values 
of Ymis as observed data), and Jet V(0) represent the standard complete-data 
estimated variance of 0. 

Suppose MI has been used to create m completed data sets. A standard 
complete-data analysis of each will produce m completed data sets, each 
associated with completed-data statistics, say 01 and V1 = V(0)1, l = 1, ... , m. The 
m sets of statistics are combined to produce the final point estimate 0Mr = 
m- I '"f.'f:c)J1 and its estimated variance T = W + (1 + m-1 )B, where W = 
m-1r.1=1 V1 is the "within-imputation" variance, B = (m - 1)-11:7:1(81 - 8Mr)2 is 
the "between-imputation" variance, and the factor (I + m-1) reflects the fact that 
only a finite number of completed-data estimates 01, l = 1, ... , m, are averaged 
together to obtain the final point estimate. The quantity y = (1 + m-1)B/T 
estimates the fraction of information about 0 that is missing due to the 
missing data. 

Inferences from multiply imputed data are based on 0Mr, T, and a Student's t 
reference distribution. Thus, for example, interval estimates for 0 have the form 
BMr ± t(I - a/2),JT, where t(l-a/2) is the (l-a/2) quantile of the t distribution. 
Rubin and Schenker (1986) provided the approximate value VRs = (m - l)r2 for 
the degrees of freedom of the t distribution, under the assumption that with 
complete data, a normal reference distribution would have been appropriate 
(i.e., the complete data would have had large degrees of freedom). Bamard and 
Rubin (1999) relaxed the assumption ofRubin and Schenker (1986) to allow for a 
t reference distribution with complete data, and proposed the value VBR = 
(vji~ + v~~J- 1 for the degrees of freedom in the MI analysis, where Bobs = 
(1 - y)(Vcom)(vcom + l)(vcam + 3), and Vcom is the complete-data degrees offreedom. 

See Rubin and Schenker (1991) for additional methods for combining vector-
valued estimates, significance levels, and likelihood ratio statistics; also see Little 
and Rubin (2002, Section 10.2). These sources summarize work done in Meng 
and Rubin (1992) and Li et al. (1991). 

5.2. Discussion of MI in practice 

A feature of imputation, either single or multiple, that gives such procedures great 
inherent flexibility and is especially attractive in the context of data sets that are 
shared by many users, is that the implicit or explicit model used for imputation, 
i.e., that Ieads to p(Y misl Yobs), need not be the same as the explicit or implicit 
model used in subsequent analyses of the completed data. Thus, for example, an 
organization distributing public-use data can do its best job at imputing missing 
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data, and then secondary analysts are free to explore a variety of models for 
analyzing the completed data. The formal derivation of procedures for analyzing 
multiply imputed data, however, is based on the assumption that the imputer's 
and analyst's models are compatible, in the sense that the imputation model is 
proper or confidence proper. Formally, the imputer's and analyst's models must 
be "congenial" (Meng, 1994) for the resulting analyses to be fully valid. Such 
congeniality can be enforced more easily when the imputer and analyst are the 
same entity or communicate with each other. In the context of shared data sets, 
however, to promote near-congeniality of the imputer's and user's implicit mod-
els, so that analyses based on multiply imputed data will be at least approximately 
valid, the imputer should include as rich a set of variables in the imputation model 
as possible in order to accommodate the variety of analyses that might be carried 
out by secondary analysts. For example, when the data come from a complex 
sample survey, variables reflecting features of the sample design should be 
included as weil (e.g., variables used to determine sampling weights, these weights 
themselves, stratification indicators); this was done, for instance, when NHANES 
III was multiply imputed (Ezzati-Rice et al., 1993) as well as when NMES was 
multiply imputed (Rubin, 2003). 

This advice to include as many variables as possible in an MI model was 
present from the beginning (e.g., Rubin, 1987). Especially important is to 
include variables used in the design of the data collection, such as variables used 
to derive sampling weights, or the sampling weights themselves. Also critical is 
to include domain indicators when domain estimates are to be obtained by 
subsequent users. There are some criticisms of MI's sampling variance estima-
tion equations in situations when such critical variables are excluded from the 
MI model (e.g., Kirn et al., 2006). Obviously, if a statistical method is imple-
mented in a way that does not even approximate its correct use, resulting 
answers cannot be valid in general. Although the focus in these criticisms 
has been on sampling variance estimation, even the point estimates based on 
an imputation model that excludes weights or domain indicators will be 
biased in general, so the issue of biased sampling variance estimation becomes 
secondary. 

5.3. Software for multiple imputation 

Many standard statistical software packages now have built-in or add-on func-
tions for creating and analyzing multiply-imputed data sets. Routines for creating 
such data sets include, for example, the S-plus libraries NORM, CAT, MIX, and 
PAN, for multiply imputing normal, categorical, mixed, and panel data, respec-
tively, which are freely available (see http://www.stat.psu.edu/~jls/misoftwa.html). 
NORM is also available as a stand-alone version, as is MICE-MI by chained 
equations (see http://web.inter.nl.net/users/S.van.Buuren/mi/hmtl/mice.htm). In 
addition, IVEware is very flexible and freely available; it can be called using SAS 
or can be run as a stand-alone version (http://www.isr.umich.edu/src/smp/ive/). 
SAS now has procedures PROC MI and PROC MIANALYZE making the 
analysis of multiply imputed data sets easy. Other software packages have been 
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developed specifically for creating multiply-imputed data sets, for example, the 
commercially available SOLAS (http://www.statsol.ie/solas/solas.htm), which has 
been available for years, is most appropriate for data sets with a monotone or 
nearly monotone pattern of missing data. Additionally, STATA provides MI 
routines based on the chained equation approach and supports analyses of multiply-
imputed data sets. For more information, see www.multiple-imputation.com or 
for some historical perspective, see Horton and Lipsitz (2001). 

6. Direct analysis using model-based procedures 

Direct analyses of the incomplete data can be implemented by specifying a model 
for the complete data and then basing inferences on the likelihood or posterior 
distribution under that model. In its füll generality, modeling the incomplete data 
is accomplished by simultaneously modeling both Y and R, as explicitly intro-
duced in Rubin (1976). Selection models (e.g., Heckman, 1976) specify the 
marginal distribution of Y as well as how the distribution of R depends on Y, as 
follows: 

p( Y, R/i/1, () = p( Y/i/J)p(R/ Y, n (1) 

where if; and e are unknown parameters. In contrast, pattern-mixture models 
(e.g., Rubin, 1977, 1978a; Little, 1993) specify the distribution of Y for each 
pattern of missing data (implied by R) as well as the probability of the various 
patterns occurring, as follows: 

p( Y, R/cp, n) = p( YIR, cp )p(R/n), 

where cp and rc are unknown parameters. When R is independent of Y, the missing 
data are MCAR, and the selection and pattern-mixture specifications are equiv-
alent when t/1 = cp and , = n, i.e., the implied models are the same. When the 
missing data are not MCAR, the two specifications generally differ. 

Little and Rubin (2002, Chapter 15) discuss the use of selection and pattern-
mixture approaches in the context of nonignorable missingness for a variety of 
types of data. As discussed earlier, the correct specification of nonignorable 
models is usually difficult due to Jack of information in the data about the 
relationship between the missing-data mechanism and the missing values 
themselves. For this reason, selection models and pattern-mixture models 
for nonignorable missing data tend to depend strongly on assumptions about 
specific distributions. Thus, although they offer different and interesting 
approaches to modeling nonignorable missing data, it is suggested that they 
be used primarily for sensitivity analyses; as in Rubin (1977) and Little (1993), 
with a baseline analysis under ignorability being used as a primary point of 
comparison. 

Consider now the situation of ignorable missing data. The observed data are 
Yobs and R, and under the selection model specification given by expression (1), 
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the likelihood function based on the observed data is 

L(I/J, ~) Yobs, R) <X J p(Yobs, Y misll/J)p(RJ Yobs, Y mis, ~)dY mis• (2) 

As shown by Rubin (1976) and discussed previously, if the rnissing data are MAR 
(i.e., p(RI Yobs, y mis, ~) = p(RI Yobs, rn, and if 1/f and are distinct, then 
inferences for !/J based on expression (2) are equivalent to inferences for t/1 based 
on the likelihood for !/J ignoring the missing-data mechanism 

L(I/J\Yobs)e< J p(Yobs, Ymis\l/J)dYmis, (3) 

because (2) factors into (3) and a factor that is free ofi/1. Articles have appeared in 
the literature describing analyses of incomplete data under the assumption of 
ignorable missingness for a vast nurnber of different analytic problems. Little and 
Rubin (2002, Chapters 11-14) review several such examples. 

The remainder of this section describes two general techniques: (1) the EM 
algorithm (Dempster et al., 1977) and its extensions for maximum Iikelihood 
estimation of t/J, and (2) DA (Tanner and Wang, 1987) and its extensions for 
Bayesian posterior simulation. These techniques can be applied in the context of 
nonignorable missing data as well as that of ignorable missing data, but the 
presentation here is in the latter context for simplicity. 

In many missing-data problems, even the observed-data likelihood (3) is com-
plicated, and explicit expressions for maximum likelihood estimation of t/J are 
difficult to derive. The EM algorithm, a technique for computing maximum 
likelihood estimates iteratively, takes advantage of the facts that: (l) if I{! were 
known, it would be relatively easy to estimate many functions of Y mis, and (2) if 
the data were complete, computation of maximum likelihood estimates would be 
relatively simple. Starling with an initial estimate of ijJ, the EM algorithm iterates 
between two steps, an E-step (E for expectation) and an M-step (M for 
maximization), until convergence. Given the estimate of l/1 at iteration t, t{l(t\ the 
E-step computes the expected value of the complete-data Iog-likelihood given 
Yobs and !/J = t/1(1), Q(t/llt/1(1)) = f logL(t/11 Y)p(Y misl Yobs, t/1 = t/l(t))dY mis; this step 
often involves computing the expected values of the comp1ete-data sufficient 
statistics, which are linear in the data for exponential family distributions. Then, 
the M-step determines t/J(t+ J) by maximizing the expected complete-data Iog-
likelihood Q(I/JiiJ/tl). For discussions of the theoretical properties of the EM 
algorithm, examples of its use, methods for obtaining standard errors based on 
the algorithm, and extensions, see Dernpster et al. (1977), McLachlan and 
Krishnan (1997), Schafer (1997), and Little and Rubin (2002, Chapters 8, 9, and 
11-15). Extensions of EM include the ECM (Meng and Rubin, 1993), ECME 
(Liu and Rubin, 1994), AECM (Meng and van Dyk, 1997), and PXEM (Liu 
et al., 1998) algorithms. 

Bayesian inferences for t/1 are based on the observed-data posterior distribution 
with density p(!/J!Yobs) rxp(t/J)L(t/llYobs), where p(t/J) is the prior density for t/J. 
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As is the case with maximum likelihood estimation, working explicitly with 
the observed-data posterior distribution can be difficult. DA, introduced in 
Section 4.5, facilitates the creation of draws of t/1 from density p(t/J\ Yobs) 
using steps that are analogous to those of the EM algorithm but that involve 
simulation. In a simple version, DA begins with an initial approximation to 
p(t/11 Yobs) and then iterates between two steps, an I-step, which imputes an 
updated value for Ymis, and a P-step, which draws a value from an updated 
conditional posterior distribution for t/J, until convergence of the distribution 
of draws of Ymis and t/J. Specifically, given the drawn value of t/1 at iteration 
t, t/J(t), the I-step draws a value Y~!'l from density p(YmislYobs,t/P\ and then 
the P-step draws a value t/J(t+l) from density p(,jJIYobs, Y~!'\ Ast increases, 
the draws (Y~s' t/J(t)) converge in distribution to draws from joint density 
p(Ymis,t/1\Yobs), and thus the draws t/J(t) converge in distribution to draws 
from density p(t/11 Yobs)- The empirical distribution of such multiple draws 
of t/1 can be used to approximate the observed-data posterior distribution 
of i/J. The draws at successive iterations are serially correlated, however. There-
fore, to obtain multiple independent draws from the observed-data posterior 
distribution of t/J, it is standard practice either to independently repeat the 
entire iterative procedure until convergence multiple times to generate multiple 
draws or to implement the iterative procedure once until convergence and 
then take every kth draw thereafter, with k chosen !arge enough to achieve 
approximate independence. For discussions of theoretical properties, extensions 
of DA, and examples of the use of Bayesian iterative simulation methods, see 
Tanner and Wong (1987), Gelfand and Smith (1990), Schafer (1997), and Little 
and Rubin (2002, Chapters 10-14). Gelman et al. (2003) is a good reference for 
related MCMC methods such as the Gibbs sampler and the Metropolis-Hastings 
algorithm. 

For a specific problem, if the sample is large, likelihood-based analyses and 
Bayesian analyses under diffuse prior distributions are expected to give similar 
results, because the Iikelihood would be expected to dominate the prior distri-
bution. For small samples, however, Bayesian analyses have the advantage 
of avoiding the assumption of asymptotic normality of the likelihood that is 
typically made. Moreover, results under various prior assumptions can be 
compared. 

7. Examples 

The examples we present here are from a randomized clinical trial and epide-
miological databases. All use MI to address missing data rather than any of the 
ad hoc methods described at the start of this chapter or methods of direct analysis 
just described. We believe this emphasis is generally appropriate in epidemiology 
and medical statistics. In special cases, of course, methods other than MI can also 
be appropriate or even more appropriate. 
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7.1. Missing data in Genzyme's Randomized Trial of Fabrazyme® 

Fabrazyme® is a synthetic enzyme developed by Genzyme Corporation to 
treat Fabry's disease, a rare and serious X-linked recessive genetic disorder that 
occurs due to an inability to metabolize creatinine. Preliminary results from a 
randomized trial of Fabrazyme® versus placebo revealed that the Fabrazyme® 
appeared to work well in patients in their 30s, who were not yet severely ill, in the 
sense that it lowered their serum creatinine substantially. A similar randomized 
clinical trial involved older patients who were more seriously ill. Since there was 
no other fully competitive treatment, it was desired to make Fabrazyme® com-
mercially available earlier than initially planned, a decision that would allow 
patients randomized to placebo to begin taking Fabrazyme®, but would create 
missing Y(O) outcome data among placebo patients once they began taking 
Fabrazyme®. The study had staggered enrollment because of the rareness of the 
condition, so that the number of monthly observations of serum creatinine for 
each placebo patient depended on the time of entry into the study. Figure 1 
illustrates the general pattern of monotone missing data with the same length 
follow-up intended for each patient. Again, X represents baseline covariates, Y(O) 
represents the repeated measures of serum creatinine for placebo patients, 
and Y(l) represents the repeated measures of serum creatinine for Fabrazyme® 
patients. 

In order to impute the missing outcomes under placebo, a complex hierarchical 
Bayesian model was developed for the progression of serum creatinine in 
untreated Fabry patients. In this model, inverse serum creatinine varies linearly 
and quadratically in time, and the prior distribution for the quadratic trend in 
placebo patients is obtained from the posterior distribution ofthe quadratic trend 
in an analogous model fit to a historical database of untreated Fabry patients. 
Thus, fne historical patients' data only influence the imputations of the placebo 
patients' data rather subtly - via the prior distribution on the quadratic trend 
parameters. 

Although the model fitting algorithm is complex, it is straightforward to use 
the algorithm to draw l/1 from p( l/11 Y obs) for the placebo patients, and then draw 
Y mis in the placebo group conditional on the drawn value of l/1, where, as earlier, 
1/1 represents all model parameters. Drawing the missing values in this way creates 
a sample from p( Y mis I Yobs) and thus an imputation for the missing values in the 
placebo group. 

X y (1) X Y(O) 

[JJF 
Treated Contro1 

Fig. 1. Pattern of missing data for Genzyme trial. 
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YO Y1 Y2 Y3 

Fig. 2. Illustrative display for type of pattern of missing data in NMES. 

7.2. Missing Data in NMES 

The NMES collects data on a random sample of approximately 30,000 members 
of the US population, including hundreds of measurements of medical expen-
ditures, background information, and demographic information. MI for NMES 
was more complicated than in the previous two examples because the missing-
data pattern was not monotone. Figure 2 depicts a tremendous simplification of 
the missing-data pattern for NMES, where, if Yl were fully observed, the missing-
data pattern would be monotone. 

Rubin (2003) imputed the missing data in NMES by capitalizing on the sim-
plicity of imputation for monotone missing data by first imputing the missing 
values that destroyed the monotone pattern (the "nonmonotone missing values") 
and then proceeding as if the missing-data pattern were in fact monotone, and 
then iterating this process. More specifically, after choosing starting values for the 
missing data, iterate between the following two steps. (1) Regress each variable 
with any nonmonotone missing values (i.e., Yl), on all the other variables (i.e., 
YO, Y2, Y3), treating the current imputations as true values, but use this regres-
sion to impute only the nonmonotone missing values. (2) Impute the remaining 
missing values in the monotone pattern; first impute the variable with the fewest 
missing values ( Y2 in Fig. 2), then the variable with the second fewest missing 
values (Y3 in Fig. 2), and so on, treating the nonmonotone missing values inputed 
in Step 1 as known. This process was repeated five times to create five sets of 
imputations in the NMES example. 

7.3. Missing data in the ABCs, a disease surveillance system 

The Active Bacterial Core surveillance (ABCs) system is population-based and 
laboratory-based surveillance network. Five bacterial pathogens are monitored 
through the ABCs. These pathogens are: group A streptococcus, group B stre-
ptococcus, Streptococcus pneumoniae, Haemophilus infiuenzae, and Neisseria 
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Fig. 3. Pattern of missing data in ABCs 2002. 
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meningitidis (Schuchat et al., 2001). A case ofinvasive disease is identified through 
bacteria isolated from a normally sterile site from an individual residing within 
the defined surveillance areas for each pathogen. Cases are identified through 
active contact with clinical laboratories - hence the label "active surveillance." 
Chart reviews are conducted to obtain demographic, clinical, and risk factor 
information. Additional susceptibility testing and serotyping is completed for 
ABCs pathogens at reference laboratories. Chart reviews generally suffer from 
missing data because not all information, particularly demographic data, are 
recorded in the medical record. 

Multiple imputation (MI) (m = 5) was used to complete the data using a 
sequential regression multivariate approach (Raghunathan et al., 2001) imple-
mented with IVEware (Raghunathan et al., 2002). This approach allows a model 
that accounts for the categorical and continuous nature of the variables in the 
database. lt also allows for skip patterns, which are important because survei!lance 
systems evolve over time with the case report forms adding or modifying variables. 
Different sites have implemented these changes to the case report form at different 
times. Also, for example, one site by law cannot report on a specific underlying 
disease. The missingness in this data set is close to monotone, as shown in Fig. 3. 

8. Literature review for epidemiology and medical studies 

Over the last decade, there has been increasing use of MI for databases in many 
areas of public health, clinical research, and epidemiology. Examples include 
cross-sectional survey data, longitudinal studies, clinical trials, surveillance sys-
tems, case--control studies, etc. These databases address quality of care, descrip-
tive health statistics, AIDS-related studies, cancer mortality and survival rates, 
comparison of health-related costs and outcomes across countries, prognostic 
factors for cancer survival, and many other epidemiological, medically and clin-
ically important questions. An intensive literature search and review brought up 
at least 40 articles using MI, as summarized in Appendix A. 



Incomplete data in epidemiology and medical statistics 587 

There also have been many articles comparing, evaluating, and reviewing 
approaches to deal with missing data in many disciplines. For example, articles 
dealing with longitudinal studies have often compared "last observation carried 
forward" to MI techniques with the primary recommendation that MI is pref-
erable to last observation carried forward. Others studies have compared com-
plete-case analysis with MI and have found clear advantages when using MI to 
retain all observations for data analysis. There have been many review articles 
across different disciplines in health care (e.g., nursing) on the importance of 
addressing the missing-data problem correctly. A common theme when MI is 
used is the ease of data analysis using complete-data methods of analysis on 
multiply-imputed data sets, and the ease of creating multiply-imputed data sets 
using readily available statistical software packages. More than a hundred articles 
can be found very easily regarding the comparison and evaluation ofmissing-data 
techniques, as summarized in Appendix B. 

9. Summary and discussion 

Missing values are a common problem in medical and epidemiological databases. 
This entry has discussed concepts regarding mechanisms that create missing data, 
as weil as strengths and weaknesses of commonly used approaches. Simple 
approaches, such as complete-case analysis and available-case analysis, are gen-
erally valid only when the missing data are MCAR. Even then, such approaches 
can be problematic. 

Multiple imputation (MI) is especially useful in the context of data sets to be 
shared by many users, because of its general applicability and flexibility, as weil as 
the fact that it allows the data producer to create one "adjustment" for missing 
data that can be used by all secondary data analysts. MI is also a useful technique 
in the context of designed missing data, such as when split questionnaire designs 
(also known as matrix sampling designs) are used to reduce costs and respondent 
burden (e.g., Raghunathan and Grizzle, 1995). Moreover, it offers potential for 
new analyses, e.g., in the context of censored data (see Gartner and Rässler, 2005 
or Jensen et al., 2006). 

F or specific analyses problems in the presence of missing data, especially when 
the data producer and data analyst are the same entity, direct analyses of the 
incomplete data can be conducted. Techniques such as the EM and DA algo-
rithms and their extensions are useful for handling the complexities created by 
missing data. MI has the ad van tage of flexibility over direct analyses, in the sense 
that the imputer can use one model to fill in the missing data, whereas the analyst 
can use a different model to draw inferences from the completed data. However, 
incompatibility of the two models can degrade the approximations underlying MI 
methods somewhat, although many evaluations in practice suggest that this 
degradation is often quite limited. 

Because of uncertainties about correct models in the presence of missing data, 
it is useful to conduct sensitivity analyses under different modeling assumptions. 
In fact, this was one of the original motivations for MI. Rubin (1978a, 1987, 
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Chapter 1) recommended the creation of imputations under multiple models for 
purposes of sensitivity analysis, in addition to the creation of repeated imputa-
tions under a single model for assessments of variability due to missing data · 
under that model. For examples of such sensitivity analyses, see Rubin (1977, 
1986) and Rässler (2002). 

Many of the approaches discussed herein can be applied under the assumption 
of either ignorable or nonignorable missing data. The assumption of ignorability 
cannot be contradicted directly by the observed data, and procedures that assume 
ignorability typically lead to at least partial corrections for bias due to missing 
data. Nonignorable models can be very difficult to specify, and their performance 
can be quite sensitive to modeling assumptions. Therefore, a sensible approach is 
to use ignorability as a "baseline" assumption, and to conduct additional sen-
sitivity analyses using nonignorable models. For comparisons of the performance 
of ignorable and nonignorable models, see Glynn et al. (1986), Rubin et al. 
(1995), and Baker et al. (2003). 

For interested readers, some recent books containing further discussion of 
topics covered in this chapter, as well as related topics, include Robert and 
Casella (1999), Groves et al. (2002), Little and Rubin (2002), and Gelman and 
Meng (2004). 
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