
Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte
Informatik der Otto-Friedrich-Universität Bamberg20

Stephan M. Scheele

Model and Proof Theory of Constructive ALC
Constructive Description Logics

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

20

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

Band 20

2015

Model and Proof Theory of Constructive ALC

von Stephan M. Scheele

2015

Constructive Description Logics

Bibliographische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliographie; detaillierte bibliographische Informationen sind im In-
ternet über http://dnb.d-nb.de/ abrufbar.

Dieses Werk ist als freie Onlineversion über den Hochschulschriften-Server (OPUS; http://
www.opus-bayern.de/uni-bamberg/) der Universitätsbibliothek Bamberg erreichbar. Kopi-
en und Ausdrucke dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt
werden.

Herstellung und Druck: docupoint, Magdeburg
Umschlaggestaltung: University of Bamberg Press, Anna Hitthaler
Umschlagbild: © Stephan M. Scheele

© University of Bamberg Press Bamberg, 2015
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-86309-320-4 (Druckausgabe)
eISBN: 978-3-86309-321-1 (Online-Ausgabe)
URN: urn:nbn:de:bvb:473-opus4-264607

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik
der Otto-Friedrich-Universität Bamberg als Dissertation vorgelegen.
1. Gutachter: Prof. Michael Mendler, PhD, Otto-Friedrich-Universität Bamberg
2. Gutachter: Prof. Mauro Ferrari, PhD, Universitá degli Studi dell’Insubria
Tag der mündlichen Prüfung: 25. Februar 2015

Für Henry

Acknowledgements

First of all, I owe much to my supervisor Michael Mendler. I thank him for supervising
this thesis, for his strong support during this time, for introducing me to the broad area
of constructive logic, and for carefully proof reading many parts of this work. During
my time at the University of Bamberg, it was a pleasure to work with Michael Mendler,
and I am grateful for his steadily scientific and moral assistance. His financial backing
allowed me to visit several international workshops and conferences, in particular the
summer schools at Bertinoro and Hamburg, and also to visit the University of Milan.

I also thank the other members of my doctoral committee, Gerald Lüttgen for his
support, fruitful discussions, and particularly his valuable comments on Chapter 5, and
Christoph Schlieder for supporting this work. Special thanks to Alberto Momigliano
for hosting me as a visiting scientist at the University of Milan for two month, for
giving me an enjoyable start at Milan, for introducing me to the Abella proof assistant
and the many fruitful discussions we had. I also thank Dora, Maria, Micole, Mario
and Lucio from Francesco Sforza 44 at Milan for their kind hospitality. Furthermore, I
have benefited greatly from discussions with Mauro Ferrari, Camillo Fiorentini, Mario
Ornaghi, Guido Fiorino, Alessandro Provetti, Marino Miculan, Brigitte Pientka, Eike
Ritter and Ulrike Sattler.

Moreover, I thank my colleagues Martin Sticht, Joaquín Aguado, Andreas Schönber-
ger, and the attendees of the Moday Afternoon Club at Bamberg for helpful comments
and motivation. I thank Martin Sticht, Johannes Gareis and Peter Kugelmann for
their collaboration and their effort to implement parts of the theory of cALC. Special
thanks go to Kristin Schönau and Stefan Wenig for reading parts of this thesis, to Peter
Wullinger for beneficial comments and encouragement, and to Josef G. Matsche. I
also thank the German Research Foundation (DFG) for supporting this research under
grant ME 1427/4-1.

Finally, I thank my family for their love and support during the period of writing this
thesis, most notably Barbara, Silke, Kristin, Harry, Charlotte, Theodor, and the rest of
my family. Furthermore I thank my friends for their encouragement and help, especially
Stefan Wenig, Peter Wullinger, Falk & Katrin Gierschner, Tobias Resch, Barbara Bode,
Margit Dels, Georg Herde, Martin Riedl, Andreas Müller, Robert Frohnholzer, Udo
Scheingraber, my friends from Tango y más e.V. Bamberg, and others not mentioned
here in particular but not forgotten.

i

Abstract

Description logics (DLs) represent a widely studied logical formalism with a significant
impact in the field of knowledge representation that was put to practice in numerous
cases of semantic-driven applications. They constitute a family of knowledge represent-
ation languages to specify and reason about the knowledge of a particular application
domain in a structured and formally well-understood way [16; 24]. The orientation
of the main branch of research in DLs is towards languages equipped with classical
descriptive semantics, which is characterised by extensional truth and model structure,
and by a platonic notion of truth. However, DLs are insufficiently expressive to deal
with evolving information, as from data streams or ongoing processes. Such knowledge
is only partially determined and incomplete, and represents abstractions of real objects,
whose properties are evolving and defined merely up to construction. Only recently,
non-classical interpretations of DLs have been investigated from a constructive perspect-
ive. Constructive (or intuitionistic) logic [265] is arguably one of the most intriguing
modal theories, which has first been conceived by Glivenko, Heyting and Kolmogorov
as a formalisation of the notion of constructive proof, based on the demand for explicit
evidence for the justification of mathematical statements. Constructive logic is not
only of a great value from a philosophical perspective, but also it has found widespread
applications in the constructive foundations of mathematics as well as in computer
science [264]. An important example is the fundamental correspondence, called the
Curry-Howard isomorphism [149; 248], which closely relates intuitionistic logic and type
theory, and allows to interpret proofs as computations in the simply-typed λ-calculus.
Semantically, intuitionistic logic can be viewed as a logic of states of knowledge or
context [170; 265], where information monotonically increases over time. This semantic
characterisation, which is according to the process of constructing mathematical objects,
is suitable to express and reason about partial and incomplete information.

We aim at combining constructive logic with description logic, two logical systems
having an independent philosophical motivation, in order to find DLs that can be
accepted by both, a logician of the DL domain addressing semantic applications, as
well as by a constructivist mathematician as a suitable theory to represent and reason
about knowledge according to constructively accepted principles. Our key conceptual
contribution is the investigation of the model theory and proof theory of a constructive
variant of the basic description logic ALC (Attributive Language with Complement),
which will be denoted by constructive ALC (cALC). The semantic dimension of con-
structive DLs is investigated, by replacing the traditional binary truth interpretation of
ALC with a constructive notion of truth. On the one hand, we argue that such a refined
interpretation is crucial to represent applications with partial information adequately,

iii

and to achieve both consistency under abstraction as well as robustness under refine-
ment, and on the other hand is compatible with the Curry-Howard isomorphism in
order to form the cornerstone for a DL-based typing system. In particular, we provide
the following key contributions to justify our claims: (i) We introduce the constructive
description logic cALC, that uses the same language as ALC, but with semantically
independent logical operators, and is characterised in terms of an intuitionistic birela-
tional semantics that is non-normal w.r.t. existential restriction (possibility modality).
We present results regarding its expressiveness, study its constructive properties like
the disjunction property, and provide a finite semantical characterisation for cALC, by
proving the finite model property. Several examples illustrate situations, where the con-
structive semantics are essential to represent partial and incomplete information. We
suggest applications in the domain of auditing, to use cALC as a typing system for data
streams, and also by showing a direct interpretation of proofs as computations following
the Curry-Howard isomorphism. Furthermore, we discuss the open world assumption
from a constructive point of view. (ii) The proof theory of cALC is investigated by
giving a sound and complete Hilbert-style axiomatisation and a Gentzen-style sequent
calculus showing finite model property and decidability. We focus on reasoning w.r.t.
TBoxes and show that both calculi admit the standard DL-style reasoning services
w.r.t. TBoxes. We establish a modal deduction theorem that generalises the Hilbert
calculus to allow for derivations w.r.t. global and local premises. Based on the Gentzen
sequent calculus, we discuss the strengthening of cALC towards normal intuitionistic
modal logics and ALC. (iii) We address the relation between cALC and classical DLs
by demonstrating an embedding of cALC into a classical modal logic, which allows
us to transfer the finite model property, decidability and explore the complexity of
the satisfiability and subsumption problem. Moreover, we explore the sub-Boolean
{⊔,∃}-fragment UL of ALC w.r.t. general TBoxes, which turns out to be tractable
under the constructive semantics, while it is intractable under the classical descriptive
semantics. (iv) We introduce a tableau calculus for cALC and prove its soundness
and completeness w.r.t. the birelational semantics of cALC. By giving a termination
proof for this calculus, we obtain an effectively decidable tableau algorithm that allows
goal-directed proof search as well as countermodel construction w.r.t. TBoxes, and can
be seen as a first step towards an implementation. Finally, we elaborate the difficulties
of interpreting ABox assertions and nominals under the birelational semantics of cALC
and sketch an approach towards constructive ABox reasoning. In summary, we define
a constructive version of ALC, which on the one hand supports a constructive notion
of truth and on the other hand is compatible with the Curry-Howard isomorphism.

iv

Zusammenfassung

Beschreibungslogiken (BLen) stellen einen vieluntersuchten logischen Formalismus dar,
der den Bereich der Wissensrepräsentation signifikant geprägt hat und vielfach in
semantik-gesteuerten Anwendungen zum Einsatz kommt. Sie begründen eine Familie
von logikbasierten Sprachen, die es erlauben, das Wissen eines bestimmten Anwendungs-
bereiches in einer strukturierten und formal wohlfundierten Weise zu repräsentieren,
und Schlussfolgerungen daraus abzuleiten [16; 24]. Die Hauptforschungsrichtung von
BLen konzentriert sich auf Sprachen, die auf klassischer deskriptiver Semantik basieren
und durch eine extensionale Wahrheits- und Modellstruktur, und einen idealisierten
Wahrheitsbegriff nach Platons Ideenlehre gekennzeichnet sind. Allerdings sind Beschrei-
bungslogiken unzureichend, um in Entwicklung befindliches Wissen zu repräsentieren,
wie es beispielsweise durch Datenströme oder fortlaufende Prozesse generiert wird. Der-
artiges Wissen ist lediglich partiell festgelegt und unvollständig. Es stellt Abstraktionen
realer Gegenstände dar, deren Eigenschaften einer ständigen Änderung unterliegen und
nur durch den Zustand einer Konstruktion bestimmt sind. Erst neuerdings beschäftigt
sich die Forschung gezielt mit nicht-klassischen Interpretationen für Beschreibungslogi-
ken aus einer konstruktiven Sicht. Konstruktive (oder intuitionistische) Logik [265] stellt
wohl eine der faszinierendsten modalen Theorien dar, die auf die Forschungsarbeiten
von Glivenko, Heyting und Kolmogorov zurückgeht, mit dem Ziel der Formalisierung
eines konstruktiven Beweisbegriffs, der auf der Basis expliziter Belege den Nachweis
mathematischer Aussagen erbringt. Konstruktive Logik ist nicht nur ein philosophisches
Gedankenexperiment, sondern hat auch seine Berechtigung durch vielseitige Anwen-
dungen in den Grundlagen der Mathematik sowie der Informatik [264] gefunden. Eine
bedeutende Errungenschaft stellt der Curry-Howard Isomorphismus [149; 248] dar, ein
fundamentales Korrespondenzergebnis der Beweistheorie, das die intuitionistische Lo-
gik mit der Typentheorie verbindet, und es so ermöglicht, Beweise als Programme
des einfach typisierten λ-Kalküls zu interpretieren. Aus semantischer Sicht lässt sich
intuitionistische Logik als eine Theorie charakterisieren, in der Wissen zustands- oder
kontextbasiert interpretiert wird, und der Wahrheitsgehalt einer Aussage kontinuierlich
zunimmt [170; 265]. Diese semantische Charakterisierung entspricht dem Grundgedan-
ken konstruktiver Logiken, Aussagen durch die explizite Konstruktion mathematischer
Objekte zu belegen, und eignet sich dazu, partielles und unvollständiges Wissen zu
repräsentieren, sowie daraus Schlussfolgerungen abzuleiten. Das Ziel der Arbeit ist es,
konstruktive Logik und Beschreibungslogik – zwei logische Formalismen mit einer dif-
ferierenden philosophischen Motivation – zu einer konstruktiven Beschreibungslogik zu
kombinieren, die einerseits den Erfordernissen semantischer Anwendungen im Bereich
der BLen entspricht, und es andererseits erlaubt, in Übereinstimmung mit akzeptierten

v

Prinzipien konstruktiver Mathematik, Wissen zu repräsentieren und daraus Schluss-
folgerungen zu ziehen. Der wesentliche konzeptionelle Beitrag dieser Arbeit ist die
Untersuchung der Modell- und Beweistheorie einer konstruktiven Variante der Basis-BL
ALC (Attributive Language with Complement), die im Folgenden als constructive ALC
(cALC) bezeichnet wird. Die Semantik dieser konstruktiven Beschreibungslogik resul-
tiert daraus, die traditionelle zweiwertige Interpretation logischer Aussagen des Systems
ALC durch einen konstruktiven Wahrheitsbegriff zu ersetzen. Wir argumentieren, dass
eine derart verfeinerte Interpretation die Voraussetzung dafür ist, einerseits, Anwendun-
gen mit partiellem Wissen angemessen zu repräsentieren, und sowohl die Konsistenz
logischer Aussagen unter Abstraktion als auch ihre Robustheit unter Verfeinerung zu
gewährleisten, andererseits, den Grundstein für ein Beschreibungslogik-basiertes Typsys-
tem gemäß dem Curry-Howard Isomorphismus zu legen. Die wesentlichen Ergebnisse
zur Bestätigung unserer Thesen sind wie folgt: (i) Wir führen die konstruktive BL
cALC ein, die dieselbe Sprache wie ALC verwendet, aber über semantisch unabhängi-
ge logische Operatoren verfügt, und deren Semantik in der Form einer birelationalen
Kripke Semantik mit einer unorthodoxen Interpretation existentieller Restriktionen
(Modalität 3 in der Modallogik) definiert ist. Die Ergebnisse dieser Arbeit untersu-
chen die Ausdrucksmächtigkeit von cALC, deren konstruktive Eigenschaften wie die
Disjunktions-Eigenschaft, und geben eine endliche semantische Charakterisierung an,
durch Nachweis der endlichen Modelleigenschaft. Mehrere Beispiele veranschaulichen
Situationen, in denen die konstruktive Semantik unverzichtbar ist, um partielles und
unvollständiges Wissen zu repräsentieren. Für den Bereich der Wirtschaftsprüfung schla-
gen wir Anwendungsfälle vor, einerseits cALC für die Typisierung von Datenströmen
zu verwenden, und andererseits entsprechend dem Curry-Howard Isomorphismus Be-
weise als Programme zu interpretieren. Darüber hinaus diskutieren wir die Open World
Assumption aus konstruktiver Sicht. (ii) Die Ergebnisse der Untersuchung der Beweis-
theorie von cALC umfassen eine vollständige und korrekte Hilbert Axiomatisierung und
einen Gentzen Sequenzenkalkül, sowie Beweise zur endlichen Modelleigenschaft und
Entscheidbarkeit. Dabei wird der Fokus auf TBox-Theorien gelegt und gezeigt, dass
beide Kalküle die standard Inferenzdienste bzgl. TBoxen umsetzen. Für den Hilbert
Kalkül wird ein modales Deduktionstheorem nachgewiesen, das die Ableitung unter
globalen und lokalen Prämissen erlaubt. Basierend auf dem Gentzen Sequenzenkalkül
werden logische Systeme diskutiert, die zwischen cALC, intuitionistischer Modallo-
gik und der klassischen Beschreibungslogik ALC liegen. (iii) Die Beziehung zwischen
cALC und klassischen BLen wird anhand einer Einbettung von cALC in eine klassische
Modallogik betrachtet. Dies erlaubt den Transfer der Ergebnisse zur endlichen Modell-
eigenschaft, Entscheidbarkeit, sowie Resultate zur Komplexität der Inferenzprobleme
zu Erfüllbarkeit und Subsumption. Des Weiteren wird das {⊔,∃}-Teilfragment UL von

vi

ALC bzgl. unbeschränkter TBoxen beleuchtet, dessen Inferenzproblem der Subsumpti-
on sich unter konstruktiver Semantik als effizient lösbar herausstellt, ganz im Gegensatz
zur deskriptiven klassischen Semantik. (iv) Schließlich wird ein Tableaukalkül für cALC
vorgestellt und dessen Vollständigkeit und Korrektheit in Relation zur birelationalen
Semantik von cALC nachgewiesen. Aus dem Nachweis der Terminierung des Kalküls er-
gibt sich ein effektiv entscheidbarer Tableau-Algorithmus, der neben der zielorientierten
Beweissuche die Konstruktion von Gegenmodellen erlaubt, und damit eine Grundlage
für zukünftige Implementierungen bildet. Abschließend werden die wesentlichen Pro-
bleme der Interpretation von ABox-Aussagen und Nominalen unter der birelationalen
Semantik von cALC diskutiert, und eine mögliche Lösung für konstruktive Inferenz-
dienste bzgl. ABoxen skizziert. Zusammenfassend stellen wir eine konstruktive Variante
der Beschreibungslogik ALC vor, die einerseits einen konstruktiven Wahrheitsbegriff
unterstützt, und andererseits mit dem Curry-Howard Isomorphismus vereinbar ist.

vii

Contents

List of Figures xiii

1 Introduction 1
1.1 Motivation: When Constructiveness matters 3
1.2 Aims and Contributions . 7
1.3 Synopsis of the Thesis . 10
1.4 Publications . 11

2 Background 13
2.1 Description Logic . 13

2.1.1 The Basic Language ALC . 13
2.1.2 DL Knowledge Base . 15
2.1.3 Standard Inference Problems . 18
2.1.4 Language Extensions of ALC 18
2.1.5 Relation to Modal Logics . 19

2.2 Constructive Logic . 26
2.2.1 Intuitionistic Propositional and First-Order Logic 28
2.2.2 Intuitionistic Modal Logic . 33

3 Constructive Description Logics – State of the Art 41
3.1 Constructive Description Logics: What, Why & How? 41
3.2 Intuitionistic Semantics via Translation into IQC 42

3.2.1 Intuitionistic ALC (IALC) . 42
3.2.2 Intuitionistic ALC Kuroda Logic (KALC) 43

3.3 Intuitionistic Semantics via Translation into FS/IK 45
3.4 Constructive Inconsistency-tolerant Description Logics 46
3.5 Computational Interpretations of Description Logics 48

3.5.1 Information Term Semantics for ALC (BCDL) 48
3.5.2 Type-theoretic Interpretation of cALC (λCKn) 50

3.6 Minor Constructive Approaches to Description Logics 51
3.6.1 Proof-theoretic Approach by Martin Hofmann 51

ix

Contents

3.6.2 Intuitionistic Approach to Query Answering in DLs 51
3.7 Our Approach . 52

4 Constructive Semantics for ALC 53
4.1 Kripke Semantics and the Choice of cALC 53

4.1.1 Variants of Kripke Semantics 54
4.1.2 Variants of Birelational Kripke Semantics 56
4.1.3 The System cALC . 58

4.2 Syntax and Semantics of cALC . 60
4.2.1 Syntax . 60
4.2.2 Semantics . 61
4.2.3 Terminological Knowledge . 71
4.2.4 Representation of Dynamic and Incomplete Knowledge 74
4.2.5 Disjunction Property . 80
4.2.6 Finite Model Property . 87

4.3 Summary . 94

5 Constructive Proof Systems for cALC 99
5.1 Hilbert-style Axiomatisation . 99

5.1.1 Hilbert Calculus for cALC . 99
5.1.2 Modal Deduction Theorem . 111
5.1.3 Soundness and Completeness 116

5.2 Gentzen Sequent Calculus G1 for cALC 122
5.2.1 Soundness and Completeness 130
5.2.2 Decidability of G1 . 150
5.2.3 Equivalence of Gentzen and Hilbert systems 151

5.3 Towards Intermediate Logics between cALC and ALC 169
5.3.1 Infallible Kripke Semantics – Axiom FS3/IK3 169
5.3.2 The Principle of Disjunctive Distribution – Axiom FS4/IK4 . . . 182
5.3.3 The Principle of the Excluded Middle 190
5.3.4 Obtaining classical ALC . 195

5.4 Summary . 195

6 The Relation of cALC to Classical Description Logics 197
6.1 Embedding cALC into classical Description Logics 197

6.1.1 Translation of cALC into ALCR∗ 200
6.1.2 The Complexity of cALC . 209
6.1.3 Decidability and Finite Model Property 215

6.2 The Fragment UL . 217

x

Contents

6.2.1 Introduction to Tractable DLs 217
6.2.2 The Language UL . 219
6.2.3 Existentially Guarded UL0 is ExpTime-hard for Classical De-

scriptive Semantics . 220
6.2.4 Existentially Guarded UL is in PTime for Constructive De-

scriptive Semantics . 220
6.3 Summary . 226

7 Tableau-based Calculus for cALC 231
7.1 Constraint System . 231
7.2 Tableau Rules . 236

7.2.1 Tableau Rules of TcALC . 238
7.2.2 Fitting-style Representation of TcALC 247

7.3 Proof of Correctness . 249
7.3.1 Termination . 249
7.3.2 Soundness and Completeness 253

7.4 Towards Constructive ABox Reasoning – an Outlook 268
7.5 Summary . 276

8 Conclusion 279
8.1 Contributions . 280
8.2 Future Perspectives . 283

8.2.1 Theoretical Aspects . 284
8.2.2 Towards Applications . 286

Bibliography 291

Index 317

xi

List of Figures

2.1 Language extensions – syntax and semantics. 19
2.2 Countermodel for ϕ ∨ ¬ϕ, ¬ϕ ∨ ¬¬ϕ and (¬¬ϕ ⊃ ϕ) ⊃ (ϕ ∨ ¬ϕ). 31
2.3 Frame conditions of FS/IK. 38

4.1 A simple data model of frogs with abstraction. 68
4.2 Countermodels for FS3/IK3, FS4/IK4 and FS5/IK5. 70
4.3 The Customer Topology. 75
4.4 Evolving OWA model Ico. 76
4.5 Countermodel for ¬¬∀R.(A ⊔ ¬A). 88

5.1 Gentzen rules for cALC. 124
5.2 Model of the hedgehogs. 127
5.3 Proof attempt for the sequent ∃R.(S ⊔ F),¬∃R.S,¬∃R.F ⊥ ; ∅. . . 128
5.4 Simplified, finite and cyclic model of Fig. 5.3. 129
5.5 Infinite cycle-free unfolding of Fig. 5.4. 129
5.6 Tableau proofs for ¬∃R.⊥ and ¬L. 173
5.7 Proof of axiom FS3/IK3 with R ∈ NRF and S ∈ NR \NRF in G1RF . . . 178
5.8 Validity of axiom FS4/IK4 in confluent interpretations. 183
5.9 Sequent proof for axiom FS4/IK4 based on ∃R+. 184
5.10 Countermodel for the duality of ∃R and ∀R. 191
5.11 Rule ⊃R+ implements PEM. 192

6.1 Gentzen sequent rules of G1UL. 221
6.2 ∃L and ∃R as simple rules. 221

7.1 Completion rules of TcALC. 239
7.2 Infinite pre-model. 245
7.3 Finite representation of Figure 7.2. 245
7.4 Minimised representation of Figure 7.3. 246
7.5 Tableau rules for cALC. 248
7.6 Countermodel for IK4/FS4. 249
7.7 Countermodel structure for Ex. 7.4.2. 274
7.8 Countermodel for Ex. 7.4.2. 275

xiii

CHAPTER 1

Introduction

Description logics (DLs) form a family of knowledge representation formalisms to
explicitly represent and reason about knowledge of a particular application domain
in a structured and formally well-understood way [16; 24]. Historically, DLs emerged
from early formalisms in the field of knowledge representation (KR), namely semantic
networks [233] and frame systems [203]. These systems, mostly motivated by cognitive
science, specified the knowledge of an application domain in terms of network-based
structures, by specifying classes of objects and their interrelationship, but were criticised
by reason of their lack of a precise semantic characterisation. DLs were introduced
to overcome the deficiencies and ambiguities of previous semi-formal approaches, by
building on a logical foundation with a formally well-understood semantics that allows
to justify the correctness of inference mechanisms (see [16, Chap. 1] for a detailed
historical retrospect on DLs). DLs are used to capture the meaning of natural language
statements of a specific domain in knowledge bases, specified by formal ontologies,
which represent knowledge in terms of a TBox and an ABox. The former introduces
the terminological vocabulary (taxonomy) of a domain in terms of concept descriptions,
which define classes of individuals and roles express relations between them. The ABox
expresses the extensional knowledge that specifies the current state of affairs regarding
concrete named individuals in terms of assertional facts. The key DL ALC, standing
for Attribute Language with Complement, allows to express concept descriptions build
from atomic concept names and roles by means of the logical constructors from the
propositional language, such as conjunction (⊓), disjunction (⊔) and negation (¬), and
indexed modal operators represented by existential (∃) and universal restriction (∀) of
roles. For instance, the concept of a mother who is having at least one son who is a
PhD-student can be expressed by

Female ⊓ ∀hasChild.Human ⊓ ∃hasChild.(Male ⊓ PhDstudent),

where Female,Human,Male and PhDstudent are concept names, and hasChild stands for
a role. Moreover, the TBox is a set of axioms that allows to assign names to concept
descriptions, e.g., we can introduce the name HappyMother for the above concept, and

1

1 Introduction

we can express subsumption relationships such as

∃supervises.PhDstudent ⊃ Professor,

stating that only professors can supervise PhD-students. The assertional part of a
knowledge base specifies a concrete situation by asserting facts about named individuals,
e.g.,

BETTY : HappyMother, (BETTY,BOB) : hasChild,

BOB : PhDstudent, (BILL,BOB) : supervises,

which express that the individual BETTY is an instance of the concept HappyMother,
that BOB is one of her children, that BOB is a PhDstudent, and that BILL supervises
BOB. The semantics of DLs is defined in a model theoretic way using a Tarski-style set
theoretic interpretation I, consisting of a domain ∆I and an interpretation function
·I , which is based on classical first-order logic, i.e., concepts are interpreted as unary
predicates over ∆I , while roles are interpreted as binary predicates over the domain.
The semantics of ABox assertions is by means of interpreting individual names, i.e., by
mapping each name to an element of the domain.

According to Schild [245], ALC is a notational variant of the basic multimodal logic
Km, i.e., existential restriction ∃R corresponds to the possibility modality 3R, and
universal restriction ∀R to the necessity modality 2R, where the modal operators
are labelled by means of role names R. Schild’s results lets us view ALC from an
axiomatic perspective [245, p. 4; 234, p. 14], that is, ALC is sound and complete w.r.t.
the Hilbert axiomatisation of classical propositional logic [103, p. 6], extended by the
axioms ∀R.(C ⊓D) ≡ (∀R.C ⊓ ∀R.D) and ∀R.⊤, and the rule of necessitation, stating
if C then ∀R.C. Existential restriction is usually defined in terms of negation and ∀R,
as ∃R.C =df ¬∀R.¬C, and from this duality one easily observes that ∃R.(C ⊔ D) ≡
(∃R.C⊔∃R.D) and ¬∃R.⊥ are theorems of ALC. In the terminology of modal logics [33,
pp. 191 f.], a logical system including the above formulæ is denoted to be normal. DLs
provide their users with reasoning services to infer new implicit consequences from the
existing knowledge, and to detect inconsistencies. For instance, the above situation
lets us infer from the facts BOB : PhDstudent and (BILL,BOB) : supervises that BILL
is a Professor. The standard reasoning services [16, pp. 9 ff.] of DLs usually include
the task of deciding (i) whether a concept C is satisfiable w.r.t. a TBox, i.e., whether
we can instantiate concept C in a given TBox; (ii) if a concept C is subsumed by a
concept D, i.e., whether all instances of C are necessarily instances of D; (iii) whether
a given ABox is consistent (possibly w.r.t. a given TBox); and (iv) instance checking,

2

1.1 Motivation: When Constructiveness matters

i.e., whether a given individual name is an instance of a specified concept. While early
DL reasoners were based on structural algorithms and translation-based approaches
(borrowing methods from modal or first-order logic), modern reasoning systems are
usually based on highly optimised tableau algorithms (see [25] and [16, Chap. 8] for a
survey), and recently on hypertableau-based calculi [207].

Nowadays, DLs are used in semantic databases, in life sciences, in applications of
the Semantic Web and as formal grounding for the W3C-endorsed Web Ontology
Language (OWL) [250]. The achievement of DLs in the many domains of semantic
information processing is based on their flexibility to strike a carefully crafted trade-off
between expressiveness and implementation efficiency. In particular, DLs encapsulate
the semantic complexity in a compact syntactical notation that supports humans
as well as automated inference services to handle complex logical specifications in a
more efficient way, compared to plain vanilla first-order logic, where the complete
quantification structure is made explicit. From a technical perspective, there is a strong
connection between DLs and multimodal generalisations of modal logic [4; 103], and
under this view they essentially correspond to guarded fragments of first-order logic.
This class of fragments has turned out to be a breeding-ground of very well-behaved
classes of logical formalisms, aiming at offering sufficient expressivity while maintaining
decidability of the inference tasks.

1.1 Motivation: When Constructiveness matters

The main branch of research in DLs focusses on languages equipped with classical
descriptive semantics. While the existing DLs are covering a broad selection of lan-
guages with different levels of expressivity, they are somehow limited in the sense that
knowledge represented by concepts is assumed to be static [16, Chap. 1].

However, it is sometimes the case that knowledge is dynamic and incomplete. Indi-
viduals specific for an application domain may not be fixed and tangible but abstrac-
tions of real individuals whose properties are subject to refinement. Concrete knowledge
about individuals may evolve and therefore correspond to a process of construction
which is enriching the knowledge over time or up to available resources. Especially nat-
ural language statements are difficult to specify and interpret in a static way, since they
are usually context dependent or subject to negotiation. Classical DLs have limited
support for incomplete knowledge about individuals when assuming the open world
assumption, i.e., the interpretation of a concept is assumed to be static and at the outset
either includes a given individual or not. Though, either option may be inconsistent, if
the individual or the concept is only partially defined until a later state of knowledge
revealing further evidence becomes available.

3

1 Introduction

In the following, we illustrate the significance of constructive semantics, on the one
hand to allow for the handling of incomplete knowledge in data- and process-driven
applications, and on the other hand to provide a computational interpretation for DLs.
For instance, DLs can be used to represent knowledge about a regional fauna, e.g., the
concept of the European tree frog may be defined as a frog belonging to the family of
tree frogs. They are commonly found across Europe and their dorsal skin is usually
coloured.

EuropeanTreeFrog = Frog ⊓ ∃indigenous.EuropenCountry ⊓ ∃hasColour.Colour.

We can give an interpretation of the above concept expressed by the following assertional
facts about an individual called IGGY:

IGGY : EuropeanTreeFrog, GREEN : Colour, GERMANY : EuropenCountry,

(IGGY,GERMANY) : indigenous, (IGGY,GREEN) : hasColour.

The interpretation of the concept EuropeanTreeFrog takes into account one state of
knowledge only, i.e., the facts about IGGY are assumed to be static, in particular the
assertions specify that IGGY is always to be found in GERMANY and has always the
colour GREEN. Classical description logic interprets statements based on the notion
of absolute truth and allows not to abstract from an individual such that its semantic
interpretation incorporates not only the actual state, but also the future states IGGY
may evolve to. For instance, on the one hand, the habitat of IGGY may shift due
to climate change in the future, on the other hand, the dorsal skin of the European
tree frog is known to depend on contextual properties and is subject to change on a
short-term basis. The variation ranges from light grey to kelly-green to tan, i.e., it may
change depending on the temperature or humidity of the environment, the structure
of the underground or the animal’s mood. These dynamic and context dependent
properties cannot be expressed by the classical semantics of DLs.

An application area where this aspect is particularly prominent is business auditing,
which has been motivated in [195] and [155]. It refers to the process of digital auditing
of business data in order to verify the validity of the accounting, the absence of fraud
or the conformance to regulations and financial process standards like SOX1 and IFRS2.
Like natural language statements, audit concepts rarely have a fixed interpretation but
are subject to refinement or context. For instance, audit data are usually created by
ongoing business processes within information systems and an audit can only cover

1Sarbanes-Oxley Act, US law of 2002 on business reporting in reaction to Enron and WorldCom
scandals.

2International Financial Reporting Standard.

4

1.1 Motivation: When Constructiveness matters

a finite snapshot thereof. An audit statement like ‘each delivery order must have an
associated invoice’ has to consider the case when ‘for some delivery order the invoice is
still pending’ and will only become available after refinement of the audit data. Also,
audit statements may contain partially determined concepts or roles, e.g., consider the
concept of a solvent company. Its interpretation may be subject to negotiations as it
may depend on the rating of a credit check agency, and will be further refined as the
audit case progresses. Entities may be abstractions of real individuals, e.g., the notion
of the ‘chief financial officer of company X ’ is an abstraction of a physical person who
may be replaced while the audit proceeds. Abstraction plays an important role in the
auditing domain due to the typical confrontation with vast amounts of business data,
which demands to abstract from irrelevant details in order to reduce the complexity
of audit problems. Another aspect is driven from research in the audit community to
interpret auditing by means of game-theoretic techniques [36; 85; 274]. This can also
be played from the perspective of constructive DLs, by expressing interactive games
in the spirit of Lorenzen’s Dialogical Logic [178; 239] between an auditee (proponent)
and an auditor (opponent) as a game-theoretic decision procedure. In order to ensure
the validity of audit statements, the notion of constructive proof relying on concrete
evidence becomes an important aspect. For instance, in order to prove the existence of
fraud, an auditor is required to provide objective evidence in the form of concrete facts
or witnessing data. To summarise, auditing requires a constructive approach based on
positive evidence that is robust under abstraction and refinement.

Another example where a constructive interpretation becomes prominent is the pro-
cess of requirements engineering [237; 240; 279] in the software engineering lifecycle [218],
which refers to the process of specifying, maintaining and documenting the require-
ments of a piece of software. Usually, a software development project begins with a
requirements analysis, consisting of requirements elicitation, analysis and specification,
with the goal to define at an abstract level the necessary software components, the
goals and invariants that must be met to satisfy the customers’ demands. In the sub-
sequent software engineering process, these abstract software components are refined
and evolve, e.g., by explicitly specifying a software architecture, developing interfaces
between components to allow for communication, or by implementing individual parts,
which are later linked to form larger compound components. For example, let us con-
sider the software component that controls the door system of a train. An important
security requirement is that during a journey the doors of the train cannot be opened
accidentally. Later on, this software component may be reused and combined with
the software components of a control system as used in a slow urban train as well as
its counterpart that is used in a high-speed train. In either case, it is important that
the security requirement is still satisfied by these implementations. At every stage

5

1 Introduction

of a software development project it may be important that the initially defined re-
quirements are still satisfied (requirements validation) by the intermediate development
results in the sense that a requirement holds robustly w.r.t. abstraction and refinement
of software components. For instance, if a requirement is specified in terms of a DL
formula, then its interpretation has to take into account not only the finished (final)
software component, but also all intermediate and future stages in which the software
component may evolve. Classical semantics of DLs only allow reasoning about one
stage of a component in the software development process, and assume that each such
component corresponds to a final state. However, a software component may be subject
to a steady update cycle, e.g., by adding new features and/or fixing defects. Moreover,
a component can be developed in different branches to account for mutually exclusive
demands and may possibly never reach a final state. In order to ensure the validity of
requirements, the semantics and the notion of proof need to support the interpretation
of components relative to states of knowledge, where once established facts accumulate
over time in the stages of a development process.

The problem of dynamic knowledge has recently been addressed for classical DLs by
allowing to update the actual state of affairs at the instance level (ABox) [75; 76; 129;
177] or by extending the calculus with actions designed to dynamically change parts of
a knowledge base [57; 202; 236]. For a comprehensive survey of the update problem
specific to DLs see [177; 202]. However, while these approaches allow to represent
the dynamic behaviour and the evolution of knowledge by applying modifications to
the knowledge base, they do still rely on classical semantics and are therefore not
compatible with the notion of positive evidence and realisability [262; 265]. One
fundamental constructive interpretation (although informal) is the Brouwer–Heyting–
Kolmogorov (BHK) interpretation [252, Chap. 2],[265] which is based on the notion
of proof. For instance, in constructive logics the proof of a disjunction C ⊔ D is by
providing a positive evidence in the form of a proof for either C or D. In classical
DLs the law of the Excluded Middle C ⊔ ¬C is assumed to be true independently of
the choice of any of the disjuncts. However, for an arbitrary concept C (which may
refer to an open problem in mathematics) we do not know in general whether C or its
negation has a proof. Constructive logic meets our expectations in that it only accepts
constructive reasoning based on the notion of proof.

Finally, another important domain, which is prominent in the context of computer
science, concerns the computational interpretation of DLs. Such constructive interpreta-
tions allow to exploit the computational properties of constructive DLs by relating their
proof systems with type theories following the Curry-Howard isomorphism [113; 139;
248; 265], also known as the proofs-as-computations or formulas-as-types interpretation.
Under this view, DL concept descriptions can specify the type of programs, e.g., the

6

1.2 Aims and Contributions

constructive interpretation of an implication C ⊃ D corresponds to a function of type
C → D, conjunction C⊓D to the product type C×D and disjunction C⊔D to the type
of a disjoint sum C +D. In a similar vein, the proof of an implication C ⊃ D can be
seen as a construction, which gives a function from C to D, and according to the BHK
interpretation [252, Chap. 2], this can also be viewed as a procedure that transforms
proofs of C to proofs of D. The general benefits of the Curry-Howard isomorphism in
the context of DLs have been argued in [41; 78; 196] and its development is in line with
computational interpretations of intuitionistic modal logics (see Sec. 2.2.2). Based on
this connection, constructive DLs can establish the base of a DL-based programming
language system that serves as a typing system for an extension of the simply typed
λ-calculus [74; 194; 208], or adapts the proofs-as-programs correspondence towards
program synthesis [39; 41; 201].

To summarise, classic DLs are not sufficient to represent or reason about partial
or incomplete knowledge and to achieve consistency under abstraction as well as ro-
bustness under refinement. From a proof-theoretical point of view, constructive logic
is compatible with the idea of positive evidence and it does not infer the presence of
objects from the absence of others. Instead, it insists on the existence of computational
witnesses. Model-theoretically, constructive semantics support the notion of stages of
knowledge with the property that once established evidence remains persistent under
refinement and may only potentially increase. These features of constructive logic can
be very important in the application domains of DLs (knowledge representation, life
sciences, health care, software engineering, auditing, programming) such that it seems
worth to explore constructive variants of DLs.

1.2 Aims and Contributions

This thesis is devoted to the investigation of the model theory and proof theory of
a constructive variant of the basic description logic ALC, which will be called cALC.
Our approach is to replace the traditional binary truth interpretation of the basic DL
ALC by a constructive notion of truth. We require this interpretation to be compatible
with the idea of concepts comprising abstract entities with hidden fine structure, to
represent partial and incomplete information, and on the other hand to comply with the
Curry-Howard isomorphism in order to lay the grounds for a DL-based typing system.

Our investigation considers the strong relationship between the description logic
ALC and the basic modal logic Km, but lifted to a constructive perspective. Hereby,
we follow de Paiva’s [78] proposal, by basing cALC on a constructive analogue of the
modal logic Km. From the viewpoint of a constructivist, the notion of construction and
positive evidence are essential to argue the proof or to give a witness for existential

7

1 Introduction

statements. For instance, whenever C⊔D is a theorem then constructive logic demands
that one knows that either C or D holds. Similarly, a constructive proof of an existential
statement ∃x.ϕ(x) requires that one can explicitly construct some term t that proves
ϕ(t). These properties (a.k.a. disjunction property and witness property) are key char-
acteristics of constructive theories. Furthermore, constructive logic refutes the law of
the Excluded Middle C ⊔ ¬C and the classical dualities, such that the logical operators
are not expressible in terms of each other and negation. Simpson [249] postulates as a
sine qua non of an intuitionistic analogue of K, that it is a conservative extension of
propositional intuitionistic logic, and moreover, he requires that the addition of the law
of the Excluded Middle collapses the theory to classical K. However, there exists no
consensus on the minimal constructive analogue of the modal logic K. Instead, several
different proposals for minimal intuitionistic modal logics (IMLs) corresponding to K
exist, which on the one hand differ in the structure of their descriptive semantics, and
on the other hand consider different ways of interpreting the modalities 2 and 3. This
thesis establishes a minimal constructive analogue of ALC that can be taken as a base
line from which a correspondence theory for more expressive constructive description
logics (and modal logics) can be attempted.

The system cALC will be derived from the constructive modal logic CK [27; 188;
272]. We approach the model theory of cALC by giving an intuitionistic birelational
interpretation of the standard Kripke semantics, in the sense that the intuitionistic
epistemic order representing states of knowledge and the modal accessibility relations
in the form of roles are relations on the same domain. In particular, this semantics
ensures that any intuitionistically invalid formulæ are no longer validated. This will
be addressed by providing counterexamples for principles that are classically valid, but
invalid intuitionistically, and by showing that cALC meets the disjunction property. We
introduce several examples, where a constructive interpretation is essential to allow for
the representation of dynamic and incomplete knowledge, as well as to explain phenom-
ena that admit a constructive consistent explanation, while being inconsistent under the
classical semantics. In contrast to standard intuitionistic modal logics, cALC does not
require any frame conditions, and it is non-normal in that (i) it refutes the axiom schema
of disjunctive distribution in its binary form ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D) and nullary
variant ¬∃R.⊥, (ii) it rejects the interaction schema (∃R.C ⊃ ∀R.D) ⊃ ∀R.(C ⊃ D),
and (iii) the addition of the Excluded Middle does not collapse the theory to classical
ALC. This gives rise to a constructive DL that can be characterised by a minimal
axiomatic system. Moreover, we provide a finite semantic characterisation of cALC, by
proving the finite model property.

We address the question of how cALC and classical DLs are related, and whether our
constructive semantics provides a complexity advantage over the classical descriptive

8

1.2 Aims and Contributions

semantics. We investigate the relation of cALC to classical DLs by demonstrating a
faithful embedding of cALC into a classical bimodal logic. This allows us on the one
hand to transfer existing results from bimodal logics to cALC, and on the other hand
gives us access to the existing reasoning technology of classical DLs. Surprisingly, it
turns out that the problem of subsumption checking in the sub-Boolean {⊔,∃}-fragment
UL of ALC w.r.t. general TBoxes is tractable under the constructive semantics, while
it is intractable under the classical descriptive semantics.

This thesis explores cALC from a proof theoretic perspective as well. We characterise
the system cALC in terms of a Hilbert-style axiomatisation that gives a clear charac-
terisation of the logical system in terms of its axioms and inference rules. Moreover,
we establish a modal deduction theorem for cALC that generalises the Hilbert-style
axiomatisation into a system to allow for derivations from global and local assumptions.
However, while Hilbert-style calculi are useful for investigating a logical system, they
are not the right foundation to develop automated inference services as demanded by
DL-style applications. DL-systems expect decidable reasoning problems that can be
implemented with an acceptable run-time characteristic. Better suited for automated
proof search are refutation-based calculi, i.e., given a concept C the calculus aims at
finding an interpretation that satisfies C. Consequently, if a proof for the statement
C is false fails, then this implies that concept C is valid. We choose to provide a
Gentzen-style sequent calculus and a tableau-based calculus for cALC w.r.t. TBoxes.
Such calculi satisfy the subformula principle, support goal-directed proof-search and al-
low for countermodel construction. We present a sound and complete multi-conclusion
Gentzen-style sequent calculus for cALC, showing the finite model property and de-
cidability, and that implements independent left and right introduction rules for the
modalities ∃R and ∀R. Sequent calculi are consistent with the Curry-Howard isomorph-
ism and permit proof-extraction as well as a constructive interpretation of proofs as
λ-terms. Where the application demands it, one can specialise cALC back towards
normal IMLs or even ALC by adding axioms, or by strengthening the proof systems
accordingly by additional rules of inference.

Towards an implementation, we give an effectively decidable tableau calculus that is
sound and complete, and which combines the data structure of a constraint system with
methods from intuitionistic tableaux to allow for constructive reasoning. Furthermore,
we analyse the problem of interpreting ABox assertions and nominals under the birela-
tional semantics of cALC and sketch an approach towards constructive ABox reasoning
in cALC.

9

1 Introduction

1.3 Synopsis of the Thesis

Chapter 2 introduces the key concepts and preliminaries of this thesis and is essentially
introductory. Section 2.1 gives an introduction to the field of description logics by
establishing the basic DL ALC, the key concepts of reasoning w.r.t. terminological
and assertional knowledge, and the standard inference problems. The section closes
with a review of the most important language extensions of ALC, and discusses the
correspondence of ALC with the basic modal logic K on the basis of the standard
translation. Constructive logic is shortly examined in Section 2.2, by defining the Kripke
semantics of intuitionistic propositional logic (IPC) and by reviewing the structure of
the semantics of intuitionistic first-order logic (IQC). The following Section 2.2.2 is
devoted to intuitionistic modal logics, and presents the axiomatisation and Kripke-style
birelational possible world semantics of two constructive variants of the basic modal
logic K, namely intuitionistic K (IK) and constructive K (CK).

Chapter 3 presents a detailed survey of the current state of research in the field of
constructive description logics.

Chapter 4 introduces our approach to constructive DLs and is dedicated to the in-
vestigation of the model theory of cALC. Section 4.1 justifies our choice to rely on
birelational Kripke-style semantics by reviewing the existing approaches to define the
semantics. In Section 4.2 we introduce the syntax and semantics of cALC, investig-
ate and prove some basic model theoretic properties like the monotonicity property,
the reasoning tasks w.r.t. TBoxes, and the disjunction property, and discuss several
examples where the classical semantics are not adequate. The chapter finishes with the
proof of the finite model property for cALC, based on the filtration method.

The proof theory of cALC is investigated in Chap. 5 by introducing Hilbert and
Gentzen-style deduction systems for cALC. Section 5.1 introduces a sound and complete
Hilbert-style axiomatisation for cALC and proves several meta-theorems of this calculus
and a modal deduction theorem. Section 5.2 presents a multi-conclusion Gentzen-style
sequent calculus for cALC, a proof of its soundness and completeness w.r.t. the birela-
tional semantics of cALC, the finite model property as well as decidability. Soundness
and completeness of the Hilbert system is demonstrated relative to the Gentzen se-
quent calculus by showing that both systems are equivalent. The third section gives
an outlook on the intermediate systems between cALC and ALC that arise from the
extension of cALC by several axioms.

Chapter 6 examines in Section 6.1 the relation of cALC to classical DLs by demon-
strating a faithful embedding of cALC into a classical bimodal logic, which corresponds
to a classical DL. The embedding allows us to transfer results from normal bimodal
logics, and lets us obtain the finite model property, decidability, and complexity results

10

1.4 Publications

for cALC. Section 6.2 discusses the sub-Boolean fragment UL of cALC that turns
out to be tractable under the constructive semantics, while it is intractable under the
classical descriptive semantics.

In Chapter 7, we introduce a labelled tableau calculus for cALC that is based on a
constraint system with an explicit handling of the intuitionistic preorder, and present
a proof of its termination, soundness and completeness, which gives rise to an effective
decision procedure for cALC. The final part discusses the problem of interpreting ABox
assertions under the birelational semantics and gives an outlook on how to address
constructive ABox reasoning. Finally, we conclude our approach in Chapter 8 and
highlight future perspectives and open problems.

1.4 Publications

Within the framework of this thesis, the following publications have appeared, which
examine the constructive description logic cALC w.r.t. its model theory and proof
theory, as well as from a type-theoretical perspective by establishing a computational
interpretation in form of a modal extension of the simply typed λ-calculus. This thesis
focusses on the development of the model theory and proof theory of cALC, extending
the results from [189–193; 195]. It does not cover the computational and type-theoretic
perspective. Readers interested in the type-theoretical perspective may consult [194;
196–198].

[189] M. Mendler and S. Scheele. ‘Constructive Description Logic cALC as a Type
System for Semantic Streams in the Domain of Auditing’. In: Proc. of the 1st
International Workshop on Logics for Agents and Mobility (LAM 2008). (4th–
8th Aug. 2008). Ed. by B. Farwer and M. Köhler-Bußmeier. Vol. 283. Berichte
des Departments Informatik. Hamburg, Germany: University of Hamburg, Aug.
2008.

[190] M. Mendler and S. Scheele. Towards Constructive Description Logics for Ab-
straction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik 77. Faculty of Information Systems and Applied Com-
puter Sciences, Otto-Friedrich-University of Bamberg, Germany, Sept. 2008.

[191] M. Mendler and S. Scheele. ‘Towards Constructive Description Logics for
Abstraction and Refinement’. In: 21st Int’l Workshop on Description Logics
(DL2008). Vol. 353. CEUR Workshop Proceedings. CEUR-WS.org, May 2008.

11

1 Introduction

[192] M. Mendler and S. Scheele. ‘Exponential Speedup in UL Subsumption Checking
relative to general TBoxes for the Constructive Semantics.’ In: Proc. of the
22nd International Workshop on Description Logics (DL 2009). (27th–30th July
2009). Ed. by B. C. Grau, I. Horrocks, B. Motik and U. Sattler. Vol. 477. CEUR
Workshop Proceedings. Oxford, UK: CEUR-WS.org, 2009.

[193] M. Mendler and S. Scheele. ‘Towards a Type System for Semantic Streams’. In:
Proc. of the 1st International Workshop on Stream Reasoning (SR 2009). Ed. by
E. D. Valle, S. Ceri, D. Fensel, F. van Harmelen and R. Studer. Vol. 466. CEUR
Workshop Proceedings. Heraklion, Crete, Greece: CEUR-WS.org, May 2009.

[194] M. Mendler and S. Scheele. ‘Towards a Simply Typed CALculus for Semantic
Knowledge Bases’. In: LAM’10. Ed. by B. Müller. Vol. 7. EPiC Series. EasyChair,
2010, pp. 52–67.

[195] M. Mendler and S. Scheele. ‘Towards Constructive DL for Abstraction and
Refinement’. In: Journal of Automated Reasoning 44 (3) (2010), pp. 207–243.

[196] M. Mendler and S. Scheele. ‘Cut-free Gentzen calculus for multimodal CK’. In:
Information and Computation 209 (12) (Dec. 2011). Special Issue: Intuitionistic
Modal Logic and Applications (IMLA 2008), pp. 1465–1490.

[197] M. Mendler and S. Scheele. On the Computational Interpretation of CKn for
Contextual Information Processing – Ancillary Material –. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik 91. Faculty of Inform-
ation Systems and Applied Computer Sciences, Otto-Friedrich-University of
Bamberg, Germany, May 2013.

[198] M. Mendler and S. Scheele. ‘On the Computational Interpretation of CKn for
Contextual Information Processing’. In: Fundamenta Informaticæ 130 (1) (Jan.
2014), pp. 125–162.

12

CHAPTER 2

Background

This chapter gives a formal introduction to the necessary preliminaries and most of
its part is a rearrangement of the existing literature. It aims to give readers unfamil-
iar with description logic and intuitionistic modal logic the necessary background to
understand the main parts of this thesis. Readers familiar with description logic and
intuitionistic modal logic can skip this chapter, or may skim through its sections to
get used to the notation and terms used in this work. Section 2.1 introduces the field
of DLs with the formal definition of the syntax and semantics of the basic Attribute
Language with Complement (ALC) covering its logical constructors and the formalism
to specify assertional and terminological knowledge. Thereof, we briefly review the
typical inference problems and discuss the relationship with other logical formalisms,
focussing on the correspondence to modal logics. In Sec. 2.2, we give a short introduc-
tion to the role of constructive logic and its application in the field of computer science,
introduce intuitionistic propositional logic and shortly revisit the semantics of intuition-
istic first-order logic. Section 2.2.2 is devoted to intuitionistic modal logics (IMLs, for
short). We will inspect the axiomatisation and Kripke-style possible world semantics
of two representative IMLs. They will form the starting point for the development of
constructive DLs, as we will see in Chap. 4.

Notation. Throughout this work we use the following notational conventions. Newly
introduced terms are set in italic type. The symbols □, ∇ and ■ are used to indicate
the end of each proof, definition and example (and notation, remark) respectively. ■

2.1 Description Logic

This section formally introduces the basic DL ALC and examines its close correspond-
ence to the basic normal modal logic K.

2.1.1 The Basic Language ALC

The basic description logic ALC has been introduced by Schmidt-Schauß and Smolka
[247] and corresponds to the smallest DL which is closed under all Boolean connectives.

13

2 Background

Definition 2.1.1 (Syntax of ALC [16, p. 52]). A DL signature is a structure Σ =
(NC , NR, NI) of three denumerable and pairwise disjoint alphabets of concept names
NC , role names NR and individual names NI . The set of ALC concept descriptions
(ALC-concepts, for short) over signature Σ is the smallest set such that

• each atomic symbol ⊥ (truth), ⊤ (falsehood) and A ∈ NC is an ALC concept
description, and

• if C and D are ALC concept descriptions and R ∈ NR is a role then ¬C, C ⊓D,
C ⊔D, ∃R.C and ∀R.C are ALC concept descriptions. ∇

The syntax of ALC is redundant, because in classic logic DeMorgan’s law holds,
i.e., the logical operators and the constants ⊥,⊤ are interdefinable in terms of each
other via negation, e.g., ⊥ = ¬⊤, (C ⊓ D) = ¬(¬C ⊔ ¬D), ∀R.C = ¬(∃R.¬C) and
∃R.C = ¬(∀R.¬C). Also note that implication C ⊃ D is equivalent to ¬C ⊔ D and
therefore usually omitted from the language ALC.

Notation. Throughout this work we use the following notation: In definitions and
abstract examples we use the letters A and B for concept names, and the letter R
for role names. The letters C and D are used to refer to arbitrary concept descrip-
tions. In concrete examples, the first letter of a concept name is written in uppercase,
followed by the remaining letters in lowercase, e.g., Male, Female, Father, Amphibian,
Toad, Treefrog. Role names begin with a lowercase letter, e.g., hasChild, hasColour,
hasBinomialName and individual names are written uppercase, e.g., IGGY, KERMIT,
RED, BLUE, HYLA_ARBOREA. ■

Example 2.1.1. For instance, consider the concept of a manager who manages a
project in which all participants are employees and have a Masters degree or a PhD.

Male ⊓ ∃doesManage.(Project ⊓ ∀isInvolved.(Employee ⊓ ∀hasDegree.(MSc ⊔ PhD))).

Further, consider the following concept describing a Golden Poison Frog, a frog
species that is categorised as likely to become extinct, whose toxic secretions belong to
the group of alkaloids and is used by native Americans to poison the tips of blow-darts.

Frog ⊓ ∃hasColour.Gold ⊓ ∃conservationStatus.EndageredSpecies

⊓ ∃hasPoison.(AlcaloidToxin ⊓ ∃usedFor.Blowdart). ■

The semantics of concept descriptions is given in terms of a Tarski-style model-
theoretic interpretation [16; 247].

14

2.1 Description Logic

Definition 2.1.2 ([16, pp. 51 f.]). An interpretation over signature Σ = (NC , NR, NI)
is a structure I = (∆I , ·I) where

• ∆I , called the domain of I of individuals, is a non-empty set, and

• ·I is an interpretation function mapping each atomic concept A to a subset
AI ⊆ ∆I and each atomic role R to a binary relation RI ⊆ (∆I × ∆I).

The interpretation is lifted from atomic symbols to arbitrary concept descriptions by
the following inductive definition:

⊤I =df ∆I (top)
⊥I =df ∅ (bottom)

(¬C)I =df ∆I \ CI (negation)
(C ⊓D)I =df C

I ∩DI (conjunction)
(C ⊔D)I =df C

I ∪DI (disjunction)
(∃R.C)I =df {x | ∃y ∈ ∆I . (x, y) ∈ RI & y ∈ CI} (existential restriction)
(∀R.C)I =df {x | ∀y ∈ ∆I . (x, y) ∈ RI ⇒ y ∈ CI} (value restriction) ∇

We will denote the individual that corresponds to the second argument of a role by
R-successor or R-filler , relative to some role name R.

2.1.2 DL Knowledge Base

The domain knowledge is represented by an ontology, also called DL knowledge base,
which is given by an axiomatisation that restricts the class of admissible interpretations
by imposing conditions on the frame (role axioms), on models (terminological axioms)
or individuals (assertions). A knowledge base K (or an ontology) is defined as a pair
K = (T ,A), which consists of a TBox T and an ABox A. The former represents the
terminology, or terminological axioms, i.e., the vocabulary of an application domain.
The latter states assertions, which specify facts about particular named individuals of
the application domain.

Definition 2.1.3 (Syntax of ALC terminological axioms [16, pp. 55 ff.]). Let R ∈ NR

be a role, A ∈ NC be a concept name and C,D be concept descriptions. Terminological
axioms have the form of a general concept inclusion (GCI) C ⊑ D, or a concept
equivalence C ≡ D (abbreviating C ⊑ D & D ⊑ C). TBox axioms can be restricted
in that their left-hand side is an atomic concept. Then, a concept equation of the

15

2 Background

form A ≡ C is called concept definition and introduces a symbolic name for a concept
description, whereas the expression A ⊑ C is called a primitive concept definition. ∇

The DL literature covers several kinds of TBoxes [16, pp. 55 ff.], which vary in
their level of expressivity. The choice of a TBox formalism has a direct impact on the
complexity of the various inference problems.

Definition 2.1.4 ((General, definitorial) TBox [16, pp. 56 ff.]). A general TBox (or
TBox for short) is a finite set T of GCIs. A definitorial TBox is a set T of (primitive)
concept definitions such that the following conditions hold:

• It contains only (primitive) concept definitions of the form A ≡ C or A ⊑ C.

• For each concept name A ∈ NC , there exists at most one axiom in T with A as
the left-hand side, and

• T is acyclic, i.e., the definition of any concept A does not reference itself. Formally,
an acyclic TBox is defined as follows: We say that A ∈ NC directly uses B ∈ NC

if A ≡ C ∈ T or A ⊑ C ∈ T and B occurs in C, and define uses as the transitive
closure of the relation directly uses. Then, a TBox T is acyclic if there exists no
atomic concept A in T that uses itself. ∇

In contrast to general TBoxes, the specification of definitorial TBoxes can be con-
sidered as a language of macro definitions. Reasoning w.r.t. acyclic TBoxes can be
rephrased to the problem of reasoning w.r.t. definitorial TBoxes, using an expansion of
the TBox [16, pp. 57 ff.].

Example 2.1.2. Consider the following TBox.

Frog ≡ Amphibian ⊓ Animal

EuropeanTreeFrog ≡ Frog ⊓ ∃liveIn.EuropeanCountry ⊓ ∃hasColour.(Green ⊔ Brown)
PoisonDartFrog ≡ Frog ⊓ ∃hasPoison.Toxin ⊓ ∃liveIn.AmericanCountry

GoldenPoisonFrog ≡ PoisonDartFrog ⊓ ∃hasColour.Gold

GoldenPoisonFrog ⊑ ∀hasPoison.AlkaloidToxin

Amphibian ⊓ Mammal ≡ ⊥

The first four statements introduce the concepts Frog, EuropeanTreeFrog, PoisonDartFrog
and GoldenPoisonFrog as concept definitions. The fifth statement expresses that in-
stances of GoldenPoisonFrog are required to satisfy ∀hasPoison.AlkaloidToxin. The last
statement expresses that the concepts Amphibian and Mammal must be disjoint. ■

Definition 2.1.5 (Semantics of ALC terminological axioms [16, pp. 56 f.]). An inter-
pretation I satisfies a concept inclusion C ⊑ D, written I C ⊑ D, iff CI ⊆ DI .

16

2.1 Description Logic

I satisfies an equality C ≡ D, written I C ≡ D, iff CI = DI . An interpretation I
is a model of a TBox T , written I T , iff it satisfies each axiom in T . ∇

The second component of a knowledge base is represented by an ABox that specifies
a concrete set of individuals as instances of concepts and roles.

Definition 2.1.6 (Assertional axioms [16, pp. 65 f.]). Let Σ = (NC , NR, NI) be
an ALC signature, a, b ∈ NI individual names, R ∈ NR a role and C,D concept
descriptions over Σ. Assertional axioms are of the form of a : C (concept assertions)
and a R b (role assertions), also written as (a, b) :R. The former specifies that a is an
instance of concept C, while the latter states that b is a filler of the role R for a. A
finite set A of assertional axioms is called ABox . ∇

The set of individual names that occur in an ABox A is called the support of A,
written Supp(A).

Example 2.1.3. The following ABox formalises a concrete situation based on the TBox
from Ex. 2.1.2, using the individuals KERMIT, IGGY, FRANCE, LIME, COLOMBIA and
BATRACHOTOXIN.

KERMIT : EuropenTreeFrog,

(KERMIT, LIME) : hasColour,

(KERMIT,FRANCE) : liveIn,

IGGY : GoldenPoisonFrog,

(IGGY,COLOMBIA) : liveIn,

(IGGY,BATRACHOTOXIN) : hasPoison.
■

Definition 2.1.7 (Semantics of ALC assertional axioms [16, pp. 66 f.]). An extended
interpretation for ABox assertions is an interpretation I = (∆I , ·I), where the inter-
pretation function ·I also maps each individual name a ∈ NI to an element aI ∈ ∆I .
An extended interpretation I satisfies a concept assertion a : C, written I a : C, if
aI ∈ CI , and it satisfies the role assertion aR b, written I aR b, if (aI , bI) ∈ RI . An
extended interpretation I is a model of an ABox A, written I A, iff it is a model of
each axiom in A. Finally, an extended interpretation satisfies an assertion α or models
an ABox A with respect to a TBox T iff I α or I A, respectively, and additionally
I T . ∇

The semantics of a knowledge base is defined as follows:

Definition 2.1.8 (DL knowledge base [16, pp. 50 f.]). An extended interpretation I
is a model for a knowledge base K, written I K, iff I T and I A. We also say
that I satisfies K. ∇

17

2 Background

2.1.3 Standard Inference Problems

This section will shortly review the traditional standard inference problems of DLs,
which can be classified into reasoning w.r.t. a TBox and an ABox.

Definition 2.1.9 (Reasoning w.r.t. a TBox [16, pp. 67 f.]). Let T be a TBox and
C,D be concept descriptions.

• A concept C is called satisfiable w.r.t. T if there is a model I of T such that CI

is non-empty.

• A concept C subsumes a concept D w.r.t. T , if for every model I of T it holds
that CI ⊆ DI .

• Two concepts C and D are equivalent w.r.t. T , if for every model I of T it holds
that CI = DI .

• Two concepts C and D are disjoint w.r.t. T if for every model I of T it holds
that CI ∩DI = ∅. ∇

Definition 2.1.10 (Reasoning w.r.t. an ABox [16, pp. 72 ff.]). Let K = (T ,A) be a
knowledge base, a, b ∈ NI individual names and C,D concept descriptions.

• An ABox A is consistent w.r.t. a TBox T if there exists an interpretation I such
that I A and I T .

• An individual a is called an instance of a concept C w.r.t. K, written K a : C,
if it holds for all models I of K that I a : C. Analogously, a tuple (a, b) is an
instance of a role R w.r.t. K, written K a R b, if I a R b holds in all models
I of K.

• The instance retrieval problem for a concept C is to obtain all individuals a ∈ NI

such that K a : C. ∇

2.1.4 Language Extensions of ALC

There exist several language extensions of ALC [16; 173] yielding more expressive
DLs, where letters indicate the set of allowed concept and axiom constructors. For
instance, ALCR+ extends ALC by allowing transitive roles, for which sometimes the
abbreviation S is used instead. SHI is S extended by role hierarchies and inverse roles.
Further adding nominals yields SHOI, which can be further extended by qualified
cardinality restrictions to give SHOIQ. One of the most expressive DLs is represented
by SHROIQ [173], which results from the extension of SHOIQ by a universal role

18

2.1 Description Logic

Concept Constructors
Syntax Semantics Symbol

Transitive role R+ ∀x, y, z. x RI y ∧ y RI z ⇒ x RI z S
Inverse role R− {(x, y) | (y, x) ∈ RI} I
Qualified cardinality ≤ nR.C {x | |{y ∈ CI | (x, y) ∈ RI}| ≤ n} Q

restriction ≥ nR.C {x | |{y ∈ CI | (x, y) ∈ RI}| ≥ n} Q
Nominal {a} {aI} O

Axioms
Role hierarchy R ⊑ S RI ⊆ SI H
Complex role inclusion R1 ◦R2 ⊑ S RI

1 ◦RI
2 ⊆ SI R

Figure 2.1: Language extensions – syntax and semantics [cf. 16, pp. 525 ff.; 173, p. 11].

U and complex role inclusion axioms. The syntax, semantics and the indicating letter
of some extensions are depicted in Figure 2.1.

2.1.5 Relation to Modal Logics

Modal logic originally emerged as an extension of classical logic by adding new one-ary
operators (usually called modalities) which qualify the truth of sentences. Traditionally,
propositional modal logic extends the pure propositional language (CPC) by the mod-
alities of necessity 2 and possibility 3, where 2ϕ is read as ‘ϕ is necessarily true’ and
its dual 3ϕ stands for ‘ϕ is possibly true’. Multimodal logics allow for more than one
modal operator, usually in the form of labelled modalities like 2i and allow to be used
in a multiagent-alike environment. There, 2iϕ can be interpreted as ‘agent i knows
ϕ’ or ‘ϕ is true after executing action i’ [130]. The development of other modalities
led to the invention of various kinds of modal logics, e.g. temporal logic, epistemic
logic, deontic logic, dynamic logic, etc., which have found numerous applications in the
fields of mathematics, computer science and artificial intelligence. For a comprehensive
survey on the evolution of modal logic see [33, Chap. 1.7; 117], and [62; 266] giving an
in-depth introduction to the field.

Description logics have a very close relationship with modal logics [33; 63; 103; 151;
229], which has already been observed two decades ago by Schild [245]. He demonstrated
that several description logics are notational variants of different propositional modal
and dynamic logics and exploited this correspondence to transfer results from the
latter logics, such as complexity results, the finite model property, decision algorithms
and axiomatisations to description logics. In particular, Schild [245] showed that the
description logic ALC [247] is a notational variant of the multimodal logic Km [33; 101].

19

2 Background

Subsequent efforts [7; 112; 148; 213; 243; 246] observed similar relationships between
description logics and more expressive modal logics, transferring further results from
the µ-calculus [164; 165], propositional and modal dynamic logics [95; 131], hybrid
logics [8; 9; 34] and modal logics including graded modalities (number restrictions) [141;
142] or frames with extended accessibility relations (reflexive, transitive, symmetric,
etc.) to description logics. For a detailed overview on the connection of description
logics with other formalisms see [16, Chap. 4]. In this section we will highlight the
relation between description logics and modal logics, in particular the correspondence
between ALC and the propositional modal logic Km. We begin by introducing the
syntax and semantics of the modal logic Km.

Basic Modal Logic

The basic m-modal propositional language MLm [33; 62; 103; 229] (for each natural
number m ≥ 1) is given by the alphabet consisting of (i) the propositional variables
p, q, . . ., (ii) the constant false ⊥, (iii) the Boolean logical connectives ∧,∨,⊃, and
(iv) the unary connective ¬, and (v) m necessity and possibility operators 21, . . . ,2i

and 31, . . . ,3i, indexed in the set I, such that i ∈ I, where | I |≤ ω. Starting from the
propositional variables and the logical connectives, the definition of the well-formed
formulæ of MLm, and in particular of the basic modal logic Km, is given by the
following definition:

Definition 2.1.11 (Syntax of Km [229, pp. 13 ff.; 62, pp. 1 f., 61 f.; 33, pp. 9 f.]).
A modal signature is given by a pair (I,Var) of two fixed countable and disjoint sets
consisting of the modal signature I, an index set whose elements i ∈ I are called
labels, and the set Var = {p, q, r, . . .} of propositional variables. The set of well-formed
Km-formulæ ForMLm over signature (I,Var) is the smallest set such that

• all propositional variables p ∈ Var and each constant ⊥, ⊤ are well-formed
Km-formulæ,

• if ϕ and ψ are well-formed Km-formulæ and i ∈ I then so are ϕ∧ψ, ϕ∨ψ, ϕ ⊃ ψ,
¬ϕ, 3iϕ and 2iϕ. ∇

As usual, we express equivalence ϕ ≡ ψ by (ϕ ⊃ ψ)∧(ψ ⊃ ϕ). Note that the definition
of the basic modal language Km contains redundancy as we can express conjunction,
implication and the constant ⊤ by ϕ ∧ ψ =df ¬(¬ϕ ∨ ¬ψ), ϕ ⊃ ψ =df ¬ϕ ∨ ψ and
⊤ =df ¬⊥, respectively. Under the classical semantics the modalities 2 and 3 are
dual connectives and interdefinable just as the existential and universal quantifiers in
first-order logic. It follows from the following definition of the interpretation of modal
formulæ that for each i ∈ I, the formula 2iϕ is equivalent to ¬3i¬ϕ and vice versa.

20

2.1 Description Logic

If I is restricted to one modal label only, we simply write ML,ForML and K respectively.
The semantics of the basic modal language is expressed in terms of relational Kripke
structures [168].

Definition 2.1.12 (Kripke model [62, pp. 64 f.; 33, pp. 16 ff.]). Given a signature
(I,Var), a Kripke model is given by a pair M = (F ,V), where F = (W,Ri | i ∈ I) is a
labelled frame (or m-frame) of the modal signature I such that (i) W is a non-empty
set of worlds, the domain, (ii) for each i ∈ I, Ri ⊆ W × W is a binary relation on W

(so-called accessibility relation on worlds), and (iii) V is a valuation (or truth valuation)
in frame F which is a mapping V : Var → 2W associating with each propositional
variable p ∈ Var a subset V(p) of worlds in W in which the propositional variable is
true. If x, y ∈ W and xRi y, we say that y is Ri-accessible from x, y is an Ri-successor
of x, or x is an Ri-predecessor of y. We say that the frame F is the underlying frame
of M. ∇

The semantics of Km-formulæ is given by the following satisfaction relation.

Definition 2.1.13 (Modal satisfaction relation [229, pp. 39 ff.; 62, pp. 64 f.; 33,
pp. 16 ff.]). Let ϕ ∈ ForMLm be a well-formed Km-formula, suppose x is a world in
a model M = (F ,V) and let i ∈ I be arbitrary. We define the truth-relation M;x ϕ

saying that ϕ is true at world x in M by structural recursion on ϕ as follows:

M;x p iff x ∈ V(p) for p ∈ Var;
M;x ⊤;
M;x ̸ ⊥;
M;x ¬ϕ iff not M;x ϕ;
M;x ϕ ∧ ψ iff M;x ϕ and M;x ψ;
M;x ϕ ∨ ψ iff M;x ϕ or M;x ψ;
M;x ϕ ⊃ ψ iff M;x ϕ implies M;x ψ;
M;x 2iϕ iff M; y ϕ for all y ∈ W such that x Ri y;
M;x 3iϕ iff M; y ϕ for some y ∈ W such that x Ri y.

We say that a Km-formula ϕ is satisfiable if there exists a model M and a world x in
its domain such that M;x ϕ. This is extended in the usual way to sets Γ of formulæ,
i.e., M;x Γ if and only if ∀ϕ ∈ Γ. M;x ϕ. M is a model of a formula ϕ, denoted
by M ϕ, if and only if ϕ is satisfied at every world in M. A formula ϕ is valid in a
frame F , written F ϕ, iff (F ,V);x ϕ for all valuations V the formula ϕ is satisfied
at every world x. Finally, a formula ϕ is valid, denoted by ϕ, if it is valid in every
frame, i.e., if it is true at every world of every model in all frames. ∇

21

2 Background

Example 2.1.4 (Disjunctive distribution [33, Ex. 1.29.(i), p. 25]). In classical Km it
holds that 3i(p∨q) ⊃ (3ip∨3iq), i.e., the modality 3i distributes over disjunction ∨
(axiom FS4/IK4). This can be easily observed by taking an arbitrary model M = (F ,V)
and a world x in its domain and showing that M;x 3i(p∨q) implies M;x 3ip∨3iq.
Suppose that M;x 3i(p ∨ q). By Definition 2.1.13 there exists a world y such that
x Ri y and M; y p ∨ q, i.e., M; y p or M; y q. Then, also M;x 3ip or
M;x 3iq. Therefore, M;x 3ip ∨ 3iq. ■

We can define a semantic consequence relation by axiomatising the semantic levels
of the modal satisfaction relation. The different levels of statements M;x ϕ become
visible when we write F ; V ;x ϕ instead. The idea is to replace each of the elements
F ,V , x by a set of formulæ ∆,Θ and Γ, which axiomatises its associated semantic level
such that ∆ corresponds to frame axioms, Θ represents model axioms and Γ is a set of
world axioms.

Definition 2.1.14 (Semantic consequence relation [229; 33, p. 31 f.]). Let ϕ ∈
ForMLm be a well-formed Km formula, ∆,Θ and Γ be subsets of ForMLm and
F = (W,Ri | i ∈ I) a frame. We say that a formula ϕ is a local semantic con-
sequence of Γ, denoted by F ; ∅; Γ ϕ, if and only if for any model M based on F
and all worlds x in its domain we have M;x ϕ whenever M;x Γ. A formula
ϕ is a global semantic consequence of a set Θ of formulæ, denoted by F ; Θ; ∅ ϕ,
if and only if for all models M based on F , if M Θ then M ϕ. We say that
ϕ is a semantic consequence of Θ and Γ in F , written F ; Θ; Γ ϕ, if and only if
∀V .(∀θ ∈ Θ.F ; V θ) ⇒ ∀x.(∀γ ∈ Γ.F ; V;x γ) ⇒ F ; V;x ϕ. Finally, a formula
ϕ is a semantic consequence of ∆; Θ; Γ, denoted by ∆; Θ; Γ ϕ, if and only if for all
frames F such that F δ for all δ ∈ ∆ it holds that F ; Θ; Γ ϕ. ∇

Notation. The semantic consequence relation allows us to bring together the semantic
definition of a logical system, in terms of a set of formulæ valid in certain frames, with
its syntactic axiomatisation in the form of a Hilbert-style calculus. For instance, Km is
determined by the class of all frames and ϕ is a theorem of Km iff ∅; ∅; ∅ ϕ holds, i.e.,
F ϕ for all frames F . Similarly, S4m; ∅; ∅ ϕ iff F ϕ for all quasi-ordered frames
F , i.e., the frames with a reflexive and transitive accessibility relation. Here, S4m refers
to the set of the characteristic axiom schemata of S4m given by T =df 2iϕ ⊃ ϕ and
4 =df ϕ ⊃ 2i2iϕ. ■

The system Km (named after Kripke) is defined proof-theoretically in terms of a
Hilbert-style inference system.

Definition 2.1.15 (Hilbert deduction for Km [33, Chap. 1.6, pp. 33 ff.; 62, Chap. 3.6,
pp. 83 ff.]). A Km-proof of a formula ϕ ∈ ForMLm, written Km

ϕ is a finite sequence

22

2.1 Description Logic

of formulæ ending with ϕ, each of which is a substitution instance of an axiom, or arises
from earlier items through application of one of the inference rules. The axioms and
inference rules of Km (with i ∈ I) are given by:

Axioms (Km)
All theorems of classical propositional logic (CPC), that is,
CPC1 : ϕ ⊃ (ψ ⊃ ϕ)
CPC2 : (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ))
CPC3 : ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ))
CPC4 : (ϕ ∧ ψ) ⊃ ϕ, (ϕ ∧ ψ) ⊃ ψ

CPC5 : ϕ ⊃ (ψ ∨ ϕ), ψ ⊃ (ψ ∨ ϕ)
CPC6 : (ϕ ⊃ ϑ) ⊃ ((ψ ⊃ ϑ) ⊃ ((ϕ ∨ ψ) ⊃ ϑ))
CPC7 : ⊥ ⊃ ϕ

CPC8 : ϕ ∨ (ϕ ⊃ ⊥)
and the modal axiom
K : 2i(ϕ ⊃ ψ) ⊃ (2iϕ ⊃ 2iψ)
Rules
MP : ϕ and ϕ ⊃ ψ implies ψ
Nec : ϕ implies 2iϕ

This notion can be generalised to sets of formulæ ∆,Γ ⊆ ForMLm, where ∆ represents
frame hypotheses and Γ model hypotheses. We write ∆; Γ; ∅ ϕ for a Hilbert derivation
of ϕ from ∆,Γ, which is a finite sequence of formulæ ending in ϕ, each of which is either
a substitution instance of a frame axiom in ∆, a model hypothesis in Γ, a substitution
instance of an axiom of Km, or arises from earlier items through application of one of
the inference rules. ∇

The Hilbert system of Km is sound and complete w.r.t. its Kripke semantics, i.e., the
theorems of K represent exactly the valid formulæ.

Theorem 2.1.1 ([33, Chap. 4; 62, Thm. 3.53; 130]). For all ϕ ∈ ForMLm we have

Km
ϕ if and only if ϕ. ∇

Furthermore, Km has the finite model property and is decidable [33, Thm. 6.8, p. 340;
62, Chap. 3.7, p. 87 f.].

A modal logic is called normal3 [33, pp. 36 f., 191 f.] if it contains all substitution
instances of the axioms of CPC, K, 3i⊥ ⊃ ⊥ and 3i(ϕ∨ψ) ⊃ (3iϕ∨3iψ) and is closed
under the rules MP, Nec and the rule Km

ϕ ⊃ ψ implies Km
3ϕ ⊃ 3ψ. The system

3In particular, a modal logic is called normal [275] if it includes the schemata 2(ϕ∧ψ) ⊃ (2ϕ∧2ψ),
2⊤, 3(ϕ ∨ ψ) ⊃ (3ϕ ∨ 2ψ) and ¬3⊥.

23

2 Background

Km represents the minimal classical (multimodal) normal system. Other normal modal
logics can be obtained by extending Km through the addition of a (possibly finite) set
∆ of axioms, which corresponds to certain restrictions on the accessibility relations
(usually called frame classes) [103]. We will write Km ⊕ ∆ in this case, and Km ⊕ ϕ

whenever ∆ = {ϕ} is a singleton set. Some of the more popular axioms which extend
Km are T, 4, D, 5, B [33, Chap. 4, pp. 192 f.],[229, Chap. 2.3] given by:

T : 2iϕ ⊃ ϕ

4 : 2iϕ ⊃ 2i2iϕ

D : 2iϕ ⊃ 3iϕ

5 : 3iϕ ⊃ 2i3iϕ

B : ϕ ⊃ 2i3iϕ

These axioms correspond to reflexivity, transitivity, seriality, euclideaness and symmetry
of the accessibility relation. For instance, K4m = Km ⊕ 4, S4m = Km ⊕ T ⊕ 4, S5m =
S4m ⊕ 5. The logics extending K by T, 4, D, 5 or B are sound and complete w.r.t. their
corresponding frame classes (so-called Kripke complete) [130; 168; 169; 215].

Theorem 2.1.2. Let ∆ be any one of the following sets of formulæ: K, T, 4, D,
5, B, K4m, S4m, S5m. It holds for all ϕ ∈ ForMLm that ∆; ∅; ∅ ϕ if and only if
∆; ∅; ∅ ϕ. ∇

Relationship between Modal and Description Logic

According to Schild [245], we can establish the correspondence between Km and ALC
by defining a function f mapping ALC-concepts to Km-formulæ assuming that ALC
consists of m role names R1, R2 . . . , Rm:

f(A) =A, A atomic;
f(¬C) =¬f(C);

f(C ⊙D) =f(C) ⊙ f(D), ⊙ ∈ {⊓,⊔};
f(∃Ri.C) =3i(f(C));
f(∀Ri.C) =2i(f(C)).

The semantic connection between ALC and Km is easily observable, i.e., interpretations
I = (∆I , ·I) of ALC correspond to Kripke models of Km with ∆I as the set of worlds
and ·I expressing both the valuation of the propositional variables and the accessibility
relations. In this sense, Kripke models of Km can be viewed as ALC interpretations

24

2.1 Description Logic

and vice versa. Hence, we obtain that ALC is a notational variant of Km by showing
by induction on the structure of ALC-concepts that an ALC-concept C is satisfiable if
and only if the Km-formula f(C) is satisfiable. Note that the latter correspondence can
only be established at the level of concept satisfiability, since the basic modal logic Km

does not provide the necessary expressivity to account for reasoning w.r.t. knowledge
bases consisting of an ABox and a TBox. Taking into account TBoxes alone, we can
say that an ALC-concept C is satisfiable w.r.t. a TBox T if and only if there exists a
model M and a world x in its domain such that M f(T) and M;x f(C), where
f(T) =df {¬f(C)∨f(D) | C ⊑ D ∈ T }. We can state satisfiability of a concept C w.r.t.
a non-empty TBox in terms of the global consequence relation, i.e., C is satisfiable
w.r.t. a TBox T iff ∅; f(T); f(C) ̸ ⊥.

In contrast to TBoxes, ABoxes do not have a direct correspondence in modal lo-
gic. However, the problem of expressing ABoxes can be addressed by extending the
correspondence to converse propositional dynamic logic [111; 245] or hybrid logic [7].

Remark 2.1.1. The close relationship of DLs to modal logics yields that the standard
translation of modal logic into first-order logic (QC) applies for DLs as well. More
precisely, ALC can be translated into the QC language with one free variable where
unary predicates correspond to atomic concepts, and binary predicates express roles.
Let x, y be first-order variables. The standard translation of ALC concepts into QC
formulæ if given as follows:

STx(A) =PA(x);
STx(⊤) = ⊤;
STx(⊥) = ⊥;

STx(¬C) = ¬STx(C);
STx(C ⊓D) =STx(C) ∧ STx(D);
STx(C ⊔D) =STx(C) ∨ STx(D);
STx(∃R.C) = ∃y.(PR(x, y) ∧ STy(C));
STx(∀R.C) = ∀y.(PR(x, y) ⇒ STy(C)),

where y is different from x. Since this translation requires only two variables, ALC
corresponds to the two-variable fragment of QC [180; 16, pp. 162 f.]. The translation
extends to TBox and ABox statements while preserving the semantics [24, pp. 9–10]. ■

The correspondence between DLs and modal logics can be seen as the base line of our
development of constructive DLs, i.e., constructive ALC will be based on a constructive
analogue of the modal logic Km, which is introduced in the following.

25

2 Background

2.2 Constructive Logic

Constructive (or intuitionistic) logic originated from the philosophy of constructive
mathematics and has gained in importance in the last forty years, mainly influenced by
the increasing interest of applying constructive methods in computer science. Simply
put, constructivism can be viewed as an opposite pole to formalism and platonism,
and demands that the existence of mathematical objects depends on positive evidence
or proof in the form of effective constructions [265]. Classical logic is based on a
platonic notion of truth, i.e., it is assumed that mathematical objects exist and their
truth is known independently of context, time or space under the view of an external
mathematically consistent reality. The meaning of statements is determined by their
truth-value, and the truth-value of a compound formula is determined by the truth-
values of its components.

In contrast, the main principle of constructive logic is the notion of constructive proof
and goes back to the philosophy of mathematics by Brouwer [53], also known under the
name Intuitionism. Brouwer viewed mathematics as a mental activity of an idealised
mathematician, where mathematical objects and their properties are determined by
mental constructions. This view demands that mathematical objects are explicitly
represented by positive evidence such that they (and their existence) can be verified
in terms of a traceable process of construction. In particular, Brouwer criticised the
axiom schema ϕ∨ ¬ϕ (see CPC8) that is known as the principle of the Excluded Middle
(PEM). This axiom is equivalent to the schema ¬¬ϕ ⊃ ϕ that justifies proofs by the
principle of reductio ad absurdum, i.e., one can prove the existence of an object without
giving a method of how to construct it [62, pp. 2 f.]. For instance, the classical reading
of the statement ¬∀x.¬ϕ(x) ⇒ ∃x.ϕ(x) is: If we can derive a contradiction from the
assumption that no object x satisfies property ϕ(x), then there must be an object x
with property ϕ(x). Such indirect proofs are called non-constructive and are rejected by
intuitionistic reasoning. Indeed, from a constructive perspective the PEM asserts that
a mathematical problem expressed by a statement ϕ can be decided in terms of having
a proof of either ϕ or ¬ϕ. However, not every problem is decidable, which becomes
obvious when we consider an open mathematical problem like P = NP or Goldbach’s
conjecture for which we neither know a proof nor a falsification.

The first (informal) intuitionistic interpretation of logic, based on Brouwer’s ideas, is
the so-called proof-interpretation or Brouwer-Heyting-Kolmogorov interpretation (BHK-
interpretation for short), invented independently around the same time by Heyting [133]
and Kolmogorov [163]. Under the BHK-interpretation the meaning of a statement is
explained in terms of its proof and the proof of a logically compound statement is
determined by the proof of its components [265, p. 9; 268]. Let us recapitulate this idea

26

2.2 Constructive Logic

for the propositional language according to Heyting’s formulation, where ¬ϕ denotes
ϕ ⊃ ⊥:

• A proof of ϕ ∧ ψ is determined by a pair (π1, π2) where π1 is proof of ϕ and π2 is
a proof of ψ.

• A proof of ϕ ∨ ψ is determined by (i, π) such that i = 0 and π is a proof of ϕ or
i = 1 and π is a proof of ψ.

• A proof of ϕ ⊃ ψ is a construction t, turning any proof π of ϕ into a proof t(π)
of ψ.

• There exists no proof of ⊥ (contradiction).

• A proof of ¬ϕ is a construction that transforms any proof π of ϕ into a contra-
diction.

It is obvious that this interpretation does not constitute a strict mathematical definition,
since the notions of proof and construction are insufficiently precise [84, p. 3]. Since
Heyting’s interpretation several different semantics (topological, Kripke-style, algebraic,
realisability semantics, etc.) [265] have been proposed to make this notion more precise.
The proof interpretation by Brouwer anticipated the development of a precise meaning
of the notions of construction and proof. It became notably successful in the field
of computer science in the form of a computational interpretation of proofs, which
identifies propositions with types, and is nowadays known as the propositions as types
notion, Curry-Howard isomorphism or proofs as programs principle. This correspond-
ence bridges the gap between the proof theory of constructive logic and computational
calculi from the field of type theory, based on the idea that each constructive proof
corresponds to a term (computer program) in a typed calculus (programming language).
For instance, the inhabited types of combinatory logic coincide with the theorems of
the implicational fragment of intuitionistic propositional logic, and, a similar corres-
pondence can be shown between natural deduction or sequent calculus proofs with
terms in the simply typed λ-calculus [68; 70; 248]. The Curry-Howard correspondence
gave rise to an active field of research and the invention of numerous computational
interpretations of constructive logic, see [29; 66; 113; 139; 140; 149; 182; 248; 252].

In the rest of this section we will focus on Kripke-style semantics and Hilbert-style
proof systems. We refer the reader to [86; 134; 265] for a comprehensive introduction
to the philosophy and mathematics of intuitionism and in particular intuitionistic logic.
The connection of constructivism and computer science has been highlighted in [264].

27

2 Background

2.2.1 Intuitionistic Propositional and First-Order Logic

Intuitionistic Propositional Logic

Intuitionistic propositional logic (IPC) can be viewed as a weakening of CPC where the
law of the Excluded Middle is not universally valid and therefore discarded, going back
to the constructive approach to mathematics by Brouwer [53; 265]. The language of
IPC coincides with that of classical propositional logic.

Definition 2.2.1 (Syntax of IPC [134, pp. 97 ff.][265]). The language of IPC is based
on a denumerable set Var = {p, q, r, . . .} of propositional variables. The set of well-
formed IPC-formulæ over Var is defined inductively by the following grammar with
p ∈ Var:

ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ ∇

Notation. We recall that ⊤ is codable as ¬⊥, ¬ϕ abbreviates ϕ ⊃ ⊥ and ϕ ≡ ψ is
expressed by ϕ ⊃ ψ ∧ ψ ⊃ ϕ. Contrary to classical logic, the propositional connectives
are not interdefinable in IPC [72, p. 49]. We will write Γ, ϕ for the union Γ ∪ {ϕ} and
use the general pattern Γ, ϕ1, ϕ2, . . . to denote Γ ∪ {ϕ1} ∪ {ϕ2} ∪ The union of two
sets of formulæ Γ and Γ′ is expressed by Γ, Γ′. ■

The system IPC can be characterised in terms of a Hilbert-style axiomatisation [84; 158;
265], which is obtained from the axioms of CPC by discarding axiom CPC8 (PEM).

Definition 2.2.2 (Hilbert deduction for IPC [72, p. 9; 62, p. 45]). An IPC-proof of a
formula ϕ, written IPC ϕ, is a finite sequence of formulæ ending with ϕ, each of which
is a substitution instance of an axiom, or arises from earlier items through application
of one of the inference rules. The axioms and inference rules of IPC are as follows where
ϕ, ψ and ϑ are IPC formulæ:

Axioms (IPC)
IPC1 : ϕ ⊃ (ψ ⊃ ϕ)
IPC2 : (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ))
IPC3 : ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ))
IPC4 : (ϕ ∧ ψ) ⊃ ϕ, (ϕ ∧ ψ) ⊃ ψ

IPC5 : ϕ ⊃ (ψ ∨ ϕ), ψ ⊃ (ψ ∨ ϕ)
IPC6 : (ϕ ⊃ ϑ) ⊃ ((ψ ⊃ ϑ) ⊃ ((ϕ ∨ ψ) ⊃ ϑ))
IPC7 : ⊥ ⊃ ϕ

Rules
MP : ϕ and ϕ ⊃ ψ implies ψ

∇

28

2.2 Constructive Logic

An important property of constructive logic directly connected with the BHK-proof
interpretation is the disjunction property, which states that if the disjunction ϕ ∨ ψ is
a theorem of IPC, then either ϕ or ψ is a theorem of IPC.

Proposition 2.2.1 (Disjunction property [72, pp. 44 ff.]).

if IPC ϕ ∨ ψ then either IPC ϕ or IPC ψ. ∇

Proof. For the proof see [72, pp. 44 ff.]. □

The notion of Hilbert derivation can be extended relative to a set of assumptions.
Let IPCax denote the set of axiom schemata of IPC closed under substitution. If Γ is
a set of IPC formulæ and ϕ an IPC formula, then the expression Γ IPC ϕ means that
ϕ is derivable from the set Γ of assumptions with the help of the axioms and rules of
Def. 2.2.2. This notion of deduction from assumptions is expressed by the following
sound and complete proof system.

ϕ ∈ Γ
Γ IPC ϕ

ϕ ∈ IPCax

Γ IPC ϕ

Γ IPC ϕ ⊃ ψ Γ′
IPC ϕ

Γ, Γ′
IPC ψ

An important meta-theorem is the Deduction Theorem, which states that if formula ϕ
is derivable from a set of assumptions Γ conjoined with formula ψ, then the implication
ψ ⊃ ϕ is derivable from Γ.

Theorem 2.2.1 (Deduction Theorem [72, p. 10]).

Γ, ψ IPC ϕ iff Γ IPC ψ ⊃ ϕ ∇

Proof. The (⇒) direction is by induction on the length of a derivation and uses the
axiom schemata IPC1 and IPC2, and the fact that Hilbert derives identity IPC ϕ ⊃ ϕ.
The converse direction (⇐) is straightforward, using monotonicity of derivations. □

The Deduction Theorem comes usually into play when proving the equivalence
between a natural deduction or Gentzen-style sequent system and a Hilbert-type system.
While the Deduction Theorem is an admissible rule in Hilbert-style systems obtained
from the set of axioms and inference rules, it is usually part of natural deduction or
sequent calculi in the form of a primitive inference rule, for instance in natural deduction
this rule is known as implication introduction. The reader may consult the work of
Porte [230] for a comprehensive retrospect on the Deduction Theorem.

29

2 Background

Kripke Semantics

So far, a wide variety of different model-theoretic semantics [12; 265] [72, pp. 22 ff.]
have been developed to give an appropriate semantic characterisation for the (informal)
proof interpretation of intuitionistic logic. We will focus on Kripke-style semantics for
IPC [12; 170; 265] in the following. The usual interpretation of intuitionistic logic [72,
p. 25] is as a process of acquiring knowledge over stages of time from the view of an
agent or mathematician who is involved in the construction of mathematical objects or
statements. The agents memory is assumed to be perfect in the sense that once acquired
facts become persistent over time such that knowledge increases monotonically in time.
This structure induces a partially ordered set of states of knowledge, represented by
possible worlds in the Kripke semantics.

Definition 2.2.3 (Kripke model [72, p. 46; 62, pp. 25 f.]). A Kripke model for IPC is
a tuple M = (F ,V), where F = (W,⪯) is an intuitionistic frame, W is a non-empty
set of worlds and ⪯ is a preorder (i.e., reflexive and transitive) over W . The valuation
V is mapping each propositional variable p ∈ Var to a subset V(p) of worlds in W in
which the propositional variable is true, subject to the condition that ⪯ is hereditary
w.r.t. propositional variables, i.e., if x ⪯ x′ and x ∈ V(p) then x′ ∈ V(p). We will write
M;x p iff x ∈ V(p) for p ∈ Var.
The validity relation M;x ϕ is defined for arbitrary formulæ of IPC by structural
recursion on ϕ:

M;x ⊤;
M;x ̸ ⊥;
M;x ϕ ∧ ψ iff M;x ϕ and M;x ψ;
M;x ϕ ∨ ψ iff M;x ϕ or M;x ψ;
M;x ϕ ⊃ ψ iff ∀x′ ∈ W. (x ⪯ x′ & M;x′ ϕ) ⇒ M;x′ ψ;
M;x ¬ϕ iff ∀x′ ∈ W. x ⪯ x′ ⇒ M;x′ ̸ ϕ.

A formula ϕ is satisfiable if there exists a model M and a world x in its domain such
that M;x ϕ. We say that M is a model of a formula ϕ, denoted by M ϕ, if and
only if for every x ∈ W, M;x ϕ. A formula ϕ is valid, written ϕ, if it is true in all
models. These notions are lifted to sets of formulæ in the usual way. ∇

In intuitionistic logic once established knowledge at a certain stage becomes persistent,
which is in line with the idea of accumulating certainty over stages of information [170;
204; 265; 267]. This is expressed by the following important lemma, which states that
the heredity condition transfers to arbitrary formulæ.

30

2.2 Constructive Logic

Proposition 2.2.2 (Monotonicity property [265, p. 78]). Let M = (F ,V) with F =
(W,⪯) be an intuitionistic Kripke model and x, x′ ∈ W . Then, the following holds for
all IPC formulæ ϕ:

if x ⪯ x′ and M;x ϕ then M;x′ ϕ. ∇

Proof. By induction on the structure of ϕ [cf. 265, p. 78]. □

IPC is sound and complete [72, Thm. 16, p. 33], in particular, the Hilbert system of
IPC is sound and complete w.r.t. the Kripke semantics for IPC [62; 170]. Furthermore,
IPC has the finite model property that implies decidability [72, p. 46], with the important
property that non-theorems of IPC are refuted by finite Kripke models. The complexity
of the problem of determining whether a formula is intuitionistically valid in IPC has
been investigated in [253; 256], and it corresponds to that of K and S4, which are
PSpace-complete.

Example 2.2.1 ([72, p. 36]). The Kripke model in Fig. 2.2 with W = {x0, x1, x2} is a
counter example for the validity of the PEM = ϕ ∨ ¬ϕ, its weak variant ¬ϕ ∨ ¬¬ϕ and
(¬¬ϕ ⊃ ϕ) ⊃ (ϕ ∨ ¬ϕ).

x0

x1 x2
ϕ

⪯ ⪯

Figure 2.2: Countermodel for ϕ ∨ ¬ϕ, ¬ϕ ∨ ¬¬ϕ and (¬¬ϕ ⊃ ϕ) ⊃ (ϕ ∨ ¬ϕ). [72, p. 36]

See [72, pp. 35 ff.] for a more comprehensive exposure of counterexamples for formulæ,
which are classically valid but not intuitionistically. ■

Intuitionistic First-Order Logic

Intuitionistic propositional logic can be extended to the language of first-order logic.
We denote intuitionistic first-order logic by IQC, and assume that the reader is familiar
with the key concepts of first-order logic. In the following, we will shortly review the
intuitionistic Kripke models [170] of first-order logic, restricted to the language with
predicate symbols only [see 265, pp. 80 ff.], to simplify the presentation. We assume
given some first-order signature, consisting of n-ary predicate symbols P,Q, . . . and a
denumerable set of individual variables x, y, Terms and formulæ on the basis of
the propositional connectives ∧,∨,⊃,⊥ and the quantifiers ∃,∀, the concept of free

31

2 Background

and bound variables, and the notion of substitution are defined as usual. The idea
is to assign a domain to each state of the Kripke model, and to extend the heredity
condition such that the collection of true predicates increases monotonically along the
preorder over the states of knowledge.

Definition 2.2.4 (Kripke model [265, pp. 80 ff.]). A Kripke model for IQC is a triple
M = (F , D,), where F = (W,⪯) is an intuitionistic frame, D is a function assigning
to each state x ∈ W a set D(x) ̸= ∅ such that for all x, y ∈ W. x ⪯ y ⇒ D(x) ⊆ D(y).

Let the language be extended with constant symbols for each element of D ={D(x) | x ∈ W}. The forcing relation M;x ϕ is defined in the extended lan-
guage with constants in D(x) and is given directly by M such that

M;x P n(d1, . . . , dn) ⇒ di ∈ D(x), for 1 ≤ i ≤ n;
M;x P n(d1, . . . , dn) and x ⪯ x′ ⇒ M;x′ P n(d1, . . . , dn);

for ground atomic predications. The propositional operators are interpreted as in
Def. 2.2.3 for IPC, and the interpretation of the quantifiers is given by

M;x ∀x.ϕ(x) iff ∀x′ ∈ W. (x ⪯ x′ & ∀d ∈ D(x′).M;x′ ϕ(d));
M;x ∃x.ϕ(x) iff M;x ϕ(d) for some d ∈ D(x).

A formula ϕ is satisfiable if there exists a model M and a state x such that M;x ϕ.
M is a model of formula ϕ, denoted by M ϕ if and only if for every x ∈ W,M;x ϕ.
A formula ϕ is valid, written ϕ, if it is true in all models. Again, these notions are
lifted to sets of formulæ in the standard fashion. ∇

The Hilbert system for IQC is given by the axioms of IPC, extended by the following
axiom schemata and rules [265, p. 72; 72, pp. 9 f.], where ϕ(x) stands for an arbitrary
formula, t denotes a term, ϕ(t) denotes the result of substituting t for each free x in
ϕ, and t is free for x in ϕ(x) in the sense that no free occurrence in t becomes bound
during the substitution process.

Axioms (IQC)
IQC∀ : ∀x.ϕ(x) ⊃ ϕ(t)
IQC∃ : ϕ(t) ⊃ ∃x.ϕ(x)

Rules (x is not free in ϕ)
∀I : ϕ ⊃ ψ(x) implies ϕ ⊃ ∀x.ψ(x)
∃E : ψ(x) ⊃ ϕ implies ∃x.ψ(x) ⊃ ϕ

We refer the reader to [265, Chap. 2; 134] for a comprehensive presentation of first-
order intuitionistic logic in terms of its semantics and proof theory.

32

2.2 Constructive Logic

2.2.2 Intuitionistic Modal Logic

Intuitionistic modal logic (IML) extends propositional intuitionistic logic by the mod-
alities 2 and 3 and consequently has the same syntax as classical modal logic. In
contrast to classical modal logics there is no uniform choice of the minimal constructive
modal logic corresponding to the classical system K, but rather we are facing a ‘[. . .]
plurality problem when constructivizing notions [. . .]’ [80, p. 3] of classical mathematics.
Indeed, several different versions of constructive (or intuitionistic) modal logics have
been considered in the past [4; 32; 90; 96; 97; 118; 188; 196; 226; 228; 249; 276]. Tech-
nically speaking, IMLs conform in that they refute the law of the Excluded Middle and
the classical double negation duality, which leads to independent 2 and 3 modalities.
It is then no longer obvious how these modalities are semantically related. Whereas
most IMLs agree on the interpretation of the necessity modality 2, the constructive
meaning of possibility 3 is subject to controversy. This becomes clearly visible when
considering the behaviour of possibility 3 in IMLs and modal type theories [27; 28; 80;
90; 198; 210; 226; 272]. This leads to the question of what system should be considered
the constructive analogue of the modal logic K. Arguably, the answer seems to be
that there is no single optimal constructive reinterpretation of K, but many competing
theories whose constructive reading of the modalities can serve different application
domains.

We will briefly introduce two established approaches in the following and present
the main characteristics of IMLs. A more detailed discussion on the semantics of these
IMLs and their relation to our approach is part of Chapter 4. For a comprehensive
survey on IMLs the reader is referred to [249; 276], general results on the decidability
of IMLs have been discussed in [5; 275; 278].

Intuitionistic K

The traditional approach in intuitionistic modal logics is to dualise the standard algeb-
raic characterisation of 2 as a monotonic ∧-preserving operator and to define 3 as a
monotonic ∨-preserving modality.

This approach has been realised by two equivalent axiomatisations, the system by
Fischer-Servi [96], denoted by FS in [103], and IK [228; 249] by Plotkin and Stirling:

33

2 Background

Axioms (IK)
All theorems of IPC
IK1 : 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ)
IK2 : 2(ϕ ⊃ ψ) ⊃ (3ϕ ⊃ 3ψ)
IK3 : ¬3⊥
IK4 : 3(ϕ ∨ ψ) ⊃ (3ϕ ∨ 3ψ)
IK5 : (3ϕ ⊃ 2ψ) ⊃ 2(ϕ ⊃ ψ)

Rules
MP : ϕ and ϕ ⊃ ψ implies ψ
Nec : ϕ implies 2ϕ

Axioms (FS)
All theorems of IPC
FS1 : 2⊤
FS2 : 2(ϕ ∧ ψ) ≡ (2ϕ ∧ 2ψ)
FS3 : ¬3⊥
FS4 : 3(ϕ ∨ ψ) ≡ (3ϕ ∨ 3ψ)
FS5 : (3ϕ ⊃ 2ψ) ⊃ 2(ϕ ⊃ ψ)
FS6 : 3(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 3ψ)
Rules
MP : ϕ and ϕ ⊃ ψ implies ψ
Reg : ϕ ⊃ ψ implies 2ϕ ⊃ 2ψ and 3ϕ ⊃ 3ψ.

One can easily show that the systems IK and FS are equivalent, by mutual simulation
of the axioms and inference rules. Analogously to the Hilbert deduction relation of IPC
(see Def. 2.2.2), we denote by IK and FS the Hilbert deduction relation of the system
IK and FS, respectively.

Proposition 2.2.3. The systems IK and FS are equivalent, i.e., ∀ϕ ∈ ForML we have

IK ϕ iff FS ϕ. ∇

Proof. For the direction IK ⇒ FS it suffices to give an explanation for the rule Reg and
the axioms FS1,FS2 and FS6, since FS3–FS5 are already covered by the axioms IK3–IK5,
with the exception that for axiom FS4 we need to justify the direction (3ϕ ∨ 3ψ) ⊃
3(ϕ ∨ ψ).

Regarding rule Reg let us suppose that Hilbert derives ϕ ⊃ ψ in FS. The derivation
for necessity 2 is as follows:
1. ϕ ⊃ ψ Ass.;
2. 2(ϕ ⊃ ψ) from 1 by Nec;
3. 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ) IK1;
4. 2ϕ ⊃ 2ψ from 3, 2 by MP.

For possibility 3 we proceed analogously by relying on axiom IK2:
1. ϕ ⊃ ψ Ass.;
2. 2(ϕ ⊃ ψ) from 1 by Nec;
3. 2(ϕ ⊃ ψ) ⊃ (3ϕ ⊃ 3ψ) IK2;
4. 3ϕ ⊃ 3ψ from 3, 2 by MP;

34

2.2 Constructive Logic

Axiom FS1 follows easily from the fact that IPC derives ⊤ and by an application of
rule Nec. Secondly, we show that axiom FS2 is admissible in IK, which is by giving a
derivation for both directions:
1. (ϕ ∧ ψ) ⊃ ψ IPC4;
2. 2((ϕ ∧ ψ) ⊃ ψ) from 1 by Nec;
3. 2((ϕ ∧ ψ) ⊃ ψ) ⊃ (2(ϕ ∧ ψ) ⊃ 2ψ) IK1;
4. 2(ϕ ∧ ψ) ⊃ 2ψ from 3, 2 by MP;
5. (ϕ ∧ ψ) ⊃ ϕ IPC4;
6. 2((ϕ ∧ ψ) ⊃ ϕ) from 5 by Nec;
7. 2(ϕ ∧ ψ) ⊃ 2ϕ from IK1, 6 by MP.

Then, using the abbreviations ϑ =df 2(ϕ ∧ ψ), γ =df 2ϕ and σ =df 2ψ, one shows that
from ϑ ⊃ γ and ϑ ⊃ σ Hilbert derives ϑ ⊃ (γ ∧ σ):

1. ϑ ⊃ γ Ass.;
2. ϑ ⊃ σ Ass.;
3. γ ⊃ (σ ⊃ (γ ∧ σ)) IPC3;
4. ϑ ⊃ (γ ⊃ (σ ⊃ (γ ∧ σ))) from IPC1, 3 by MP;
5. (ϑ ⊃ γ) ⊃

ϑ ⊃ (σ ⊃ (γ ∧ σ))

from IPC2, 4 by MP;

6.

ϑ ⊃ (σ ⊃ (γ ∧ σ))

⊃ (ϑ ⊃ σ) ⊃ (ϑ ⊃ (γ ∧ σ)) IPC2;

7. (ϑ ⊃ γ) ⊃ (ϑ ⊃ σ) ⊃ (ϑ ⊃ (γ ∧ σ)) from 6, 5 by composition;
8. (ϑ ⊃ σ) ⊃ (ϑ ⊃ (γ ∧ σ)) from 7, 1 by MP;
9. ϑ ⊃ (γ ∧ σ) from 8, 2 by MP.

Note that in step 7 we use the fact that from ϕ ⊃ ψ and ψ ⊃ γ Hilbert derives ϕ ⊃ γ,
which is known as ‘composition’ or B-combinator [140] in combinatory logic. We will
present a proof for a generalisation of the B-combinator in Sec. 5.1. In the other
direction the derivation is as follows:
1. ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ)) IPC3;
2. 2(ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ))) from 1 by Nec;
3. 2ϕ ⊃ 2(ψ ⊃ (ϕ ∧ ψ)) from IK1, 2 by MP;
4. 2(ψ ⊃ (ϕ ∧ ψ)) ⊃ (2ψ ⊃ 2(ϕ ∧ ψ)) IK1;
5. 2ϕ ⊃ (2ψ ⊃ 2(ϕ ∧ ψ)) from 4, 3 by composition.

Then, (2ϕ∧2ψ) ⊃ 2(ϕ∧ψ) follows from 5 by the admissible rule of de-currying, which
says that Hilbert derives (ϕ ∧ ψ) ⊃ γ from ϕ ⊃ (ψ ⊃ γ) (see Lemma 5.1.3, p. 106).

Regarding the (⇐) direction of axiom FS4 the goal is to give in IK a derivation of
(3ϕ ∨ 3ψ) ⊃ 3(ϕ ∨ ψ) that can be obtained as follows:

1. (3ϕ ⊃ 3(ϕ ∨ ψ)) ⊃ (3ψ ⊃ 3(ϕ ∨ ψ)) ⊃ ((3ϕ ∨ 3ψ) ⊃ 3(ϕ ∨ ψ)) IPC6;

35

2 Background

2. ϕ ⊃ (ϕ ∨ ψ) IPC5;
3. ψ ⊃ (ϕ ∨ ψ) IPC5;
4. 2(ϕ ⊃ (ϕ ∨ ψ)) from 2 by Nec;
5. 2(ψ ⊃ (ϕ ∨ ψ)) from 3 by Nec;
6. 3ϕ ⊃ 3(ϕ ∨ ψ) from IK2, 4 by MP;
7. 3ψ ⊃ 3(ϕ ∨ ψ) from IK2, 5 by MP;
8. (3ϕ ∨ 3ψ) ⊃ 3(ϕ ∨ ψ) from (1, 6 by MP), 7 by MP.

The remaining axiom FS6 can be derived as follows: First, we show that in IPC we
can derive ϕ ⊃ ((ϕ ⊃ ψ) ⊃ ψ). To this end, we use the fact that Hilbert derives identity
(ϕ ⊃ ψ) ⊃ (ϕ ⊃ ψ) (see Lemma 5.1.2, p. 103). An application of de-currying together
with commutativity of ∧ yields (ϕ∧(ϕ ⊃ ψ)) ⊃ ψ. Thereof, we obtain ϕ ⊃ ((ϕ ⊃ ψ) ⊃ ψ)
by currying. The remaining derivation goes as follows:
1. ϕ ⊃ ((ϕ ⊃ ψ) ⊃ ψ) from above;
2. 2(ϕ ⊃ ((ϕ ⊃ ψ) ⊃ ψ)) from 1 by Nec;
3. 2ϕ ⊃ 2((ϕ ⊃ ψ) ⊃ ψ) from IK1, 2 by MP;
4. 2((ϕ ⊃ ψ) ⊃ ψ) ⊃ (3(ϕ ⊃ ψ) ⊃ 3ψ) IK2;
5. 2ϕ ⊃ (3(ϕ ⊃ ψ) ⊃ 3ψ) from 4, 3 by composition.

Thereof, we obtain the goal 3(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 3ψ) from 5 by a combination of
de-currying, commutativity of ∧ and currying. This completes the first part and shows
that the axioms of FS are admissible in IK.

It remains to show the converse direction FS ⇒ IK. This time, it suffices to argue
admissibility of rule Nec and the axioms IK1–IK2. For rule Nec let us suppose that
Hilbert derives ϕ in IK:
1. ϕ Ass.;
2. ⊤ ⊃ ϕ from IPC1, 1 by MP;
3. 2⊤ ⊃ 2ϕ from 2 by Reg;
4. 2⊤ FS1;
5. 2ϕ from 3, 4 by MP.

The next derivation shows how the axiom IK1 is obtained:
1. (ϕ ⊃ ψ) ⊃ (ϕ ⊃ ψ) identity;
2. ((ϕ ⊃ ψ) ∧ ϕ) ⊃ ψ from 1 by de-currying;
3. 2((ϕ ⊃ ψ) ∧ ϕ) ⊃ 2ψ from 2 by Reg;
4. (2(ϕ ⊃ ψ) ∧ 2ϕ) ⊃ 2((ϕ ⊃ ψ) ∧ ϕ) FS2;
5. (2(ϕ ⊃ ψ) ∧ 2ϕ) ⊃ 2ψ from 3, 4 by composition;
6. 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ) from 5 by currying.

36

2.2 Constructive Logic

Finally, we show the derivation for axiom IK2. Similarly to the case of axiom FS6 before,
we begin with ϕ ⊃ ((ϕ ⊃ ψ) ⊃ ψ), which is derivable in IPC.
1. ϕ ⊃ ((ϕ ⊃ ψ) ⊃ ψ) by IPC;
2. 3ϕ ⊃ 3((ϕ ⊃ ψ) ⊃ ψ) from 1 by Reg;
3. 3((ϕ ⊃ ψ) ⊃ ψ) ⊃ (2(ϕ ⊃ ψ) ⊃ 3ψ) FS6;
4. 3ϕ ⊃ (2(ϕ ⊃ ψ) ⊃ 3ψ) from 3, 2 by composition.

Then, the goal 2(ϕ ⊃ ψ) ⊃ (3ϕ ⊃ 3ψ) follows from 4 by a combination of de-currying,
commutativity of ∧ and currying. Thus, FS and IK are equivalent. □

The logic FS/IK comes with an elementary Kripke style model theory and there exist
several extensions, such as IS4, IS4.3, IS5, which can be characterised in terms of
appropriate frame classes [228]. The semantics of FS/IK has been given in two flavours
(see [249, p. 88] and [89]):

(i) A standard Kripke semantics that separates the partial order and the accessibility
relation. Indeed, it was shown by Grefe [118, pp. 45 ff.] that FS/IK can be
embedded into a fragment of intuitionistic first-order logic by using the very same
standard translation (cf. Remark 2.1.1) that embeds classical K into first-order
logic.

(ii) A birelational Kripke semantics, where the intuitionistic partial order and the
accessibility relation are relations on the same domain. This semantics can be
observed from the embedding of FS/IK into bimodal logics [cf. 118, pp. 48 ff.].

We will focus on the birelational semantics in the following.
The frames F = (W,⪯,R) of birelational semantics with the modal accessibility

relation R extend that of classical K by adding a reflexive and transitive relation ⪯ that
is capturing the intuitionistic notion of information increase over possible worlds. The
semantics of the system FS/IK is an extension of that of IPC by the interpretation of
2, 3 as universal and existential quantifiers over accessible worlds in an intuitionistic
meta-theory:

M;x 2ϕ iff ∀x′. x ⪯ x′ ⇒ ∀y. x′ R y ⇒ M; y ϕ; (2.1)
M;x 3ϕ iff ∃y. x R y & M; y ϕ. (2.2)

Intuitionistic logic demands that the semantics satisfy the usual intuitionistic heredity
condition, that is, all propositions are closed under ⪯, i.e., if x ϕ and x ⪯ x′ then
x′ ϕ. Obviously, this condition is built into the semantics of 2 while the interpretation
of 3 coincides with its classical counterpart in K. The system FS/IK requires the two

37

2 Background

following frame conditions, whereas (F1) is necessary to achieve heredity under (2.2):

(F1) ∀x, x′, y ∈ W,x ⪯ x′ & x R y ⇒ ∃y′ ∈ W, such that x′ R y′ & y ⪯ y′;
(F2) ∀x, y, y′ ∈ W,x R y & y ⪯ y′ ⇒ ∃x′ ∈ W, such that x ⪯ x′ & x′ R y′.

Their diagrammatic representation is given by Fig. 2.3.

x

x′

y

y′

(F1)

R

⪯

R

⪯

x

x′

y

y′

(F2)

R

⪯

R

⪯

Figure 2.3: Frame conditions of FS/IK [249, p. 50].

The system FS/IK complies with several requirements [249, Chap. 3.3] one might
impose on an intuitionistic modal logic: (i) FS/IK is a conservative extension of IPC,
(ii) the modalities 2 and 3 are semantically independent and non-interdefinable in
terms of each other, (iii) the system satisfies the disjunction property, and (iv) the
addition of the law of the Excluded Middle ϕ ∨ ¬ϕ ≡ ⊤ collapses the theory of FS/IK
to give classical K.

Just like in classical K, necessity 2 distributes over conjunction while possibility
3 distributes over disjunction. According to [33; 103; 275], systems with the latter
property are known under the term normal modal logics (cf. p. 23) and many results
on their intuitionistic variants may be derived by exploiting the fact that there is an
embedding into the classical two-dimensional modal logic S4 ⊗ K [103; 275; 276; 278].
More details on the model and proof theory of FS/IK can be found in [96; 118; 228;
249; 276].

Constructive K

The second representative IML is called constructive K (CK). Like FS/IK before, CK is
a conservative extension of IPC; it satisfies the disjunction property, and the modalities
2 and 3 are independent. However, unlike FS/IK, the system CK refutes the axiom
schemata FS3/IK3 – FS5/IK5, i.e., CK is non-normal regarding 3 because it does neither
warrant the distribution of possibility 3 over disjunction, nor the interaction between

38

2.2 Constructive Logic

3 and 2, exhibited by axiom FS5/IK5. As argued in [196], these axiom schemata
fail to have a uniform computational justification when considered in the context of
computational type theories [91; 187; 205] or modal type theories [159; 209; 210; 226]
that exploit the Curry-Howard isomorphism between constructive proofs and λ-terms.
In particular, contextual interpretations of possibility 3 as considered by Curry in the
50’s [69] do not satisfy disjunctive distribution [92], and the first explicit refutation of
FS4/IK4 was given by Wijesekera [272; 273] in the context of constructive concurrent
dynamic logic.

The system that consists of the remaining schemata FS1/IK1, FS2/IK2 and FS6,
which appear to be computationally justified, forms the system CK [27; 188] with the
two equivalent axiomatisations:

Axioms (CK-1)
All theorems of IPC
IK1 : 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ)
IK2 : 2(ϕ ⊃ ψ) ⊃ (3ϕ ⊃ 3ψ)

Rules
MP : ϕ and ϕ ⊃ ψ implies ψ
Nec : ϕ implies 2ϕ

Axioms (CK-2)
All theorems of IPC
FS1 : 2⊤
FS2 : 2(ϕ ∧ ψ) ≡ (2ϕ ∧ 2ψ)
FS6 : 3(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 3ψ)
Rules
MP : ϕ and ϕ ⊃ ψ implies ψ
Reg : ϕ ⊃ ψ implies 2ϕ ⊃ 2ψ and 3ϕ ⊃ 3ψ.

Analogously to the Hilbert deduction relation of IPC (see Def. 2.2.2), let CK-1 and

CK-2 denote the Hilbert deduction relation of the system CK-1 and CK-2, respectively.
Again, one can easily show that the systems CK-1 and CK-2 are equivalent which comes
as a corollary from Prop. 2.2.3.

Corollary 2.2.1. The systems CK-1 and CK-2 are equivalent, i.e., ∀ϕ ∈ ForML

CK-1 ϕ iff CK-2 ϕ. ∇

Constructive modal logics based on CK have adequate birelational semantics [4; 90;
188; 196; 272], topological semantics [138] and category-theoretical semantics [27]. The
birelational semantics is based on (2.1) for 2 and the stronger interpretation of 3 which
replaces (2.2), and was introduced in [90] in the context of propositional lax logic (PLL):

M;x 3ϕ iff ∀x′. x ⪯ x′,∃y. x′ R y & M; y ϕ. (2.3)

Hereby, 3ϕ is hereditary w.r.t. ⪯ by definition and thus does not need the frame
property (F1). This way, and by further omitting frame condition (F2) as well, the
axiom schemata FS4/IK4 and FS5/IK5 turn into non-trivial frame properties generating

39

2 Background

proper extensions of CK. The axiom FS3/IK3 is refuted by the addition of fallible
worlds [4; 188; 196; 269] to the birelational Kripke frame, that is worlds where every
proposition is true.

In summary, the system CK is non-normal w.r.t. possibility 3 because of the lack of
disjunctive distribution. Furthermore, CK breaks with one requirement as postulated by
Simpson [249], that is, the addition of the principle of the Excluded Middle ϕ∨¬ϕ does
not collapse the theory of CK to classical K. We refer the reader to [32; 80; 188; 196]
for a more comprehensive discussion of the system CK and its model and proof theory.

40

CHAPTER 3

Constructive Description Logics – State of the Art

Rooted in early approaches in the field of artificial intelligence, description logics have
emerged to an active and large area of research and practice with a significant impact
in the field of knowledge representation and Semantic Web applications. Despite their
success in various application areas, only recently the question of investigating the
semantics and proof theory of constructive DLs has been addressed. A constructive
interpretation of truth becomes fundamental in application scenarios where it is im-
portant to reconcile model-theoretic truth and operational behaviour of proof systems,
which is very difficult or impossible under the classical semantics. However, just like
there exist many different classical DL theories to suit different applications, there
should be different constructive theories incorporating a choice of interpretations of
constructiveness. This chapter presents an overview of the current state of research in
the field of constructive description logics.

3.1 Constructive Description Logics: What, Why & How?

The work of de Paiva is one of the first proposals of ‘[. . .] possible conceptions of
constructive description logics’ [78, p. 1]. De Paiva puts forward the long-term goal to
define a constructive ‘contextual’ description logic inspired by the work of Bobrow et al.
[37]. The approach is motivated by philosophical, mathematical and pragmatic points
of view: (i) de Paiva [78] argues from a philosophical point of view that DLs mainly
concern about decidable predicates which ‘[. . .] should lead to calculi that are basically
constructive’ [78, p. 1]. (ii) From a mathematical perspective, the investigation of the
semantics and the proof theory of constructive DLs will be useful to obtain a compu-
tational interpretation of DLs following the Curry-Howard isomorphism which will lay
the ground for the development of a useful type theory based on DLs. Furthermore,
constructive DLs may be used as a kind of sanity check to provide evidence for the
meaningfulness of existing classical DLs. Moreover, de Paiva argues that expounding
the theory of constructive DLs will allow to examine their relation to existing classical
and constructive logics as well as to support their classification into the hierarchy of
traditional logics [52; 78]. (iii) From a pragmatic perspective, de Paiva [78, p. 1] claims

41

3 Constructive Description Logics – State of the Art

that constructive DLs would be the right foundation in application areas where one
has to deal with imprecise or incomplete domain knowledge, motivated by an example
from natural language processing.

The proposal puts forward three constructive variants of ALC, following a translation-
based approach. While the syntax of these constructive reinterpretations coincide with
that of ALC, only differing in including the implication operator (a.k.a. subsumption)
as a concept-forming operator and replacing concept negation ¬C by the abbreviation
C ⊃ ⊥, the adequate formulation of the semantics is subject to controversy:

(i) Firstly, ALC can be considered as a two-variable fragment of classical first-order
logic, i.e., de Paiva [78] defines the system IALC by using a syntactic translation
targeting intuitionistic first-order logic (IQC). This approach constructs the se-
mantics for IALC based on proper reductions of standard intuitionistic frames
from IQC that arise from the translation of ALC into IQC. Note that standard
intuitionistic models separate the intuitionistic partial order from the accessibility
relation(s). This approach is in line with the well-known construction of standard
intuitionistic Kripke-style semantics for FS/IK [103; 249, p. 190].

(ii) Secondly, one can exploit Schild’s [245] result stating that ALC is a notational
variant of the multimodal logic Km, and accordingly consider a translation into
a constructive version of K. However, as pointed out in [52; 78; 80; 196], there
exist several non-equivalent proposals of constructive modal logics that are ‘[. . .]
competing for the title [. . .]’ [78, p.3] of the constructive analogue of the modal
logic K. The paper proposes two IMLs as a target, firstly, the multimodal variant
of the system FS/IK [96; 228; 249], and secondly, the system CK [27; 188; 196].
The corresponding constructive description logics are denoted by iALC (based
on FS/IK) and cALC (CK) respectively [78].

De Paiva claims that cALC ‘[. . .] may be an adequate basis for dealing with the notion
of context as used in knowledge representation, artificial intelligence and computational
linguistics’ [188, p. 2]. However, the proposal does not give a formal definition of the
appropriate Kripke semantics for the system cALC. This is what will be achieved in
this thesis, by investigating the model theory and proof theory of cALC in detail.

3.2 Intuitionistic Semantics via Translation into IQC

3.2.1 Intuitionistic ALC (IALC)

The system IALC has been investigated from a model-theoretic and a proof-theoretic
perspective: Villa [270, pp. 6–11; 271] investigates the Kripke semantics of the system

42

3.2 Intuitionistic Semantics via Translation into IQC

IALC, which is obtained from the translation of ALC into IQC and discusses why
a direct translation of the Kripke semantics for intuitionistic first-order logic is not
adequate for the DL domain. Villa [270; 271] proves the monotonicity and disjunction
property, as well as disproves the finite model property for IALC. The latter is argued
by showing that, while each instance of the axiom schema KUR =df ∀R.¬¬C ⊃ ¬¬∀R.C
known as Kuroda principle is valid in all IALC models with a finite domain, one can
construct a countermodel to KUR in an infinite (standard) intuitionistic frame. Indeed,
Simpson [249] highlighted this fact before and showed that the finite model property
for some IK logics (IK, IKD, IKB, IT, IKDB, IKTB and IS5) can be established relative to
birelational semantics, while, w.r.t. standard intuitionistic Kripke models, these logics
fail to possess the finite model property. A similar argumentation falsifying the finite
model property for FS w.r.t. standard intuitionistic models (called FS-models in [103,
p. 192]) has been presented by Gabbay et al. [103, pp. 192 f.], and they show a proof of
the finite model property for FS w.r.t. non-standard (birelational) models by a filtration
method [103, pp. 453 ff.].

Clément [64] investigates the proof theory of IALC by defining the natural deduc-
tion system NIALC inspired by Braüner and de Paiva [50] and Simpson [249], proving
soundness and completeness w.r.t. IALC Kripke semantics, and develops a sound and
complete Gentzen-style sequent calculus, denoted by GIALC, for which he proves cut-
admissibility. Inspired by the work on focussing4, as introduced by Andreoli [6] in the
context of classical linear logic, Clément [64, pp. 61 ff.] defines the focussing sequent
calculus FGIALC for IALC, that allows for more efficient backward proof search, and
proves its correctness relative to the before-mentioned sequent calculus GIALC.

3.2.2 Intuitionistic ALC Kuroda Logic (KALC)

The works [39; 43; 45; 270; 271] of Bozzato et al. and Villa introduce a constructive
version of K that is motivated as a refinement of ALC, in which the classical semantics
is enriched by a partial order representing states of knowledge to deal with partial or
incomplete information that can increase in time [45, p. 51; 39, p. 7]. Its semantics
is induced by the direct translation to intuitionistic first-order semantics which corres-
ponds to the first proposal by de Paiva [78] for IALC, but restricts the intuitionistic
Kripke semantics such that the Kuroda principle KUR =df ∀R.¬¬C ⊃ ¬¬∀R.C be-
comes an axiom. Correspondingly, this logic is called KALC. According to [43; 270;
271] the schema KUR states that for every possible world exists a final (classical) world
with perfect knowledge, that is a successor having no further successors and which

4The idea of focussing is to provide a normal form for cut-free sequent calculi in which the structure
of the derivations is organised by the application of invertible and non-invertible rules, in order to
decrease the number of possible derivations to support efficient backward proof search.

43

3 Constructive Description Logics – State of the Art

is interpreted according to the classical semantics. Two variants of KALC have been
introduced, namely KALC and KALC∞, differing in whether the underlying poset is
assumed to be finite or infinite. Bozzato, Ferrari and Villa [43] conjecture that KUR
implies that KALC∞ satisfies the finite model property, without giving a proof.

(i) The logic KALC [39; 45] is based on a finite Kripke semantics in the style of
standard intuitionistic Kripke-semantics. The finite model property for KALC
trivially holds by definition, since the Kripke models generating the theory KALC
assume finiteness of the underlying poset right from the start. The notions
of forcing and realisability replace classical truth, and it is shown that KALC
enjoys the monotonicity and disjunction property. Decidability of KALC is
demonstrated by the development of a sound, complete and terminating tableau-
based decision procedure in [39, pp. 27 ff.; 45], deciding the standard DL reasoning
services like concept satisfiability, subsumption and instance checking. This
calculus is based on sets of signed formulæ inspired by Fitting [100] and efficiently
handles duplications in the treatment of implication, building on previous work
by Avellone, Ferrari and Miglioli [13] and Miglioli, Moscato and Ornaghi [200].
However, in contrast to the tableau calculus for CALCC by Odintsov and Wansing
[219] as described in the following, this work does not extend the technique from
[88] to handle the modalities ∃R, ∀R in a duplication free way. It is exemplified
that the tableau includes countermodel construction for inconsistent formulæ,
explicitly constructing states of knowledge related by a partial ordering to update
them. Regarding the complexity of the tableau algorithm, Bozzato [39, pp. 54–
55] concludes that KALC realisability is PSpace-hard and conjectures that an
implementation of a proof-strategy similar to the tracing technique [247; 261]
would yield PSpace-completeness for KALC. The relation of KALC to IALC,
KALC∞, IQC, IQC ⊕ KUR and FSm is studied in [39, pp. 56–65].

(ii) The logic KALC∞ [270, pp. 13–32; 271; 43] frees KALC from the restriction to
finite Kripke models and allows for a possibly infinite poset. In this way the
semantics correspond to the standard intuitionistic Kripke semantics of IALC,
but contrary to the latter the partial order is restricted to a poset with final
elements in order to force all instances of the schema KUR in KALC∞. Hereto,
the notion of final worlds is introduced, and it is required that for every possible
world there exists at least a final world, which is interpreted classically. In [270,
pp. 15–32; 271; 43] a sound and complete tableau calculus for KALC∞ with an
efficient handling of duplications is presented, that is inspired essentially by the
calculus for Kuroda logic [200] and optimised calculi for IPC [13; 150]. Villa [270,
pp. 33 ff.] introduces a natural deduction calculus, denoted by N DKur, and proves

44

3.3 Intuitionistic Semantics via Translation into FS/IK

corresponding theorems for soundness and completeness w.r.t. to the forcing
relation of KALC∞. In particular, such natural deduction calculi are essential to
study a computational interpretation and accordingly extend the Curry-Howard
correspondence to KALC∞.

3.3 Intuitionistic Semantics via Translation into FS/IK

De Paiva, Haeusler and Rademaker [77] present the system iALC that can be considered
a notational variant of Simpson’s IML IK [249] and coincides with de Paiva’s [78]
second proposal to obtain a constructive DL. They present a birelational Kripke-style
semantics for iALC, which is claimed to be a simplification of cALC [195] in the sense
that possibility distributes over nullary (FS3/IK3) and binary disjunctions (FS4/IK4).
The logic iALC is characterised in terms of a Hilbert-style calculus that coincides
with the axiomatisation of the multimodal version of the IML IK (cf. p. 33). De Paiva
et al. [77] state (without proof) that the Hilbert system is sound and complete w.r.t. the
proposed Kripke semantics. Furthermore, they introduce a natural deduction system
and a labelled sequent calculus for iALC and claim (without giving a proof) that (i) the
sequent calculus for iALC is equivalent to the Hilbert system for iALC, and (ii) the
sequent calculus for iALC is sound and complete w.r.t. the proposed Kripke semantics
for iALC.

In [123–126] the use of the intuitionistic DL iALC is motivated as a base for repres-
enting and reasoning about legal knowledge. In this approach, the possible worlds of
the domain (called legal universe in [126, p. 5]) represent individual legal statements,
the intuitionistic preorder controls the precedence of legal statements and roles express
the relationship between individual laws as legal connections. In [124–126] examples
discussing a case of “Conflict of Laws in Space”5 are considered, to demonstrate how
intuitionistic negation supports the analysis of the coherence of legal statements. Two
further sequent calculi for iALC are presented:

(i) A standard label-free sequent calculus for iALC is proposed in [126, p. 8], which
does not have independent right- and left-introduction rules for existential (∃R)
and universal restriction (∀R).

(ii) In [125] a sequent calculus is introduced that differentiates two kinds of rules:
a) The first kind of rules uses labelled concepts in hybrid style of the form x:C
and xRy, whereas b) the remaining set of rules is free of labels. It is claimed that

5The Conflict of Laws (also known as Private International Law) refers to a situation when the
outcome of a legal dispute has to deal with an external foreign law factor which leads to a
disagreement on the law (w.r.t. space, e.g. country) to be applied (cf. [185]).

45

3 Constructive Description Logics – State of the Art

this sequent calculus is sound and complete w.r.t. the iALC Kripke semantics and
deciding provability and satisfiability of iALC concepts is PSpace-complete
(without giving a proof).

In a recent work Haeusler and Rademaker [127] revise the sequent calculus from [125]
and give a proof of its soundness and completeness. The completeness is shown relative
to the axiomatisation of iALC by deriving the axioms of iALC in the sequent system.
Soundness is proven w.r.t. the Kripke semantics, demonstrating that each sequent rule
is validity preserving.

A contextual extension of cALC suggesting constructive modalities as McCarthy-style
contexts [186] in artificial intelligence, which has previously been discussed for CK in
[188], has been introduced by de Paiva and Alechina [79]. The authors recall the syntax,
Kripke semantics and proof theory of cALC in terms of Hilbert and Gentzen-style
sequent calculi. It is claimed that the Hilbert and Gentzen sequent calculi are sound
and complete w.r.t. the cALC Kripke semantics. Inspired by Wolter and Zakharyaschev
[277], the system cALC2 extends cALC by the modality 2, which is viewed as a
constructive context operator on top of cALC such that each possible world corresponds
to a cALC Kripke domain. A rough sketch of the proof showing decidability of the
satisfiability of cALC2 concepts is given, which relies on the results for cALC by Mendler
and Scheele [195]. The authors conjecture that a multimodal variant of cALC2 may
provide a system cALCctx supporting several artificial intelligence contexts and suggest
an application in the domain of natural language processing. However, no proofs are
given and the correctness of the presented sequent calculus remains unclear.

3.4 Constructive Inconsistency-tolerant Description Logics

An early approach to define constructive DLs is by Odintsov and Wansing [220], who
define three constructive inconsistency-tolerant paraconsistent description logics. In
short, ‘[. . .] paraconsistent logics are those, which admit inconsistent but non-trivial
theories, i.e., the logics which allow one to make inferences in a non-trivial fashion
from an inconsistent set of hypotheses’ [221, p. 1]. Odintsov and Wansing’s [220]
proposal is motivated by applications that have to deal with incomplete knowledge,
inconsistent data or negative information. The idea of their approach is to combine the
intuitionistic interpretation of information as stages of knowledge, where established
(true) facts monotonically increase along this order, with strong constructive negation
that allows to constructively handle falseness of facts, for an independent treatment
of positive and negative information w.r.t. the intuitionistic information order. Strong
(constructive) negation, denoted by the symbol ∼, goes back to the paraconsistent
four-valued logic N4 by Nelson [217] (cf. [221, pp. 132 ff.]) and is based on the idea that

46

3.4 Constructive Inconsistency-tolerant Description Logics

the falseness of an atomic concept can be seen directly and verified on the spot [221,
pp. 1 ff.], while the falseness of complex concept descriptions is determined by the
falseness of their components.

A key characteristic of Nelson’s [217] logic N4 is the constructible falsity property
given by ⊢ ∼(C ⊓D) ⇒ ⊢ ∼C or ⊢ ∼D, where ⊢ denotes the derivability relation
in the system N4 by Nelson. The logics introduced by Odintsov and Wansing [220],
denoted by CALCC (constructive classical ALC), CALCN4 and CALCN4d, extend ALC
by intuitionistic implication and strong negation, and their semantics are induced in
terms of translations:

(i) Firstly, CALCC extends the language ALC by adding implication as a primitive
operator and replacing negation (¬) by strong negation (∼). Its semantics is
obtained by the standard translation into classical predicate logic and uses an
interpretation of the form I = (∆I ,⪯I , ·I) that corresponds to the usual intu-
itionistic birelational semantics, where ⪯ is the intuitionistic preorder and the
objects of the domain ∆I represent the stages of information. The preorder ⪯ is
hereditary w.r.t. atomic concepts A, but also w.r.t. strongly negated propositions
∼A. The interpretation of the operators is no surprise. Implication is inter-
preted intuitionistically, while the modalities ∃R, ∀R are interpreted classically.
To satisfy the monotonicity property w.r.t. arbitrary concepts under this inter-
pretation, Odintsov and Wansing [220] require for all roles R the frame conditions
(cf. Fig. 2.3) ⪯−1 ;R ⊆ R ; ⪯−1 and ⪯ ;R ⊆ R ; ⪯6.

(ii) The logics CALCN4 and CALCN4d are based on Nelson’s [217] system N4 and
their semantics are induced by the translation into its first-order variant QN4
(quantified N4), differing in that the semantics of CALCN4d guarantees the duality
of the modalities ∀R and ∃R w.r.t. strong negation (∼). The interpretation for
both systems is given in terms of standard intuitionistic Kripke-style semantics
that separates the intuitionistic preorder from the modal accessibility relations.
Decidability of CALCN4d is proven by establishing the correspondence between
the positive fragment of CALCN4d and the positive fragment of the decidable
multimodal variant of the IML FS [96; 228], building on the results by Grefe [118,
pp. 24 ff.] and Simpson [249, pp. 157 ff.].

Proofs of the disjunction property and constructible falsity property are given for all
three systems. Further, sound and complete tableau calculi are presented for all three
systems, which use signed sets of concepts in the spirit of Fitting [100]. These allow

6In [219] the authors omit the frame condition ⪯ ;R ⊆ R ; ⪯ and replace it by the provably equivalent
intuitionistic interpretation of universal restriction (∀R) [cf. 249, pp. 45–46].

47

3 Constructive Description Logics – State of the Art

to express positive and negative statements of the form +C(a) or −C(a) relative to a
possible world a, which state that C is “true” or “not true” at a respectively.

In [219], the authors enhance the tableau calculus for CALCC by providing a ter-
minating, sound and complete tableau-based decision procedure for this logic, which
is inspired by ideas from Dyckhoff [88] to avoid the duplication of formulæ and the
occurrence of loops. This shows that CALCC is elementary decidable, and the authors
estimate the algorithmic complexity to be 2NExpTime.

Kaneiwa [153] presents the semantics of an extension of CALCN4, denoted by CALC2
∼,

which combines strong negation and Heyting (intuitionistic) negation. The author com-
pares CALC2

∼ with a variant of ALC that combines classical negation and strong
negation, called ALC∼, and proves that the semantics of ALC∼ preserve contradict-
oriness and contrariness [145], while the semantics of CALC2

∼ does not. Taking into
account the deep connection between hybrid logic and description logic, the hybrid
variant of N4 defined by Braüner [51, pp. 190 ff.] is also worth mentioning, featuring a
sound and complete Hilbert-style axiomatisation.

Based on the semantics of CALCC [219; 220], Villa [270, pp. 57 ff.] presents a bi-
relational Kripke-style semantics that is obtained from the CALCC semantics by re-
placing strong negation with intuitionistic negation. The resulting system is denoted
by CALCC−. Proofs for the monotonicity and disjunction property w.r.t. CALCC− se-
mantics are presented. Moreover, Villa [270, pp. 57 ff.] introduces a sound and complete
tableau calculus for CALCC-, which is similar to Odintsov and Wansing’s [220] tableau
calculus for CALCC, but differs in implementing the respective rules for intuitionistic
negation instead of strong negation.

3.5 Computational Interpretations of Description Logics

3.5.1 Information Term Semantics for ALC (BCDL)

Bozzato et al. present in [41] and [93] a constructive semantics for ALC that is based on
information term semantics [201] and allows a computational reinterpretation of proofs
implementing the BHK (Brouwer–Heyting–Kolmogorov) interpretation in the form of
a realisability interpretation. This logical system is denoted by Basic Constructive
Description Logic (BCDL). According to [93], BCDL is essentially inspired by Kuroda
logic, that is, IQC extended by axiom KUR. Informally, an information term for a
formula provides a witness or explicit explanation for the truth of that formula in the
form of a structured mathematical object [39; 41; 93], for instance, the proof that
individual a belongs to the concept ∃R.C is given by an information term associated
with ∃R.C, which provides the witness b such that b is anR-successor of a and recursively

48

3.5 Computational Interpretations of Description Logics

realises concept C [93, p. 372]. The interesting feature of BCDL is that its semantics
preserve the classical reading of the ALC connectives. In [93] a sound and complete
natural deduction calculus, denoted by N Dc, is presented that admits a computational
interpretation of proofs. It is pointed out that in order to obtain a complete calculus it
is necessary to rely on a restricted form of subsumption, i.e., the subsumption C ⊃ D

is restricted by fixing the interpretation of concept C to a finite set of individual names,
called generator. The constructive properties of BCDL are discussed by demonstrating
proofs for the disjunction and explicit definability property [93, p. 395].

Bozzato [39, pp. 66 ff.] presents an information term semantics for the logic KALC,
which extends the language of BCDL to include unrestricted subsumption and im-
plication and denotes this system by BCDLK. The proof theoretic characterisation is
given in terms of a natural deduction calculus N DK, which is inspired by the calculus
N Dc [41; 93] and shown to be sound w.r.t. the information term semantics of BCDLK

and the Kripke-style semantics of KALC [39, pp. 70–79]. Based on BCDL, a formal
framework for specifying Semantic Web Services and verifying the correctness of the
composition of services has been proposed in [39, pp. 66 ff.; 40; 44]. Services are viewed
as processes with pre-, post-conditions and effects. Bozzato [39, p. 66] studies the
question of whether the available services can be composed in order to satisfy a given
composition goal with pre- and post-conditions, and defines a composition calculus that
allows to extract the service implementation as a function mapping information terms
for the input into information terms for the output. Such information terms are induced
by the computational interpretation of the rules from the composition calculus. The
calculus is a sequent-style calculus where each rule must satisfy certain applicability
conditions. The correctness of a service composition is then justified by verifying that
the applicability conditions of each rule are satisfied.

Bozzato’s [39] approach for Web Service Composition has been extended in [137]
and [136]. Hilila et al. [137] apply BCDL as a service composition framework for multi
domain environments, which extends the work from [39; 40; 44] by adding support for
flow control operators and the investigation of a methodology for service composition
based on e-contracts. In [136] the authors apply this method to service composition
in the domain of ambient intelligence applications and smart environments, and dis-
cuss a work-in-progress implementation of their methodology in the Isabelle/HOL
theorem prover.

Villa [270] (cf. [42]) presents a DL-style action language [17] based on an information
term semantics for ALC, inspired by BCDL. Similarly to the specification of services
in [39; 40; 44] an action is seen as a process with pre- and post-conditions, and its
consistency is determined by whether an information term can be generated for the
output of an action application. An algorithm is presented that generates information

49

3 Constructive Description Logics – State of the Art

terms for the output of an action application that operates on the notions of knowledge
and state, represented in terms of an ABox and an information term respectively.

3.5.2 Type-theoretic Interpretation of cALC (λCKn)

Mendler and Scheele [198] (cf. [194; 196]) introduce cALC (called CKn in [198]) as a
semantic type theory and introduce its simply typed contextual λ-calculus, λCKn. The
idea is to use DLs as a programming language type system [191; 206; 244]. Under
this view, a TBox can be considered to be similar to classes in object oriented pro-
gramming, which are specified in terms concepts (classes) and roles (properties). An
ABox represents a set of entities relative and compliant to a TBox specification, and
can be considered as a set of objects or instances of classes and their relationships
among each other. The system is aimed as a specification formalism for programming
in knowledge bases, i.e., to allow for DL-typed functional programming over ABoxes
as data structures, such that ABox reasoning corresponds to model checking and TBox
reasoning becomes static type checking. The authors present a cut-free contextual se-
quent calculus and a computational interpretation for CKn following the Curry-Howard
correspondence, which allows for an interpretation of the modalities ∀R and ∃R as
type operators with simple and independent constructors and destructors. Under the
computational interpretation entities of an ABox are seen as contextual scopes, and
the modalities ∀R and ∃R are interpreted in terms of operations to open and close,
enter and leave context scopes. The flow of information is restricted, in the sense that
information only flows from top to bottom. The Gentzen-style typing system presented
for λCKn is shown to be sound and complete, and it is suitable for proof search in CKn.
The λ-calculus λCKn is shown to satisfy subject reduction, strong normalisation and
confluence, and it also enjoys natural deduction style typing which is essential in the
context of programming applications. Mendler and Scheele [198] put forward the goal
to establish CKn as a baseline for a constructive correspondence theory of constructive
modal and description logics. A survey of type-theoretical interpretations of IMLs can
be found in [198, pp. 27 ff.].

The calculus λCKn has been evaluated by means of a Haskell implementation of the
typing system and β–reduction in the context of the Bachelor’s thesis of Gareis [107],
using maps for an efficient nameless representation of variables in λ–terms [241], that
is, a binary tree is used to indicate the position of bound variables, which gives rise to
a λ–calculus without need for α–conversion when reducing a term to normal form.

50

3.6 Minor Constructive Approaches to Description Logics

3.6 Minor Constructive Approaches to Description Logics

The two following approaches use a constructive interpretation of DLs primarily as a
proof-theoretic tool to establish optimised decision and query answering procedures for
description logics.

3.6.1 Proof-theoretic Approach by Martin Hofmann

The work by Hofmann [143] demonstrates polynomial-time decision procedures for
description logics with cyclic definitions in terminologies based on a Gentzen-style
proof theoretic approach using dynamic programming to obtain decision algorithms
from proof systems. The focus of this work is to establish polynomial-time decision
procedures for the subsumption problem for DLs under an interpretation of circular
definitions as greatest fixed points and under the descriptive semantics [14; 22; 211].
Therein, the constructive interpretation of DLs plays only a supportive role as a formal
approach while the main focus lies in the development and investigation of proof
theoretic methods and their complexities. The author proposes sequent calculi for some
language fragments of ALC with circular definitions and proves soundness, completeness
and cut-elimination. The languages in question are the system EL consisting of concept
intersection and existential restrictions, secondly the fragment with concept intersection
and universal restrictions and finally EL extended by negation. These languages and
their subsumption problem are investigated w.r.t. the descriptive semantics and under
the greatest fixed point semantics. Hofmann [143] demonstrates that proof search for
the subsumption problem in these sequent calculi is of the same complexity as previously
established results from the DL literature, namely, for the language EL decidability of
subsumption lies in polynomial time [21; 22], while it is in ExpTime for the fragment
with concept intersection and universal restrictions and EL with negation [14].

3.6.2 Intuitionistic Approach to Query Answering in DLs

Royer and Quantz [238] present an intuitionistic, proof-theoretical characterisation of
query answering in DLs with the aim to avoid the complexity that comes from the
case analysis of implicit disjunctions and appears in sequent calculi in the form of
right contractions and right disjunctions. Two query answering calculi are presented, a
weak and a strong intuitionistic calculus, which are inspired by calculi from deductive
databases. Completeness of the query answering calculi is shown relative to an axiomatic
semantics based on derivability of an intuitionistic sequent calculus and a least fixed
point semantics.

51

3 Constructive Description Logics – State of the Art

3.7 Our Approach

Following the proposal of de Paiva [78], we will investigate the constructive variant
of ALC based on the system CK w.r.t. to its model theory and proof theory. Our
development addresses the open questions regarding cALC as raised by de Paiva’s [78]
proposal and confirms that cALC constitutes a well-behaved constructive description
logic. The constructive semantics of cALC refines the classical one and hereby generates
a family of theories that admit computational interpretations of proofs in line with
the Curry-Howard isomorphism. Prior to this program we will examine the differences
between the systems FS and CK in more detail in the first section of Chap. 4 and
motivate why the semantics of CK are more desirable from a constructive point of view.

52

CHAPTER 4

Constructive Semantics for ALC

The main objective of this chapter is to introduce the syntax and semantics of a
constructive variant of the basic description logic ALC, on which the following chapters
will built upon. We will denote this logic by constructive ALC (cALC) in accordance
with de Paiva’s [78] proposal (as discussed in Chapter 3). Our approach exploits the
close relationship between modal logics and description logics as a starting point, but is
lifting it to a constructive point of view. Simply put, the logic cALC will be based on the
constructive modal logic CK [188]. In this way, cALC is enjoying a similar relationship
to intuitionistic modal logics as ALC can be considered a notational variant of the
classical modal logic Km (see Sec. 2.1.5).

In Sec. 4.1, we will give a short survey of the possible ways to establish a constructive
Kripke-style semantics for ALC, by discussing previous approaches from the field of
intuitionistic modal logics (IML). Thereafter, we define in Sec. 4.2 the syntax and
semantics of cALC and thereof develop its model theory. Readers familiar with Kripke
semantics of intuitionistic modal logic may skip the following section and directly
continue with Sec. 4.2.

4.1 Kripke Semantics and the Choice of cALC

Relational semantics, which are often referred to as Kripke semantics have been intro-
duced by Saul Kripke in 1959 [169] as a formal semantics for the modal logic S5. At
first, its development had a focus on modal logics [168; 169; 171], later it has been
extended to intuitionistic logic [170] and other non-classical systems [172]. A Kripke
semantics consists usually of a domain, an accessibility relation and a valuation func-
tion. The basic idea is to assign a truth-value to a formula, relative to a specific state
of affairs (or possible world) of the domain, while the accessibility relation constrains
which states are reachable from a specific world of this domain. For a comprehensive
historical survey of Kripke’s work the reader may consult [65; 117] and [215] with a
focus on Kripke completeness.

The analysis of previous approaches from the fields of intuitionistic modal logic [89;
96; 188; 228; 249], intuitionistic hybrid logic [49; 50] and the work on constructive or

53

4 Constructive Semantics for ALC

intuitionistic description logic [39; 64; 77; 78; 195; 270] exhibits that there exist several
possible approaches on how to define Kripke-style semantics for a constructive variant
of the basic DL ALC. We will discuss these in the following section.

4.1.1 Variants of Kripke Semantics

The previous approaches7 can mainly be differentiated into the following four categories:

• Firstly, one approach as highlighted in [161, Chap. 2.2.3] is by passing from the
two-valued basis of classical DLs to a many-valued basis in the form of a finite
Heyting algebra. This has been discussed in the context of IMLs in [98; 103; 161;
222] and in the setting of hybrid logics in [49, Chap. 8.1.1].

• Secondly, the semantics of a constructive DL can be obtained as an extension of
intuitionistic first-order logic via the standard translation (cf. p. 25), considering
constructive DLs as a fragment of IQC, just like classical modal logic is related to
classical first-order logic. This approach relates the modalities ∃R (3) and ∀R
(2) with the quantifiers of the first-order language. Kripke semantics following
this direction have been studied in the context of IMLs [89; 103; 249], hybrid logic
[49] and constructive DLs [39; 41; 43; 45; 64; 78; 93]. It is characterised by the
separation of the intuitionistic structure (states of knowledge) from the modal
possible worlds (individuals) by keeping the epistemic partial order ⪯ separate
from the interpretation of the propositional symbols and the accessibility relation
interpreting the modalities. This semantics is usually denoted by intuitionistic
Kripke semantics or standard intuitionistic semantics.

• Thirdly, a constructive description logic can be obtained as a combination of IPC
with the base DL ALC via fibring [56; 58; 104; 105], a very generic approach to
combine and analyse logical systems. Its basic idea uses the notion of a fibring
function that associates at any time models and worlds from one logical system
to the other and vice versa [56; 105]. For instance, imagine we want to combine
the intuitionistic implication ⊃ from IPC with the ALC modality ∀R. Then, the
evaluation of a combined formula A1 ⊃ ∀R.(A2 ⊃ A3) proceeds by interpreting
the top-level connective ⊃ by a pointed intuitionistic IPC model m = (W,⪯, a, h),
where W is the set of possible worlds, ⪯ the intuitionistic preorder, a ∈ W

the actual world and h is a valuation function satisfying the heredity condition
x ∈ h(A) and a ⪯ a′ implies a′ ∈ h(A). The statement a m A1 ⊃ B1 with
B1 = ∀R.(A2 ⊃ A3) holds iff for all b with a ⪯ b and b m A1 it follows that

7A similar discussion in the context of variants of intuitionistic modal logics or hybrid logics can be
found in [161, Chap. 2.2.3], [160, Chap. 2] and [49, Chap. 8].

54

4.1 Kripke Semantics and the Choice of cALC

b m B1. From the perspective of IPC the formula B1 = ∀R.(A2 ⊃ A3) is atomic,
since ∀R is not part of the language of IPC. The interpretation of b m A1 is
clear for atomic A1, and the idea of fibring is to get a value for the evaluation of
b m ∀R.(A2 ⊃ A3). Such a value can be obtained by associating (via a fibring
function) each b ∈ W with a pointed ALC Kripke model nb = (W b, Rb, ab, hb)
with root ab, and evaluating ∀R.(A2 ⊃ A3) in the corresponding ALC model such
that b m ∀R.(A2 ⊃ A3) iff ab

nb
∀R.(A2 ⊃ A3). The subsequent evaluation of

A2 ⊃ A3 is analogous and takes place at the R-successors of ab by associating
them to an intuitionistic Kripke model where the implication is evaluated relative
to the intuitionistic semantics. Dov M. Gabbay identifies in [104; 105] that several
intuitionistic modal logics arise as special cases of fibring, in particular, he shows
that Wijesekera’s system CK and Fisher Servi’s system FS/IK arise from fibring
IPC with K plus the addition of an interaction axiom for the system FS/IK. For
a comprehensive survey on fibring logics the reader may consult [55; 58; 105].

• Finally, the classical Kripke semantics can be extended by adding an additional
accessibility relation ⪯ to the Kripke frame, which is interpreted intuitionistically.
Characteristic for this semantics is that the epistemic preorder ⪯ and the access-
ibility relation are not separated but instead relations on the same domain [90; 96;
228]. Accordingly, these semantics are usually denoted by the term birelational
semantics [49; 103; 249] and also appeared under the term two-frame semantics
in the context of propositional lax logic (PLL) [90]. Note that such semantics
also arise by a special form of fibring logics (called dovetailing) where the fibring
function behaves like an identity function [104; 105]. It is noteworthy to point out,
that in the context of IMLs the standard Kripke semantics (as discussed above)
often do not satisfy the finite model property while the birelational semantics
do [49; 249]. However, the interpretation of individual names from an ABox or
nominals is not clear under birelational semantics, since their classical interpret-
ation as a singleton set violates the monotonicity property of the intuitionistic
preorder [49, pp. 177 f.].

In the following we will put the attention on the last option, since on the one hand we
will base cALC on the IML CK for which a birelational semantics already exists [188],
and on the other hand we do not require the level of generality as offered by the fibring
method.

Notation. The sequential composition of two binary relations R and S is given by
R ;S =df {(x, z) | ∃y.x R y S z}. ■

55

4 Constructive Semantics for ALC

4.1.2 Variants of Birelational Kripke Semantics

The traditional approach in IMLs is to combine the standard intuitionistic semantics of
the propositional connectives with the interpretation of 2,3 as universal and existential
quantifiers over possible worlds. However, the (classical) interpretation of 2,3 (cf.
Sec. 2.1.5) breaks with the intuitionistic heredity condition, i.e., x C and x ⪯ y

implies y C. In fact, many different variants of IMLs can be found in the literature
and it seems that there is a disagreement on the interpretation of the modalities and
their relation to the intuitionistic accessibility relation as well as on which system
represents the right intuitionistic or constructive analogue of the classical modal logic
K. Since ALC is a notational variant of Km (cf. p. 24) and forms the minimal or basic
description logic, the same controversy regarding the right choice of semantics applies
here, too, when devising a constructive variant of ALC.

There exist mainly four choices to deal with this issue, which has been discussed
similarly by Kojima [161, p. 8]:

• Firstly, birelational semantics also arise by dovetailing (fibring) [104; 105].

• The second approach as taken by Wolter and Zakharyaschev [275] is to interpret
both modalities 2,3 classically, where ¬C is defined as C ⊃ ⊥ and 3C as ¬2¬C.
Then, heredity is forced by imposing the frame condition ⪯ ;R = R ; ⪯ = R

[278]. In [275; 276] they introduce distinct accessibility relations R2, R3 as
interpretations of 2,3, which then require the frame conditions ⪯ ;R2 ; ⪯ = R2

and ⪯−1 ;R3 ; ⪯−1 = R3 to force the heredity condition. This system is denoted
by IntK2,3 and its extension by the axioms FS5/IK5 = (3ϕ ⊃ 2ψ) ⊃ 2(ϕ ⊃ ψ)
and FS6 = 3(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 3ψ) corresponds to the logic FS/IK. Their
analysis focusses on normal IMLs and investigates their relation to classical
bimodal logics from an algebraic perspective [275; 276; 278].

• Thirdly, the standard approach in IMLs is to interpret necessity 2 intuitionistic-
ally while possibility 3 is interpreted classically:

x 2C iff ∀y. x ⪯ y ⇒ ∀z. y R z ⇒ z C; (4.1)
x 3C iff ∃z. xR z & z C. (4.2)

In order to force heredity under definition (4.2) it is necessary to impose conditions
on the Kripke frame such that the models satisfy confluence between the partial
order ⪯ and the accessibility relation, i.e., the frame conditions ⪯−1 ;R ⊆ R ; ⪯−1

and R ; ⪯ ⊆ ⪯ ;R (cf. p. 38). There, 2 is interpreted as a monotonic ∧-preserving
modality while 3 as a monotonic ∨-preserving modal operator dually to 2. This

56

4.1 Kripke Semantics and the Choice of cALC

approach has been taken by Plotkin and Stirling [228], Fischer-Servi [96] and
Simpson [249], and it corresponds to the two equivalent axiomatisations FS and
IK, as introduced in Sec. 2.2.2.

• Finally, our approach is to interpret both modalities 2,3 intuitionistically, using
(4.1) for 2 and the stronger interpretation of 3 defined by:

x 3C iff ∀y. x ⪯ y ⇒ ∃z. y R z & z C. (4.3)

Here, heredity of the modalities is forced by definition without any frame condition.
Further, this semantics refutes the axiom schemata of disjunctive distribution
FS4/IK4, viz. 3(C ∨ D) ⊃ (3C ∨ 3D) and also the axiom FS5/IK5 = (3A ⊃
2B) ⊃ 2(A ⊃ B), which are tautologies in FS/IK (and also in classical modal
and description logic). These axioms are problematic from a constructive point
of view [90; 196; 272]. This approach has been taken first by Wijesekera [272]
and is known as the constructive system CK as introduced in Sec. 2.2.2. Another
theory, which follows this design, is given by the Kripke semantics of PLL [90],
which can be seen as an extension of CK ⊕ 4. In subsequent works, the semantics
of CK has been extended by Mendler and de Paiva [188][4; 196] in that they reject
the axiom schema FS3/IK3, viz. ¬3⊥, for constructive reasons as well [90; 188;
196].

Kojima [160, pp. 92 f.] stresses that this interpretation of 3 violates the analogy
between possibility 3 and existential quantification ∃ in first-order logic, and
in particular, a 3 modality refuting FS4/IK4 cannot be interpreted by first-
order existential quantification ∃, since even in intuitionistic first-order logic
∃x.(ϕ(x) ∨ ψ(x)) ⊃ (∃x.ϕ(x) ∨ ∃x.ψ(x)) holds.

Our development of cALC follows the last approach discussed above and is obtained
as an extension of the constructive modal logic CK [188; 195; 196; 272]. This decision
is justified for the following reasons: (i) The third approach known as the system
FS/IK seems unsatisfactory to us in that the Kripke semantics for the basic system
already requires a frame condition to force heredity by connecting the intuitionistic
and the modal accessibility relations. Observe, that the interpretation of 3 (see (4.2))
not only requires a frame condition to force heredity, but it is also the cause of the
axiom schemata FS4/IK4 and FS5/IK5. We will argue in the following that these are
problematic from a constructive perspective. As pointed out in [196, p. 2], frame
conditions of this kind indicate that their set-theoretic representation is not free and
irredundant. Instead, theories such like IK/FS seem to be a special theory or extension
of a system with respect to some more elementary class of interpretations. (ii) The

57

4 Constructive Semantics for ALC

second approach after Wolter and Zakharyaschev [275] goes even further by imposing a
rather strong connection between the intuitionistic and modal dimension, which is due
to the interpretation of the modalities 3,2. Furthermore, its extended axiomatisation
coincides with that of FS/IK, which is not in agreement with our constructive perception.
(iii) The theory of fibring is a very general approach and in particular with mechanisms
like splitting and splicing, it seems to be an adequate tool to analyse the correspondence
between different logical systems [56; 58; 105]. However, we do not require this level of
freedom for our approach.

4.1.3 The System cALC

In the system cALC, the classical principles of the Excluded Middle C ⊔ ¬C ≡ ⊤,
double negation ¬¬C ≡ C and the dualities ∃R.C ≡ ¬∀R.¬C, ∀R.C ≡ ¬∃R.¬C are
no longer tautologies, which is in line with standard intuitionistic modal logics [89; 96;
228; 249]. It is well known that these principles are non-constructive and therefore
need special care. In cALC, however, we go one step further and refute the principle
of disjunctive distribution in its binary (FS4/IK4) and nullary variant (FS3/IK3) and
also reject the interaction schema (FS5/IK5). It deserves some further explanation,
why there is not a universal constructive or computational justification for the axiom
schemata in question.

Let us begin with the principle of disjunctive distribution. It corresponds to the
classical 3-dual of the normality axiom 2(A ∧ B) ≡ 2A ∧ 2B, which is commonly
accepted for intuitionistic modal logics (and also classical DLs) but it is problematic
from a constructive perspective [161; 188; 196; 272].

• Let us assume that ∃R.C means ‘C holds in some R-context’. We may be able
to construct a proof, which is guaranteed to decide C ⊔ D in ‘some R-context’.
However, this does not imply the existence of a proof of ∃R.C ⊔ ∃R.D, which
means that we can separate the decision whether ‘in some R-context C’ or ‘in
some R-context D’ holds. Suppose that role filling is an action that expenses
computational resources and interacts with the environment to access or generate
the data. Then, the disjunctive decision C ⊔ D can only be made once the (R-
filler) context to access the data has been established. This means, that the data
model may well guarantee ∃R.(C ⊔D), yet it would be rather strong to assume
it also satisfies ∃R.C ⊔ ∃R.D where the decision is outside the scope of R and
thus anticipated before the R-filler is even requested.

• Kojima [161; 162] rejects the principle of disjunctive distribution (FS4/IK4) by
arguing from a type-theoretic perspective in the context of linear-time temporal

58

4.1 Kripke Semantics and the Choice of cALC

logic (LTL). Take 3 to represent the temporal operator next of LTL, where 3C

means that ‘C is true at the next instant of time’ and is interpreted as a ‘(residual)
code of type C’ [161]. Then, a proof of FS4/IK4 corresponds to a function that
produces for an input of type 3(C ∨D) an output value of type 3C ∨ 3D. In
particular, the function needs to decide whether the output value is of type 3C or
3D. But, the decision if either 3C or 3D holds now cannot be drawn from the
assumption (input) which states that ‘either C or D is true at the next instant
of time’, since the input corresponds to some kind of quoted code which will not
be executed until the next instant of time begins.

Interpretations of possibility 3 from a contextual perspective and systems refuting
the axiom schema FS4/IK4 have been considered already in early works [69; 97]. It has
been argued in [92] that Curry’s contextual view does not satisfy the law of disjunctive
distribution. Fitch [97] developed the proof theory of an intuitionistic modal logic
based on Heyting’s intuitionistic logic. This axiomatisation does not contain the axiom
FS4/IK4. However, it lacks any semantic justification or explanation for this reason.
Presumably the first explicit rationale against the axiom FS4/IK4 has been given by
Wijesekera [272] and Wijesekera and Nerode [273]. Their argumentation [272; 273]
comes from the field of constructive concurrent dynamic logic (CCDL) demonstrating
that the interpretation of possibility 3 refutes the axiom schema FS4/IK4.

In a similar vein, we argue the denial of the axiom FS3/IK3. Suppose ⊥ represents
a type without value or a non-terminating or deadlocking program. Then, a program
of type ∃R.⊥ represents a non-terminating procedure that will lock up in some R-
context. However, this does not imply that the program locks up immediately without
considering its context. The axiom FS3/IK3 can be rejected by extending the Kripke
semantics by so-called fallible worlds [90; 188; 195; 196]. These correspond to possible
worlds where every concept is true. Fallible worlds have previously been introduced in
[86; 263] to provide an intuitionistic meta-theory for intuitionistic logics.

Similar problems arise in the interaction between 3 and 2 exhibited by FS5/IK5 as
reported in [196], which stems from the semantic clause (4.2). Again, this axiom schema
is valid in standard IMLs and classical DLs while there is no universal constructive
justification for it, suggested as follows. Let ∃R.C denote ‘in some R-context C’ and
read ∀R.C as ‘in all R-contexts C’. The precondition ∃R.C ⊃ ∀R.D corresponds
to a procedure, which returns a proof of D for all accessible R-contexts under the
assumption that C is true in some R-accessible context. However, this does not in
general imply ∀R.(C ⊃ D), viz. that in every R-accessible context C will imply D.
Let us interpret ‘R-context’ as an accessible ‘auditing context’. It may be possible to
realise the statement ‘∃R.(fraudulent action detected) ⊃ ∀R.(suspect can be identified)’,
since in the current context we have a strategy to process the evidence of fraud from

59

4 Constructive Semantics for ALC

some accessible audit context to obtain the identity of a suspect, which can be used
in all accessible audit contexts. Contrary, it is not guaranteed that in every accessible
audit context where fraud has been detected we can also identify the suspect. From
the viewpoint of the local context, the source of fraud cannot be identified if there is
nobody who detects fraud in the first place.

It seems to us that in constructive logics inspired by computational type theories [91;
187; 205] or modal type theories [159; 209; 210; 226], where constructive proofs turn
into λ-programs, the schemata FS3/IK3 – FS5/IK5 fail to have a uniform computational
justification. The schemata that do appear to be computationally justified are FS1/IK1,
FS2/IK2 and FS6. Restricting to these axioms yields the constructive system known as
CK [27; 188] (cf. Sec. 2.2.2), which forms the starting point of our development.

This thesis is inspired by de Paiva’s proposal [78] and will investigate the semantics
and proof theory of the constructive description logic cALC. The logic cALC is obtained
as a multimodal extension of monomodal CK [188; 195; 196; 272], which originated from
a constructive modal logic by Wijesekera [272]. As a modal logic, cALC is non-normal
regarding the interpretation of 3 and thus proofs of decidability and the finite model
property for standard intuitionistic modal logics (e.g., for IntK2,3 [cf. 103, Chap. 10],
or FS/IK [118; 249]) do not directly apply.

4.2 Syntax and Semantics of cALC

4.2.1 Syntax

The language of the constructive DL cALC extends that of classical ALC. As in
classical ALC, the letters A and B stand for concept names, the letter R for role names,
and the propositional constants ⊥ and ⊤ represent truth and falsehood respectively.
The elementary descriptions are inductively combined into more elaborate formulæ,
which are denoted by concept descriptions. The letters C and D are used for arbitrary
concept descriptions.

Definition 4.2.1 (Syntax of cALC). A DL signature is a structure Σ = (NC , NR, NI)
of three denumerably infinite and pairwise disjoint alphabets of concept names NC , role
names NR and individual names NI . The set of well-formed concept descriptions C,D
over signature Σ is defined inductively by the following grammar, where A ∈ NC and
R ∈ NR.

C,D ::= A | ⊤ | ⊥ | ¬C | C ⊓D | C ⊔D | C ⊃ D | ∃R.C | ∀R.C.

∇

60

4.2 Syntax and Semantics of cALC

Remark 4.2.1. Note that we omit the set of individual names in the following chapters,
since we will not cover the ABox formalism for cALC. ■

In contrast to standard ALC (see Sec. 2.1.1) and affiliated classical description
logics [16], this syntactical representation is more general in that it includes the im-
plication operator ⊃ (usually known as subsumption operator in classical DLs) as a
concept-forming operator as in [39; 78; 219]. This allows for an arbitrary nesting of
implications in concept descriptions, e.g., ((D ⊃ C) ⊃ B) ⊃ A. While the full power
of such nested implications may not be necessary for practical DL-style applications, it
will on the one hand allow us to axiomatise the full theory of cALC conveniently in the
form of a Hilbert-style calculus (see Sec. 5.1) and on the other hand it is required when
passing to a computational interpretation like the Curry-Howard isomorphism [248].
Then, implication as a first-order operator of the language allows for the representation
of a higher-order functional programming language in the sense that cALC concept
descriptions represent the typing of functional computations.

Like in ALC the universal concept ⊤ is redundant and codable as ¬⊥. Also, ⊥ and ¬
can represent each other, e.g. ⊥ = A⊓ ¬A and ¬C = C ⊃ ⊥. Otherwise, the operators
of cALC are independent and not interdefinable.

4.2.2 Semantics

The semantics of cALC is an extension of the Kripke-style birelational semantics for
CK, which has first been introduced in [188] for monomodal CK. In contrast to the
Kripke-style representation in [188; 272], the semantics here are given in terms of a
Tarski-style set-theoretic interpretation in the tradition of classical DLs [16]. In this
sense, the interpretation of a concept corresponds to a set of individuals, while roles
are interpreted as sets of pairs of individuals. The constructive interpretation is an
extension of the classical semantics of ALC. Classically, possible worlds are assumed to
be atomic in the sense of that the degree of knowledge about an individual is maximally
determined. In the constructive case [268], individuals are not assumed to be atomic
but are abstract objects, which possess an internal structure that in general is only
partially determined and thus subject to refinement. In the following constructive
individuals are referred to as entities.

The constructive interpretation I of cALC extends the classical models of ALC by
(i) a preorder ⪯I for expressing refinement and (ii) by fallible worlds ⊥I . Accordingly,
the semantics is based on two kinds of accessibility relations, namely the preorder ⪯
and relations R taken from a set of role names. Fallible entities are used to interpret
contradictions and to invalidate the nullary distributivity law ¬∃R.⊥ [4; 90; 161; 195].

61

4 Constructive Semantics for ALC

Let ⪯ be a relation on entities and let a ⪯ b denote that (i) b is more precisely
determined than a, (ii) b refines a or (iii) a abstracts b.8 Then, each entity (possible
world) constitutes a state of information and the epistemic preorder ⪯ models a potential
increase of information or refinement of context. This contextual extension of knowledge
is associated with the process of investigating stages of information (Kripke worlds)
through an agent. The agent corresponds to the process of substantiating abstract
entities as real individuals. In particular, ⪯ represents an information ordering on
entities with the property that information is robust (or persistent) under refinement
and may only potentially increase. This means, new facts may accumulate while
previously established facts may never be refuted [249]. Additionally, two entities a
and b may refer to the same theory when both a ⪯ b and b ⪯ a hold. Then, a and b

share the same information content and thus are formally indistinguishable, yet still
distinct a ̸= b due to existing lower-level properties. In line with the idea of refinement,
we say that the interpretation of a concept C is robust under refinement

if a ∈ CI and a ⪯I b then b ∈ CI .

This heredity condition is achieved by the following definition:

Definition 4.2.2 ([195, p. 211]). A constructive interpretation or constructive model
of cALC, simply called cALC-model, is a structure I = (∆I ,⪯I ,⊥I , ·I) consisting of

• a non-empty set ∆I of entities, the universe of discourse in which each entity
represents a partially defined, or abstract individual;

• the refinement preordering ⪯I , which is a reflexive and transitive relation over
∆I ;

• a subset ⊥I ⊆ ∆I of inconsistent worlds denoted by fallible entities. These are
closed under refinement and role filling, and R is serial w.r.t. ⊥I , i.e.,

– x ∈ ⊥I and x ⪯I y implies y ∈ ⊥I ,

– all fillers of a fallible entity x ∈ ⊥I are fallible, that is, ∀R ∈ NR. ∀z. xRI z ⇒
z ∈ ⊥I ,

– for each fallible entity x ∈ ⊥I exists a fallible filler, i.e., ∀R ∈ NR. ∃z. xRI z

& z ∈ ⊥I ; and

• a valuation function ·I that defines the interpretation of role and concept names
by mapping each role name R ∈ NR to a binary relation RI ⊆ ∆I × ∆I and each

8Alternatively, ⪯ may be interpreted temporally as in [227], e.g., one may say that b lies in the future
of a or b is reachable from a.

62

4.2 Syntax and Semantics of cALC

atomic concept A ∈ NC to a set ⊥I ⊆ AI ⊆ ∆I , which is closed under refinement,
i.e., x ∈ AI and x ⪯I y implies y ∈ AI .

The interpretation I is lifted from atomic symbols to concept descriptions, where
∆I

c =df ∆I \ ⊥I is the set of infallible (or non-fallible) elements in I:

⊤I =df ∆I

(¬C)I =df {x | ∀y ∈ ∆I
c . x ⪯I y ⇒ y ̸∈ CI}

(C ⊓D)I =df C
I ∩DI

(C ⊔D)I =df C
I ∪DI

(C ⊃ D)I =df {x | ∀y ∈ ∆I . (x ⪯I y & y ∈ CI) ⇒ y ∈ DI}

(∃R.C)I =df {x | ∀y ∈ ∆I . x ⪯I y ⇒ ∃z ∈ ∆I . (y, z) ∈ RI & z ∈ CI}

(∀R.C)I =df {x | ∀y ∈ ∆I . x ⪯I y ⇒ ∀z ∈ ∆I . (y, z) ∈ RI ⇒ z ∈ CI}. ∇

Remark 4.2.2. The distinction to the classical descriptive semantics is the refinement
relation ⪯I and the universal quantification ∀y ∈ ∆I . x ⪯I y . . . in the clauses of
Definition 4.2.2. Entities in ∆I are partial descriptions representing incomplete in-
formation about individuals. Fallible entities b ∈ ⊥I correspond to the Kripke worlds
where any concept including ⊥ becomes true. They may be thought of as inconsist-
ent, over-constrained tokens of information, self-contradictory objects of evidence or
undefined (non-terminating) computations. They can be used to model the situation
where the computation of a role-filler for an abstract entity fails. For instance, assume
the computation of an R-filler for an entity a fails, i.e., ∀b. a RI b ⇒ b ∈ ⊥I . However,
if a is an abstraction of an entity a′ then a infallible role-filler b′ ∈ ∆I

c may exist with
a′ RI b′ (cf. Ex. 4.2.2). ■

Observe, that the interpretation of negation ¬ is restricted to consider non-fallible
refinements only. As mentioned before, ¬C is just an abbreviation for the concept
C ⊃ ⊥ and it is easy to observe that its interpretation (¬C)I is equivalent to (C ⊃ ⊥)I .
In this sense, negation can be seen as a special case of implication C ⊃ ⊥ and its
interpretation is somewhat redundant. That is why we explicitly mention the case
of ¬C only occasionally in a proof, and omit it when its clear or trivial from the
consideration of implication.

Lemma 4.2.1. For all concepts C and interpretations I, (C ⊃ ⊥)I = (¬C)I. ∇

Proof. Proof by contraposition. Let x ∈ ∆I be an arbitrary entity.
(⇒) Suppose that x ̸∈ (¬C)I . We need to show that x ̸∈ (C ⊃ ⊥)I . The assumption

implies that there exists x′ ∈ ∆I
c such that x ⪯I x′ and x′ ∈ CI . Note that x′ ∈ ∆I

c

implies x′ ̸∈ ⊥I . Therefore, x ̸∈ (C ⊃ ⊥)I .

63

4 Constructive Semantics for ALC

(⇐) Let us assume that x ̸∈ (C ⊃ ⊥)I . The goal is to demonstrate that x ̸∈ (¬C)I .
From the assumption it follows that there exists x′ ∈ ∆I such that x ⪯I x′, x′ ∈ CI

and x′ ̸∈ ⊥I . Since x′ ̸∈ ⊥I , it follows that x′ ∈ ∆I
c . Hence, x ̸∈ (¬C)I . □

The extension of the classical semantics by the refinement relation ⪯I and fallible
entities ⊥I by Definition 4.2.2 allows for the desired degree of abstraction. The elements
of ∆I are abstract individuals or entities rather than concrete or atomic individuals
as in classic DLs, which is in line with our constructive view. Each entity implicitly
subsumes all its refinements and truth is inherited. Specifically, one can verify the
heredity condition and show that x ∈ CI and x ⪯I y implies y ∈ CI for arbitrary
concepts C (see Prop. 4.2.2). Interestingly, by omitting fallible entities and collapsing
the refinement structure of ⪯I we arrive at the classical semantics of ALC, as the
following example illustrates.

Example 4.2.1 (Adapted from [195, p. 213, Ex. 1], with kind permission from Springer
Science and Business Media). The constructive semantics of cALC coincide with the
classical semantics of ALC whenever the preorder ⪯I trivialises to an identity relation
and if fallible entities are omitted. Accordingly, we call an interpretation I classical
if ⪯I= id∆ is an identity relation, i.e., each entity refines itself, and if ⊥I = ∅. In
this sense, each classical ALC interpretation induces a trivial cALC interpretation
according to Def. 4.2.2 with a discrete relation ⪯I . Such interpretations validate the
axioms C⊔¬C (PEM), ∃R.⊥ ⊃ ⊥ (FS3/IK3) and ∃R.(C⊔D) ⊃ ∃R.C⊔∃R.D (FS4/IK4)
which are characteristic of classical ALC models. Therefore, the constructive semantics
includes the classical one. ■

Fallible entities are information-wise maximal elements and therefore they are in-
cluded in the interpretation of every concept.

Lemma 4.2.2 (Fallibles [195, p. 212, Lem. 1]). For all cALC concepts C and inter-
pretations I, it holds that ⊥I ⊆ CI. ∇

Proof. ([195, pp. 213 f.; 190, p. 35]) The proof is by induction on the structure of
C. Let I = (∆I ,⪯I ,⊥I , ·I) be a constructive interpretation, x ∈ ∆I and suppose
that x ∈ ⊥I . For the base case the goal is to show (i) x ∈ ⊥I , (ii) x ∈ AI , and
(iii) x ∈ ⊤I . Assertion (i) follows directly by assumption. It holds by Definition 4.2.2
that ⊥I ⊆ AI ⊆ ∆I = ⊤I which together with the assumption directly proves the
cases (ii) and (iii). Induction step:
(Case C ⊓D) The induction hypothesis implies x ∈ CI and x ∈ DI . Thus, by

Definition 4.2.2 it follows that x ∈ (C ⊓D)I .

(Case C ⊔D) By induction hypothesis analogously to the previous case.

64

4.2 Syntax and Semantics of cALC

(Case C ⊃ D) The goal is to show x ∈ ⊥I ⇒ x ∈ (C ⊃ D)I . From the assumption
x ∈ ⊥I we have that ∀x′. x ⪯I x′ ⇒ x′ ∈ ⊥I . By induction hypothesis x′ ∈ DI and
therefore x ∈ (C ⊃ D)I .

(Case ∃R.C) Let x′ ∈ ∆I be arbitrary such that x ⪯I x′. Then, the assumption
x ∈ ⊥I and Def. 4.2.2 implies x′ ∈ ⊥I and there exists an R-filler y ∈ ∆I with
x′ RI y such that y ∈ ⊥I . The ind. hyp. implies y ∈ CI . Since x′ was arbitrarily
chosen, it follows that x ∈ (∃R.C)I .

(Case ∀R.C) We need to prove x ∈ ⊥I ⇒ x ∈ (∀R.C)I . Let x′, y ∈ ∆I be arbitrary
entities such that x ⪯I x′ RI y. Definition 4.2.2 implies x′ ∈ ⊥I and y ∈ ⊥I .
Applying the induction hypothesis yields y ∈ CI . Since x′, y were arbitrarily chosen
from ∆I , we can conclude that x ∈ (∀R.C)I . □

Regarding infallible entities, one can show that their role-predecessors are infallible
as well, which is due to Def. 4.2.2.

Proposition 4.2.1 (Infallibility of R-predecessors). For all interpretations I it holds
that all R-predecessors x of an infallible entity y are infallible, i.e., ∀I.∀R ∈ NR.∀x, y ∈
∆I . if y ̸∈ ⊥I and x RI y then x ̸∈ ⊥I. ∇

Proof. Let I = (∆I ,⪯I ,⊥I , ·I) be a constructive interpretation, R ∈ NR and x, y ∈ ∆I

be arbitrary entities. Suppose xRI y and y ̸∈ ⊥I . The goal is to show that x is infallible,
i.e., x ̸∈ ⊥I . Assume to the contrary that x ∈ ⊥I . Def. 4.2.2 implies that every fallible
entity is closed under refinement and role filling, in particular this means that all
R-successors of x must be fallible. Therefore, it follows that y ∈ ⊥I . However, this
contradicts the assumption, hence x ̸∈ ⊥I . □

After having introduced constructive models and investigated their properties, we
define a semantic validity relation in the spirit of [33, pp. 17 f.].

Definition 4.2.3 (Validity relation [195, p. 212]). Let I = (∆I ,⪯I ,⊥I , ·I) be a
constructive interpretation and x ∈ ∆I an entity. We say that entity x satisfies concept
C in the interpretation I, denoted by I;x C, if and only if x ∈ CI . An interpretation
I is a model of concept C, denoted by I C, if and only if ∀x ∈ ∆I . I;x C. Finally,
the notion C holds iff ∀I. I C. All of these notions I;x Γ, I Γ and Γ are
lifted to sets Γ of concepts in the usual universal fashion. ∇

Notation. When I is clear from the context then (i) we will identify I with ·I and
omit the superscript from ∆I ,⪯I ,⊥I and simply write ∆,⪯,⊥ instead, and (ii) we
will omit it from a validity statement I;x C and write x C instead. ■

65

4 Constructive Semantics for ALC

The relation I;x C spreads out the validity of concept C across many ⪯I related
entities monotonically, i.e., I;x C and x ⪯I y implies I; y C. The monotonicity
of truth (or heredity condition) is the characteristic feature of intuitionistic semantics.
The following proposition verifies the heredity condition for cALC.

Proposition 4.2.2 (Monotonicity property, robustness under refinement). Let I =
(∆I ,⪯I ,⊥I , ·I) be a constructive interpretation. Then, the following holds for all
concepts C and x, x′ ∈ ∆I:

I;x C and x ⪯I x′ implies I;x′ C. ∇

Proof. Let I = (∆I ,⪯I ,⊥I , ·I) be a constructive interpretation. Let x, x′ ∈ ∆I and
assume that x ⪯I x′. The proof is by structural induction on C, and is similar to the
proofs for intuitionistic propositional logic [268] and constructive modal logic [272].
(Case atomic symbol) If C is an atomic symbol then the goal directly holds by

Definition 4.2.2.

(Case ¬C) Suppose I;x ¬C and x ⪯I x′. Let x′′ be such that x′ ⪯I x′′ and x′′ is
infallible. Then, by transitivity x ⪯I x′′, and the assumption implies x′′ ̸∈ CI . Thus,
I;x′ ¬C.

(Case C ⊓D) Suppose that I;x C ⊓ D and x ⪯I x′. The goal is to show that
I;x′ C ⊓D. The assumption implies that x ∈ (C ⊓D)I , i.e., x ∈ CI and x ∈ DI .
The ind. hyp. yields I;x′ C and I;x′ D. Hence, I;x′ C ⊓D.

(Case C ⊔D) Analogously to the previous case, by induction hypothesis.

(Case C ⊃ D) Suppose that I;x C ⊃ D and x ⪯I x′. Let x′′ ∈ ∆I be an arbitrary
entity such that x′ ⪯I x′′ and I;x′′ C. Then, transitivity of ⪯I implies x ⪯I x′′

and from I;x C ⊃ D it follows that I;x′′ D. Since x′′ was arbitrary, we can
conclude I;x′ C ⊃ D.

(Case ∃R.C) Let us suppose that I;x ∃R.C and x ⪯I x′. By assumption x ∈
(∃R.C)I , i.e., for all refinements of x there exists an R-successor that is contained
in CI . Let x′′ ∈ ∆I be arbitrary such that x′ ⪯I x′′. Transitivity of ⪯I implies
x ⪯I x′′, which implies the existence of an entity z such that (x′′, z) ∈ RI and
I; z C. Hence, I;x′ ∃R.C.

(Case ∀R.C) Suppose that I;x ∀R.C and x ⪯I x′, i.e., all R-successors of all
refinements of x are contained in the interpretation of C. Let x′′, z ∈ ∆I be arbitrary
entities such that x′ ⪯I x′′ and x′′ RI z. Transitivity of ⪯I implies x ⪯I x′′. Then,
the assumption I;x ∀R.C lets us conclude I; z C. Hence, I;x′ ∀R.C. □

66

4.2 Syntax and Semantics of cALC

The following discussion is inspired by an example from [195, p. 213] in the context
of database entities, and lets us reconsider the introductory example of the European
tree frog (see p. 4). We will discuss in the following how the semantics of cALC support
the representation of dynamic behaviour and in particular exemplify the notions of
abstraction and refinement. Furthermore, the example will demonstrate that the axiom
schemata FS4/IK4 = ∃R.(C ⊔D) ⊃ (∃R.C ⊃ ∃R.D), the law of the Excluded Middle
PEM = C ⊔ ¬C and the duality ¬∃R.C ≡ ∀R.¬C are refuted by the constructive
semantics of cALC.

Example 4.2.2 (Adapted from [195, p. 213, Ex. 2], with kind permission from Springer
Science and Business Media). Let IGGY and POP be two instances of the concept
description EuropeanTreeFrog. Both are resident in GERMANY, but they differ in their
current location (IGGY is resident at the lily pond at the Wilhelma Zoo in Stuttgart,
while POP lives on an oak tree in Coburg) and their current colouring. This means, they
share the same attribute w.r.t. their residence (role isResident), but are distinguished
in the remaining attributes referenced by the roles hasColour and sitsOn. The instances
of the concepts Green, Brown, and LilyPad, Oak can be encoded in terms of RGB hex
triplets and GPS coordinates respectively. In this sense, we use for the colours the
abbreviations LIME = #00FF00, SIENNA = #A0522D and use the shortcuts LPADS =
(48◦48′23′′N, 9◦12′21′′E), OAKCO = (50◦15′17′′N, 10◦58′51′′E) for the GPS coordinates.
We have the following situation, where we represent the interpretation in ABox syntax:

IGGY : EuropeanTreeFrog, LIME : Green,

LPADS : LilyPad, (IGGY,GERMANY) : isResident,

(IGGY, LPADS) : sitsOn, (IGGY, LIME) : hasColour, and

POP : EuropeanTreeFrog, SIENNA : Brown,

OAKCO : Oak, (POP,GERMANY) : isResident,

(POP,OAKCO) : sitsOn, (POP, SIENNA) : hasColour.

Now, we can abstract from the second and third attribute (sitsOn and hasColour)
and consider the entities IGGY and POP as partially defined entities IGGY♯ and POP♯,
as a way to omit or compress information. Omitting these attributes means that
the abstract entities IGGY♯ and POP♯ possess the same properties and therefore can
no longer be distinguished information-wise. In this sense, they can be seen as an
abstraction IGGYPOP of a tree frog, but with internal structure. The refinement ⪯,
which captures the degree of information of the abstract entities IGGY♯ and POP♯, is a
cyclic (oscillating) refinement relationship between these entities that now refine each

67

4 Constructive Semantics for ALC

other, i.e., IGGY♯ ⪯ POP♯ and POP♯ ⪯ IGGY♯. This cyclic relationship implies an
abstract equivalence IGGY♯ ∼= POP♯, but it is not an identity IGGY♯ = POP♯. This
comes from the fact that both abstract entities IGGY♯ and POP♯ possess an incompatible
realisation by IGGY♯ ⪯ IGGY and POP♯ ⪯ POP respectively.

The situation is depicted in Figure 4.1, where dotted arrows represent refinement
and solid arrows correspond to the roles isResident, sitsOn and hasColour. The worlds
IGGY♯,POP♯, IGGY,POP,GERMANY,OAKCO, LPADS, . . . represent the entities. We use
the abbreviations iR = isResident, hC = hasColour and sO = sitsOn for the role names.

IGGY♯ POP♯

IGGY POP

⊥ ⊥

GERMANY:Country
LIME:Green

LPADS:LilyPad
SIENNA:Brown

OAKCO:Oak

⪯

⪯

hC

hC, sO, iRhC, sO, iR

iR iR
iR iR

sO sO
hC

hC
sO

hC
sO

Figure 4.1: A simple data model of frogs with abstraction. Adapted from [195, p. 214,
Fig. 1], with kind permission from Springer Science and Business Media.

It is important to observe that both abstract entities IGGY♯,POP♯ possess a fallible
filler w.r.t. the roles sitsOn and hasColour. This filler corresponds to a computational
deadlock when selecting one of sitsOn, hasColour for IGGY♯ or POP♯, and can be viewed
as the situation where IGGY♯ or POP♯ have any location (colour) w.r.t. the role sitsOn
(hasColour).

The entities IGGY♯ and POP♯ refine each other and hence are indistinguishable, i.e.,
they share exactly the same concept descriptions. If Th(x) denotes the set of con-
cepts which entity x participates in, then Th(IGGY♯) = Th(POP♯). For instance,
the theory of IGGY♯ includes the concepts ∃isResident.Country,∃hasColour.(Green ⊔
Brown),∃sitsOn.(LilyPad ⊔ Oak) ∈ Th(IGGY♯), because each refinement of IGGY♯ has
GERMANY:Country as a filler for role isResident and either LIME:Green or SIENNA:Brown
(LPADS:LilyPad, OAKCO:Oak) as a filler for role hasColour (sitsOn).

Observe, that the disjunction ∃hasColour.(Green⊔Brown) captures the choice between
the two realisations of IGGY♯ as a concrete entity, viz. (LPADS, LIME,GERMANY) and
(OAKCO, SIENNA,GERMANY). But, it is not possible to resolve this choice at an ab-
stract level as there is no single uniform choice for the filler of role hasColour. This
is reflected by the fact that ∃hasColour.Green ̸∈ Th(IGGY♯) and ∃hasColour.Brown ̸∈
Th(IGGY♯), which implies that their disjunction ∃hasColour.Green ⊔ ∃hasColour.Brown

68

4.2 Syntax and Semantics of cALC

is not in Th(IGGY♯) as well. We can analogously argue the case for the disjunction
∃sitsOn.(Oak ⊔ LilyPad). Such abstractions cannot be expressed in classical DLs, where
the axiom FS4/IK4 is a theorem, i.e., existential restriction ∃R always distributes
over disjunction ⊔ in ALC, such that ∃hasColour.(Green ⊔ Brown) is equivalent to
∃hasColour.Green ⊔ ∃hasColour.Brown.

Also note, that ¬∃hasColour.Green is not the same as ∀hasColour.¬Green. The former
says that it is inconsistent to assume that all refinements of IGGY♯ have a hasColour-filler
in concept Green. The latter means that no refinement has a hasColour-filler in Green.
In ALC, this duality between ¬∃R.C and ∀R.¬C holds, but it does not in cALC.

Further, we can observe that the law of the Excluded Middle (PEM) is not valid.
Suppose that IGGY♯ ∃sitsOn.LilyPad ⊔ ¬∃sitsOn.LilyPad holds. Then, from semantic
validity, which says that C ⊔D implies C or D (see Prop. 4.2.3), it follows that
either IGGY♯ ∃sitsOn.LilyPad or IGGY♯ ¬∃sitsOn.LilyPad. However, the first is not
possible since there is a refinement IGGY♯ ⪯ POP with sitsOn filler OAKCO, which is
not in LilyPad. The second is refuted due to the refinement IGGY of IGGY♯, which has
the sitsOn-filler LPADS:LilyPad. ■

Another axiom schema refuted by the semantics of cALC is FS5/IK5 = (∃R.C ⊃
∀R.D) ⊃ ∀R.(C ⊃ D), as the following example illustrates. Note that this axiom is
actually part of Fischer-Servi’s system FS/IK.

Example 4.2.3 ([196, p. 8, Ex. 2]). Take the interpretation I = (∆I ,⊥I ,⪯I , ·I) with
∆I = {a0, a1, a2}, refinement ⪯I= {(a0, a0), (a1, a1), (a2, a2), (a0, a1)}, RI = {(a0, a2)},
CI = {a2} and DI = ∅. In this interpretation it holds that I; a0 ∃R.C ⊃ ∀R.D,
I; a2 C and I; a2 ̸ D. The implication I; a0 ∃R.C ⊃ ∀R.D is trivially true, since
not all ⪯-reachable entities of a0 satisfy ∃R.C. This is obvious for the entity a1, as it
does not have an R-successor at all. Regarding the entity a0, it has the ⪯-successor
a1, which does not satisfy ∃R.C. Furthermore, it is easy to observe for entity a0 that
I; a0 ̸ ∀R.(C ⊃ D), since (a0, a2) ∈ RI and I; a2 ̸ C ⊃ D. In this sense, entity
a0 in this interpretation represents a witness for the refutation of the axiom schema
FS5/IK5 = (∃R.C ⊃ ∀R.D) ⊃ ∀R.(C ⊃ D). Hence, FS5/IK5 is not a theorem of cALC.
The situation is depicted in Fig. 4.2. ■

Finally, let us consider FS3/IK3 = ∃R.⊥ ⊃ ⊥ that is not a theorem of cALC. This
axiom is usually assumed to be valid in classical ALC and Fischer-Servi’s system FS/IK.

Example 4.2.4. We can easily give a countermodel falsifying axiom FS3/IK3. Take
the interpretation I = (∆I ,⊥I ,⪯I , ·I) with ∆I = {a0, a1, a2}, ⪯I= {(a0, a0), (a1, a1),
(a2, a2), (a0, a1)}, RI = {(a1, a2)} and ⊥I = {a2} (see Fig. 4.2). This interpretation
refutes ∃R.⊥ ⊃ ⊥ at entity a0. This is because there exists the refinement a1 of a0

which has the fallible R-successor a2, while entity a0 is infallible.

69

4 Constructive Semantics for ALC

Let us view this axiom relative to the temporal interpretation of Kojima [161, Chap. 3;
162] where 3 is interpreted as the temporal next operator. Take ∃R as a contextual
(possibly temporal) operator and let ∃R.C denote that ‘a computation of type C is
taking place in the next R-context’. The concept ⊥ represents a failing computation or
a runtime error. Under this view, ∃R.⊥ says that there occurs a runtime error in the
next R-context while ⊥ expresses the immediate occurrence of a failing computation.
Obviously, the context-dependent occurrence differs from an immediate failure. If we
omit fallible entities then the axiom FS3/IK3 holds. We will discuss this matter in
detail in Sec. 5.3.1. ■

Figure 4.2 summarises the discussion above by depicting the three examples of
countermodels for the axiom schemata FS3/IK3 = ∃R.⊥ ⊃ ⊥, FS4/IK4 = ∃R.(C⊔D) ⊃
(∃R.C ⊔ ∃R.D) and FS5/IK5 = (∃R.C ⊃ ∀R.D) ⊃ ∀R.(C ⊃ D), where dotted arrows
represent refinement ⪯I and solid arrows stand for RI .

a0

a1

a2

̸ ∃R.⊥ ⊃ ⊥

⊥

⪯

R

a0

a1 a2

a4 a5

a3

̸ ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D)

⊥

C D

⪯
⪯

R R

R a0

a1

a2

̸ (∃R.C ⊃ ∀R.D) ⊃ ∀R.(C ⊃ D)

C

⪯

R

Figure 4.2: Countermodels for FS3/IK3, FS4/IK4 and FS5/IK5.

We close this section with the definition of a semantic consequence relation in the
spirit of [33, pp. 31 f.], on which we will rely when defining the TBox formalism as well
as in the definition of the reasoning tasks of cALC w.r.t. TBoxes.

Definition 4.2.4 (Local/global semantic consequence). Let Θ and Γ be sets of cALC
concepts and C a single cALC concept. We write Θ; Γ C if for all interpretations I,
which are models of all axioms in Θ, it is the case that every entity x ∈ ∆I which satisfies
all concepts in Γ also satisfies concept C. Formally, ∀I.∀x ∈ ∆I . (I Θ & I;x
Γ) ⇒ I;x C. We say that C is a semantic consequence of Θ; Γ, in particular, C is a
semantic consequence of global assumptions Θ and local assumptions Γ. ∇

70

4.2 Syntax and Semantics of cALC

4.2.3 Terminological Knowledge

Like classical description logics, cALC provides a TBox formalism to express global
(meta-level) terminological knowledge. The TBox stores the vocabulary of an applica-
tion domain and is specified in terms of a set of terminological axioms in the form of
concept inclusion statements. For instance, in classical DLs these are usually inclusions
C ⊑ D or equalities C ≡ D, where the latter is just an abbreviation for two converse
inclusions. The TBox statement that ‘D subsumes C’ (C ⊑ D) can be expressed
as concept equality C ⊃ D ≡ ⊤ as global assumption. In classical ALC one could
translate subsumption via negation to the equation ¬C ⊔D ≡ ⊤. In constructive logic
this is no longer possible, since these operators are independent from each other.

In [191; 195] we used as notation C ⊑ D for both, concept descriptions as well as
TBox axioms. It has been proposed to us in a personal discussion with Sattler [242]
to distinguish the meta- and object-level in terms of the symbol, i.e., to use ⊑ as
a TBox operator only and to introduce a different symbol like ⊃ as an object-level
concept-forming operator. The main argument is that in classical DLs the operator ⊑
is used as a universally closed (meta-level) statement in the TBox only.

We agree with Sattler on using a concept forming operator different from ⊑ for
implication, viz. ⊃. However, we will not need a second operator for inclusions, since
not the symbol makes the difference between meta- and object level, but rather, whether
a concept like C ⊃ D lives in the set of global or local assumptions. We prefer in this
work to use the symbol ⊃ as a concept constructor and as the symbol for expressing
concept inclusions in global (terminological) axioms. This is for the following two
reasons:

(i) We believe that the use of the symbol ⊑ restricted to the meta-level in classical
DLs is by accident and due to the fact that using it as an implication at the
object level would generate redundant syntax. In fact, in classical DLs it can be
internalised into the object logic, expressible in terms of ¬ and ⊔. This is not
possible in constructive logic where implication ⊃ is an independent operator.

(ii) We prefer to follow the notation of modal logic [33, pp. 31 ff.] by defining the
notion of a semantic consequence relation clearly disambiguating global and local
assumptions, viz. Θ; Γ C (see Def. 4.2.4). Here, the set Θ is taken for concepts
as global axioms (TBox), while the set Γ is for concepts local w.r.t. a fixed entity.
Analogously to Def. 2.1.14, this can be generalised to ∆; Θ; Γ C relative to a
set of frame axioms ∆. We will rely on this distinction of global and local context
in the later development of the proof theory for cALC in Chapter 5.

71

4 Constructive Semantics for ALC

Inference Tasks w.r.t. a TBox

We are now ready to rephrase the main DL inference problems for cALC concepts.

Definition 4.2.5 (Satisfiability, subsumption, disjointness, equivalence w.r.t. a TBox).
Let Θ be a TBox and C,D be concept descriptions.

• A concept description C is satisfiable with respect to a TBox Θ iff there exists an
interpretation I with I Θ and a non-fallible entity x ∈ ∆I

c such that x ∈ CI .

• A concept description D subsumes a concept description C with respect to a
TBox Θ iff in all models I of Θ it holds that all of the entities in CI are contained
in DI .

• Two concept descriptions C and D are disjoint with respect to a TBox Θ if CI

and DI do not share any non-fallible entities in all models I of Θ.

• Two concept descriptions C and D are equivalent with respect to a TBox Θ if
CI and DI share the same non-fallible entities in all models I of Θ. ∇

In typical reasoning tasks the interpretation I and the entity x in a verification goal
such as I;x C are not given directly, but are themselves axiomatised by sets of
formulæ, specifically a TBox, i.e., a set Θ of terminological axioms for I and a set Γ of
determined formulæ for some entity x ∈ ∆I .

Here is how standard concept reasoning w.r.t. a TBox is covered according to
Def. 4.2.4:

Lemma 4.2.3 (Reasoning w.r.t. a TBox [195, p. 213]). Let C,D be concept descrip-
tions and Θ a TBox.

1. Θ; {C} ̸ ⊥ iff concept C is satisfiable with respect to Θ.

2. Θ; {C} D iff concept C is subsumed by concept D w.r.t. Θ. The same can be
expressed by Θ; ∅ C ⊃ D (by reflexivity of ⪯).

3. Θ; {C,D} ⊥ iff the concepts C and D are disjoint with respect to the TBox Θ.

4. Θ; {C} D and Θ; {D} C iff concepts C and D are equivalent w.r.t. Θ. The
same can be expressed by Θ; ∅ (C ⊃ D) ⊓ (D ⊃ C). ∇

Proof. Let Θ be an arbitrary TBox and C,D be concept descriptions.

1. (⇒) Assume Θ; {C} ̸ ⊥, i.e., by Def. 4.2.4 there exists an interpretation I that
is a model of Θ and an entity x ∈ ∆I of I such that I;x C but I;x ̸ ⊥.

72

4.2 Syntax and Semantics of cALC

We have to show that C is satisfiable w.r.t. Θ. This follows by the assumption,
namely I Θ, I;x C and x is a non-fallible entity, because x ̸∈ ⊥I . Hence,
the concept C is satisfiable w.r.t. TBox Θ.

(⇐) Assume that C is satisfiable with respect to Θ. By Def. 4.2.5 there exists an
interpretation I with I Θ and a non-fallible entity x ∈ ∆I

c such that x ∈ CI .
We have to show that Θ; {C} ̸ ⊥. This follows immediately from the assumption.

2. (⇒) Suppose Θ; {C} D. By Def. 4.2.4 this means formally that ∀I.∀x ∈
∆I . (I Θ & I;x C) ⇒ (I;x D), i.e., whenever I;x C then I;x D,
which is nothing other than saying that C is subsumed by D.

(⇐) Assume C is subsumed by D w.r.t. Θ. This implies for all models I of Θ that
all entities x in CI are also contained in DI . We have to show that Θ; {C} D.
Assume x ∈ ∆I such that I;x C, i.e., x ∈ CI . It follows by the assumption
that x ∈ DI . Hence, Θ; {C} D.

3. (⇒) Assume Θ; {C,D} ⊥. Formally this means that ∀I.∀x ∈ ∆I . (I
Θ & I;x C & I;x D) ⇒ (I;x ⊥). Let x ∈ ∆I be an entity and I
an interpretation such that I Θ, x ∈ CI and x ∈ DI . We have to show that
x ∈ ⊥I . This follows by assumption. Hence, C and D are disjoint w.r.t. Θ.

(⇐) Assume C and D are disjoint w.r.t. Θ. Suppose for the sake of contradiction,
that Θ; {C,D} ̸ ⊥. This means that there exists a model I of Θ and an entity
x ∈ ∆I such that x ∈ CI , x ∈ DI and x ̸∈ ⊥I . But this contradicts the
assumption, namely that CI and DI do not share any non-fallible entity. Hence
Θ; {C,D} ⊥.

4. (⇒) Suppose Θ; {C} D and Θ; {D} C. By part 2 above this means that D
subsumes C w.r.t. Θ and vice versa. Therefore, we can conclude that C and D

are equivalent.

(⇐) We assume that C and D are equivalent w.r.t. Θ. Then, for all models I
of Θ it holds that CI and DI share the same entities, i.e., ∀x ∈ ∆I .(x ∈ CI ⇒
x ∈ DI) & (x ∈ DI ⇒ x ∈ CI). Hence, Θ; {C} D and Θ; {D} C by
Def. 4.2.4. □

As demonstrated by Lem. 4.2.3, it is possible to reduce the typical DL reasoning tasks
to the problem of concept subsumption Θ; {C} D, which expresses that concept C
is subsumed by concept D w.r.t. the terminology Θ, just as in classical ALC. Under

73

4 Constructive Semantics for ALC

the constructive semantics, (un-)satisfiability appears as a special case of subsumption,
viz. Θ; {C} ⊥. Though, contrary to classical ALC, one cannot reduce the inference
tasks to the problem of (un-)satisfiability, i.e., the special form Θ; {C} ̸ ⊥. Instead,
in cALC we need to implement the generalised satisfiability check Θ; {C} ̸ D for
arbitrary D. For instance, we cannot reduce subsumption to non-satisfiability, because
Θ; {C,¬D} ⊥ is not the same as Θ; {C} D. For convenience, we will write in the
following Θ;C D omitting the parentheses.

4.2.4 Representation of Dynamic and Incomplete Knowledge

In the following we will discuss two scenarios where cALC can be used to represent
dynamic and partial knowledge and highlight the differences between the constructive
and classical semantics. Firstly, we will discuss the open world assumption from a
constructive perspective and then give an example from the domain of financial auditing.
The second part will illustrate an application from the domain of data streams, i.e., we
will consider abstract entities as streams of data and suggest that cALC concepts can
act as a typing specification of the static semantics of data streams.

Classic DLs allow to some degree the representation of incomplete information
in ABoxes by interpreting them according to the so-called open world assumption
(OWA) [16, Chap. 2]. In short, the OWA says that the absence of information (in
an ABox) only indicates an incomplete specification or lack of knowledge w.r.t. an
entity, and in this sense the OWA states that ‘anything, which is absent is undefined’.
This is in contrast to the closed world assumption (CWA), which is usually used as
the interpretation of databases, Prolog and Datalog.9 Under the CWA the absence of
information (in the data) is interpreted as negative information and this means that
‘anything, which is absent is false’, which corresponds to the principle of negation as
failure. As a consequence, an ABox w.r.t. the OWA represents many different interpret-
ations [16, p. 74] (its models), which arise from case analysis of underspecified entities.
In classical DLs like ALC, these models assume each concept to be static and that the
interpretation of underspecified entities has to decide at the outset if a concept includes
an entity or not.

However, under the constructive semantics, it may be that either option is inconsist-
ent, for instance, if the entity or the concept is not fully defined until a later stage, where
lower levels of detail become available. Model-theoretically, entities in cALC are not
static (atomic) individuals, but they have an internal structure and their interpretation
is based on stages of information [204; 268] so that truth is monotonically increasing.

9For a comprehensive comparison between DL and Datalog based on open- and closed-world semantics
see [225]. The correspondence between DLs and databases is covered by [16, Chap. 16].

74

4.2 Syntax and Semantics of cALC

From a proof-theoretical perspective, this corresponds to the idea of positive evidence
and realisability [262], i.e., there is no causality between the absence of entities and the
presence of others, instead constructive logic insists on the existence of computational
witnesses.

It has been discussed first in [191; 195] that the classical (static) OWA is not adequate
in a constructive environment, since it does not support reasoning to be both correct
under abstraction and sustainable under refinement. Instead, we need a constructive
notion of undefinedness that permits concepts to evolve, i.e., we require an evolving
open world assumption (EOWA) [195]. In particular, we need to be able to express
partiality [54] and incomplete knowledge beyond the standard OWA. This can be
achieved by internalising the decision whether a partially defined entity participates
in the interpretation of a concept or not, while sustaining the heredity condition and
being closed under role-fillers.

Example 4.2.5 (Adapted from [195, p. 215, Ex. 3], with kind permission from Springer
Science and Business Media.). One prime example of a class of application domains that
require the ability to express partial and incomplete knowledge beyond the standard
open world assumption (OWA) is auditing [195]. The example is a variant of the
Oedipus example from [16, p.75]. Let us consider a customer topology of companies
a, b, c, d represented in terms of the role hasCustomer such that company a has both b
and c as its customers, b has customer c which itself has a customer relation to d. In
addition, we suppose that b is insolvent (concept Insolvent) and d is solvent (¬Insolvent).
Nothing is known about the possible solvency status of company c. Fig. 4.3 formalises
this situation in ABox syntax.

(a, b) : hasCustomer, (a, c) : hasCustomer, (b, c) : hasCustomer, (c, d) : hasCustomer,
b : Insolvent, d : ¬Insolvent

Figure 4.3: The Customer Topology.

We say that a company is credit-worthy if it has an insolvent customer who in turn
has at least one solvent company among its customers. This is formalised by the concept

CW ≡ ∃hasCustomer.(Insolvent ⊓ ∃hasCustomer.¬Insolvent).

Suppose now that we want to infer whether company a is credit-worthy. This can be
expressed in terms of checking, whether a is an instance of concept CW.

The approach of classical DLs [16, p.75] is to divide the models of an ABox into two
cases, one in which company c is insolvent and the other where c is solvent. Observe

75

4 Constructive Semantics for ALC

that under the classical OWA it holds that c : Insolvent ⊔ ¬Insolvent regardless of c.
Furthermore, this implies that company a is an instance of the concept CW. In the
first case c : Insolvent this customer of a is c, in the other case when c : ¬Insolvent it is
the company b. In classical ALC the hasCustomer-filler would be unknown but fixed
due to case analysis under the classical (static) OWA. Though, under the constructive
semantics this case analysis on company c is invalid if the model arises by abstraction
from a concrete taxonomy in which insolvency is a context-dependent defect.

The corresponding model Ico of this situation is depicted in Fig. 4.4. The relation
hasCustomer is represented in terms of solid edges, each dotted line denotes refinement
⪯, and we assume that each entity refines itself. Regarding company c, there is
a refinement c1 that represents the situation when c may be insolvent under some
context-dependent legal understanding of the concept Insolvent. On the other hand,
company c may be solvent w.r.t. some other legal consideration, which is represented
by its refinement c2. Note that this internalises the case analysis of the classical OWA
into the model of Fig. 4.4 such that each refinement of c has company d as a customer
as well.

d ¬Insolvent

b Insolvent

a

c ?
c1 Insolvent c2 ¬Insolvent

hasCustomer

Figure 4.4: Evolving OWA model Ico. Adapted from [195, p. 215, Fig. 2; 190, p. 10], with
kind permission from Springer Science and Business Media.

In this model it is not possible to decide about the solvency status of company c,
i.e., insolvency of c is not just unknown but undecidable. The reason is that we cannot
obtain the required hasCustomer-filler for company a without contradicting one of the
two refinements c1, c2 to which c may evolve. For instance, when selecting b as the
hasCustomer-filler of a then there is only c as a customer of b, but Ico; c ̸ ¬Insolvent,
because c may evolve into c1 which is insolvent, i.e., Ico; c1 Insolvent. Otherwise,
when choosing company c as hasCustomer-filler for a then Ico; c ̸ Insolvent, since there
is a refinement c2 of c which is solvent, i.e., Ico; c2 ¬Insolvent.

The EOWA is inline with the requirement that the law of the Excluded Middle
(PEM) is not valid in cALC, in particular, observe that Ico; c ̸ Insolvent ⊔ ¬Insolvent

76

4.2 Syntax and Semantics of cALC

in Fig. 4.4. The case c : ¬Insolvent conflicts with its refinement c1, and the other case
c : Insolvent fails due to refinement c2. Hence, c is neither an instance of Insolvent nor
of ¬Insolvent.

Under the classical static OWA the case analysis is performed outside the model
so that fillers may depend non-uniformly on a specific decision. But, this requires
a complete a-priori fixed knowledge of all possible problem parameters on which the
concept of solvency may depend. In the constructive model Ico of Fig. 4.4 this decision is
not fixable once and for all. Instead, under the EOWA this case analysis is internalised
into the model with the requirement that the filler of a role must be robust under case
analysis (evolution of concepts). Therefore, under the EOWA Ico; a CW does not
hold because there does not exist a witness for the hasCustomer-filler.

However, if we assume the PEM as a non-trivial TBox axiom Insolvent ⊔ ¬Insolvent
then Ico; a CW would be true, since the assumption rules out the switch between
solvency and insolvency of c. ■

Example 4.2.6 (Adapted from [195, p. 215], with kind permission from Springer
Science and Business Media.). An important interpretation of the intuitionistic preorder
⪯ is the stream interpretation. Under this view, a stream of records can represent
business data in terms of a linearised database table t ∈ ∆I or a time-series of financial
market transactions. The key idea is to interpret streams as abstract entities and to
use DL concepts to express the type of stream elements.

To illustrate this idea, let s be a stream of records, i.e., s = s1 · s2 · s3 · . . . is a finite
or infinite sequence of elements {si | i ≥ 1}, and let D = N ⊎ B ⊎ (N × B) be the
discrete universe of Booleans, naturals and their pairings. We will consider the domain
∆I = Dω = D∗ ∪ D∞ of all streams over D. The refinement ⪯I is the (inverse) suffix
ordering, which is the least relation closed under the rule

v ∈ D
v · s ⪯I s

where v · s is the stream s ∈ Dω prefixed by value v ∈ D. E.g.,

1 · (2, T) · T · F ⪯I (2, T) · T · F ⪯I T · F ⪯I F ⪯I ϵ,

is a stream of naturals, Booleans and their pairings, where ϵ denotes the empty stream.
Under this interpretation, concepts CI , which are required to be closed under ⪯I ,
express future projected behaviour of streams.

Obviously, the empty stream ϵ has no future behaviour, but represents a computa-
tional deadlock and is interpreted as a fallible entity, i.e., ⊥I = {ϵ}. Viewing fallible
entities as stream computations means that their computational output is ϵ, i.e., they do

77

4 Constructive Semantics for ALC

not produce any value. Type-theoretically, this means that ϵ is universally polymorphic
in the sense that it is naturally contained in any type.

The access to the values of a stream is modelled in terms of a distinguished (functional)
role val that relates a stream with its first data element. Each such element is considered
as an infinite constant stream, if it exists, otherwise it is the empty stream, i.e.,
val(v · s, v∞) and val(ϵ, ϵ). For instance, val((2, T) · T · F, (2, T)∞) and val(T · F, T∞).

Regarding types, let Nat and Bool represent the usual types from programming
languages, which will be considered here as atomic cALC concepts, i.e. NatI =df Nω =
N∗ ∪ N∞ and BoolI =df Bω = B∗ ∪ B∞. Their interpretation specifies streams of
naturals and streams of Booleans respectively. Similarly, let (Nat×Bool)I =df (N×B)ω

represent simple database tables as streams of data pairs. It is easy to observe that the
interpretations NatI , BoolI , (Nat × Bool)I are subsets of ∆I , are closed under ⪯I , and
each contains ⊥I .

It is not difficult to observe that in this interpretation we have the type equivalences
Nat ≡ ∀val.Nat ≡ ∃val.Nat and Bool ≡ ∀val.Bool ≡ ∃val.Bool. The fact that existential
and universal restriction collapse under functional roles is not surprising, except perhaps
for one thing: The existential typing s ∈ (∃val.Nat)I does not imply the existence of a
value n ∈ N such that val(s, n∞) as in classical logic, since the stream s could be empty
due to a non-terminating or deadlocking computation. Because these properties are
undecidable for useful programming languages we cannot expect the type system to
express emptiness. Otherwise it would become undecidable, too.

The indistinguishability of ∀R.C and ∃R.C on fallible entities is but one of the
constructive, i.e., non-classical features of the cALC type system. Another one is the
rejection of PEM. For instance, one can observe that under the stream interpretation
the concept Bool ⊔ ¬Bool is not equivalent to ⊤. Consider the stream

s = 0 · T · T · T · · · ,

which begins with value 0 that is followed by an infinite constant sequence of elements
T of type Bool. One can verify that s ̸∈ Bool and s ̸∈ ¬Bool. The former assertion is
obvious and the latter holds, since if s ∈ ¬Bool then s must consist of non-Boolean
values arbitrarily late in the stream, but this is not the case. In classic DLs the
axiom PEM would imply that Bool ⊔ ¬Bool ≡ ⊤, which is against our computational
interpretation.

Moreover, our stream interpretation rejects the axiom FS4/IK4 (disjunctive distri-
bution) given by ∃val.(C ⊔ D) ⊃ ∃val.C ⊔ ∃val.D. Let us illustrate this in terms of
a common operation in the semantic analysis of mass data in financial auditing, viz.
the linearisation of database tables. Let t = (n0, b0) · (n1, b1) · (n2, b2) · · · be a table of

78

4.2 Syntax and Semantics of cALC

records, which can be viewed as a stream of type Nat × Bool. The linearisation of t is
given by the stream

t♭ = n0 · b0 · n1 · b1 · n2 · b2 · · · .

Let us explore the type of t♭: Its type is not Nat ⊔ Bool, nor ∃val.Nat ⊔ ∃val.Bool, since
this would globally require that all element of t♭ are either of type Nat or of type Bool.
The type of t♭ is instead given by the union type Nat ∪ Bool, which can be expressed
by the concept ∃val.(Nat ⊔ Bool). This concept expresses that the first element of each
suffix sequence is of type Nat or Bool. Observe, that the use of existential restriction
∃val performs the decomposition of the stream t♭ such that the type specification
Nat ⊔ Bool is applied element-wise rather than globally. In this way, the difference
between concepts ∃val.(Nat ⊔ Bool) and ∃val.Nat ⊔ ∃val.Bool, or between Nat ∪ Bool
and Nat ⊔ Bool for that matter, permits us to distinguish between local (dynamic) and
global (static) choice. In classical DLs this important distinction is collapsed.

Consider the stream s = 0 · T · 0 · T · 0 · T · · · that oscillates between elements of type
Nat and Bool. This stream satisfies the concept Osc =df ¬Nat ⊓ ¬Bool ⊓ (Nat ∪ Bool)
which expresses that ‘s is (globally) never in Nat nor in Bool but always contained in
their union Nat ∪ Bool’. Intuitively, the concept Osc specifies infinite streams with an
oscillation between the types Nat and Bool. This is only expressible via constructive
semantics, which allow to represent objects as non-atomic or non-static entities.

The flattening function t →→ t♭ considered above implements operationally a way
of multiplexing data streams. Its type is given by the function type Nat × Bool →
∃val.(Nat ⊔ Bool). Conversely, the inverse operation of de-multiplexing streams is
by taking the linearised stream t♭ and transforming it back to t. The type of de-
multiplexing can be specified by ∃val.(Nat ⊔ Bool) → Nat × Bool. Under the Curry-
Howard isomorphism [263; 268] the Cartesian product C × D corresponds to the
constructive interpretation of conjunction C ⊓D, while function spaces C → D express
that of implication C ⊃ D. From this perspective, we can view the operations of
multiplexing and de-multiplexing of data streams as different constructive realisations
of the following implications:

(Nat ⊓ Bool) ⊃ ∃val.(Nat ⊔ Bool), ∃val.(Nat ⊔ Bool) ⊃ (Nat ⊓ Bool).

The uniform multiplexing shown above is nothing but a very particular translation
program (·)♭ of type Nat × Bool ⊃ ∃val.(Nat ⊔ Bool) which plays the role of a cALC
TBox axiom. Moreover, observe that the fallibility of the empty stream ϵ naturally
corresponds to the polymorphism of the empty list, i.e., it can be used at any type. ■

79

4 Constructive Semantics for ALC

4.2.5 Disjunction Property

One of the hallmarks of constructive theories is the disjunction property (DP), i.e., the
proof of a disjunction C ⊔ D requires an explicit evidence for one of the disjuncts in
the form of a proof of either C or D. This is contrary to classical ALC, where it is
not necessary to specify which disjunct holds. We show that cALC enjoys the DP (see
Prop. 4.2.3) in the sense that whenever C ⊔D then either C or D. This is not a
surprise, since DP is a general feature of intuitionistic logic [265]. It is well established
that DP does not hold under arbitrary assumptions. Instead, one can show that DP
holds under suitable hypotheses, which are restricted to the class of Harrop formulæ.

Definition 4.2.6. We define the class H of Harrop concepts by the following grammar

H ::= A | ⊤ | ⊥ | H ⊓H | C ⊃ H | ∀R.H

where A ∈ NC , R ∈ NR and C is an arbitrary concept of cALC. ∇

Then, one shows that ∅; Γ C ⊔ D implies ∅; Γ C or ∅; Γ D, where Γ is a
set of Harrop concepts. The proof is by assuming ∅; Γ C ⊔ D and to the contrary
∅; Γ ̸ C and ∅; Γ ̸ D. Then, Def. 4.2.3 implies the existence of two models I1, I2

and entities a1 ∈ ∆I1 , a2 ∈ ∆I2 such that I1, I2 satisfy all Harrop concepts in Γ but
I1; a1 ̸ C and I2; a2 ̸ D. First, we define the join of two models I1, I2, which satisfy
a Harrop concept, and then show that this join satisfies the same Harrop concept
as well. Secondly, we construct a model from I1, I2, which is contradictory to the
assumption. In the following we will omit the superscript I from ∆I ,⪯I ,⊥I and use
an index i ∈ {1, 2} to distinguish the components of I1, I2 by writing ∆i,⪯i,⊥i instead.
The join model I1 of two models I1, I2 w.r.t. entities a1, a2, is defined by:

Definition 4.2.7. Let I1 = (∆1,⪯1,⊥1, ·1) and I2 = (∆2,⪯2,⊥2, ·2) with a1 ∈ ∆1

and a2 ∈ ∆2 be constructive models according to Def. 4.2.2 and assume without loss
of generality that ∆1 ∩ ∆2 = ∅. The join of I1, I2 w.r.t. entities a1, a2 in join world a

is defined by the structure I1 = (∆,⪯,⊥, ·), where A ∈ NC , R ∈ NR and

∆ =df ∆1 ∪ ∆2 ∪ {a}, where a is a fresh entity not in ∆1 ∪ ∆2;
⪯ =df ⪯1 ∪ ⪯2 ∪ {(a, x) | ∃i ∈ {1, 2}. ai ⪯i x or x = a};
⊥ =df {x | ∃i ∈ {1, 2}. x ∈ ⊥i or (x = a and a1 ∈ ⊥1 and a2 ∈ ⊥2)};

and · given by
AI1 =df A

I1 ∪ AI2 ∪ {a | ∀i ∈ {1, 2}.ai ∈ AIi};
RI1 =df {(x, y) | ∃i ∈ {1, 2}. x RIi y or (a1 ∈ ⊥1 and a2 ∈ ⊥2 and x = y = a)}. ∇

80

4.2 Syntax and Semantics of cALC

Before proceeding with the next step of proving that I1 is a constructive interpreta-
tion in the sense of Def. 4.2.2, we need to introduce an auxiliary lemma. We can show
that the join of two models I1, I2 is conservative, i.e., the join model I1 satisfies that
the structure of the component models I1, I2 is preserved in a non-overlapping fashion.

Lemma 4.2.4. Let I1 = (∆1,⪯1,⊥1, ·1) and I2 = (∆2,⪯2,⊥2, ·2) be constructive
interpretations, ∆1 ∩ ∆2 = ∅ and I1 = (∆,⪯,⊥, ·) be their join according to Def. 4.2.7.
Then, ∀x, y, z ∈ ∆, ∀i ∈ {1, 2},

(i) x ∈ ∆i and x ⪯ y ⇒ y ∈ ∆i & x ⪯i y; and

(ii) x ∈ ∆i and x RI1

z ⇒ z ∈ ∆i & x RIi z. ∇

Proof. Let I1 be the join model of I1, I2 in join world a. Moreover let x, y, z ∈ ∆ and
x ∈ ∆i for i ∈ {1, 2}. Since x ∈ ∆i, it follows that x ̸= a. For (i) suppose that x ⪯ y.
Then, we can conclude that x ⪯i y by Def. 4.2.7. Since ∆1 and ∆2 are assumed to be
disjoint it must be that y ∈ ∆i. For (ii) let us assume that x RI1

z. From x ̸= a and
x RI1

z follows by Def. 4.2.7 that x RIi z and thereof z ∈ ∆i as before. □

The next step is to show that I1 is a constructive interpretation according to
Def. 4.2.2.

Lemma 4.2.5. Let I1 = (∆1,⪯1,⊥1, ·1) and I2 = (∆2,⪯2,⊥2, ·2) be constructive
models such that ∆1 ∩ ∆2 = ∅. The join I1 of I1, I2 w.r.t. a1 ∈ ∆1, a2 ∈ ∆2 and join
world a is a constructive interpretation w.r.t. Def. 4.2.2 if I1 and I2 are. ∇

Proof.

• The set ∆ is nonempty by Def. 4.2.7.

• The relation ⪯ is reflexive and transitive by construction if ⪯1 and ⪯2 are.

Suppose ⪯1,⪯2 are reflexive and transitive. The goal is to show that ∀x, y, z ∈
∆. x ⪯ y and y ⪯ z ⇒ x ⪯ x and x ⪯ z. Let x, y, z ∈ ∆ be arbitrary. Suppose
x ⪯ y and y ⪯ z. Then either x = a or x ̸= a.

Case 1. If x = a then reflexivity a ⪯ a follows directly by Def. 4.2.7. Regarding
transitivity we proceed by case analysis on y. If y = a then immediately a ⪯ z.
Otherwise, y ̸= a implies y ∈ ∆i and ai ⪯i y for some i ∈ {1, 2}. By Lem. 4.2.4
we conclude y ⪯i z and by transitivity of ⪯i it follows that ai ⪯i z. Thus, a ⪯ z

by Def. 4.2.7.

Case 2. x ̸= a. This implies x ∈ ∆i for some i ∈ {1, 2}. From reflexivity of
⪯i it follows that x ⪯i x and by Def. 4.2.7 one concludes x ⪯ x. Concerning

81

4 Constructive Semantics for ALC

transitivity, since x ∈ ∆i and x ⪯ y we can conclude x ⪯i y and y ⪯i z by
Lem. 4.2.4. Transitivity of ⪯i implies x ⪯i z and by Def. 4.2.7 x ⪯ z as required.

Hence, ⪯ is reflexive and transitive.

• The set of fallible entities ⊥ is closed under refinement and role-filling if ⊥1 and
⊥2 are. We have to prove ∀x, y, z ∈ ∆ with x ∈ ⊥ that :

(i) x ⪯ y ⇒ y ∈ ⊥;

(ii) ∀R ∈ NR. ∃z s.t. x RI1

z and z ∈ ⊥;

(iii) ∀R ∈ NR. ∀z. x RI1

z ⇒ z ∈ ⊥.

Suppose ⊥1 and ⊥2 are closed under refinement and role-filling. Let x, y, z ∈ ∆,
R ∈ NR be arbitrary, i ∈ {1, 2} and assume that x ∈ ⊥. We proceed by case
analysis on x.

Case 1. If x = a then x ∈ ⊥ if and only if a1 ∈ ⊥1 and a2 ∈ ⊥2. For (i) assume
x ⪯ y and consider the possible cases of y. If y = a then immediately y ∈ ⊥.
Otherwise, ai ⪯i y and ai ∈ ∆i implies y ∈ ∆i. Then, by assumption y ∈ ⊥i and
we can conclude y ∈ ⊥ by Def. 4.2.7. For (ii) let z = a, then by Def. 4.2.7 z RI1

z

and z ∈ ⊥. For (iii) let z ∈ ∆ be arbitrary. Assume x RI1

z. By Def. 4.2.7 this
is the case if and only if a1 ∈ ⊥ and a2 ∈ ⊥ and z = a, i.e., a has only itself as
R-filler, thus z ∈ ⊥.

Case 2. If x ̸= a then x ∈ ∆i and x ∈ ⊥i. In this case the goals (i), (ii) and (iii)
follow immediately by assumption.

• The interpretation of atomic concepts is given by AI1 , which is closed under
refinement if AI1 and AI2 are.

Suppose ∀A ∈ NC that AI1 and AI2 are closed under refinement. Then, the goal
is to show that ∀A ∈ NC . ∀x, y ∈ ∆. x ⪯ y and x ∈ AI1 ⇒ y ∈ AI1 . Let A ∈ NC

and x, y ∈ ∆ be arbitrary. Assume x ⪯ y and x ∈ AI1 . As above, we consider
two cases.

Case 1. If x = a then according to Def. 4.2.7 it holds that x ∈ AI1 if and only if
∀i ∈ {1, 2}. ai ∈ AIi . We consider the cases for x ⪯ y. If y = a then immediately
y ∈ AI1 . Otherwise, it is the case that ai ⪯i y. Then, ai ∈ AIi implies y ∈ AIi ,
since by assumption AIi is closed under refinement. Thus, y ∈ AI1 by Def. 4.2.7.

Case 2. If x ̸= a then x ∈ ∆i for some i ∈ {1, 2}. Lemma 4.2.4 implies y ∈ ∆i

and x ⪯i y. Furthermore, x ∈ AI1 if and only if x ∈ AIi . Proposition 4.2.2 lets
us conclude that y ∈ AIi and by Def. 4.2.7 follows y ∈ AI1 as required.

• For the interpretation of roles R ∈ NR there is nothing to show. □

82

4.2 Syntax and Semantics of cALC

Furthermore, one proves that the model I1 does not alter the structure of the models
I1, I2 while joining them, i.e., the join of two models preserves satisfiability of concepts
in their original models.

Lemma 4.2.6. Let I1 = (∆1,⪯1,⊥1, ·1) and I2 = (∆2,⪯2,⊥2, ·2) be constructive
models and ∆1,∆2 be disjoint. Further, let I1 be the join of I1, I2 w.r.t. entities
a1 ∈ ∆1, a2 ∈ ∆2 and join world a according to Def. 4.2.7. Then, ∀x ∈ ∆i. I1;x C

iff Ii;x C for all i ∈ {1, 2} and C being an arbitrary concept. ∇

Proof. The proof is by induction on the structure of C. Let i be chosen from {1, 2}
and x ∈ ∆i be arbitrary. Notice that x ∈ ∆i implies x ̸= a. Therefore, as we are only
interested in the entities from the set ∆i we can simplify Def. 4.2.7 of the join model
I1 by excluding the cases for the fresh entity a in the following way: The set ∆ is
given by ∆1 ∪ ∆2, the preorder ⪯ is defined as ⪯1 ∪ ⪯2, and regarding fallibles we
have ⊥ =df {x | for i ∈ {1, 2}. x ∈ ⊥i}. The interpretations of atomic concepts AI1

and roles RI1 simplify to AI1 ∪ AI2 and RI1 ∪RI2 respectively.
(Case A) I1;x A if and only if by Def. 4.2.7 it holds that x ∈ AIi which by

Def. 4.2.2 holds iff Ii;x A.

(Case ⊥) By Def. 4.2.7 I1;x ⊥ if and only if x ∈ ⊥i which holds by Def. 4.2.2 if
and only if Ii;x ⊥.

(Case C ⊓D) By Def. 4.2.2 I1;x C ⊓ D holds if and only if I1;x C and
I1;x D. By induction hypothesis, Ii;x C and Ii;x D and by Def. 4.2.2 we
conclude that Ii;x C ⊓D.

(Case C ⊔D) By induction hypothesis.

(Case C ⊃ D) Proof by contraposition. (⇒) Suppose that Ii;x ̸ C ⊃ D. By
Def. 4.2.2 there exists an entity x′ with x ⪯i x

′ such that Ii;x′ C and Ii;x′ ̸ D.
By definition of I1 holds x ⪯ x′ as well. Applying the induction hypothesis yields
I1;x′ C and I1;x′ ̸ D. Hence, I1;x ̸ C ⊃ D by Def. 4.2.2.

(⇐) Suppose that I1;x ̸ C ⊃ D. Again, by Def. 4.2.2 there exists an entity x′

such that x ⪯ x′, I1;x′ C and I1;x′ ̸ D. From x ∈ ∆i and x ⪯ x′ we conclude
x′ ∈ ∆i and x ⪯i x

′ by Lem. 4.2.4.(i). By the inductive hypothesis Ii;x′ C and
Ii;x′ ̸ D. Therefore, Ii;x ̸ C ⊃ D by Def. 4.2.2.

(Case ∃R.C) (⇒) Assume I1;x ∃R.C. Then, by Def. 4.2.2 it holds for all ⪯
refinements of x that there exists an RI1-successor that is contained in CI1 . Let
x′ ∈ ∆i be arbitrary such that x ⪯i x

′. Definition 4.2.7 implies x ⪯ x′ as well, and by
the assumption there exists y ∈ ∆ such that x′RI1

y and I1; y C. Lemma 4.2.4.(ii)

83

4 Constructive Semantics for ALC

implies that y ∈ ∆i and x′ RIi y. Applying the inductive hypothesis yields Ii; y C.
Thus, Ii;x ∃R.C by Def. 4.2.2.

(⇐) Let us suppose that Ii;x ∃R.C, which is the case if for all ⪯i refinements of
x there exists an RIi-filler in CIi . Let x′ ∈ ∆ such that x ⪯ x′. Then, Lem. 4.2.4.(i)
implies x′ ∈ ∆i and x ⪯i x

′. According to the assumption there exists y ∈ ∆i such
that x′ RIi y and Ii; y C. It follows from Def. 4.2.7 that y ∈ ∆ and x RI1

y.
We can conclude by the ind. hyp. that I1; y C and by Def. 4.2.2 it follows that
I1;x ∃R.C.

(Case ∀R.C) Proof by contraposition. (⇒) Let us suppose that Ii;x ̸ ∀R.C. The
goal is to show that I1;x ̸ ∀R.C. The assumption implies that there exist entities
x′, y ∈ ∆i such that x ⪯i x

′ RIi y and Ii; y ̸ C. Construction of I1 (Def. 4.2.7)
implies x′, y ∈ ∆, x ⪯ x′ and x′ RI1

y. Then, by ind. hyp. I1; y ̸ C. Thus,
I1;x ̸ ∀R.C.

(⇐) Assume that I1;x ̸ ∀R.C. The goal is Ii;x ̸ ∀R.C. The assumption implies
the existence of entities x′, y ∈ ∆ such that x ⪯ x′, x′ RI1

y and I1; y ̸ C. Since
x ∈ ∆i, we can conclude by Lemma 4.2.4 that x′, y ∈ ∆i, and x ⪯i x

′RIi y. Applying
the ind. hyp. yields Ii; y ̸ C. Therefore Ii;x ̸ ∀R.C. □

Now, we can prove the following property of Harrop concepts:

Lemma 4.2.7. Let I1 = (∆1,⪯1,⊥1, ·1) and I2 = (∆2,⪯2,⊥2, ·2) be constructive
models, ∆1 ∩ ∆2 = ∅ and let I1 be the join of the constructive interpretations I1, I2

w.r.t. entities a1 ∈ ∆1, a2 ∈ ∆2 and join world a according to Definition 4.2.7. For each
Harrop concept H it holds that I1; a H if and only if I1; a1 H and I2; a2 H.

∇

Proof. The proof is by induction on the structure of the Harrop concept H.

(Case A) I1; a A if and only if for all i ∈ {1, 2}, Ii; ai A by Def. 4.2.7.

(Case ⊥) I1; a ⊥ if and only if for all i ∈ {1, 2}, Ii; ai ⊥i by Def. 4.2.7.

(Case H1 ⊓H2) By Def. 4.2.2 it is the case that I1; a H1 ⊓H2 iff I1; a H1 and
I1; a H2. By induction hypothesis the latter holds iff Ii; ai H1 and Ii; ai H2

for all i ∈ {1, 2}, which by Def. 4.2.2 is the case iff Ii; ai H1 ⊓H2.

(Case C ⊃ H1) Proof by contraposition. (⇒) Let us assume that Ii; ai ̸ C ⊃ H1

for at least one i ∈ {1, 2}. Definition 4.2.2 implies the existence of an entity x such
that ai ⪯i x and Ii;x C, but Ii;x ̸ H1. Since x ∈ ∆i, we can conclude by

84

4.2 Syntax and Semantics of cALC

Lem. 4.2.6 that I1;x C and I1;x ̸ H1. From Def. 4.2.7 it follows that a ⪯ x

and therefore I1; a ̸ C ⊃ H1.

(⇐) Suppose that I1; a ̸ C ⊃ H1. By Def. 4.2.2 there exists an entity x ∈ ∆ such
that a ⪯ x, x ∈ CI1 and x ̸∈ HI1

1 . We proceed by case analysis.

Case 1. If x = a then the induction hypothesis implies Ii; ai ̸ H1 for some
i ∈ {1, 2}. From a ⪯ ai and monotonicity (Prop. 4.2.2) follows I1; ai C and
applying Lem. 4.2.6 yields Ii; ai C. Then, by Definition 4.2.2 we can conclude
Ii; ai ̸ C ⊃ H1.

Case 2. x ̸= a implies ai ⪯ x for some i ∈ {1, 2}. Lemma 4.2.4 implies x ∈ ∆i

and ai ⪯i x. Then, by Lem. 4.2.6 we can conclude that Ii;x C and Ii;x ̸ H1.
Therefore Ii; ai ̸ C ⊃ H1 by Def. 4.2.2.

(Case ∀R.H1) Proof by contraposition. (⇒) Suppose that Ii; ai ̸ ∀R.H1 for some
i ∈ {1, 2}. Then, there exist entities x, y ∈ ∆i such that ai ⪯i x R

Ii y and y ̸∈ HIi
1 .

Note that y ̸∈ ⊥i, which implies by Prop. 4.2.1 that x ̸∈ ⊥i and therefore ai ̸∈ ⊥i as
well. Def. 4.2.7 implies a ⪯ x RI1

y and by Lem. 4.2.6 we can conclude I1; y ̸ H1.
Thus, I1; a ̸ ∀R.H1.

(⇐) Assume that I1; a ̸ ∀R.H1. Then there exist entities x, y ∈ ∆ such that
a ⪯ x RI1

y and y ̸∈ HI1

1 . Analogously to the previous case, x, y ̸∈ ⊥ and therefore
a ̸∈ ⊥. The case x = a (Def. 4.2.7) is not possible, since then it must be that y = a.
But this would imply by Def. 4.2.7 that ai ∈ ⊥i for all i ∈ {1, 2}, which contradicts
the assumption that a ̸∈ ⊥. Therefore, x ̸= a which implies x ∈ ∆i. From Def. 4.2.7
follows ai ⪯i x and Lem. 4.2.4 implies y ∈ ∆i and x RIi y. Applying Lem. 4.2.6
yields Ii; y ̸ H1. Hence, Ii; ai ̸ ∀R.H1. □

Now we are ready to tackle the main proposition.

Proposition 4.2.3 (Disjunction property). Let Γ be a set of Harrop concepts of
cALC, then ∅; Γ C ⊔D implies ∅; Γ C or ∅; Γ D. ∇

Proof. Assume ∅; Γ C ⊔ D and to the contrary ∅; Γ ̸ C and ∅; Γ ̸ D, where Γ is
a set of Harrop concepts. By Def. 4.2.4 there exist models I1 = (∆1,⪯1,⊥1, ·1) and
I2 = (∆2,⪯2,⊥2, ·2) and entities a1 ∈ ∆1, a2 ∈ ∆2 such that

Ii; ai Γ, for all i ∈ {1, 2}; and
I1; a1 ̸ C & I2; a2 ̸ D.

We construct the join model I1 of I1, I2 w.r.t. entities a1, a2 in a fresh join world a

according to Def. 4.2.7. By Lemma 4.2.5 it follows that the model I1 is a constructive

85

4 Constructive Semantics for ALC

interpretation according to Def. 4.2.2. By assumption I1; a1 Γ and I2; a2 Γ. Now,
let H ∈ Γ be arbitrary. By Lemma 4.2.7 we can conclude I1; a H. Since H was
arbitrary in Γ it holds that I1; a Γ. The assumptions I1; a1 ̸ C, I2; a2 ̸ D and
Lemma 4.2.6 imply I1; a1 ̸ C and I1; a2 ̸ D. By Def. 4.2.7 a ⪯ a1 and a ⪯ a2.
Therefore I1; a ̸ C and I1; a ̸ D, which implies I; a ̸ C ⊔ D by Def. 4.2.2. But
this contradicts our initial assumption. Hence, ∅; Γ C or ∅; Γ D □

The validity statement of the disjunction property can be strengthened into a dis-
junction property w.r.t. a TBox, viz. Θ; Γ C ⊔D, by restricting the axioms of Θ to
inclusions of the form C ⊃ H, where H is a Harrop concept.

The standard formulation of DP comes as a corollary from Prop. 4.2.3 by assuming
an empty set of concepts in the premise of the validity statement.

Corollary 4.2.1. C ⊔D implies C or D. ∇

A consequence of the disjunction property (Prop. 4.2.3) is the rejection of the principle
of the Excluded Middle in cALC. Note that PEM holds in classical ALC, i.e., for every
concept C the statement C ⊔ ¬C generally holds even if neither C nor ¬C.

Example 4.2.7. The disjunction property says that if C ⊔ D, then C or D.
An important property of constructive logic is that the truth of a statement depends
on the existence of a proof of it and therefore it is not possible to assume the truth
of its complement if its proof fails. While the law of the Excluded Middle C ⊔ ¬C
is a tautology in classical logic it is not valid in constructive logic, in particular it
does not belong to cALC. Take an interpretation I defined by ∆I = {a0, a1} with
refinement ⪯I= {(a0, a0), (a0, a1), (a1, a1)}, RI = ∅ and valuation CI = {a1}. Then,
we can observe that concept C is not forced at entity a0, i.e., I; a0 ̸ C, nor is ¬C
because I; a1 C and entity a1 refines a0. This lets us conclude that entity a0 of
this model is also a countermodel demonstrating that the law of the Excluded Middle
C ⊔ ¬C does not belong to cALC.

Furthermore, we can show that cALC does not inherit the axiom of double negation
elimination ¬¬C ⊃ C from classical logic. The reason for that can be observed from
interpretation I, i.e., because ¬C is not satisfied by any entity in ∆I it follows that the
concept ¬¬C is satisfiable at entity a0. But C is not forced at entity a0, i.e., I; a0 ̸ C.
Therefore, it follows that I; a0 ̸ ¬¬C ⊃ C.

Another axiom, which falls into this category is Peirce’s law ((C ⊃ D) ⊃ C) ⊃ C

that can be seen as a stronger form of the Excluded Middle. Since I; a0 ̸ C, it follows
that I; a0 (C ⊃ D) ⊃ C and therefore it can only be that I; a0 ̸ C ⊃ D. The latter
is the case because there exists the refinement a1 of a0, which forces C but not D.

These laws represent equivalent formulations of classical logic in intuitionistic logic.
However, this formulation of classical logic does not generalise to all intuitionistic modal

86

4.2 Syntax and Semantics of cALC

logics and in particular to cALC as we will see later, i.e., the extension of cALC by one
of these axioms does not yield its classical analogue ALC but rather an intermediate
logic, which still does not contain the principle of disjunctive distribution. ■

4.2.6 Finite Model Property

In the following section we will discuss another important property of cALC, that is,
cALC comes with a finite semantic characterisation, i.e., every satisfiable concept of
cALC is satisfiable in a finite interpretation. This property is known as the finite model
property and it will open the door to establish the decidability of cALC.

In classical modal logic, one method to obtain the finite model property of a logical
system is via the filtration technique [33, pp. 77 ff.]. Roughly speaking, given a concept
C and a (possibly infinite) cALC Kripke-structure I satisfying C, one collapses those
entities, which validate the same concepts including their proper subformulæ in order
to produce a finite Kripke structure from I that satisfies C as well.

Example 4.2.8. We reconsider an example from [118, p. 25], which illustrates filtration
and also allows us to give a refutation for Glivenko’s Theorem [62; 114, p. 47] in cALC.
It is well known that intuitionistic propositional logic and classical propositional logic
can be related via a double-negation translation. One instance of such a translation
comes from Glivenko’s Theorem, which states that ¬¬C ∈ IPC if and only if C ∈ CPC.
However, this result does not transfer to intuitionistic modal logics in general10 and in
particular it is not true for cALC. A countermodel for the concept description ¬¬C
with C = ∀R.(A ⊔ ¬A), is constructed in [118, p. 25], demonstrating that it does not
belong to FS. By similar arguments we can show that the double-negation translation
¬¬C does not belong to cALC despite obviously C ∈ ALC holds.

We construct a countermodel for the concept ¬¬C. Suppose there is an interpretation
I = (∆I ,⪯I ,⊥I , ·I) and an entity a0 ∈ ∆I such that I; a0 ̸ ¬¬∀R.(A ⊔ ¬A), i.e.,
a0 ̸∈ (¬¬∀R.(A⊔¬A))I . Then, by Def. 4.2.3 and 4.2.2 there exists a refinement a1 ∈ ∆I

c

such that a0 ⪯I a1 and I; a1 ¬∀R.(A ⊔ ¬A). Since a1 is infallible and by reflexivity
of ⪯I we can conclude that I; a1 ̸ ∀R.(A⊔ ¬A). Then, there exist entities a2, b2 ∈ ∆I

such that a1 ⪯I a2R
I b2 and I; b2 ̸ A⊔¬A. This implies in particular that b2 ̸∈ (¬A)I ,

i.e., there exists a non-fallible entity b3 such that b2 ⪯ b3 and I; b3 A. Monotonicity
(Prop. 4.2.2) implies I; a2 ¬∀R.(A ⊔ ¬A) and therefore I; a2 ̸ ∀R.(A ⊔ ¬A). Note
that a2 ̸∈ ⊥I because b2 is infallible and a2 R

I b2. At this point the countermodel
construction can go on ad infinitum, i.e., I; a2 ̸ ∀R.(A ⊔ ¬A) implies the existence
of a refinement of a2 which falsifies ∀R.(A ⊔ ¬A) in the sense, that it possesses an
R-successor that falsifies A ⊔ ¬A. If we introduce a new refinement a3 of a2 we get by
10Extensions of Glivenko’s Theorem to IMLs over Prior’s MIPC [232] have been discussed in [31].

87

4 Constructive Semantics for ALC

monotonicity I; a3 ¬∀R.(A⊔¬A). From this point on we can continue by introducing
a new refinement of a3 and repeating the construction described above infinitely often.
However, we can identify (filtrate) the entity a3 and its appendant structure with a2

and its corresponding subgraph. The finite countermodel is given in Figure 4.5. This
countermodel is marginally simpler than the respective one for Fischer-Servi’s system
FS as shown in [118]. In order to satisfy the frame condition of Fischer-Servi’s FS, i.e.,
xR y ∧ y ⪯ z ⇒ ∃w.x ⪯ w ∧ wRy, it would be required to either introduce a new
entity a3 such that a2 ⪯ a3 R b2, which leads to an infinite model, since it demands a
witness for I; a3 ̸ ∀R.(A ⊔ ¬A), or the introduction of an edge a2 R b3 which yields
a finite countermodel. For a characterisation of the least extension of FS satisfying a
generalisation of Glivenko’s Theorem see [118, Chap. 9].

a0

a1

a2 b2

b3

̸ ¬¬∀R.(A ⊔ ¬A)

¬∀R.(A ⊔ ¬A)
̸ ∀R.(A ⊔ ¬A)

¬∀R.(A ⊔ ¬A)
̸ ∀R.(A ⊔ ¬A)

̸ A ⊔ ¬A

A

⪯

⪯

R

⪯

Figure 4.5: Countermodel for ¬¬∀R.(A ⊔ ¬A).

■

The proof of the finite model property for the affiliated constructive modal logic CK
has been sketched in [188]. We will demonstrate in the following that the filtration
method of [188] can be extended to the multimodal case of cALC (CKn) and present
the full proof.

Definition 4.2.8 (Subformula closed set). A set of concepts Γ is called subformula
closed if for all C,D ∈ Γ the following holds: {⊤,⊥} ⊆ Γ; ∀R.⊥ ∈ Γ, for all roles R
occurring in Γ; if ¬C ∈ Γ then C ∈ Γ; if C ⊙ D ∈ Γ then so are C and D, where
⊙ ∈ {⊓,⊔,⊃}; if QR.C ∈ Γ then so is C for Q ∈ {∃,∀}. We write Sfc(C) for the least
subformula closed set containing all subconcepts of C. ∇

88

4.2 Syntax and Semantics of cALC

Definition 4.2.9 (Filtration model). Let I = (∆I ,⪯I ,⊥I , ·I) be a fixed but arbitrary
cALC-model, C a cALC concept, Γ be a finite subformula-closed set and let NR =
{R1, R2, . . . , Rn} be the set of roles appearing in Γ. Following the construction of [188]
we need to consider two flavours of local information in order to preserve the validity
of concepts in the interpretation I at any entity x ∈ ∆I . The first component is the
set T (x) of all subformulæ validated at an entity x:

T (x) =df {D | D ∈ Γ & I;x D}.

Secondly, it is necessary to preserve the set of subformulæ of C, which are falsified at
each reachable R-successor of x, where R ∈ NR:

F (x)R =df {D | D ∈ Γ & ∀y.x RI y ⇒ I; y ̸ D}.

Note that if x ⪯I y then T (x) ⊆ T (y) and if x RI y then ∀R−1 T (x) ⊆ T (y) as well as
F (x)R ∩ T (y) = ∅, where ∀R−1 Σ =df {C | ∀R.C ∈ Σ} for a set Σ of concepts.

The pair (T (x), F (x)) with F (x) =df {F (x)R1 , F (x)R2 , . . . , F (x)Rn} characterises the
behaviour of entity x in the interpretation I w.r.t. the set Γ. We denote these finite
tuples as Γ-theories. In general, a Γ-theory in I is a tuple ThΓ =df (X,Z) with
Z =df {ZR1 , ZR2 , . . . , ZRn} of subsets X,ZRi

⊆ Γ (with Ri ∈ NR for 1 ≤ i ≤ n), such
that there exists an entity x ∈ ∆I with X = T (x) and ZRi

⊆ F (x)Ri
, for all Ri ∈ NR.

The finite set of all Γ-theories in the interpretation I is denoted by ThI(Γ).
Note that for any entity x in any cALC interpretation I and any cALC concept C

with Γ = Sfc(C), the pair x≡ = (T (x), F (x)) is a Γ-theory. Therefore, it follows that
ThI(Γ) is non-empty whatever the C and I are.

The filtration of I w.r.t. Γ is then defined by I|Γ =df (∆I |Γ,⪯I |Γ,⊥I |Γ, ·I |Γ), where
Z ′ denotes the set {Z ′

R1 , Z
′
R2 , . . . , Z

′
Rn

}, and

∆I |Γ =df ThI(Γ);
(X,Z) ⪯I |Γ (X ′, Z ′) iff X ⊆ X ′;

(X,Z) ∈ ⊥I |Γ if ⊥ ∈ X;
(X,Z) RI |Γ (X ′, Z ′) iff ∀R−1 X ⊆ X ′ and ZR ∩X ′ = ∅, for ZR ∈ Z;

(X,Z) ∈ AI |Γ if A ∈ X or ⊥ ∈ X for all A ∈ NC ;
otherwise, we define ·I |Γ according to the inductive conditions of Def. 4.2.2. ∇

Fallible entities are maximal and therefore the filtration interpretation has only one
entity (X,Z) as a placeholder for all the fallible entities where X = Γ and the set Z
is empty. Since the fallible class is maximal w.r.t. T (x) and the sets ZR are empty,

89

4 Constructive Semantics for ALC

any entity that does not refute a formula at its R-successors is an abstraction of this
fallible entity in ∆I |Γ. Observe from the above definition of RI |Γ that a fallible entity
(X,Z) ∈ ThI(Γ) with ⊥ ∈ X is RI |Γ-connected to itself for all roles R ∈ NR. Also
note that x ⪯I y implies x≡ ⪯I |Γ y≡ and x RI y implies x≡ R

I |Γ y≡.
The following lemma shows that the result of applying the filtration yields a well-

defined cALC interpretation.

Lemma 4.2.8 (Filtration is well-defined). Let Γ be a (finite) subformula closed set
of cALC concepts. For any cALC interpretation I, the filtration I|Γ is a well-defined
cALC interpretation according to Def. 4.2.2. ∇

Proof. Given an arbitrary but fixed cALC interpretation I = (∆I ,⪯I ,⊥I , ·I), its fil-
tration I|Γ = (∆I |Γ,⪯I |Γ,⊥I |Γ, ·I |Γ) w.r.t. Γ is a constructive interpretation according
to Def. 4.2.2 due to the following facts:

• ∆I |Γ is nonempty by definition.

• The relation ⪯I |Γ is reflexive and transitive. This follows immediately from
Def. 4.2.9 of ⪯I |Γ.

• The set ⊥I |Γ is closed under refinement and role-filling. We need to show ∀x, y, z ∈
∆I |Γ, x ∈ ⊥I |Γ:

(i) x⪯I |Γ y ⇒ y ∈ ⊥I |Γ;

(ii) ∀R ∈ NR. ∃z ∈ ∆I |Γ s.t. xRI |Γ z and z ∈ ⊥I |Γ;

(iii) ∀R ∈ NR. ∀z. xRI |Γ z ⇒ z ∈ ⊥I |Γ.

Firstly, it can be easily observed from the definition of the filtration interpretation
that I|Γ; (T (x), Z) ⊥ implies I|Γ; (T (x), Z) A for all A ∈ NC .

Let us assume for (i) that I|Γ; (T (x), Z) ⊥ and (T (x), Z) ⪯I |Γ(T (y), Z ′). We
need to show that I|Γ; (T (y), Z ′) ⊥. The assumption says that ⊥ ∈ T (x).
From the definition of the filtration interpretation follows that ⊥ ∈ T (y) as well,
since T (x) ⊆ T (y). Hence, I|Γ; (T (y), Z ′) ⊥.

For (ii) suppose I|Γ; (T (x), Z) ⊥. We need to show that there exists an entity
(T (y), Z ′) ∈ ∆I |Γ s.t. (T (x), Z)RI |Γ(T (y), Z ′) and I|Γ; (T (y), Z ′) ⊥. The
assumption means that ⊥ ∈ T (x). Then, the definition of the filtration model
directly implies that (T (x), Z)RI |Γ(T (x), Z).

For (iii) letR ∈ NR and suppose that I|Γ; (T (x), Z) ⊥, (T (x), Z)RI |Γ(T (y), Z ′),
for arbitrary y ∈ ∆I and Z ′. The goal is I|Γ; (T (y), Z ′) ⊥. By assumption
⊥ ∈ T (x), and since ∀R.⊥ ∈ T (x) (by Def. 4.2.8), it follows that ⊥ is contained
in ∀R−1 T (x) ⊆ T (y). Hence, I|Γ; (T (y), Z ′) ⊥.

90

4.2 Syntax and Semantics of cALC

• The interpretation of atomic concepts A ∈ NC is given by AI |Γ, which is closed
under refinement. Let us suppose that I|Γ; (T (x), Z) A and assume that
(T (x), Z) ⪯I |Γ(T (y), Z ′) for arbitrary entities and atomic concepts A ∈ NC . The
goal I|Γ; (T (y), Z ′) A is a direct consequence of the definition of the filtration
interpretation Def. 4.2.9, since T (x) ⊆ T (y).

This shows that the filtration I|Γ of an interpretation I is a well-defined interpretation
according to Def. 4.2.2. □

Moreover, we can show that filtration is satisfiability preserving in the following sense.

Theorem 4.2.1 (Filtration theorem). Let Γ be a (finite) subformula closed set of
cALC concepts and let I|Γ = (∆I |Γ,⪯I |Γ,⊥I |Γ, ·I |Γ) be the filtration of a cALC inter-
pretation I w.r.t. Γ. Then, for all concepts C ∈ Γ, x ∈ ∆I and (T (x), Z) ∈ ∆I |Γ where
Z = {ZR1 , ZR2 , . . . , ZRn} with ZRi

⊆ F (x)Ri
for i ∈ {1, . . . , n}, we have

I;x C iff I|Γ; (T (x), Z) C. ∇

Proof. The proof is by induction on the structure of the concept C. Let I|Γ be the
filtration of I w.r.t. Γ.

(Case atomic symbol) Let C = A ∈ Γ be an atomic concept A ∈ NC or C = ⊥. (⇒)
Suppose that I;x C. Then, C ∈ T (x) for entity x≡ and by Def. 4.2.9 it follows
that I|Γ; (T (x), Z) C.

(⇐) Assume that I|Γ; (T (x), Z) C. Then, by definition of filtration x ∈ CI and
therefore I;x C, as desired.

(Case C ⊓D) (⇒) Suppose that I;x C ⊓ D, i.e., x ∈ CI and x ∈ DI . As
Γ is subformula closed, C,D ∈ Γ, thus by the induction hypothesis follows that
(T (x), Z) ∈ CI |Γ ∩DI |Γ. Therefore, I|Γ; (T (x), Z) C ⊓D.

(⇐) Let us assume that I|Γ; (T (x), Z) C⊓D, i.e., it holds that I|Γ; (T (x), Z) C

and I|Γ; (T (x), Z) D. As C,D ∈ Γ, it follows by the inductive hypothesis that
I;x C and I;x D. Hence, I;x C ⊓D.

(Case C ⊔D) Analogously to the previous case (Case C ⊓ D) by inductive hypo-
thesis.

(Case C ⊃ D) (⇒) Suppose that I;x C ⊃ D. This time the goal is to show
that I|Γ; (T (x), Z) C ⊃ D. Take an arbitrary y ∈ ∆I and arbitrary Z ′ =
{Z ′

R1 , . . . , Z
′
Rn

} such that (T (y), Z ′) is a Γ-theory in I, (T (x), Z) ⪯I |Γ(T (y), Z ′) and
I|Γ; (T (y), Z ′) C. Since Γ is subformula closed, C,D ∈ Γ as well. Applying

91

4 Constructive Semantics for ALC

the induction hypothesis yields I; y C. By definition of filtration it holds that
I; y C ⊃ D, because the implication C ⊃ D is contained in T (x) and T (x) ⊆ T (y).
This lets us now conclude that I; y D, as well. Then, the inductive hypothesis
implies that I|Γ; (T (y), Z ′) D. Since (T (y), Z ′) was an arbitrary refinement of
(T (x), Z), it follows that I|Γ; (T (x), Z) C ⊃ D.

(⇐) In the converse direction let us suppose that I|Γ; (T (x), Z) C ⊃ D. This
means for every refinement of (T (x), Z) that it is in DI |Γ if it is in CI |Γ. Take an
arbitrary y ∈ ∆I such that x ⪯I y and assume that I; y C. Then, it follows
from the definition of filtration that (T (x), Z) ⪯I |Γ y≡. Again, since Γ is subformula
closed it follows that C,D ∈ Γ. Now, we can apply the induction hypothesis, which
yields that I|Γ; y≡ C and from the assumption follows that I|Γ; y≡ D. Then,
we can conclude from the induction hypothesis that I; y D and, because y was
an arbitrary refinement of x we can conclude that I;x C ⊃ D.

(Case ∃R.C) (⇒) Let us assume that I;x ∃R.C, i.e., for all refinements of x
exists an R-successor in CI . We need to show that I|Γ; (T (x), Z) ∃R.C. Take
an arbitrary y ∈ ∆I such that (T (x), Z) ⪯I |Γ(T (y), Z ′) according to the definition
of filtration. This implies in the filtrated interpretation that ∃R.C ∈ T (x). By the
definition of filtration it follows that ∃R.C ∈ T (y), as well, due to T (x) ⊆ T (y). The
assumption lets us conclude the existence of an R-successor z of y such that z ∈ CI .
This implies that (T (y), Z ′)RI |Γ z≡. As Γ is subformula closed, C ∈ Γ, we can apply
the induction hypothesis to obtain z≡ ∈ CI |Γ. Hence, I|Γ; (T (x), Z) ∃R.C.

(⇐) In the other direction let us assume that I|Γ; (T (x), Z) ∃R.C. The goal
is I;x ∃R.C. Let y ∈ ∆I be arbitrary such that x ⪯I y. Then, by definition
of filtration it also holds that (T (x), Z) ⪯I |Γ y≡ and according to the assumption
choose an R-successor (T (z), Z ′) ∈ ∆I |Γ of y≡ such that y≡ R

I |Γ(T (z), Z ′) with
I|Γ; (T (z), Z ′) C. Since I|Γ; (T (z), Z ′) C, it holds that C ∈ T (z) by induction
hypothesis (C ∈ Γ) and because T (z) ∩ F (y)R = ∅ it follows that C ̸∈ F (y)R. We
can conclude by Def. 4.2.9 that there exists an entity z′ ∈ ∆I such that y R z′ and
I; z′ C. Hence, I;x ∃R.C.

(Case ∀R.C) (⇒) Suppose that I;x ∀R.C, i.e., for all y ∈ ∆I , x ⪯I y implies
for all z ∈ ∆I that if y R z then z ∈ CI . The goal is I|Γ; (T (x), Z) ∀R.C.
Let (T (y), Z ′), (T (z), Z ′′) be such that (T (x), Z) ⪯I |Γ(T (y), Z ′)RI |Γ(T (z), Z ′′). It
holds that T (x) ⊆ T (y), ∀R.C ∈ T (x), Z ′

R ∩ T (z) = ∅ and ∀R−1 T (y) ⊆ T (z).
Then, ∀R.C ∈ T (y) which implies that C ∈ T (z) and by Definition 4.2.9 this
means that I; z C. As C ∈ Γ, we can infer by the inductive hypothesis that
I|Γ; (T (z), Z ′′) C. Hence, I|Γ; (T (x), Z) ∀R.C.

92

4.2 Syntax and Semantics of cALC

(⇐) Proof by contraposition. Assume that I;x ̸ ∀R.C. We need to show that
I|Γ; (T (x), Z) ̸ ∀R.C. The assumption implies that there exist entities y, z ∈ ∆I

such that x ⪯I y RI z and I; z ̸ C. It follows directly from Definition 4.2.9 that
(T (x), Z) ⪯I |Γ y≡ R

I |Γ z≡. Since Γ is subformula closed, C ∈ Γ as well, and the
ind. hyp. lets us conclude that I|Γ; z≡ ̸ C. Hence, I|Γ; (T (x), Z) ̸ ∀R.C. □

Proposition 4.2.4 (Finite filtration). Let Γ be a finite subformula closed set of
cALC concepts. For any cALC interpretation I, if I|Γ = (∆I |Γ,⪯I |Γ,⊥I |Γ, ·I |Γ) is the
filtration of I w.r.t. Γ, then ∆I |Γ is finite. ∇

Proof. The set ∆I |Γ consists of elements of the form (T (x), Z) such that ZR ⊆ F (x)R

for all R ∈ NR. But there are at most (2|Γ|)(|NR|+1) of such possible Γ-theories. □

Theorem 4.2.2 (Finite model property).

C if and only if I C for all finite cALC-interpretations I. ∇

Proof. (⇒) This direction is obvious, because C implies that C is valid in all
interpretations and in particular the finite ones.

(⇐) In the other direction let us suppose that ̸ C for some concept C. This implies
the existence of a countermodel I = (∆I ,⊥I ,⪯I , ·I) and an entity a in ∆I such that
I; a ̸ C. Now, take the filtration I|Γ of I w.r.t. Γ = Sfc(C) according to Def. 4.2.9.
Since satisfiability is preserved under filtration (Thm. 4.2.1), it follows that I|Γ; a≡ ̸ C

and Prop. 4.2.4 implies finiteness of I|Γ. Hence, we found a finite model which refutes
concept C. □

It follows that if a cALC concept C is satisfiable then it is satisfiable in a finite
interpretation and in particular, C is satisfiable in a finite interpretation whose size
is exponentially bound by the size of Sfc(C) and the number of roles in NR. It is
noteworthy, that (i) the filtration given in Definition 4.2.9 is not the smallest possible
filtration, and (ii) while cALC enjoys the finite model property, its models possibly
involve cycles. We will further discuss these points in Ex. 5.2.3, in particular, the
example will show that a model, which satisfies the concept ∃R.(C⊔D)⊓¬∃R.C⊓¬∃R.D
is either finite and cyclic, or acyclic and infinite. It seems that the finite models, which
refute the axiom FS4/IK4 of distribution of ∃ over disjunction ⊔ are characterised by
cyclic, oscillating refinement relations, and if these cycles are collapsed, then the axiom
FS4/IK4 becomes valid.

As conjectured by Mendler and de Paiva [188] the finite model property can be
obtained also by embedding cALC into a classical bimodal logic (the fusion S4 ⊗ K)
exploiting general results from the field of many-dimensional modal logics [103]. This

93

4 Constructive Semantics for ALC

question will be addressed in Chapter 6 by embedding cALC into ALC with reflexive
and transitive roles which corresponds to the bimodal logic S4 ⊗ Km. It is pointed out
that ‘ [. . .] if we require ⪯ to be antisymmetric, then the finite model property is lost
[. . .]’ [188, p. 9], which can be observed from the construction of the filtration model
(see also Ex. 5.2.3). We will also present a proof of the finite model property and the
decidability of cALC based on a sequent calculus in Sec. 5.2.2.

4.3 Summary

The aim of this work is to show that Def. 4.2.2 induces a well-behaved logic, called cALC,
which uses the same syntactical representation as classical ALC, but is semantically
more expressive and facilitates the DL-style reasoning tasks w.r.t. TBoxes.

In this chapter we have introduced the logic cALC that is related to the constructive
modal logic CK [27; 188; 272] as ALC is related to the classical modal system K [229].
Analogously to the correspondence between ALC and Km by Schild [245], one can
easily show that cALC is a notational variant of CKn. The semantics of cALC is
birelational and derived from the monomodal constructive logic CK [188], which is
based on a constructive modal logic that was firstly introduced by Wijesekera [272].
The system cALC support TBox theories, and its constructive interpretation gives rise
to the notion of constructive satisfiability and a strengthened form of the classical OWA,
called evolving open world assumption. However, the birelational semantics rules out
the classical interpretation of individual names from ABoxes. We want to highlight
that the semantic dimension along which refinement takes place is implicit in cALC
and not hard-coded into the syntax, which allows several different notions of context
generically in the language of the basic description logic ALC. This context-dependency
is integrated into the notion of truth rather than the terminology like in other work
on special cases of context such as temporal DLs [10; 11; 38]. We demonstrated
that in cALC the classical principles of the Excluded Middle C ⊔ ¬C ≡ ⊤, double
negation ¬¬C ≡ C, the dualities ∃R.C ≡ ¬∀R.¬C, ∀R.C ≡ ¬∃R.¬C and disjunctive
distribution ∃R.(C ⊔ D) ≡ ∃R.C ⊔ ∃R.D are no longer tautologies. Instead, they
correspond to non-trivial TBox axioms, which can axiomatise specialised classes of
application scenarios. Furthermore, the extension by fallible entities [90] rejects the
nullary variant of the principle of disjunctive distribution ¬∃R.⊥. We have given
proofs for the monotonicity property, the disjunction property, and the finite model
property relying on the filtration technique. In this chapter, several examples illustrated
situations in which the classical interpretation of ALC is not adequate. Moreover, we
exemplified the requirements of the evolving open world assumption and suggested
applications in the domain of auditing, to use cALC as inference mechanism as well as

94

4.3 Summary

typing system for data streams. In summary, cALC is non-normal w.r.t. the possibility
modality ∃R (3)[103; 249]. The logic cALC is meant for applications where we must
be robust for several implicit notions of context-dependency but do not need to reason
explicitly about some specific refinement.

Notes on Related Work

Constructive DLs The Kripke semantics of two variants of intuitionistic DLs (KALC
and IALC) as introduced in [39; 64] are obtained from the standard intuitionistic
interpretation as proposed by de Paiva [78]. However, the system by Clément [64] does
not allow ⊃ as a concept-forming operator and focusses mainly on a proof theoretic per-
spective. Also, the intuitionistic DL introduced in [41] is proof-theoretic, but addresses
the extraction of information terms inspired by [201].

The intuitionistic DL KALC [39; 43; 45] is derived from intuitionistic first-order logic
via the standard translation following de Paiva’s proposal for IALC, but it differs in
that the semantics is restricted to finite domains, and by assuming the Kuroda principle
∀R.¬¬C ⊃ ¬¬∀R.C. Also, it is conjectured that the Kuroda principle implies the finite
model property for KALC∞ [39; 270], which is a variant of KALC not restricted to
finite models. The question arises whether the restriction of KALC to finite posets
and KALC∞ to final worlds limits or maybe excludes the ability to express dynamic
systems, which possibly never reach a final or stable state. Such oscillating processes
are commonly found in mechanical or dynamic systems, for instance, just consider the
cardiac cycle of the human heart, cycles between economic growth and stagnation in
business, or cyclical oscillations of global or regional climate. Villa [270, pp. 6–11]
stresses that IALC does not provide an adequate semantics for the DL domain, since
IALC does not satisfy the finite model property. However, since the finite model
property and decidability for KALC∞ are still open problems, it is unclear whether the
semantics of KALC solves the key problems of IALC, particularly to obtain decidable
decision procedures.

Let us discuss the intuitionistic variant of ALC called iALC by de Paiva, Haeusler
and Rademaker [77; 123–126]. The authors follow the IK approach of Simpson [249].
However, the proposed semantics in [77, p. 24; 126, p. 7; 125, p. 3] for iALC interprets
the existential restriction intuitionistically according to the semantics of cALC (and
CK) and does not require the usual frame conditions from the system IK (cf. p. 38), i.e.,
the interpretation of ∃R.C is defined as

(∃R.C)I =df {x | ∀y. x ⪯ y ⇒ ∃z. y RI z & z ∈ CI}. (4.4)

95

4 Constructive Semantics for ALC

This Kripke semantics corresponds to the infallible variant of the semantics for cALC
and one can easily give a counterexample for axiom FS4/IK4 (cf. Fig. 4.2 on page 70),
which contradicts their claim that the Hilbert axiomatisation for iALC, which is the
same as that of IK including axiom FS4/IK4 (see p. 34), is sound and complete w.r.t.
the proposed Kripke semantics for iALC. Furthermore, the authors are claiming to
draw a connection between constructive hybrid logic and iALC in [77]. Yet, [77] does
not extend iALC by nominals and hybrid logical satisfaction operators, but rather uses
the term ‘Hybrid-Style’ to denote a labelled sequent calculus. A recent work [127]
corrects the Kripke semantics for iALC, by interpreting ∃R.C classically (cf. (2.2)) and
requiring the frame conditions of IK (cf. p. 38).

IMLs The rejection of the principle of disjunctive distribution as discussed in Sec. 4.1
has been previously discussed in the literature in [4; 90; 160–162; 187; 188; 191; 194–
196], in particular, the rejection of the unary distribution law FS3/IK3 = ∃R.⊥ ⊃ ⊥
based on the notion of explicit fallible worlds has been investigated first in [4; 90; 188].
Wijesekera [272] investigated Kripke semantics of a system similar to cALC, refuting
the binary distribution, but satisfying the nullary one. Note that the related system
CK and its extension CS4 also possess a proof-theoretic interpretation in the form of a
categorical semantics[4; 27; 80]. In [4; 188] the requirement that R is serial on ⊥, i.e.,
if x ∈ ⊥ then there exists y such that xRy and y ∈ ⊥, is missing in the definition of
the Kripke semantics.

Fallible and infallible Kripke semantics, and neighbourhood semantics for CK and
a translation between the two semantics has been investigated in [160; 161]. Kojima
introduces an intuitionistic linear-time temporal logic inspired by CK, investigating
its semantics and proof theory in terms of a Hilbert and Gentzen sequent calculus
[161; 162]. This system is based on intuitionistic (partially) functional11 Kripke frames
and rejects the principle of disjunctive distribution w.r.t. the temporal next modality,
which is interpreted type-theoretically as a type of quoted code. The rejection of the
distributivity law is motivated by type-theoretic means relying on the notion of external
and internal observers of Kripke worlds [160–162] by stating that ‘[. . .] Kripke semantics
for type-theoretically motivated modal logic [. . .]’ necessarily needs to ‘[. . .] emulate
internal observers states of knowledge in terms of possible worlds and accessibility
relations[. . .] ’ [160, p. 17]. In this view, the usual Kripke semantics of standard modal
logics (and DLs) assume an ideal external observer with global knowledge in the sense
that it observes the global state of the system (its possible worlds) from the outside.
In contrast, the type-theoretic view considers observers inside the system, i.e., each
11The term functional Kripke frame denotes that the accessibility relation on possible worlds is a

(partial) function [162].

96

4.3 Summary

observer’s view is restricted to a fixed state of knowledge (possible world) once and for
all. Then, a observer can know at state x that ‘A or B is true at some state y’ without
having explicit knowledge whether ‘A is true at y’ or ‘B is true at y’.

In contrast to [54], the system cALC does consider only one dimension of refinement
but in a more general sense. Brunet [54] presents an intuitionistic epistemic logic based
on several refinement relations coding multiple (partial) points of view. The special
feature of our refinement ordering ⪯ is that it may have cycles and fallible descriptions,
i.e., ‘oscillations’ and ‘deadlocks’ which are specific to real-world abstractions as we
have seen in the examples (Ex. 4.2.2, 4.2.5 and 4.2.6) given above.

Lax Logic Propositional lax logic (PLL) [90; 91] is an interesting extension of CK
with applications in the field of hardware verification. It is a mono-modal extension
of intuitionistic propositional logic by the single modality ⃝ and has been studied
as an extension of CS4 by the axiom C ⊃ 2C [4]. Regarding the semantics of PLL,
it uses birelational semantics containing fallible entities and refuting the binary and
nullary distribution of diamond over disjunction (FS4/IK4,FS3/IK3) just like cALC
does. Following the discussion on the relation of PLL to CS4 in [4], the system PLL
can be viewed as an extension of the monomodal fragment of cALC by the axioms T, 4,
C ⊃ ∀R.C and the frame condition R ; ⪯ ⊆ ⪯ ;R.

Hybrid Logic As discussed in [16, Chap. 4.2.2], there is also a strong correspondence
between classical DLs and hybrid logic. Intuitionistic hybrid logic was introduced in
[49; 50; 52]. Its Kripke semantics is derived from standard intuitionistic logic via the
standard translation [49, Chap. 8] and the separation of the hybrid-logical machinery
from the intuitionistic partial order has been highlighted as a characteristic feature
of this logic. Since the translation between hybrid logic and DLs also covers ABox
assertions12, it may be a promising candidate to investigate constructive DLs based on
hybrid logics.

Many-valued DLs Our work is also to be distinguished from many-valued DLs (see
[181; 224]), which are finitely valued while cALC is infinitely valued and from fuzzy
DLs (see [87; 144; 255]), which use a quantitative notion of approximate truth.

12This is in contrast to the translation between Km and ALC which can only cover the TBox machinery
(see Section 2.1.5).

97

CHAPTER 5

Constructive Proof Systems for cALC

This chapter presents Hilbert and Gentzen-style deduction systems for cALC that
admit a direct interpretation of proofs as computations following the Curry-Howard
isomorphism. In Section 5.1, we introduce a proof theoretic presentation based on a
set of modal axiom schemata and rules for cALC in the form of a sound and complete
Hilbert axiomatisation, and discuss several meta-theorems, which are being used in its
completeness proof. The section finishes with the presentation of a modal deduction
theorem w.r.t. global and local premises. Section 5.2 proceeds by presenting the multi-
conclusion Gentzen-style sequent calculus G1 for cALC, which is sound and complete
w.r.t. the Kripke semantics presented in Chap. 4, and enjoys the finite model property as
well as decidability. Soundness and completeness of the Hilbert system is demonstrated
by showing that the Hilbert system is equivalent to the sequent calculus G1. Section 5.3
discusses intermediate systems that arise between cALC and ALC from the extension
of cALC by classical axioms, and provides sound and complete extensions of the Hilbert
and Gentzen calculi.

5.1 Hilbert-style Axiomatisation

5.1.1 Hilbert Calculus for cALC

Hilbert-style proof systems as introduced by David Hilbert [135] are formal deductive
systems. Conceptually, they are very simple, i.e., they consist of a usually large
collection of axiomatic schemata and only very few inference rules. In Hilbert systems
a proof of a formula proceeds by finding its derivation, starting from appropriate
substitution instantiations of axiom schemata and by applying the rules of inference
to the latter. This process yields a sequence of formulæ. The following definition
formalizes cALC in terms of a Hilbert-style axiomatisation by defining its axioms and
inference rules.

99

5 Constructive Proof Systems for cALC

Definition 5.1.1 (Axioms [195; 196]). The axioms for cALC (CKm) consist of

a) all substitution instances of theorems of IPC

IPC1: C ⊃ (D ⊃ C)

IPC2: (C ⊃ (D ⊃ E)) ⊃ ((C ⊃ D) ⊃ (C ⊃ E))

IPC3: C ⊃ (D ⊃ (C ⊓D))

IPC4: (C ⊓D) ⊃ C, (C ⊓D) ⊃ D

IPC5: C ⊃ (C ⊔D), D ⊃ (C ⊔D)

IPC6: (C ⊃ E) ⊃ ((D ⊃ E) ⊃ ((C ⊔D) ⊃ E))

IPC7: ⊥ ⊃ C

b) and the axiom schemata

K∀R: ∀R.(C ⊃ D) ⊃ (∀R.C ⊃ ∀R.D)

K∃R: ∀R.(C ⊃ D) ⊃ (∃R.C ⊃ ∃R.D)

where C and D are concept descriptions and R is a role. ∇

Definition 5.1.2 (Rules of Inference [195; 196]). Let C andD be concept descriptions.
The system cALC consists of the two rules of inference of modus ponens (MP) and
necessitation (Nec) for each role R ∈ NR:

C ⊃ D C
MP

D
C

Nec∀R.C ∇
The definition of the Hilbert calculus for cALC [195; 196] is given by the usual

axiomatisation of the intuitionistic propositional calculus (IPC) [268] (cf. Sec. 2.2) and
the two extensionality principles K∀R,K∃R. The axioms characterise the individual
logical connectives, i.e., looking at the axioms of Definition 5.1.1 part a) in detail, s
1–2 cover implication ⊃, 3–4 are for intersection ⊓, 5–6 for disjunction ⊔ and 7 for
inconsistency ⊥. Part b) depicts the two extensionality principles K∀R, K∃R which
handle universal and existential quantification (role filling) respectively, and are based
on the modal rules of Wijesekera [272]. These stem from generalised monotonicity
depicted by the rules M1,M2 below. An important property of the rules is that the
context Γ is universally quantified in the conclusion of each rule.

Γ C ⊃ D
M1

∀R.Γ ∀R.C ⊃ ∀R.D
Γ C ⊃ D

M2
∀R.Γ ∃R.C ⊃ ∃R.D

The rules of modus ponens (MP) and necessitation (Nec) are given by Def. 5.1.2. Note
that negation ¬C is encoded in the usual way as C ⊃ ⊥ and ⊤ as ⊥ ⊃ ⊥. In the
next step, we will define the notion of Hilbert derivation. When defining the notion

100

5.1 Hilbert-style Axiomatisation

of derivability from assumptions in an axiomatic Hilbert system, one can distinguish
between global and local assumptions as pointed out by Fitting [101], Mendler and
de Paiva [188] and Popkorn [229]. According to Fitting [102] the former are global
assumptions that can be understood as logical truth to which the rule of necessitation
applies, while the latter are local premises that correspond to contingent truth to
which the necessitation rule does not apply. This notion of deduction is in line with
description logics where we have global model assumptions represented by a TBox and
local assumptions at the entity (or world) level.

Definition 5.1.3 (Hilbert deduction for cALC [102; 195; 196; 229]). Let cALCax
be the set of axiom schemata of cALC closed under substitution, Θ and Γ be sets of
concepts (not schemata) and C a single concept (not a schema). We write Θ ; Γ H C

to denote that C is deducible from the set Θ of global premises and the set Γ of
local premises, i.e., there exists a finite sequence of concepts C0, C1, . . . , Cn such that
Cn = C which consists of a global part coming first, followed by a local part at the end.
Let G ⊎ L = [0, n]. In the global part, for all i, k, j ∈ G one of the following holds:

• The concept Ci is either a global hypothesis, i.e., a member of Θ.

• The concept Ci is a member of cALCax.

• The concept Ci arises from two earlier derivable concept descriptions by MP, i.e.,
there are concepts Cj, Ck (j, k < i) with Cj = Ck ⊃ Ci.

• The concept Ci is obtained by rule Nec from an earlier concept description Cj

(j < i) with Ci = ∀R.Cj, for some role R ∈ NR.

In the local part, for all i ∈ L the concept Ci is either a member of Γ (local hypothesis)
or follows from two earlier concept descriptions Cj, Ck (i, k ∈ L and j, k < i) by rule
MP (as in the global part). Rule Nec is not allowed in the local part. ∇

In other words, the rule of necessitation can be applied only to derivations with
global assumptions but not local ones [128]. This restriction is important and allows us
to state a deduction theorem w.r.t. global and local premises as shown later. Taking
Def. 5.1.3 into account and by following the presentation of [128, p. 9], we obtain the
proof system depicted below. In contrast to [128] it considers global and local premises:

Proposition 5.1.1. Definition 5.1.3 induces the proof system, which is sound and
complete, and consists of the following admissible rules:

C ∈ Θ ∪ Γ

Θ ; Γ H C

C ∈ cALCax
Θ ; Γ H C

101

5 Constructive Proof Systems for cALC

Θ′ ; Γ′′
H C ⊃ D Θ′′ ; Γ′

H C
MP

Θ′, Θ′′ ; Γ′, Γ′′
H D

Θ ; ∅ H C R ∈ NR
Nec

Θ ; Γ H ∀R.C

Note that Θ (Θ′, Θ′′) is a global set of assumptions corresponding to the TBox. ∇

Proof. By induction on the structure of a derivation. □

Proposition 5.1.2 (Monotonicity of derivations). If Θ ; Γ H C then Θ′ ; Γ′
H C,

for any sets of concepts Θ′ and Γ′ with Θ ⊆ Θ′ and Γ ⊆ Γ′. ∇

Proof. By induction on the structure of a derivation. □

Lemma 5.1.1 (Compactness). Let Θ and Γ be sets of concepts and C an arbitrary
concept description. If Θ ; Γ H C then there exist finite sets Θf ⊆ Θ and Γf ⊆ Γ such
that Θf ; Γf H C. ∇

Proof. Suppose that Θ ; Γ H C is canonically extended for arbitrary and possibly
infinite sets of concepts Θ and Γ. By Def. 5.1.3 there is a finite sequence of concepts that
ends in C. But this implies that only a finite number of global and local assumptions
can be involved in the derivation of C. Therefore, there exist finite sets Θf ⊆ Θ and
Γf ⊆ Γ such that Θf ; Γf H C. □

Notation. As usually, implication ⊃ is right-associative, i.e., C ⊃ D ⊃ E denotes
C ⊃ (D ⊃ E). Accordingly, we will sometimes omit parentheses to achieve a better
readability in Hilbert derivations.

In the following, we will adapt the list notation from [187, p. 44] to represent finite
sequences of implications of the form

C1 ⊃ C2 ⊃ C3 ⊃ . . . ⊃ Cn ⊃ D.

Let l be a finite list of concepts. A concept expression of the form Dl is defined by

D[] =df D;

DC::l =df C ⊃ (Dl);

where [] is the empty list, and :: denotes the list constructor which adds concept C
to the beginning of the list l. For instance, the unfolding of C [E1, E2, E3] yields the
implication E1 ⊃ (E2 ⊃ (E3 ⊃ C)). ■

There exist several admissible rules that are useful to shorten Hilbert derivations.
Before going into details, let us inspect an exemplary Hilbert derivation, which considers
universal and existential restrictions.

102

5.1 Hilbert-style Axiomatisation

Example 5.1.1. We can show that Hilbert derives (∀R.C ⊓ ∃R.D) ⊃ ∃R.(C ⊓D):

1. C ⊃ (D ⊃ (C ⊓D)) IPC3;
2. ∀R.

C ⊃ (D ⊃ (C ⊓D))

from 1 by Nec;

3. ∀R.C ⊃ ∀R.(D ⊃ (C ⊓D)) from K∀R, 2 by MP;
4. ∀R.(D ⊃ (C ⊓D))⊃ (∃R.D ⊃ ∃R.(C ⊓D)) by K∃R;
5. ∀R.C ⊃

∀R.(D ⊃ (C ⊓D))⊃ (∃R.D ⊃ ∃R.(C ⊓D))

from IPC1, 4 by MP;

6.

∀R.C ⊃ ∀R.(D ⊃ (C ⊓D))

⊃

∀R.C ⊃ (∃R.D ⊃ ∃R.(C ⊓D))

from IPC2, 5 by MP;

7. ∀R.C ⊃ (∃R.D ⊃ ∃R.(C ⊓D)) from 6, 3 by MP.

Then, the goal H (∀R.C ⊓ ∃R.D)⊃ ∃R.(C ⊓ D) follows from 7 by the admissible
rule of currying, stating that if H C1 ⊃ (C2 ⊃ D) then also H (C1 ⊓C2) ⊃ D. The
admissible rules including currying will be discussed in Lem. 5.1.2 and 5.1.3. ■

The next two lemmas state several theorems and meta-rules, which will be used later
in the proof of the completeness of the Hilbert system for cALC (see Prop. 5.2.1).

Lemma 5.1.2. For all concepts C,D,E,F and C1,C2, . . . ,Cn of cALC:

(I) Identity H C ⊃ C is derivable in Hilbert. Note that identity corresponds to
the closed combinator term SKK in combinatory logic [140] where K stands for
IPC1 and S for IPC2 respectively.

(Bn) Function composition (possibly nested) is derivable as a closed combinator in
Hilbert, i.e., H (D ⊃ E) ⊃

(C ⊃ D)[C1, C2, ..., Cn]

⊃

(C ⊃ E)[C1, C2, ..., Cn]

for

n≥ 0. This theorem generalises the B-combinator of combinatory logic.

(Kn) The generalisation H D ⊃D[C1, C2, ..., Cn] of IPC1 is derivable for n≥ 0.

(Sn) Hilbert derives H (E ⊃ (C1 ⊃ C2 ⊃ . . .⊃ Cn))⊃ (E ⊃ C1)⊃ (E ⊃ C2)⊃ . . .⊃
(E ⊃ (C)k), which generalises axiom IPC2 for 2 ≤ k < n, where (C)k is the
subconcept in C =df C1 ⊃ C2 ⊃ . . . ⊃ Cn at depth k. It is defined as follows:
Let D =df D1 ⊃ D2 ⊃ . . . ⊃ Dj. The concept (D)k stands for the subconcept
of D at depth 0 ≤ k < j w.r.t. implication ⊃ that is given by the following
definition

(D)0 =df D;

(D ⊃ F)k =df (F)k−1;

(D)k =df D, if D is not an implication.

(FS1) Hilbert derives H ⊤ ≡ ∀R.⊤.

(IPC8) Hilbert derives H (⊥ ⊔ C) ⊃ C.

(IPC9) Hilbert derives H C ⊃ (⊤ ⊓ C). ∇

103

5 Constructive Proof Systems for cALC

Proof. The proof is by demonstrating that each of Lem. 5.1.2 is a theorem of cALC. We
will introduce abbreviations of complex formulæ on the fly to streamline the presentation
of the more complex cases. Let C,D,E and C1, C2, . . . , Cn be cALC concepts.

(I) The identity combinator (I) is derivable by the following sequence [cf. 140, p. 123]:

1.

C ⊃ ((C ⊃ C) ⊃ C)

⊃ (C ⊃ (C ⊃ C)) ⊃ (C ⊃ C) IPC2;

2. (C ⊃ (C ⊃ C)) ⊃ (C ⊃ C) from 1, IPC1 by MP;
3. C ⊃ C from 2, IPC1 by MP.

(Bn) It is well known [cf. 140, p. 123] that Hilbert derives H (D ⊃ E) ⊃ (C ⊃
D) ⊃ C ⊃ E which is the B-combinator13 in closed form. We can go one step further
and derive the nested B1-combinator (with an implicational prefix of depth 1) in
closed form, i.e., H (D ⊃ E) ⊃ (F ⊃ C ⊃ D) ⊃ F ⊃ C ⊃ E. Let φ =df (F ⊃
(C ⊃ D) ⊃ (C ⊃ E)) ⊃ (F ⊃ C ⊃ D) ⊃ (F ⊃ C ⊃ E), ψ =df (F ⊃ (C ⊃ D) ⊃
(C ⊃ E)), ϑ =df (F ⊃ C ⊃ D) ⊃ (F ⊃ C ⊃ E) and γ =df (D ⊃ E).

1. φ IPC2;
2. γ ⊃ φ from IPC1, 1 by MP;
3. (γ ⊃ (ψ ⊃ ϑ)) ⊃ (γ ⊃ ψ) ⊃ (γ ⊃ ϑ) IPC2;
4. (γ ⊃ ψ) ⊃ (γ ⊃ ϑ) from 3, 2 by MP;
5. γ ⊃ ψ ?;
6. γ ⊃ ϑ from 4, 5 by MP.

Note that the proof of B1 has exactly the same structure as the derivation of the
standard B-combinator as shown in [140, p. 123]. The only missing piece left is to
find a proof of derivation 5, i.e., we need to show that Hilbert derives H γ ⊃ ψ =

(D ⊃ E) ⊃ (F ⊃ (C ⊃ D) ⊃ (C ⊃ E)) which is as follows:

1. (C ⊃ (D ⊃ E)) ⊃ (C ⊃ D) ⊃ (C ⊃ E) IPC2;
2. (D ⊃ E) ⊃ (C ⊃ (D ⊃ E)) IPC1;
3. (D ⊃ E) ⊃ (C ⊃ D) ⊃ (C ⊃ E) from (B comb., 1 by MP), 2 by MP;
4. ((C ⊃ D) ⊃ (C ⊃ E)) ⊃

F ⊃ (C ⊃ D) ⊃ (C ⊃ E)

IPC1;

5. (D ⊃ E) ⊃

F ⊃ (C ⊃ D) ⊃ (C ⊃ E)

from (B comb., 4 by MP), 3 by MP.

Now, we will generalise the discussion above by giving a derivation of the Bn-
combinator with an arbitrary nesting of depth n ≥ 0. We will show by induction on
the size n of the list of concepts [C1, C2, . . . , Cn] that Hilbert derives

H (D ⊃ E) ⊃

(C ⊃ D)[C1,C2,...,Cn]

⊃

(C ⊃ E)[C1,C2,...,Cn]

. (5.1)

13The B-combinator is not to be confused with the axiom schema B = C ⊃ 23C after L. E. J.
Brouwer.

104

5.1 Hilbert-style Axiomatisation

The base case n = 0 is simply an instance of B. In the inductive step let k ≥ 0. We
show that if Bn holds for n = k then Bn holds for n = k + 1 as well. The structure
of the proof of (5.1) equals the derivation of the B1-combinator by taking

φ =df

C1 ⊃ ((C ⊃ D)l) ⊃ ((C ⊃ E)l)

⊃ ((C ⊃ D)C1::l) ⊃ ((C ⊃ E)C1::l),

ψ =df

C1 ⊃ ((C ⊃ D)l) ⊃ ((C ⊃ E)l)

,

ϑ =df ((C ⊃ D)C1::l) ⊃ ((C ⊃ E)C1::l),

γ =df (D ⊃ E),

where l =df [C2, . . . , Ck+1] is a list of concepts of length k. As for B1, we need to
give a proof of derivation 5, i.e., this time we demonstrate how to obtain

H γ ⊃ ψ

= (D ⊃ E) ⊃

C1 ⊃ ((C ⊃ D)l) ⊃ ((C ⊃ E)l)

.

This is the interesting part where the induction hypothesis comes into play:

1. γ ⊃

((C ⊃ D)l) ⊃ ((C ⊃ E)l)

by ind. hyp. (Bk);

2.

((C ⊃ D)l) ⊃ ((C ⊃ E)l)

⊃

C1 ⊃ ((C ⊃ D)l) ⊃ ((C ⊃ E)l)

by IPC1;

=

((C ⊃ D)l) ⊃ ((C ⊃ E)l)

⊃ ψ

3. γ ⊃ ψ from (B, 2 by MP), 1 by MP.
This completes the proof of (Bn).

(Kn) One shows by induction on the size n of the list [C1, C2, . . . , Cn] that Hilbert
derives H D ⊃ D[C1, C2, ..., Cn]. The base case n = 0 is just an instance of the identity
combinator (I). In the inductive case let k ≥ 0. We need to show that (Kn) for
n = k implies (Kn) for n = k + 1. Let l =df [C2, . . . , Ck+1]:

1. D ⊃ Dl by ind. hyp.;
2. (Dl) ⊃

C1 ⊃ (Dl)

IPC1;

3.

(Dl) ⊃ C1 ⊃ (Dl)

⊃ (D ⊃ Dl) ⊃ (D ⊃ C1 ⊃ Dl) (Bn).

4. D ⊃ C1 ⊃ (Dl) = D ⊃ DC1::l from (3, 2 by MP), 1 by MP.

(Sn) Next, we demonstrate that (Sn) is admissible in Hilbert. This is proved by
induction on n ≥ 2. For k = 2 and n ≥ 2 we have to show H (E ⊃ (C1 ⊃ . . . ⊃
Cn)) ⊃ (E ⊃ C1) ⊃ (E ⊃ (C2 ⊃ . . . ⊃ Cn)) which is just an instance of IPC2. In the
inductive case 2 < k ≤ n+1 the goal is H (E ⊃ (C1 ⊃ C2 ⊃ . . . ⊃ Cn+1)) ⊃ (E ⊃
C1) ⊃ (E ⊃ C2) ⊃ . . . ⊃ (E ⊃ (C)k) where C =df (E ⊃ (C1 ⊃ C2 ⊃ . . . ⊃ Cn+1)).

105

5 Constructive Proof Systems for cALC

The latter goal is given by the following derivation where l =df [C2, . . . , Cn]:

1. (E ⊃ (C2 ⊃ . . . ⊃ Cn+1)) ⊃ (E ⊃ C2) ⊃ . . . ⊃ (E ⊃ (C)k) by ind. hyp.;
= (CE::l

n+1) ⊃

(E ⊃ (C)k)

[(E⊃C2),...,(E⊃Ck−1)]

2.

E ⊃ (C1 ⊃ (C2 ⊃ . . . ⊃ Cn+1))

⊃

(E ⊃ C1) ⊃ (E ⊃ (C2 ⊃ . . . ⊃ Cn+1))

= (C

E::(C1::l)
n+1) ⊃

(E ⊃ C1) ⊃ (CE::l

n+1)

IPC2;

3. (CE::(C1::l)
n+1) ⊃

(E ⊃ C1) ⊃ ((E ⊃ (C)k)

[(E⊃C2),...,(E⊃Ck−1)])

from ((Bn), 1 by MP), 2 by MP.
= (E ⊃ (C1 ⊃ C2 ⊃ . . . ⊃ Cn+1)) ⊃ (E ⊃ C1) ⊃ (E ⊃ C2) ⊃ . . . ⊃ (E ⊃ (C)k)

(FS1) The Hilbert derivation of H ∀R.⊤ ⊃ ⊤ follows from the fact that Hilbert
derives ⊤ by IPC7 and from IPC1 by the rule MP. We remind the reader that ⊤ is
an abbreviation for ⊥ ⊃ ⊥.

The derivation of H ⊤ ⊃ ∀R.⊤ is as follows:

1. ∀R.⊤ ⊃ (⊤ ⊃ ∀R.⊤) by IPC1;
2. ∀R.⊤ from IPC7 by Nec;
3. ⊤ ⊃ ∀R.⊤ from 1, 2 by MP.

(IPC8) The Hilbert derivation of H (⊥ ⊔ C) ⊃ C is as follows:

1. ⊥ ⊃ C IPC7;
2. C ⊃ C (I);
3. (⊥ ⊃ C) ⊃ (C ⊃ C) ⊃ ((⊥ ⊔ C) ⊃ C) IPC6;
4. (⊥ ⊔ C) ⊃ C from (3, 1 by MP), 2 by MP.

(IPC9) The Hilbert derivation of H C ⊃ (⊤ ⊓ C) is as follows:

1. ⊤ IPC7;
2. ⊤ ⊃ (C ⊃ (⊤ ⊓ C)) IPC3;
3. C ⊃ (⊤ ⊓ C) from 2, 1 by MP.

□

Lemma 5.1.3. The following rules are admissible in the Hilbert system of cALC:

(ARB) If Hilbert derives Θ ; Γ H C ⊃ D[C1, C2, ..., Cn] and Θ ; Γ H D ⊃ E then also

H C ⊃ E[C1, C2, ..., Cn] for n ≥ 0. This rules is denoted by composition.

(ARK) If Θ ; Γ H C then also Θ ; Γ H C [E1, E2, ..., En] for n ≥ 0, which is (Kn) as
admissible rule. We will write (ARK)[E1,E2,...,En]

to denote the application of
this rule to a derivation w.r.t. a list of concepts [E1, E2, . . . , En].

106

5.1 Hilbert-style Axiomatisation

(ARS) If Hilbert derives Θ ; Γ H C1 ⊃ C2 ⊃ . . . ⊃ Cn then there is a derivation
for Θ ; Γ H (C

[E1, E2, ..., Em]
1) ⊃ (C

[E1, E2, ..., Em]
2) ⊃ . . . ⊃ (C

[E1, E2, ..., Em]
k)

with 2 ≤ k < n and m ≥ 0 as well, which is (Sn) as admissible rule.
We will write (ARS)[E1,E2,...,Em] to denote the application of this rule to a
derivation w.r.t. the list [E1, E2, . . . , Em].

(ARC) If Θ ; Γ H (C1 ⊓ C2) ⊃ D then also Θ ; Γ H C1 ⊃ (C2 ⊃ D). This rule
is known as currying [70], whereas its inverse direction (ARC)−1 is called
de-currying.

(ARW) If Θ ; Γ H C ⊃ D then also Θ ; Γ H (C1⊓C ⊓C2) ⊃ D and Θ ; Γ H C ⊃
(D1 ⊔ D ⊔ D2). This is known as weakening where the first case denotes
left-weakening and the second case is called right-weakening.

(ARCW) If Θ ; Γ H C ⊃ D then Θ ; Γ H C ⊃ D[E1,E2,...,En], denoted by weakening-
currying. The application of rule (ARCW) to a Hilbert derivation w.r.t. a
list of concepts [E1, E2, . . . , En] will be denoted by (ARCW)[E1,E2,...,En]

.

(ARM) If Θ ; Γ H C ⊃ D then by monotonicity also Θ ; Γ H (E1 ⊓ C ⊓ E2) ⊃
(E1 ⊓D ⊓ E2).

(ARE) Elimination of neutral elements: If Θ ; Γ H (⊤⊓C) ⊃ D then also Θ ; Γ H

C ⊃ D, and if Θ ; Γ H C ⊃ (⊥ ⊔D) then also Θ ; Γ H C ⊃ D. ∇

Proof. The proof is by demonstrating that each rule of Lem. 5.1.3 is admissible in the
Hilbert system of cALC. Note that we will omit Θ ; Γ from the presentation of the
derivation of each rule.

(ARB) The proof of the admissible rule (ARB) (composition) is by showing that
from Θ ; Γ H C ⊃ D[C1,C2,...,Cn] and Θ ; Γ H D ⊃ E we can find a derivation of
Θ ; Γ H C ⊃ E [C1,C2,...,Cn]. The goal can be derived by starting from an appropriate
instance of (Bn) w.r.t. n and using rule MP with the latter and the assumption.

(ARK) Suppose that Θ ; Γ H C. We must shows how to derive Θ ; Γ H C [E1, E2, ..., En].
We can take an instance of (Kn) which by Prop. 5.1.2 also holds under extended
assumptions, i.e., Θ ; Γ H C ⊃ C [E1, E2, ..., En]. Then, the goal follows from the latter
and the assumption by rule MP.

(ARS) Let us suppose that Θ ; Γ H C1 ⊃ C2 ⊃ . . . ⊃ Cn. The goal is to derive
Θ ; Γ H (C

[E1, E2, ..., Em]
1) ⊃ (C

[E1, E2, ..., Em]
2) ⊃ . . . ⊃ ((C)

[E1, E2, ..., Em]
k) for 2 ≤ k <

n, where (C)k is the kth subconcept of the assumption C =df C1 ⊃ C2 ⊃ . . . ⊃ Cn

w.r.t. implication (see (Sn) in Lem. 5.1.2). The proof is by induction on the size m

107

5 Constructive Proof Systems for cALC

of the list [E1, E2, . . . , Em]. For the base case m = 0 the goal follows immediately
by assumption. For the inductive step let i ≥ 0. We have to show that (ARS) for
m = i implies (ARS) for m = i+ 1. This is given by the following derivation w.r.t.
Θ ; Γ, where l =df [E2, E3, . . . , Ei+1] is a list of concepts of length i:

1. (C l
1) ⊃ . . . ⊃ ((C)lk) by ind. hyp.;

2. E1 ⊃

(C l

1) ⊃ . . . ⊃ ((C)lk)

from 1 by (ARK)[E1];
3.

E1 ⊃ ((C l

1) ⊃ . . . ⊃ ((C)lk))

⊃ (E1 ⊃ (C l

1)) ⊃ . . . ⊃ (E1 ⊃ ((C)lk)) IPC2;
4. (E1 ⊃ (C l

1)) ⊃ . . . ⊃ (E1 ⊃ ((C)lk)) from 3, 2 by MP.
= (CE1::l

1) ⊃ . . . ⊃ ((C)E1::l
k)

(ARC) For the rule of currying (ARC) the Hilbert derivation is as follows where we
use the abbreviation φ =df (C1 ⊓ C2):

1. ϑ =df (C1 ⊓ C2) ⊃ D Ass.;
= φ ⊃ D

2. (C2 ⊃ ϑ) ⊃ (C2 ⊃ φ) ⊃ (C2 ⊃ D) IPC2;
3. (C1 ⊃ (C2 ⊃ ϑ)) ⊃ (C1 ⊃ (C2 ⊃ φ)) ⊃ C1 ⊃ (C2 ⊃ D) from 2 by (ARS)[C1];
4. C1 ⊃ (C2 ⊃ ϑ) from 1 by (ARK)[C1,C2];
5. (C1 ⊃ (C2 ⊃ φ)) ⊃ (C1 ⊃ (C2 ⊃ D)) from 3, 4 by MP;
6. C1 ⊃ (C2 ⊃ D) from 5, IPC3 by MP.

For the derivation of de-currying (ARC)−1 let φ =df (C1 ⊓ C2):

1. C1 ⊃ (C2 ⊃ D) Ass.;
2. (C1 ⊓ C2) ⊃ C1 IPC4;

= φ ⊃ C1

3. φ ⊃ (C2 ⊃ D) from 2, 1 by (ARB);
4. (φ ⊃ (C2 ⊃ D)) ⊃ (φ ⊃ C2) ⊃ (φ ⊃ D) IPC2;
5. (φ ⊃ C2) ⊃ (φ ⊃ D) from 4, 3 by MP;
6. (C1 ⊓ C2) ⊃ C2 IPC4;

= φ ⊃ C2

7. (C1 ⊓ C2) ⊃ D from 5, 6 by MP.

(ARW) The admissibility of the rule of left- and right-weakening (ARW) is shown by
the next two derivations. The first case demonstrates left-weakening while the second

108

5.1 Hilbert-style Axiomatisation

argues right-weakening. In the following derivation let φ =df (C1 ⊓ (C ⊓ C2)):

1. C ⊃ D Ass.;
2. (C ⊓ C2) ⊃ C IPC4;
3. (C1 ⊓ (C ⊓ C2)) ⊃ (C ⊓ C2) IPC4;

= φ ⊃ (C ⊓ C2)

4.

φ ⊃ ((C ⊓ C2) ⊃ C)

⊃ (φ ⊃ (C ⊓ C2)) ⊃ (φ ⊃ C) IPC2;

5. φ ⊃ ((C ⊓ C2) ⊃ C) from 2 by (ARK)[φ];
6. (φ ⊃ (C ⊓ C2)) ⊃ (φ ⊃ C) from 4, 5 by MP;
7. φ ⊃ C from 6, 3 by MP;

= (C1 ⊓ (C ⊓ C2)) ⊃ C

8. (C1 ⊓ (C ⊓ C2)) ⊃ D from 7, 1 by (ARB).
The derivation of right-weakening goes analogously to the latter case but it is relying
on the constructor IPC5 for disjunction. In the following let φ =df ((D1⊔D)⊔D2).

1. C ⊃ D Ass.;
2. D ⊃ (D1 ⊔D) IPC5;
3. (D1 ⊔D) ⊃ ((D1 ⊔D) ⊔D2) IPC5;

= (D1 ⊔D) ⊃ φ

4.

D ⊃ ((D1 ⊔D) ⊃ φ)

⊃ (D ⊃ (D1 ⊔D)) ⊃ (D ⊃ φ) IPC2;

5. ((D1 ⊔D) ⊃ φ) ⊃

D ⊃ ((D1 ⊔D) ⊃ φ)

IPC1;

6. D ⊃ ((D1 ⊔D) ⊃ φ) from 5, 3 by MP;
7. (D ⊃ (D1 ⊔D)) ⊃ (D ⊃ φ) from 4, 6 by MP;
8. D ⊃ φ from 7, 2 by MP;

= D ⊃ ((D1 ⊔D) ⊔D2)

9. C ⊃ ((D1 ⊔D) ⊔D2) from 1, 8 by (ARB).

(ARCW) Admissible rule (ARCW) is derivable from a simplified form of left-weakening
and de-currying (ARC)−1. Suppose that Θ ; Γ H C ⊃ D. The goal is a Hilbert
derivation of Θ ; Γ H C ⊃ D[E1,E2,...,En]. We proceed by induction on n. The base
case n = 0 is trivial. In the inductive step let k ≥ 0. Suppose that (ARCW) holds
for n = k. We need to show that (ARCW) holds for n = k+ 1 as well. We have the
following derivation where l =df [E2, E3, . . . , Ek+1] is a list of length k:

1. C ⊃ (Dl) by ind. hyp.;
2. (C ⊓ E1) ⊃ C IPC4;
3. (C ⊓ E1) ⊃ (Dl) from 2, 1 by (ARB);
4. C ⊃ (E1 ⊃ (Dl)) from 3 by (ARC).

= C ⊃ (DE1::l)

109

5 Constructive Proof Systems for cALC

(ARM) For the rule of monotonicity we have to show that Hilbert derives Θ ; Γ H

(E1 ⊓ (C ⊓ E2)) ⊃ (E1 ⊓ (D ⊓ E2)) from the assumption Θ ; Γ H C ⊃ D. In
this proof we need the general result of commutativity of ⊓, i.e., at first we will
demonstrate that Hilbert derives

H (C ⊓D) ⊃ (D ⊓ C). (5.2)

1.

(C⊓D) ⊃ (C ⊃ (D⊓C))

⊃ ((C⊓D) ⊃ C) ⊃ ((C⊓D) ⊃ (D⊓C)) IPC2;

2. (C ⊓D) ⊃ (C ⊃ (D ⊓ C)) from IPC4, IPC3 by (ARB);
3. ((C⊓D) ⊃ C) ⊃ ((C⊓D) ⊃ (D⊓C)) from 1, 2 by MP;
4. (C ⊓D) ⊃ (D ⊓ C) from 3, IPC4 by MP.

Secondly, we show that from a derivation of Θ ; Γ H C ⊃ D we can derive the
weaker form Θ ; Γ H (C ⊓ E) ⊃ (D ⊓ E) of monotonicity, denoted by (ARMw):

1. C ⊃ D Ass.;
2.

(C⊓E) ⊃ (E ⊃ (D⊓E))

⊃ ((C⊓E) ⊃ E) ⊃ ((C⊓E) ⊃ (D⊓E)) IPC2;

3. (C ⊓E) ⊃ (E ⊃ (D⊓E)) from (IPC4, 1 by (ARB)), IPC3 by (ARB);
4. ((C ⊓ E) ⊃ E) ⊃ ((C ⊓ E) ⊃ (D ⊓ E)) from 2, 3 by MP;
5. (C ⊓ E) ⊃ (D ⊓ E) from 4, IPC4 by MP.

Finally, we derive the primary goal Θ ; Γ H (E1 ⊓ (C ⊓ E2)) ⊃ (E1 ⊓ (D ⊓ E2)):

1. C ⊃ D Ass.;
2. ((C ⊓ E2) ⊓ E1) ⊃ ((D ⊓ E2) ⊓ E1) from 1 by (ARMw) done twice;
3. (E1 ⊓ (C ⊓ E2)) ⊃ ((C ⊓ E2) ⊓ E1) by (5.2);
4. ((D ⊓ E2) ⊓ E1) ⊃ (E1 ⊓ (D ⊓ E2)) by (5.2);
5. (E1 ⊓ (C ⊓ E2)) ⊃ ((D ⊓ E2) ⊓ E1) from 3, 2 by (ARB);
6. (E1 ⊓ (C ⊓ E2)) ⊃ (E1 ⊓ (D ⊓ E2) from 5, 4 by (ARB).

(ARE) Elimination of neutral elements by the rule (ARE) is given as follows:

1. (⊤ ⊓ C) ⊃ D Ass.;
2. C ⊃ (⊤ ⊓ C) (IPC9);
3. C ⊃ D from 2, 1 by (ARB).

1. C ⊃ (⊥ ⊔D) Ass.;
2. (⊥ ⊔D) ⊃ D (IPC8);
3. C ⊃ D from 2, 1 by MP.

□

110

5.1 Hilbert-style Axiomatisation

5.1.2 Modal Deduction Theorem

The deduction theorem as introduced in [128] is a meta-theorem stating that if there is
a deduction Γ, C H D of a concept D from a set of concepts Γ extended by a concept
C, then one can derive Γ H C ⊃ D.

It has been stated in the literature several times that the deduction theorem does
not hold for modal logics in its general form, in particular, Mendler and de Paiva [188]
point out that the common form of unrestricted Hilbert deduction Θ ; Γ H C does not
enjoy the deduction theorem in the system CK. The problem arises when considering
assumptions as axioms. In this case it would follow by rule Nec that Θ ; C H ∀R.C,
while soundness of H will give Θ ; ̸ H C ⊃ ∀R.C.

Hakli and Negri [128] argue that the problem arises from the definition of the notion
of derivability from assumptions in an axiomatic Hilbert-style system and review several
solutions to the problem. They present a solution in [128], which is by restricting the
rule of necessitation Nec to be applicable only to derivations which are independent
from assumptions, i.e., the rule Nec restricted to apply to theorems only. However, the
representation of Hakli and Negri [128] only covers derivations from local premises.

The work of Fitting [101] gives a notion of Hilbert deduction which differentiates
between global and local assumptions. Global assumptions represent fixed axiom
instances and can be thought of as TBox axioms in the DL-context, while local premises
live at the entity (world) level. Accordingly, the rule of necessitation is then restricted to
be applicable only to global premises, but is banned for local ones. Fitting’s definition
of Hilbert deduction accommodates the two kinds of premises by dividing a derivation
into a global and a local part respectively, such that rule Nec is not applicable in the
latter.

Our definition of Hilbert deduction Def. 5.1.3 implements Fitting’s idea and allows
us to state the deduction theorem w.r.t. global and local premises. For a comprehensive
survey on the deduction theorem in modal logics see [128]. Having global and local
hypotheses saves the deduction theorem, but as Fitting [101] points out, we need two
versions of it, namely, a local and a global Deduction Theorem:

Theorem 5.1.1 (Deduction Theorem [101; 102]). For all sets of concepts Θ and Γ,
and concepts C,D the following holds:

(i) Θ ; Γ, C H D iff Θ ; Γ H C ⊃ D; (local deduction)

(ii) Θ, C ; Γ H D iff Θ ; Γ ∪ ∀∗C H D, (global deduction)

where ∀∗C is the least set containing concept C and ∀R.E, ∀R ∈ NR and E ∈ ∀∗C. ∇

111

5 Constructive Proof Systems for cALC

Proof. Let us begin with the proof of the local Deduction Theorem 5.1.1.(i).
(⇒) The proof is by induction on the structure of a derivation and follows the overall

structure of the proof as given in [128, Thm. 2], but differs from the latter which only
covers the classical modal logic K while we treat cALC and therefore will rely on a
different argumentation of the individual cases.

Suppose that Θ ; Γ, C H D, i.e., there is a Hilbert derivation D1, D2, . . . , Dn of
D from Θ ; Γ ∪ {C}. To prove Θ ; Γ H C ⊃ D we demonstrate the statement
Θ ; Γ H C ⊃ Di for any Di in the proof of D with 1 ≤ i ≤ n. We proceed by
induction on i:

• In the base case i = 1 we have two possibilities, namely that D1 is an assumption
itself or an axiom.

(i) If D1 is an assumption and D1 = C, then the goal Θ ; Γ H C ⊃ D1 follows
by a derivation of Θ ; Γ H C ⊃ C. The latter holds by monotonicity
Prop. 5.1.2 and the fact that H C ⊃ C (aka identity) is derivable in Hilbert,
where the latter derivation follows by Lem. 5.1.2.

(ii) Otherwise, D1 is an assumption and D1 ∈ Γ or D1 is a substitution instance
of an axiom according to Def. 5.1.1. Then, in either case the derivation of
the goal is as follows:

1. Θ ; Γ H D1 Def. 5.1.3;
2. Θ ; Γ H D1 ⊃ (C ⊃ D1) IPC1 and Prop. 5.1.2;
3. Θ ; Γ H C ⊃ D1 from 2, 1 by MP.

• In the inductive step let us suppose that Θ ; Γ H C ⊃ Dj for j < i. The goal is
to obtain a derivation of Θ ; Γ H C ⊃ Di. We proceed by case analysis:

(i) If concept Dj is an axiom according to Def. 5.1.1 or an assumption in Γ, then
the goal follows similarly to the base case by taking D1 = Dj. Otherwise,
Dj is obtained by the application of an inference rule.

(ii) If the last rule applied is Nec then we have Di = ∀R.E in the conclusion,
i.e., the derivation is of the form

Θ ; ∅ H E R ∈ NR

Θ ; Γ, C H ∀R.E

By rule Nec Hilbert derives Θ ; Γ H ∀R.E as well. The derivation of the
goal is as follows:

1. Θ ; Γ H ∀R.E by Nec;
2. Θ ; Γ H ∀R.E ⊃ (C ⊃ ∀R.E) IPC1 and Prop. 5.1.2;
3. Θ ; Γ H C ⊃ ∀R.E from 2, 1 by MP.

112

5.1 Hilbert-style Axiomatisation

(iii) If the last rule applied is MP we have to consider two cases. Note that Γ is
partitioned into Γ′ and Γ′′, while Θ is global.

Case 1. The left premise has not been derived by rule Nec. Then C is either
part of the assumptions in Γ′ of the left premise or the right premise Γ′′ of
rule MP, respectively.

Case 1.1. In the first case, C ∈ Γ′ and the last rule application looks like

Θ ; Γ′, C H Dk Θ ; Γ′′
H

Dj
Dk ⊃ Di

Θ ; Γ′, Γ′′, C H Di

with j, k < i. We need to show that Hilbert derives Θ ; Γ′, Γ′′
H C ⊃ Di.

Applying the induction hypothesis to the left premise gives us the derivation
of Θ ; Γ′

H C ⊃ Dk. Then, the derivation of the goal is as follows:

1. Θ; Γ′
H C ⊃Dk by ind. hyp. left prem.;

2. Θ; ∅ H (C ⊃ (Dk ⊃Di))⊃ (C ⊃Dk)⊃ (C ⊃Di) IPC2 and Prop. 5.1.2;
3. Θ; ∅ H (Dk ⊃Di)⊃ (C ⊃ (Dk ⊃Di)) IPC1 and Prop. 5.1.2;
4. Θ; Γ′′

H (C ⊃ (Dk ⊃Di)) from right. prem., 3 by MP;
5. Θ; Γ′′

H (C ⊃Dk)⊃ (C ⊃Di) from 2, 4 by MP;
6. Θ; Γ′, Γ′′

H C ⊃Di from 5, 1 by MP.

Case 1.2. In the second case, C ∈ Γ′′ and the last rule application looks like

Θ; Γ′
H Dk Θ; Γ′′, C H

Dj
Dk ⊃Di

Θ; Γ′, Γ′′, C H Di

with j,k < i. Applying the induction hypothesis to the right premise yields
the derivation of Θ; Γ′′

H C ⊃ (Dk ⊃Di). We proceed as follows:

1. Θ; Γ′′
H C ⊃ (Dk ⊃Di) by ind. hyp. right prem.;

2. Θ; ∅ H (C ⊃ (Dk ⊃Di))⊃ (C ⊃Dk)⊃ (C ⊃Di) IPC2 and Prop. 5.1.2;
3. Θ; Γ′′

H (C ⊃Dk)⊃ (C ⊃Di) from 2, 1 by MP;
4. Θ; ∅ H Dk ⊃ (C ⊃Dk) IPC1 and Prop. 5.1.2.
5. Θ; Γ′

H C ⊃Dk from 4, left. prem. by MP;
6. Θ; Γ′, Γ′′

H C ⊃Di from 3, 5 by MP.

Case 2. If rule Nec is involved in the deduction of one of the premises of rule
MP then it must be in the left premise. There are two cases depending on
whether C is part of the assumptions of the left or right premise.

113

5 Constructive Proof Systems for cALC

Case 2.1. Suppose that C lives in the left premise, then the derivation is

Θ; ∅ H E R ∈NR

Θ; Γ′, C H ∀R.E Θ; Γ′′
H

Dj
∀R.E ⊃Di

Θ; Γ′, C, Γ′′
H Di

where Dk = ∀R.E and j,k < i. Rule Nec derives Θ; Γ′
H ∀R.E as well,

such that we obtain via MP a derivation of Θ; Γ′, Γ′′
H Di. Now, taking the

instance H Di ⊃ (C ⊃Di) of IPC1 and applying MP to the former derivation
gives us the goal Θ; Γ′, Γ′′

H C ⊃Di.

Case 2.2. Otherwise, if C is part of the right premise, the situation is

Θ; ∅ H E R ∈NR

Θ; Γ′
H ∀R.E Θ; Γ′′, C H

Dj
∀R.E ⊃Di

Θ; Γ′, Γ′′, C H Di

which is argued similarly like Case 1.2.

(⇐) The inverse direction is easily shown. Let us assume that Θ; Γ H C ⊃ D. It
follows by monotonicity Prop. 5.1.2 that Hilbert derives Θ; Γ, C H C ⊃D. Taking the
fact Θ; Γ, C H C and applying rule MP to the former gives Θ; Γ, C H D as desired.

This finishes the proof of the local Deduction Theorem. We postpone the proof of the
global Deduction Theorem 5.1.1.(ii) since it relies on another auxiliary lemma which
will be introduced below. □

Lemma 5.1.4. For all sets of concepts Θ and Γ, and concept C we have

(i) Θ; Γ H C ⇒ Θ; ∀RΓ H ∀R.C, where ∀RΓ =df {∀R.D |D ∈ Γ};

(ii) Θ, C ; ∅ H D ⇒ Θ, C ; ∅ H Q∀ , where Q∀ is a concept of the form ∀R1.∀R2. . . .

∀Rk.D prefixed by a quantifier sequence of length k ≥ 0 and each Ri (0 < i ≤ k)

is some Ri ∈ NR. ∇

Proof. Lem. 5.1.4.(i) is shown by induction on the size of Γ. Suppose that Θ ; Γ H C.

• In the base case Γ = ∅ the goal Θ ; ∅ H ∀R.C is an immediate consequence of
applying rule Nec to the assumption.

• In the inductive step let us suppose that Θ ; Γ, D H C. We need to show that
Θ ; ∀R (Γ ∪ {D}) H ∀R.C. It follows from the local Deduction Theorem 5.1.1
that Θ ; Γ H D ⊃ C. By applying the ind. hyp. we obtain the derivation
Θ ; ∀RΓ H ∀R.(D ⊃ C). Taking an instance of axiom K∀R gives H ∀R.(D ⊃
C) ⊃ (∀R.D ⊃ ∀R.C), which by Prop. 5.1.2 has a derivation under weakening

114

5.1 Hilbert-style Axiomatisation

as well, i.e., Θ ; ∀RΓ H ∀R.(D ⊃ C) ⊃ (∀R.D ⊃ ∀R.C). Then, an application
of rule MP to the former derivations yields Θ ; ∀RΓ H ∀R.D ⊃ ∀R.C. Now, we
apply the local Deduction Theorem (Thm. 5.1.1.(i)) in the inverse direction to
obtain the derivation of the goal Θ ; ∀RΓ, ∀R.D H ∀R.C.

Part (ii) of Lem. 5.1.4 is shown by induction on the depth of the quantifier prefix of Q∀ .

• In the base case suppose that Θ, C ; ∅ H D. Since Q∀ = D, the goal follows by
assumption.

• In the inductive step suppose that Θ, C ; ∅ H D. The goal is to find a derivation
of Θ, C ; ∅ H Q∀ . The ind. hyp. yields a derivation of Θ, C ; ∅ H Q∀ ′ with
Q∀ = ∀R.Q∀ ′ and Q∀ ′ having a quantifier depth of k ≥ 0. Applying rule Nec w.r.t.

someR ∈ NR to the latter derivation gives us a Hilbert proof of Θ, C ; ∅ H ∀R.Q∀ ′

which was to be shown, observing that Q∀ = ∀R.Q∀ ′. □

We are now ready to tackle the global Deduction Theorem.

Proof of Thm. 5.1.1.(ii). Let us suppose that Θ, C ; Γ H D, i.e., there is a derivation
D1, D2, . . . , Dn of D from Θ, C ; Γ. The proof is by induction on the length of a
Hilbert derivation. We prove Θ ; Γ ∪ ∀∗C H D by demonstrating the statement
Θ ; Γ ∪ ∀∗C H Di for any Di in the proof of D with 1 ≤ i ≤ n.
(⇒) Base case: i = 1. Let us assume that Θ, C ; Γ H D1. The goal is to show a

derivation of Θ ; Γ ∪ ∀∗C H D1. We have the following cases:

(i) If D1 is an instance of an axiom then H D1 and by monotonicity Prop. 5.1.2
immediately Θ ; Γ ∪ ∀∗C H D1.

(ii) If D1 is an assumption and D1 ∈ Θ ∪ Γ then the goal follows by monotonicity
Prop. 5.1.2;

(iii) If C = D1 then Θ ; C H D1 as well. By monotonicity Prop. 5.1.2 it follows that
Θ ; Γ, ∀∗C H D1 which shows the goal, where C ∈ ∀∗C by definition of ∀∗C.

In the inductive step we proceed by case analysis on the last rule applied:

(i) If the last rule is Nec then we have the following situation

Θ, C ; ∅ H Dk R ∈ NR

Θ, C ; Γ H ∀R.Dk

where Di = ∀R.Dk. By the induction hypothesis applied to the premise we obtain
Θ ; ∀∗C H Dk. By compactness Lem. 5.1.1 there exists a finite set ∀∗Cf ⊆ ∀∗C

such that Θ ; ∀∗Cf H Dk. Then, we can use Lem. 5.1.4.(i) to obtain a derivation
of Θ ; ∀R ∀∗Cf H ∀R.Dk. Now, observe that ∀∗C is a superset of ∀R ∀∗Cf . The
goal Θ ; ∀∗C H ∀R.Dk follows by exploiting monotonicity Prop. 5.1.2.

115

5 Constructive Proof Systems for cALC

(ii) If the last rule applied is MP then we have

Θ, C ; Γ′
H Dk Θ, C ; Γ′′

H

Dj
Dk ⊃ Di

Θ, C ; Γ′, Γ′′
H Di

with j, k < i. Applying the ind. hyp. to the premises yields the derivations
Θ ; Γ′, ∀∗C H Dk and Θ ; Γ′′, ∀∗C H Dk ⊃ Di. The goal follows by an
application of rule MP to give Θ ; Γ′, Γ′′, ∀∗C H Di.

(⇐) Suppose that Θ ; Γ ∪ ∀∗C H D. By compactness Lem. 5.1.1 there exist finite
sets Θf ⊆ Θ, Γf ⊆ Γ, ∀∗Cf ⊆ ∀∗C such that Θf ; Γf ∪ ∀∗Cf H D. We proceed
by induction on the size of the set ∀∗Cf : The base case is trivial. In the inductive
step we have a derivation of Θf ; Γf ∪ ∀∗Cf ∪ {Q∀ } H D where Q∀ is of the form
∀R1.∀R2. . . .∀Rk.C having a quantifier prefix with depth k ≥ 0. An application of
the local Deduction Theorem 5.1.1 yields Θf ; Γf ∪ ∀∗Cf H Q∀ ⊃ D. Applying the
ind. hyp. to the latter derivation gives us

Θf , C ; Γf H Q∀ ⊃ D. (5.3)

Taking the fact Θf , C ; ∅ H C, we can conclude by Lem. 5.1.4.(ii) and Prop. 5.1.2
(monotonicity) that Hilbert derives Θf , C ; Γf H Q∀ . Finally, from the latter derivation
and (5.3) follows by an application of rule MP that Hilbert derives Θf , C ; Γf H D

from which we obtain the goal by weakening Prop. 5.1.2. □

5.1.3 Soundness and Completeness

Theorem 5.1.2 (Hilbert Soundness and Completeness). For all concepts C and sets
of concepts Θ and Γ we have Θ ; Γ C if and only if Θ ; Γ H C. ∇

Proof. Soundness and completeness of the Hilbert system follow from soundness and
completeness of the associated Gentzen sequent calculus G1 (see Theorem 5.2.1), which
will be introduced in Sec. 5.2. The proof, as presented in Sec. 5.2.3, is by showing
that every derivation in the Hilbert system can be translated into a derivation in the
Gentzen sequent calculus G1 and vice versa (see Proposition 5.2.1). □

The Hilbert calculus implements reasoning w.r.t. TBoxes in the following sense. It
decides the semantic relationship Θ; ∅ C, which expresses that concept C is a
universal concept, i.e., it holds for all entities in all models of a TBox Θ.

116

5.1 Hilbert-style Axiomatisation

Example 5.1.2 (Adapted from [195, pp. 219 ff.], with kind permission from Springer
Science and Business Media.). This example14 is inspired by the classical one of Bra-
chman et al. [46] and its variation as reported by Bozzato et al. [41]. It describes the
scenario of a Food&Wine Recommendation System that relates different types of foods
with suitable kinds of wines. The procedure of recommending a wine for a given food
can be operationalised by seeking the implementation of a function for

Θ ; ∅ H Food ⊃ ∃goesWith.(Colour ⊓ ∃isColourOf.Wine). (5.4)

in the sense that every input of type food yields as output a colour that is the colour of
a wine, under the following global assumptions given in terms of the TBox

Θ = {Ax1 =df Food ⊃ ∃goesWith.Colour and Ax2 =df Colour ⊃ ∃isColourOf.Wine}.

The Curry-Howard isomorphism can be adapted to understand any Hilbert-proof of
(5.4) as a program construction, i.e., its proof corresponds to a cALC type-directed
construction of a data-base program w.r.t. a Food&Wine knowledge base. Under this
view, the TBox axiom Ax1 represents a function ax1 which translates an input entity
f of type Food into an entity c of type Colour which is located within a goesWith

context so that (f, c) : goesWith. Likewise, the axiom Ax2 is the type of a function ax2
which accepts an entity c of type Colour as input and outputs a wine w of type Wine

in some isColourOf context such that (c, w) : isColourOf holds. Since the axioms Ax1
and Ax2 are global assumptions represented through the TBox Θ, they are type-able
in every context, i.e., the rule of necessitation Nec can be applied to these without
any restriction, for instance we can derive Θ ; ∅ H ∀goesWith.Ax2 which represents the
type of the term Nec ax2, i.e., applying the rule Nec to the function ax2 lifts it up w.r.t.
a goesWith context.

The Hilbert proof of (5.4) is given as follows where we use the abbreviations C =df

Colour, F =df Food, W =df Wine, ico =df isColourOf and gw =df goesWith. First, the
idea is to construct a derivation of

Θ ; ∅ H C ⊃ (C ⊓ ∃ico.W), (5.5)

corresponding to a function which for each input of type colour returns a pair of the
colour and its ico-associated wine. Its derivation is given as follows.

14This presentation extends and corrects the example as given in [195]. It amends the representation
of the basic combinators IPC2, IPC3, K∃R and the rules MP, Nec and (ARB). Furthermore, it shows
a corrected version of the proof term for (5.4).

117

5 Constructive Proof Systems for cALC

1. C ⊃ (∃ico.W ⊃ (C ⊓ ∃ico.W)) IPC3;
2. (C ⊃ (∃ico.W ⊃ (C ⊓ ∃ico.W))) ⊃ (C ⊃ ∃ico.W) ⊃ (C ⊃ (C ⊓ ∃ico.W)) IPC2;
3. (C ⊃ ∃ico.W) ⊃ (C ⊃ (C ⊓ ∃ico.W)) from 2, 1 by MP;
4. (C ⊃ (C ⊓ ∃ico.W) from 3, Ax2 by MP.

Secondly, we want to obtain from (5.5) a derivation of

Θ ; ∅ H ∃gw.C ⊃ ∃gw.(C ⊓ ∃ico.W), (5.6)

that corresponds to a function that for every colour in a gw context as input, it returns
the colour and its associated wine within a gw context.. This can be derived by lifting
(5.5) up to a goesWith context by a combination of rule Nec and axiom K∃R using the
role gw:
1. ∀gw.

C ⊃ (C ⊓ ∃ico.W)

from (5.5) by Nec;

2. ∀gw.

C ⊃ (C ⊓ ∃ico.W)

⊃

∃gw.C ⊃ ∃gw.(C ⊓ ∃ico.W)

K∃gw;

3. ∃gw.C ⊃ ∃gw.(C ⊓ ∃ico.W) from 2, 1 by MP.

Finally, the derivation of (5.4) can be obtained from (5.6) and Ax1 by the rule (ARB)

(function composition). This completes the construction of a uniform function from
Food f to pairs (c, w) of Colour c and Wine w with goesWith(f, c) and isColourOf(c, w).
The proof of (5.4) gives a combinator expression of the form

(ARB)

MP K∃gw

Nec (MP (MP IPC2 IPC3) Ax2)

Ax1. (5.7)

One way to assign a computational meaning to proofs for constructive ALC has
been introduced by Bozzato et al. [41] in the form of a constructive semantics based
on information terms [201] which are according to [93] a kind of valuation form se-
mantics [175] strongly related to the BHK interpretation. Intuitively, an information
term for a formula provides a witness or explicit explanation for the truth of that
formula in the form of a mathematical object [39; 41; 93]. In the following we recall
and extend their constructions. With each concept C we associate a set of realisers or
information terms IT(C). These realisers are taken as extra ABox parameters so that
instead of I;x C we declare what it means that I;x realises ⟨α⟩C for a particular
realiser α ∈ IT(C), written as I;x� ⟨α⟩C. This so-called realisability predicate gives
additional constructive semantics to our concepts in the sense that I;x� ⟨α⟩C implies
I;x C while I;x C does not mean I;x� ⟨α⟩C for all but only for specific α if
at all. We define the information terms IT(C) and refined concepts ⟨α⟩C by induction
on C as follows, listing only the information terms which are required by this example.

118

5.1 Hilbert-style Axiomatisation

IT(A) =df {tt}, if A is an atomic concept;
IT(C ⊓D) =df IT(C)× IT(D);

IT(C ⊃ D) =df IT(C) → IT(D);

IT(∃R.C) =df ∆
I × IT(C);

IT(∀R.C) =df ∆
I → IT(C).

Let C be a cALC concept, I a constructive interpretation, x ∈ ∆I and η ∈ IT(C).
The realisability relation I;x� ⟨η⟩C is defined by induction on the structure of C:

I;x� ⟨tt⟩A iff x ∈ AI ;

I;x� ⟨α, β⟩(C ⊓D) iff I;x� ⟨α⟩C and I;x� ⟨β⟩C;
I;x� ⟨f⟩(C ⊃ D) iff ∀α ∈ IT(C). I;x� ⟨α⟩C ⇒ I;x� ⟨fα⟩D;

I;x� ⟨a, α⟩(∃R.C) iff (x, a) ∈ RI and I; a� ⟨α⟩C;
I;x� ⟨α⟩(∀R.C) iff ∀a ∈ ∆I . (x, a) ∈ RI ⇒ I; a� ⟨α a⟩C.

These realisers are interpreted locally w.r.t. an entity x ∈ ∆I . Remark, that the
realisability relation resembles the classical semantics of ALC and is compatible with
the constructive semantics of cALC, i.e., I;x� ⟨η⟩C implies I;x C which can be
shown by induction on the structure of concept C.

Then, one demonstrates that every Hilbert proof of C generates for any interpretation
I a function f : ∆I → IT(C) such that ∀u ∈ ∆I . I;u� ⟨fu⟩C. Such Hilbert proofs
of C relative to a (possibly non-empty) TBox Θ derive globally valid formulæ. This
global behaviour has to be respected by the generated function f . Thus, it takes as
first argument an element from ∆I denoting the entity relative to which f returns an
information term for C. We will call a function f : ∆I → IT(C) a global realiser of
a concept C, representing the computational behaviour of a Hilbert proof of C and
will use the notation ⟨⟨f⟩⟩C in the following. In this regard, we can give a function for
each of the Hilbert axioms involved in the proof of (5.7) represented in terms of an
expression in the simply-typed λ-calculus extended by products and sums:

ipc2 : ∆I → IT

(C ⊃ (D ⊃ E)) ⊃ (C ⊃ D) ⊃ C ⊃ E

ipc2 =df λu.λx.λy.λz. (x z) (y z);

ipc3 : ∆I → IT

C ⊃ D ⊃ (C ⊓D)

ipc3 =df λu.λx.λy. (x, y);

k∃R : ∆I → IT

∀R.(C ⊃ D) ⊃ ∃R.C ⊃ ∃R.D

k∃R =df λu.λx.λy.(π1 y, x(π1 y) (π2 y)).

119

5 Constructive Proof Systems for cALC

Furthermore, we refine the rules of MP, Nec and (ARB) as follows:

If ⟨⟨α⟩⟩C and ⟨⟨β⟩⟩(C ⊃ D) then ⟨⟨λu.(β u)(αu)⟩⟩D;

If ⟨⟨α⟩⟩C then ⟨⟨λu.λx. α x⟩⟩(∀R.C);
If ⟨⟨α⟩⟩(C ⊃ D) and ⟨⟨β⟩⟩(D ⊃ E) then ⟨⟨λu.λx. (β u)((αu) x)⟩⟩(C ⊃ E).

Under this view, we can give a function f for (5.5), which is the Hilbert combinator
(MP (MP IPC2 IPC3) Ax2) represented by the λ-term

f = λu.λx.(x, (ax2 u) x),

for which ⟨⟨f⟩⟩(C ⊃ (C ⊓ ∃ico.W)) holds. Next, a function g of (5.6) can be gener-
ated by rule MP from k∃R, ax2 and the result of applying Nec to f yields a term for
MP K∃gw

Nec (MP (MP IPC2 IPC3) Ax2)

. The latter application Nec f produces a

function f ′ : ∆I → IT

∀gw.(C ⊃ (C ⊓ ∃ico.W))

given by

f’ = λu.λv.λx.(x, (ax2 v) x),

and the former then generates the function g such that ⟨⟨g⟩⟩(∃gw.C ⊃ ∃gw.(C ⊓
∃ico.W)), which corresponds to the following term up to reductions and α-conversion
in the λ-calculus:

g = λu.λx.

π1 x,

π2 x, (ax2 (π1 x)) (π2 x)

.

Finally, the derivation of (5.4) follows by rule (ARB) from g and ax1 and yields the
term prf up to reductions and α-conversion

prf = λu.λx.

π1 ((ax1 u) x),

π2 ((ax1 u) x), ax2 (π1 ((ax1 u) x))(π2 ((ax1 u) x))

such that for all u ∈ ∆I the realiser ⟨prf u⟩ represents an information term so that

∀u. I;u� ⟨prfu⟩(Food ⊃ ∃goesWith.(Colour ⊓ ∃isColourOf.Wine))

assuming that ∀u. I;u�⟨ax1 u⟩Ax1 and ∀u. I;u�⟨ax2 u⟩Ax2. Such global realisers ax1,
ax2 either arise as proof terms themselves, or they are determined by a semantic specifica-
tion in terms of an ABox, which has previously been demonstrated in [39; 41; 93]. Follow-
ing their example, let the ABox A withNI =df {BAROLO, CHARDONNAY, RED, WHITE, FISH,
MEAT, FF} be described by the following facts.

120

5.1 Hilbert-style Axiomatisation

BAROLO : Wine, RED : Colour, FISH : Food,

CHARDONNAY : Wine, WHITE : Colour, MEAT : Food,

(WHITE, CHARDONNAY) : isColourOf, (RED, BAROLO) : isColourOf, FF : ⊥,
(MEAT, RED) : goesWith, (FISH, WHITE) : goesWith,

where FF specifies a fallible entity. We can give an interpretation I for the ABox A by

∆I =df {BAROLO, CHARDONNAY, RED, WHITE, FISH, MEAT, FF},
⊥I =df {FF},
⪯I =df id∆I ,

WineI =df {BAROLO, CHARDONNAY, FF},
ColourI =df {RED, WHITE, FF},
FoodI =df {FISH, MEAT, FF},

isColourOfI =df {(RED, BAROLO), (WHITE, CHARDONNAY), (FF, FF)},
goesWithI =df {(MEAT, RED), (FISH, WHITE), (FF, FF)},

∀n ∈ NI .n
I =df n,

where id∆I is the identity relation on the set ∆I . Under the interpretation I the
realisers ax1, ax2 can be chosen as

ax1 =df λu.λx.caseu of [MEAT→(RED, tt) |FISH→(WHITE, tt) |otherwise→(FF, tt)],

ax2 =df λu.λx.caseu of [RED→(BAROLO, tt) |WHITE→(CHARDONNAY, tt)
|otherwise→(FF, tt)],

such that it holds that

ax1 : ∆I → IT(Food ⊃ ∃goesWith.Colour), and
ax2 : ∆I → IT(Colour ⊃ ∃isColourOf.Wine).

Note that the fallible entity FF is used here as an output that specifies a state of failure
for the case when the first input argument u of ax1 and ax2 is not an entity in FoodI or
ColourI respectively. The realisers ax1 and ax2 express the constructive content of Ax1,
Ax2 in I. Then, for instance, the reduction of the λ-term prf MEAT tt (with tt being a
realizer for Food) yields the information term (RED, (tt, (BAROLO, tt))) such that

I; MEAT � ⟨(RED, (tt, (BAROLO, tt)))⟩(∃goesWith.(Colour ⊓ ∃isColourOf.Wine)). ■

121

5 Constructive Proof Systems for cALC

5.2 Gentzen Sequent Calculus G1 for cALC

While Hilbert systems have a clear structure and are conceptually very simple, their
approach to find the proof of a formula is rather tedious. The process is purely syntactic
and gives a finite sequence of formulæ in which each formula is either an axiom or the
result of applying an inference rule to previous derivations. However, it is an awkward
process to locate the required substitution of formulæ for an appropriate instantiation
of an axiom, since there are infinitely many possibilities. The Hilbert calculus fails to
provide an algorithm for generating proofs, and therefore is inappropriate as an efficient
method for goal-directed and automated proof search. Better suited for this task are
refutation based calculi like Gentzen-style sequent [109] or semantic tableau calculi [25;
30; 71]. These calculi combine both goal-directed proof-search as well as countermodel
construction and are suitable for automated theorem proving.

This section introduces the Gentzen sequent calculus G1. The system G1 does not
require explicit world labels, and is a multi-succedent (or multi-conclusion) sequent
calculus in the spirit of G3im [214, Chap. 5.3], [257] and Dragalin’s GHPC [84, Chap. 1].
Moreover, it can be considered as a multi-sequent system in the style of Masini [183; 184]
whose introduction and elimination rules involve sets rather than individual formulæ.

Definition 5.2.1 (G1-sequent [195]). G1 uses hypothetical judgements, called se-
quents, of the form Θ ; Σ ; Γ Φ ; Ψ, where Θ, Γ, Φ are sets of concepts that are
not necessarily finite. Σ and Ψ are functions mapping role names R ∈ NR to sets
of concepts Σ(R), Ψ(R), which may be infinite as well. In contrast to [195, p. 221],
the mappings Σ and Ψ are not partial functions, but defined for all roles in NR,
and we do not assume that the domains of these functions are finite and identical.
Moreover, let dom(Σ) and dom(Ψ) denote the non-empty domain of the functions Σ

and Ψ, respectively, which is defined by dom(Σ) =df {R ∈ NR | Σ(R) ̸= ∅} and
dom(Ψ) =df {R ∈ NR | Ψ(R) ̸= ∅}. ∇

Notation. We write Θ ; Σ ; Γ G1 Φ ; Ψ to refer to a G1 sequent and analogously index
the turnstile when we are referring to variations of G1. The symbol G1 will be omitted
whenever the sequent system in use is clear from the context. ■

The structure of a sequent complies with the Kripke semantics of cALC, i.e., a
sequent Θ ; Σ ; Γ Φ ; Ψ formally refines the semantic consequence relation Θ;Γ Φ

(see Def. 4.2.4) generalised to a set of concepts Φ, by the additional constraints Σ,
Ψ as follows: Θ is a set of concepts representing model assumptions and can be
considered as the TBox. The sets Σ, Γ, Φ, Ψ of a sequent specify constraints and
encode information about individual entities relative to Θ. We denote Γ and Φ as
the local sequent (hypothesis and conclusion respectively) while Σ and Ψ are the

122

5.2 Gentzen Sequent Calculus G1 for cALC

global sequent. The local sequent specifies an entity locally while the global sequent
constrains its R-reachable successors. Informally, the sets Σ and Γ specify what an
entity shall satisfy and the sets Φ, Ψ what an entity must not satisfy. This kind of entity
specification [195] in terms of positive and negative constraints is the novel constructive
aspect of the following definition.

Definition 5.2.2 (Constructive satisfiability [190; 191; 195]). Let I = (∆I ,⪯I

,⊥I , ·I) be a constructive interpretation and x ∈ ∆I an entity. The pair (I, x) satisfies
the sequent Θ ; Σ ; Γ Φ ; Ψ if I Θ and for all R ∈ NR the following holds:

(i) ∀x′.∀y. (x ⪯I x′ & x′RI y) ⇒ I; y Σ(R), i.e., all R-fillers of x and of its
refinements x′ are part of all concepts of Σ(R);

(ii) I;x Γ, i.e., x and all its refinements are part of all concepts of Γ;

(iii) I;x ̸ Φ, i.e., x is not contained in any of the concepts in Φ;

(iv) ∀y. xRI y ⇒ I; y ̸ Ψ(R), i.e., none of the R-fillers y of x is contained in any
concept of Ψ(R).

A sequent Θ ; Σ ; Γ Φ ; Ψ is called (constructively) satisfiable iff there exists an
interpretation I and entity a ∈ ∆I such that (I, a) satisfies the sequent. We write
Θ ; Σ ; Γ ̸ Φ ; Ψ to denote that the sequent Θ ; Σ ; Γ Φ ; Ψ is satisfiable. ∇

The purpose of a sequent or refutation proof is to establish that an entity specification
presented as a sequent is not satisfiable. In the other case, if no closed sequent derivation
can be found and the calculus is complete, then the failed proof search implies the
existence of a satisfying entity. The sequent calculus G1 is given by the rules in Fig. 5.1.

Notation. ([195, p. 222]) The hypotheses Θ, Σ(R), Γ and conclusions Φ, Ψ(R) in
each rule of Fig. 5.1 are handled as sets rather than lists. For instance, the hypothesis
Γ, C ⊃ D of rule ⊃L denotes the set Γ ∪ {C ⊃ D}. Therefore, if C ⊃ D ∈ Γ then
Γ in the premise of rule ⊃L is identical to Γ, C ⊃ D in the conclusion of the rule.
Furthermore, we write Γ, Γ′ for Γ∪Γ′ and we will also use the notation Φ∪Ψ to denote
Φ ∪ (

R∈NR

Ψ(R)). The symbol ∅ is used both as the empty set and the constant
function ∅(R) = ∅. The mapping [R →→ C] is the finite function with domain {R}
mapping R to the singleton set {C} and Σ∪ [R →→ C] represents the union of functions
with domain dom(Σ) ∪ {R} such that (Σ ∪ [R →→ C])(S) = Σ(S) for S ̸= R and
(Σ ∪ [R →→ C])(R) = Σ(R) ∪ {C}, otherwise. We write Σ, Σ′ for the union of two
functions Σ and Σ′ w.r.t. all roles. We assume implicit duplication, contraction and
permutation (structural rules). ■

123

5 Constructive Proof Systems for cALC

Ax
Θ ; Σ ; Γ, C Φ, C ; Ψ

|Φ ∪Ψ| ≥ 1
⊥L

Θ ; Σ ; Γ, ⊥ Φ ; Ψ

Θ ; Σ ; Γ, C, D Φ ; Ψ
⊓L

Θ ; Σ ; Γ, C ⊓D Φ ; Ψ

Θ ; Σ ; Γ Φ, C ; Ψ Θ ; Σ ; Γ Φ, D ; Ψ
⊓R

Θ ; Σ ; Γ Φ, C ⊓D ; Ψ

Θ ; Σ ; Γ Φ, C, D ; Ψ
⊔R

Θ ; Σ ; Γ Φ, C ⊔D ; Ψ

Θ ; Σ ; Γ, C Φ ; Ψ Θ ; Σ ; Γ, D Φ ; Ψ
⊔L

Θ ; Σ ; Γ, C ⊔D Φ ; Ψ

Θ ; Σ ; Γ Φ, C ; Ψ Θ ; Σ ; Γ, D Φ ; Ψ
⊃L

Θ ; Σ ; Γ, C ⊃ D Φ ; Ψ

Θ ; Σ ; Γ, C D ; ∅
⊃R

Θ ; Σ ; Γ Φ, C ⊃ D ; Ψ

Θ ; Σ ; Γ ∅ ; [R →→ C]
∃R

Θ ; Σ ; Γ Φ, ∃R.C ; Ψ

Θ ; ∅ ; Σ(R), C Ψ(R) ; ∅
∃L

Θ ; Σ ; Γ, ∃R.C Φ ; Ψ

Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ
∀L

Θ ; Σ ; Γ, ∀R.C Φ ; Ψ

Θ ; ∅ ; Σ(R) C ; ∅
∀R

Θ ; Σ ; Γ Φ, ∀R.C ; Ψ

Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ R ∈ NR Hyp1
Θ, C ; Σ ; Γ Φ ; Ψ

Θ ; Σ ; Γ, C Φ ; Ψ
Hyp2

Θ, C ; Σ ; Γ Φ ; Ψ

Figure 5.1: Gentzen rules for cALC. Adapted from [195, p. 222, Fig. 4], with kind permission
from Springer Science and Business Media.

Definition 5.2.3 (Tableau, constructive consistency [195, p. 222]). A tableau for a
sequent Θ ; Σ ; Γ Φ ; Ψ is a finite and closed derivation tree T with a single root
Θ ; Σ ; Γ Φ ; Ψ that is built using instances of the rules in Fig. 5.1, in which every leaf
is closed in the sense that it ends in Ax or ⊥L. A sequent is (constructively) consistent,
written Θ ; Σ ; Γ ̸ Φ ; Ψ, if no tableau exists for it. ∇

Example 5.2.1 ([195, p. 225, Fig. 7].). Derivation of K∀R, K∃R in G1.

Ax
∅ ; ∅ ; A B, A ; ∅

Ax
∅ ; ∅ ; A, B B ; ∅

⊃L
∅ ; ∅ ; A ⊃ B,A B ; ∅

∀R
∅ ; [R →→ A ⊃ B,A] ; ∅ ∀R.B ; ∅

∀L
∅ ; [R →→ A ⊃ B] ; ∀R.A ∀R.B ; ∅

∀L
∅ ; ∅ ; ∀R.(A ⊃ B), ∀R.A ∀R.B ; ∅

⊃R
∅ ; ∅ ; ∀R.(A ⊃ B) ∀R.A ⊃ ∀R.B ; ∅

⊃R.
∅ ; ∅ ; ∅ ∀R.(A ⊃ B) ⊃ (∀R.A ⊃ ∀R.B) ; ∅

124

5.2 Gentzen Sequent Calculus G1 for cALC

Ax
∅ ; ∅ ; A B, A ; ∅

Ax
∅ ; ∅ ; A, B B ; ∅

⊃L
∅ ; ∅ ; A ⊃ B,A B ; ∅

∃L
∅ ; [R →→ A ⊃ B] ; ∃R.A ∅ ; [R →→ B]

∃R
∅ ; [R →→ A ⊃ B] ; ∃R.A ∃R.B ; ∅

∀L
∅ ; ∅ ; ∀R.(A ⊃ B), ∃R.A ∃R.B ; ∅

⊃R
∅ ; ∅ ; ∀R.(A ⊃ B) ∃R.A ⊃ ∃R.B ; ∅

⊃R.
∅ ; ∅ ; ∅ ∀R.(A ⊃ B) ⊃ (∃R.A ⊃ ∃R.B) ; ∅

■

The G1 calculus is formulated in the spirit of Gentzen. The rules are divided into left
introduction rules ⊓L, ⊔L, ⊃L, ∀L, ∃L and right introduction rules ⊓R, ⊔R, ⊃R, ∀R,
∃R for each logical connective. Besides their interpretation as sequent-style refutation
steps it is also possible to give the rules a computational meaning [194; 198]. The
Gentzen style presentation also lends itself to a game-theoretic interpretation [254].
These features are distinct advantages over natural deduction systems [27; 41; 64; 77].

Remark 5.2.1. One can observe, that the rules of the propositional part of G1 depicted
by the upper four lines of Fig. 5.1 do not manipulate the model assumptions and the
global sequent, i.e., the sets Θ, Σ and Ψ. These rules correspond to the original Gentzen
calculus LJ [109] of intuitionistic logic. This can be easily seen by removing the sets
Θ, Σ, Ψ from these rules. Example 5.2.2 illustrates the latter by showing the proof
of axiom IPC2 (cf. Def. 5.1.1). The modal rules ∀L, ∃L, ∀R, ∃R involve the global
sequent, i.e., they explain the meaning of universal (∀R.C) and existential (∃R.C)
role filling by externalising the quantifiers in terms of the Σ and Ψ components of a
sequent. The two remaining rules Hyp1, Hyp2 are left introduction rules and introduce
hypotheses from the set Θ of global model assumptions which correspond to a TBox.
Formally, the latter rules express that each assumption in the TBox Θ can be used as
an additional assumption for the current (local) entity inside Γ (Hyp2) as well as in all
its R-accessible fillers inside Σ(R) (Hyp1).

Furthermore, note that there is no right introduction rule ⊥R, because it is not
needed. One shows for the rules in Fig. 5.1 that if there is a tableau for Θ ; Σ ; Γ Φ ; Ψ

then the weakened sequent Θ ; Σ ; Γ Φ,⊥ ; Ψ is derivable as well which corresponds
basically to ⊥R. It is possible to directly treat negated concepts. This is achieved by
the following left and right introduction rules ¬L resp. ¬R [195, p. 223]

Θ ; Σ ; Γ Φ, C ; Ψ |Φ ∪Ψ| ≥ 1
¬L

Θ ; Σ ; Γ, ¬C Φ ; Ψ

Θ ; Σ ; Γ, C ⊥ ; ∅
¬R

Θ ; Σ ; Γ Φ, ¬C ; Ψ

which are admissible from the rules in Fig. 5.1. The rule ¬L is simply a combination
of ⊃L and ⊥L, whereas rule ¬R is an instance of ⊃R. ■

125

5 Constructive Proof Systems for cALC

Example 5.2.2. Derivation of axiom IPC2 (omitting the components Θ,Σ,Ψ).

Ax
C ⊃ D,C C

Ax
C,D ⊃ E C

Ax
C,D D

Ax
C,D,E E

⊃L
C,D ⊃ E,D E

⊃L
C ⊃ D,C,D ⊃ E E

⊃L
C ⊃ (D ⊃ E), C ⊃ D,C E

⊃R
C ⊃ (D ⊃ E), C ⊃ D C ⊃ E

⊃R
C ⊃ (D ⊃ E) (C ⊃ D) ⊃ (C ⊃ E)

⊃R
∅ (C ⊃ (D ⊃ E)) ⊃ ((C ⊃ D) ⊃ (C ⊃ E)))

■

Example 5.2.3 (Adapted from [195, p. 225, Ex. 8], with kind permission from Springer
Science and Business Media). This example shows that (i) the axiom of disjunctive
distribution FS4/IK4 = ∃R.(C ⊔ D) ⊃ (∃R.C ⊔ ∃R.D) is not a theorem of cALC,
and (ii) there are finite models involving cycles for which no finite cycle-free equivalent
models exist. It is based on Grimm’s fairy tale ‘The hare and the hedgehog’, which can
be considered as a classical instance of fraud. A hedgehog takes a walk and runs into a
hare which he wishes a good morning. The hare, however, jokes about the hedgehog’s
short bowlegs. The hedgehog becomes angry and challenges the hare for a race. He
persuades his wife to play a joke on the hare, by positioning his wife at the far finish of
the racetrack. When the race starts and the victory-certain hare near-storms the wife of
the hedgehog rises up and says: ‘I am already here!’ The two hedgehogs look so much
alike that the hare is not able to distinguish them and so he looses the race. The hare
does not accept its defeat and they repeat the race for another 73 times, each ending
with the same result. At the 74th run the hare breaks down exhaustedly and dies.

This situation is modelled by the interpretation given in Fig. 5.2. There, the entity
PEP belongs to the concept Himhog representing a male hedgehog such that HimhogI =

{PEP}, and PIA represents his wife, belonging to the concept of a female hedgehog
defined by HerhogI = {PIA}. Both entities, PEP and PIA are contained in the concept
Hedgehog. The position of PEP and PIA is determined in terms of a role-filler over
relation hasPosition to GPS-coordinates that belong to the concept Start and Finish

respectively. These are subsumed by the concept Position. Since PEP and PIA are not
distinguishable, there is a cyclic refinement between them, i.e., they refine each other.

The hare corresponds to an internal agent [161] with restricted knowledge about
the model, i.e., he only sees the information content of the current location (Start
or Finish). From this perspective, the hare puts the situation into question, how the
hedgehog is able to be ‘coherently at Start or Finish’, and ‘not to be coherently at
Start and not coherently at Finish’ at the same time. Note that the hare assumes

126

5.2 Gentzen Sequent Calculus G1 for cALC

hasPositio
nI

hasPositionI

HedgehogI

HimhogI

HerhogI

⪯

PEPI

PIAI

∆I

PositionI

53◦47′81′′, 9◦67′72′′

59◦22′57′′, 17◦56′10′′

53◦29′6′′, 9◦39′57′′

StartI

FinishI

Figure 5.2: Model of the hedgehogs. Adapted from [191, p. 226, Fig. 8], with kind permission
from Springer Science and Business Media.

the theorems of classical ALC, in particular, he assumes that ∃R distributes over ⊔
(FS4/IK4). We will use in the following the abbreviations F = Finish, S = Start and
R = hasPosition. Then, the above puzzle can be formalised by the sequent ∅; ∅;∃R.(S⊔
F),¬∃R.S,¬∃R.F ⊥ ; ∅. This sequent expresses the hare’s assumption, viz. that for
the hedgehog there exists either one R-filler to Start or one R-filler to Finish, expressed
by ∃R.(S ⊔ F). Further, the hare assumes that the hedgehog is neither sitting at the
location Start nor at Finish, which is formulated by ¬∃R.S, ¬∃R.F .

First, we will discuss claim (i). If the existential quantifier would distribute over
⊔ as it does in classical ALC then this would imply that we can find a derivation
for ∅ ; ∅ ; ∃R.(S ⊔ F), ¬(∃R.S ⊔ ∃R.F) ⊥ ; ∅. If the first hypothesis ∃R.(S ⊔ F)
of the sequent implies ∃R.S ⊔ ∃R.F , then this contradicts the second hypothesis
¬(∃R.S ⊔ ∃R.F) which implies ⊥. Now, we show that the sequent cannot be derived
in cALC. First, note that ¬(∃R.S ⊔ ∃R.F) is equivalent to ¬∃R.S ⊓ ¬∃R.F .
Hence we have to show that there does not exist a closed tableau for the sequent
∅ ; ∅ ; ∃R.(S ⊔ F), ¬∃R.S, ¬∃R.F ⊥ ; ∅.

Because of constructiveness and the fact that Himhog and Herhog are indistinguish-
able, the hedgehog is able to be in both positions at the same time dependent upon
choice of refinement. Fig. 5.3 shows the constructed countermodel for the sequent,
where Γ =df ∃R.(S ⊔ F),¬∃.S,¬∃.F . Dashed edges represent the application of a
Gentzen rule indicated by its name, dotted and solid arrows are for refinement ⪯ and
for the role R, and × indicates the closed leaf of a tableau. Note that the sets Θ and
Σ in the sequents are omitted, since they are not needed in the proof.

We obtain a cyclic model with two clusters of equivalent individuals which represent
Himhog and Herhog, and that can be refined to each other. The countermodel of Fig. 5.3

127

5 Constructive Proof Systems for cALC

∃L⪯ ⪯

⪯

⪯

∃R ∃R

∃R

∃LR ∃L R

∃R.(S ⊔ F),¬∃R.S,¬∃R.F ⊥; ∅

∃R.(S ⊔ F),¬∃R.S,¬∃R.F ⊥,∃R.S, ∃R.F ; ∅

¬L,¬L

S ⊔ F ∅; ∅

⊥

Γ ∃R.S; [R →→ S]

Γ ∅; [R →→ S]

Γ ∃R.F ; [R →→ S]

¬L

Γ ∃R.S,∃R.F ; [R →→ S]

¬L

¬L ∃R

¬L

Γ ∃R.F ; [R →→ F]

Γ ∅; [R →→ F]

Γ ∃R.S; [R →→ F]

¬L

Γ ∃R.S,∃R.F ; [R →→ F]

¬L

¬L∃R

¬L

S ⊔ F S; ∅

S S; ∅ F S; ∅
×

⊔L

S ⊔ F F ; ∅

S F ; ∅ F F ; ∅
×

⊔L

Figure 5.3: Proof attempt for the sequent ∃R.(S ⊔ F),¬∃R.S,¬∃R.F ⊥ ; ∅. Adapted
from [195, p. 227, Fig. 9], with kind permission from Springer Science and
Business Media.

can be simplified to the model given in Fig. 5.4 that represents the situation already
shown in Fig. 5.2. We use the notation [R →→ C] relative to an entity in the following
figures to denote that in all its accessible R-successors concept C is refuted.

Secondly, let us look at claim (ii), viz. that any cycle-free model satisfying the concept
∃R.(S ⊔ F) ⊓ ¬∃R.S ⊓ ¬∃R.F is infinite. It is easy to observe from Fig. 5.3 that if
we require the model to be acyclic then it is necessary to introduce a new entity each
time when the rule ∃R is fired. This leads to the construction of an infinite tree w.r.t.
refinement ⪯. Indeed, this corresponds to the cycle-free unfolding of the finite model
of Fig. 5.4. This situation is depicted in Fig. 5.5. Observe, that the same happens if we
require ⪯ to be anti-symmetric, in particular, this means that the finite model property
is lost. Note that Fig. 5.5 could also be depicted as a linear infinite path in which every
consecutive pair of entities oscillates between [R →→ S] and [R →→ F] respectively.

128

5.2 Gentzen Sequent Calculus G1 for cALC

⊥

F ̸ S S ̸ F

[R →→ S] [R →→ F]

R

R R

⪯⪯

⪯

⪯

Figure 5.4: Simplified, finite and cyclic model of Fig. 5.3. Adapted from [195, p. 227, Fig. 10],
with kind permission from Springer Science and Business Media.

⊥

F ̸ S S ̸ F

F ̸ SS ̸ F

[R →→ S] [R →→ F]

[R →→ F] [R →→ S]

R

R

R

R

R

⪯⪯

Figure 5.5: Infinite cycle-free unfolding of Fig. 5.4.

When we apply filtration (Def. 4.2.9) to the model of Fig. 5.4 then we will obtain the
countermodel as depicted in Fig. 5.3 with two additional ⪯ edges, from the left and
right ⪯-successors to their common ⪯-predecessor, i.e., filtration may add additional
structure to the model. However, observe that even Fig. 5.3 is not the smallest possible
countermodel. This can be obtained by removing the upper entity such that we have a
model with two entities, which refine each other, and their respective R-successors. The
former corresponds to the instances PEP and PIA and the latter ones to the location
in Start and Finish of Fig. 5.2 respectively. ■

Example 5.2.4 (Based on [41, p. 3, Ex. 1]). We revisit the Food&Wine Recommend-
ation System of Ex. 5.1.2 to illustrate TBox reasoning in G1. We want to prove the
formula Food ⊃ ∃goesWith.(Colour ⊓ ∃isColourOf.Wine) in the system G1 w.r.t. the
TBox Θ = {Ax1,Ax2} with

Ax 1 =df Food ⊃ ∃goesWith.Colour and
Ax 2 =df Colour ⊃ ∃isColourOf.Wine.

129

5 Constructive Proof Systems for cALC

The goal is to find a closed tableau for the sequent

Θ ; ∅ ; ∅ Food ⊃ ∃goesWith.(Colour ⊓ ∃isColourOf.Wine) ; ∅. (5.8)

As before we use the following abbreviations: C =df Colour, F =df Food, W =df Wine,
ico =df isColourOf and gw =df goesWith. The proof of (5.8) in G1 is as follows.

Ax
Θ ; ∅ ; C, ∃ico.W C ; ∅

Ax
Θ ; ∅ ; C, ∃ico.W ∃ico.W ; ∅. ⊓R

Ax
Θ ; ∅ ; F F, . . . ; ∅

Ax
Θ ; ∅ ; C C, . . . ; ∅

. .
Θ ; ∅ ; C, ∃ico.W C ⊓ ∃ico.W ; ∅

⊃L
Θ ; ∅ ; C ⊃ ∃ico.W, C C ⊓ ∃ico.W ; ∅

∃L
Θ ; [gw →→ C ⊃ ∃ico.W] ; F, ∃gw.C ∅ ; [gw →→ C ⊓ ∃ico.W]

Hyp1
Θ ; ∅ ; F, ∃gw.C ∅ ; [gw →→ C ⊓ ∃ico.W]

∃R
Θ ; ∅ ; F, ∃gw.C ∃gw.(C ⊓ ∃ico.W) ; ∅

⊃L
Θ ; ∅ ; F, F ⊃ ∃gw.C ∃gw.(C ⊓ ∃ico.W) ; ∅

Hyp2
Θ ; ∅ ; F ∃gw.(C ⊓ ∃ico.W) ; ∅

⊃R.
Θ ; ∅ ; ∅ F ⊃ ∃gw.(C ⊓ ∃ico.W) ; ∅

■

5.2.1 Soundness and Completeness

This section is devoted to the soundness and completeness of the Gentzen sequent
calculus G1. The following theorem provides a bridge between syntax and derivability
on the one side, and semantics and validity on the other side. In the first step, we prove
the soundness of G1 by showing that every inference rule in Fig. 5.1 is satisfiability
preserving. Thereafter, we show that G1 is strongly complete. The proof is based
on a usual canonical model construction, demonstrating that there exists a satisfying
canonical model for each consistent sequent.

Theorem 5.2.1 (Strong soundness and completeness). A sequent is satisfiable iff it
is consistent, i.e., Θ;Σ; Γ ̸ Φ;Ψ ⇔ Θ;Σ; Γ ̸ Φ;Ψ. ∇

Soundness

Theorem 5.2.2 (Soundness of G1 [190; 195]). Every satisfiable sequent is consistent,
i.e., Θ ; Σ ; Γ ̸ Φ ; Ψ implies Θ ; Σ ; Γ ̸ Φ ; Ψ. ∇

130

5.2 Gentzen Sequent Calculus G1 for cALC

Proof. Parts of this proof have been previously published in [190; 195], where the cases
for the rules ⊃R,⊃L and ∀R have been omitted. Here, we will present the full proof.

For soundness we show for each derivation rule in Fig. 5.1 that if the conclusion is
satisfiable then at least one of its premises is satisfiable as well. Starting from the axioms
it follows by induction on the size of the derivation that if a sequent is inconsistent then
it is not satisfiable. This is done by assuming satisfiability of the conclusion sequent
and showing for one of its premises of the form Θ ; Σ ; Γ Φ ; Ψ that there exists a
pair (I, x) such that the following conditions are fulfilled:

I Θ; (5.9)

for all R ∈ NR, L ∈ Σ(R), M ∈ Γ, N ∈ Φ, K ∈ Ψ(R):

∀x′. ∀y. (x ⪯I x′ & x′RI y) ⇒ I; y L; (5.10)
I;x M ; (5.11)
I;x ̸ N ; (5.12)

∀y. xRI y ⇒ I; y ̸ K. (5.13)

Note that I Θ holds by assumption in all cases.

(Case Ax) For the base case axiom Ax nothing needs to be shown, since the conclusion
sequent Θ ; Σ ; Γ, C Φ, C ; Ψ is already not satisfiable, i.e., it is not possible to
satisfy and not satisfy concept C at the same time.

(Case ⊥L) The conclusion Θ ; Σ ; Γ, ⊥ Φ ; Ψ of axiom ⊥L is not satisfiable, since
every fallible entity satisfies all concepts. It is important to point out that the
succedent Φ;Ψ is constrained to be non-empty. Contrary, a fallible entity satisfies a
sequent with an empty succedent, e.g., Θ ; Σ ; Γ, ⊥ ∅ ; ∅.

(Case ⊔L) Suppose that the conclusion sc =df Θ ; Σ ; Γ, C⊔D Φ ; Ψ is satisfiable,
i.e., Θ ; Σ ; Γ, C ⊔D ̸ Φ ; Ψ. By Def. 5.2.2 there is a pair (I, a) that satisfies the
sequent sc. In particular, it holds that I; a C ⊔D. The goal is to show that at
least one of the premises sp1 =df Θ ; Σ ; Γ, C Φ ; Ψ or sp2 =df Θ ; Σ ; Γ, D Φ ; Ψ

is satisfiable. We claim that (I, a) satisfies one of sp1 , sp2 :

• Regarding the conditions (5.10), (5.12), (5.13), nothing needs to be shown here,
since the sets Σ, Φ and Ψ are equal in sc and both sp1 and sp2 .

• Regarding (5.11), by assumption I; a Γ for both sp1 and sp2 . Moreover, from
the assumption I; a C ⊔D follows by Def. 4.2.2 that I; a C or I; a D.
In the first case (I, a) satisfies sp1 and in the second case sp2 .

131

5 Constructive Proof Systems for cALC

(Case ⊔R) Assume that the conclusion sequent sc =df Θ ; Σ ; Γ Φ, C ⊔D ; Ψ is
satisfiable. The goal is to show that its premise sp =df Θ ; Σ ; Γ Φ, C, D ; Ψ is
satisfiable as well. From the assumption follows by Def. 5.2.2 that there exists a pair
(I, a) that satisfies the sequent sc. In particular, we have I; a ̸ C ⊔D. We claim
that (I, a) satisfies the premise sequent sp:

• The conditions (5.10), (5.11), (5.12), (5.13), for the sets Σ, Γ, Φ and Ψ follow
by assumption, because, they are equal in sc and sp.

• The assumption I; a ̸ C⊔D implies by Def. 4.2.2 that I; a ̸ C and I; a ̸ D,
which proves the satisfiability of the premise sp.

(Case ⊓L) Assume that Θ ; Σ ; Γ, C ⊓ D ̸ Φ ; Ψ, i.e., there is a pair (I, a) that
satisfies the conclusion sequent, in particular I; a C ⊓D. We claim that (I, a)
satisfies the premise sequent Θ ; Σ ; Γ, C, D Φ ; Ψ. We only have to analyse the
conjunction C ⊓D, since the conditions (5.10), (5.11), (5.12), (5.13), for Σ,Γ,Φ and
Ψ directly follow by assumption. From the assumption I; a C ⊓D it follows by
Def. 4.2.2 that I; a C and I; a D. Hence, (I, a) satisfies the premise.

(Case ⊓R) Suppose that the conclusion sequent sc =df Θ ; Σ ; Γ Φ, C ⊓ D ; Ψ

is satisfiable, i.e., Θ ; Σ ; Γ ̸ Φ, C ⊓ D ; Ψ. Then, Def. 5.2.2 implies that there
exists a pair (I, a) that satisfies sc, notably, it holds that I; a ̸ C ⊓ D. The
goal is to show that one of the premise sequents sp1 =df Θ; Σ; Γ ⊢ Φ, C; Ψ or
sp2 =df Θ; Σ; Γ ⊢ Φ, D; Ψ is satisfiable.

• As before, nothing needs to be shown regarding the conditions for Σ,Γ,Φ and
Ψ, because these sets are equal in sc, sp1 and sp2 .

• The assumption I; a ̸ C ⊓ D implies by Def. 4.2.2 that either I; a ̸ C or
I; a ̸ D. The first case proves satisfiability of sp1 , the second that of sp2 .

(Case ⊃L) Assume that the conclusion sequent sc =df Θ ; Σ ; Γ, C ⊃ D Φ ; Ψ

is satisfiable, i.e., Θ ; Σ ; Γ, C ⊃ D ̸ Φ ; Ψ. We claim that one of the premise
sequents sp1 =df Θ ; Σ ; Γ Φ, C ; Ψ or sp2 =df Θ ; Σ ; Γ, D Φ ; Ψ is satisfiable
as well. Def. 5.2.2 implies that there exists a pair (I, a) that satisfies the sequent
sc. Particularly, it is the case that I; a C ⊃ D. Therefore, using a ⪯I a (by
reflexivity of ⪯I) it holds that I; a ̸ C or I; a D. In the former case (I, a)
satisfies the sequent sp1 and in the latter case sp2 , using the fact that the conditions
(5.10), (5.11), (5.12), (5.13) for Σ,Γ,Φ and Ψ directly follow by assumption.

(Case ⊃R) Suppose that the conclusion sequent sc =df Θ ; Σ ; Γ Φ, C ⊃ D ; Ψ

is satisfiable, i.e., Θ ; Σ ; Γ ̸ Φ, C ⊃ D ; Ψ. The goal is to show that the premise
sequent sp =df Θ ; Σ ; Γ, C D ; ∅ is satisfiable, too. From the assumption and
Def. 5.2.2 follows the existence of a pair (I, a) that satisfies the sequent sc. The

132

5.2 Gentzen Sequent Calculus G1 for cALC

assumption I; a ̸ C ⊃ D lets us conclude that there exists an entity a′ with
a ⪯I a′ such that I; a′ C and I; a′ ̸ D. Observe that the latter implies that a′

is infallible. We claim that (I, a′) satisfies the sequent sp:

• The condition (5.10) for Σ follows from transitivity of ⪯I and the assumption.

• Condition (5.11) for Γ, C follows by the assumption and monotonicity of refinement.

• By assumption I;a′ ̸ D which satisfies condition (5.12).

• Nothing needs to be shown for (5.13), because Ψsp = ∅.

Hence, (I, a′) satisfies the premise sp.

(Case ∃L) Suppose that the conclusion sequent sc =df Θ; Σ ; Γ, ∃R.C Φ ; Ψ is
satisfiable. Def. 5.2.2 implies that there is a pair (I, a) that satisfies the sequent sc,
in particular a is contained in the interpretation of each concept in Γ,∃R.C.

The assumption I;a ∃R.C implies for all refinements of a that there exists an
R-successor which lies in the interpretation of C. Then, it follows by reflexivity of
⪯I, i.e., a ⪯I a, that there exists an entity b such that a RI b and I; b C. We
claim that (I, b) satisfies the premise sequent sp =df Θ; ∅ ; Σ(R), C Ψ(R) ; ∅.

• Regarding (5.10) nothing needs to be shown, since the set of role mappings to
a set of concepts is empty in sp.

• The goal I; b Σ(R) ∪ {C}, condition (5.11), follows by construction.

• For (5.12) we need to show for all N ∈ Ψ(R) that I; b ̸ N . By the assumption
this is the case for all R-successors of a, in particular for b.

• For condition (5.13) nothing needs to be shown, since Ψ(R) = ∅ in sp.

(Case ∃R) Suppose for the conclusion sequent that Θ; Σ ; Γ ̸ Φ, ∃R.C ; Ψ. We
need to show that Θ; Σ ; Γ ̸ ∅ ; [R →→ C]. Def. 5.2.2 implies that there exists a
pair (I, a) that satisfies the conclusion sequent, in particular I;a ̸ ∃R.C. The
latter implies that there is an entity a′ with a ⪯I a′ such that none of its R-fillers is
contained in CI. We claim that (I, a′) satisfies the premise sequent.

• Condition (5.10) follows from transitivity of ⪯I and the assumption.

• (5.11) follows by the assumption and monotonicity of refinement.

• Nothing needs to be shown for (5.12).

• Finally, condition (5.13), follows from construction of a′.

Therefore, (I, a′) satisfies sp.

(Case ∀L) Suppose that the conclusion sc =df Θ; Σ ; Γ, ∀R.C Φ ; Ψ is satisfiable.
We will show that its premise sp =df Θ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ is satisfiable,

133

5 Constructive Proof Systems for cALC

too. By assumption Θ; Σ ; Γ, ∀R.C ̸ Φ ; Ψ that implies that there is a pair (I, a)
satisfying sc, in particular I;a ∀R.C, which means that all R-successors of all
refinements of a are in CI. The pair (I, a) satisfies the premise sp:

• Condition (5.10) for

R′ ̸=RΣ(R

′)∪Σ(R)∪{C} follows directly by assumption.

• (5.11) follows by assumption, because Γ ⊆ Γ ∪ {∀R.C}.

• Nothing needs to be shown for (5.12) and (5.13) for Φ and Ψ, because, these
sets are equal in sc and sp.

Therefore, (I, a) satisfies sp.

(Case ∀R) Suppose for the conclusion that Θ ; Σ ; Γ ̸ Φ, ∀R.C ; Ψ. The goal is
to show for the premise that By assumption it holds that I; a ̸ ∀R.C, i.e., there
exists an entity a′ with a ⪯I a′ and an R-successor b with a′RI b such that I; b ̸ C.
We claim that (I, b) satisfies the premise sequent:

• For the conditions (5.10) and (5.13) nothing needs to be shown, since the
respective sets are empty in sp.

• Condition (5.11), i.e., I; b Σ(R) follows by assumption.

• The assumption I; b ̸ C proves condition (5.12).

Therefore, (I, b) satisfies the premise sequent.

(Case Hyp1, Hyp2) Finally, to show soundness of Hyp1 and Hyp2 let us assume their
conclusion sequent sc =df Θ, C ; Σ ; Γ Φ ; Ψ is satisfiable. The goal is to demon-
strate that the premise sequent sp1 =df Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ of rule Hyp1

and sp2 =df Θ ; Σ ; Γ, C Φ ; Ψ of rule Hyp2 is satisfiable as well.

The assumption Θ, C ; Σ ; Γ ̸ Φ ; Ψ implies by Def. 5.2.2 that there is a pair (I, a)
that satisfies the conclusion sc, i.e., I Θ ∪ {C}, i.e., C holds at every entity in I.
We claim that (I, a) satisfies sp1 and sp2 .

• For premise sp1 , condition (5.10) directly follows by assumption, i.e., we have
∀a′, b.(a ⪯I a′ & a′RI b) ⇒ I; b C and in particular ∀b.aRI b⇒ I; b C.
Then, (I, a) satisfies the premise sp1 taking into account that the remaining
conditions (5.11), (5.12), (5.13) follow by assumption.

• Regarding the premise sp2 , it follows from the assumption that I; a C and
furthermore this holds for all refinements a ⪯I a′. The conditions (5.9), (5.10),
(5.11), (5.12), (5.13) for Σ, Γ, Φ and Ψ follow by assumption. Hence, sp2 is
satisfied by (I, a). □

134

5.2 Gentzen Sequent Calculus G1 for cALC

Completeness

This section shows that the Gentzen sequent calculus G1 is strongly complete, i.e.,
complete w.r.t. the semantic consequence relation, in the sense that every sequent
is consistent if and only if it is satisfiable. This section extends the completeness
proof that has been published in [190; 195] by giving proofs for all auxiliary lemmata,
by generalising the saturation of consistent sequents, and by using a more compact
notation. In order to prove the completeness direction of Thm. 5.2.1 we first need some
technical definitions and auxiliary lemmas.

Notation. It is technically convenient that we have assumed that the functions Σ, Ψ
are defined for all role names. We may then lift set operations to the functions Σ, Ψ
from role names into sets of concepts in the standard way. E.g., for every R ∈ NR

we put (Σ1 ∪ Σ2)(R) =df Σ1(R) ∪ Σ2(R). Further, Σ1 ⊆ Σ2 holds iff for all R ∈ NR,
Σ1(R) ⊆ Σ2(R). In this spirit we identify the empty set ∅ with the empty function
∅(R) = ∅. Furthermore, we assume that Θ is a fixed TBox. ■

Lemma 5.2.1 ([190; 195]). Let Θ;Σ; Γ Φ;Ψ be an inconsistent sequent, i.e., there
exists a closed derivation for it based on the rules in Fig. 5.1. Then, the following holds:

(i) |Φ ∪ (

R∈NR

Ψ(R))| ≥ 1;

(ii) For every weakening Θ ⊆ Θ′, Σ ⊆ Σ′, Γ ⊆ Γ′, Φ ⊆ Φ′ and Ψ ⊆ Ψ′ the sequent
Θ′;Σ′; Γ′ Φ′;Ψ′ is inconsistent as well, without increase in derivation height. ∇

Proof. Let s = Θ;Σ;Γ Φ;Ψ be an inconsistent sequent, i.e., there exists a closed
derivation for s. The proof is by induction on the height of the derivation. We only
give an indication below to show what is involved and then cover the cases ⊓L, ⊃R,
∃L, ∃R and ∀R.

For the base case, let n = 0. Then, the last rule applied can only be Ax or ⊥L and
either C is a concept in Γ ∩ Φ or ⊥ ∈ Γ and |Φ ∪Ψ| ≥ 1 which shows condition (i).
Regarding (ii), in either case, the weakening Θ′;Σ′; Γ′ Φ′;Ψ′ of s is an axiom Ax or
concluded by ⊥L, since either C ∈ Γ′ ∩Φ′ or ⊥ ∈ Γ′ and |Φ′ ∪Ψ′| ≥ 1.

Suppose now that the conditions (i) and (ii) are admissible up to derivations of
height n and let s be derived in n+ 1 steps. Note that the condition (i) follows easily
by induction hypothesis in all cases of left rules and Hyp1, Hyp2, and is obvious by
construction in all cases of right rules. The proof is by case analysis on the last rule
applied to the derivation and by utilising the induction hypothesis:

135

5 Constructive Proof Systems for cALC

(Case ⊓L) If the last rule applied is ⊓L, then Γ = Γ1, C1 ⊓ C2 and the last step is
...

Θ ; Σ ; Γ1, C1, C2 Φ ; Ψ
⊓L.

Θ ; Σ ; Γ1, C1 ⊓ C2 Φ ; Ψ

The premise sp =df Θ ; Σ ; Γ1, C1, C2 Φ ; Ψ is derivable in ≤ n steps. By ind. hyp.
the conditions (i) and (ii) hold for the premise, i.e., |Φ ∪ (

R∈NR

Ψ(R))| ≥ 1 and
the weakening sp′ =df Θ

′ ; Σ′ ; Γ′
1, C1, C2 Φ′ ; Ψ′ is derivable in ≤ n steps as well.

Then, an application of rule ⊓L gives for sp a derivation of the conclusion sequent
in ≤ n+ 1 steps where (i) holds, and, for sp′ we obtain a derivation of

Θ′ ; Σ′ ; Γ′
1, C1 ⊓ C2 Φ′ ; Ψ′

in ≤ n+ 1 steps where the condition (ii) is satisfied as well.

(Case ⊃R) Suppose the sequent s is derived by rule ⊃R. Then, Φ = Φ1, C ⊃ D

and the last rule application looks like
...

Θ ; Σ ; Γ, C D ; ∅
⊃R.

Θ ; Σ ; Γ Φ1, C ⊃ D ; Ψ

Applying the induction hypothesis to the premise implies that the conditions (i) and
(ii) hold, in particular this means that the sequent Θ′ ; Σ′ ; Γ′, C D ; ∅ is derivable
in ≤ n steps. It follows by application of rule ⊃R that the conclusion sequent and
its weakening Θ′ ; Σ′ ; Γ′ Φ′

1, C ⊃ D ; Ψ′ are derivable in ≤ n + 1 steps where
the conditions (i) and (ii) apply, too.

The remaining propositional cases follow by similar arguments. Next, we will consider
the modal cases ∃L, ∃R and ∀R:
(Case ∃L) Suppose the sequent s is derived by rule ∃L. Then, Γ = Γ1, ∃R.C and

the last step is
...

Θ ; ∅ ; Σ(R), C Ψ(R) ; ∅
∃L.

Θ ; Σ ; Γ1, ∃R.C Φ ; Ψ

By ind. hyp. applied to the premise it holds that |Ψ(R)| ≥ 1 and the weakened
sequent Θ′ ; ∅ ; Σ′(R), C Ψ′(R) ; ∅ is derivable in ≤ n steps. Then, by application
of rule ∃R the conclusion sequent and its weakening Θ′ ; Σ′ ; Γ′

1, ∃R.C Φ′ ; Ψ′

are derivable in ≤ n+ 1 steps. Obviously, |Φ ∪Ψ| ≥ |Ψ(R)| ≥ 1. This shows that
conditions (i) and (ii) are satisfied.

136

5.2 Gentzen Sequent Calculus G1 for cALC

(Case ∃R) Assume that the sequent s is derived by rule ∃R. This means that
Φ = Φ1, ∃R.C and the last derivation step looks like

...
Θ ; Σ ; Γ ∅ ; [R →→ C]

∃R.
Θ ; Σ ; Γ Φ1, ∃R.C ; Ψ

The ind. hyp. lets us conclude the conditions (i) and (ii) for the premise sequent,
and, in particular that the weakened sequent Θ′ ; Σ′ ; Γ′ ∅ ; [R →→ C] is derivable
in ≤ n steps. The conclusion and its weakened variant Θ′ ; Σ′ ; Γ′ Φ′

1, ∃R.C ; Ψ′

are derivable in ≤ n+ 1 steps by rule ∃R which shows that the conditions (i) and
(ii) hold, too.

(Case ∀R) Let us assume that s is derived by rule ∀R, i.e., Φ = Φ1, ∀R.C and the
last step is

...
Θ ; ∅ ; Σ(R) C ; ∅

∀R.
Θ ; Σ ; Γ Φ1, ∀R.C ; Ψ

By ind. hyp. applied to the premise sp, condition (i) holds, and the weakened sequent
sp′ =df Θ

′ ; ∅ ; Σ(R)′ C ; ∅ is derivable in ≤ n steps. Applying rule ∃R yields that
the conclusion sequent and its weakening Θ′ ; Σ′ ; Γ′ Φ′

1, ∀R.C ; Ψ′ are derivable
in ≤ n+ 1 steps, which immediately shows conditions (i) and (ii).

The remaining cases ∀L, Hyp1 and Hyp2 follow by induction hypothesis. □

From the first condition (i) expressed by Lem. 5.2.1 it can be concluded that all
sequents with an empty succedent are necessarily consistent, i.e., sequents of the form
Θ;Σ; Γ ∅; ∅. In fact, such sequents are satisfiable in any interpretation with a fallible
entity. In what follows we will introduce the construction of consistent and saturated
sequents. Later, we will rely on such sequents when building the canonical model in
the sense that every entity of the canonical model is associated with a consistent and
saturated sequent.

Notation. In the following, when we refer to a sequent s we assume that it has the
form Θ ; Σ ; Γ Φ ; Ψ if not specified explicitly. For an explicitly defined sequent s
as an entity of a domain ∆, we write ⟨Θ ; Σ ; Γ Φ ; Ψ⟩. We use an index i ≥ 0 and
write si to denote the sequent Θi ; Σi ; Γi Φi ; Ψi that is component-wise indexed by
i. In the other direction, when we refer to one of the components Θ,Σ,Γ,Φ or Ψ of a
sequent si with i ≥ 0, we write Θi,Σi,Γi,Φi and Ψi. If the sequent is named without
an index like s, s′, s′′, . . ., then we write Θs,Σs,Γs,Φs and Ψs instead. ■

137

5 Constructive Proof Systems for cALC

Definition 5.2.4 (Subsequent). Let s and s′ be sequents. We say that s is a subsequent
of s′ written s ⊆ s′ iff Θs ⊆ Θs′, Σs ⊆ Σs′, Γs ⊆ Γs′, Φs ⊆ Φs′ and Ψs ⊆ Ψs′. ∇

Definition 5.2.5 (Finite sequent). A sequent s is called finite if every component
Θs,Σs(R),Γs,Φs and Ψs(R) with R ∈ NR is finite, and Σs(R),Ψs(R) = ∅ for all but
a finite number of roles R ∈ NR. Otherwise we say that s is infinite. ∇

Definition 5.2.6 (Union of sequents). Given two sequents s and s′, the union of s
and s′ written s ∪ s′ is given by their component-wise union by taking the sequent

Θs ∪Θs′ ; Σs ∪ Σs′ ; Γs ∪ Γs′ Φs ∪ Φs′ ; Ψs ∪Ψs′. ∇

Definition 5.2.7 (Basic notions [73; 1]). A partially ordered set (or poset for short)
is a pair (X,⩽), consisting of a set X together with a binary relation ⩽ ⊆ X × X

that is reflexive, transitive and antisymmetric. Given a poset (X,⩽) and a subset
Y ⊆ X , x ∈ X is an upper bound of Y if ∀y ∈ Y. y ≤ x; moreover, x ∈ X is called
the least upper bound of Y if for all upper bounds y of Y , x ⩽ y. A subset Y ⊆ X

of a poset (X,⩽) is a chain if every pair of elements of Y is comparable, that is, for
all x, y ∈ Y either x ⩽ y or y ⩽ x. If Y is a chain then (Y,⩽) is called a total
order. For a poset (X,⩽) the interval between two elements x, y ∈ X is defined by
[x, y] =df {z ∈ X | x ⩽ z ⩽ y}. A poset is called locally finite if every interval
of it is finite. An ω-chain of a poset (X,⩽) is a sequence of elements {xi | i ∈ N0}
such that for all i ∈ N0, xi ⩽ xi+1, i.e., x0 ⩽ x1 ⩽ x2 ⩽ . . ., that is, an ω–chain
is isomorphic to the natural numbers. (X,⩽) is called a complete partial order (cpo
for short) if it has a least element, ⊥ ∈ X , and the least upper bound

Y exists for

all chains Y of X . A poset (X,⩽) in which every ω–chain has a least upper bound
is called an ω-complete poset (ω–cpo). A function f :X → X on X is monotonic if
∀x, x′ ∈ X. x ⩽ x′ ⇒ f(x) ⩽ f(x′), and f is increasing if x ⩽ f(x) for all x ∈ X . ∇

Lemma 5.2.2 (ω-cpo of consistent sequents). Let ∆∗ be the set of all consistent
sequents of the form ⟨Θ ; Σ ; Γ Φ ; Ψ⟩. The partial order (∆∗,⊆) is an ω-cpo over
∆∗, i.e., the empty sequent s⊥ =df ⟨∅ ; ∅ ; ∅ ∅ ; ∅⟩ is the bottom element and every
ω-chain s0 ⊆ s1 ⊆ s2 ⊆ . . . ∈ ∆∗ has the least upper bound

i≥0 si ∈ ∆∗. ∇

Proof. First, we show that

i≥0 si ∈ ∆∗ is the least upper bound of s0 ⊆ s1 ⊆ s2 ⊆

. . . ∈ ∆∗. Clearly, it holds for all si (i ≥ 0) that si ⊆

i≥0 si ∈ ∆∗. Suppose that the

consistent sequent su is an upper bound such that ∀i ≥ 0.si ⊆ su. Then,

i≥0 si ⊆ su,

whence

i≥0 si ∈ ∆∗ is the least upper bound of the chain s0 ⊆ s1 ⊆ s2 ⊆ . . . ∈ ∆∗.

Secondly, we show that ∆∗ is closed under union, i.e., the least upper bound of a chain of
consistent sequents is consistent. Let s0 ⊆ s1 ⊆ s2 ⊆ . . . ∈ ∆∗ be a chain of consistent
sequents and suppose that

i≥0 si is inconsistent. It follows from compactness, saying

138

5.2 Gentzen Sequent Calculus G1 for cALC

that the derivation of a sequent s can be restricted to a finite subsequent of s, that
there already exists a finite sequent sk in the chain at position k that is inconsistent.
However, this contradicts the assumption that the chain is consistent. Therefore, the
least upper bound is consistent. □

Next, we define the notion of an extension rule over the set ∆∗ of consistent sequents.

Definition 5.2.8 (Extension rule). An extension rule ν is a map ν : ∆∗ → ∆∗

on sequents satisfying the conditions below, where we write s →ν s
′ to denote that

ν(s) = s′.

(i) if s→ν s
′ then s ⊆ s′;

(ii) for all s, s′, s′′, s′′′ ∈ ∆∗ if s→ν s
′ and s ⊆ s′′ →ν s

′′′ then s′ ⊆ s′′′;

(iii) ν(s) ̸= s⇒ ∃ finite s′ ⊆ s such that ∀s′′ ⊇ s′. ν(s′′) = ν(s′) ∪ s′′. ∇

Note that Def. 5.2.8 requires that an extension rule is consistency preserving, that
is, if a sequent s is consistent and s→ν s

′ then s′ is consistent as well.

Definition 5.2.9 (Single extension step). Let XL be a well-ordered, locally finite set
of extension rules over ∆∗ and s ∈ ∆∗ be a sequent. A single extension step is the map
X̂L : ∆∗ → ∆∗ such that X̂L(s) = ν(s) where ν is the smallest element in XL such
that s ⊂ ν(s) if it exists, or otherwise X̂L(s) = s if for all ν ∈ XL.ν(s) = s. ∇

Lemma 5.2.3. Let XL be a well-ordered, locally finite set of extension rules. The
single step extension X̂L w.r.t. XL satisfies the properties below:

(i) X̂L is monotonic, i.e., for all consistent sequents s, s′ ∈ ∆∗ with s ⊆ s′ it holds
that X̂L(s) ⊆ X̂L(s

′);

(ii) X̂L is increasing, i.e., it satisfies s ⊆ X̂L(s) for all s ∈ ∆∗;

(iii) X̂L is ω-continuous, i.e., it holds that X̂L

i≥0 si

=

i≥0 X̂L(si), where s0 ⊆

s1 ⊆ s2 ⊆ . . . ∈ ∆∗ is an ω-chain. ∇

Proof. Monotonicity (i) of X̂L follows immediately from the fact that all rules ν ∈
XL are monotonic by Def. 5.2.8.(ii). Claim (ii) follows immediately from Def. 5.2.9.
Regarding property (iii), we show that X̂L

i≥0 si

=

i≥0 X̂L(si).

(⇒) The goal is to demonstrate that X̂L

i≥0 si

⊆

i≥0 X̂L(si). Consider the

sequent X̂L

i≥0 si

. By Def. 5.2.9 there are two possible cases for X̂L, namely

• X̂L

i≥0 si

= ν

i≥0 si

for some rule ν ∈ XL such that

i≥0 si ⊂ ν

i≥0 si

, or

• X̂L

i≥0 si

=

i≥0 si.

139

5 Constructive Proof Systems for cALC

We only cover the first case, since the second is included in the first. From Def. 5.2.8.(iii)
follows that there exists a finite sequent s′ with s′ ⊆

i≥0 si such that ∀s′′ ⊇ s′. ν(s′′) =

ν(s′) ∪ s′′. In particular s′ ⊆

i≥0 si and therefore ν(

i≥0 si) = ν(s′) ∪

i≥0 si. We

proceed by case analysis:
Case 1. The goal is to show that ν(s′) ⊆

i≥0 X̂L(si). The assumption s′ ⊆

i≥0 si

implies s′ ⊆ sj for some 0 ≤ j in the chain, and by Def. 5.2.8.(iii) ν(sj) = ν(s′) ∪ sj.
We proceed by case analysis on ν:

• Case 1.1 If ν is the minimal applicable rule of XL w.r.t. sj then ν(sj) = X̂L(sj) ⊆
X̂L(sj) ∪

i≥0 X̂L(si) =

i≥0 X̂L(si).

• Case 1.2 Otherwise, ν is not minimal w.r.t. sj.

Let sj = sj1 . Because ν is not minimal w.r.t. sj1 there must exist a rule ν1 < ν

that is minimal w.r.t. sj1 such that sj1 ⊂ ν1(sj1). Observe that ν1(sj1) is already
contained in

i≥0 si, because minimality of ν w.r.t.

i≥0 si implies that ν1 does

not add anything new to

i≥0 si, i.e., ν1(sj) ⊆ ν1(

i≥0 si) =

i≥0 si, because

otherwise ν would not be minimal w.r.t.

i≥0 si contradictory to the assumption.

Now, let us consider the sequent sj2 such that sj1 ⊂ ν1(sj1) ⊆ sj2 . If ν is not
minimal w.r.t. sj2 then there must exist a rule ν2 in XL which is minimal w.r.t.
sj2 such that ν2 ̸= ν1 and ν2 < ν and sj2 ⊂ ν2(sj2) ⊆

i≥0 si.

Due to the fact that ν is fixed and XL a well-ordered and locally finite set of
rules there are only finitely many rules νk with k ≥ 0 such that νk < ν, i.e., there
cannot be an infinite chain of rule applications until we reach the case that ν
becomes minimal w.r.t. a sequent sj∗ ⊆

i≥0 si. Hence, at some point we reach

the case that ν is minimal w.r.t. a sequent sj∗ of a chain sj1 ⊆ sj2 ⊆ . . . ⊆ sj∗ that
is constructed as described above. Then, ν(s′) ⊆ ν(sj∗) holds by monotonicity
Def. 5.2.8.(ii) and ν(sj∗) ⊆

i≥0 X̂L(si) is argued analogously to Case 1.1 above.

Case 2. The goal is to demonstrate that

i≥0 si ⊆

i≥0 X̂L(si). This is a direct

consequence of Lem. 5.2.3.(ii) (increasing), i.e., it holds that si ⊆ X̂L(si) ⊆

i≥0 X̂L(si)

which was to be shown.

(⇐) We need to show that

i≥0 X̂L(si) ⊆ X̂L

i≥0 si

holds. This follows from

si ⊆

i≥0 si and monotonicity of X̂L by Lem. 5.2.3.(i). □

Definition 5.2.10 (Saturation). Let s =df ⟨Θ ; Σ ; Γ Φ ; Ψ⟩ be a sequent and XL a
well-ordered and locally finite set of extension rules. A sequent s is called XL-saturated
if X̂L(s) = s, i.e., it holds for all rules ν ∈ XL that ν(s) = s. ∇

140

5.2 Gentzen Sequent Calculus G1 for cALC

Lemma 5.2.4 (Consistent and saturated extension). Every consistent sequent has
a consistent and XL-saturated extension w.r.t. a well-ordered, locally finite set XL of
extension rules. ∇

Proof. Let s =df ⟨Θ ; Σ ; Γ Φ ; Ψ⟩ ∈ ∆∗ be a consistent sequent and XL a set of
extension rules according to Def. 5.2.8. We construct monotonically increasing sequences

s0 ⊆ s1 ⊆ s2 ⊆ . . . ⊆ sn ⊆ . . .

of sequents sn according to the extension rules XL by taking si+1 = X̂L(si) and by
starting from s0 = s. The application of the extension rules from XL generates a chain
{si | i ≥ 0}. The construction continues until saturation is reached. Note that s0 ⊆ s1

by property (ii) of Lem. 5.2.3 and si ⊆ si+1 for i ≥ 1 because of Lem. 5.2.3.(i). From
Lem. 5.2.2 it follows that that s∗ =df

n<ω sn ∈ ∆∗ is the least upper bound for the

chain s0 ⊆ s1 ⊆ s2 ⊆ . . . ⊆ sn ⊆ . . . such that s ⊆ s∗. Finally, taking the ω-complete
partial order (∆∗,⊆) we can conclude from continuity of X̂L by Lem. 5.2.3.(iii) and
the fixed-point theorem of Kleene that the least fixed-point w.r.t. X̂L is the supremum
s∗ of the ascending chain such that X̂L(s

∗) = s∗. □

Definition 5.2.11 (Extension rules for cALC). Let C,D be cALC concepts, R ∈ NR

a role and the sequent s =df ⟨Θ ; Σ ; Γ Φ ; Ψ⟩ ∈ ∆∗ be consistent. The extension
rules for cALC are a countable set built up from the following extension rules, which
are parametrised w.r.t. concepts and roles. For instance, we will write EiC,R to denote
the family of rules that are parametrised in the index i ∈ N0, the concept C and role R.
We will just write Ei instead of EiC,R when the parameters are clear from the context.
These rules are syntactically ordered by their index and the concepts and roles from
the alphabets of lexicographically well-ordered and countable sets of concepts and roles
respectively. Then, the extension s′ of s is according to the following extension rules if
the respective precondition holds, otherwise s′ = s.

E0C,R s→E0 s
′ = ⟨Θ ; Σ ∪ [R →→ C] ; Γ ∪ {C} Φ ; Ψ⟩,

if C ∈ Θ and C ̸∈ Σ(R) for some R ∈ NR or C ̸∈ Γ.

E1C,D s→E1 s
′ = ⟨Θ ; Σ ; Γ ∪ {C, D} Φ ; Ψ⟩,

if there is C ⊓D ∈ Γ but C ̸∈ Γ or D ̸∈ Γ.

E2C,D s→E2 s
′ such that

• either s′ = ⟨Θ ; Σ ; Γ ∪ {C} Φ ; Ψ⟩, if it is consistent,

• or otherwise s′ = ⟨Θ ; Σ ; Γ ∪ {D} Φ ; Ψ⟩, if it is consistent,

if there is C ⊔D ∈ Γ but C ̸∈ Γ and D ̸∈ Γ.

141

5 Constructive Proof Systems for cALC

E3C,D s→E3 s
′ such that

• either s′ = ⟨Θ ; Σ ; Γ ∪ {D} Φ ; Ψ⟩, if it is consistent,

• or otherwise s′ = ⟨Θ ; Σ ; Γ Φ ∪ {C} ; Ψ⟩, if it is consistent,

if there exists C ⊃ D ∈ Γ but C ̸∈ Φ and D ̸∈ Γ.

E4C,R s→E4 s
′ = ⟨Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ⟩,

if ∀R.C ∈ Γ but C ̸∈ Σ(R).

E5C,D s→E5 s
′ = ⟨Θ ; Σ ; Γ Φ ∪ {C,D} ; Ψ⟩,

if there is C ⊔D ∈ Φ but C ̸∈ Φ or D ̸∈ Φ.

E6C,D s→E6 s
′ such that

• either s′ = ⟨Θ ; Σ ; Γ Φ ∪ {C} ; Ψ⟩, if it is consistent,

• or otherwise s′ = ⟨Θ ; Σ ; Γ Φ ∪ {D} ; Ψ⟩, if it is consistent,

if C ⊓D ∈ Φ but C ̸∈ Φ and D ̸∈ Φ.

E7R s→E7 s
′ = ⟨Θ ; Σ ∪ [R →→ ⊥] ; Γ Φ ; Ψ⟩,

if ⊥ ∈ Γ but ⊥ ̸∈ Σ(R) for some R. ∇

Note that the rule E0C,R only needs to be applied at most once for each concept C ∈ Θ.
Furthermore, all rules of Def. 5.2.11 only extend the components Σ,Γ and Φ.

Notation. In the following XcALC denotes the set of extension rules of Def. 5.2.11. ■

Lemma 5.2.5. The extension rules XcALC of Def. 5.2.11 are according to Def. 5.2.8. ∇

Proof. Let s =df Θ; Σ ; Γ Φ ; Ψ be a consistent sequent. We need to show for all
rules ν ∈ XcALC with s→ν s

′ that the following conditions are met:

(i) if s→ν s
′ then s ⊆ s′;

(ii) for all s, s′, s′′, s′′′ ∈ ∆∗ if s→ν s
′ and s ⊆ s′′ →ν s

′′′ then s′ ⊆ s′′′;

(iii) ν(s) ≠ s⇒ ∃ finite s′ ⊆ s such that ∀s′′ ⊇ s′. ν(s′′) = ν(s′)∪ s′′;

(iv) ν is consistency preserving, i.e., the sequent s′ is consistent.

These conditions can be verified directly by inspection of the rules of Def. 5.2.11. Below,
we only give an indication to show what is involved and cover the rules E0,E3,E4 and E7.

E0C,R Suppose that the rule applied is E0C,R, i.e., s→E0 s
′ such that either s = s′

or s′ = Θ; Σ ∪ [R →→ C] ; Γ ∪ {C} Φ ; Ψ, for some C ∈ Θ and R ∈ NR.

142

5.2 Gentzen Sequent Calculus G1 for cALC

• Condition (i) holds trivially by inspection of the rules.

• For monotonicity (ii) let s′′, s′′′ be sequents and suppose that s→E0 s
′

and s ⊆ s′′ →E0 s
′′′. The goal is to show that s′ ⊆ s′′′. There are two

cases: Case 1: If E0(s) = s′ then immediately s′ ⊆ s′′′.

Case 2: Otherwise, s ⊂ s′. Then, it is either the case that the precon-
dition is not satisfied for s′′ →E0 s

′′′, i.e., [R →→ C] and C are already
included in Σ′′ and Γ′′ respectively, and therefore it holds that s′ ⊆ s′′′.
Otherwise, it holds that s′′ ⊂ s′′′ which together with s ⊆ s′′ let us
conclude that s′ ⊆ s′′′.

• Regarding condition (iii), suppose that ν(s) ̸= s. We can easily find a
finite and consistent subsequent sf of s by taking sf = C ; ∅ ; ∅ ∅ ; ∅
such that for all s′ ⊇ sf . E0(s′) = E0(sf) ∪ s′.

• Finally, we show that rule E0 is consistency preserving. If E0(s) = s′

then s′ is trivially consistent. Otherwise, suppose that the sequent s′ is
inconsistent. This implies the existence of a closed derivation for s′. But,
by rule Hyp1 and Hyp2 of Fig. 5.1 this would yield a closed derivation
for the sequent s. This contradicts the assumption that the sequent s
is consistent. Hence, the sequent s′ is consistent as well.

E3C,D If the last rule which gets applied is E3C,D then s →E3 s
′ such that s = s′

or, either s′ = Θ ; Σ ; Γ ∪ {D} Φ ; Ψ or s′ = Θ ; Σ ; Γ Φ ∪ {C} ; Ψ.

• The conditions (i), (ii) can be argued as above.

• Regarding condition (iii), assume that ν(s) ̸= s. We take the finite
and consistent sequent sf = ∅ ; C ⊃ D ; ∅ ∅ ; ∅ such that for all
s′ ⊇ sf . E3(s′) = E3(sf) ∪ s′.

• Consistency of E3 is argued as follows: Let us suppose that s′ is
inconsistent. This implies the existence of a closed derivation for the
two latter cases of s′. However, by rule ⊃L from Fig. 5.1 this would yield
a closed derivation for the sequent s. This contradicts the assumption
that s is consistent. Therefore, the sequent s′ is consistent as well.

E4C,R Let us suppose that that the sequent s′ has been derived by rule E4C,R, i.e.,
s→E4 s

′ such that either s = s′ or s′ = Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ.

• The conditions (i), (ii) and (iii) are argued similarly as before.

• Assume that the sequent s′ is inconsistent, i.e., there exists a closed
derivation for Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ. By rule ∀L we obtain

143

5 Constructive Proof Systems for cALC

...
Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ

∀L
Θ ; Σ ; Γ, ∀R.C Φ ; Ψ

which would give for Θ ; Σ ; Γ ∪ {∀R.C} Φ ; Ψ a closed derivation.
However, this would lead to the inconsistency of the sequent s which is
a contradiction. Hence, s′ has to be consistent.

E7R Assume that the sequent s′ has been derived by rule E7R, i.e., s→E7 s
′ such

that either s = s′ or s′ = Θ ; Σ ∪ [R →→ ⊥] ; Γ Φ ; Ψ and ⊥ ∈ Γ.

• The conditions (i), (ii) and (iii) are argued similarly as before.

• Regarding condition (iv) suppose that s′ is inconsistent, i.e., there is a
derivation of s′. We can conclude by Lem. 5.2.1 that |Φ ∪ Ψ| ≥ 1. In
particular, since ⊥ ∈ Γ there exists a derivation

|Φ ∪Ψ| ≥ 1
⊥L

Θ ; Σ ; Γ Φ ; Ψ

which contradicts the consistency of the sequent s. Therefore, the se-
quent s′ is consistent.

All other rules can be argued similarly. □

Remark 5.2.2. One can show for a finite and consistent sequent s that the process of
generating its saturation s∗ terminates, which is due to the following facts: Finiteness
of s implies that the set of subformulæ contained in s is finite, and this implies that the
set of extension rules can be made finite by restricting the family of extension rules to
the set of subformulæ of s. The strategy of applying the rules is fair, i.e., each rule fires
at some point. Thus, by monotonicity, increasing and the fact that only subformulæ
are added, the saturation of s terminates after a finite number of rule applications.

The fixed point construction of the set of saturated and consistent sequents can be
further generalised (Lüttgen [179, personal communication]) by using a generalisation
of the Chaotic Fixed Point Iteration Theorem [110], which states that every fair chaotic
iteration computes the least fixed point of a complete partial order w.r.t. a family of
continuous functions, given a fair strategy in the sense that every function fires at some
point of the construction. ■

The remaining section will focus on the construction of a canonical model out of the
set of all consistent and XcALC-saturated sequents.

144

5.2 Gentzen Sequent Calculus G1 for cALC

Definition 5.2.12 (Canonical Interpretation [195]). Let Θ be a fixed TBox and ∆∗ be
the set of all XcALC-saturated and consistent sequents of the form ⟨Θ ; Σ ; Γ Φ ; Ψ⟩.
All these sequents have Θ as their first component but may have different Σ, Γ, Φ, Ψ.
The canonical interpretation I∗ =df (∆

I∗
,⪯I∗

,⊥I∗
, ·I∗

) is defined by

∆I∗
=df ∆∗; (5.14)

⪯I∗
=df {(s, s′) ∈ ∆I∗ ×∆I∗ | Σs ⊆ Σs′ & Γs ⊆ Γs′}; (5.15)

RI∗
=df {(s, s′) ∈ ∆I∗ ×∆I∗ | Σs(R) ⊆ Γs′ & Ψs(R) ⊆ Φs′}; (5.16)

⊥I∗
=df {s ∈ ∆I∗ | ⊥ ∈ Γs}; (5.17)

AI∗
=df {s ∈ ∆I∗ | A ∈ Γs or ⊥ ∈ Γs}, (5.18)

for all R ∈ NR and A ∈ NC . ∇

Lemma 5.2.6 ([195]). The canonical interpretation I∗ =df (∆
I∗
,⪯I∗

,⊥I∗
, ·I∗

) is a
constructive model according to Def. 4.2.2. ∇

Proof. The proof appeared in [195]. We show that the canonical interpretation I∗ is a
constructive interpretation in line with Def. 4.2.2:

• The set ∆I∗ is obviously non-empty by Def. 5.2.12, for instance consider the
consistent sequent ⟨Θ ; ∅ ; A ∅ ; ∅⟩ for any A ∈ NC .

• The relation ⪯I∗ is reflexive and transitive by construction by (5.15). However,
note that ⪯I∗ is not in general antisymmetric.

• Regarding fallible entities we have to show that ⊥I∗ is closed under refinement
and role-filling.

By definition ⊥I∗ ⊆ AI∗ for all A ∈ NC . Furthermore, it is obvious for two
sequents s, s′ ∈ ∆I∗ that if s ⪯I∗

s′ and s is fallible then s′ is fallible, hence ⊥I∗

is closed under ⪯I∗ .

Let s ∈ ∆I∗ be a consistent and XcALC-saturated sequent. If s ∈ ⊥I∗ then it
holds by (5.17) that ⊥ ∈ Γs. First, we show that RI∗ is serial w.r.t. ⊥I∗ , that
is, there exists a consistent and XcALC-saturated sequent s′ such that ⊥ ∈ Γs′

and s RI∗
s′. Consider the sequent s′ =df ⟨Θs ; ∅ ; Σs(R) ∪ {⊥} Ψs(R) ; ∅⟩.

We claim that the sequent s′ is consistent. Suppose, by contradiction that s′

is derivable. This implies by Lemma 5.2.1 that Ψs(R) ̸= ∅. But, by rule ⊥L
this contradicts already the consistency of the sequent s. Lemma 5.2.4 lets us
conclude that there exists a consistent and XcALC-saturated extension s∗ of s′

such that Ψs(R) ⊆ Φs∗ and Σs(R) ⊆ Σs(R) ∪ {⊥} ⊆ Γs∗ . Hence s RI∗
s∗

and s∗ ∈ ⊥I∗ . Secondly, we demonstrate that all R-successors s′ of s are in

145

5 Constructive Proof Systems for cALC

⊥I∗ as well. By assumption ⊥ ∈ Γs. Lemma 5.2.4 w.r.t. XcALC (rule E7R) and
definition of saturation lets us conclude that ⊥ ∈ Σs(R) for all R ∈ NR . Let
s′ be an arbitrary R-successor of s such that ⊥ ∈ Σs(R) ⊆ Γs′ by (5.16) and
therefore s′ ∈ ⊥I∗ . Since s′ was an arbitrary R-successor of s, it follows that all
R-successors of s are in ⊥I∗ as claimed.

• Finally, we show for all A ∈ NC that the interpretation AI∗ is closed under ⪯I∗ .
Let s, s′ ∈ ∆I∗ and assume that s ∈ AI∗ and s ⪯I∗

s′. (5.15) implies that
Γs ⊆ Γs′ , i.e., whenever s ∈ AI∗ then also s′ ∈ AI∗ . Thus, AI∗ is closed under
refinement ⪯I∗ .

Hence, I∗ is a constructive interpretation as claimed. Note that for all fallible sequents
s ∈ ∆I∗ consistency implies that Φs = Ψs = ∅, otherwise there would exist a closed
derivation by rule ⊥L. Consequently, whenever Φs or Ψs(R) (w.r.t. some R ∈ NR) are
nonempty, then we know that s ∈ ∆I∗

c = ∆I∗ \ ⊥I∗ . □

Having established the canonical model, the remaining agenda is to prove selfsatis-
faction in the sense that the canonical interpretation I∗ is a constructive model under
the terms of Def. 4.2.2 such that for every sequent s ∈ ∆I∗ the pair (I∗, s) satisfies the
sequent s according to Def. 5.2.2.

Lemma 5.2.7 (Mendler and Scheele [195]). Let Θ be a fixed TBox, ∆∗ the set
of all XcALC-saturated and consistent sequents. The canonical interpretation I∗ =df

(∆I∗
,⪯I∗

,⊥I∗
, ·I∗

) is a constructive model so that for all XcALC-saturated and consist-
ent sequents s ∈ ∆∗ the pair (I∗, s) satisfies s in the sense of Def. 5.2.2. In particular,
I∗ Θ and if s = ⟨Θ ; Σ ; Γ Φ ; Ψ⟩ then for all R ∈ NR it holds that

∀s′, s′′ ∈ ∆I∗
. s ⪯I∗

s′ RI∗
s′′ ⇒ I∗; s′′ Σ(R); (5.19)

I∗; s Γ; (5.20)
I∗; s ̸ Φ; (5.21)

∀s′ ∈ ∆I∗
. s RI∗

s′ ⇒ I∗; s′ ̸ Ψ(R). (5.22)

∇

Proof. The proof is similar to the one in [195] but uses a more compact notation, relies
on a more general form of saturation and argues the case ∀R.C differently. We claim
that I∗ Θ. This follows from condition (5.20), which is proven below, and the fact
that by Def. 5.2.11 and Lem. 5.2.4 all sequents s ∈ ∆∗ are XcALC-saturated such that
Θs = Θ ⊆ Γs.

146

5.2 Gentzen Sequent Calculus G1 for cALC

Let s ∈ ∆I∗ be an arbitrary but XcALC-saturated and consistent sequent. To show
self-satisfaction of the sequent s we will demonstrate the truth conditions (5.19)–(5.22).
Notice that the conditions (5.19) and (5.22) follow directly from (5.20) and (5.21)
respectively, relying on Def. 5.2.12 of ⪯I∗ and RI∗ :

• Let us deal with condition (5.22) first. Let s′ ∈ ∆I∗ be an arbitrary R-successor of
s such that s RI∗

s′. The construction of RI∗ implies by (5.16) that Ψs(R) ⊆ Φs′

and therefore I∗; s′ ̸ Ψs(R) by condition (5.21).

• Regarding (5.19) let s′, s′′ ∈ ∆I∗ such that s ⪯I∗
s′ RI∗

s′′. The definitions of
⪯I∗ and RI∗ (Def. 5.2.12) imply that Σs(R) ⊆ Σs′(R) ⊆ Γs′′ . Hence, we get
I∗; s′′ Σs(R) by (5.20).

In the remaining proof we verify the conditions (5.20) and (5.21), and lift the ‘mem-
bership=truth’ condition to arbitrary concepts. More precisely, we show simultaneously
by induction on the structure of concept C that

C ∈ Γs ⇒ I∗; s C;

C ∈ Φs ⇒ I∗; s ̸ C.

(Case atomic symbol) For the base case let C = A ∈ NC or C = ⊥.

• If C ∈ Γs then I∗; s C holds trivially by Def. 5.2.12 of I∗.

• Analogously, if C ∈ Φs then I∗; s ̸ C, since otherwise we would have that
C ∈ Γs by Def. 5.2.12 of I∗ which would contradict the consistency of the
sequent s by rule Ax.

(Case C ⊓D)

• Assume that C ⊓ D ∈ Γs. The fact that the sequent s is XcALC-saturated
implies C,D ∈ Γs by rule E1 of Def. 5.2.11, i.e., I∗; s C and I∗; s D by
induction hypothesis. Hence, I∗; s C ⊓D.

• Suppose that C ⊓ D ∈ Φs. Saturation of s implies that either C ∈ Φs or
D ∈ Φs by rule E6 of Def. 5.2.11. The induction hypothesis lets us conclude that
I∗; s ̸ C or I∗; s ̸ D, i.e., s ̸∈ CI∗ ∩DI∗ , which implies that I∗; s ̸ C ⊓D.

(Case C ⊔D)

• Suppose that C ⊔D ∈ Γs. Because of XcALC-saturation of s we have C ∈ Γs

or D ∈ Γs by rule E2 of Def. 5.2.11, which means I∗; s C or I∗; s D by
induction hypothesis. Hence, I∗; s C ⊔D.

147

5 Constructive Proof Systems for cALC

• If C⊔D ∈ Φs then by saturation of s follows C,D ∈ Φs by rule E5 of Def. 5.2.11.
The ind. hyp. implies I∗; s ̸ C and I∗; s ̸ D. Thus, I∗; s ̸ C ⊔D.

(Case C ⊃ D)

• Suppose that C ⊃ D ∈ Γs. The goal is to show that I∗; s C ⊃ D. Let
s′ ∈ ∆I∗ be arbitrary such that s ⪯I∗

s′ and I∗; s′ C. The construction
of I∗ implies by Def. 5.2.12 that C ⊃ D ∈ Γs ⊆ Γs′ . Also, C ̸∈ Φs′ by
(5.21), for otherwise if C ∈ Φs′ (5.21) implies I∗; s′ ̸ D which contradicts the
assumption. Since the sequent s′ is XcALC-saturated, it follows from rule E3
of Def. 5.2.11 that D ∈ Γs′ . The induction hypothesis lets us conclude that
I∗; s′ D. Hence, I∗; s C ⊃ D.

• Conversely, suppose C ⊃ D ∈ Φs. The goal is to show that there exists an
infallible refinement of s that lies in CI∗ but not in DI∗ . Let us consider the
sequent s′ =df ⟨Θ ; Σs ; Γs, C D ; ∅⟩ which must be consistent. Suppose to
the contrary that s′ is inconsistent. Then there must exist a closed tableau for
s′, however, this would contradict the consistency of the sequent s by rule ⊃R
of Fig. 5.1. Since s′ is consistent, we obtain from Lem. 5.2.4 a XcALC-saturated
and consistent extension s∗ of s′. Note that D ∈ Φs∗ directly implies that
s∗ is infallible and therefore s∗ ∈ ∆I∗

c . Now, we observe that Σs ⊆ Σs∗ and
Γs ⊆ Γs ∪ {C} ⊆ Γs∗ from which we can conclude by construction of I∗ from
Def. 5.2.12 that s ⪯I∗

s∗. Also, from C ∈ Γs∗ and D ∈ Φs∗ we can infer
I∗; s∗ C and I∗; s∗ ̸ D by ind. hyp. Hence, I∗; s ̸ C ⊃ D as desired.

(Case ∃R.C)

• Assume that ∃R.C ∈ Γs. We have to show that for all refinements of s there
exists an R-successor in the interpretation of C. Let s′ ∈ ∆I∗ such that
s ⪯I∗

s′. Definition 5.2.12 of ⪯I∗ implies that ∃R.C ∈ Γs′ . Now, let us
consider the sequent s′′ =df ⟨Θ ; ∅ ; Σs′(R), C Ψs′(R) ; ∅⟩ which is obviously
consistent. Otherwise, there would exist a closed derivation for the sequent
s′′, but this would contradict consistency of s′ by rule ∃L of Fig. 5.1. Thus,
s′′ is consistent and an application of Lem. 5.2.4 yields a XcALC-saturated
and consistent extension s∗ of s′′. Now, observe that by construction we have
Σs′(R) ⊆ Σs′(R) ∪ {C} ⊆ Γs∗ and Ψs′(R) ⊆ Φs∗ such that s′ RI∗

s∗ by
Def. 5.2.12. Since C ∈ Γs∗ , we can conclude that I∗; s∗ C by the induction
hypothesis which proves I∗; s ∃R.C.

• Vice versa, let us assume that ∃R.C ∈ Φs. We have to show that there exists
a refinement of s such that all its R-successors are not in CI∗ . Consider the
sequent ⟨Θ ; Σs ; Γs ∅ ; [R →→ C]⟩ which must be consistent, since otherwise

148

5.2 Gentzen Sequent Calculus G1 for cALC

there would exists a closed tableau for the sequent which by rule ∃R from
Fig. 5.1 would contradict the consistency of s. Again, Lem. 5.2.4 yields a XcALC-
saturated and consistent extension s′ ∈ ∆I∗

c of ⟨Θ ; Σs ; Γs ∅ ; [R →→ C]⟩,
which is infallible because of C ∈ Ψs′(R). By construction holds that Σs ⊆ Σs′

and Γs ⊆ Γs′ and therefore s ⪯I∗
s′. Now, let s′′ ∈ ∆I be an arbitrary R-

successor such that s′ RI∗
s′′, i.e., C ∈ Ψs′(R) ⊆ Φs′′ by definition of RI∗

(Def. 5.2.12). By ind. hyp. I∗; s′′ ̸ C and therefore I∗; s ̸ ∃R.C.

(Case ∀R.D)

• Proof by contraposition. Suppose that I∗; s ̸ ∀R.C. We have to show
that ∀R.C ̸∈ Γs. The assumption implies that there exist s′, s′′ ∈ ∆I∗

c such
that s ⪯I∗

s′ RI∗
s′′ and I∗; s′′ ̸ C. The induction hypothesis implies

that C ̸∈ Γs′′ . Furthermore, we know that Σs(R) ⊆ Σs′(R) ⊆ Γs′′ from
Def. 5.2.12. Now, observe that ∀R.C ̸∈ Γs, since otherwise saturation would
give us C ∈ Σ(R) ⊆ Σs′(R) ⊆ Γs′′ by Lem. 5.2.4 (rule E4) which contradicts
the assumption. Hence, ∀R.C ̸∈ Γs.

• Finally, let us assume that ∀R.C ∈ Φs. The goal is to show that there exists a
refinement of s with an R-successor which is not in CI∗ . We observe that the
sequent s′ =df ⟨Θ ; Σs ; Γs Φs ; ∅⟩, in which the last constraint is omitted, is
consistent and saturated as well, i.e., s′ ∈ ∆I∗ . The former is a consequence
of weakening by Lem. 5.2.1 while the latter is obvious, since the component
Ψs is not affected by any saturation rule of XcALC. It follows from Def. 5.2.12
that s ⪯I∗

s′ and furthermore ∀R.C ∈ Φs ̸= ∅ implies s′ ∈ ∆I∗

c . Now, let us
consider the sequent s′′ =df ⟨Θ ; ∅ ; Σs(R) C ; ∅⟩. The sequent s′′ is obviously
infallible and consistent, since otherwise if there would exist a closed tableau
for s′′ then we could obtain a closed tableau for the sequent s′ by rule ∀R of
Fig. 5.1 contradictory to the assumption. Lemma 5.2.4 yields a consistent and
XcALC-saturated extension s∗ of s′′ such that Σs(R) ⊆ Γs∗ and C ∈ Φs∗ , which
implies s′ RI∗

s∗. The induction hypothesis lets us conclude that I∗; s∗ ̸ C.
Therefore, I∗; s ̸ ∀R.C. □

Finally, we are ready to argue completeness.

Theorem 5.2.3 (Completeness [195]). Every consistent sequent is satisfiable, i.e.,

Θ ; Σ ; Γ ̸ Φ ; Ψ ⇒ Θ ; Σ ; Γ ̸ Φ ; Ψ. ∇

149

5 Constructive Proof Systems for cALC

Proof. Let s = Θ ; Σ ; Γ Φ ; Ψ be a consistent sequent. The goal is to demonstrate
that s is satisfiable according to Def. 5.2.2, i.e., there is a constructive model I and
an entity a in ∆I such that the pair (I, a) satisfies the sequent s. An application
of Lem. 5.2.4 yields a XcALC-saturated and consistent extension s∗ of s such that
Σs ⊆ Σs∗ , Γs ⊆ Γs∗ and Φs ⊆ Φs∗ . We can use Def. 5.2.12 to construct a canonical
model I∗ =df (∆I∗

,⪯I∗
,⊥I∗

, ·I∗
) using Θ as a fixed TBox. Finally, Lemma 5.2.7

implies that the pair (I∗, s∗) satisfies the sequent s∗ and particularly satisfies the
sequent s, which was to be shown. □

Following the lines of [84, p. 99] and [132] we want to point out that Theorem 5.2.1,
i.e., proving soundness and completeness of the cut-free calculus G1, allows us to
semantically prove the admissibility of the rule Cut:

Θ ; Σ ; Γ Φ, C ; Ψ Θ ; Σ′ ; Γ′, C Φ′ ; Ψ′

Cut
Θ ; Σ, Σ′ ; Γ, Γ′ Φ, Φ′ ; Ψ, Ψ′

Corollary 5.2.1. The rule Cut is admissible in the sequent calculus G1. ∇

Proof. Let Θ be a fixed but arbitrary TBox and suppose that the two premise sequents
sp1 =df Θ ; Σ ; Γ Φ, C ; Ψ and sp2 =df Θ ; Σ ; Γ, C Φ ; Ψ are derivable, but that
the conclusion sequent sc =df Θ ; Σ ; Γ Φ ; Ψ is not, i.e., Θ ; Σ ; Γ ̸ Φ ; Ψ. Then,
completeness of Thm. 5.2.1 implies Θ ; Σ ; Γ ̸ Φ ; Ψ, i.e., there exists a pair (I, a)
that satisfies sc. The assumption implies by the soundness direction of Thm. 5.2.1 that
Θ ; Σ ; Γ Φ, C ; Ψ and Θ ; Σ ; Γ, C Φ ; Ψ, which contradicts the choice of the pair
(I, a). □

5.2.2 Decidability of G1

A sequent Θ;Σ; Γ Φ;Ψ is finite if it has a finite domain and for all R ∈ NR the sets
Σ(R), Ψ(R) as well as Θ, Γ, Φ are finite as well. The tableau rules in Fig. 5.1 induce a
decidable deduction system for finite sequents. In fact, the proof of Thm. 5.2.1 shows
that finite countermodels can be obtained essentially by unfolding unprovable finite
end-sequents.

Theorem 5.2.4 (Finite model property & decidability (Mendler and Scheele [195])).
A finite sequent is satisfiable iff it is satisfiable in a finite interpretation. Consistency
of finite sequents is decidable. ∇

Proof. For the full proof see [195, p. 224]. Decidability is obtained by the simple fact
that the tableau rules in Fig. 5.1 have the subformula property: All formulæ in the
premises of a rule are (not necessarily proper) subformulæ of formulæ in the conclusion.

150

5.2 Gentzen Sequent Calculus G1 for cALC

Also, the domain of a premise sequent is updated at most by a role appearing in the
concepts of the conclusion sequent (as in rules ∃R, ∀L or already being part of the
domains). In rule Hyp1 a role already existing in the domain of the conclusion sequent
is updated. Thus, the sizes of the domains and formula sets in a tableau are bounded
by the root sequent. More specifically, if we are searching for a closed tableau of a finite
sequent ⟨Θ ; Σ ; Γ Φ ; Ψ⟩ then we only need to consider tableaux with nodes formed
from those (sub-)concepts and roles contained in ⟨Θ ; Σ ; Γ Φ ; Ψ⟩. Since there are
only a finite number of such nodes and the tableau rules are finitely branching, there are
only a finite number of possible tableaux with finite root sequent ⟨Θ ; Σ ; Γ Φ ; Ψ⟩.
These can be enumerated and checked effectively in bounded time.

The finite model property is a consequence of the completeness direction of Thm. 5.2.1,
which can be extended by proving that the canonical model that satisfies a given finite
sequent is finite as well (see [195, p. 241] for details). □

5.2.3 Equivalence of Gentzen and Hilbert systems

The Hilbert system H and the Gentzen sequent system G1 for the language cALC have
been introduced in Section 5.1.1 and 5.2 respectively. Theorem 5.2.1 demonstrates
soundness and completeness of the Gentzen sequent system G1 w.r.t. the Kripke se-
mantics as introduced in Chapter 4. Now, we want to discuss the connection between
these two systems by showing that any cALC concept which is provable in G1 is
also provable in the Hilbert system H and vice versa. Establishing this equivalence
between the latter calculi yields soundness and completeness of the Hilbert system H.
The following Prop. 5.2.1 states the equivalence of the Hilbert system to the Gentzen
calculus G1.

Proposition 5.2.1 ([190; 195]). The Hilbert and the Gentzen G1-sequent calculus are
equivalent. For any set of concepts Θ (TBox) and concept C we have Θ ; ∅ H C iff
the sequent Θ ; ∅ ; ∅ G1 C ; ∅ is inconsistent. ∇

Proof. A sketch of the proof has been given in [190], covering the axioms IPC2, IPC3 and
the rule of necessitation Nec for the soundness direction, and the rules ∃R, ∃L,∀R, ∀L
and Hyp1,Hyp2 for the completeness direction. The following proof will cover all cases
in both directions. For the soundness direction, the proof is by demonstrating that
the Gentzen sequent calculus can simulate the Hilbert deductions in the sense that if
Θ ; ∅ H C then there exists a closed derivation for the sequent Θ ; ∅ ; ∅ C ; ∅, i.e.,
we show that the axioms of the Hilbert calculus for cALC are theorems of the Gentzen
calculus G1 and verify that the inference rules MP and Nec can be emulated by valid
instances of rules in the sequent calculus. This direction from Hilbert proofs to Gentzen

151

5 Constructive Proof Systems for cALC

G1 proofs is the easy part. Thereof, we obtain soundness of Hilbert from soundness of
the Gentzen calculus as demonstrated in Thm. 5.2.1.
(⇒) We begin by showing that the inference rules Nec and MP are admissible in the

Gentzen sequent calculus G1 for cALC. The rule of necessitation Nec is admissible,
simply by an application of the sequent rule ∀R:

Θ ; ∅ ; ∅ C ; ∅
∀R

Θ ; ∅ ; ∅ ∀R.C ; ∅

Following the lines of Negri, Plato and Ranta [214, pp. 42 ff.] we can treat rule modus
ponens MP: In order to translate derivations of the Hilbert system into G1 we can
introduce a sequent calculus rule version of modus ponens and show that this rule is
admissible in G1 using rule Cut.

Θ ; Σ1 ; Γ1 Φ1, D ⊃ C ; Ψ1 Θ ; Σ2 ; Γ2 Φ2, D ; Ψ2
MP

Θ ; Σ1, Σ2 ; Γ1, Γ2 Φ1, Φ2, C ; Ψ1, Ψ2

Then, we replace each application of the rule modus ponens in a Hilbert proof of
Θ ; ∅ H C by its sequent calculus version and demonstrate that the conclusion sequent
Θ ; ∅ ; ∅ C ; ∅ is derivable from the premise sequents Θ ; ∅ ; ∅ D ⊃ C ; ∅ and
Θ ; ∅ ; ∅ D ; ∅. This derivation starts from the sequent Θ ; ∅ ; D ⊃ C, D C ; ∅ on
the right side which is a consequence of the rule ⊃L. It proceeds with an application
of the rule Cut done twice to yield the goal sequent. The following derivation depicts
this situation in a more general form.

Θ ; Σ2 ; Γ2 Φ2, D ; Ψ2

Θ ; Σ1 ; Γ1 Φ1, D ⊃ C ; Ψ1 Θ ; ∅ ; D ⊃ C, D C ; ∅
Cut

Θ ; Σ1 ; Γ1, D Φ1, C ; Ψ1
Cut

Θ ; Σ1, Σ2 ; Γ1, Γ2 Φ1, Φ2, C ; Ψ1, Ψ2

Then, it follows by the admissibility of the Cut rule from Cor. 5.2.1 that the sequent
Θ ; ∅ ; ∅ C ; ∅ is derivable in G1 without using rule Cut.

The axioms of cALC are proved in G1 as follows:

(Case IPC1)
Ax

∅ ; ∅ ; C,D C ; ∅
⊃R

∅ ; ∅ ; C D ⊃ C ; ∅
⊃R

∅ ; ∅ ; ∅ C ⊃ (D ⊃ C) ; ∅

152

5.2 Gentzen Sequent Calculus G1 for cALC

(Case IPC2)

Ax
∅ ; ∅ ; C, D ⊃ E E,C ; ∅

Ax
∅ ; ∅ ; C, D E,D ; ∅

Ax
∅ ; ∅ ; C, D, E E ; ∅

⊃L
∅ ; ∅ ; C, D ⊃ E, D E ; ∅

⊃L

Ax
∅ ; ∅ ; C ⊃ D, C E,C ; ∅

. .
∅ ; ∅ ; C ⊃ D, C, D ⊃ E E ; ∅

⊃L
∅ ; ∅ ; C ⊃ (D ⊃ E), C ⊃ D, C E ; ∅

⊃R
∅ ; ∅ ; C ⊃ (D ⊃ E), C ⊃ D C ⊃ E ; ∅

⊃R
∅ ; ∅ ; C ⊃ (D ⊃ E) (C ⊃ D) ⊃ (C ⊃ E) ; ∅

⊃R
∅ ; ∅ ; ∅ (C ⊃ (D ⊃ E)) ⊃ ((C ⊃ D) ⊃ (C ⊃ E)) ; ∅

(Case IPC3)
Ax

∅ ; ∅ ; C, D C ; ∅
Ax

∅ ; ∅ ; C, D D ; ∅
⊓R

∅ ; ∅ ; C, D C ⊓D ; ∅
⊃R

∅ ; ∅ ; C D ⊃ (C ⊓D) ; ∅
⊃R

∅ ; ∅ ; ∅ C ⊃ (D ⊃ (C ⊓D)) ; ∅

(Case IPC4) For axiom IPC4 we have the two similar cases:
Ax

∅ ; ∅ ; C, D C ; ∅
⊓L

∅ ; ∅ ; C ⊓D C ; ∅
⊃R

∅ ; ∅ ; ∅ (C ⊓D) ⊃ C ; ∅

Ax
∅ ; ∅ ; C, D D ; ∅

⊓L
∅ ; ∅ ; C ⊓D D ; ∅

⊃R
∅ ; ∅ ; ∅ (C ⊓D) ⊃ D ; ∅

(Case IPC5) For axiom IPC5 there are two analogous cases:
Ax

∅ ; ∅ ; C C, D ; ∅
⊔R

∅ ; ∅ ; C C ⊔D ; ∅
⊃R

∅ ; ∅ ; ∅ C ⊃ (C ⊔D) ; ∅

Ax
∅ ; ∅ ; D C, D ; ∅

⊔R
∅ ; ∅ ; D C ⊔D ; ∅

⊃R
∅ ; ∅ ; ∅ D ⊃ (C ⊔D) ; ∅

(Case IPC6) For axiom IPC6, the derivation is as follows
π1 π2 ⊔L

∅ ; ∅ ; C ⊃ E, D ⊃ E, C ⊔D E ; ∅
⊃R

∅ ; ∅ ; C ⊃ E, D ⊃ E (C ⊔D) ⊃ E ; ∅
⊃R

∅ ; ∅ ; C ⊃ E (D ⊃ E) ⊃ ((C ⊔D) ⊃ E) ; ∅
⊃R

∅ ; ∅ ; ∅ (C ⊃ E) ⊃ ((D ⊃ E) ⊃ ((C ⊔D) ⊃ E)) ; ∅

where derivation π1 is given by
Ax

∅ ; ∅ ; D ⊃ E, C E, C ; ∅
Ax

∅ ; ∅ ; D ⊃ E, C, E E ; ∅
⊃L

∅ ; ∅ ; C ⊃ E, D ⊃ E, C E ; ∅

153

5 Constructive Proof Systems for cALC

and derivation π2 is
Ax

∅ ; ∅ ; C ⊃ E, D E, D ; ∅
Ax

∅ ; ∅ ; C ⊃ D, D, E E ; ∅
⊃L

∅ ; ∅ ; C ⊃ E, D ⊃ E, D E ; ∅

(Case IPC7) Axiom IPC7 is derived by:
⊥L

∅ ; ∅ ; ⊥ C ; ∅
⊃R

∅ ; ∅ ; ∅ ⊥ ⊃ C ; ∅

(Case K∀R, K∃R) For the G1-proof of the axioms K∀R,K∃R see Ex. 5.2.1.

(⇐) In the converse direction let us assume that there is a closed derivation for the
sequent Θ ; Σ ; Γ Φ ; Ψ. Because of compactness we may assume without loss of
generality that the sequent is finite according to Def. 5.2.5. Also note that |Φ∪Ψ| ≥ 1

by Lem. 5.2.1. The following proof will show that each such finite sequent can be
derived in the Hilbert system in closed form as an implication using the following
translation

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ),

where dom(Σ), dom(Ψ) ⊆ NR denote the non-empty domain w.r.t. Σ and Ψ according
to Def. 5.2.1. The subformulæ ∧Σ,∧Γ,∨Φ and ∨Ψ are defined as follows:

• ∧Σ =df

R∈dom(Σ) ∀R.∧Σ(R) =

R∈dom(Σ) ∀R.

K∈Σ(R)K. If dom(Σ) = ∅ then

∧Σ = ⊤.

We will need the decomposition of ∧Σ and ∨Ψ in the following proof. The
decomposition of ∧Σ with dom(Σ) = {R1, . . . , Rn} and n ≥ 1 is given by

∧Σ =

1≤i≤n

∀Ri.∧Σ(Ri)

= ∀R1.∧Σ(R1) ⊓

∀R2.∧Σ(R2) ⊓

. . . ⊓ ∀Rn.∧Σ(Rn) . . .

=∗ ∀Rk.∧Σ(Rk) ⊓

1≤i≤n, i̸=k

∀Ri.∧Σ(Ri)

= ⊤ in the degenerated case if n = 1

,

(5.23)

where =∗ means up to provability and k is a choice of {1 . . . n}.

• ∧Γ =df

L∈Γ L, where

is the intersection ⊓ over a set of concepts, e.g., if

Γ = {L1, L2, . . . , Ln} then ∧Γ = L1 ⊓ L2 ⊓ . . . ⊓ Ln. In the special case where
Γ = ∅ we put ∧∅ =df ⊤;

• ∨Φ =df

M∈ΦM , where

is the disjunction ⊔ over a set of concepts, e.g., if

154

5.2 Gentzen Sequent Calculus G1 for cALC

Φ = {M1,M2, . . . ,Mn} then ∨Φ = M1 ⊔M2 ⊔ . . . ⊔Mn. In the special case
where Φ = ∅ we put ∨∅ =df ⊥;

• ∨Ψ =df

R∈dom(Ψ) ∃R.∨Ψ(R) =

R∈dom(Ψ) ∃R.

N∈Ψ(R)N . If dom(Ψ) = ∅

then ∨Ψ = ⊥.

Analogously to ∧Σ, the decomposition of ∨Ψ with dom(Ψ) = {R1, . . . , Rn} and
n ≥ 1 is defined by

∨Ψ =

1≤i≤n

∃Ri.∨Ψ(Ri)

= ∃R1.∨Ψ(R1) ⊔

∃R2.∨Ψ(R2) ⊔

. . . ⊔ ∃Rn.∨Ψ(Rn) . . .

=∗ ∃Rk.∨Ψ(Rk) ⊔

1≤i≤n, i̸=k

∃Ri.∨Ψ(Ri)

= ⊥ in the degenerated case if n = 1

,

(5.24)

where =∗ means up to provability and k is a choice of {1 . . . n}.

The proof is by induction on the structure of a closed derivation for Θ ; Σ ; Γ Φ ; Ψ

showing that all instances of sequent calculus rules can be turned into closed implica-
tions, which are derivable in the Hilbert system. All derivations assume associativity,
commutativity, idempotence of ⊓,⊔ and that eliminating neutral elements ⊤,⊥ (see
admissible rule (ARE) in Lem. 5.1.3) is for free.

(Case Ax) Suppose Θ ; Σ ; Γ Φ ; Ψ is derived by the rule Ax, i.e., Γ = Γ′, C and
Φ = Φ′, C. We must show how to derive

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ C) ⊃ (∨Φ′ ⊔ C ⊔ ∨Ψ). (5.25)

The derivation of (5.25) is given by the following proof (using commutativity of ⊓):

1. C ⊃ C by (I);
2. (∧Σ ⊓ C ⊓ ∧Γ′) ⊃ C from 1 by (ARW);
3. C ⊃ (∨Φ′ ⊔ C ⊔ ∧Ψ) from 1 by (ARW);
4. (∧Σ ⊓ C ⊓ ∧Γ′) ⊃ (∨Φ′ ⊔ C ⊔ ∧Ψ) from 2, 3 by (ARB).

(Case ⊥L) Assume that Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊥L. Then it holds that
Γ = Γ′,⊥ and |Φ ∪Ψ| ≥ 1. The goal is to show the Hilbert derivation

Θ ; ∅ H (∧Σ ⊓ ⊥ ⊓ ∧Γ′) ⊃ (∨Φ ⊔ ∨Ψ), (5.26)

which is a direct consequence of Hilbert axiom IPC7 and weakening (ARW).

155

5 Constructive Proof Systems for cALC

(Case ⊓L) Suppose the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊓L, i.e., Γ =

Γ′, C ⊓D and the last rule application looks like this

...
Θ ; Σ ; Γ′, C, D Φ ; Ψ

⊓L
Θ ; Σ ; Γ′, C ⊓D Φ ; Ψ

The goal is to find a derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ C ⊓D) ⊃ (∨Φ ⊔ ∨Ψ). (5.27)

Applying the induction hypothesis to the premise of the sequent yields the Hilbert
derivation Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ C ⊓D) ⊃ (∨Φ ⊔ ∨Ψ) which was to be shown.

(Case ⊓R) Assume the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊓R, i.e., Φ =

Φ′, C ⊓D and the last rule application is

...
Θ ; Σ ; Γ Φ′, C ; Ψ

...
Θ ; Σ ; Γ Φ′, D ; Ψ

⊓R
Θ ; Σ ; Γ Φ′, C ⊓D ; Ψ

We must find a Hilbert derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔ (C ⊓D) ⊔ ∨Ψ). (5.28)

Applying the ind. hyp. to the premises of the sequent gives us the derivations

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔ C ⊔ ∨Ψ), (5.29)
Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔D ⊔ ∨Ψ). (5.30)

Using the abbreviations φ =df (∧Σ⊓∧Γ) and ψ =df (∨Φ′ ⊓∨Ψ) we will show that
Hilbert derives

Θ ; ∅ H (φ ⊃ (ψ ⊔ C)) ⊃ (φ ⊃ (ψ ⊔D)) ⊃

φ ⊃ (ψ ⊔ (C ⊓D))

. (5.31)

The idea behind the proof of (5.31) is to show the distribution law of disjunction
⊔ over conjunction ⊓, i.e., H

(ψ ⊔ C) ⊓ (ψ ⊔ D)

⊃

ψ ⊔ (C ⊓ D)

. Let ϑ =df

(ψ ⊔ (C ⊓D)) and σ =df (ψ ⊔D):

1. C ⊃ (D ⊃ (C ⊓D)) IPC3;
2. (ψ ⊃ (σ ⊃ ϑ)) ⊃ (C ⊃ (σ ⊃ ϑ)) ⊃ ((ψ ⊔ C) ⊃ (σ ⊃ ϑ)) IPC6;

156

5.2 Gentzen Sequent Calculus G1 for cALC

3. ψ ⊃ (ψ ⊔ (C ⊓D)) IPC5;
4. ψ ⊃ (ψ ⊔D) ⊃ (ψ ⊔ (C ⊓D)) from 3 by (ARCW)[(ψ⊔D)];

= ψ ⊃ (σ ⊃ ϑ)

5. (C ⊓D) ⊃ (ψ ⊔ (C ⊓D)) IPC5;
= (C ⊓D) ⊃ ϑ

6. (ψ ⊃ ϑ) ⊃ (D ⊃ ϑ) ⊃ ((ψ ⊔D) ⊃ ϑ) IPC6;
= (ψ ⊃ ϑ) ⊃ (D ⊃ ϑ) ⊃ (σ ⊃ ϑ)

7. (D ⊃ ϑ) ⊃ ((ψ ⊔D) ⊃ ϑ) from 6, IPC5 by MP;
8. C ⊃ (D ⊃ ϑ) from 1, 5 by (ARB);
9. C ⊃ ((ψ ⊔D) ⊃ ϑ) from 8,7 by (ARB);

= C ⊃ (σ ⊃ ϑ)

10. (ψ ⊔ C) ⊃ (σ ⊃ ϑ) from (2, 4 by MP) and 9 by MP.
= (ψ ⊔ C) ⊃ (ψ ⊔D) ⊃ (ψ ⊔ (C ⊓D))

Then, the subgoal (5.31) is a consequence of applying the admissible rule (ARS)[φ] to
the derivation 10 above. Finally, the goal (5.28) follows by the rule MP from (5.31)
and the assumptions (5.29) and (5.30).

(Case ⊔L) Assume that the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊔L, i.e.,
Γ = Γ′, C ⊔D and the last rule application is

...
Θ ; Σ ; Γ′, C Φ ; Ψ

...
Θ ; Σ ; Γ′, D Φ ; Ψ

⊔L
Θ ; Σ ; Γ′, C ⊔D Φ ; Ψ

The goal is to find the derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ (C ⊔D)) ⊃ (∨Φ ⊔ ∨Ψ). (5.32)

The induction hypothesis yields the Hilbert derivations

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ C) ⊃ (∨Φ ⊔ ∨Ψ), (5.33)
Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓D) ⊃ (∨Φ ⊔ ∨Ψ). (5.34)

The goal (5.32) follows from the following Hilbert derivation where we use the
abbreviations φ =df ∧Σ ⊓ ∧Γ′ and ψ =df ∨Φ ⊔ ∨Ψ:

1. (C ⊃ ψ) ⊃ (D ⊃ ψ) ⊃ ((C ⊔D) ⊃ ψ) IPC6;
2. (φ ⊃ C ⊃ ψ) ⊃ (φ ⊃ D ⊃ ψ) ⊃ (φ ⊃ (C ⊔D) ⊃ ψ) from 1 (ARS)[φ];
3. φ ⊃ C ⊃ ψ from (5.33) by (ARC);

157

5 Constructive Proof Systems for cALC

4. (φ ⊃ D ⊃ ψ) ⊃ (φ ⊃ (C ⊔D) ⊃ ψ) from 2, 3 by MP;
5. φ ⊃ (C ⊔D) ⊃ ψ from 4, ((ARC) with (5.34)) by MP;
6. (φ ⊓ (C ⊔D)) ⊃ ψ from 5 by (ARC)−1,

which was to be shown for goal (5.32).

(Case ⊔R) Assume the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊔R, i.e., Φ =

Φ′, C ⊔D and the last rule application is

...
Θ ; Σ ; Γ Φ′, C, D ; Ψ

⊔R
Θ ; Σ ; Γ Φ′, C ⊔D ; Ψ

The goal is to obtain a Hilbert derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔ (C ⊔D) ⊔ ∨Ψ). (5.35)

The goal (5.35) follows immediately by ind. hyp. (similarly to Case ⊓L).

(Case ⊃L) Suppose that the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊃L, i.e.,
Γ = Γ′, C ⊃ D and the last rule application looks like this

...
Θ ; Σ ; Γ Φ, C ; Ψ

...
Θ ; Σ ; Γ, D Φ ; Ψ

⊃L
Θ ; Σ ; Γ′, C ⊃ D Φ ; Ψ

The goal is to find a Hilbert derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ (C ⊃ D)) ⊃ (∨Φ ⊔ ∨Ψ). (5.36)

The induction hypothesis yields the derivations Θ ; ∅ H (∧Σ⊓∧Γ) ⊃ (∨Φ⊔C ⊔Ψ)

and Θ ; ∅ H (∧Σ⊓∧Γ⊓D) ⊃ (∨Φ⊔∨Ψ). Using the abbreviations φ =df ∧Σ⊓∧Γ
and ψ =df ∨Φ⊔∨Ψ, the objective is to find a derivation Θ ; ∅ H (φ⊓(C ⊃ D)) ⊃ ψ,
taking into account the derivations from the induction hypothesis

Θ ; ∅ H φ ⊃ (ψ ⊔ C), (5.37)
Θ ; ∅ H (φ ⊓D) ⊃ ψ. (5.38)

158

5.2 Gentzen Sequent Calculus G1 for cALC

In order to find this derivation one shows first that Hilbert derives the nested
implication from the assumptions to the goal in closed form.

H (φ ⊃ (ψ ⊔ C)) ⊃ ((φ ⊓D) ⊃ ψ) ⊃ ((φ ⊓ (C ⊃ D)) ⊃ ψ). (5.39)

In other words, by using the abbreviations γ, σ and ϑ defined by

γ =df (φ ⊃ (ψ ⊔ C)),
σ =df ((φ ⊓D) ⊃ ψ),

ϑ =df (φ ⊓ (C ⊃ D)),

we want to find a derivation for

H γ ⊃ σ ⊃ ϑ ⊃ ψ. (5.40)

The first step to obtain the subgoal (5.40) is by applying rule (ARS)[γ,σ,ϑ] to the
instance H (ψ ⊃ ψ) ⊃ (C ⊃ ψ) ⊃ (ψ ⊔ C) ⊃ ψ of axiom IPC6 which yields

H (γ ⊃ σ ⊃ ϑ ⊃ ψ ⊃ ψ) ⊃ (γ ⊃ σ ⊃ ϑ ⊃ C ⊃ ψ) ⊃
(γ ⊃ σ ⊃ ϑ ⊃ (ψ ⊔ C)) ⊃ (γ ⊃ σ ⊃ ϑ ⊃ ψ). (5.41)

Then, to get (5.40) from (5.41) via rule MP one must find a derivation for each of

H γ ⊃ σ ⊃ ϑ ⊃ ψ ⊃ ψ, (5.42)

H γ ⊃ σ ⊃ ϑ ⊃ C ⊃ ψ, (5.43)

H γ ⊃ σ ⊃ ϑ ⊃ (ψ ⊔ C). (5.44)

Let us start with (5.42). This can be derived simply by starting from the instance

H ψ ⊃ ψ of identity (I) and applying rule (ARK)[γ,σ,ϑ] to the latter.

Next, we have to find a derivation for subgoal (5.43). We proceed by taking an
instance of IPC2, namely

C ⊃ ((φ⊓D) ⊃ ψ)

⊃

C ⊃ (φ⊓D)

⊃

C ⊃ ψ

, and

an application of (ARS)[γ,σ,ϑ] to the latter yields

γ ⊃ σ ⊃ ϑ ⊃ C ⊃ ((φ ⊓D) ⊃ ψ)

⊃

γ ⊃ σ ⊃ ϑ ⊃ C ⊃ (φ ⊓D)

⊃

γ ⊃ σ ⊃ ϑ ⊃ C ⊃ ψ

. (5.45)

In order to obtain subgoal (5.43) from derivation (5.45) above via MP, we need to

159

5 Constructive Proof Systems for cALC

find the two derivations

H γ ⊃ σ ⊃ ϑ ⊃ C ⊃ ((φ ⊓D) ⊃ ψ), (5.46)

H γ ⊃ σ ⊃ ϑ ⊃ C ⊃ (φ ⊓D). (5.47)

First, observe that (5.46) is nothing but H γ ⊃ σ ⊃ ϑ ⊃ C ⊃ σ. Its derivation is
as follows:

1. σ ⊃ σ (I);
2. σ ⊃ ϑ ⊃ C ⊃ σ from 1 by (ARCW)[ϑ,C];
3. γ ⊃ σ ⊃ ϑ ⊃ C ⊃ σ from 2 by (ARK)[γ].

Regarding the derivation of (5.47) we begin with an instance of axiom IPC3, namely,

H φ ⊃ (D ⊃ (φ ⊓D)). An application of rule (ARS)[σ,ϑ,C] to the latter yields

H (σ ⊃ ϑ ⊃ C ⊃ φ) ⊃ (σ ⊃ ϑ ⊃ C ⊃ D) ⊃ (σ ⊃ ϑ ⊃ C ⊃ (φ ⊓D)), (5.48)

i.e., we can obtain (5.47) if we find derivations of

H σ ⊃ ϑ ⊃ C ⊃ φ, (5.49)

H σ ⊃ ϑ ⊃ C ⊃ D. (5.50)

These can be derived as follows. We begin with (5.49):

1. (φ ⊓ (C ⊃ D)) ⊃ φ IPC4;
= ϑ ⊃ φ

2. ϑ ⊃ C ⊃ φ from 1 by (ARCW)[C];
3. σ ⊃ ϑ ⊃ C ⊃ φ from 2 by (ARK)[σ];

and for (5.50)

1. (φ ⊓ (C ⊃ D)) ⊃ (C ⊃ D) IPC4;
= ϑ ⊃ C ⊃ D

2. σ ⊃ ϑ ⊃ C ⊃ D from 1 by (ARK)[σ].

Then, using rule MP with (5.48), (5.49) and (5.50) gives us H σ ⊃ ϑ ⊃ C ⊃ (φ⊓D),
and an application of (ARK)[γ] to the latter gives us (5.47) as desired. This completes
the proof of the subgoal (5.43).

160

5.2 Gentzen Sequent Calculus G1 for cALC

The final step is to find a derivation for (5.44):

1. (ϑ ⊃ (φ ⊃ (ψ ⊔ C))) ⊃ (ϑ ⊃ φ) ⊃ (ϑ ⊃ (ψ ⊔ C)) IPC2;
= (ϑ ⊃ γ) ⊃ (ϑ ⊃ φ) ⊃ (ϑ ⊃ (ψ ⊔ C))

2. (γ ⊃ σ ⊃ ϑ ⊃ γ) ⊃ (γ ⊃ σ ⊃ ϑ ⊃ φ) ⊃ (γ ⊃ σ ⊃ ϑ ⊃ (ψ ⊔ C))
from 1 by (ARS)[γ,σ];

3. (φ ⊓ (C ⊃ D)) ⊃ φ IPC4;
= ϑ ⊃ φ

4. γ ⊃ σ ⊃ ϑ ⊃ φ from 3 by (ARK)[γ,σ];
5. γ ⊃ γ (I);
6. γ ⊃ σ ⊃ ϑ ⊃ γ from 5 by (ARCW)[σ,ϑ];
7. (γ ⊃ σ ⊃ ϑ ⊃ φ) ⊃ (γ ⊃ σ ⊃ ϑ ⊃ (ψ ⊔ C)) from 2, 6 by MP;
8. γ ⊃ σ ⊃ ϑ ⊃ (ψ ⊔ C) from 7, 4 by MP.

The subgoal (5.40) then follows from (5.41), (5.42), (5.43) and (5.44) by MP. Finally,
the goal (5.36) is obtained from the derivations of the induction hypothesis and (5.40)
by rule MP, and monotonicity Prop. 5.1.2.

(Case ⊃R) Suppose that the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ⊃R, i.e.,
Φ = Φ′, C ⊃ D with the last rule application being

...
Θ ; Σ ; Γ, C D ; ∅

⊃R
Θ ; Σ ; Γ Φ′, C ⊃ D ; Ψ

The goal is to find a derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔ (C ⊃ D) ⊔ ∨Ψ). (5.51)

An application of the induction hypothesis to the premise of the sequent yields the
derivation Θ ; ∅ H (∧Σ ⊓ ∧Γ ⊓ C) ⊃ (D ⊔ ⊥), and by the rule (ARE) follows
Θ ; ∅ H (∧Σ ⊓ ∧Γ ⊓C) ⊃ D. By the admissible rule (ARC) (currying) one obtains
the derivation Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (C ⊃ D). Then, the goal (5.51) follows by
right-weakening (ARW).

(Case ∃L) If the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by the rule ∃L then Γ =

Γ′,∃R.C and the last rule application is

...
Θ ; ∅ ; Σ(R), C Ψ(R) ; ∅

∃L
Θ ; Σ ; Γ′, ∃R.C Φ ; Ψ

161

5 Constructive Proof Systems for cALC

We must find a derivation

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ ∃R.C) ⊃ (∨Φ ⊔ ∨Ψ). (5.52)

By the induction hypothesis and the rule (ARE) we obtain the Hilbert derivation
Θ ; ∅ H (∧Σ(R) ⊓ C) ⊃ ∨Ψ(R). Note that Ψ(R) ̸= ∅ by Lem. 5.2.1. By applying
Nec to the latter derivation it follows that Θ ; ∅ H ∀R.

(∧Σ(R) ⊓ C) ⊃ ∨Ψ(R)

.

Taking the appropriate instance of axiom K∃R and by an application of the rule MP

this generates the derivation

Θ ; ∅ H ∃R.(∧Σ(R) ⊓ C) ⊃ ∃R.∨Ψ(R). (5.53)

One can construct a Hilbert derivation for

Θ ; ∅ H (∀R.∧Σ(R) ⊓ ∃R.C) ⊃ ∃R.(∧Σ(R) ⊓ C), (5.54)

which has already been demonstrated in Ex. 5.1.1 in Sec. 5.1.

Then, by applying admissible rule (ARB) (“composition”)

to (5.54) and (5.53) we obtain

Θ ; ∅ H (∀R.∧Σ(R) ⊓ ∃R.C) ⊃ ∃R.∨Ψ(R). (5.55)

At this point, one observes that Hilbert derives

Θ ; ∅ H ∧Σ ⊃ ∀R.∧Σ(R), (5.56)

whether either Σ(R) = ∅ or Σ(R) ̸= ∅.

Case 1. If Σ(R) = ∅ then the goal is to show that Θ ; ∅ H ∧Σ ⊃ ∀R.⊤. Observe
that

∧Σ =

R′∈dom(Σ),R′ ̸=R

∀R′.∧Σ(R′).

The derivation of (5.56) is as follows:

1. ∧Σ ⊃ (⊤ ⊓ ∧Σ) (IPC9);
2. ⊤ ⊃ ∀R.⊤ (FS1);
3. (⊤ ⊓ ∧Σ) ⊃ ⊤ IPC4;
4. ∧Σ ⊃ ∀R.⊤ from (3, 1 by (ARB)), 2 by (ARB).

162

5.2 Gentzen Sequent Calculus G1 for cALC

Case 2. If Σ(R) ̸= ∅ then one has to show that Θ ; ∅ H ∧Σ ⊃ ∀R.∧Σ(R), where

∧Σ =

R′∈dom(Σ)\{R}

∀R′.∧Σ(R′) ⊓ ∀R.∧Σ(R).

A derivation of (5.56) can be obtained by applying the admissible rule (ARW) (left-
weakening) to the instance Θ ; ∅ H ∀R.∧Σ(R) ⊃ ∀R.∧Σ(R) of identity (I).

Thus, Hilbert derives (5.56), whether Σ(R) = ∅ or not.

By monotonicity (rule (ARM)) we obtain from (5.56) a Hilbert derivation of Θ ; ∅ H

(∧Σ ⊓ ∃R.C) ⊃ (∀R.∧Σ(R) ⊓ ∃R.C), and an application of the rule (ARW) (left-
weakening) yields Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ ∃R.C) ⊃ (∀R.∧Σ(R) ⊓ ∃R.C). Now, one
can apply the rule (ARB) to the latter and (5.55) to obtain a derivation of

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ ∃R.C) ⊃ ∃R.∨Ψ(R). (5.57)

At this point one observes that ∃R.∨Ψ(R) is a disjunctive part of ∨Ψ, since in the
premise sequent ∨Ψ(R) ̸= ∅ by Lem. 5.2.1, otherwise there would not exist a closed
derivation for it. Obviously, if this restriction is not valid and R ̸∈ dom(Ψ), then we
need axiom H ∃R.⊥ ⊃ ⊥ to derive (5.52) (as argued later).

Hence, the goal (5.52) follows by weakening (rule (ARW)) from (5.57).

(Case ∃R) Assume that the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ∃R, i.e.,
Φ = Φ′,∃R.C and the last rule application looks like this

...
Θ ; Σ ; Γ ∅ ; [R →→ C]

∃R
Θ ; Σ ; Γ Φ′, ∃R.C ; Ψ

The induction hypothesis applied to the premise of the sequent and the admissible
rule (ARE) lets us conclude that Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ ∃R.C. By the admissible
rule of weakening (ARW) this implies Θ ; ∅ H (∧Σ⊓∧Γ) ⊃ (∨Φ′ ⊔∃R.C ⊔∨Ψ) as
desired.

(Case ∀L) Next, let the sequent Θ ; Σ ; Γ Φ ; Ψ be derived by rule ∀L, i.e., Γ =

Γ′, ∀R.C and the last rule application is as follows

...
Θ ; Σ ∪ [R →→ C] ; Γ′ Φ ; Ψ

∀L
Θ ; Σ ; Γ′, ∀R.C Φ ; Ψ

163

5 Constructive Proof Systems for cALC

The goal is to find a Hilbert derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ ∀R.C) ⊃ (∨Φ ⊔ ∨Ψ). (5.58)

The induction hypothesis for the premise yields the Hilbert derivation

Θ ; ∅ H

(

R′∈dom(Σ)\{R}

∀R′.∧Σ(R′)) ⊓ ∀R.(∧Σ(R) ⊓ C) ⊓ ∧Γ′ ⊃ (∨Φ ⊔ ∨Ψ).

Let us abbreviate this by

Θ ; ∅ H (∧Σ′ ⊓ ∀R.(φ ⊓ C) ⊓ ∧Γ′) ⊃ (∨Φ ⊔ ∨Ψ), (5.59)

where ∧Σ′ =df (

R′∈dom(Σ)\{R} ∀R′.∧Σ(R′)) and φ =df ∧Σ(R).

The plan is to find a derivation for

Θ ; ∅ H (∧Σ′ ⊓ ∀R.φ ⊓ ∀R.C ⊓ ∧Γ′) ⊃ (∧Σ′ ⊓ ∀R.(φ ⊓ C) ∧ Γ′). (5.60)

Case 1. If Σ(R) = ∅ then the subgoal (5.60) follows by (I).

Case 2. Otherwise if Σ(R) ̸= ∅ then the subgoal (5.60) can be shown by distributing
∀R over ⊓, i.e., we need to find a derivation for

H (∀R.φ ⊓ ∀R.C) ⊃ ∀R.(φ ⊓ C). (5.61)

First, we demonstrate how to obtain (5.61):

1. φ ⊃ (C ⊃ (φ ⊓ C)) IPC3;
2. ∀R.(φ ⊃ (C ⊃ (φ ⊓ C))) from 1 by Nec;
3. ∀R.φ ⊃ ∀R.(C ⊃ (φ ⊓ C)) from K∀R, 2 by MP;
4. ∀R.(C ⊃ (φ ⊓ C)) ⊃ (∀R.C ⊃ ∀R.(φ ⊓ C)) by K∀R;
5. ∀R.φ ⊃ (∀R.C ⊃ ∀R.(φ ⊓ C)) from 4, 3 by (ARB);
6. (∀R.φ ⊓ ∀R.C) ⊃ ∀R.(φ ⊓ C) from 5 by (ARC)−1.

Then, the application of rule (ARM) (‘monotonicity’) to derivation (5.61) and
Prop. 5.1.2 yields the subgoal (5.60). Using rule (ARB) (‘composition’) with (5.60)
and (5.59) yields

Θ ; ∅ H (∧Σ′ ⊓ ∀R.φ ⊓ ∀R.C ⊓ ∧Γ′) ⊃ (∨Φ ⊔ ∨Ψ), (5.62)

if Σ(R) ̸= ∅, or otherwise ∀R.φ is not part of the left-hand side conjunction of
(5.62). Now, observe that by unfolding ∧Σ′, and ∀R.φ (if it exists) in (5.62) we

164

5.2 Gentzen Sequent Calculus G1 for cALC

obtain a derivation of

Θ ; ∅ H

(

R′∈dom(Σ)\{R}

∀R′.∧Σ(R′)) ⊓ ∀R.∧Σ(R) ⊓ ∀R.C ⊓ ∧Γ′ ⊃ (∨Φ ⊔ ∨Ψ).

(5.63)

Considering the decomposition of ∧Σ (5.23) (see p. 154) we obtain from (5.63) our
goal (5.58) as desired (using commutativity & associativity of ⊓).

(Case ∀R) Let us suppose that the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule ∀R,
i.e., Φ = Φ′,∀R.C and the last rule application is

...
Θ ; ∅ ; Σ(R) C ; ∅

∀R
Θ ; Σ ; Γ Φ′, ∀R.C ; Ψ

This time the goal is to obtain a derivation for

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔ ∀R.C ⊔ ∨Ψ). (5.64)

The induction hypothesis and rule (ARE) let us conclude that Θ ; ∅ H ∧Σ(R) ⊃ C.
An application of rule Nec gives us the derivation Θ ; ∅ H ∀R.(∧Σ(R) ⊃ C). From
the latter and the instance Θ ; ∅ H ∀R.(∧Σ(R) ⊃ C) ⊃ (∀R.∧Σ(R) ⊃ ∀R.C) of
axiom K∀R it follows by rule MP that

Θ ; ∅ H ∀R.∧Σ(R) ⊃ ∀R.C. (5.65)

At this point, we use the fact (see p. 162) that Hilbert derives

Θ ; ∅ H ∧Σ ⊃ ∀R.∧Σ(R), (5.66)

whether Σ(R) = ∅ or not, and obtain by admissible rule (ARB) from (5.65) and
(5.66) the derivation

Θ ; ∅ H ∧Σ ⊃ ∀R.C. (5.67)

Using weakening (rule (ARW)) with (5.67) yields the goal (5.64).

165

5 Constructive Proof Systems for cALC

(Case Hyp1) Suppose the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule Hyp1, i.e.,
Θ = Θ′, C. Then the last rule application is

...
Θ′ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ R ∈ NR Hyp1

Θ′, C ; Σ ; Γ Φ ; Ψ

We must find a Hilbert derivation for

Θ′, C ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ). (5.68)

The induction hypothesis for the premise implies the existence of the derivation

Θ′ ; ∅ H

(

R′∈dom\{R}

∀R′.∧Σ(R′)) ⊓ ∀R.(∧Σ(R) ⊓ C) ⊓ ∧Γ

⊃ (∨Φ ⊔ ∨Ψ),

which by Prop. 5.1.2 also holds under extended assumptions, i.e.,

Θ′, C ; ∅ H

(

R′∈dom\{R}

∀R′.∧Σ(R′)) ⊓ ∀R.(∧Σ(R) ⊓ C) ⊓ ∧Γ

⊃ (∨Φ ⊔ ∨Ψ).

To see what is going on let us abbreviate this as

Θ′, C ; ∅ H (∧Σ′ ⊓ ∀R.(φ ⊓ C) ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ), (5.69)

where ∧Σ′ =df

R′∈dom\{R} ∀R′.∧Σ(R′) and φ =df ∧Σ(R).

We have to consider two cases: Case 1. If Σ(R) ̸= ∅ then we need to consider the
distribution of ∀R over ⊓ as shown in the proof of the rule ∀L on page 164. Thereof
we obtain a derivation for

Θ′, C ; ∅ H (∀R.φ ⊓ ∀R.C) ⊃ ∀R.(φ ⊓ C). (5.70)

Then, by an application of rule (ARM) (‘monotonicity’) we obtain from (5.70)

Θ′, C ; ∅ H (∧Σ′ ⊓ ∀R.φ ⊓ ∀R.C ⊓ ∧Γ) ⊃ (∧Σ′ ⊓ ∀R.(φ ⊓ C) ⊓ ∧Γ). (5.71)

An application of rule (ARB) (‘composition’) to (5.71) and (5.69) lets us conclude
that Θ′, C ; ∅ H (∧Σ′ ⊓ ∀R.φ ⊓ ∀R.C ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ). Furthermore, by rule
(ARC) (currying) and commutativity of ⊓ follows the derivation for

Θ′, C ; ∅ H ∀R.C ⊃ ((∧Σ′ ⊓ ∀R.φ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ)). (5.72)

166

5.2 Gentzen Sequent Calculus G1 for cALC

The global assumption Θ′, C lets us easily conclude that Θ′, C ; ∅ H C and by rule
Nec it follows that Θ′, C ; ∅ H ∀R.C. Then, the application of rule MP to the latter
derivation and (5.72) generates

Θ′, C ; ∅ H (∧Σ′ ⊓ ∀R.φ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ). (5.73)

Unfolding φ and ∧Σ′ according to (5.23) we obtain the derivation (5.73)

Θ′, C ; ∅ H

(

R′∈dom\{R}

∀R′.∧Σ(R′)) ⊓ ∀R.∧Σ(R) ⊓ ∧Γ

⊃ (∨Φ ⊔ ∨Ψ),

which represents the goal derivation (5.68).

Case 2. If Σ(R) = ∅ then Θ′, C ; ∅ H (∧Σ′ ⊓∀R.C ⊓∧Γ) ⊃ (∨Φ⊔∨Ψ). This case
is argued analogously to the first case, differing only in that ∀R.∧Σ(R) is not part
of the conjunctions of each corresponding derivation step above.

(Case Hyp2) Finally, suppose the sequent Θ ; Σ ; Γ Φ ; Ψ is derived by rule Hyp2,
i.e., Θ = Θ′, C and the last rule application looks like

...
Θ′ ; Σ ; Γ, C Φ ; Ψ

Hyp2
Θ′, C ; Σ ; Γ Φ ; Ψ

The goal is to find a derivation for

Θ′, C ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ). (5.74)

The ind. hyp. for the premise yields Θ′ ; ∅ H (∧Σ⊓∧Γ⊓C) ⊃ (∨Φ⊔∨Ψ) which holds
under extended assumptions as well, i.e., Θ′, C ; ∅ H (∧Σ⊓∧Γ⊓C) ⊃ (∨Φ⊔∨Ψ).
By applying admissible rule (ARC) (‘currying’) and commutativity of ⊓ we obtain
the derivation

Θ′, C ; ∅ H C ⊃ ((∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ)). (5.75)

The assumption Θ′, C lets us obtain

Θ′, C ; ∅ H C. (5.76)

Then, the goal (5.74) follows immediately from (5.76) and (5.75) by MP. □

Finally, we will tackle the stronger form of the equivalence statement between Hilbert
and Gentzen, which does consider local assumptions as well.

167

5 Constructive Proof Systems for cALC

Proposition 5.2.2. For any sets of concepts Θ, Γ and concept C we have Θ ; Γ H C

iff the sequent Θ ; ∅ ; Γ C ; ∅ is inconsistent. ∇

Proof. The proof is by induction on the size of the set Γ.
(⇒) In the base case Γ = ∅ the goal follows immediately by Prop. 5.2.1.

In the inductive step, let us suppose that we have a Hilbert derivation for Θ ; Γ, D H

C. We have to show that the sequent Θ ; ∅ ; Γ, D C ; ∅ is inconsistent. By compact-
ness Prop. 5.1.1 there exist finite sets Θf ⊆ Θ and Γf ⊆ Γ such that Θf ; Γf , D H C

holds. Applying the local Deduction Theorem 5.1.1 yields Θf ; Γf H D ⊃ C. Now, we
can use the inductive hypothesis to obtain that the sequent Θf ; ∅ ; Γf D ⊃ C ; ∅
is inconsistent as well. By the general property of weakening Lem. 5.2.1 this also
holds for the sequent Θf ; ∅ ; Γf , D D ⊃ C ; ∅. Taking the inconsistent sequent
Θf ; ∅ ; Γf , D D ; ∅ we can apply the admissible sequent rule MP which has been
introduced in the proof of Prop. 5.2.1 as follows:

Θf ; ∅ ; Γf , D D ⊃ C ; ∅ Θf ; ∅ ; Γf , D D ; ∅
MP

Θf ; ∅ ; Γf , D C ; ∅

Inconsistency of the sequent Θ ; ∅ ; Γ, D C ; ∅ follows by weakening Lem. 5.2.1.

(⇐) In the base case Γ = ∅ the goal follows directly by Prop. 5.2.1.
In the inductive step, assume that the sequent Θ ; ∅ ; Γ, D C ; ∅ is inconsistent.

We need to show that there is a Hilbert derivation for Θ ; Γ, D H C. An application
of rule ⊃R gives us the following situation

Θ ; ∅ ; Γ, D C ; ∅
⊃R

Θ ; ∅ ; Γ D ⊃ C ; ∅

Applying the ind. hyp. to the conclusion of the sequent yields the Hilbert derivation
Θ ; Γ H D ⊃ C. The goal Θ ; Γ, D H C follows by the (⇐ direction) of the local
Deduction Theorem 5.1.1. □

168

5.3 Towards Intermediate Logics between cALC and ALC

5.3 Towards Intermediate Logics between cALC and ALC

There are at least four natural dimensions in which cALC is a constructive weakening
of ALC corresponding to the axiom schemata:

(i) FS3/IK3 =df ¬∃R.⊥ (Infallible Fillers),

(ii) FS4/IK4 =df ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D) (Disjunctive Distribution),

(iii) FS5/IK5 =df (∃R.C ⊃ ∀R.D) ⊃ ∀R.(C ⊃ D) (Interaction Scheme),

(iv) PEM =df C ⊔ ¬C (Excluded Middle).

Each of them is associated with a specific semantic restriction of interpretations. In
this section we will discuss FS3/IK3, FS4/IK4 and PEM, and show how these axioms
can be captured by modifying the cALC sequent calculus. Restricting cALC in this
way yields several possible combinations of non-classical DLs between cALC and ALC.
Note that we do not cover axiom schema FS5/IK5, since on the one hand we were not
able to semantically characterise this axiom by an appropriate frame condition, and
on the other hand the structure of the sequent calculus G1 seems to be insufficiently
expressive to capture this axiom in terms of a rule.

The system cALC can be extended in a uniform (global) fashion by forcing one of
the above axioms for all roles R ∈ NR , or relative to specific roles R ∈ NR to express
in a multimodal (local) fashion that the axiom in question holds for some specific roles
only. We will focus on the global view in the following and only discuss axiom FS3/IK3
from the local view. Note that the investigation of the completeness of each extension
w.r.t. the local view is related to the question whether the fusion of abnormal IMLs
preserves Kripke completeness. However, this is a general open problem, which we will
not address in the following.

5.3.1 Infallible Kripke Semantics – Axiom FS3/IK3

From a proof-theoretic perspective we can axiomatise the non-fallible semantics of
cALC by adding the axiom schema ¬∃R.⊥. This is possible in a global fashion by
forcing axiom ¬∃R.⊥ for all roles R ∈ NR meaning that ‘there are no inconsistent
entities at all’ [161, p.15] or relative to specific roles R ∈ NR to say that ‘there are no
inconsistent entities reachable by role R’.

At first, we will discuss the global view and show a corresponding extension of the
sequent calculus G1. This viewpoint corresponds to a uniform view in which the axiom
¬∃R.⊥ is validated for all R ∈ NR , i.e., by restricting to infallible interpretations.

169

5 Constructive Proof Systems for cALC

Global Extension

Interpretations without fallible elements, denoted by infallible interpretations, where
⊥I = ∅, can be axiomatised by the schema ¬∃R.⊥ to say that ‘any entity can always
be refined to become fully defined for all roles R ∈ NR ’. Particularly, this means that
all R-fillers of an entity are non-fallible. In fact, the absence of axiom ¬∃R.⊥ is the
only effect of fallibility. It indicates the existence of entities all of whose refinements
have fallible R-fillers.

Proposition 5.3.1. I ¬∃R.⊥ for all infallible cALC interpretations I. ∇

Proof. The statement is vacuously true. Let I = (∆I ,⪯I , ∅, ·I) be an arbitrary but
infallible cALC interpretation, a ∈ ∆I and suppose that I; a ∃R.⊥. The assumption
implies that there exists b ∈ ∆I with a RI b and b ∈ ⊥I = ∅ which is always false and
therefore I; a ⊥. Hence, I ¬∃R.⊥. □

One can show that if an interpretation I validates ¬∃R.⊥ globally, i.e., I ¬∃R.⊥
for allR ∈ NR , then the set ⊥I is redundant in that we can find a stripped interpretation
Is so that for all concepts C we have CIs = CI \ ⊥I . The bottom line is that as
long as we are only interested in non-fallible entities, the interpretations I and Is are
identical.

Proposition 5.3.2. For all interpretations I with I ¬∃R.⊥ exists a stripped
interpretation Is with ⊥Is = ∅ such that for all concepts C we have CIs = CI \ ⊥I.

∇

Proof. Let I = (∆I ,⪯I ,⊥I , ·I) be a constructive interpretation such that I ¬∃R.⊥.
We define its stripped interpretation as follows by Is =df (∆

Is,⪯Is,⊥Is, ·Is) with

∆Is =df ∆I \ ⊥I ;

⪯Is=df ⪯I ∩ (∆Is ×∆Is);

⊥Is =df ∅;

and define ·Is by taking

AIs =df A
I \ ⊥I , for A ∈ NC ;

RIs =df {(x, y) ∈ ∆Is ×∆Is | xRI y or ∃y′, x′. xRIy′ ∈ ⊥I & x ⪯I x′RI y, },
for all R ∈ NR.

We proceed by induction on the structure of concept C showing that CIs = CI \ ⊥I .

170

5.3 Towards Intermediate Logics between cALC and ALC

(Case A) The base case AIs = AI \ ⊥I holds directly by definition of the stripped
interpretation.

(Case C ⊓D),(Case C ⊔D) By induction hypothesis.

(Case C ⊃ D) (⇒) Let us assume that x ∈ (C ⊃ D)Is . We need to show that
x ∈ (C ⊃ D)I \ ⊥I . By definition of Is it follows that x ∈ ∆I

c . Let y ∈ ∆I such
that x ⪯I y. We proceed by case analysis:

Case 1. If y ∈ ⊥I then the goal follows trivially.

Case 2. If y ∈ CI \ ⊥I then y ∈ ∆I
c = ∆Is . It follows by the induction hypothesis

that y ∈ CIs and the assumption lets us conclude that y ∈ DIs . Applying the
induction hypothesis gives us y ∈ DI \ ⊥I as desired. Hence, x ∈ (C ⊃ D)I \ ⊥I .

(⇐) Suppose that x ∈ (C ⊃ D)I \ ⊥I , i.e., x ̸∈ ⊥I and therefore x ∈ ∆I
c = ∆Is .

The goal is to show x ∈ (C ⊃ D)Is . Take an arbitrary y ∈ ∆Is such that x ⪯Is y

and suppose that y ∈ CIs . The definition of Is implies that x ⪯I y as well. It
follows by the induction hypothesis that y ∈ CI and the assumption lets us conclude
y ∈ DI . A further application of the ind. hyp. yields y ∈ DIs . Thus, x ∈ (C ⊃ D)Is .

(Case ∃R.C) (⇒) Suppose that x ∈ (∃R.C)Is . The goal is x ∈ (∃R.C)I \ ⊥I .
Definition 4.2.2 implies that for all x′ with x ⪯Is x′ there exists an entity y ∈ ∆Is

such that x′ RIs y and y ∈ CIs . In particular x ∈ ∆I and x ̸∈ ⊥I by definition of
Is.

Let x′ ∈ ∆I
c and suppose that x ⪯I x′. Then, by def. of Is we have x ⪯Is x′ as

well and by assumption there is y ∈ ∆Is = ∆I
c such that x′ RIs y and y ∈ CIs . By

def. of RIs it follows that

• either x′ RI y,

• or ∃y′, x′′ s.t. x′ RI y′ ∈ ⊥I and x′ ⪯I x′′ RI y.

In the first case y ∈ CI by induction hypothesis, in the second case y′ ∈ CI . Hence,
x ∈ (∃R.C)I \ ⊥I .

(⇐) Let us assume that x ∈ (∃R.C)I \ ⊥I . The goal is x ∈ (∃R.C)Is . By
assumption x ∈ ∆I

c = ∆Is . Now, let x′ ∈ ∆Is such that x ⪯Is x′. Then, x′ ∈ ∆I
c

and x ⪯I x′ as well. The assumption lets us conclude that there is y ∈ ∆I with
x′ RI y and y ∈ CI .

Case 1. If y ̸∈ ⊥I then x RIs y and by ind. hyp. follows that y ∈ CIs .

Case 2. Else if y ∈ ⊥I then the fact I ¬∃R.⊥ implies that there exists x′′ ∈ ∆I
c

with x′ ⪯I x′′ such that all its R-successors are infallible. By monotonicity there

171

5 Constructive Proof Systems for cALC

exists y′ ∈ ∆I
c with x′′ RI y′ and y′ ∈ CI , but y′ ̸∈ ⊥I . The definition of Is implies

x′ RIs y′ as well and by ind. hyp. follows that y′ ∈ CIs . Therefore, x ∈ (∃R.C)Is .

(Case ∀R.C) (⇒) By contraposition. Assume that x ̸∈ (∀R.C)I \ ⊥I , i.e., either
x ∈ ⊥I or x ̸∈ (∀R.C)I . In the first case obviously x ̸∈ ∆Is and therefore
x ̸∈ (∀R.C)Is . Otherwise, there exist x′, y ∈ ∆I such that x ⪯I x′ RI y and
y ̸∈ CI . The latter implies y ̸∈ ⊥I and x′ ̸∈ ⊥I follows by Proposition 4.2.1. Then,
x′, y ∈ ∆Is and x ⪯Is x′ RIs y as well, and by induction hypothesis y ̸∈ CIs which
was to be shown.

(⇐) By contraposition. Suppose that x ̸∈ (∀R.C)Is , i.e., there exist x′, y ∈ ∆Is =

∆I
c such that x ⪯Is x′RIs y and y ̸∈ CIs . The goal is to show that x ̸∈ (∀R.C)I \⊥I .

We claim that x ̸∈ (∀R.C)I . The definition of Is implies x ⪯I x′ and either

• x′ RI y, or

• ∃x′′, y′ ∈ ∆I s.t. x′ RI y′ ∈ ⊥I and x′ ⪯I x′′ RI y.

It follows by ind. hyp. that y ̸∈ CI \ ⊥I . Therefore, x ̸∈ (∀R.C)I \ ⊥I . □

The exclusion of fallibility from the sequent calculus G1 for cALC is by dropping the
side-condition |Φ∪Ψ| ≥ 1 from the premise of rule ⊥L. This modification implements
the axiom schema ¬∃R.⊥ globally for all roles R ∈ NR . We will call the stronger rule
without the side-condition ⊥L+ [195, p. 228]:

⊥L+

Θ ; Σ ; Γ, ⊥ Φ ; Ψ

In the presence of rule ⊥L+, the set of fallibles can be identified with an empty
succedent such that we obtain the usual right and left introduction rules ¬R and ¬L
for intuitionistic negation as shown below [195, p. 228]:

Θ ; Σ ; Γ Φ, C ; Ψ
¬L

Θ ; Σ ; Γ, ¬C Φ ; Ψ

Θ ; Σ ; Γ, C ∅ ; ∅
¬R

Θ ; Σ ; Γ Φ, ¬C ; Ψ

While rule ¬R is admissible already in cALC being a variant of rule ⊃R, rule ¬L is
not. Figure 5.6 depicts the derivations for the axiom ¬∃R.⊥ and the rule ¬L based
on the rule ⊥L+, where ¬C abbreviates C ⊃ ⊥.

Notation. We will denote the infallible sequent calculus by G1F and state analogously
to Def. 5.2.3 that a G1F -sequent is consistent if no tableau exists for it. Furthermore,
let us write cALCF =df cALC ⊕ {¬∃R.⊥ | R ∈ NR} for the globally R-infallible
Hilbert system of cALC, and cALCF ; Θ ; Σ ; Γ ̸ Φ ; Ψ to express that the sequent
Θ ; Σ ; Γ G1F

Φ ; Ψ is satisfiable at some entity of an infallible interpretation. ■

172

5.3 Towards Intermediate Logics between cALC and ALC

⊥L+

∅ ; ∅ ; ⊥ ∅ ; ∅
∃L

∅ ; ∅ ; ∃R.⊥ ⊥ ; ∅
⊃R

∅ ; ∅ ; ∅ ¬∃R.⊥ ; ∅
Θ ; Σ ; Γ Ψ, C ; Ψ

⊥L+

Θ ; Σ ; Γ, ⊥ Φ ; Ψ
⊃L

Θ ; Σ ; Γ, ¬C Φ ; Ψ

Figure 5.6: Tableau proofs for ¬∃R.⊥ and ¬L. Adapted from [195, p. 228, Fig. 11], with
kind permission from Springer Science and Business Media.

In the next step we will show that the extended, infallible sequent calculus G1F is
sound and complete for the class of constructive interpretations without fallible entities.

Theorem 5.3.1. G1F is sound and complete, formally

cALCF ; Θ ; Σ ; Γ ̸ Φ ; Ψ iff Θ ; Σ ; Γ ̸ G1F Φ ; Ψ. ∇

Proof. (⇒) Soundness of G1F is obvious and argued as before by Thm. 5.2.2, only
differing in the fact that for rule ⊥L+ the succedent is not constrained to be non-empty
anymore, which is unproblematic in the absence of fallible entities.
(⇐) The proof of completeness is a specialisation of the proof of Thm. 5.2.1. The

construction of the canonical model needs to be refined as follows: (i) The process of sat-
urating a consistent sequent is restricted to rely on the set XcALCF =df XcALC\{E7R} of
extension rules. Then, the application of Lem. 5.2.4 yields a XcALCF -saturated and con-
sistent extension for all consistent sequents. (ii) Secondly, we need to change the defin-
ition of the canonical model. Let ∆F be the set of all consistent and XcALCF -saturated
sequents. The canonical model is given by IF =df (∆F ,⪯F ,⊥F , ·F) following the
lines of Def. 5.2.12, except that now ⊥F =df ∅ and AF =df {s ∈ ∆F | A ∈ Γs}.
Obviously, this model is still a constructive model in line with the proofs of Lem. 5.2.6
and 5.2.7. Then, the proof of Thm. 5.2.1 applies here as before. In particular, let
s =df Θ ; Σ ; Γ G1F

Φ ; Ψ be a consistent sequent. By Lem. 5.2.4 we obtain a XcALCF -
saturated and consistent extension s∗ ∈ ∆F of s. We can construct an infallible
canonical model IF as described before such that (IF , s∗) satisfies the sequent s∗ by
repeating the proof of Lem. 5.2.6 and 5.2.7, and particularly satisfies the sequent s. □

Remark 5.3.1. Alternatively we can make use of Prop. 5.3.2 to prove the (⇐) direction
of Thm. 5.3.1. Suppose that the TBox Θ includes axiom ¬∃R.⊥ for all roles in NR

and that Θ ; Σ ; Γ ̸ G1 Φ ; Ψ, i.e., {¬∃R.⊥ | R ∈ NR} ⊆ Θ and there exists no closed
tableau for the sequent s = Θ ; Σ ; Γ Φ ; Ψ in G1. We claim that every G1 proof
with {¬∃R.⊥ | R ∈ NR} ⊆ Θ can be transformed into a G1F proof where Θ does not
include any instance of axiom ¬∃R.⊥. We obtain by Lem. 5.2.4 a XcALC-saturated

173

5 Constructive Proof Systems for cALC

and consistent extension s∗ ∈ ∆∗ of s and construct a canonical model I∗ according
to Def. 5.2.12. By satisfiability of Θ this means that the axiom schema ¬∃R.⊥ holds
at every world of ∆∗. Hence, I∗ is an interpretation such that I∗ ¬∃R.⊥. Thereof,
we obtain by Prop. 5.3.2 a stripped interpretation I∗

s of I∗ such that (I∗
s , s

∗) satisfies
the sequent s. ■

Equivalence of the Infallible System to the Hilbert System

It remains to show that the Hilbert system cALCF is sound and complete by showing
that the Hilbert system for cALCF is equivalent to the sequent system G1F .

Proposition 5.3.3. Let cALCF =df cALC ⊕ {¬∃R.⊥ | R ∈ NR} be the globally
R-infallible axiomatisation. The Hilbert system cALCF is sound and complete, i.e., for
every concept C and set of concepts Θ we have

cALCF ; Θ ; ∅ C in all infallible interpretations iff cALCF ; Θ ; ∅ H C. ∇

Proof. The proof is by showing that every derivation of the extended system cALCF

can be translated into a derivation of the Gentzen sequent calculus G1F and vice versa.
This is by extending the proof of Prop. 5.2.1 by showing that axiom ¬∃R.⊥ is derivable
in G1F and in the other direction we assume the premise of the rules ⊥L+ and ∃L to
be admissible and then give a Hilbert derivation of its conclusion.
(⇒) For soundness of the Hilbert system cALCF it suffices to show that the axiom

¬∃R.⊥ is derivable in G1F as depicted in Fig. 5.6.
(⇐) In the other direction we assume the premise of the rules ⊥L+ and ∃L to be

admissible and then give a Hilbert derivation of its conclusion.

(Case ⊥LF) Let us assume that Θ ; Σ ; Γ G1F
Φ ; Ψ is derived by rule ⊥L+, i.e.,

Γ = Γ′,⊥. The goal is to show that Hilbert derives

Θ ; ∅ H (∧Σ ⊓ ⊥ ⊓ ∧Γ′) ⊃ (∨Φ ⊔ ∨Ψ),

which is a consequence of IPC7 (Def. 5.1.1) and weakening (ARW). Note that the
special case with Φ = ∅ is handled already by its translation ∨Φ to give ∨∅ = ⊥.

(Case ∃L) Let us revisit rule ∃L (see p. 161). If the sequent Θ ; Σ ; Γ G1F
Φ ; Ψ is

derived by rule ∃L then Γ = Γ′, ∃R.C and the last rule application is
...

Θ ; ∅ ; Σ(R), C G1F
Ψ(R) ; ∅

∃L
Θ ; Σ ; Γ′, ∃R.C G1F

Φ ; Ψ

174

5.3 Towards Intermediate Logics between cALC and ALC

Now, we have to consider the case where Ψ(R) = ∅. The task is to derive

Θ ; ∅ H (∧Σ ⊓ ∧Γ′ ⊓ ∃R.C) ⊃ (∨Φ ⊔

R ̸=R′

∃R′.∨Ψ(R′)). (5.77)

From the induction hypothesis and the admissible rule (ARE) follows the Hilbert
derivation Θ ; ∅ H (∧Σ(R) ⊓ C) ⊃ ⊥. Applying rule Nec to the latter yields
Θ ; ∅ H ∀R.((∧Σ(R) ⊓ C) ⊃ ⊥). Taking the appropriate instance of axiom K∃R

and by an application of rule MP this generates the derivation

Θ ; ∅ H ∃R.(∧Σ(R) ⊓ C) ⊃ ∃R.⊥. (5.78)

As before on p. 161, we can construct a Hilbert derivation for

Θ ; ∅ H (∀R.∧Σ(R) ⊓ ∃R.C) ⊃ ∃R.(∧Σ(R) ⊓ C). (5.79)

Applying admissible rule (ARB) (“composition”) to (5.79) and (5.78) yields

Θ ; ∅ H (∀R.∧Σ(R) ⊓ ∃R.C) ⊃ ∃R.⊥. (5.80)

At this point, axiom ∃R.⊥ ⊃ ⊥ comes into play such that by rule (ARB) applied to
the latter and (5.80) we obtain

Θ ; ∅ H (∀R.∧Σ(R) ⊓ ∃R.C) ⊃ ⊥. (5.81)

Then, we use the fact (see p. 162) that Hilbert derives

Θ ; ∅ H ∧Σ ⊃ ∀R.∧Σ(R), (5.82)

whether Σ(R) = ∅ or Σ(R) ̸= ∅, and thereof obtain by rule (ARM) a derivation of

Θ ; ∅ H (∧Σ ⊓ ∃R.C) ⊃ (∀R.∧Σ(R) ⊓ ∃R.C). (5.83)

From an appropriate instance of axiom IPC7, (5.83) and (5.81) we obtain by the rule
(ARB) a derivation of

Θ ; ∅ H (∧Σ ⊓ ∃R.C) ⊃ (∨Φ ⊔

R′∈dom(Ψ)\{R}

∃R′.∨Ψ(R′)). (5.84)

Then, the goal (5.77) follows by weakening (rule (ARW)) from (5.84). □

175

5 Constructive Proof Systems for cALC

Multimodal Extension

The exclusion of fallible entities in the previous section does not allow mixed systems
in the spirit of DLs, where only some roles come with a particular restriction. An
alternative view is to allow the restriction of specific roles R to reach infallible entities
only, which is in line with range restrictions on roles as used in the description logic
literature. Taking this route allows us to restrict a specific role R ∈ NR to reach only
non-fallible entities and to define mixed systems in the tradition of DLs.

Thereto we restrict the interpretations by a set of roles NRF , which represents the
infallible roles of a specific domain. Intuitively, an infallible role has only infallible
R-fillers.

Definition 5.3.1 (Infallible role). Let NRF ⊆ NR be the set of infallible roles. ∇

Definition 5.3.2 (R-infallible interpretation). We call an interpretation I =df

(∆I ,⪯I ,⊥I , ·I) to be NRF -infallible if it holds for all R ∈ NRF that

∀x ∈ ∆I
c , y ∈ ∆I . xRy ⇒ y ̸∈ ⊥I .

Given a role R ∈ NRF we also say that an interpretation I is R-infallible. ∇

Remark 5.3.2. Note that the condition of Def. 5.3.2 takes only infallible entities
into account and is in line with the semantics of cALC (see Def. 4.2.2). However,
an alternative view is to require this condition also for fallible entities, but this has
some severe consequences and imposes a new class of interpretations with a different
philosophical interpretation of fallibility. In this case the interpretation of fallible
entities (cf. Def. 4.2.2) needs to be weakened such that non-fallible roles are excluded
from their interpretation. This is by relaxing Def. 4.2.2 as follows: An NRF -infallible
interpretation is a structure I = (∆I ,⪯I ,⊥I , ·I), where ∆I ,⪯I and ·I are defined as
in Def. 4.2.2, and the set ⊥I ⊆ ∆I of fallible entities is closed under refinement and
role filling as follows:

• x ∈ ⊥I and x ⪯I y implies y ∈ ⊥I ,

• x ∈ ⊥I and ∀R ∈ NR \NRF . ∀z. xRI z ⇒ z ∈ ⊥I ,

• x ∈ ⊥I and ∀R ∈ NR \NRF . ∃z. xRI z & z ∈ ⊥I .

Intuitively, this interpretation would allow a fallible entity to recover from its state
of fallibility after doing for some infallible role R ∈ NRF one R-step to an infallible
successor. We leave the investigation of this semantics for future work. ■

Proposition 5.3.4. For all interpretations I and roles R ∈ NRF , if I is R-infallible
then I ¬∃R.⊥. ∇

176

5.3 Towards Intermediate Logics between cALC and ALC

Proof. Let R ∈ NRF and suppose that the interpretation I =df (∆I ,⪯I ,⊥I , ·I) is
R-infallible. Let a, a′ ∈ ∆I

c such that a ⪯I a′ and I; a′ ̸ ∃R.⊥. The latter holds if
there is an infallible refinement a′′ with a′ ⪯I a′′ such that for all R-successors of a′′ it
holds that I; a′′ ̸ ⊥. This is a consequence of Def. 5.3.2. Hence, I ¬∃R.⊥. □

Proposition 5.3.5. For all NRF -infallible interpretations I, if NR = NRF then there
exists a stripped interpretation Is with ⊥Is = ∅ such that for all concepts C we have
CIs = CI \ ⊥I. ∇

Proof. Let I = (∆I ,⪯I ,⊥I , ·I) be a NRF -infallible interpretation and NR = NRF .
We define its stripped interpretation as follows by Is =df (∆

Is,⪯Is,⊥Is, ·Is) with

∆Is =df ∆I \ ⊥I ;

⪯Is=df ⪯I ∩ (∆Is ×∆Is);

⊥Is =df ∅;

and define ·Is by taking

AIs =df A
I \ ⊥I , for A ∈ NC ;

RIs =df R
I ∩ (∆Is ×∆Is), for all R ∈ NR.

Then, one shows by induction on the structure of concept C that CIs = CI \ ⊥I . □

The definition of satisfiability of a sequent is strengthened to refer to an infallible entity.

Definition 5.3.3. Let I = (∆I ,⪯I ,⊥I , ·I) be a constructive interpretation and
x ∈ ∆I

c an infallible entity. The pair (I, x) infallibly satisfies (i-satisfies for short)
the sequent s =df Θ ; Σ ; Γ Φ ; Ψ if (I, x) satisfies s according to Def. 5.2.2 and
x ̸∈ ⊥I . ∇

We can enforce ∃R.⊥ ⊃ ⊥ for particular roles R ∈ NRF in terms of the following
right rule ⊥RF that constrains sequents to be infallible.

Θ ; Σ ; Γ Φ ; Ψ ∪ [R →→ ⊥] R ∈ NRF

⊥RF

Θ ; Σ ; Γ Φ ; Ψ

Furthermore, we need to strengthen rule ∃L and ⊥L accordingly to accommodate
Def. 5.3.3. Semantically, rule ∃LF is restricted to generate only infallible successor
sequents and rule ⊥L does not rely on the precondition |Φ ∪Ψ| ≥ 1 anymore.

Θ ; ∅ ; Σ(R), C Ψ(R) ; ∅ Ψ(R) ̸= ∅
∃LF

Θ ; Σ ; Γ, ∃R.C Φ ; Ψ
⊥LF

Θ ; Σ ; Γ, ⊥ Φ ; Ψ

The proof of axiom FS3/IK3 in the calculus G1RF is shown in Fig. 5.7.

177

5 Constructive Proof Systems for cALC

⊥L
∅ ; ∅ ; ⊥ ⊥ ; ∅

∃LF
∅ ; ∅ ; ∃R.⊥ ⊥ ; [R →→ ⊥]

⊥RF

∅ ; ∅ ; ∃R.⊥ ⊥ ; ∅
⊃R

∅ ; ∅ ; ∅ ¬∃R.⊥ ; ∅

?
∅ ; ∅ ; ∃S.⊥ ⊥ ; ∅

⊃R
∅ ; ∅ ; ∅ ¬∃S.⊥ ; ∅

Figure 5.7: Proof of axiom FS3/IK3 with R ∈ NRF and S ∈ NR \NRF in G1RF .

Notation. Let G1RF denote the R-infallible sequent calculus consisting of the rules
⊥RF , ∃LF and ⊥LF , and the remaining ones from G1. We say that a G1RF -sequent
is consistent if no tableau exists for it (cf. Def. 5.2.3). We write cALCRF

=df cALC ⊕
{¬∃R.⊥ | R ∈ NRF } for theR-infallible Hilbert system, and cALCRF

; Θ ; Σ ; Γ ̸ Φ ; Ψ

to say that Θ ; Σ ; Γ G1
RF

Φ ; Ψ is i-satisfiable at some infallible entity of a NRF -
infallible interpretation. When G1RF is clear from the context we simply write .

■

Theorem 5.3.2 (Soundness of G1RF). Every G1RF -sequent is not i-satisfiable in a
NRF -infallible interpretation, i.e.,

cALCRF

; Θ ; Σ ; Γ ̸ Φ ; Ψ implies Θ ; Σ ; Γ ̸ G1
RF

Φ ; Ψ. ∇

Proof. Analogously to the proof of Thm. 5.2.2, but relying on Def. 5.3.3 for satisfiability
of a G1RF -sequent, relative to NRF -infallible interpretations according to Def. 5.3.2.

We show by induction for each rule of G1RF that if the conclusion is i-satisfiable then
at least one of its premises is i-satisfiable as well. Suppose the conclusion sequent is
i-satisfiable. We show for one of its premises of the form Θ ; Σ ; Γ Φ ; Ψ that there
exists a pair (I, x) with I being NRF -infallible and x ∈ ∆I

c such that:

I Θ; (5.85)

and for all R ∈ NR, L ∈ Σ(R), M ∈ Γ, N ∈ Φ, K ∈ Ψ(R):

∀x′. ∀y. (x ⪯I x′ & x′RI y) ⇒ I; y L; (5.86)
I;x M ; (5.87)
I;x ̸ N ; (5.88)

∀y. xRI y ⇒ I; y ̸ K. (5.89)

Again, condition (5.85) follows by assumption. We will only cover the rules ⊥LF ,
∃LF and ⊥RF and omit the remaining rules, since they can be argued as before.

178

5.3 Towards Intermediate Logics between cALC and ALC

(Case ⊥L) The conclusion Θ ; Σ ; Γ, ⊥ Φ ; Ψ of ⊥LF cannot be i-satisfied.

(Case ∃LF) Suppose that the conclusion sequent sc =df Θ ; Σ ; Γ, ∃R.C Φ ; Ψ

is i-satisfiable. Definition 5.3.3 implies that there exists a pair (I, a) with a ∈ ∆I
c

that satisfies the sequent sc, in particular a is contained in the interpretation of each
concept in Γ ∪ {∃R.C}. Note that Ψ(R) is constrained to be non-empty.

The assumption I; a ∃R.C implies for all refinements of a that there exists an
R-successor which lies in the interpretation of C. Then, it follows by reflexivity of
⪯, i.e., a ⪯I a, that there exists an entity b such that a RI b and I; b C. The
condition Ψ(R) ̸= ∅ enforces b to be infallible as well.

We claim that (I, b) i-satisfies the premise sequent sp =df Θ ; ∅ ; Σ(R), C Ψ(R) ; ∅.

• Regarding (5.86) and (5.89) nothing needs to be shown.

• The goal I; b Σ(R) ∪ {C}, condition (5.87), follows by assumption and
reflexivity of ⪯I .

• For (5.88) we need to show for all N ∈ Ψ(R) that I; b ̸ N . By assumption
this is the case for all R-successors of a, in particular for b.

(Case ⊥RF) Suppose the conclusion sequent sc =df Θ ; Σ ; Γ Φ ; Ψ is i-satisfiable.
We need to show for all R ∈ NRF that its premise sp =df Θ ; Σ ; Γ Φ ; Ψ∪[R →→ ⊥]

is i-satisfiable as well, i.e., cALCRF

; Θ ; Σ ; Γ ̸ Φ ; Ψ ∪ [R →→ ⊥].

Let R ∈ NRF be an arbitrary R-infallible role. Definition 5.3.3 implies that there
exists a pair (I, a) that i-satisfies sc, with I being NRF -infallible and a ∈ ∆I

c .

We claim that (I, a) i-satisfies the premise sequent.

• The conditions (5.86), (5.87) and (5.88) follow directly by assumption.

• Condition (5.89) holds by assumption and ∀b.a RI b⇒ I, b ̸ ⊥ follows from
R-infallibility of I by Def. 5.3.2. □

We leave the completeness of G1RF as an open problem.

Equivalence of the NRF -Infallible System to the Hilbert System

We conclude this section by showing that the Hilbert system cALCRF can be translated
into the sequent system G1RF and vice versa.

Proposition 5.3.6. Let cALCRF

=df cALC ⊕ {¬∃R.⊥ | R ∈ NRF } be the NRF -
infallible system where NRF ⊆ NR is a set of infallible roles. For every concept C and
set of concepts Θ we have

Θ ; ∅ ; ∅ G1
RF

C ; ∅ is inconsistent iff cALCRF

; Θ ; ∅ H C. ∇

179

5 Constructive Proof Systems for cALC

Proof. The proof extends Prop. 5.2.1 and is by giving a translation between the Hilbert
system cALCRF and the Gentzen sequent calculus G1RF and vice versa. It suffices to
argue axiom ¬∃R.⊥ and the rules ⊥LF ,⊥RF and ∃LF .
(⇒) We have to show that for all R ∈ NRF the axiom ¬∃R.⊥ is derivable in G1RF .

The derivation is depicted in Fig. 5.7.
(⇐) In the other direction we assume the premise of the rules ⊥LF ,⊥RF and ∃LF

to be admissible and then give a Hilbert derivation of its conclusion.

(Case ⊥LF) Suppose that Θ; Σ ; Γ G1
RF

Φ ; Ψ is derived by rule ⊥LF , i.e., Γ = Γ′,⊥.

The goal is to demonstrate that Hilbert derives

Θ; ∅ H (∧Σ ⊓ ⊥⊓ ∧Γ′) ⊃ (∨Φ ⊔ ∨Ψ).

This is a direct consequence of Hilbert axiom IPC7 (Def. 5.1.1) and weakening (ARW).

(Case ⊥RF) If the sequent Θ; Σ ; Γ G1
RF

Φ ; Ψ is derived by rule ⊥RF thenR ∈ NRF

and the last rule application looks like

...
Θ; Σ ; Γ G1

RF
Φ ; Ψ ∪ [R →→ ⊥]

⊥RF

Θ; Σ ; Γ G1
RF

Φ ; Ψ

The goal is a Hilbert derivation of

Θ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ). (5.90)

Applying the induction hypothesis to the premise yields the derivation

Θ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔

R′≠R,R′∈dom(Σ)

∃R′.Ψ(R′) ⊔ ∃R.(∨Ψ(R) ⊔⊥)), (5.91)

where ∨Ψ is decomposed according to (5.24).

We use the following abbreviations φ =df (∧Σ⊓∧Γ), ψ =df ∨Φ⊔

R′≠R ∃R′.∨Ψ(R′)

and γ =df ∨Ψ(R). For ∨Ψ(R) there are two cases, namely: The goal is to show that
Hilbert derives from the assumption φ ⊃ (ψ ⊔ ∃R.(γ ⊔⊥)) either the goal

Θ; ∅ H φ ⊃ (ψ ⊔ ∃R.γ) if Ψ(R) ≠ ∅, or (5.92)
Θ; ∅ H φ ⊃ ψ if Ψ(R) = ∅. (5.93)

Since Hilbert derives ⊥ ⊃ ∃R.⊥ and ∃R.⊥ ⊃ ⊥, it holds that ∃R.⊥ ≡ ⊥.

180

5.3 Towards Intermediate Logics between cALC and ALC

The proof relies on the following admissible rule proven below:

H C ⊃ D implies H (E ⊔C) ⊃ (E ⊔D) (5.94)

1. C ⊃ D Ass.;
2. (C ⊃ (E ⊔D)) ⊃ (E ⊃ (E ⊔D)) ⊃ ((E ⊔ C) ⊃ (E ⊔D)) IPC6;
3. E ⊃ (E ⊔D) IPC5;
4. C ⊃ (E ⊔D) from 1 by (ARW);
5. (E ⊔ C) ⊃ (E ⊔D) from (2, 3 by MP), 4 by MP.

The case (5.92) can be derived as follows:

.1. φ ⊃ (ψ ⊔ ∃R.(γ ⊔ ⊥)) Ass.;
2. (γ ⊔ ⊥) ⊃ γ (IPC8);
3. ∀R.((γ ⊔ ⊥) ⊃ γ) from 2 by Nec;
4. ∀R.((γ ⊔ ⊥) ⊃ γ) ⊃ (∃R.(γ ⊔ ⊥) ⊃ ∃R.γ) K∃R;
5. ∃R.(γ ⊔ ⊥) ⊃ ∃R.γ from 4, 3 by MP;
6. (ψ ⊔ ∃R.(γ ⊔ ⊥)) ⊃ (ψ ⊔ ∃R.γ) from 5 by (5.94);
7. φ ⊃ (ψ ⊔ ∃R.γ) from 6, 1 by (ARB).

Unfolding φ, ψ and γ, we obtain the derivation

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃

∨ Φ ⊔

R′ ̸=R,R′∈dom(Ψ)

∃R′.Ψ(R′) ⊔ ∃R.∨Ψ(R)),

which by definition of ∨Ψ (5.24) is nothing but Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ ∨Ψ).

The second case (5.93) is argued as follows:

.1. φ ⊃ (ψ ⊔ ∃R.⊥) Ass.;
2. ∃R.⊥ ⊃ ⊥ FS3/IK3;
3. (ψ ⊔ ∃R.⊥) ⊃ (ψ ⊔ ⊥) from 2 by (5.94);
4. φ ⊃ (ψ ⊔ ⊥) from 3, 1 by (ARB);
5. φ ⊃ ψ from 4 by (ARE),

which was to be shown.

(Case ∃LF) Analogously to the proof of (Case ∃L), see p. 161. □

181

5 Constructive Proof Systems for cALC

5.3.2 The Principle of Disjunctive Distribution – Axiom FS4/IK4

The principle of disjunctive distribution – ∃R distributes over ⊔ – is valid in classical
ALC and normal classical and intuitionistic modal logics [33, p. 191 ff.],[103, p. 7 ff.].
This principle is expressed by the axiom

FS4/IK4 =df ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D),

which is part of the IML FS/IK as discussed in Sec. 2.2.2. However, as argued in
Sec. 4.1, this axiom is problematic from a constructive, type-theoretic point of view
and therefore it is not part of the system cALC.

Remark 5.3.3. In [195] has been claimed that cALC⊕FS4/IK4 corresponds to saying
that ‘role filling is confluent with refinement’ in the sense that filling and refinement
become orthogonal concepts. It is known for PLL [90] that the axiom FS4/IK4 com-
pletely captures the frame condition ⪯−1 ;R ⊆ R ;⪯−1, which is due to the fact that
in PLL15 necessity 2 is trivialised by the axiom C ⊃ 2C. ■

The following section is devoted to the investigation of the semantic properties of
confluent interpretations w.r.t. the axiom FS4/IK4. Thereafter, we will introduce a
sound and complete extension of G1 in order to accommodate axiom FS4/IK4.

Definition 5.3.4 (Confluent cALC interpretation). A cALC interpretation I =

(∆I ,⪯I ,⊥I , ·I) is called confluent if for all R ∈ NR , x, y, z ∈ ∆I , x RI y and x ⪯I z

imply that there exists an entity w ∈ ∆I such that y ⪯I w and z RI w. This property
can also be expressed in terms of the frame condition ⪯−1;R ⊆ R;⪯−1, globally for
all R ∈ NR . ∇

First, we show that the axiom FS4/IK4 is valid in every confluent cALC interpretation.

Proposition 5.3.7. For all confluent cALC interpretations I, concepts C,D and
roles R ∈ NR it holds that

I ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D) ∇

Proof. Let I = (∆I,⪯I,⊥I, ·I) be an arbitrary but confluent cALC interpretation and
a0 ∈ ∆I be arbitrary. Let us suppose that I;a0 ∃R.(C ⊔D) and to the contrary
that I;a0 ̸ ∃R.C ⊔ ∃R.D. The latter means I;a0 ̸ ∃R.C and I;a0 ̸ ∃R.D
and therefore implies that there exist a1, a2 ∈ ∆I

c such that a0 ⪯ a1, a0 ⪯ a2 and
for all y ∈ ∆I, if a1 R y then I; y ̸ C, and if a2 R y then I; y ̸ D. From the
assumption I;a0 ∃R.(C ⊔D) follows that there exists b0 ∈ ∆I such that a0 R b0

15Usually, PLL is presented with the single modality ⃝. However, it has been shown in [4] that PLL
naturally arises as an extension of CS4 by adding the axiom C ⊃ 2C.

182

5.3 Towards Intermediate Logics between cALC and ALC

and I; b0 C ⊔ D. Now, confluence of I lets us conclude that there are entities
b1, b2 ∈ ∆I with a1 R b1 ⪯−1 b0 and a2 R b2 ⪯−1 b0. The assumption implies that
I; b1 ̸ C and I; b2 ̸ D. However, this is contradictory to I; b0 C ⊔ D and the
assumption I;a0 ∃R.(C ⊔ D). Hence, I;a0 ∃R.C ⊔ ∃R.D. The situation is
depicted in Fig. 5.8, where the dashed cones below the entities a1, a2 denote that for
all R-successors of a1 and a2 it holds that ̸ C and ̸ D respectively. The place of
contradiction is indicated by underlining. □

a0

a1 a2

b0

b1 b2

∀R ∀R

∃R.(C ⊔D), ̸ ∃R.C, ̸ ∃R.D

C ⊔D
̸ C ̸ D

⪯ ⪯

R R

R

⪯ ⪯

Figure 5.8: Validity of axiom FS4/IK4 in confluent interpretations.

In contrast to normal IMLs (see Chap. 4.1), cALC uses the strengthened interpreta-
tion of ∃R given by

(∃R.C)I =df {x | ∀y ∈ ∆I . x ⪯I y ⇒ ∃z ∈ ∆I . (y, z) ∈ RI & z ∈ CI},

which forces ∃R.C to be hereditary for refinement ⪯ without a frame property. However,
in confluent interpretations, i.e., in the presence of the frame condition ⪯−1;R ⊆
R;⪯−1, the universal quantification over ⪯ becomes redundant. Observe from the
proof of Prop. 5.3.7 that confluence simplifies validity of ∃R.C in the sense that it forces
the heredity of role filling w.r.t. refinement ⪯. This frame condition lets us simplify
the definition of the interpretation of ∃R.C by omitting the universal quantification
over ⪯ as follows.

Lemma 5.3.1. Let I be a confluent cALC interpretation and x ∈ ∆I. Then,

I;x ∃R.C iff ∃y ∈ ∆I . (x, y) ∈ RI & I; y C. ∇

Proof. Let a ∈ ∆I be arbitrary. (⇒) Suppose that I; a ∃R.C. We have to show
that a ∈ {x | ∃y ∈ ∆I . (x, y) ∈ RI & y ∈ CI}. The assumption, viz. a ∈ (∃R.C)I

183

5 Constructive Proof Systems for cALC

Ax
∅ ; ∅ ; C C,D ; ∅

Ax
∅ ; ∅ ; D C,D ; ∅

⊔L
∅ ; ∅ ; C ⊔D C,D ; ∅

∃L
∅ ; ∅ ; ∃R.(C ⊔D) ∅ ; [R →→ C,D]

∃R+

∅ ; ∅ ; ∃R.(C ⊔D) ∃R.D ; [R →→ C]
∃R+

∅ ; ∃R.(C ⊔D) ; ∅ ∃R.C, ∃R.D ; ∅
⊔R

∅ ; ∃R.(C ⊔D) ; ∅ ∃R.C ⊔ ∃R.D ; ∅
⊃R

∅ ; ∅ ; ∅ ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D) ; ∅

Figure 5.9: Sequent proof for axiom FS4/IK4 based on ∃R+. Adapted from [195, p. 229,
Fig. 12], with kind permission from Springer Science and Business Media.

says that for all refinements of a there exists an R-successor which is contained in
the interpretation of C. From reflexivity of ⪯I it follows that a ⪯I a and by the
assumption there exists an entity b ∈ ∆I such that a RI b and I; b C. Hence,
a ∈ {x | ∃z ∈ ∆I . (y, z) ∈ RI & z ∈ CI}.
(⇐) In the other direction let us assume that a ∈ {x | ∃y ∈ ∆I . (x, y) ∈ RI & y ∈

CI}. We have to show that a ∈ (∃R.C)I , i.e., a ∈ {x | ∀y ∈ ∆I . x ⪯I y ⇒ ∃z ∈
∆I . (y, z) ∈ RI & z ∈ CI}. Take an arbitrary refinement a′ ∈ ∆I of a. The
assumption lets us choose an entity b ∈ ∆I such that a RI b and b ∈ CI . Since I
is confluent, it follows by Def. 5.3.4 that there is an entity c ∈ ∆I with a′ RI c and
b ⪯I c. By monotonicity Prop. 4.2.2 follows that b ∈ CI . Because a′ was an arbitrary
refinement of a for which there exists the R-successor b in CI , we can conclude that
I; a ∃R.C. □

The schema FS4/IK4 can be accommodated in the sequent calculus G1 by strength-
ening the right rule ∃R to ∃R+ [195, p. 229]:

Θ ; Σ ; Γ Φ ; Ψ ∪ [R →→ C]
∃R+

Θ ; Σ ; Γ Φ, ∃R.C ; Ψ

Observe that due to this modification the rule ∃R+ becomes dual to rule ∀L. The
proof of axiom FS4/IK4 based on rule ∃R+ is depicted in Fig. 5.9.

Notation. We will call this strengthened sequent calculus G1D in the following. Fur-
thermore, let us write cALCD =df cALC⊕{∃R.(C⊔D) ⊃ (∃R.C⊔∃R.D) | R ∈ NR}
for the globally restricted system of cALC, and cALCD; Θ; Σ; Γ ̸ Φ;Ψ for the state-
ment that the sequent Θ ; Σ ; Γ G1D

Φ ; Ψ is satisfiable at some entity of a confluent
interpretation. If G1D is clear from the context then we use the plain turnstile. ■

184

5.3 Towards Intermediate Logics between cALC and ALC

Theorem 5.3.3 (Soundness of G1D). Every satisfiable G1D-sequent is consistent, i.e.,

cALCD; Θ ; Σ ; Γ ̸ Φ ; Ψ implies Θ ; Σ ; Γ ̸ G1D Φ ; Ψ. ∇

Proof. (⇒) Soundness of G1D is argued as before by Thm. 5.2.2. It is sufficient to check
soundness of the rule ∃R+. Suppose that the sequent sc =df Θ ; Σ ; Γ Φ, ∃R.C ; Ψ

is satisfiable. The goal is to show that its premise sp =df Θ ; Σ ; Γ Φ ; Ψ, [R →→ C]

is satisfiable as well. The assumption implies by Definition 5.2.2 that there exists a
confluent interpretation I and an entity x ∈ ∆I such that (I, a) satisfies the sequent
sc, i.e., I Θ and for all R ∈ NR it holds that

∀x′, y ∈ ∆I . x ⪯I x′ RI y ⇒ I; y Σ(R); (5.95)
I;x Γ; (5.96)
I;x ̸ Φ; (5.97)

∀y ∈ ∆I . x RI y ⇒ I; y ̸ Ψ(R). (5.98)

We claim that (I, a) satisfies the sequent sp.

• The conditions (5.95), (5.96) and (5.97) follow directly by assumption.

• For condition (5.98), let b ∈ ∆I such that a RI b. From I; a ̸ ∃R.C and
Lem. 5.3.1 follows I; b ̸ C, which was to be shown. □

Remark 5.3.4. Regarding completeness we need to show that

Θ ; Σ ; Γ ̸ G1D Φ ; Ψ ⇒ cALCD ; Θ ; Σ ; Γ ̸ Φ ; Ψ.

The proof is based on the following observations.

(i) The rules ∃R+ and ∀L are dual to each other, i.e., when applying rule ∃R+ we
do not loose the Ψ component, analogously to ∀L not loosing the Σ component.
Semantically, this means that the rule does not introduce a new ⪯ successor, but
rather acts on the spot. This is because the theory Φ∪{∃R.C | C ∈ Ψ(R) forR ∈
NR} of the conclusion of rule ∃R+ is equivalent to the corresponding theory of
its premise.

(ii) The components Σ and Ψ are redundant. This can be observed as follows: Let
∃R−1 Φ =df {C | ∃R.C ∈ Φ}, ∀R−1 Γ =df {C | ∀R.C ∈ Γ}, and ∆D be the set

185

5 Constructive Proof Systems for cALC

of all consistent sequents w.r.t. the G1D sequent calculus. Remember that the set
of extension rules XcALC contains the following rule for universal restrictions in Γ

(see Def. 5.2.11):

E4C,R s→E4 s
′ = ⟨Θ ; Σ ∪ [R →→ C] ; Γ Φ ; Ψ⟩,

if ∀R.C ∈ Γ but C ̸∈ Σ(R).

Analogously one can extend XcALC by one rule to handle existential restrictions
in Φ, and furthermore add two rules for the converse direction. Let us denote
this set of extension rules by XcALCD :

ED1C,R s→ED1 s
′ = Θ ; Σ ; Γ Φ ; Ψ ∪ [R →→ C],

if ∃R.C ∈ Φ but C ̸∈ Ψ(R).

ED2C,R s→ED2 s
′ = Θ ; Σ ; Γ ∪ {∀R.C} Φ ; Ψ,

if C ∈ Σ(R) and ∀R.C ̸∈ Γ.

ED3C,R s→ED3 s
′ = Θ ; Σ ; Γ Φ ∪ {∃R.C} ; Ψ,

if C ∈ Ψ(R) and ∃R.C ̸∈ Φ.

The additional saturation rules ED2C,R, and ED3C,R are consistency preserving,
which can be shown by proving that the corresponding sequent rules ∀L and ∃R+

are invertible, i.e., if Θ ; Σ ; Γ, ∀R.C Φ ; Ψ then Θ ; Σ∪ [R →→ C] ; Γ Φ ; Ψ,
and if Θ ; Σ ; Γ Φ, ∃R.C ; Ψ then Θ ; Σ ; Γ Φ ; Ψ ∪ [R →→ C]. Then, by
Lem. 5.2.4 we obtain for each consistent G1D sequent a XcALCD -saturated and
consistent sequent, where it holds that

• ∀R ∈ dom(Σ). ∀R−1 Γ = Σ(R), and

• ∀R ∈ dom(Ψ). ∃R−1 Φ = Ψ(R).

(iii) Since the components Σ and Ψ are redundant and can be derived from Γ and
Φ, we could obtain a suitable canonical cALCD model from the consistent and
XcALCD -saturated sequents restricted to the form ⟨Θ ; Γ Φ⟩.

However, we rely on a Lindenbaum construction to argue the completeness of G1D,
since we require maximally consistent sequents where the components Γ and Φ are
complementary, that is, sequents where for all concepts C either C ∈ Γ or C ∈ Φ

holds. ■

Theorem 5.3.4 (Completeness of G1D). Every consistent G1D-sequent is satisfiable
in a confluent interpretation, assuming that G1D is cut-free, i.e.,

Θ ; Σ ; Γ ̸ G1D Φ ; Ψ ⇒ cALCD ; Θ ; Σ ; Γ ̸ Φ ; Ψ. ∇

186

5.3 Towards Intermediate Logics between cALC and ALC

Proof-sketch. Let s = Θ ; Σ ; Γ Φ ; Ψ be a consistent G1D sequent. The proof-
technique is standard and uses a canonical model construction based on a generalisation
of the Lindenbaum Theorem [33, p. 197], showing that (i) there exists a constructive
cALCD countermodel I and an entity a in ∆I such that (I, a) satisfies the sequent s,
and (ii) the canonical cALCD interpretation is confluent.

Regarding (i), the construction of the canonical cALCD interpretation relies on
the set of maximally consistent G1D sequents, denoted by ∆∗, which is generated by
the following Lindenbaum construction: Let s = ⟨Θ ; Σ ; Γ Φ ; Ψ⟩ be a consistent
G1D sequent and C0, C1, C2, . . . be an enumeration of all cALC concepts with infinite
repetition. Define a sequence of consistent sequents s0 ⊆ s1 ⊆ s2 ⊆ . . . ⊆ sn ⊆ sn+1 ⊆
. . . by taking s0 = s and, for n ≥ 0,

sn+1 =df

⟨Θ ; Σn+1 ; Γsn ∪ {C} Φsn ; Ψn+1⟩ if it is G1D consistent;

⟨Θ ; Σn+1 ; Γsn Φsn ∪ {C} ; Ψn+1⟩ otherwise,

where

Σn+1(R) =df Σsn(R) ∪ ∀R−1 Γsn+1
, and

Ψn+1(R) =df Ψsn(R) ∪ ∃R−1 Φsn+1
.

Then, one shows that consistency of sn entails consistency of sn+1, i.e., each step in the
construction preserves consistency. This can be shown by proving cut-admissibility for
G1D, which we leave as an open problem. The maximally consistent sequent is given
by s∗ =df ⟨Θ ; Σ∗ ; Γ∗ Φ∗ ; Ψ∗⟩ where

Σ∗ =df

n<ω

Σn, Γ∗ =df

n<ω

Γn, Φ∗ =df

n<ω

Φn, Ψ∗ =df

n<ω

Ψn.

This shows that every consistent sequent s has a maximally consistent extension s∗

which is XcALCD -saturated. The canonical interpretation I∗ is built from maximally
consistent G1D sequents in ∆∗ according to Def. 5.2.12. We conjecture that the canon-
ical cALCD interpretation I∗ is a constructive cALCD model, and for all maximally
consistent sequents s∗ ∈ ∆∗ the pair (I∗, s∗) satisfies s∗.

Secondly, we will tackle (ii) and argue that the canonical cALCD interpretation is
confluent. Let s0, s1, s2 be maximally consistent sequents from ∆∗ and suppose that
s0 ⪯∗ s2 and s0 R∗ s1, that is, Γs0 ⊆ Γs2 , Σs0 ⊆ Σs2 , Σs0(R) ⊆ Γs1 and Ψs0(R) ⊆ Φs1 .
Let us consider the sequent

s3 =df ⟨Θ ; Σs1 ; Γs1 ∪ Σs2(R) Ψs2(R) ; ∅⟩.

187

5 Constructive Proof Systems for cALC

We claim that the sequent s3 is consistent. Suppose by contradiction that there are
finite Σ′

s1
⊆ Σs1,Γ

′
s1

⊆ Γs1,Σ
′
s2
(R) ⊆ Σs2(R),Ψ

′
s2
(R) ⊆ Ψs2(R) such that for all

R ∈ NR we have ∀R−1 Γ′
s1
= Σ′

s1
(R) and

s′3 =df ⟨Θ ; Σ′
s1
; Γ′

s1
∪ Σ′

s2
(R) Ψ′

s2
(R) ; ∅⟩

is inconsistent. Then, there exists a closed tableau for s′3. Taking into account ∀S ∈
NR. ∀S−1Γs1 = Σs1(S), we can successively use the tableau rule ∀L as follows to
obtain the sequent s4, where the second component Σs4 is empty. This is followed by
successive applications of rule ⊓L to give the sequent s5, where the third component
contains the conjunction ∧Γ′

s1
, which is the intersection over concepts of the set Γ′

s1
,

i.e., if Γ = {C1, C2, . . . , Cn} then ∧Γ = C1 ⊓ C2 ⊓ . . . ⊓ Cn:
...

s′3 = Θ ; Σ′
s1
; Γ′

s1
, Σ′

s2
(R) Ψ′

s2
(R) ; ∅

∀L∗

s4 = Θ ; ∅ ; Γ′
s1
, Σ′

s2
(R) Ψ′

s2
(R) ; ∅

⊓L∗

s5 = Θ ; ∅ ; ∧Γ′
s1
, Σ′

s2
(R) Ψ′

s2
(R) ; ∅

Now, let us consider any concept C ∈ Γs1 . From consistency of s1 it follows that
C ̸∈ Φs1 , and in particular ∧Γ′

s1
̸∈ Φs1 . Moreover, since ∃R−1 Φs0 = Ψs0(R) it

follows that ∃R.C ̸∈ Φs0 , particularly ∃R.∧Γ′
s1

̸∈ Φs0 . Therefore, it must be that
∃R.C ∈ Γs0 ⊆ Γs2 , and also ∃R.∧Γ′

s1
∈ Γs0 ⊆ Γs2 . But this means that we can apply

rule ∃L as follows
...

s5 = Θ ; ∅ ; ∧Γ′
s1
, Σ′

s2
(R) Ψ′

s2
(R) ; ∅

∃L,
s6 = Θ ; Σs6 ; ∃R. ∧ Γ′

s1
, Γs2 Φs2 ; Ψs6

where Σs6 = [R →→ Σ′
s2
(R)]∪ [S →→ Σs2(S) | S ̸= R] and Ψs6 = [R →→ Ψ′

s2
(R)]∪ [S →→

Ψs2(S) | S ̸= R]. Now, one observes that s6 ⊆ s2, which would imply that the sequent
s2 is inconsistent, contradictory to the assumption. Hence, the sequent s3 is consistent.

Finally, take a maximally consistent extension s∗ of s3. It follows from maximality
that Σs2(R) = ∀R−1 Γs2 ⊆ Γs∗ and Ψs2(R) = ∃R−1 Φs2 ⊆ Φs∗ . Hence, s2 R∗ s∗

by Def. 5.2.12. Moreover, it holds that Γs1 ⊆ Γs∗ and Σs1 = ∀R−1 Γs1 ⊆ Σs∗ , and
due to the fact that Γs1 is the complement of Φs1 we have Φs∗ ⊆ Γs1 and Ψs∗(R) ⊆
Ψs1(R). Concluding, it holds that s1 ⪯I∗

s∗, and this shows that the canonical cALCD

interpretation is confluent. □

Equivalence of the Confluent System to the Hilbert System

It remains to show that the Hilbert system cALCD is sound and complete.

188

5.3 Towards Intermediate Logics between cALC and ALC

Proposition 5.3.8. For every concept C and set of concepts Θ we have

cALCD ; Θ ; ∅ C in all confluent interpretations iff cALCD; Θ H C. ∇

Proof. The proof extends that of Prop. 5.2.1, showing that every derivation of the
extended system cALCD can be translated into a derivation of the extended Gentzen
sequent calculus G1D and vice versa. Note that we need the rule Cut to emulate the
rule MP in the (⇒)-direction.

(⇒) Axiom FS4/IK4 is derivable in G1D, as depicted by Fig. 5.9.

(⇐) In the other direction, let us suppose that the sequent Θ ; Σ ; Γ G1D
Φ ; Ψ is

derived by rule ∃R+, i.e., Φ = Φ′,∃R.C and the last rule application looks like this

...
Θ ; Σ ; Γ G1D

Φ′ ; Ψ ∪ [R →→ C]
∃R+.

Θ ; Σ ; Γ G1D
Φ′, ∃R.C ; Ψ

We have to find a derivation of

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔ ∃R.C ⊔ ∨Ψ). (5.99)

The induction hypothesis applied to the premise yields the derivation

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ′ ⊔

R′∈dom(Ψ)\{R}

∃R′.Ψ(R′) ⊔ ∃R.(∨Ψ(R) ⊔ C)), (5.100)

where ∨Ψ is decomposed according to (5.24). Note that if Ψ(R) = ∅ then the disjunct
∨Ψ(R) is not part of the right-hand side of (5.100), and the goal (5.99) follows trivially.

Otherwise, if Ψ(R) ̸= ∅ then we proceed as follows: Using the abbreviations φ =df

(∧Σ ⊓ ∧Γ), ψ =df ∨Φ′ ⊔

R′ ̸=R ∃R′.Ψ(R′) and γ =df ∨Ψ(R), the goal is to show that

Hilbert derives from the assumption φ ⊃ (ψ ⊔ ∃R.(γ ⊔C)) the goal φ ⊃ (ψ ⊔ ∃R.γ ⊔
∃R.C). The proof uses (5.94) (see p. 181): H C ⊃ D implies H (E ⊔ C) ⊃ (E ⊔D).

Then, the derivation of (5.99) is as follows:

1. φ ⊃ (ψ ⊔ ∃R.(γ ⊔ C)) Ass.;
2. ∃R.(γ ⊔ C) ⊃ (∃R.γ ⊔ ∃R.C) FS4/IK4;
3. (ψ ⊔ ∃R.(γ ⊔ C)) ⊃ (ψ ⊔ (∃R.γ ⊔ ∃R.C)) from 2 by (5.94);
4. φ ⊃ (ψ ⊔ (∃R.γ ⊔ ∃R.C)) from 3, 1 by (ARB).

□

189

5 Constructive Proof Systems for cALC

5.3.3 The Principle of the Excluded Middle

The addition of axiom PEM =df= C ⊔ ¬C to cALC corresponds to assuming that ⪯
is an equivalence relation, that is, it becomes symmetric such that x ⪯ y implies y ⪯ x

[195, p. 229]. This implies that there are no proper refinements of entities but only
clusters of indistinguishables. However, note that we cannot identify two equivalent
entities, since they may have incompatible realisations w.r.t. the accessibility relation
of roles.

Let cALCPEM denote the theory cALC ⊕ PEM. To incorporate the above, one can
modify the semantics of a cALC interpretation I modulo an equivalence relation ∼ to
replace ⪯.

Lemma 5.3.2. I C⊔¬C in all cALC interpretations I = (∆I ,⪯I ,⊥I , ·I) where
⪯I is an equivalence relation. ∇

Proof. Let I = (∆I ,⪯I ,⊥I , ·I) be a cALC interpretation such that ⪯I is an equival-
ence relation, x ∈ ∆I and suppose to the contrary that I;x ̸ C ⊔ ¬C, i.e., I;x ̸ C

and I;x ̸ ¬C. The latter implies that there exists x′ ∈ ∆I
c such that x ⪯I x′ and

I;x′ C. It follows from symmetry of ⪯I that x′ ⪯I x, and by monotonicity follows
I;x C contradictory to the assumption. Hence, I;x C ⊔ ¬C □

Definition 5.3.5 (Degenerated interpretation). A cALCPEM interpretation, called
degenerated interpretation, is a constructive interpretation I = (∆I ,⪯I ,⊥I , ·I), in
which ⪯I is an equivalence relation. We will write ∼I instead of ⪯I . ∇

Lemma 5.3.3. Let I be a degenerated interpretation and x ∈ ∆I, then

I;x C ⊃ D iff I;x ̸ C or I;x D. ∇

Proof. Let I be an arbitrary but degenerated interpretation and a ∈ ∆I .
(⇒) Proof by contraposition. Suppose that I; a C and I; a ̸ D. We have to

show that there exists a refinement a′ of a such that I; a′ C and I; a′ ̸ D. By
reflexivity of ⪯I follows a ⪯I a. Thus, I; a ̸ C ⊃ D.
(⇐) Proof by contraposition. Suppose that I; a ̸ C ⊃ D, i.e., there exists a′ ∈ ∆I

such that a ⪯I a′ with I; a′ C and I; a′ ̸ D. We have to show that I; a C

and I; a ̸ D. Since ⪯I is an equivalence relation, it holds that a′ ⪯I a such that by
monotonicity Prop. 4.2.2 it follows that I; a C. Moreover, I; a ̸ D, since otherwise
if I; a D then this would contradict the assumption by monotonicity of ⪯I . Hence,
I; a C and I; a ̸ D. □

190

5.3 Towards Intermediate Logics between cALC and ALC

Proposition 5.3.9 (Monotonicity). Let C be an arbitrary cALC concept and I be a
degenerated interpretation, then ∀x, y ∈ ∆I with x ∼I y it holds that

I;x C iff I; y C. ∇

Proof. The proof is trivial, since x ⪯I y implies y ⪯I x. □

Example 5.3.1. In cALCPEM the modalities ∃R and ∀R are not dual to each other.
For instance, let us suppose that I; a0 ¬∀R.¬C and to the contrary that I; a0 ̸
∃R.C. Fig. 5.10 below shows a corresponding countermodel.

a0

a1 a2

b1

∀R

̸ ∀R.¬C

̸ ¬∀R.¬C ⊃ ∃R.C

¬∀R.¬C, ̸ ∃R.C

C
̸ C

∼ ∼

∼

R

Figure 5.10: Countermodel for the duality of ∃R and ∀R.

■

In the sequent calculus one can enforce axiom PEM by replacing the intuitionistic
rule for implication ⊃R from Fig. 5.1 with the classical one ⊃R+ [195, p. 229]:

Θ ; Σ ; Γ, C Φ, D ; Ψ
⊃R+

Θ ; Σ ; Γ Φ, C ⊃ D ; Ψ

Rule ⊃R+ is different from ⊃R in that the components Φ, Ψ are preserved when
applying ⊃R+ backwards, which corresponds to the classical interpretation of implic-
ation C ⊃ D. Figure 5.11 shows the proof of the Excluded Middle (PEM) utilising
rule ⊃R+.

Notation. We will denote G1 extended by rule ⊃R+ by G1PEM and say analogously
to Def. 5.2.3 that a G1PEM-sequent is consistent if no tableau exists for it. Further-
more, let cALCPEM =df cALC ⊕C ⊔¬C, and let cALCPEM ; Θ ; Σ ; Γ ̸ Φ ; Ψ denote
that Θ ; Σ ; Γ G1PEM

Φ ; Ψ is satisfiable at some entity of a degenerated interpretation.

191

5 Constructive Proof Systems for cALC

Ax
∅ ; ∅ ; C C, ⊥ ; ∅

⊃R+

∅ ; ∅ ; ∅ C, ¬C ; ∅
⊔R

∅ ; ∅ ; ∅ C ⊔ ¬C ; ∅

Figure 5.11: Rule ⊃R+ implements PEM. Adapted from [195, p. 229, Fig. 13], with kind
permission from Springer Science and Business Media.

Moreover, we say that the pair (I, x) consisting of a cALCPEM (degenerated) interpret-
ation I and an entity x ∈ ∆I satisfies a sequent s = Θ ; Σ ; Γ Φ ; Ψ, if I Θ and
for all R ∈ NR it holds that

∀x′, y ∈ ∆I . x ∼I x′ RI y ⇒ I; y Σ(R); (5.101)
I;x Γ; (5.102)
I;x ̸ Φ; (5.103)

∀y ∈ ∆I . x RI y ⇒ I; y ̸ Ψ(R). (5.104)

■

Theorem 5.3.5 (Soundness of G1PEM). Every satisfiable G1PEM-sequent is consistent,
i.e., cALCPEM; Θ ; Σ ; Γ ̸ Φ ; Ψ implies Θ ; Σ ; Γ ̸ G1PEM

Φ ; Ψ. ∇

Proof. (⇒) The proof is analogously to the one of Thm. 5.2.2. We will only consider
rule ⊃R+ here. Suppose that the sequent sc =df Θ ; Σ ; Γ Φ, C ⊃ D ; Ψ is satisfiable.
The goal is to show that its premise sp =df Θ ; Σ ; Γ, C Φ, D ; Ψ is satisfiable as
well. The assumption implies that there exists a pair (I, a) that satisfies sc.
Claim: (I, a) satisfies the sequent sp. By assumption I; a ̸ C ⊃ D, i.e., by Lem. 5.3.3
I; a ̸ C or I; a D. The conditions (5.101)–(5.104) for Σ, Γ, Φ and Ψ follow by
assumption. Hence, (I, a) satisfies sp. □

The canonical models for cALCPEM are constructed as follows: We obtain a suitable
set of G1PEM consistent and saturated sequents ∆∗ by Lem. 5.2.4, using the set of
saturation rules XcALCPEM , which corresponds to the extension of XcALC (see Def. 5.2.11)
by the following rule to treat implication:

EEM1C,D s→EEM1 s
′ = ⟨Θ ; Σ ; Γ ∪ {C} Φ ∪ {D} ; Ψ⟩,

if C ⊃ D ∈ Φ but C ̸∈ Γ and D ̸∈ Φ.

Definition 5.3.6 (Canonical cALCPEM interpretation). Let Θ be a fixed TBox
and ∆∗ be the set of all XcALCPEM-saturated and consistent sequents of the form
⟨Θ ; Σ ; Γ Φ ; Ψ⟩. All these sequents have Θ as their first component but may have

192

5.3 Towards Intermediate Logics between cALC and ALC

different Σ, Γ, Φ, Ψ. The canonical cALCPEM interpretation I∗ =df (∆
I∗
,∼I∗

,⊥I∗
, ·I∗

)

is defined by

∆I∗
=df ∆∗;

∼I∗
=df {(s, s′) ∈ ∆I∗ ×∆I∗ | Σs = Σs′ & Γs = Γs′};

RI∗
=df {(s, s′) ∈ ∆I∗ ×∆I∗ | Σs(R) ⊆ Γs′ & Ψs(R) ⊆ Φs′};

⊥I∗
=df {s ∈ ∆I∗ | ⊥ ∈ Γs};

AI∗
=df {s ∈ ∆I∗ | A ∈ Γs or ⊥ ∈ Γs},

for all R ∈ NR and A ∈ NC . ∇

Lemma 5.3.4. The canonical cALCPEM interpretation I∗ =df (∆
I∗
,∼I∗

,⊥I∗
, ·I∗

) is
a degenerated model according to Def. 5.3.5. ∇

Proof. The proof is analogously to the proof of Lem. 5.2.6, only differing in that the
relation ∼I∗ is an equivalence relation by construction of I∗. □

Lemma 5.3.5. Let Θ be a fixed TBox, ∆∗ the set of all XcALCPEM-saturated and
consistent sequents of the form ⟨Θ ; Σ ; Γ Φ ; Ψ⟩. The canonical interpretation I∗ =df

(∆I∗
,∼I∗

,⊥I∗
, ·I∗

) is a degenerated model such that for all XcALCPEM-saturated and
consistent sequents s ∈ ∆∗ the pair (I∗, s) satisfies s in the sense of Def. 5.3.5. ∇

Proof. Analogously to the proof of Lem. 5.2.7. □

Theorem 5.3.6 (Completeness of G1PEM). Every consistent G1PEM-sequent is satis-
fiable in a degenerated interpretation, i.e.,

Θ ; Σ ; Γ ̸ G1PEM
Φ ; Ψ ⇒ cALCPEM ; Θ ; Σ ; Γ ̸ Φ ; Ψ. ∇

Proof. Analogously to the proof of Thm. 5.2.3. □

Equivalence of G1PEM to the Hilbert System

Finally, we show that the Hilbert system cALCPEM can be translated into the sequent
system G1PEM and vice versa.

Proposition 5.3.10. For every concept C and set of concepts Θ we have

cALCPEM ; Θ ; ∅ C in all degenerated interpretations iff cALCPEM ; Θ ; ∅ H C.

∇

193

5 Constructive Proof Systems for cALC

Proof. The proof extends Prop. 5.2.1, i.e., we give a translation between the Hilbert
system cALCPEM and the Gentzen sequent calculus G1PEM, and argue axiom PEM and
the rule ⊃R+ only. (⇒) The derivation of PEM is shown in Fig. 5.11.
(⇐) In the other direction suppose that Θ ; Σ ; Γ G1PEM

Φ ; Ψ is derived by rule
⊃R+, i.e., Φ = Φ′, C ⊃ D, and the situation looks like

...
Θ ; Σ ; Γ, C G1PEM

Φ, D ; Ψ
⊃R+

Θ ; Σ ; Γ G1PEM
Φ, (C ⊃ D) ; Ψ

The goal is to demonstrate that Hilbert derives

Θ ; ∅ H (∧Σ ⊓ ∧Γ) ⊃ (∨Φ ⊔ (C ⊃ D) ⊔ ∨Ψ). (5.105)

Applying the ind. hyp. to the premise of the sequent yields the Hilbert derivation

Θ ; ∅ H (∧Σ ⊓ ∧Γ ⊓ C) ⊃ (∨Φ ⊔ D ⊔ ∨Ψ). (5.106)

Since Hilbert derives PEM, DeMorgan’s laws and the dualities from classical propos-
itional logic CPC hold. Let φ =df ∧Σ ⊓ ∧Γ and ψ =df ∨Φ ⊔ ∨Ψ. We start from the
following instance of axiom IPC2

H

φ ⊃ (C ⊃ (ψ ⊔D)) ⊃ (ψ ⊔ (C ⊃ D))

⊃ (φ ⊃ C ⊃ (ψ ⊔D)) ⊃

(φ ⊃ (ψ ⊔ (C ⊃ D))), (5.107)

i.e., in order to derive (5.105) we need to find derivations for

H φ ⊃ ((C ⊃ (ψ ⊔D)) ⊃ (ψ ⊔ (C ⊃ D))), (5.108)

H φ ⊃ C ⊃ (ψ ⊔D). (5.109)

Subgoal (5.108) follows from the fact that Hilbert derives (C ⊃ (ψ⊔D)) ⊃ (ψ⊔(C ⊃
D)) in classical logic. One observes that the latter holds in CPC due to the provable
equivalence C ⊃ D ≡ ¬C⊔D and the law of permutation (commutativity of ⊃). Thus,
in the presence of axiom PEM it is true in cALCPEM as well, and we obtain (5.108)
from the latter derivation by (ARK)[φ].

Subgoal (5.109) is a consequence of applying rule (ARC) (currying) to (5.106). Hence,
the goal (5.105) follows by rule MP from (5.107), (5.108) and (5.109). □

194

5.4 Summary

5.3.4 Obtaining classical ALC

Note that cALCPEM is properly more expressive than ALC, i.e., cALC is not the
intuitionistic analogue of ALC according to Simpson [249], because cALC ⊕ PEM
does not yield classical ALC. The extension cALCF = cALC ⊕ FS3/IK3 without
fallible fillers corresponds to the multimodal version of Wijesekera’s [272] constructive
modal logic. Moreover, cALCF ⊕ FS4/IK4 yields the multimodal version IALC of the
normal intuitionistic modal logic FS/IK [96; 103; 249]. In Ex. 4.2.1, we argued that
if the preorder ⪯ is the identity relation and there are no fallible entities, then the
interpretation becomes classical ALC. This corresponds to extending cALC by the
schemata FS4/IK4, FS3/IK3, and PEM. It can be observed that the classical ALC
interpretations arise from cALCPEM interpretations, if fallible entities are omitted and
for all x, y, it holds that x ∼ y iff x = y.

5.4 Summary

This chapter investigated the proof theory of cALC by characterising it in terms of
a sound and complete Hilbert-style axiomatisation and a decidable multi-conclusion
Gentzen sequent calculus. The Hilbert deduction differentiates between local and global
(TBox) hypotheses, and we proved a modal deduction theorem that admits derivability
from local and global assumptions. Both calculi are sound and complete w.r.t. the
Kripke semantics of cALC. Soundness and completeness of the Hilbert calculus follows
from that of the Gentzen sequent calculus, and has been argued by showing that any
deduction in either system can be translated into the other. We presented that both,
the Hilbert and the Gentzen sequent calculus, admit the standard reasoning services of
DLs w.r.t. TBoxes. In the final section, we discussed the intermediate systems between
cALC and ALC that arise from the extension of cALC by the axiom schemata FS3/IK3,
FS4/IK4, and PEM.

Notes on Related Work

A possible world semantics for CK was first described in [188] and it was proved that the
Hilbert axiomatisation of monomodal CK is sound and complete w.r.t. this semantics.
A single conclusion Gentzen-style sequent calculus for CKn was presented in Mendler
and Scheele [196]. This sequent calculus is more expressive than G1 in that it preserves
the contextual R-structure w.r.t. roles from NR as a path encoded within a sequent.
Sound extensions of this sequent calculus towards IK, CS4, PLL, or Masini’s deontic
system [184] have been demonstrated in [196, p. 5], in particular an extension was shown
to accommodate axiom FS5/IK5. This calculus has been turned into a typing system

195

5 Constructive Proof Systems for cALC

for an extension of the simply typed lambda calculus λ-CK in [198] (see Chap. 3).
Other constructive variants of ALC have been investigated proof-theoretically in

terms of Hilbert systems, Gentzen-style sequent calculi and natural deduction systems
(see Chap. 3 for a detailed survey).

Kojima [162; 161] investigated a temporal (LTL) variant of CK. He defines a Kripke
semantics and characterises the system in terms of a sound and complete Hilbert
axiomatisation and the cut-free Gentzen-style sequent calculus LJ⃝. In contrast to
the sequent calculus G1, Kojima and Igarashi’s [162] sequent calculus is for linear-time
temporal logic, includes only the temporal next operator ⃝ (corresponding to ∃R/3
in cALC/CK), uses formulæ Cn, Dm annotated by time stamps n,m ∈ N and sequents
of the form Γ ⇒ F , where Γ is a set of annotated formulæ and F an annotated
formula. The time stamp label is elegantly used to prevent the distribution of the next
operator ⃝ over disjunction (axiom FS4/ IK4), in contrast to G1 where the contextual
R-structure of the component Ψ is used to omit the latter axiom. Then, the LJ⃝

proof of ⃝(C ∨ D)n ⇒ (⃝C ∨ ⃝D)n fails, since the rule for the next operator is
(temporally) restricted such that if it is applied backwards then it yields the sequent
C ∨Dn+1 ⇒ ⃝C ∨⃝Dn, i.e., the disjunction C ∨Dn+1 of the antecedent is decided
at the next instant of time n + 1 rather than at the current instant of time n where
the disjunction ⃝C ∨⃝Dn is determined. It would be interesting to see whether this
approach can be generalised to support both types of modalities ∀R and ∃R w.r.t. a
set of roles NR, and to annotate a formula with an encoding of the contextual path
information.

196

CHAPTER 6

The Relation of cALC to Classical Description Logics

The first part of this chapter is dedicated to the relation of cALC to classical DLs by
demonstrating a faithful translation of cALC into a classical DL, which is naturally
obtained from the birelational Kripke semantics of cALC. Decidability of satisfiability
and subsumption of cALC concepts is not surprising, since cALC can be embedded
into the fusion of S4 and Km (S4 ⊗ Km) [103, Chap. 3]. Note that one S4 modality
suffices for the embedding of cALC into (S4 ⊗ Km). From a more general perspective,
the fusion (S4n ⊗Km) corresponds to the description logic ALC extended by roles which
are reflexive and transitive, which we will denote by the term ALCR∗ accordingly. We
will show that the PSpace-complexity of (S4 ⊗ Km) [103, p. 218] forms an upper
bound for satisfiability of cALC-concepts. By relying on the result from Statman [253]
stating that IPC is PSpace-complete, we will demonstrate PSpace-hardness of
satisfiability of cALC concepts and thereof obtain PSpace-completeness of cALC.
By exploiting the fusion mechanism further results like the finite model property and
decidability can be transferred to cALC.

The second part of this chapter is devoted to the {⊔,∃}-fragment UL [192] of cALC
w.r.t. general TBoxes, which turns out to be tractable under the constructive semantics
while it is intractable under the classical descriptive semantics. We will summarise
the result from our publication [192] demonstrating that the problem of subsumption
checking in UL w.r.t. general TBoxes under the constructive semantics lies in PTime
while it increases to ExpTime under the classical descriptive semantics.

6.1 Embedding cALC into classical Description Logics

It is well known that some intuitionistic modal logics can be embedded into classical
ones by using the Gödel translation [103; 115]. As Gabbay et al. [103, p. 443] recall,
‘one of the main reasons for introducing modal logics, in particular S4, was the desire
to find a classical interpretation of intuitionistic logic’. Accordingly, Gödel [115] defined
an embedding of intuitionistic propositional logic IPC into the modal logic S4 and it
has been shown that the latter translation can be extended to capture more expressive
intuitionistic modal logics, for instance IntK2 in [103]. The idea of the Gödel translation

197

6 The Relation of cALC to Classical Description Logics

[115] is to prefix all subformulæ of a given constructive formula with a distinguished
box modality 2I that captures the intuitionistic structure [103]. There exist different
variations of the Gödel translation, for instance, some translations only insert 2I before
intuitionistically interpreted subformulæ, typically leaving conjunction and disjunction
untouched, while others like [103; 275] prefix every subformula with 2I . All such
variants of translations are provably equivalent in S4. For a deeper understanding the
reader may consult the work by Wolter and Zakharyaschev [278]. They established a
relationship between intuitionistic modal logics and classical bimodal logics in order to
demonstrate that results from the latter can be transferred to IMLs.

Classical bimodal logics arise from the combination of two or more modal logics.
One general mechanism for combining logics is by fusions (also known as independent
joins) which have been introduced by Thomason [260]. According to Gabbay et al.
[103, Chap. 3.1], and Blackburn, van Benthem and Wolter [35], the fusion L1 ⊗ L2 of
two modal logics L1 and L2 formulated in the languages MLn and MLm, both sharing
the same classical signature, but with distinct modal operators (say, 21, . . . ,2n and
2n+1, . . . ,2n+m respectively), is the smallest (n+m)-modal logic containing both L1

and L2. If each logic Li (where i ∈ {1, 2}) has an axiomatisation in the form of a
set of axioms Axi, then L1 ⊗ L2 is axiomatised by Ax1 ∪ Ax2 [35, Chap. 15]. Also,
note that the modal operators of the component logics remain independent in their
fusion. Regarding the semantic interpretation of fusions, it has been shown that Kripke
completeness of the component logics transfers to their fusion. Let C1 and C2 be the
characterising frame classes of the modal logics L1 and L2 respectively, such that C1

and C2 are closed under disjoint unions and isomorphic copies. One can show that their
fusion C1 ⊗ C2 forms the class of (n+m)-frames [35, Chap. 15, Thm. 3]

C1⊗ C2 = {(W,R1, . . . , Rn, S1, . . . , Sm) | (W,R1, . . . , Rn) ∈ C1 & (W,S1, . . . , Sm) ∈ C2},

which characterises the fusion L1 ⊗L2. Note that C1 ⊗ C2 share the same set of possible
worlds. Results of many logical systems are preserved under their fusions, for instance,
soundness, Kripke completeness, the finite model property, decidability, and complexity
results [35; 103; 166; 167]. This mechanism will be exploited in the following to argue
the complexity, finite model property and decidability of cALC. In particular, we show
that cALC can be embedded into ALC with reflexive and transitive roles (denoted
by ALCR∗), which corresponds to the fusion S4n ⊗ Km. Hereby, it suffices to embed
cALC into S4 ⊗ Km, which includes exactly one reflexive and transitive role in contrast
to n-modal S4n ⊗ Km. Our translation extends the typical Gödel translation in the
following ways: (i) We prefix all subformulæ except conjunction and disjunction by ∀⪯
and extend the classical signature by a reflexive and transitive role ⪯. (ii) Regarding

198

6.1 Embedding cALC into classical Description Logics

fallible entities, we need to introduce a representative concept in their translation, which
will be denoted by the distinguished propositional constant F . Since fallible entities
validate any atomic concept, it is necessary to include the concept F in the translation
of atomic concepts. Furthermore, we have to consider fallible entities in the translation
of each concept description.

Notation. Regarding the interpretation of formulæ relative to the classical semantics
(including that of ALCR∗), we will index the interpretation and relation symbols by cs.
Accordingly, we will use the symbol cs for the validity relation of formulæ interpreted
under the classical semantics, and Ics = (∆Ics , ·Ics) for a classical interpretation. As
introduced earlier, we will write Ics;x cs C (or equivalently x ∈ CIcs) to express that
entity x satisfies concept C in the interpretation Ics. ■

Before detailing the embedding, let us characterise the semantics of ALCR∗ .

Definition 6.1.1 (ALCR∗). Let NC be a set of concept names, NR a set of atomic
role names, and NR∗ ⊆ NR a set of reflexive and transitive role names. ALCR∗ uses
the same syntax as ALC (see Definition 2.1.1), but extends it by allowing the use of
reflexive and transitive roles in concept descriptions. The interpretation of ALCR∗

concepts is by extending Definition 2.1.2 by an interpretation of reflexive and transitive
roles R ∈ NR∗ ⊆ NR such that for all x, y, z ∈ ∆Ics

x RIcs x, and
if x RIcs y and y RIcs z, then x RIcs z. ∇

Taking into account the syntactic translation f by Schild [245] (cf. Sec. 2.1.5), it is easy
to show that ALCR∗ corresponds to the fusion S4n ⊗ Km. This fusion is characterised
by frames F of the form (W,R1, . . . , Rn, Rn+1, . . . , Rn+m) where R1, . . . , Rn are the
modalities from S4n and the modal operators Rn+1, . . . , Rm come from Km. Now,
observe that every ALCR∗ interpretation Ics = (∆Ics , ·Ics) relative to a set of concepts
names NC , and roles NR∗ = {R1, . . . , Rn} and NR = {Rn+1, . . . , Rn+m} ∪ NR∗ can be
transformed into a S4n ⊗ Km-model and vice versa, viz., by taking MIcs = (F ,V) with
F = (W,R1, . . . , Rn, Rn+1, . . . , Rn+m) where W = ∆Ics , Ri = RIcs

i (for 1 ≤ i ≤ n+m),
and V(A) = AIcs for all concept names A. Then, for all concepts C, models Ics and
individuals a ∈ ∆Ics it holds that

Ics; a C iff MIcs ; a cs f(C),

by extending f (see p. 24) to translate all reflexive and transitive roles into the cor-
responding S4 modalities and all other roles into Km modalities. When considering

199

6 The Relation of cALC to Classical Description Logics

an ALCR∗ TBox Θ and a set Γ of ALCR∗ concepts we get ALCR∗ ; Θ; Γ cs C iff
S4n ⊗ Km; f(Θ); f(Γ) cs f(C), where f(Θ) and f(Γ) are the translations of the TBox
axioms in Θ and concepts in Γ respectively.

6.1.1 Translation of cALC into ALCR∗

The following definition gives a syntactic translation τ from concepts in cALC to the
language of ALCR∗ .

Definition 6.1.2 (Translation of concepts). Let F be a distinguished atomic concept.
The translation τ of a cALC concept C into ALCR∗ is inductively defined by

τ(A) = F ⊔ ∀⪯.A;
τ(⊥) = F ;

τ(C ⊃ D) = F ⊔ ∀⪯.(¬τ(C) ⊔ τ(D));
τ(¬C) = τ(C ⊃ ⊥);

τ(C ⊙D) = τ(C) ⊙ τ(D), where ⊙ ∈ {⊓,⊔};
τ(∃R.C) = F ⊔ ∀⪯.(F ⊔ ∃R.τ(C));
τ(∀R.C) = F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)). ∇

One can observe that this translation corresponds to the embedding of IPC into S4
as presented by Gödel [115] if we restrict the translation τ to the language of IPC,
i.e., by omitting the modalities, the fallible atom F and by prefixing conjunction and
disjunction by ∀⪯ as well. We claim that the translation τ embeds cALC into ALCR∗ .
In the first step we will restrict our attention to the semantics and define an operation
which transforms a constructive interpretation into a classical one and vice versa.

Definition 6.1.3 (Constructive translation τ). Given a cALC interpretation I =
(∆I ,⪯I ,⊥I , ·I) over signature Σ = (NC , NR), the translation τ(I) is defined by the
structure (∆Ics , ·Ics) over extended signature Σ′ = (NC ∪ {F}, NR ∪ {⪯}), where F is
a distinguished atomic concept such that F ̸∈ NC , ⪯ ̸∈ NR is a fresh relational symbol
(denoting a reflexive and transitive role), by taking

∆Ics =df∆I ; ⪯Ics=df ⪯I ; F Ics =df⊥I ;

and ∀A ∈ NC ,∀R ∈ NR,

AIcs =dfA
I ; RIcs =dfR

I . ∇

200

6.1 Embedding cALC into classical Description Logics

For the inverse direction let us consider the following translation.

Definition 6.1.4 (Classic translation τ ′). Given an ALCR∗ interpretation Ics =
(∆Ics , ·Ics) over signature Σ′ = (NC ∪ {F}, NR ∪ {⪯}) with the reflexive and transitive
role ⪯. The translation τ ′(Ics) is given by the structure I = (∆I ,⪯I ,⊥I , ·I) over
signature Σ = (NC , NR) by taking

∆I =df ∆Ics ;
⪯I=df {(x, y) | (x ∈ F Ics and x = y) or (x ̸∈ F Ics and x ⪯Ics y)};
⊥I =df F

Ics ;

and ∀A ∈ NC \ {F}, ∀R ∈ NR \ {⪯},

AI =df{x | x ∈ F Ics or ∀y.x ⪯Ics y ⇒ y ∈ AIcs};
RI =df{(x, y) | (x ̸∈ F Ics and x RIcs y) or (x ∈ F Ics and x = y)}. ∇

Note that Definition 6.1.4 forces fallible entities to be connected only to themselves
via roles R ∈ NR and refinement ⪯I .

Lemma 6.1.1. Let the constructive interpretation I in cALC and the classic inter-
pretation Ics in ALCR∗ be arbitrary. The following holds:

(i) τ(I) is a standard ALCR∗ interpretation;

(ii) τ ′(Ics) is a constructive interpretation according to Definition 4.2.2. ∇

Proof. (i) One can easily observe that τ(I) yields a classic interpretation with the
reflexive and transitive role ⪯.

For (ii), we argue that the interpretation I = (∆I ,⪯I ,⊥I , ·I) resulting from the
translation τ ′(Ics) is a constructive interpretation according to Definition 4.2.2.

• The set ∆I is nonempty by Definition 6.1.4, since ∆Ics of the classical interpreta-
tion is non-empty by definition.

• By definition the role ⪯ is reflexive and transitive. Note that fallible entities only
refine themselves.

• The set of fallible entities ⊥I is closed under refinement and role-filling. This is a
direct consequence of Def. 6.1.4, because fallible entities in ∆I are connected only
to themselves via roles R ∈ NR and refinement ⪯I , and for each role R ∈ NR

there exists exactly one cycle from each fallible entity to itself.

201

6 The Relation of cALC to Classical Description Logics

• The interpretation of atomic concepts is given by AI , which is closed under
refinement by Def. 6.1.4.

• For the interpretation of roles R ∈ NR there is nothing to show. □

The main theorem states that cALC can be embedded into ALCR∗ . First, we will
show the embedding without considering TBoxes, i.e., a cALC concept C is valid if
and only if its translation (Def. 6.1.2) is valid in ALCR∗ .

Proposition 6.1.1. For every cALC concept C not containing concept F ,

∅; ∅ C if and only if ALCR∗ ; ∅; ∅ cs τ(C). ∇

To prove Proposition 6.1.1 we need to demonstrate (i) for all classical ALCR∗ in-
terpretations Ics and for all entities x ∈ ∆Ics it holds that Ics;x cs τ(C) from the
assumption ∅; ∅ C, and (ii) for all constructive interpretations I and for all entities
y ∈ ∆I it holds that I; y C under the assumption that ALCR∗ ; ∅; ∅ cs τ(C) is true.
This is formulated by the following auxiliary lemma.

Lemma 6.1.2. For every cALC concept C, not containing the atomic concept F ,

∀Ics,∀x ∈ ∆Ics . τ ′(Ics);x C if and only if Ics;x cs τ(C), and (6.1)
∀I,∀y ∈ ∆I . I; y C if and only if τ(I); y cs τ(C). (6.2)

∇

Proof. For (6.1), let Ics be a classical ALCR∗ interpretation and a ∈ ∆Ics be arbitrarily
chosen. We claim that

τ ′(Ics); a C iff Ics; a cs τ(C).

The proof is by induction on the structure of C:
(Case A) (⇒) Suppose that τ ′(Ics); a A holds. The task is to show that Ics; a cs

F ⊔ ∀⪯.A. By Def. 4.2.3 a ∈ Aτ ′(Ics) and Def. 6.1.4 implies a ∈ F Ics or ∀y ∈
∆Ics .a ⪯Ics y ⇒ y ∈ AIcs . Case 1. If a ∈ F Ics then the goal follows immediately.

Case 2. Otherwise, if a ̸∈ F Ics , let b ∈ ∆Ics be arbitrary such that a ⪯Ics b. By
applying the assumption it follows that b ∈ AIcs , i.e., Ics; b cs A. Since b was an
arbitrary ⪯Ics-successor of a we can conclude Ics; a cs ∀⪯.A.

Thus, Ics; a cs τ(A).

(⇐) Assume that Ics; a cs F ⊔ ∀⪯.A. This means that a ∈ F Ics or ∀y.a ⪯Ics y ⇒
y ∈ AIcs . Then, it follows straight from Def. 6.1.4 that τ ′(Ics); a A.

202

6.1 Embedding cALC into classical Description Logics

(Case ⊥) (⇒) Suppose that τ ′(Ics); a ⊥, i.e., a ∈ ⊥τ ′(Ics) and since ⊥τ ′(Ics) = F Ics

by Def. 6.1.4 we can conclude that Ics; a cs τ(⊥) = F .

(⇐) Assume that Ics; a cs τ(⊥) = F . From a ∈ F Ics it it follows directly that
a ∈ ⊥τ ′(Ics) by Def. 6.1.4. Therefore, τ ′(Ics); a ⊥.

(Case C ⊃ D) (⇒) Let us suppose that τ ′(Ics); a C ⊃ D. Then, by Def. 4.2.2 it
holds for all ⪯τ ′(Ics) refinements x of a that x ∈ Cτ ′(Ics) implies x ∈ Dτ ′(Ics). We
need to prove Ics; a cs F ⊔ ∀⪯.(¬τ(C) ⊔ τ(D)).

Case 1. If a is fallible, i.e., a ∈ ⊥τ ′(Ics) = F Ics , then immediately Ics; a cs F ⊔
∀⪯.(¬τ(C) ⊔ τ(D)).

Case 2. Otherwise, a ̸∈ ⊥τ ′(Ics) and let b ∈ ∆Ics be arbitrary such that a ⪯Ics b. It
follows by definition of τ ′ that a ⪯τ ′(Ics) b. We proceed by case analysis:

Case 2.1. b ̸∈ Cτ ′(Ics). By induction hypothesis (direction ⇐) it follows that b ̸∈
(τ(C))Ics and thus b ∈ (¬τ(C))Ics .

Case 2.2. If b ∈ Cτ ′(Ics) then it follows from the assumption that b ∈ Dτ ′(Ics).
Applying the induction hypothesis (direction ⇒) yields b ∈ (τ(D))Ics .

Since b was an arbitrary ⪯Ics-successor of a, the goal Ics; a cs F ⊔∀⪯.(¬τ(C)⊔τ(D))
holds.

(⇐) Proof by contraposition. Suppose that τ ′(Ics); a ̸ C ⊃ D. Then, there exists
an entity b ∈ ∆τ ′(Ics) such that a ⪯τ ′(Ics) b and b ∈ Cτ ′(Ics) but b ̸∈ Dτ ′(Ics). We
need to prove that Ics; a ̸ cs F ⊔ ∀⪯.(¬τ(C) ⊔ τ(D)). From the assumption it
follows that a is an infallible entity, i.e., a ̸∈ ⊥τ ′(Ics), and by Def. 6.1.4 it holds
that a ⪯Ics b. The ind. hyp. implies that b ∈ τ(C)Ics and b ̸∈ τ(D)Ics which proves
Ics; a ̸ cs F ⊔ ∀⪯.(¬τ(C) ⊔ τ(D)).

(Case C ⊓D) By Def. 4.2.3, τ ′(Ics); a C⊓D holds if and only if τ ′(Ics); a C and
τ ′(Ics); a D. Using the induction hypothesis this holds if and only if Ics; a cs τ(C)
and Ics; a cs τ(D) and by Def. 6.1.1 Ics; a cs τ(C ⊓D).

(Case C ⊔D) By ind. hyp. similarly to (Case C ⊓D).

(Case ∃R.C) (⇒) Suppose that τ ′(Ics); a ∃R.C. The task is to prove that Ics; a cs

F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)). By Def. 4.2.2 it holds for all ⪯τ ′(Ics) refinements of a that
there exists an R-filler contained in Cτ ′(Ics), in particular by reflexivity of ⪯τ ′(Ics) for
a itself.

Case 1. If a is fallible then a ∈ F Ics by Definition 6.1.4 and the goal Ics; a cs

F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)) follows immediately.

203

6 The Relation of cALC to Classical Description Logics

Case 2. Otherwise, suppose that a is not fallible, i.e., a ̸∈ F Ics . Now, let b ∈ ∆Ics be
arbitrary such that a ⪯Ics b and b ̸∈ F Ics . It follows from Def. 6.1.4 that a ⪯τ ′(Ics) b.
By the assumption there exists d ∈ ∆τ ′(Ics) such that b Rτ ′(Ics) d and d ∈ Cτ ′(Ics).
Since b ̸∈ F Ics , we have b RIcs d and it follows by the induction hypothesis that
d ∈ τ(C)Ics . Therefore, Ics; a cs F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)).

(⇐) Proof by contraposition. Suppose that τ ′(Ics); a ̸ ∃R.C. The task is to
demonstrate that Ics; a ̸ cs F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)). From the assumption it follows
that a ̸∈ (∃R.C)τ ′(Ics), i.e., there exists an entity b in ∆τ ′(Ics) which is a ⪯τ ′(Ics)

refinement of a such that all of its R-successors are not in the interpretation of
Cτ ′(Ics). The assumption implies that a ̸∈ ⊥τ ′(Ics) and by Def. 6.1.4 it holds that
a ̸∈ F Ics , therefore, Ics; a ̸ cs F . It remains to show that Ics; a ̸ cs ∀⪯.(F ⊔ ∃R.τ(C)).
Definition 6.1.4 implies a ⪯Ics b. Now, let c ∈ ∆Ics be arbitrary and assume that
b RIcs c. Observe that b is infallible, i.e., b ̸∈ ⊥τ ′(Ics) = F Ics . Otherwise, if b would
be fallible then Def. 6.1.4 would imply that bRτ ′(Ics) b, but this would contradict the
assumption that b ̸∈ Cτ ′(Ics). We can conclude from Def. 6.1.4 that c ∈ ∆τ ′(Ics) and
b Rτ ′(Ics) c. The assumption yields c ̸∈ Cτ ′(Ics) and the ind. hyp. yields c ̸∈ τ(C)Ics ,
which proves Ics; a ̸ cs ∀⪯.(F ⊔ ∃R.τ(C)).

(Case ∀R.C) (⇒) Suppose that τ ′(Ics); a ∀R.C, we have to show that Ics; a cs

τ(∀R.C). The assumption implies by Def. 4.2.2 that all R-fillers of all refinements
of a are contained in Cτ ′(Ics), in particular by reflexivity of ⪯τ ′(Ics) this holds for a
itself.

Case 1. a ∈ F Ics implies Ics; a cs τ(∀R.C) = F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)).

Case 2. a ̸∈ F Ics . Let b ∈ ∆Ics be arbitrary and suppose that a ⪯Ics b and b ̸∈ F Ics .
Moreover, let c ∈ ∆Ics and suppose that b RIcs c. Definition 6.1.4 implies that
b, c ∈ ∆τ ′(Ics), a ⪯τ ′(Ics) b and b Rτ ′(Ics) c. The assumption lets us conclude that
c ∈ Cτ ′(Ics). Applying the induction hypothesis yields c ∈ τ(C)Ics .

Therefore, Ics; a cs F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)).

(⇐) Proof by contraposition. Suppose that τ ′(Ics); a ̸ ∀R.C, i.e., there exist
b, c ∈ ∆τ ′(Ics) such that a ⪯τ ′(Ics) b Rτ ′(Ics) c and c ̸∈ Cτ ′(Ics). It is necessary to
prove that Ics; a ̸ cs F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)). The assumption implies that a is not
fallible, i.e., a ̸∈ F Ics . By Definition 6.1.4 b, c ∈ ∆Ics . Now, observe that b, c are
infallible. Infallibility of c follows from the assumption and b is infallible, since
infallible R-successors cannot have a fallible R-predecessor (see Proposition 4.2.1).
Then, it holds by Definition 6.1.4 that a ⪯Ics b RIcs c. The induction hypothesis lets
us conclude that c ̸∈ τ(C)Ics , which completes the proof of Ics; a ̸ cs τ(∀R.C).

204

6.1 Embedding cALC into classical Description Logics

For the proof of (6.2), let I be a constructive interpretation and a ∈ ∆I be arbitrarily
chosen. We show by induction on the structure of C that

I; a C iff τ(I); a cs τ(C),

(Case A) (⇒) Suppose I; a A, i.e., a ∈ AI . Because AI is closed under refinement
⪯I , it follows directly that τ(I); a cs ∀⪯.A. Thus, τ(I); a cs F ⊔ ∀⪯.A as desired.

(⇐) In the other direction suppose that τ(I); a cs τ(A), i.e., a ∈ (F ⊔ ∀⪯.A)τ(I). If
a ∈ F τ(I) then a ∈ ⊥I and because of ⊥I ⊆ AI this implies a ∈ AI . Otherwise, if
a ̸∈ F τ(I) then it follows by Def. 6.1.3 that all ⪯τ(I)-successors of a are contained
in Aτ(I), in particular by reflexivity of ⪯τ(I) entity a itself. Therefore by Def. 6.1.3
I; a A.

(Case ⊥) (⇒) Suppose that I; a ⊥, i.e., a ∈ ⊥I . From Def. 6.1.3 it follows that
a ∈ F τ(I) and therefore τ(I); a cs F .

(⇐) In the other direction suppose τ(I); a cs τ(⊥), i.e., a ∈ F Ics . From the
assumption and Def. 6.1.3 we can conclude a ∈ ⊥I . Hence, I; a ⊥.

(Case C ⊃ D) (⇒) Assume that I; a C ⊃ D. By Def. 4.2.2, it holds for all
refinements x of a that x ∈ CI implies x ∈ DI . We need to prove τ(I); a cs

F ⊔∀⪯.(¬τ(C)⊔τ(D)). Let b ∈ ∆τ(I) be arbitrary such that a ⪯τ(I) b. Assume that
b ∈ (τ(C)τ(I)). From Def. 6.1.3 it follows that b ∈ ∆I and a ⪯I b. The induction
hypothesis lets us conclude that b ∈ CI . Then, the assumption implies that b ∈ DI

and applying the induction hypothesis returns b ∈ (τ(D)τ(I)) as desired. Therefore,
τ(I); a cs ∀⪯.(¬τ(C) ⊔ τ(D)) which implies τ(I); a cs F ⊔ ∀⪯.(¬τ(C) ⊔ τ(D)).

(⇐) Proof by contraposition. In the other direction suppose that I; a ̸ C ⊃ D, i.e.,
there exists an entity b ∈ ∆I such that a ⪯I b and b ∈ CI but b ̸∈ DI . The goal is
τ(I); a ̸ cs F ⊔ ∀⪯.(¬τ(C) ⊔ τ(D)). From the assumption it follows that a ̸∈ ⊥I =
F τ(I). Def. 6.1.3 implies b ∈ ∆τ(I) and a ⪯τ(I) b as well. Applying the induction
hypothesis yields τ(I); b cs τ(C) and τ(I); b ̸ cs τ(D). Hence, τ(I); a ̸ cs τ(C ⊃ D).

(Case C ⊓D) Suppose that I; a C ⊓ D. By Definition 4.2.2 this holds if and
only if I; a C and I; a D. Using the induction hypothesis the latter holds if
and only if τ(I); a cs τ(C) and τ(I); a cs τ(D) which is the case if and only if
τ(I); a cs τ(C ⊓D).

205

6 The Relation of cALC to Classical Description Logics

(Case C ⊔D) Argued similarly as the previous case (Case C ⊓D) by ind. hyp.

(Case ∃R.C) (⇒) Assume that I; a ∃R.C. By Def. 4.2.2 it holds for all ⪯I

refinements of a that there exists an R-filler contained in CI . We need to show
τ(I); a cs F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)). Let b ∈ ∆τ(I) be arbitrary such that a ⪯τ(I) b.
Definition 6.1.3 implies b ∈ ∆I and a ⪯I b in its original interpretation. According to
the assumption, let c ∈ ∆I be such that bRI c and c ∈ CI . From Def. 6.1.3 it follows
that c ∈ ∆τ(I) and bRτ(I) c. Applying the induction hypothesis lets us conclude that
c ∈ (τ(C))τ(I). Since b was arbitrary it follows that τ(I); a cs ∀⪯.(∃R.τ(C)) which
implies τ(I); a cs F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)).

(⇐) Proof by contraposition. Suppose that I; a ̸ ∃R.C, i.e., there exists an entity
b in ∆I which is a refinement of a such that all its R-successors are not in the
interpretation of C. We need to prove that τ(I); a ̸ cs F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)). From
the assumption it follows that a is infallible, therefore a ̸∈ F τ(I) and τ(I); a ̸ cs F .
By Def. 6.1.3 it holds that a, b ∈ ∆τ(I) and a ⪯τ(I) b. Now, let c ∈ ∆τ(I) and suppose
that b Rτ(I) c. From Definition 6.1.3 it follows that b RI c as well and by assumption
c ̸∈ CI . Using the induction hypothesis yields c ̸∈ (τ(C))τ(I). The latter also implies
that c is infallible, i.e., c ̸∈ ⊥I = F τ(I). Proposition 4.2.1 implies infallibility of b,
i.e., b ̸∈ ⊥I = F τ(I). Thus, τ(I); a ̸ cs F ⊔ ∀⪯.(F ⊔ ∃R.τ(C)).

(Case ∀R.C) (⇒) Assume that I; a ∀R.C. By Def. 4.2.2 it holds that all R-fillers
of all ⪯I refinements of a are contained in CI . The goal is τ(I); a cs F ⊔ ∀⪯.(F ⊔
∀R.τ(C)). Suppose that a ̸∈ ⊥I , i.e., a ̸∈ F τ(I), and let b, c ∈ ∆τ(I) be arbitrary
such that a ⪯τ(I) b Rτ(I) c. We can conclude from Def. 6.1.3 that b, c ∈ ∆I and
a ⪯I b RI c hold in the original interpretation. Accordingly, the assumption implies
c ∈ CI . Applying the ind. hyp. lets us conclude that c ∈ (τ(C))τ(I). Since b and
c were arbitrary, it follows that τ(I); a cs ∀⪯.(∀R.τ(C)) which implies τ(I); a cs

F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)).

(⇐) Proof by contraposition. Suppose that I; a ̸ ∀R.C, i.e., there exist entities
b, c in ∆I such that a ⪯I b RI c and c ̸∈ CI . The task is to show that τ(I); a ̸ cs

F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)). The assumption implies that a is infallible. By Def. 6.1.3
it follows that b, c ∈ ∆τ(I) such that a ⪯τ(I) b Rτ(I) c as well. The ind. hyp. lets us
conclude that c ̸∈ (τ(C))τ(I), which also implies that c is infallible and by Prop. 4.2.1
entity b is infallible as well. Hence, τ(I); a ̸ cs F ⊔ ∀⪯.(F ⊔ ∀R.τ(C)).

□

206

6.1 Embedding cALC into classical Description Logics

Now, we are ready to tackle Proposition 6.1.1.

Proof of Proposition 6.1.1. The proposition is a consequence of the Kripke complete-
ness of the involved logics and the natural translation of their models into each other,
while preserving the validity of concepts.

(⇒) Assume that ∅; ∅ C, let Ics be a classical ALCR∗ interpretation and a ∈ ∆Ics

arbitrarily chosen. Lemma 6.1.1 implies that the translated interpretation τ ′(Ics)
is a constructive interpretation and by the assumption it holds in particular that
τ ′(Ics); a C. Lemma 6.1.2 (6.1) lets us conclude that Ics; a τ(C). Since Ics and a

were arbitrary, we have ALCR∗ ; ∅; ∅ cs τ(C).
(⇐) In the other direction let us suppose that ALCR∗ ; ∅; ∅ cs τ(C) holds. Let I be a

constructive interpretation and a ∈ ∆I be arbitrarily chosen. The assumption implies
in particular that τ(I); a cs τ(C) holds. Lemma 6.1.1 implies that τ(I) is an ALCR∗

interpretation. We can conclude by Lemma 6.1.2 (6.2) that I; a C. Since I and a

were arbitrarily chosen, it holds that ∅; ∅ C. □

Example 6.1.1. Let us consider the translation of the three cALC concepts

K∀R: ∀R.(C ⊃ D) ⊃ (∀R.C ⊃ ∀R.D),
K∃R: ∀R.(C ⊃ D) ⊃ (∃R.C ⊃ ∃R.D),

FS4/IK4: ∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D).

The translation of K∀R yields the following ALCR∗ formula, where we use the indexed
markers ⌞. . .⌟i with i ≥ 1 to highlight subformulæ in the original cALC formula and
in its corresponding translation into ALCR∗ :

τ(K∀R)

= τ(⌞∀R.(⌞C ⊃ D⌟2
)⌟1

⊃ ⌞(⌞∀R.C⌟4
⊃ ⌞∀R.D⌟5

)⌟3
)

= F ⊔ ∀⪯.

¬

⌞F ⊔ ∀⪯.

F ⊔ ∀R.(⌞F ⊔ ∀⪯.(¬(F ⊔ ∀⪯.C) ⊔ (F ⊔ ∀⪯.D))⌟2

)

⌟1

⊔

⌞F ⊔ ∀⪯.

¬

⌞F ⊔ ∀⪯.(F ⊔ ∀R.(F ⊔ ∀⪯.C))⌟4

⊔

⌞F ⊔ ∀⪯.(F ⊔ ∀R.(F ⊔ ∀⪯.D))⌟5

⌟3

The translation of the two other concepts K∃R and FS4/IK4 is done analogously. We

can use the translation and exploit an existing classical DL reasoner to decide validity
or satisfiability of concepts. The translation of the above concepts can be represented as
concept definitions in the KRSS-style (Knowledge Representation System Specification)
language of the classical reasoner Racer [119; 120] using the following TBox calc, where
the role Bi represents the reflexive and transitive (intuitionistic) accessibility relation
⪯ and F the distinguished concept to represent ⊥ (fallible) (see Def. 6.1.2).

207

6 The Relation of cALC to Classical Description Logics

TBox
(init-tbox calc)

;; intuitionistic accessibility relation

(define-primitive-role Bi)

(transitive Bi)

(reflexive Bi)

;; normal accessibility relation

(define-primitive-role R)

Then, the above concepts are defined in Racer by boxK =df τ(K∀R), diaK =df τ(K∃R)
and fs4ik4 =df τ(FS4/IK4) as follows:

Concept Definitions
;; translation of axiom boxK

(define-concept boxK

(or F (all Bi (or

(not (or F (all Bi (or F (all R (or F (all Bi (or

(not (or F (all Bi C)))

(or F (all Bi D))))))))))

(or F (all Bi (or

(not (or F (all Bi (or F (all R (or F (all Bi C)))))))

(or F (all Bi (or F (all R (or F (all Bi D)))))))))))))

;; translation of axiom diaK

(define-concept diaK

(or F (all Bi (or

(not (or F (all Bi (or F (all R (or F (all Bi (or

(not (or F (all Bi C)))

(or F (all Bi D))))))))))

(or F (all Bi (or

(not (or F (all Bi (or F (some R (or F (all Bi C)))))))

(or F (all Bi (or F (some R (or F (all Bi D)))))))))))))

;; translation of axiom fs4ik4

(define-concept fs4ik4

(or F (all Bi (or

(not (or F (all Bi (or F (some R (or

(or F (all Bi C))

(or F (all Bi D))))))))

(or (or F (all Bi (or F (some R (or F (all Bi C))))))

(or F (all Bi (or F (some R (or F (all Bi D)))))))))))

208

6.1 Embedding cALC into classical Description Logics

Validity of these formulæ can be checked in terms of whether the concept ⊤ (∗top∗
in Racer) is subsumed by boxK, diaK and fs4ik4 respectively. This can be expressed
in Racer by the query (concept-subsumes? D C) where D is the subsumer and C the
subsumee. This query returns the value T if the subsumption holds, and the return
value NIL expresses non-subsumption. The corresponding output of these queries in
Racer is as follows:

Checking Validity
? (concept-subsumes? diaK *top*)

> T

? (concept-subsumes? boxK *top*)

> T

? (concept-subsumes? fs4ik4 *top*)

> NIL

■

Remark 6.1.1. Proposition 6.1.1 shows that we can obtain a faithful translation of
cALC into a classical description (modal) logic, which is derived from the birelational
Kripke semantics of cALC by a variant of the Gödel translation. However, as also
noted by Fairtlough and Mendler [90, p. 20], it is important to express falsity ⊥ by
a distinguished propositional constant F , since otherwise we could construct formulæ
which are invalid in cALC, but their translation into ALCR∗ becomes valid. For instance,
when taking the naive translation τ(⊥) = ⊥ and ⊥ instead of F in all other cases of
Def. 6.1.2, then the formula ¬∃R.⊥ which is not valid in cALC becomes translated to
τ(¬∃R.⊥) = ⊥ ⊔ ∀⪯ .(¬(⊥ ⊔ ∀⪯ .(⊥ ⊔ ∃R.⊥)) ⊔ ⊥) which is a theorem of ALCR∗ .

Moreover, as also reported in [90, p. 20], it is necessary to restrict Proposition 6.1.1
such that the distinguished propositional constant F is not contained in the cALC
concept C to be translated, since (i) for instance C =df F ⊔¬F which is the PEM is not
valid in cALC, but its translation τ(F ⊔¬F) = (F ⊔∀⪯.F)⊔(F ⊔∀⪯.(¬(F ⊔∀⪯F)⊔F))
is valid in ALCR∗ ; (ii) if C =df F ⊃ D (as reported in [90, p. 20]) then the translation
yields τ(F ⊃ D) = F ⊔ (∀⪯.(¬(F ⊔∀⪯.F)⊔ (F ⊔∀⪯.D))) which is a theorem of ALCR∗ .

■

6.1.2 The Complexity of cALC

Considering the complexity, the embedding of cALC into ALCR∗ shows that deciding
satisfiability or subsumption of concepts in cALC is not worse than deciding the same

209

6 The Relation of cALC to Classical Description Logics

problems in ALCR∗ . Clearly, the translation τ(C) of a concept C can be obtained in
polynomial space.

Let us first focus on the complexity of ALCR∗ (S4n ⊗ Km) which is the target for our
embedding of cALC. It has been shown by Halpern and Moses [130] that the complexity
of Km, K4 and S4n is PSpace-complete. Note that the accessibility relation of K4 and
S4 is transitive, and reflexive and transitive respectively. Consequently, by transferring
these results to description logics it has been demonstrated by Sattler [243] that deciding
the satisfiability of concepts in ALC with transitive roles (so-called ALCR+) is of the
same complexity as ALC, namely PSpace-complete [16]. ALC with reflexive and
transitive roles is an extension of ALCR+ and corresponds to the fusion of S4n ⊗ Km

[103] denoted here by ALCR∗ . It is well known that the complexity of K and S4
is preserved under their fusions [103, Thm. 4.19, p. 218] which lets us conclude the
PSpace-completeness of ALCR∗ by Prop. 6.1.1. Therefore, the PSpace-complexity
of ALCR∗ forms an upper bound for the satisfiability of cALC concepts.

Corollary 6.1.1 (Upper bound). Satisfiability and subsumption of concepts in cALC
can be decided using polynomial space. ∇

There are several possible ways to establish a lower bound for the decision problem
of cALC. We use the result by Statman [253] who proved that the problem of decid-
ing whether an intuitionistic propositional formula is valid is PSpace-complete. It
remains to show that cALC is a conservative extension of IPC.

Lemma 6.1.3 (Conservativity). cALC is a conservative extension of IPC. ∇

Proof. The proof is by showing that any consequence of cALC, which only uses symbols
from IPC (i.e., it is free of modalities) and is derived by a sound and complete sequent
calculus for cALC (G1), is a consequence of IPC as well. This means that every such
consequence can be derived without the modal rules of the sequent calculus for cALC.
First, by inspecting the rules of the single conclusion sequent calculus in [196] for cALC
one observes that the propositional rules correspond to a sequent calculus for IPC like
for instance the Gentzen calculus LJ or G3ip [214, Chap. 2]. The same can be observed
for the multi conclusion sequent calculus G1, relative to the calculus by Švejdar [257]
or Dragalin’s GHPC [84, Chap. 1]. Taking into account the sequent calculus G1 for
cALC one can easily observe its similarity to LJ or the propositional part of GHPC
by omitting the sets Θ,Σ,Ψ. Then, one shows by induction on the structure of a
derivation and case analysis on the non-modal sequent rules that the premise of a
modal-free consequence is free of modalities as well. Hence, a modal-free formula is
derivable in G1 iff it is derivable in IPC. □

210

6.1 Embedding cALC into classical Description Logics

Since cALC is a conservative extension of IPC, we obtain PSpace-hardness from
PSpace-completeness of IPC.

Theorem 6.1.1 (Complexity w/o TBoxes). Satisfiability and subsumption of concepts
in cALC without TBoxes is PSpace-complete. ∇

Proof. PSpace-hardness follows from PSpace-completeness of IPC [253; 256] whereas
the upper bound follows by Corollary 6.1.1. □

We conjecture that another possibility to establish the PSpace-hardness of cALC
goes by demonstrating that concepts in a special, constructive (double) negation normal
form coincide in ALC and cALC. Double-negation translation is one approach to embed
classical logic into intuitionistic logic, and in the case of CPC it holds that CPC C iff

IPC ¬¬C, which is known as Glivenko’s Theorem [62; 114, p. 47]. However, the simple
double negation translation is not sufficient here since Glivenko’s Theorem does not
extend to IQC and in particular it does not hold in general for cALC. For instance
C =df ∀R.(D⊔¬D) is a theorem of ALC, but its double negation ¬¬C is not a theorem
of cALC (see Example 4.2.8). There exist several negative translations of classical logic
into intuitionistic logic which also extend to the first-order case. The most well-known
ones are due to Kolmogorov, Gödel & Gentzen, Kuroda and Krivine [94; 265, pp. 56 ff.].
We conjecture that we can modify one of these negative translations (cNNF for short)
for the case of ALC and show by induction on the structure of a concept C that it
is valid in ALC if and only if its translation to cNNF is valid in cALC. For instance,
one can translate each ALC concept with the Gödel–Gentzen translation that puts
double negation in front of each atomic concept, disjunction and existential restriction.
Further, one can show that all ALC-concepts can be transformed into an equivalent
concept in cNNF in linear time and thereof obtain PSpace-hardness of satisfiability in
cALC from PSpace-completeness of ALC. Note that this cNNF normal form is also
different from the usual NNF in classic DLs where negation only occurs immediately
before atomic concepts.

The general formulation of the embedding of cALC into ALCR∗ with respect to
TBoxes comes as a consequence from Proposition 6.1.1.

Theorem 6.1.2 (Classic embedding). Let Θ be a constructive TBox and Γ be a finite
set of cALC-concepts. For every cALC concept C,

Θ; Γ C if and only if ALCR∗; Θ′; Γ′
cs τ(C),

where Θ′ =df {τ(D) | D ∈ Θ} and Γ′ =df {τ(D) | D ∈ Γ}. ∇

211

6 The Relation of cALC to Classical Description Logics

Proof. Proof by contraposition. (⇐) Suppose that Θ; Γ ̸ C, i.e., there exists an
interpretation I and an entity a ∈ ∆I such that I Θ, I; a Γ but I; a ̸ C. Then,
Lemma 6.1.2 (6.2) lets us conclude τ(I) cs τ(Θ), τ(I); a cs τ(Γ) and τ(I); a ̸ cs τ(C)
in ALCR∗ .

(⇒) Analogously to the former direction by Lemma 6.1.2 (6.1). □

Regarding TBoxes, it has been shown for ALC that subsumption without a TBox as
well as with acyclic TBoxes is PSpace-complete while it increases to ExpTime-
completeness for general TBoxes [16].

ExpTime-hardness of cALC will be established as follows, showing that all valid
ALC concepts C hold in cALC as well if we assume PEM and the duality of ∀R and
∃R for the subformulæ of C.

Definition 6.1.5. Let Γ be a finite set of concepts. The classical forcing of Γ is
denoted by CL(Γ) by taking

CL(Γ) =df {D ⊔ ¬D | D ∈ sub(Γ)}
∪ {∃R.D ⊔ ∀R.¬D,¬∃R.⊥ | ∃R.D ∈ sub(Γ)},

where sub(Γ) denotes the set of subformulæ of all concepts in Γ. ∇

Lemma 6.1.4. For every ALC concept C and finite set of concepts Γ,

∀Ics,∀x ∈ ∆Ics . Ics;x cs C if and only if τ †(Ics);x C, and (6.3)

∀D ∈ sub(Γ),∀I,∀y ∈ ∆I
c .

I; y CL(Γ) ⇒

I; y D if and only if τ ‡(I); y cs D

,

(6.4)

using the translations τ † and τ ‡ by taking

τ †(Ics) =df (∆Ics , id∆Ics , ∅, ·Ics);
τ ‡(I) =df (∆I

c , ·I
‡),

where id∆Ics denotes the identity relation over ∆Ics and ·I‡ is given by

A‡ =df A
I ; and

R‡ =df {(x, z) | ∃y, z ∈ ∆I
c . x ⪯I yRIz}. ∇

Proof. First, one shows analogously to the proof of Lem. 6.1.1 that the translation
τ †(Ics) of a classical model gives a constructive interpretation according to Def. 4.2.2,
and that τ ‡(I) yields a classical ALC interpretation.

212

6.1 Embedding cALC into classical Description Logics

The proof of (6.3) is straightforward by induction on the structure of concept C.
For (6.4) let D ∈ sub(Γ), I and a ∈ ∆I

c be arbitrary, and I‡ =df τ
‡(I). Suppose that

I; a CL(Γ). We proceed by induction on the structure of concept D. Note that the
proof requires the classical forcing of Γ to argue the cases for ⊃,∃R and ∀R.
(Case A) I; a A, i.e., a ∈ AI holds iff by the definition of τ ‡ it holds that a ∈ AI‡

iff I‡; a cs A.

(Case ⊥) (⇒) I; a ⊥ does not hold, since by assumption a ̸∈ ⊥I .

(⇐) I‡; a cs ⊥ does not hold classically.

(Case C ⊓D) I; a C ⊓D holds iff I; a C and I; a D, which by the ind. hyp.
hold iff I‡; a cs C and I‡; a cs D, and by Def. 4.2.2 iff I‡; a cs C ⊓D.

(Case C ⊔D) By ind. hyp. similarly to (Case C ⊓D).

(Case C ⊃ D) (⇒) Assume that I; a C ⊃ D, i.e., for all ⪯I-refinements a′ of a
if a′ ∈ CI then a′ ∈ DI . We have to prove that I‡; a cs C ⊃ D. Suppose that
I‡; a cs C. It follows from the ind. hyp. that I; a C from which the assumption
implies that I; a D. Another application of the ind. hyp. yields I‡; a cs D. Thus,
I‡; a cs C ⊃ D.

(⇐) Suppose that I‡; a cs C ⊃ D, i.e., a ̸∈ CI‡ or a ∈ DI‡ . Let a′ ∈ ∆I such that
a ⪯I a′ and assume that I; a′ C.

Case 1. If a′ ∈ ⊥I then immediately a′ ∈ DI .

Case 2. Otherwise, a′ ̸∈ ⊥I . Now, observe that C ⊔ ¬C ∈ CL(Γ) and by the
assumption it holds that I; a C ⊔ ¬C. We can conclude from the latter and the
assumption I; a′ C that I; a C, since otherwise I; a ¬C contradicts our
assumption. The ind. hyp. lets us conclude that I‡; a cs C. Then, it follows by the
assumption that I‡; a cs D and the ind. hyp. yields I; a D. Now, monotonicity
of ⪯I (Prop. 4.2.2) implies that I; a′ D.

Hence, I; a C ⊃ D.

(Case ∃R.C) (⇒) Assume that I; a ∃R.C. Moreover, observe that ¬∃R.⊥ ∈
CL(Γ) by Def. 6.1.5 and I; a ¬∃R.⊥ by assumption. This means that there exists
a′ ∈ ∆I with a ⪯I a′ such that all its RI-successors are infallible. Monotonicity
of refinement (Prop. 4.2.2) implies I; a′ ∃R.C, i.e., by reflexivity of ⪯I holds
a′ ⪯I a′ and there exists b ∈ ∆I with a′ RI b such that b ∈ CI . Now, observe that
b ̸∈ ⊥I by assumption and a′ ̸∈ ⊥I by Prop. 4.2.1. Then, the definition of τ ‡ implies
that a RI‡

b. At this point we can apply the ind. hyp. to obtain I‡; b cs C. Hence,
I‡; a cs ∃R.C.

213

6 The Relation of cALC to Classical Description Logics

(⇐) Assume that I‡; a cs ∃R.C, i.e., ∃b ∈ ∆I‡ such that a RI‡
b and b ∈ CI‡ . By

the definition of τ ‡ it holds that there exist a′, b ∈ ∆I
c such that a ⪯I a′ RI b and

the ind. hyp. implies b ∈ CI . Since, ∃R.C ⊔ ∀R.¬C ∈ CL(Γ) by Def. 6.1.5 it holds
by assumption that I; a ∃R.C ⊔ ∀R.¬C. If I; a ∀R.¬C then this contradicts
the assumption that b ∈ CI . Thus, I; a ∃R.C.

(Case ∀R.C) (⇒) Suppose I; a ∀R.C, i.e., ∀a′, b ∈ ∆I . a ⪯I a′RI b implies b ∈ CI .
Let b ∈ I‡ such that a RI‡

b. The definition of τ ‡ implies that b ∈ ∆I
c and there

exists a′ ∈ ∆I
c such that a ⪯I a′RI b, and the assumption implies that b ∈ CI . Now,

the ind. hyp. lets us conclude that b ∈ CI‡ . Hence, I‡; a cs ∀R.C.

(⇐) Proof by contraposition. Let us assume that I; a ̸ ∀R.C, i.e., there exist
a′, b ∈ ∆I

c such that a ⪯I a′ RI b and I; b ̸ C. The definition of τ ‡ implies a RI‡
b

and the ind. hyp. lets us conclude that I‡; b cs C. Hence, I‡; a ̸ cs ∀R.C. □

We obtain from (6.3) the following:

Corollary 6.1.2. For all finite sets of concepts Γ,

∀Ics,∀x ∈ ∆Ics . τ †(Ics);x CL(Γ). ∇

Proposition 6.1.2. For every ALC concept C,

ALC; ∅; ∅ cs C if and only if CL({C}); ∅ C. ∇

Proof. (⇒) Suppose that ALC; ∅; ∅ cs C. Let I be a constructive interpretation,
a ∈ ∆I

c and suppose that I CL({C}). The translation τ ‡(I) yields a classical
interpretation. The assumption implies τ ‡(I); a cs C. Then, Lem. 6.1.4 (6.4) yields
I; a C. Thus, CL(C); ∅ C.

(⇐) Assume that CL({C}); ∅ C. Let Ics be an ALC interpretation and a ∈ ∆Ics .
The translation τ †(Ics) yields a constructive interpretation. By Cor. 6.1.2 follows that
τ †(Ics); a CL({C}). Then, the assumption implies τ †(Ics); a C. Now we can apply
Lem. 6.1.4 (6.3) to obtain Ics; a cs C as desired. Hence, ALC; ∅; ∅ cs C. □

Theorem 6.1.3. Let Θ be a ALC TBox and Γ be a finite set of ALC-concepts. For
every ALC concept C,

ALC; Θ; Γ cs C if and only if Θ ∪ CL(Θ ∪ Γ ∪ {C}); Γ C. ∇

Proof. Analogously to the proof of Thm. 6.1.2, but relying on Lem. 6.1.4. □

214

6.1 Embedding cALC into classical Description Logics

Theorem 6.1.4 (Complexity w.r.t. general TBoxes). Satisfiability and subsumption
of concepts in cALC w.r.t. general TBoxes is ExpTime-complete. ∇

Proof. ExpTime-completeness is a consequence of Thm. 6.1.3 and Thm. 6.1.2. □

While ExpTime-completeness w.r.t. general TBoxes transfers to cALC as a con-
sequence of Thm. 6.1.2 and Thm. 6.1.3, the PSpace-completeness w.r.t. simple
TBoxes does not carry over relatively to the embedding of cALC into ALCR∗ . This is
due to the translation of a constructive TBox into an ALCR∗ TBox. In particular, the
application of the translation defined by Def. 6.1.2 to a simple cALC TBox does not
yield a simple ALCR∗ TBox but rather a special form of a general TBox. We conjecture
that we can alter the translation of Def. 6.1.2 to

τ(A) = ∀⪯.(F ⊔ A);
τ(⊥) = ∀⪯.F ;

τ(C ⊃ D) = ∀⪯.(τ(C) ⊃ τ(D));
τ(¬C) = τ(C ⊃ ⊥);

τ(C ⊙D) = τ(C) ⊙ τ(D), where ⊙ ∈ {⊓,⊔};
τ(∃R.C) = ∀⪯.(∃R.τ(C));
τ(∀R.C) = ∀⪯.(∀R.τ(C));

while still preserving validity w.r.t. the embedding into ALCR∗ . The translation above
corresponds to an extension of the embedding of PLL into S4 ⊗ S4 as reported by
Fairtlough and Mendler [90, p. 19]. This translation uses the non-trivial translation
of fallible ⊥ into ∀⪯.F . Under this view and the fact that TBox axioms hold at all
worlds, the translation of a simple TBox axiom A ⊃ C is as follows:

τ(A ⊃ C) = τ(A) ⊃ τ(C).

This means, that a simple (constructive) TBox Θ containing only simple axioms of
the form A1 ⊃ C1, . . . , An ⊃ Cn is translated into a classical TBox containing axioms
where the left side is boxed by ∀⪯, i.e., ∀⪯.(F ⊔A1) ⊃ τ(C1), . . . ,∀⪯.(F ⊔An) ⊃ τ(Cn).
We leave it as an open problem whether reasoning relative to this special form of a
left-universal restricted simple TBox remains PSpace-complete for classical ALC.

6.1.3 Decidability and Finite Model Property

The embedding of cALC into the fusion (S4n ⊗ Km) allows to transfer further results
to cALC. Gabbay et al. [103, Chapter 4] show that Kripke completeness, the finite

215

6 The Relation of cALC to Classical Description Logics

model property (fmp), decidability and the interpolation property are preserved under
fusions of modal logics. We exhibit this result to show that the embedding of cALC
into ALCR∗ yields a further opportunity to establish decidability and the finite model
property for cALC. The decidability of cALC is a direct consequence of Thm. 6.1.2.

Theorem 6.1.5 (Decidability). cALC is decidable. ∇

Proof. From decidability of Km and S4n [130], and the result by Gabbay et al. [103,
Thm. 4.12], saying that decidability is preserved under fusions of multimodal logics,
we can conclude the decidability of ALCR∗ = (S4n ⊗ Km). Then, decidability of cALC
follows from the embedding into ALCR∗ by Theorem 6.1.2. □

Theorem 6.1.6 (Finite model property). cALC has the finite model property, i.e.,
C if and only if C in all finite interpretations. ∇

Proof. According to Gabbay et al. [103, Thms. 1.21, 1.25, 1.26] the logics K and S4
have the finite model property and it is preserved under their fusion [103, Thm. 4.2].
Therefore, we can conclude that Km and S4n have the fmp, where Km is the m-fusion
of K and S4n the n-fusion of S4 respectively. According to this construction, the fusion
(S4n ⊗ Km) = ALCR∗ has the fmp as well. We proceed by contraposition.

(⇒) Suppose ̸ C, i.e., there exists a pair (I, a) with a ∈ ∆I such that I; a ̸ C.
From Lem. 6.1.2 it follows that τ(I); a ̸ cs τ(C) in ALCR∗ . Since ALCR∗ has the
fmp, the former also holds in a finite model Ics. Def. 6.1.4 lets us translate the finite
model Ics to a finite cALC model τ ′(Ics). Applying Lem. 6.1.2 yields ̸ C in the finite
interpretation τ ′(Ics), observing that τ ′(Ics) preserves finiteness.

(⇐) If I ̸ C holds in some finite interpretation I then obviously ̸ C. □

The fmp w.r.t. TBoxes corresponds to the fmp w.r.t. the global consequence re-
lation. It can be obtained as an extension of Thm. 6.1.6 by utilising the existing
results for the systems K and S4 [103, page 34 ff.], which that state that their global
consequence relation is determined by finite frames and the internalisation of their
global consequence relation via universal modalities 2∀, 3∃ has the fmp as well, where
2∀ denotes ‘[. . .] everywhere in the model [and 3∃ stands for] somewhere in the model
[. . .]’ [103, p. 37]. For a n-modal logic L this is by taking the n + 1-modal logic
LU =df L ⊕ {axioms of S5 for2∀ ,3∃ } ⊕ {2∀ C ⊃ 2iC | 1 ≤ i ≤ n}, according to [103,
p. 38].

Then, one shows that cALC with a TBox Θ can be embedded into the bimodal system
(S4 ⊗ Km)U where the axioms of the TBox are translated and conjoined [16, pp. 335 f.]
to a single axiom Θ̂ =df

D∈Θ τ(D) and internalised via the universal modalities of

(S4 ⊗ Km)U to demonstrate that (S4 ⊗ Km)U ; ∅; ∅ 2∀ Θ̂ ⊃ τ(C) iff cALC; Θ; ∅ C.

216

6.2 The Fragment UL

6.2 The Fragment UL

This section summarises our result from [192] showing that the complexity of subsump-
tion checking in UL is more efficient (tractable) if the constructive semantics are adopted.

6.2.1 Introduction to Tractable DLs

In recent years, besides the research on very expressive DLs, there has been an increasing
interest in lightweight DLs with limited expressive power. Several useful fragments
with tractable reasoning problems, even in the presence of general TBoxes, have been
identified [14; 15; 18–20; 22; 47; 48; 121; 122]. Lightweight DLs have applications
in large scale ontologies, in life sciences like SNOMED CT [67; 152] and bio-medical
domains [18]. The key reasoning task in DLs is to decide whether a concept is subsumed
by another concept w.r.t. a TBox. It is well-known [16] that the complexity of deciding
the latter inference problem depends on (i) the expressivity of the language, (ii) the
structure of the TBox formalism used, i.e., whether the TBox allows for acyclic, cyclic
or even general concept inclusion axioms (GCIs), and (iii) the semantic interpretation
of the logical connectives. Because some applications which are dealing with large
scale ontologies do not require the expressivity of ALC or even more expressive DLs
like OWL DL, but focus on efficiency of reasoning and therefore require tractable
decision problems, restricted languages below ALC have been considered. The research
in DLs focussed in the past mainly on two strands among these so-called sub-Boolean
formalisms, that is,

(i) the family of FL-type languages which starts from the fragment FL0 consisting
of {∀,⊓}, and

(ii) the family of EL-type languages which is based on the operator set {∃,⊓}.

For FL0 it is known that subsumption checking is PTime for empty TBoxes [174],
it becomes coNP-complete for acyclic TBoxes [212], while for cyclic TBoxes it is
PSpace-complete under the descriptive semantics [154] as well as greatest and least
fixed point semantics [20]. However, it increases to ExpTime-complete in the presence
of GCI’s under the descriptive semantics [14; 143].

Example 6.2.1 ([112]). Even restricted languages like FL0 are capable of expressing
interesting and useful concept definitions involving cycles, e.g., one can represent in
FL0 the concept of a finite acyclic directed graph by the following expression [112]:

Dag ≡ Node ⊓ ∀arc.Dag. ■

217

6 The Relation of cALC to Classical Description Logics

On the other side, it has been shown for the language EL that the subsumption check-
ing problem w.r.t. both cyclic and acyclic TBoxes is tractable and remains PTime
under the descriptive semantics as well as greatest and least fixed point semantics [22].
Moreover, this even holds under the descriptive semantics if general TBoxes are ad-
mitted [47; 143]. In general, the EL-family can be characterised as the fragment that
is behaving more efficiently complexity-wise, and this is even preserved for a larger
set of language extension, in contrast to the FL-family. The tractability of EL and
of its extensions has been investigated in detail in [14; 15; 47] and in particular there
exist several extensions of EL, which remain tractable, such as adding the constants
⊥, ⊤, nominals, concrete domains and more [15]. The addition of disjunction ⊔ to EL
known as ELU , which brings back Boolean expressiveness, increases the complexity
of subsumption to coNP-hardness [47] for empty TBoxes, PSpace for acyclic and
ExpTime-completeness for cyclic and general TBoxes [14]. See [122] for an overview
of the EL family and [18] for a discussion on the practicability of EL and of its extension
EL+ in the context of bio-medical applications.

The investigation of tractable fragments below ALC seems to be reasonable, in
particular for applications that demand for large-scale ontologies, involve mass data
or interact with real-time sensor data. But also from a theoretical viewpoint it is
expedient to further examine sub-Boolean languages below ALC, since there is still
some undiscovered territory left to be explored, which has been motivated by Mendler
and Scheele [192] as follows:

‘ On the one hand, the existing fragments FL and EL represent only two of
the four corners of the Aristotelian classification square [145, Chap. 1]: FL0

with {∀,⊓} permits us to make general statements of the form “all S are
P” while EL with {∃,⊓} corresponds16 to “some S are P”. Less attention
has been given to the so-called contraries “no S is P” and “not all S are
P” which correspond to fragments {∀,⊔} and {∃,⊔}. Are these also useful
as a basis in specific applications and if so what are their complexities?
On the other hand, there is the semantics issue: The standard descriptive
semantics which follows a classical Tarskian model-theory is not the only
reasonable way of interpreting concept description languages. There is the
Scottian least fixed or greatest fixed point view for cyclic TBoxes introduced
by Nebel [211] or the automata-theoretic interpretation of Baader [20]. Also,
the concept algebras introduced by Dionne et al. [81; 82] provide alternative
ways of giving intensional semantics to concept descriptions and TBoxes.

16To see this consider conjunction ⊓ as representing generic affirmative statements with ⊤ as nullary
case and disjunction ⊔ as a generic refutative statement with ⊥ as the degenerated case. Of course,
the refutation about ⊔ consists in giving choices, thus avoiding commitment.[192, p. 2]

218

6.2 The Fragment UL

Depending on application and language fragment some of these may be
more appropriate than the classical descriptive semantics. The semantics
issue, too, leaves room for further systematic investigations. ’ [192, p. 2]

6.2.2 The Language UL

The following section is devoted to the {∃,⊔} fragment of ALC which is called UL. It
is inspired by Hofmann’s approach [143] who rephrases Baader’s [21] and Brandt’s [47]
results on PTime for EL in terms of Gentzen proof systems.

Concept descriptions of this class are formed according to the following definition.

Definition 6.2.1 (Constructive UL [192, p. 5]). The set of well-formed concept
descriptions C,D over signature Σ = (NC , NR) consisting of two denumerably infinite
and pairwise disjoint alphabets of concept names NC and role names NR, is defined
inductively by the following grammar, where A ∈ NC and R ∈ NR.

C,D ::= A | ⊤ | ⊥ | C ⊔D | ∃R.C. ∇

We remark, that in this fragment it is possible to include unconditional negative and
positive axioms ¬C and C in TBoxes just like in the classical setting. This can be
implemented by using TBox axioms of the form C ⊃ ⊥ and ⊤ ⊃ C. For the remaining
section we will consider TBoxes Θ that only include subsumptions of the form C ⊃ D

where both C and D are ⊃-free. The PTime result will hold for the guarded fragment
of UL, which is according to the following definition.

Definition 6.2.2 (Existentially guarded concept [192, p. 5]). A concept E is existen-
tially guarded if it is generated by the following grammar over signature Σ = (NC , NR):

E ::= A | ⊤ | ⊥ | ∃R.C,

where A ∈ NC , R ∈ NR and C is an UL concept. A general UL TBox Θ is existentially
guarded if the conclusion E of all axioms C ⊃ E ∈ Θ is existentially guarded. ∇

Intuitively, an existentially guarded concept E is restricted such that all disjunctions
appearing in E are guarded behind existential quantifiers.

219

6 The Relation of cALC to Classical Description Logics

6.2.3 Existentially Guarded UL0 is ExpTime-hard for Classical
Descriptive Semantics

It has been proven by Mendler and Scheele [192] that the subsumption checking problem
in FL0 w.r.t. the classical semantics can be reduced in linear time to the problem of
subsumption checking in UL0, where UL0 denotes the fragment of UL without the
constants ⊤,⊥ and relative to guarded UL0 TBoxes. The language FL0 consists only
of the operators {∀,⊓} and allows for expressing concept conjunction and universal
restriction. FL0 concepts C over signature Σ = (NC , NR) are generated by the grammar

C ::= A | C ⊓D | ∀R.C,

where A ∈ NC and R ∈ NR. The following proof is based on the observation that FL0

can be seen as the dual of UL0.

Theorem 6.2.1 ([192, Thm. 1]). UL0 subsumption checking under the classical se-
mantics and relative to existentially guarded (general) TBoxes is ExpTime-hard.

∇

Proof. (Mendler and Scheele [192, p. 5 f.]) The proof reduces the problem of subsump-
tion checking in FL0 to that in UL0 by using a dualisation. This is by taking the dual
d(C) of FL0 concepts C and TBox axioms, and a (linear) expansion exp(Θ) of FL0

TBoxes Θ. The former is by replacing ⊓ →→ ⊔ and ∀ →→ ∃ and by swapping left and
right-hand sides of subsumptions. This means that all TBox axioms are existentially
guarded behind an additional role. One can show that for all FL0 concepts C,D
and general TBoxes Θ of FL0 it holds that Θ;C cs D iff exp(d(Θ)); d(D) cs d(C).
Then, ExpTime-hardness of subsumption checking in UL0 relative to existentially
guarded TBoxes under the classical semantics follows from the fact that subsump-
tion checking in FL0 w.r.t. general TBoxes and relative to the classical semantics is
ExpTime-hard [14; 143]. □

6.2.4 Existentially Guarded UL is in PTime for Constructive
Descriptive Semantics

In [192] it was demonstrated that subsumption checking in UL under the constructive
semantics and relative to existentially guarded TBoxes is in PTime. A PTime
decision procedure for UL can be obtained by pruning the constructive Gentzen-style
sequent calculus for cALC (see Chap. 5.2) to fit the UL fragment. In particular, for

220

6.2 The Fragment UL

existentially guarded UL the sequent calculus G1 for cALC can be restricted to simple
sequents of the form Θ;C D without losing completeness. Such simple sequents corres-
pond to G1 sequents Θ ; Σ ; Γ G1 Φ ; Ψ, where

R∈NR
Σ(R) = ∅ and |Γ| = |Φ ∪ Ψ| = 1.

The restricted calculus G1UL is presented by the rules in Fig. 6.1. Like the sequent
system G1 in Chap. 5.2, the calculus G1UL is formulated in the style of Gentzen with
left introduction rules ⊔L, ⊃L, ∃LR, ⊥L and right introduction rules ⊔R1, ⊔R2, ∃LR,
⊤R for each logical connective of UL.

Ax
Θ ; C C

⊥L
Θ ; ⊥ C

⊤R
Θ ; C ⊤

Θ ; E C
⊔R1

Θ ; E C ⊔D

Θ ; E D
⊔R2

Θ ; E C ⊔D

Θ ; C E Θ ; D E
⊔L

Θ ; C ⊔D E

Θ ; E C Θ ; D F
⊃L

Θ, C ⊃ D ; E F

Θ ; C D
∃LR

Θ ; ∃R.C ∃R.D

Figure 6.1: Gentzen sequent rules for UL [192, p. 7].

Note that the rule ∃LR combines the left and right introduction rules for ∃R from
G1. This is possible because of the following properties which can easily be observed
from the simple representation of the rules ∃L and ∃R as depicted by Fig. 6.2: (i) The
mappings of the form [R →→ C] are never present at the left-hand side of a sequent, since
due to the absence of universal restriction (operator ∀R) in UL there is no corresponding
introduction rule. (ii) On the right-hand side, a mapping of the form [R →→ C] can only
be introduced by the (simple) G1 rules ⊥L and ∃L, and only be used by rule ∃R.

Θ ; ∅ ; C G1 D ; ∅
∃L

Θ ; ∅ ; ∃R.C G1 ∅ ; [R →→ D]
Θ ; ∅ ; C G1 ∅ ; [R →→ D]

∃R
Θ ; ∅ ; C G1 ∃R.D ; ∅

Figure 6.2: ∃L and ∃R as simple rules.

The following definition restricts the notion of a satisfiable sequent (Def. 5.2.2) to
(simple) UL sequents.

Definition 6.2.3 (Constructive satisfiability [192, p. 6] of UL sequents). Satisfiability
of UL sequents is phrased in terms of Def. 5.2.2 by viewing an UL sequent Θ;C G1UL

D

as an abbreviation for the G1 sequent Θ ; ∅ ; {C} G1 {D} ; ∅. Remember, that Θ;C D

expresses that concept C is subsumed by concept D w.r.t. the TBox Θ (see Lem. 4.2.3).
Then, the statement that the pair (I, a) satisfies the sequent Θ;C D is equivalent to
expressing non-subsumption, i.e., Θ;C ̸ D. Analogously to Def. 5.2.2, we will write
Θ;C ̸ D to denote that the sequent Θ;C D is satisfiable. ∇

221

6 The Relation of cALC to Classical Description Logics

Proposition 6.2.1 (Cut admissibility [192, p. 7]). In the proof system of Fig. 6.1 the
cut rule is admissible, i.e., if Θ;C D and Θ;D E then Θ;C E. ∇

Proof. The proof was not included in [192]. Given derivations π1 of Θ;C D and π2

of Θ;D E we show how to transform π1 and π2 to a derivation π3 of Θ;C E. The
proof is by induction on the structure of the cut formula D and the derivations π1

and π2 and uses the following left weakening rules (global and local), which are easily
proven to be admissible by induction on derivations:

Θ ; C D
wLg

Θ, E ; C D

Θ ; ⊤ D
wLl

Θ ; C D

The argument is standard and the more interesting cases are the principal cuts, i.e.,
the cases where the cut formula D is concluded by a right rule for one of the operators
⊤, ⊥, ⊔, ∃ in π1 and used by a left rule in π2 for the corresponding operator.

Case 1. π1 is either an axiom, a conclusion of ⊥L or ends in ⊤R.

Subcase 1.1. If π1 is an axiom then D = C.
π1 = Ax

Θ ; C C

Then, π2 = Θ;C E.

Subcase 1.2. π1 is ends in ⊥L.

π1 = ⊥L
Θ ; ⊥ D

The derivation π3 can be concluded by ⊥L.

Subcase 1.3. If π1 ends in ⊤R then D = ⊤.
π1 = ⊥L

Θ ; C ⊤

This implies that π2 = Θ; ⊤ E and we obtain the desired derivation Θ;C E

from π2 by left-weakening wLl.

Case 2. π2 is an axiom, a conclusion of ⊥L or ends in ⊤R.

Subcase 2.1. π2 is an axiom, i.e., D = E:

π2 = Ax
Θ ; E E

In this case, π1 = Θ;C E.

222

6.2 The Fragment UL

Subcase 2.2. π2 ends in ⊥L, i.e., D = ⊥:
π2 = ⊥L

Θ ; ⊥ E

Either π1 is an axiom and Θ; ⊥ E follows by ⊥L, or π1 = Θ;C ⊥ is derived
by one of the left rules ⊥L, ⊔L or ⊃L. Note that the three cases with D = ⊥
correspond to special cases of the transformations given below.

(i) If the left rule is ⊥L then π1 = Θ; ⊥ ⊥ and the derivation of π3 is an
immediate consequence by rule ⊥L, just like before.

(ii) If the left rule is ⊔L then π1 looks like
π11

Θ ; C1 ⊥
π12

Θ ; C2 ⊥
π1 = ⊔L

Θ ; C1 ⊔ C2 ⊥

and the induction hypothesis lets us cut π11 and π12 with π2 to get Θ;C1 E

and Θ;C2 E from which we obtain Θ;C1 ⊔ C2 E by rule ⊔L.

(iii) If the left rule is ⊃L then π1 looks like
π11

Θ ; C F
π12

Θ ; G ⊥
π1 = ⊃L

Θ, F ⊃ G ; C ⊥

By induction hypothesis we can cut π12 with π2 to get Θ;G E, and then
obtain π3 from the latter and π11 by rule ⊃L.

Subcase 2.3. π2 ends in ⊤R and E = ⊤.
π2 = ⊥L

Θ ; D ⊤

Then, the desired derivation Θ;C ⊤ is an immediate conclusion of ⊤R.

Neither premise π1, π2 is an axiom, a conclusion of ⊥L nor ends in ⊤R:

Case 3. The cut formula D is principal in π1 and π2. These are the interesting cases
where π1 is concluded by a right rule and used by a left rule in π2. We have
the following subcases:

Subcase 3.1. D = D1 ⊔D2, π1 ends in ⊔R1 and π2 in ⊔L.
π11

Θ ; C D1π1 = ⊔R1
Θ ; C D1 ⊔D2

π21

Θ ; D1 E
π22

Θ ; D2 E
π2 = ⊔L

Θ ; D1 ⊔D2 E

By the induction hypothesis, we can cut π11 with π21 to obtain Θ;C E. The
argument runs analogously if π1 ends in ⊔R2 and π2 in ⊔L, where we can cut
by induction hypothesis π11 with π22 to get derivation Θ;C E.

223

6 The Relation of cALC to Classical Description Logics

Subcase 3.2. D = ∃R.D1, and π1 ends in ∃LR, i.e., C = ∃R.C1:

π11

Θ ; C1 D1π1 = ∃LR
Θ ; ∃R.C1 ∃R.D1

Then, we only have to consider the case that π2 is a conclusion of rule ∃LR,
i.e., E = ∃R.E1 and

π21

Θ ; D1 E1π2 = ∃LR
Θ ; ∃R.D1 ∃R.E1

The induction hypothesis lets us cut π11 with π21 to get Θ;C1 E1, from which
we obtain Θ; ∃R.C1 ∃R.E1 by rule ∃LR.

Case 4. The cut formula D is not principal in π1, i.e., it is not derived by a right rule.
We have to consider two cases:

(i) π1 is derived by rule ⊔L, i.e.,
π11

Θ ; C1 D
π12

Θ ; C2 D
π1 = ⊔L

Θ ; C1 ⊔ C2 D

Then, by induction hypothesis we can cut π11 and π12 with π2 which
yields Θ;C1 E and Θ;C2 E, and thereof obtain Θ;C1 ⊔ C2 E1 by
rule ⊔L.

(ii) If the last rule in π1 is ⊃L we have the following situation:

π11

Θ ; C F
π12

Θ ; G D
π1 = ⊃L

Θ, F ⊃ G ; C D

and π2 is Θ, F ⊃ G;D E. Weakening of π12 by rule wLg gives Θ, F ⊃
G;G D which we can cut by ind. hyp. with π2 to obtain Θ, F ⊃
G;G E. Thereof and from π11 we can conclude Θ, F ⊃ G;C E by
rule ⊃L.

Case 5. The cut formula D is not principal in π2.

Subcase 5.1. π2 ends in ⊔R1, i.e., E = E1 ⊔ E2 and we have for π2 the following:
π21

Θ ; D E1π2 = ⊔R1
Θ ; D E1 ⊔ E2

224

6.2 The Fragment UL

By the induction hypothesis we can cut π1 with π21 which yields Θ;C E1 and
thereof obtain Θ;C E1 ⊔ E2 by rule ⊔R1. If π2 ends in ⊔R2 the argument is
symmetrically, i.e., the ind. hyp. lets us cut π1 with π22 to get the derivation
Θ;C E2 and thereof obtain the goal by rule ⊔R2.

Subcase 5.2. If π2 ends in ⊃L then we have the following situation:
π21

Θ ; D F
π22

Θ ; G E
π2 = ⊃L

Θ, F ⊃ G ; D E

and π1 is Θ, F ⊃ G;C D. We can apply left global weakening wLg to π21

which yields Θ, F ⊃ G;D F . Then, by the ind. hyp. we can cut π1 with the
latter derivation to obtain Θ, F ⊃ G;C F . An application of rule ⊃L to the
latter derivation and π22 gives us Θ, F ⊃ G;C E as desired. □

Under Def. 6.2.3, completeness of the UL calculus of Fig. 6.1 means that the sequent
Θ;C D is satisfiable if no proof for it can be found. Soundness expresses that if the
sequent Θ;C D is derivable then Θ;C D, i.e., C is subsumed by D. Here, we only
give an indication of what is involved, and refer the reader to [192] for the full proof of
soundness and completeness of the calculus G1UL.

Proposition 6.2.2 ([192, Prop. 4]). The rules in Fig. 6.1 are sound for constructive
subsumption in UL and complete relative to existentially guarded (general) TBoxes Θ.

∇

Proof. (Mendler and Scheele [192]) The soundness direction, viz. that Θ;C D implies
Θ;C D, is no surprise and follows immediately from soundness of the calculus G1.
Like before, it can be proven by induction on derivations, analogously to the proof of
Thm. 5.2.2.

The proof of the completeness direction is by a canonical model construction and
relies on admissibility of the cut rule in G1UL (see [192] for the details). □

Theorem 6.2.2 ([192, Thm. 2]). Subsumption checking in UL under the constructive
semantics and relative to existentially guarded (general) TBoxes is in PTime. ∇

Proof. (Mendler and Scheele [192]) Let Θ be an existentially guarded TBox and C,D

concept descriptions in UL. A subsumption C ⊃ D relative to Θ can be decided thanks
to Prop. 6.2.2 by proof search using the rules from Fig. 6.1.

Because of the subformula property it is the case that each possible node in a sequent
derivation tree is determined by a pair of concept descriptions in sub(Θ ∪ {C,D}).
Therefore, the number of possible nodes in a derivation tree is at worst quadratic in

225

6 The Relation of cALC to Classical Description Logics

the size of the TBox Θ. One can systematically tabulate all pairs (X, Y) ∈ sub(Θ ∪
{C,D})2 such that Θ;X G1UL

Y using dynamic programming memorisation techniques
and hereby decide any fixed subsumption in polynomial time. □

In [192], it was conjectured that the PTime result extends directly to UL−, which
is UL plus limited universal quantification ∀R.⊥. In this case, one can exploit the fact
from constructive logic that modalities are not interdefinable such that ∀¬ is not the
same as ¬∃, which can be of an advantage complexity-wise. Another, and even more
interesting extension is by adding conjunction ⊓ to UL which yields a constructive
version of ELU . This is of particular interest as the fragment EL has turned out to
be of practical usefulness in bio-medical applications [18]. However, the problem of
checking subsumption in ELU has turned out to be coNP-complete w.r.t. empty
TBoxes, PSpace-complete w.r.t. acyclic TBoxes, and it increases to ExpTime-
complete in the presence of cyclic and general TBoxes [48; 121; 122]. In the case of
ELU we expect coNP-hardness, but hopefully not more, since the Boolean reasoning
should remain safely contained between the levels of existential restrictions, due to the
lack of disjunctive distribution under the constructive semantics, so that the Boolean
combinatorics does not spill over quantifiers. It is an open question whether ELU under
the constructive semantics and relative to existentially guarded (cyclic or general)
TBoxes behaves better complexity-wise than under the classical descriptive semantics.

6.3 Summary

In this chapter we have defined an embedding of cALC into the fusion S4n ⊗ Km,
which corresponds to the DL ALCR∗ . The embedding allows to transfer results from
classical bimodal logics to cALC and we demonstrated that the problem of checking
satisfiability or subsumption of a cALC concept without TBoxes is PSpace-complete
while it increases to ExpTime-complete w.r.t. to general TBoxes. However, the
PSpace-complexity of reasoning w.r.t. simple TBoxes in ALCR∗ does not trivially
transfer to cALC which is due to our translation of formulæ, that is, the translation of
a simple cALC TBox does not yield a simple ALCR∗ TBox. We leave it for future work
whether the PSpace result can be established for the mentioned reasoning problems
w.r.t. simple cALC TBoxes under a modified translation. Further results transferred
via the embedding include the finite model property and decidability of cALC. The
embedding has been positively evaluated using the classical reasoner Racer17 [119]. The
section on the fragment UL highlights that the choice of semantic interpretation can
cause an advantage regarding the complexity of reasoning in a DL. UL represents a
17Racer is available from http://racer.sts.tuhh.de/.

226

http://racer.sts.tuhh.de/

6.3 Summary

special fragment of cALC that allows only for disjunction and existential restrictions,
and requires that TBox axioms are restricted to include only existentially guarded
disjunctions in the right-hand side of each axiom. The complexity of subsumption
checking in UL with respect to general TBoxes reduces from ExpTime to PTime if
the constructive semantics is adopted [192]. However, as long as there is no application
domain identifiable for the UL fragment these results are only of theoretical interest.
It remains an open question whether this approach can be extended to more expressive
DLs in directions that may lead to practical applications.

Notes on Related Work

IPC The proof of PSpace-hardness is usually done via a polynomial-time reduction
to the well-known quantified Boolean formula problem (QBF), which is PSpace-
complete [108; 223]. It has been shown firstly by Statman [253] that the problem of
deciding validity of an intuitionistic propositional formula is PSpace-complete, using
a natural reduction from QBF to IPC via proof-theoretic methods. Later, Švejdar [256]
presented a simplified proof that the decision problem of IPC is PSpace-complete.
His method is not relying on particular properties of IPC (like soundness, completeness,
etc.) but only concentrates on the reduction of QBF and argues purely semantically.

Classical DLs Schmidt-Schauß and Smolka [247] prove for ALC that deciding satis-
fiability (called coherence in [247]) and subsumption is PSpace-complete, establishing
the PSpace upper bound by using a tracing technique. For the lower bound they use a
reduction from QBF to ALC to show the PSpace-hardness of the satisfiability prob-
lem for ALC. In summary, the complexity of deciding subsumption for ALC relative to
the descriptive semantics without a TBox as well as w.r.t. simple TBoxes is PSpace-
complete, while in the presence of GCI’s it becomes ExpTime-complete [16].

PSpace-hardness of ALCR+ as shown by Sattler [243, Thm. 9] comes from the
PSpace-completeness of ALC and the fact that ALC is a proper sub-language of
ALCR+ , and PSpace-completeness is argued by means of using the tracing tech-
nique [247; 261] for the tableau construction algorithm. For a complete survey of
different notions of transitive roles for DLs see [243]. A detailed study of the complex-
ity of tableau algorithms for description logics including transitive roles and further
extension like inverse roles, role hierarchies, cardinality restrictions (graded modalities),
etc. can be found in [16; 261].

Note that it is essential to use ALCR∗ as the target language of our embedding. The
decision problem of ALCR∗ is known to be PSpace-complete [103, p. 218] by adapting
the proof by Halpern and Moses [130]. For cALC, the reflexivity of ⪯ is the key to
obtain a translation which is polynomial in the size of a concept and therefore gives

227

6 The Relation of cALC to Classical Description Logics

us the PSpace upper bound. There are other possible targets for an embedding of
cALC into a classical description logic as well, for instance a cALC concept C can be
embedded into ALCR+ . In this case, one has to include reflexivity in the translation of a
concept description which leads to an exponential blow-up of the size of the translation
τ(C) of the concept C. It is also possible to represent fallibility of entities by a TBox
axiom F ⊃ ∀⪯ .F ⊓∀R.F ⊓∃R.F for all R ∈ NR, which is problematic due to the cyclic
definition. In the latter case one can internalise the TBox using a universal role [16],
inverse roles and role hierarchies. However, then the decision problem is potentially in
ExpTime.

Constructive DLs Regarding the complexity of the constructive DL KALC, Bozzato
[39, Chap. 3.5] shows that KALC realisability is PSpace-hard using a translation
between IPC and KALC and the well-known result by Statman [253]. He conjectures
that the trace-technique [261], which is a proof strategy for deciding ALC satisfiability,
can be adopted for KALC to yield PSpace-completeness. While KALC assumes
a finite domain, it is unknown whether the system KALC∞, i.e., a variant of KALC
that admits an infinite domain, has the finite model property. Furthermore, Bozzato
[39, Chap. 4] investigates the relation of KALC to KALC∞, IALC∞, IQC and the
multimodal variant of the IML FS/IK, where IALC∞ corresponds to the DL IALC as
proposed by de Paiva [78], but based on a different notation. It has been shown that
the axiom schema KUR =df ∀R.¬¬C ⊃ ¬¬∀R.C known as the Kuroda principle is valid
in KALC and KALC∞, but does not hold in IALC∞ and the IML FS/IK. The latter
fact is used to argue that IALC∞ does not possess the finite model property. The
relation of KALC∞ relative to IQC, extended by the first-order variant of the axiom
KUR, and FS/IK is investigated by giving a faithful translation that preserves validity
of the axiom KUR. For future work it would be interesting to see how cALC and KALC
are related.

In [77, p. 28] the authors put forward as future work the goal to prove the finite
model property for iALC. However, considering that iALC is a notational variant of
multimodal IK, existing results for FS/IK should apply to iALC as well. In particular,
the finite model property for iALC should follow from the existing proofs for the system
IK [118; 249] extended to the multimodal case.

Lax Logic A similar embedding to ours can be found in [90, pp. 18–20], where
Fairtlough and Mendler demonstrate that propositional lax logic (PLL) can be embedded
into the bimodal theory S4⊗S4 with the modalities 2i and 2m, extended by the axiom
schema 2iC ⊃ 2mC, where the intuitionistic accessibility relation is translated into

228

6.3 Summary

2i and the lax modality ⃝ into 2m respectively. The embedding of PLL18 into this
extension of S4 ⊗ S4 differs from ours in that (i) they include the fallible symbol F only
in the translation of atomic formulæ and the constant ⊥ itself, i.e., they translate ⊥
itself into 2if , but omit it from the translation of ⊃ and ⃝, and (ii) translate atomic
A into 2i(A ⊔ f).

IMLs The finite model property of the IML FS/IK has been demonstrated in [118;
249]. General results on the finite model property, decidability and Kripke-completeness
for normal IMLs and for several of their extensions have been proved in [275; 278], by
using an embedding into classical bimodal logics. Alechina and Shkatov [5] present
another general method to prove decidability of IMLs which uses a translation into the
two variable monadic guarded fragment of first-order logic. In particular, their method
also applies for non-normal IMLs, where ∃R (3) does not distribute over disjunction,
like for instance cALC (CK) without fallibility.

Ranalter [235] investigates the relation between CK and FS/IK as a first step to
harmonise their differing proof theory. He shows that CK is a fragment of FS/IK by
using a proof-theoretic embedding based on the natural deduction systems for CK [27]
and IK [249] denoted by NCK and NIK respectively. While NIK comes with proper
introduction and elimination rules for the modal operators, NCK lacks this feature.
Ranalter shows that the modal rules of NCK can be considered as derived rules in
NIK, in the sense that NCK proofs can be embedded into NIK proofs, and he extends
this result to the natural deduction systems of CS4 and IS4. He argues that his method
might also be taken as a modular approach for the intermediate systems between CK
and FS/IK which arise by extending CK with one or more axioms of IK3–IK5.

18The authors of [90] use f for the distinguished concept F and write false for ⊥.

229

CHAPTER 7

Tableau-based Calculus for cALC

This chapter presents a tableau-based calculus for cALC, denoted by TcALC, which
is inspired by the single conclusion sequent calculus for multimodal CK [196], and
follows the style of labelled tableau calculi [16; 25; 216]. According to Negri [216],
such tableau calculi ‘[. . .] provide a conservative extension of the syntax and permit
a methodologically uniform investigation of a vast class of non-classical logics [. . .]’,
and that such systems can be obtained ‘[. . .] by the addition of rules that correspond
to frame properties[. . .]’. In particular, tableau algorithms have turned out to be well-
suited for implementation and optimisation [16, pp. 329 ff.], and have found numerous
practical application in DLs [147; 16, pp. 375 ff.]. Hence, the investigation of tableau
for cALC is important to lay the foundations for future implementations of the cALC
reasoning services, which can be practically used in application domains that demand for
constructive reasoning. The tableau calculus for cALC tries to prove the satisfiability of
a concept or a subsumption relation between two concepts by explicitly constructing a
structure which induces the existence of a (prototypical) model, called pre-model in the
following. It will be shown that every pre-model can be transformed into an appropriate
model. Note that we will not cover ABox reasoning in detail. However, in the final
part we will sketch how constructive reasoning with ABoxes can be implemented by
means of an intuitive example.

7.1 Constraint System

Before we can give a formal definition of the calculus we have to agree on an appropriate
data structure to represent constraints of the form:

• ‘it is true that entity a belongs to concept C’,

• ‘it is false that entity a belongs to concept C’,

• ‘entity a′ is a refinement of entity a’, or

• ‘entity b is an R-filler of entity a’.

231

7 Tableau-based Calculus for cALC

For instance, the first statement is represented in classical ALC by a constraint of the
form a :C where a is a constraint variable (or entity) and C a conceptual assertion (in
ALC simply a concept) that is bound to a.

We follow the idea of [247; 25; 16; 83] by manipulating a special kind of data structure
– a constraint system – by applying a set of satisfiability preserving expansion rules. The
notion of a constraint system to represent the (possibly partial) structure of models
was introduced first by Schmidt-Schauß and Smolka [247] in the context of DLs. Such
a constraint system contains in the usual case a number of entities, for which we assert
their membership to binary relations (roles) and to the extension of concepts. This
is similar to the style of representation of an ABox by Baader and Sattler [25]. In
classical DLs, a constraint can be viewed as an ABox assertion and a set of constraints
corresponds to an ABox. However, this is not the case anymore in constructive logic,
which is based on birelational semantics, as we shall see later.

In contrast to the definition of a classical ALC ABox, our data structure of a
constraint system has to take into account the constructive semantics of cALC. Con-
sequently, in our constraint system we need to add the notion of polarity (also called
signed formulæ) to constraints using the arithmetic symbols + and − to sign concepts.
Intuitively, +C expresses that concept C is true (in some model), while −C asserts
that C is false. This notation embodies the intuitionistic structure of the sequent rules
of G1, by taking the formulæ of the antecedent as + signed concepts and the formulæ
of the succedent with the − sign respectively. Tableau systems with signed formulæ
(+,−) were introduced first by Lis [176, p. 41] for classical logic, and independently
investigated by Smullyan [251, pp. 15 ff.] for classical first-order logic and Fitting [99,
pp. 28 ff.] for IPC, but using the signs T and F instead. In the context of constructive
DLs this notion of polarity has been used by Odintsov and Wansing [219], following
the notation by Lis. The Fitting-style tableau systems for KALC by Bozzato, Ferrari
and Villa [43],[39; 45; 270], are utilising the notation by Smullyan. For a comprehens-
ive introduction to tableau systems and a historical survey see [71], and [16; 25] for
DL-specific tableaux.

Furthermore, we include a special role name to explicitly represent the reflexive and
transitive refinement relation ⪯ between entities, and introduce a special set of entities
to represent the focus of construction. The latter set, called active set, represents
the entities that have been realized in the pre-model at a specific state of the tableau
construction process.

Notation. In the following we denote constraints by the letters c, d, constraint asser-
tions by r, s, and u, v denote variables that occur in a constraint, i.e., these are variables
to which a constraint assertion is bound. ■

232

7.1 Constraint System

Definition 7.1.1 (Constraint, constraint system). Let VE be a set of variable symbols
together with a well-order ≺ on VE. The variables (or entities) of VE are denoted by the
letters u, v and their variants u′, u′′, . . . , v′, v′′, A constraint is a syntactic object
of the following form

u:+C, u:−C, u:−∀RC, u:−∃RC, u R v, u ⪯ u′.

The symbols C,D stand for arbitrary concept descriptions and R ∈ NR is a role
name. A constraint system is a pair S = (C ; A) where C is a finite, non-empty set of
constraints and the second component A ⊆ VE is a set of variables, called the active
set of S, such that every element of A occurs in at least one of the constraints of C.
The set of variables occurring in C is called the support of S, written Supp(S). Note
that A ⊆ Supp(S) ̸= ∅. ∇

Notation. For constraints of the form u:+C, u:−C, u:−∀RC or u:−∃RC we will use
the term conceptual constraints and denote u R v and u ⪯ u′ by relational constraints.
We write u:±C to denote one of {u:+C, u:−C, u:−∃RC, u:−∀RC}. Let S = {C,A}
and S′ = {C′,A′} be constraint systems. We write S′ ⊆ S iff C′ ⊆ C and A′ ⊆ A. ■

The first component C represents a set of assertions which can be viewed as the
realisation of an ABox. Conceptual constraints include polarity (+,−) to express if
either a concept is true at a given entity or false in the other case. For instance, the
constraint u:+C expresses that the concept C is true at the variable u. A negative
constraint u:−C means that ‘C is false at u’, u:−∀RC formulates that ‘C is false in all
constructible (accessible) R-successors of u’ and u:−∃RC denotes that ‘there exists an
R-successor of u in which C is false’. The remaining (relational) constraints represent
accessibility and refinement, i.e., u R v specifies that the ‘entity v is accessible from
entity u via the role R’, whereas u ⪯ u′ says that ‘u′ refines u’.

The second component A is the active set of variables. Accordingly, the elements of
Supp(S) \ A are called inactive. The applicability of the tableau rules is restricted to
constraints which are bound to an active variable, that is, a variable which is contained
in A. We will denote them as active constraints in the following. Active constraints
can be thought of as those formulæ which are realized by the tableau procedure and
model-theoretically represented by (accessible) entities being spotlighted in the active
scope compartment of construction, at which completion rules are applicable. All the
other constraints outside the active set can be seen as hypotheses.

Each conceptual constraint binds a conceptual assertion to a variable, e.g., x:+C
binds the conceptual assertion +C to the variable x. The following definition defines
the set of conceptual constraints of a constraint variable.

233

7 Tableau-based Calculus for cALC

Definition 7.1.2 (Constraints of a constraint entity). Let S = (C,A) be a constraint
system and u a variable in Supp(S). The set of conceptual constraint assertions bound
to variable u in C is defined by

CA(u,S) = {r | r is a conceptual assertion, which is bound to variable u in C}.

If S is clear from the context we will just write CA(u) instead. If CA(u,S) contains
only + signed constraint assertions of the form u:+C then we call variable u optimistic.

∇

Definition 7.1.3 (R-successor, ⪯-successor, ⪯∗-successor, reachable). Let S =

(C,A) be a constraint system, u, v, u′ ∈ Supp(S) and R ∈ NR. We call v an R-
successor of u in S if u R v ∈ C. Entity u is called an R-predecessor of v if v is an
R-successor of u. Similarly we say that u′ is a ⪯-successor (or refinement) of u in S if
u ⪯ u′ ∈ C. u′ is called a ⪯∗-successor if there exist u1, u2, u3, . . . , un in Supp(S) such
that ui ⪯ ui+1 ∈ C for i = 1, . . . , n− 1 and u1 = u, un = u′. Note that u is always a
⪯∗-successor of itself if n = 1. We call u′ a ⪯+-successor of u if u′ is a ⪯∗-successor of
u and u ̸= u′. A variable v is called reachable from u in S if there exists a arbitrarily
interleaved path via ⪯ and R from u to v in S. Moreover, u is called an ancestor of v
iff v is reachable from u. ∇

Note that in general the relation ancestor can be symmetric. However, in the case of
the tableau for cALC it is not symmetric, i.e., there are no cycles in R and ⪯.

Definition 7.1.4 (Constraint satisfiability). Let S = (C,A) be a constraint system,
I = (∆I ,⪯I ,⊥I , ·I) a constructive interpretation, R ∈ NR and C a cALC concept. An
I-assignment is a valuation function α mapping each variable symbol u ∈ Supp(S) ⊆
VE to an element of ∆I . We say that α satisfies a constraint c ∈ C in the interpretation
I, written I;α c, according to the following rules:

I;α u:+C if α(u) ∈ CI , (7.1)
I;α u:−C if α(u) ̸∈ CI , (7.2)
I;α u R v if (α(u), α(v)) ∈ RI , (7.3)
I;α u ⪯ u′ if (α(u), α(u′)) ∈⪯I , (7.4)
I;α u:−∀RC if ∀y ∈ ∆I .(α(u), y) ∈ RI ⇒ y ̸∈ CI . (7.5)
I;α u:−∃RC if ∃y ∈ ∆I .(α(u), y) ∈ RI & y ̸∈ CI . (7.6)

A constraint system S = (C,A) is satisfied by an interpretation I and an I-assignment
α, written I;α S, if for all c ∈ C it holds that I;α c and for all variables u ∈ A

the assignment α(u) is infallible, i.e., α(u) ̸∈ ⊥I . We call the pair (I, α) a model of S.

234

7.1 Constraint System

A constraint system S is satisfiable if it has a model. We say that a constraint system
S is satisfiable w.r.t. a TBox Θ iff it has a model (I, α) and I Θ in the sense of
Def. 4.2.5. ∇

Proposition 7.1.1 below lifts the key reasoning tasks w.r.t. a TBox to constraint
systems.

Proposition 7.1.1 (Reasoning tasks). Let concepts C,D and TBox Θ be arbitrary.

(i) Concept C is satisfiable (w.r.t. Θ) iff the constraint system ({u:+C, }, {u}) is
satisfiable (w.r.t. Θ).

(ii) Concept C is subsumed by concept D (w.r.t. Θ) if and only if the constraint
system ({u:+C, u:−D}, {u}) is not satisfiable (w.r.t. Θ).

(iii) Two concepts C and D are disjoint (w.r.t. Θ) if and only if the constraint system
({u:+C, u:+D, }, {u}) is not satisfiable (w.r.t. Θ).

(iv) Concepts C and D are equivalent (w.r.t. Θ) if and only if the constraint systems
({u:+C, u:−D}, {u}) and ({u:−C, u:+D}, {u}) are not satisfiable (w.r.t. Θ).

∇

Proof. (i) (⇒) Assume that C is satisfiable w.r.t. TBox Θ. We need to show that the
constraint system ({u:+C, }, {u}) is satisfiable w.r.t. Θ. By Def. 4.2.5 there exists a
pair (I, a) which models C and I is a model of the TBox Θ, i.e., formally a ∈ CI ,
a ̸∈ ⊥I and I Θ. By assumption, I Θ follows directly. We claim that there
exists an I-assignment α such that the pair (I, α) satisfies the constraint u:+C, and
α(u) is infallible. According to Def. 7.1.4, an I-assignment α satisfies a constraint
u:+C in the interpretation I if α(u) ∈ CI . Let α(u) =df a. This implies I;α(u) C.
Furthermore α(u) is infallible, since by assumption α(u) = a ̸∈ ⊥I .
(⇐) Suppose that the constraint system ({u:+C, }, {u}) is satisfiable w.r.t. TBox Θ.

By Definition 7.1.4 there exists an interpretation I together with an I-assignment α
such that I;α u:+C, i.e., α(u) is infallible and I Θ. This means α(u) ∈ CI \⊥I .
We have to show that there exists an interpretation I and an entity a ∈ ∆I

c = ∆I \⊥I

such that a ∈ CI . The assumption implies that α(u) is such an entity. Thus, C is
satisfiable w.r.t. Θ.

(ii) (⇒) The proof is by contraposition. Suppose that ({u:+C, u:−D}, {u}) is satis-
fiable w.r.t. TBox Θ. From Definition 7.1.4 it follows that there exists a pair (I, α)
such that I;α u:+C and I;α u:−D with α(u) being an infallible entity. It is
necessary to show that C is not subsumed by D w.r.t. TBox Θ. By Definition 4.2.5
this is the case if there exists an interpretation and entity a ∈ ∆I

c such that a ∈ CI

235

7 Tableau-based Calculus for cALC

and a ̸∈ DI . Choosing a =df α(u) implies that a is infallible and contained in CI but
not in DI . Thus, C is not subsumed by D w.r.t. Θ.
(⇐) Proof by contraposition. Suppose C is not subsumed by D w.r.t. TBox Θ.

From the assumption it follows by Def. 4.2.5 that there exists an interpretation I and
an entity a ∈ ∆I

c such that a ∈ CI , a ̸∈ DI and I Θ. We have to show that the
constraint system S = ({u:+C, u:−D}, {u}) is satisfiable w.r.t Θ. This is the case if
we can find a pair (I, α) such that I;α u:+C and I;α u:−D with α(u) being
an infallible entity. Let α(u) =df a. By Definition 7.1.4 it holds that I;α u:+C and
I;α u:−D and α(u) is infallible. Thus S is satisfiable w.r.t. Θ.

(iii) (⇒) Suppose the concepts C and D are disjoint w.r.t. TBox Θ. By Def. 4.2.5 this
means that for all interpretations I it holds that CI ∩DI = ∅. Let I, α, a ∈ ∆I be
arbitrary and suppose that α(u) = a. We proceed by case analysis.
Case 1. If a ∈ CI and a ̸∈ DI then this implies by Def. 7.1.4 that I;α u:+C but
I;α ̸ u:+D.
Case 2. Otherwise, from a ̸∈ CI and a ∈ DI we conclude by Def. 7.1.4 that I;α
u:+D but I;α ̸ u:+C.
Case 3. If a ̸∈ CI and a ̸∈ DI then I;α ̸ u:+C and I;α ̸ u:+D.
In all three cases it follows that a ̸∈ ⊥I . Hence, S = ({u:+C, u:+D, }, {u}) is not
satisfiable.
(⇐) Proof by contraposition. Assume that C and D are not disjoint w.r.t. Θ.

From Definition 4.2.5 it follows that there exists an interpretation I and an entity
a ∈ ∆I

c such that a ∈ CI and a ∈ DI . We need to show that the constraint system
S = ({u:+C, u:+D, }, {u}) is satisfiable w.r.t. Θ. Let α(u) =df a. Then, according
to Definition 7.1.4 the pair (I, α) satisfies the constraint system S w.r.t. Θ.

(iv) According to Definition 4.2.5, two concepts C and D are equivalent if they share the
same infallible entities in all models of Θ. This holds if C subsumes D and vice versa
w.r.t. Θ. By Proposition 7.1.1.(iv) this is the case if and only if the constraint systems
({u:+C, u:−D}, {u}) and ({u:−C, u:+D}, {u}) are not satisfiable w.r.t. TBox Θ. □

7.2 Tableau Rules

The tableau calculus TcALC decides concept satisfiability and concept subsumption. The
algorithm receives a pair ({S0},Θ) as starting point, where S0 is the initial constraint
system for which the consistency problem is to be decided w.r.t. the TBox Θ. It
applies satisfiability preserving completion rules which modify the constraint system
until either an obvious contradiction (so-called clash) occurs, or no further rule applies.
In the latter case, the generated pre-model is complete. The initial constraint system

236

7.2 Tableau Rules

S0 is satisfiable w.r.t. Θ iff the final result is a non-contradictory (clash-free) constraint
system. We consider a finite set of constraint systems – known as generalised knowledge
base – in the spirit of [16, pp. 88 ff.; 23, pp. 202 ff.].

Definition 7.2.1 (Generalised knowledge base (GKB)). A generalised knowledge base
K is a pair (M,Θ) where M is a finite set of constraint systems and Θ a TBox. ∇

Note that a normal or standard knowledge base in the sense of DLs [16] (see
Chapter 2.1) is a GKB K = (M,Θ) with cardinality |M| = 1. The following definition
establishes the notion of satisfiability for a GKB M.

Definition 7.2.2 (Satisfiability of a GKB). A GKB K = (M,Θ) with M =

{S1, . . . ,Sl} and l ≥ 1 is satisfied by an interpretation I and an I-assignment α
if and only if there exists some i, 1 ≤ i ≤ l such that I;α Si w.r.t. TBox Θ. ∇

Furthermore, we require a restriction on constraint systems such that only active
entities may have refinement relations.

Definition 7.2.3 (Non-speculative constraint system). A constraint system S =

(C,A) is called non-speculative iff for each constraint u ⪯ u′ ∈ C or u R v ∈ C it holds
that u, u′ ∈ A, and ∀v ∉ A it holds that v is optimistic, i.e., it occurs only in positive
constraints. ∇

We will define the completion rules as a relation on generalised knowledge bases.

Definition 7.2.4 (Tableau rule). A tableau rule ξ is a relation on knowledge bases.
We write K →ξ K′ to denote that ξ relates generalised knowledge base K to K′. ∇

Note that Def. 7.2.4 is a very generic definition of a tableau rule and enables a rule
ξ to depend either on the full global state of a knowledge base K or on the choice of
some individual constraint system in M. Furthermore, such a tableau rule can possibly
transform the TBox Θ as well. We do not require this degree of freedom. We consider
only the case where a tableau rule ξ depends only on at most one constraint system
in M and the TBox is assumed to be static. This leads to the notion of locality of a
tableau rule.

Definition 7.2.5 (Local tableau rule). Let K = (M,Θ) be a generalised knowledge
base. A tableau rule ξ is called local if its application to K does not change the TBox
Θ and it only depends on the structure of a single constraint system in M. Formally,
we require (M,Θ) →ξ (M′,Θ′) if and only if

• Θ′ = Θ, and

• there exists a constraint system S ∈ M such that ({S},Θ) →ξ (M′′,Θ) for
some M′′ and M′ = M\ {S} ∪M′′ .

237

7 Tableau-based Calculus for cALC

For a local tableau rule we write S
Θ→ξ M to abbreviate ({S},Θ) →ξ (M,Θ). ∇

The application of local tableau rules can be described as follows: Let Ki = (Mi,Θ)

be a generalised knowledge base and let ξ be a local tableau rule. Then, Ki →ξ Ki+1

if and only if there exists an S ∈ Mi such that S
Θ→ξ M′

i and Ki+1 = (Mi+1,Θ)

where Mi+1 = Mi \ {S} ∪M′
i.

Definition 7.2.6 (Regular tableau rule). Let S be a constraint system, Θ be an
arbitrary TBox and M be the result of the rule application of S Θ→ξ M. We call a
local tableau rule ξ regular if the following holds: For all interpretations I there exists
a valuation α such that I;α S if and only if there exists a constraint system S′ in
M and α′ such that I;α′ S′. In the direction (⇒) the I-assignment α′ is typically
an extension of the I-assignment α, in the sense that the map α on Supp(S) coincides
on its domain with α′ such that ∀u ∈ Supp(S).α(u) = α′(u), and the domain of α′

extends that of α, i.e., Supp(S′) ⊇ Supp(S). ∇

7.2.1 Tableau Rules of TcALC

The following definition establishes the concrete set of tableau rules for TcALC.

Definition 7.2.7 (cALC tableau rules). Let K = (M,Θ) be a GKB and let S =

(C,A) be a constraint system in M. For each cALC tableau rule ξ, we will write

S →ξ S
′ and

S →ξ S
′, S′′

to denote that S Θ→ξ M′ and either M′ = {S′} in the case of a deterministic tableau
rule ξ or in the non-deterministic case M′ = {S′,S′′}. The cALC tableau rules are
depicted in Figure 7.1. Observe that the TBox Θ is left implicit in the specification of
the cALC tableau rules, as it is assumed to be static and clear from the context. ∇

Remark 7.2.1. Note that the rules (→⊓−), (→⊔+) and (→⊃+) are non-deterministic,
i.e., there are two possibilities to continue the construction of a tableau. According
to the terminology used in [261, p. 21], the rules (→⊃−), (→∀−), (→∃−) and (→R∃−),
which generate new successors via ⪯ or R will be referred to as generating rules, whereas
all other rules are called non-generating rules.
We can make the following observations from inspection of the tableau rules of Fig. 7.1:

(i) A tableau rule is only applied if it extends a constraint system by a new constraint.

(ii) Only non-deterministic rules replace one constraint system with two constraint
systems.

238

7.2 Tableau Rules

(→⊓+) S = (C,A) →⊓+ S′ = ({u:+C, u:+D} ∪ C,A)
if for some u ∈ A, u:+C ⊓D ∈ C, and {u:+C, u:+D} ̸⊆ C.

(→⊓−) S = (C,A) →⊓− S′ = ({u:−C} ∪ C,A), S′′ = ({u:−D} ∪ C,A)
if for some u ∈ A, u:−C ⊓D is in C and neither u:−C nor u:−D in C.

(→⊔+) S = (C,A) →⊔+ S′ = ({u:+C} ∪ C,A), S′′ = ({u:+D} ∪ C,A)
if for some u ∈ A, u:+C ⊔D is in C and neither u:+C nor u:+D is in C.

(→⊔−) S = (C,A) →⊔− S′ = ({u:−C, u:−D} ∪ C,A)
if for some u ∈ A, u:−C ⊔D is in C and u:−C, u:−D are not both in C.

(→⊃+) S = (C,A) →⊃+ S′ = ({u:−C} ∪ C,A), S′′ = ({u:+D} ∪ C,A)
if for some u ∈ A, u:+C ⊃ D is in C, and neither u:−C nor u:+D is in C.

(→⊃−) S = (C,A) →⊃− S′ = ({u ⪯ u′, u′:+C, u′:−D} ∪ C,A ∪ {u′})
if for some u ∈ A, u:−C ⊃ D is in C, u′ is a new variable and there exists
no ⪯∗-successor u′′ of u in S, with u′′:+C, u′′:−D.

(→∀+) S = (C,A) →∀+ S′ = ({v:+C} ∪ C,A)
if for some u ∈ A, u:+∀R.C is in C, and there exists an R-successor v of u
in S such that v:+C is not in C.

(→∀−) S = (C,A) →∀− S′ = ({u ⪯ u′, u′:−∃RC} ∪ C,A ∪ {u′})
if for some u ∈ A, u:−∀R.D is in C, u′ is a fresh variable and there is no
⪯∗-successor u′′ of u in S such that u′′:−∃RC is in C.

(→∃+) S = (C,A) →∃+ S′ = ({u R v, v: + C} ∪ C,A)
if for some u ∈ A, u:+∃R.C is in C, v is a new variable and there is no
R-successor w of u in S such that w:+C is in C.

(→∃−) S = (C,A) →∃− S′ = ({u ⪯ u′, u′:−∀RC} ∪ C,A ∪ {u′})
if for some u ∈ A, u:−∃R.C is in C, u′ is a new variable and there exists
no ⪯∗-successor u′′ of u in S such that u′′:−∀RC is in C.

(→R∀−) S = (C,A) →R∀− S′ = ({v:−C} ∪ C,A ∪ {v})
if for some u ∈ A, u:−∀RC is in C, there exists an R-successor v of u in S
such that v:−C is not in C.

(→R∃−) S = (C,A) →R∃− S′ = ({u R v, v:−C} ∪ C,A ∪ {v})
if for some u ∈ A, u:−∃RC is in C, v is a new variable and there exists no
R-successor w of u in S such that w:−C is in C.

(→⪯+) S = (C,A) →⪯+ S′ = ({u′:+C} ∪ C,A)
if for some u ∈ A, u:+C is in C, u′ is a ⪯+-successor of u in S and
u′:+C ̸∈ C.

(→ax) S = (C,A) →ax S′ = ({u:+C} ∪ C,A})
if for some u ∈ A, u:+C ̸∈ C for some C ∈ Θ.

Figure 7.1: Completion rules of TcALC .

239

7 Tableau-based Calculus for cALC

(iii) If a constraint system S is replaced with S′, then it holds that S ⊆ S′.

(iv) A rule can only be applied to constraints with an active variable. This means in
particular that ⪯-successors are only generated for active constraints and they
become active as well. Moreover, an inactive entity cannot have any successor,
neither an R-successor nor a ⪯-successor, which can be observed by inspection
of the generating rules of Fig. 7.1.

(v) Rule (→∃+) can be applied to active constraints to generate a new R-successor,
which is inactive. Such inactive R-successors can only become active by rule
(→R∀−) applied to a constraint of the form −∀RC, which can be introduced by rule
(→∃−). In other words, new inactive entities only contain positive information.

(vi) If the tableau calculus starts with an initial constraint system of the form S0 =

({u:r}, {u}), where r is a conceptual constraint assertion, then it holds for all
S = (C,A) derived from S0 by the tableau rules of Fig. 7.1 and all v ∈ Supp(S)

that if v:−C ∈ C, v:−∃RC ∈ C or v:−∀RC ∈ C then v ∈ A.

(vii) The tableau rules preserve cycle-freeness, i.e., if S is cycle-free then all S′, which
are derived from S by the tableau rules of Fig. 7.1, are cycle-free.

■

Proposition 7.2.1 (Non-speculativity). Let S = (C,A) be a non-speculative con-
straint system and let S′ = (C′,A′) be derived from S by an application of a cALC
tableau rule ξ (see Fig. 7.1) w.r.t. a TBox Θ, i.e., S Θ→ξ M and S′ ∈ M. Then, S′

is non-speculative. ∇

Proof. Let S = (C,A) be a non-speculative constraint system, ξ a completion rule of
cALC, and suppose that S′ = (C′,A′) is derived from S by rule ξ. We need to show
for all u, u′, v ∈ Supp(S) that

(i) if u ⪯ u′ ∈ C′ then u, u′ ∈ A′;

(ii) if u R v ∈ C′ then u ∈ A′;

(iii) if v ̸∈ A′ then v is optimistic.

We distinguish generating and non-generating rules:
Case 1. If ξ is a non-generating rule then the conditions (i) and (ii) follow by assumption.
Since all rules can only be applied to an active entity, it is not possible to introduce
a negative constraint for an inactive entity, i.e. all inactive entities remain optimistic.
Moreover, rule (→∀+) only propagates positive assertions to R-successors. Hence,
condition (iii) is satisfied as well.

240

7.2 Tableau Rules

Case 2. Otherwise, ξ is a generating rule. Considering Remark 7.2.1.(iv), one observes
by inspection of the generating rules of Fig. 7.1 that all ⪯-generating rules – this are
the rules (→⊃−), (→∀−), (→∃−) – are only applicable to an active entity and the newly
created ⪯-successor is added to A. Regarding the R-generating rules (→∃+), (→R∃−)

it holds that the rule (→R∃−) adds the fresh R-successor to the active set, while (→∃+)

introduces an inactive R-successor that is optimistic. Hence, (i), (ii) and (iii) hold.
Therefore, S′ is non-speculative. □

The following definitions establish the notion of saturation and clash for knowledge
bases and constraint systems.

Definition 7.2.8 (Saturation). A generalised knowledge base K = (M,Θ) is called
saturated if no tableau rule is applicable to it. Analogously, we say that a constraint
system S = (C,A) is saturated w.r.t. a TBox Θ (in short, S is Θ-saturated) if no
tableau rule is applicable to ({S},Θ). A saturated constraint system S∗ ⊇ S is called
a saturation of S. ∇

Definition 7.2.9 (Clash). A constraint system S contains a clash (is clashed) if for
some entity u ∈ Supp(C), arbitrary concept description C and R ∈ NR, one of the
following conditions holds:

(i) u:+C and u:−C is in C;

(ii) u ∈ A and u:+⊥ is in C;

(iii) u:+⊥ and u:−C or u:−∀RC or u:−∃RC is in C.

If S contains no clash it is called clash-free. We call a generalised knowledge base
K = (M,Θ) clashed if every constraint system in M contains a clash. ∇

Note for (ii), that in a satisfiable constraint system all u ∈ A represent infallible
worlds.

Principle of the Tableau Calculus TcALC Let us recall the principle of the tableau
calculus. The tableau calculus applies satisfiability preserving rules to a constraint
system S, an element of M in a GKB (M,Θ), as given in Figure 7.1, and replaces it
either by one or two enriched constraint systems. The TBox Θ is static and remains
unchanged. Intuitively, this process generates a tree Υ of constraint systems, bearing in
mind the history of constraint systems created by the execution of the tableau calculus.
The structure of a constraint system can be viewed as an ‘and-structure’, while a
generalised knowledge base corresponds to an ‘or-structure’, i.e., Υ represents an or-
tree of and-structures. The successive constraint systems are constructed by enriching
the parent constraint system with at least one additional constraint. Some rules add

241

7 Tableau-based Calculus for cALC

new entities (refinements and/or role fillers) to the structure as well. In particular, the
tableau calculus starts with a GKB K = (M,Θ) with M = S0 where S0 is the initial
constraint system, and applies transformation rules as long as possible. The rules are
applied to K in the following sense: A constraint system S is arbitrarily chosen from
M. Then, by application of a rule, the constraint system S is replaced either by a
constraint system S′, or in the non-deterministic case by two constraint systems S′

and S′′. This process is iterated until we reach a state of saturation, i.e., until either
one clash-free constraint system is created to which no more rule is applicable, or all
non-deterministic choices, that is, all the leaves of Υ contain an obvious contradiction
(clash). In the former case, the constraint system is satisfiable and makes up a finite
pre-model for the initial constraint system S0, otherwise it is unsatisfiable.

All rules of Fig. 7.1 are sound in terms of that a constraint system S is satisfiable
w.r.t. a TBox Θ if and only if one of the constraint systems which replace S is satisfiable
w.r.t. Θ. Hence, if (M,Θ) is the result of applying a sequence of transformation rules
to ({S0},Θ) then (S0,Θ) is satisfiable if and only if (M,Θ) is satisfiable.

The calculus for cALC is non-deterministic due to the rules (→⊔+), (→⊓−), (→⊃+).
Furthermore, the algorithm chooses non-deterministically a constraint system from a
generalised knowledge base and applies a tableau rule to it. Note that we did not
define an order or precedence on the tableau rules that specifies which tableau rule will
be applied if more than one is applicable. According to Tobies [261] the correctness
proof of showing that such a non-deterministic tableau algorithm is a proper decision
procedure has to demonstrate that (i) the algorithm terminates, i.e., every sequence
of rule applications is finite; (ii) the tableau rules are sound, i.e., if the algorithm
constructs a saturated and clash-free GKB for an initial constraint system S0 then S0

is satisfiable; (iii) and completeness, i.e., starting from a satisfiable constraint system
S0 there exists a finite sequence of rule applications that ends in a saturated and
clash-free GKB.

In contrast to reasoning in standard ALC without TBoxes we have to cover the
problem that the tableau procedure does no longer terminate due to two reasons:

(i) The explicit handling of the refinement relation as a transitive role in the con-
straint system may lead to the duplication of positive constraints along a ⪯-path,
which is comparable to the non-termination problem of the tableau system for
ALCR+ [243] or S4 [130]. For instance, consider the problem in ALCR+ where
a conceptual constraint of the form ∃R.C ⊓ ∀R.∃R.C with a transitive roles R
leads to an infinite R-path [cf. 243, pp. 5 ff.].

Similarly, in our system we may have constraints of the form u:+¬E, where E
is one of {C ⊃ D, ∃R.C,∀R.C}. An application of the rule (→⊃+) to such

242

7.2 Tableau Rules

a constraint leads to the creation of a negative constraint u:−E. A further
application of the appropriate rule ((→⊃−), (→∃−) or (→∀−)) will introduce a
new variable u′ and the relational constraint u ⪯ u′. Then, the tableau can
proceed with rule (→⪯+) that propagates the positive conceptual constraints, in
particular u:+¬E, to variable u′, and the same process can be iterated again for
u′, yielding an infinite ⪯-path.

Observe, that due to our constructive semantics and the reflexivity and transitivity
of the refinement relation ⪯ it is possible to introduce cyclical or oscillating
refinement chains in a model. Technically speaking this is one feature of our
semantics, that is, the possibility to express cyclical relational structures which
sustain the finite model property.

(ii) In the presence of general axioms, i.e., general TBoxes, the depth of an R-path
is no longer bounded by the maximum quantifier depth that occurs in the initial
constraint system [25, pp. 17 f.], because it cannot become smaller than the
maximum quantifier depth that occurs in the TBox. In particular, rule (→ax)

may lead to duplications of constraints taken from the TBox along an R/⪯-path.
For instance, consider we have a TBox axiom ⊤ ⊃ ∃R.C, and suppose that by
application of the tableau rules a new active R-successor is introduced. By rule
(→ax) this axiom is propagated, downwards to the new entity, which by itself may
lead again to the creation of a new active R-successor. This process leads to an
infinite chain and does not terminate.

The following example Ex. 7.2.1 illustrates the case of non-termination due to the
duplication of constraints in the handling of the ⪯-relation.

Example 7.2.1 (Looping tableau). Consider the following initial constraint system
S0 = (C0,A0) where C0 = {u0:+∃R.(C ⊔ D), u0:+¬∃R.C, u0:+¬∃R.D} and A0 =

{u0}. Remember that negation ¬C is an abbreviation for C ⊃ ⊥.
Applying rule (→⊃+) twice yields (C0 ∪ {u0:−∃R.C, u0:−∃R.D},A0). One can

proceed by applying rule (→∃−) to both of the negative constraints above which yields
two new ⪯-successors of u0. In the following, let us focus on one branch and suppose
that we expand the constraint u0:−∃R.C only. This leads to the creation of the ⪯-
successor u1 such that (C1 = C0∪{u0 ⪯ u1, u1:−∀RC},A0∪{u1}). Rule (→⪯+) allows
to propagate positive constraints along the ⪯-path and results in the constraint system

(C2 = C1 ∪ {u1:+∃R.(C ⊔D), u1:+¬∃R.C, u1:+¬∃R.D},A0 ∪ {u1}). (7.7)

At this point, an application of (→∃+) and (→R∀−) introduces an R-successor v1 of
u1 and yields the constraint system (C3 = C2 ∪ {u1 R v1, v1:+C ⊔ D, v1:−C},A1 =

243

7 Tableau-based Calculus for cALC

A0 ∪ {u1, v1}). Note that the application of (→R∀−) adds variable v1 to the set of
active variables.

Analogously, one can proceed by applying rule (→⊃+), which yields the constraint
system (C4 = C3 ∪ {u1:−∃R.C, u1:−∃R.D},A1). An application of rule (→∃−) to one
of u1:−∃R.C, u1:−∃R.D yields a new ⪯-successor u2 with either u2:−∀RC or u2:−∀RD.
Suppose that we continue with the expansion of u1:−∃R.D. This yields the constraint
system (C5 = C4 ∪ {u1 ⪯ u2, u2:−∀RD},A1 ∪ {u2}). A further application of rule
(→⪯+) forces that all positive constraints from u1 are added to u2, and we obtain the
following constraint system

(C6 = C5 ∪ {u2:+∃R.(C ⊔D), u2:+¬∃R.C, u2:+¬∃R.D},A1 ∪ {u2}). (7.8)

We can reiterate the above expansion for the constraint u2:+¬∃R.C by using u3 of
u2 with u3:−∀RC. Again, rule (→⪯+) propagates the positive conceptual constraints
downwards to u3 and we obtain the constraint system

(C7 = C6 ∪ {u2 ⪯ u3, u3:−∀RC, u3:+∃R.(C ⊔D),

u3:+¬∃R.C, u3:+¬∃R.D},A1 ∪ {u2, u3}). (7.9)

Now, observe that variable u1 in (7.7) and u3 in (7.9) share the same conceptual
constraints, i.e., C7(u3) = C2(u1).

We can continue by following the above construction scheme for the newly created
refinement u3. If we repeat the above construction in an alternating order to the
constraints −∃R.C and −∃R.D, and continue the construction analogously as before,
we obtain the following infinite tableau, see Fig. 7.2. Note that C+(ui), i ≥ 0 represents
the set of positive conceptual constraints w.r.t. entity ui; C+(ui), r denotes C+(ui)∪{r},
and dotted lines represent the refinement relation ⪯.

The problem of non-termination arises from the heredity condition imposed on pos-
itive constraints, implemented by rule (→⪯+), and the interaction with implication
(negation) in positive constraints. Observe, that C+(ui+1) = C+(u0), for i ≥ 0; and
similarly v1 coincides with v3 and v2 with v4 in the set of positive conceptual con-
straints. Moreover, in Figure 7.2 the entities u1 and u3 share the same theory, i.e.,
CA(u1) = CA(u3). The same holds for the entities u2 and u4. This is where the
technique of blocking (also known as loop-checking) comes into play, i.e., one can stop
the further expansion of the constraints of an entity if there exists already an earlier
introduced entity in the constraint system, which has the same theory (or a superset
of it). Considering Fig. 7.2 this means that entity u1 blocks the further expansion of
u3, and the same holds for entity u2 which blocks u4. The infinite branch of Figure 7.2

244

7.2 Tableau Rules

u0

u1

u2

v1

v2

u3v3

u4v4

C+(u0),−∃R.C,−∃R.D

C+(u1),−∀RC,−∃R.C,−∃R.D

C+(u2),−∀RD,−∃R.C,−∃R.D

C+(u3),−∀RC,−∃R.C,−∃R.D

C+(u4),−∀RD,−∃R.C,−∃R.D

C+(v1),−C

C+(v2),−D

C+(v3),−C

C+(v4),−D

R

R

R

R

Figure 7.2: Infinite pre-model.

can be represented by a finite one as shown in Figure 7.3. Now, the entities sharing
the same theory refine each other.

u0

u1

u2

v1

v2

u3

u4

C+(u0),−∃R.C,−∃R.D

C+(u1),−∀RC,−∃R.C,−∃R.D

C+(u2),−∀RD,−∃R.C,−∃R.D

C+(u3),−∀RC,−∃R.C,−∃R.D

C+(u4),−∀RD,−∃R.C,−∃R.D

C+(v1),−C

C+(v2),−D

R

R
R

R

Figure 7.3: Finite representation of Figure 7.2.

The model of Fig. 7.3 can be minimised further by omitting the blocked nodes u3

and u4, and by adding an arc to the blocking node immediately, see Fig. 7.4.
■

As demonstrated by Ex. 7.2.1, it is necessary to detect cyclic computations, i.e.,
looping constructions in the tableau in order to guarantee the termination of the tableau

245

7 Tableau-based Calculus for cALC

u0

u1

u2

v1

v2

C+(u0),−∃R.C,−∃R.D

C+(u1),−∀RC,−∃R.C,−∃R.D

C+(u2),−∀RD,−∃R.C,−∃R.D

C+(v1),−C

C+(v2),−D

R

R

Figure 7.4: Minimised representation of Figure 7.3.

calculus. Following the scheme of [16; 23; 83; 146] the applicability of the generating
rules of cALC is restricted by the blocking technique. We assume that new variables
in a constraint system S are introduced according to the enumeration (order) ≺. This
means that if S →ξ S

′ and v is a new variable in S′ then v appears later in the order
≺ than all variables in Supp(S), i.e., ∀u ∈ Supp(S). ∀v ∈ Supp(S′) \ Supp(S). u ≺ v.

Definition 7.2.10 (Blocking (BC)). Let S = (C,A) be a constraint system. An
entity u ∈ A is blocked by an entity w ∈ A iff w is the least element such that w ≺ u

and CA(u) ⊆ CA(w). ∇

Remark 7.2.2. Note that we restrict blocking to active entities only. This is possible,
because the rules of cALC can only be applied to active entities anyway, i.e., an infinite
sequence of rule applications on inactive entities is not possible. ■

We attach the following blocking condition as a precondition on the considered entity
of each generating tableau rule of cALC (see Fig. 7.1 on p. 239) by requiring:

‘A generating rule of cALC can be applied to an active variable u only if u
is not blocked by some w.’

From here on we assume that the saturation of a GKB or a constraint system (Def. 7.2.8)
is w.r.t. the extended notion of the applicability of a tableau rule including the blocking
precondition above.

This will assure the termination of the tableau calculus for cALC. The blocking
condition corresponds to dynamic subset blocking, and is also known as anywhere
blocking, firstly introduced by Baader, Buchheit and Hollander [23]. Note that we do
not assume a prioritisation, strategy or order in which the tableau rules are applied.
Moreover, observe that once established blocks can be broken and re-established again
[cf. 146, pp. 4 f.]. Static blocking can be obtained by utilising a strategy that delays
the application of generating rules to an entity u until no more non-generating rule can
be applied to u [cf. 25, p. 18].

246

7.2 Tableau Rules

Lemma 7.2.1. Let S = (C,A) be a constraint system and u,w ∈ A. An entity w
that blocks an entity u cannot be blocked by any other entity in S. ∇

Proof. Given S = (C,A) and u, v, w ∈ A, suppose that u is blocked by w, w is blocked
by v and w is the least element w.r.t. the well-order ≺ that blocks u. This means that
CA(u) ⊆ CA(w) and CA(w) ⊆ CA(v). Thus, CA(u) ⊆ CA(v). It follows from the
assumption that w is blocked by v that v ≺ w. However, since w is the least element
w.r.t. ≺ that blocks u it must be that w ≺ v which contradicts the assumption that
v ≺ w. □

7.2.2 Fitting-style Representation of TcALC

Before we continue with the correctness proof, we show that the tableau rules can
be represented equivalently as rules in the spirit of Fitting [100] and we will use this
notation in some examples. The rules are of the form

C ; A
Θ (ξ)

C1 ; A1 I. . . Cn ; An

where C ; A is the premise, Θ is a TBox, and C1 ; A1 . . .Cn ; An are the consequences of
rule ξ. The TBox Θ is assumed to be clear from the context and omitted accordingly
from the presentation, except for the rule (→ax) that directly uses it. These rules
must satisfy the respective pre-conditions w.r.t. rule ξ and only add a constraint in a
conclusion if it is not already included in C. The presentation of the rules as depicted
in Fig. 7.5 mimics that of the rules of Figure 7.1. We will write C, c as a shortcut for
C ∪ {c}, and in the same sense we will write A, u expressing A ∪ {u} for the active set.

The tableau rules of Fig. 7.5 construct a downward branching tree Υ where each
node is a pair that consists of a set of constraints and a set of active variables. Like
mentioned before, such a tree can be considered as the representation of the or-structure
of its leaves. From here on, we will denote such a tree simply by tableau. In contrast to
a generalised knowledge base, a tableau depicts the history of the constraint systems
generated by the calculus, i.e., the intermediate stages of construction become explicit
in a tableau. A tableau is called saturated if no more rule is applicable to any branch
of it. A branch of a tableau is closed if it contains a clash, and a tableau is closed if
all its branches are closed. We add a superscript i > 0 and write (ξ)i to denote that
rule ξ is applied i–times in a row. In the following examples we will underline clashing
constraints and use the symbol×××× as an abbreviation for a clashed tableau branch.

247

7 Tableau-based Calculus for cALC

C, u:+C ⊓D ; A
(→⊓+)

C, u:+C, u:+D ; A
C, u:−C ⊓D ; A

(→⊓−)
C, u:−C ; A C, u:−D ; A

C, u:+C ⊔D ; A
(→⊔+)

C, u:+C ; A C, u:+D ; A
C, u:−C ⊔D ; A

(→⊔−)
C, u:−C, u:−D ; A

C, u:+C ⊃ D ; A
(→⊃+)

C, u:−C ; A C, u:+D ; A

C, u:−C ⊃ D ; A
(→⊃−)

C, u ⪯ u′, u′:+C, u′:−D ; A, u′

C, u R v, u:+∀R.C ; A
(→∀+)

C, v:+C ; A

C, u:−∀R.C ; A
(→∀−)

C, u ⪯ u′, u′:−∃RC ; A, u′

C, u:+∃R.C ; A
(→∃+)

C, u R v, v:+C ; A

C, u:−∃R.C ; A
(→∃−)

C, u ⪯ u′, u′:−∀RC ; A, u′

C, u R v, u:−∀RC ; A
(→R∀−)

C, v:−C ; A, v
C, u:−∃RC ; A

(→R∃−)
C, u R v, v:−C ; A, v

C, u ⪯ u′, u:+C ; A
(→⪯+)

C, u′:+C ; A
C ; A

C ∈ Θ (→ax)
C, u:+C ; A

In the premise of all rules variable u must occur in A, and in the rules
(→⊃−), (→∀−), (→∃+), (→∃−) the variables u′ and v are fresh.

Figure 7.5: Tableau rules for cALC.

Example 7.2.2. Validity of axiom K∃R is proved by the following closed tableau,
starting from the initial constraint system S0 =df ({u0:−∀R.(C ⊃ D) ⊃ (∃R.C ⊃
∃R.D)}, {u0}).

C0 = u0:−{∀R.(C ⊃ D) ⊃ (∃R.C ⊃ ∃R.D) ; u0
(→⊃−)

C1 = C0, u0 ⪯ u1, u1:+∀R.(C ⊃ D), u1:−∃R.C ⊃ ∃R.D ; u0, u1
(→⊃−)

C2 = C1, u1 ⪯ u2, u2:+∃R.C, u2:−∃R.D ; u0, u1, u2
(→⪯+)

C3 = C2, u2:+∀R.(C ⊃ D) ; A1 = u0, u1, u2
(→∃−), (→⪯+)2

C4 = C3, u2 ⪯ u3, u3:−∀RD,u3:+∃R.C, u3:+∀R.(C ⊃ D) ; A2 = A1, u3
(→∃+)

C4, u3 R v1, v1:+C ; A2
(→R∀−), (→∀R+)

C5 = C4, u3 R v1, v1:+C, v1:−D, v1:+C ⊃ D ; A3 = A2, v1
(→⊃+)

C5, v1:+C, v1:−C ; A3

××××
C5, v1:−D, v1:+D ; A3

××××

■

Example 7.2.3 (Countermodel construction). Validity of axiom FS4/IK4 is refuted
by the following saturated tableau, which is satisfiable, and starts from the initial
constraint system S0 =df ({u0:−∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D)}, {u0}).

248

7.3 Proof of Correctness

C0 = u0:−{∃R.(C ⊔D) ⊃ (∃R.C ⊔ ∃R.D) ; u0
(→⊃−)

C0, u0 ⪯ u1, u1:+∃R.(C ⊔D), u1:−∃R.C ⊔ ∃R.D ; u0, u1
(→∃+), (→⊔+)

C1 = C0, u0 ⪯ u1, u1:+∃R.(C ⊔D), u1:−∃R.C ⊔ ∃R.D, u1 R v0, v0:+C ⊔D ; u0, u1
(→⊔−)

C2 = C1, u0 ⪯ u1, u1:+∃R.(C ⊔D), u1:−∃R.C, u1:−∃R.D ; u0, u1
(→∃−), (→∃−)

C3 = C2, u1 ⪯ u2, u2:−∀RC, u1 ⪯ u3, u3:−∀RD ; A0 = u0, u1, u2, u3
(→⪯+)2

C4 = C3, u2:+∃R.(C ⊔D), u3:+∃R.(C ⊔D) ; A0
(→∃+)2

C4, u2 R v1, v1:+C ⊔D,u3 R v2, v2:+C ⊔D ; A0
(→R∀−)2

C5 = C4, u2 R v1, v1:+C ⊔D,u3 R v2, v2:+C ⊔D, v1:−C, v2:−D ; A1 = A0, v1, v2
(→⊔+)

C5, v1:+C, v1:−C ; A1

××××
C5, v1:+D, v1:−C, v2:+C ⊔D, v2:−D ; A1

(→⊔+)
C6 = C5, v2:+C ; A1

(→⊔+)
C6, v0:+D ; A1 C6, v0:+C ; A1

C5, v2:+D, v2:−D ; A1

××××

We point out for the above derivation that v0:+C ⊔ D ∈ C5 and the decision of
the disjunction v0:+C ⊔D is postponed until the last step. One can easily extract a
countermodel for axiom FS4/IK4 from the tableau, which is depicted by Fig. 7.6.

u0

u1

u2 u3

v1 v2

v0 C

D C

⪯

⪯ ⪯

R R

R

Figure 7.6: Countermodel for IK4/FS4.

■

7.3 Proof of Correctness

7.3.1 Termination

Definition 7.3.1. The set of roles that occur in a generalised knowledge base K =

(M,Θ) is denoted by RK, and defined by

RK =df {R | R occurs in a constraint r in some S ∈ M
or R occurs in some axiom of Θ}. ∇

249

7 Tableau-based Calculus for cALC

Definition 7.3.2 (Set of subconcepts). Let C be a concept description, we define the
set sub(C) of subconcepts of C by

sub(A) = {A}, for A ∈ NC or A ∈ {⊥,⊤};
sub(C ⊙D) = {C ⊙D} ∪ sub(C) ∪ sub(D), where ⊙ ∈ {⊓,⊔,⊃};
sub(QR.C) = {QR.C} ∪ sub(C), where Q ∈ {∃, ∀}.

This is lifted to a finite set of concepts Γ in the usual way by taking sub(Γ) =df
C∈Γ sub(C). We extend this to conceptual constraints by

sub(u:±C) = sub(C);

sub(u:−∀RC) = sub(C);

sub(u:−∃RC) = sub(C).

Let S = (C,A) be a finite constraint system. The set sub(S) is defined by

sub(S) = sub(C) =

c∈C

sub(c).

and analogously for a K = (M,Θ) one takes

sub(K) =

S∈M

sub(S) ∪ sub(Θ).

∇

According to [25, pp. 17 f.], instead of considering a finite set of axioms C1, C2, . . . , Cn

of a TBox Θ in the tableau procedure, it is sufficient to take into account only the
single axiom Ĉ ≡ ⊤, defined by

Ĉ =df

C∈Θ

C,

where

is the intersection ⊓ over a set of concepts, such that rule (→ax) adds u:+Ĉ
for some u ∈ A to a constraint system. This means that rule (→ax) only fires once for
each active constraint variable.

Lemma 7.3.1. The tableau rules of cALC are monotonic and satisfy the subformula
property:

(i) If S →ξ S
′ and u ∈ Supp(S) then CA(u,S) ⊆ CA(u,S′).

(ii) Let K0 =df (S0,Θ) with S0 = (C0,A0) be a finite GKB and let us suppose that

250

7.3 Proof of Correctness

K1 = (M,Θ) is obtained from K0 by a finite run of the cALC tableau rules and
let S ∈ M. Then, for all conceptual constraints u:±C, u:−∀RC or u:−∃RC in
S it holds that C ∈ sub(K0).

(iii) Let K be a finite GKB, and m =df 2 ∗ n + 2 ∗ |RK| ∗ n where n =df |sub(K)|.
The measure m is the maximal number of possible conceptual constraints (w.r.t.
the three different kinds of conceptual constraints) bound to a variable in any K′

reachable from K through application of the tableau rules. ∇

Proof. The first two properties (i) and (ii) are easily observable by inspection of the
tableau rules of Fig. 7.1, and (iii) is a consequence of (ii). □

Proposition 7.3.1 (Termination). Let C be a cALC concept and K0 = ({S0},Θ)

a finite generalised knowledge base where the structure of S0 is according to the key
reasoning tasks of Prop. 7.1.1. Then, there is an upper bound on the length of any

sequence of rule applications S0

Θ

→∗
ξ M starting with K0. ∇

Proof. The proof of termination follows the argumentation of Baader, Buchheit and
Hollander [23] and is a consequence of the following facts: Let m be the bound as
defined by Lem. 7.3.1.(iii).

(i) In each rule application step a constraint system is either replaced by one or in the
non-deterministic case by at most two constraint systems. The non-deterministic
case is triggered by the rules (→⊔+), (→⊓−) and (→⊃+). Hence, for each variable
u of a constraint system the number of generated constraint systems is bounded
by m, since there can be at most m constraints of the form u:+C ⊔D, u:−C ⊓D
and u:+C ⊃ D.

(ii) The tableau rules never remove constraints from a constraint system.

(iii) For all constraint systems S and all variables u ∈ Supp(S) the size of CA(u,S)

is bounded by m.

Suppose to the contrary that there is an unbounded sequence of rule applications
that gives the GKBs (S0,Θ), (M1,Θ), (M2,Θ), Since branching of a constraint
system is finite by (i), König’s-Lemma implies that there is an infinite sequence of
constraint systems S0 → S1 → S2 → For any entity u occurring in a constraint
system in this sequence the size of CA(u) is bound by m considering fact (iii) above and
Lem. 7.3.1.(iii). Hence, there must be infinitely many entities generated to obtain an
infinite sequence of rule applications, i.e., the generating rules must have been applied
infinitely often. The corresponding rules are (→⊃−), (→∃−), (→∀−), (→∃+), (→R∃−).

251

7 Tableau-based Calculus for cALC

It is sufficient to consider the former three ⪯-generating rules: Let us consider rule
(→∃+) first. Any new entity generated by rule (→∃+) is inactive at first. Remember that
the tableau rules do not apply to inactive entities, and in particular they do not generate
R- or ⪯-successors for inactive entities. Such an inactive entity can only become active
in combination with rule (→∃−) which introduces a ⪯-successor. Therefore, there
cannot be infinitely many applications of rule (→∃+) generating an infinite R-path
without creating a new ⪯-successor by rule (→∃−) each time, i.e., the creation of
infinitely many R-successors depends on the possibility to introduce infinitely many
⪯-successors. The argument is similarly for rule (→R∃−), i.e., it introduces at each
application step one new R-successor by expanding a constraint of the form u:−∃RC.
Such a constraint needs to be introduced first by rule (→∀−), i.e., infinitely many
R-successors can only be created by introducing infinitely many ⪯-successors. Thus, it
suffices to consider the ⪯-generating rules only.

Observe that the generating rules cannot be applied to a fixed entity u infinitely
often, since the number of constraints bound to u, for which one of the generating rules
fires, is bound by m. Therefore, there must be an infinite chain u1, u2, u3, . . . to which
the generating rules were applied. Because ≺ is well-founded it holds for any entity ui,
i ≥ 0 that there is no infinite decreasing chain from ui, and therefore there can only
be finitely many smaller entities. Therefore, we can assume without loss of generality
that u1 ≺ u2 ≺ u3 ≺ . . ., and assume that all these entities are new, i.e., new entities
introduced by a generating rule.

The argument is the same for the three ⪯-generating rules. Let gen denote one of
(→⊃−), (→∃−), (→∀−). For all i, let Sji →gen Sji+1 be the step at which rule (→gen)

is applied to entity ui. Now let us consider the sets CA(ui,Sji) and observe that there
can only exist finitely many such sets (their number is bounded by m). Therefore,
there must exist indices k < l such that uk ≺ ul and CA(uk,Sjk) = CA(ul,Sjl).
In particular, it holds that CA(ul,Sjl) = CA(uk,Sjk) ⊆ CA(uk,Sjl), since jk ≺ jl,
i.e., in Sjl the number of constraints in which uk occurs may have been increased.
Since uk ≺ ul and ul is new, it follows that entity ul should have been blocked in the
constraint system Sjl . However, this contradicts our assumption that the rule (→gen)

has been applied to ul in Sjl . But this contradicts the assumption that infinitely many
entities are created. Hence, any sequence of rule applications terminates. □

252

7.3 Proof of Correctness

7.3.2 Soundness and Completeness

To prove the soundness of the tableau rules it is necessary to show that each rule is
locally sound in the sense that its application preserves the satisfiability of the constraint
system. The proof is by showing that the rules of cALC are regular according to
Definition 7.2.6, which corresponds to the local correctness of the cALC tableau rules.

Proposition 7.3.2 (Regularity of cALC tableau rules). Each tableau rule ξ of cALC
is regular. ∇

Proof. Let S, S′ be a constraint system, let Θ be an arbitrary but fixed TBox and ξ
a tableau rule of cALC. Note that we consider the TBox Θ implicitly and omit it in
the following.

The goal is to show for all interpretations I that there exists a valuation α such that
I, α S if and only if there exists a constraint system S′ in M and an (possibly)
extended valuation α′ such that I, α′ S′.
(⇐) This direction can be shown in general for all rules by monotonicity. Let

S′ = (C′,A′) be derived from S = (C,A) by an application of a tableau rule ξ

of cALC, i.e., S →ξ S′. Assume that S′ is satisfiable, then there exists a model
(I, α) that satisfies S′. The derived constraint system S′ differs from S by having an
extension of both, the set of constraints C and the active set A. According to the rules
in Figure 7.1 the following holds: Both, the set of constraints and the set of active
entities in S are included in its extensions, namely C ⊆ C′ with C′ = C∪Ce and A ⊆ A′

with A′ = A ∪ Ae where the index e labels the respective extension. Therefore, the
former assumption I;α S′ yields I, α S. Hence I;α S, i.e., S is satisfiable.
The non-deterministic case of S →ξ S

′,S′′ is argued analogously.

(⇒) Let S = (C,A) be a constraint system and I be arbitrarily chosen, and suppose
there exists an α such that I, α S holds. We have to show for each completion rule
ξ separately that under the assumption that S is satisfiable we can give an extension
of its model that satisfies S′ as well. This is proven for each completion rule separately.

As a reminder note that a given constraint system S = (C,A) is satisfiable if and
only if there exists a pair (I, α) that satisfies S, i.e., for all constraints c ∈ C it holds
that I;α c and for all u ∈ A the assignment α(u) is infallible.

(→⊓+) Assume that S contains a constraint u:+C ⊓D with u ∈ A. Suppose that
the rule →⊓+ has been applied to S yielding a constraint system S′ = (C′,A)

which differs from S by having the constraints u:+C and u:+D. We claim
that the model (I, α) of S also yields a model for S′. By assumption
u:+C ⊓ D is satisfied and from Def. 4.2.2 it follows that α(u) is in the

253

7 Tableau-based Calculus for cALC

intersection of CI and DI . Therefore it holds that I;α u:+C and I;α
u:+D. Hence, (I, α) is also a model for S′ = (C ∪ {u:+C, u:+D},A).

(→⊓−) Suppose the constraint system S contains u:−C ⊓D with u ∈ A, and the
rule →⊓− has been applied to S. This yields the two constraint systems
S′ = ((C ∪ {u:−C},A) and S′′ = ((C ∪ {u:−D},A). The goal is to show
that the pair (I, α) yields either a model for S′ or S′′. The constraint
systems S′ and S′′ differ from S by u:−C or u:−D respectively. By
assumption it holds that α(u) ̸∈ (C ⊓ D)I , i.e., either α(u) ̸∈ CI or
α(u) ̸∈ DI . By case analysis, if α(u) ̸∈ CI then it follows that I;α x:−C,
in the other case α(u) ̸∈ DI yields I;α u:−D. Together with the former
assumption I;α S it follows that (I, α) also models either S′ or S′′.

(→⊔+) Let us suppose that S = (C∪{u:+C ⊔D},A) with u ∈ A. An application
of the rule →(⊔+) to S yields the constraint systems S′ = (C∪ {u:+C},A)
and S′′ = (C∪{u:+D},A). By assumption I;α u:+C ⊔D, i.e., α(u) is
in the union of CI and DI , which means α(u) ∈ CI or α(u) ∈ DI . Then,
I;α u:+C or I;α u:+D. Thus, (I, α) is a model for S′ or S′′.

(→⊔−) The application of the rule (→⊔−) is triggered by a constraint u:−C⊔D in S

with u ∈ A, which yields the constraint system S′ = (C∪{u:−C, u:−D},A).
By assumption I;α u:−C ⊔D holds, i.e., α(u) ̸∈ (C ⊔D)I which means
by Def. 4.2.2 that the valuation of u is neither contained in CI nor in DI .
From there it follows that I;α u:−C and I;α u:−D hold. Hence,
I;α S′ = (C ∪ {u:−C, u:−D},A).

(→⊃+) Let us assume that S contains a constraint u:+C ⊃ D with u ∈ A. The
application of the rule (→⊃+) yields the constraint systems S′ = (C ∪
{u:−C},A) and S′′ = (C∪{u:+D},A). By assumption I;α u:+C ⊃ D,
and from Def. 4.2.2 it follows that for all ⪯-successors x of α(u), if x ∈ CI

then x ∈ DI . In particular, α(u)⪯I α(u) by reflexivity. Hence, α(u) ̸∈ CI

or α(u) ∈ DI , i.e., I;α u:−C or I;α u:+D. This implies that I;α
is also a model for S′ or S′′.

(→⊃−) Suppose that S contains the constraint u:−C ⊃ D with u ∈ A, which
triggers the application of the rule (→⊃−) such that the constraint system
S′ = (C∪ {u ⪯ u′, u′:+C, u′:−D},A∪ {u′}) is derived, where u′ is a fresh
active variable in Supp(S′). The assumption implies that (I, α) satisfies
u:−C ⊃ D, i.e., α(u) ̸∈ (C ⊃ D)I . Formally this means that the valuation

254

7.3 Proof of Correctness

of u is not contained in the interpretation of C ⊃ D. Taking into account
Def. 4.2.2, there exists a refinement x ∈ ∆I of α(u) such that x ∈ CI and
x ̸∈ DI , where the latter implies x ̸∈ ⊥I . We extend the valuation α by the
I-assignment α′(u′) = x. This extension yields a model for S′ such that
I;α′ S′.

(→∀+) The application of the rule (→∀+) is due to the constraints u:+∀R.C and
u R v in S, with u ∈ A. The result is the constraint system S′ = (C ∪
{v:+C},A). By assumption the pair (I, α) satisfies u:+∀R.C, i.e., all
⪯I ;RI-successors of α(u) are included in the interpretation of C. Since by
assumption α(u)RI α(v) and α(u)⪯I α(u) by reflexivity of ⪯I , it follows
that α(u) ⪯I ;RI α(v). Thus, α(v) ∈ CI , i.e., I;α v:+C. Hence S′ is
satisfied by the model (I, α).

(→∀−) Suppose that the rule (→∀−) has been applied to the constraint system
S with u:−∀R.C ∈ C and u ∈ A. This derives the constraint system
S′ = (C′,A′) containing the additional constraints u ⪯ u′ and u′:−∃RC,
where u′ is a fresh active variable and u′ ∈ A′. We have to show that
an extension of the model of S also satisfies S′, i.e., it has to satisfy the
additional constraint of S′ and the valuation of u′ has to be non-fallible.
By assumption, it holds that u:−∀R.C is satisfied, that is α(u) ̸∈ (∀R.C)I

which means that there exists a ⪯I-refinement x of α(u) and anRI-successor
y of x such that y is not in the interpretation of C. Non-fallibility of x
follows directly from the fact that by assumption y ̸∈ CI and thus y is
non-fallible, and Prop. 4.2.1 establishes the non-fallibility of x. Taking the
extended assignment α′(u′) = x implies that (I, α′) satisfies u:−∃RC by
Def. 7.1.4. Hence, the extended model also satisfies S′.

(→∃+) Assume that the constraint system S including the constraint u:+∃R.C with
u ∈ A has a model. The application of the rule (→∃+) yields the constraint
system S′ = (C′,A) containing the two additional constraints u R v and
v:+C, where v is a fresh variable in Supp(S′). Note that v is not active, i.e.,
its fallibility cannot be determined. We have to show that the interpretation
I of S with an appropriate α-assignment can be extended to also satisfy S′.
By the assumption it holds that α(u) ∈ (∃R.C)I . Reflexivity of ⪯I implies
α(u) ⪯I α(u) and according to Def. 4.2.2 there exists an RI-successor y
of α(u) which lies in the interpretation of C. Then, the extension of the
I-assignment α by α′(v) =df y implies that I;α′ S′.

255

7 Tableau-based Calculus for cALC

(→∃−) The application of rule (→∃−) is caused due to the constraint u:−∃R.C ∈ C

with u ∈ A. This results in the constraint system S′ = (C ∪ {u ⪯
u′, u′:−∀RC},A∪ {u′}) where u′ is a fresh variable. Since (I, α) is a model
for S, in particular I;α u:−∃R.C, there exists a ⪯I-refinement x of
α(u) such that all RI-successors of x are not in the interpretation of C.
Formally this is expressed by α(u) ⪯I x and ∀y ∈ ∆I . x RI y ⇒ y ̸∈ CI .
Non-fallibility of x follows from Prop. 4.2.1 and the fact that if x was fal-
lible then there would exist a fallible RI-successor, but this is not possible.
Therefore, the extension of (I, α′) by the I-assignment α′(u′) = x also
satisfies S′.

(→R∀−) Suppose that S = (C,A) contains the constraints u:−∀RC and u R v in C

with u ∈ A. An application of the rule (→R∀−) to S derives the constraint
system S′ = (C∪{v:−C},A∪{v}). Since (I, α) is a model for S, it follows
that (α(u), α(v)) ∈ RI and in particular I;α u:−∀RC which implies that
all RI-successors of α(u) ∈ ∆I are not contained in the interpretation of
C. Therefore, α(v) ̸∈ CI , which also implies that α(v) is infallible. Hence,
I;α S′.

(→R∃−) Suppose that u:−∃RC is in S with u ∈ A. Moreover, assume that the rule
(→R∃−) has been applied to the constraint system S, which derives the
constraint system S′ = (C′,A′) containing the additional constraints u R v

and v:−C in C′, where v is a fresh variable and v ∈ A′. By assumption
(I, α) is a model for S, and in particular I;α u:−∃RC, which implies
that there exists an RI-successor y ∈ ∆I such that y ̸∈ CI and therefore
y ̸∈ ⊥I . By extending α by the assignment α′(v) = y it follows that (I, α′)

satisfies S′ as well.

(→⪯+) Suppose that the constraint system S contains the constraint u:+C with
u ∈ A. Moreover, assume that there exists a ⪯+-successor u′ of u such that
S′ = (C ∪ {u′:+C},A) has been derived from S by an application of rule
(→⪯+). By assumption α(u) ∈ CI and α(u)⪯I α(u′) by transitivity of ⪯I .
Then, it follows by Proposition 4.2.2 that α(u′) ∈ CI . Hence the model of
S is also a model for S′.

(→ax) Suppose that I;α S w.r.t. the TBox Θ, and that rule (→ax) has been
applied to some u ∈ A. This yields a constraint system S′ with a TBox
axiom from Θ additionally added to C as a positive constraint bound to u.
The goal I;α S′ holds trivially, since by assumption I Θ. □

256

7.3 Proof of Correctness

We shall see that if a constraint system S together with a TBox, viz. (S,Θ), is
saturated and clash-free then this yields a constructive pre-model (I, α) which can be
utilized to build a constructive model.

Proposition 7.3.3. If a constraint system is clashed then it is not satisfiable. ∇

Proof. Let S = (C,A) be a constraint system and assume that S contains a clash. We
have the following cases for a clash:

(i) C contains the constraints u:+C and u:−C. Now assume to the contrary that S
is satisfiable, i.e., by Def. 7.1.4 there is a pair (I, α) such that I;α S. More
precisely I;α u:+C if α(u) ∈ CI and I;α u:−C if α(u) ̸∈ CI . But it
cannot be that α(u) ∈ CI and α(u) ̸∈ CI at the same time which contradicts
the former assumption. Hence, S is not satisfiable.

(ii) C contains a constraint u:+⊥ and u ∈ A. Assume again that S is satisfiable, i.e.,
there is a pair (I, α) such that I;α u:+⊥ holds. This means α(u) ∈ ⊥I , i.e.,
u is a fallible entity. By Def. 7.1.4 this contradicts the assumption that (I, α)
satisfies S, which requires that α(u) is infallible. Thus, S is not satisfiable.

(iii) C contains a constraint u:+⊥ and one of u:−C, u:−∃RC or u:−∀RC. Assume
that S is satisfiable, i.e., there is a pair (I, α) such that I;α u:+⊥ holds. The
assumption implies α(u) ∈ ⊥I , i.e., α(u) is fallible. However, by Def. 7.1.4 from
the other constraints it follows that at the same time u is not in the interpretation
of concept C, there is one RI-successor of u that falsifies concept C, or in all RI

successors of u concept C is false. All cases are impossible for the fallible entity u,
because by Lem. 4.2.2 ⊥I ⊆ DI for arbitrary concepts D, and fallibility is closed
under RI . This contradicts the assumption that S is satisfiable. Therefore, S is
not satisfiable. □

Proposition 7.3.4 (Clashed GKB is unsatisfiable). If a generalised knowledge base
K is clashed then it is not satisfiable. ∇

Proof. Suppose that K = (M,Θ) is clashed. Then, it holds for all S ∈ M that S

contains a clash by Def. 7.2.9, and Proposition 7.3.3 implies that no S is satisfiable.
Hence, by Def. 7.2.2 it follows that K is not satisfiable. □

Proposition 7.3.5 (Invariance of a constraint system). Let S be a non-speculative
constraint system, Θ an arbitrary TBox and ξ be a tableau rule of cALC. If S Θ→ξ M
then S is satisfiable w.r.t. Θ iff there exists S′ in M s.t. S′ is satisfiable w.r.t. Θ. ∇

Proof. This follows directly from Prop. 7.3.2 and Def. 7.2.6. □

257

7 Tableau-based Calculus for cALC

The remaining section introduces the construction of a canonical interpretation that
can be transformed into a model for a clash-free constraint system.

Definition 7.3.3 (Canonical interpretation). For a constraint system S = (C,A),
the canonical interpretation IS = (∆IS,⪯IS,⊥IS, ·IS) is defined by:

∆IS =dfSupp(C); (7.10)

AIS =df {u | u:+A ∈ C or (7.11)

u:+⊥ ∈ C or (7.12)

u ̸∈ A} for every A ∈ NC ; (7.13)

⪯IS=df {(u, u′) ∈ ∆IS ×∆IS | ∃n > 0.∃u1, u2, . . . , un.u = u1 ∧ u′ = un.∀1 ≤ i < n.

ui ⪯ ui+1 ∈ C or (7.14)

ui is blocked by some w, such that w ⪯ ui+1 ∈ C}; (7.15)

RIS =df {(u, v) ∈ ∆IS ×∆IS | u R v ∈ C or (7.16)

u:+⊥ ∈ C and u = v or (7.17)

u ̸∈ A and u = v or (7.18)

u is blocked by some w, such that w R v ∈ C}; (7.19)

⊥IS =df {u | u ̸∈ A}. (7.20)

∇
Let K0 = (S0,Θ) be a non-speculative GKB and assume that K∗ = (M,Θ) is a

Θ-saturated GKB obtained from K0 by applying the completion rules of Fig. 7.1. Let
us choose S ∈ M such that S is clash-free, and let IS be the corresponding canonical
interpretation. The following section demonstrates that IS can be used to construct a
model of S w.r.t. Θ, similarly to the method of Baader, Buchheit and Hollander [23,
p. 209]. Due to blocking, IS is not necessarily a model for S0, because for a blocked
entity u ∈ Supp(S) there may exist relational constraints of the form u R v ∈ C or
u ⪯ v ∈ C for some v ∈ Supp(S), which have been introduced in the derivation
sequence before u has been blocked. Such relational constraints must not be satisfied
by the extended canonical interpretation and therefore we need to alter the constraint
system by dropping such relational constraints w.r.t. a blocked entity.

258

7.3 Proof of Correctness

Definition 7.3.4 (Reduced constraint system). Let S = (C,A) be a Θ-saturated,
clash-free and non-speculative constraint system. The reduced constraint system is
given by red(S) =df (red(C),A), where red(C) is defined by

red(C) =df{c | c is a conceptual constraint in C}
∪ {u ⪯ u′ | u ⪯ u′ ∈ C & u is not blocked}
∪ {u R v | u R v ∈ C & u is not blocked}.

We state that a constraint system is reduced if for all u, u′ ∈ S it holds that if
u ⪯ u′ ∈ C or u R u′ ∈ C then u is not blocked. Obviously, red(S) is a reduced
constraint system. ∇

Lemma 7.3.2. If a constraint system S is Θ-saturated, clash-free and non-speculative
then red(S) is Θ-saturated, clash-free and non-speculative. ∇

Proof. Let S = (C,A) be a Θ-saturated, clash-free and non-speculative constraint
system i.e., no cALC tableau rule is applicable to any constraint in C. The goal is to
show that red(S) = (C′ = red(C),A) is Θ-saturated, clash-free and non-speculative
as well.

First observe that red(S) is clash-free and non-speculative as well. This follows from
the fact that by Def. 7.3.4 the reduction does not add any conceptual constraint, but
only removes relational constraints of blocked constraint variables.

Secondly observe that Supp(S) = Supp(red(S)). Let u ∈ Supp(S) be arbitrary, and

κ(u,S) =df{c | c is a conceptual constraint for u in C

or for some v ∈ Supp(S) either c = u R v ∈ C or c = u ⪯ v ∈ C}.

We proceed by case analysis:

Case 1. If u is not blocked then κ(u,S) = κ(u, red(S)), i.e., S and red(S) coincide
in the constraints of entities that are not blocked. Hence, no tableau rule can be applied
to any conceptual constraint in which u occurs.

Case 2. If u is blocked by some w ∈ Supp(S) then by Def. 7.2.10 (blocking) and
Def. 7.3.4 it holds that CA(u,S) = CA(u, red(S)), i.e., S and red(S) coincide in
the conceptual constraint of each blocked entity, which means that u is saturated for
all non-generating rules on the spot. Because u is blocked it follows that no generating
rule can be applied to it.

Since u was arbitrarily chosen, it follows that no rule can be applied to red(S). Thus,
by Def. 7.2.8 the reduced constraint system red(S) is Θ-saturated. □

259

7 Tableau-based Calculus for cALC

Proposition 7.3.6. Let S be a Θ-saturated, clash-free, non-speculative and reduced
constraint system, then the canonical interpretation IS is a constructive interpretation
of S in the sense of Def. 4.2.2. ∇

Proof. Let S = (C,A) be a Θ-saturated, clash-free, non-speculative and reduced
constraint system and let IS be the canonical interpretation of S. We claim that IS

is a constructive interpretation of S according to Def. 4.2.2.

• The set ∆IS = Supp(C) is non-empty, since by Definition 7.1.1 C has to be
non-empty for any constraint system.

• The interpretation of atomic concepts A ∈ NC is given by AIS . Assume u ∈ AIS

and u ⪯IS u′. We claim u′ ∈ AIS .

Case 1. If u ̸∈ A then u = u′, because by Def. 7.2.3 case (7.14) is not possible,
i.e. inactive entities have no ⪯-successors, and by Def. 7.2.10 case (7.15) is not
possible due to the fact that only active entities can be blocked. Therefore, u ⪯ u′

because of u = u′, and the goal follows trivially.

Case 2. Henceforth, assume that u ∈ A. By Def. 7.3.3 there is a non-empty chain
u1, u2, . . . , un with u = u1 and u′ = un and ∀i.1 ≤ i < n.ui ⪯ ui+1 ∈ C or ui is
blocked by some w and w ⪯ ui+1 ∈ C. By induction on i we show ui ∈ AIS and
ui ∈ A.

(i) For i = 1 this holds trivially by assumption.

(ii) For i > 1 we have ui ∈ AIS and ui ∈ A by induction hypothesis and the
following two cases:

Case 1. ui ⪯ ui+1 ∈ C, i.e., ui is not blocked:

– If ui:+A ∈ C then by Def. 7.2.8 (saturation) ui+1:+A ∈ C which means
ui+1 ∈ AIS .

– If ui:+⊥ ∈ C then by Def. 7.2.8 ui+1:+⊥ ∈ C, hence ui+1 ∈ AIS .

Case 2. Otherwise, if some entity w blocks ui and w ⪯ ui+1 ∈ C then by
Def. 7.3.3 and blocking it holds that w ∈ AIS because of both, ui:+A ∈ C

or ui:+⊥ ∈ C imply w:+A ∈ C or w:+⊥ ∈ C respectively. Since w is not
blocked and w ⪯ ui+1 ∈ C, we have ui+1 ∈ AIS by saturation.

Thus, AIS is closed under refinement.

• By Def. 7.3.3 every entity u ̸∈ A that is inactive, viz., every fallible entity, is
included in the interpretation AIS for all A ∈ NC . Hence, ⊥IS ⊆ AIS holds for
all A ∈ NC .

260

7.3 Proof of Correctness

• The relation ⪯IS is reflexive and transitive by construction according to Def. 7.3.3.

• We have to show that ⊥IS is closed under refinement and role-filling. First, we
show that ⊥IS is closed under refinement. Let us assume that u ∈ ⊥IS and
u ⪯IS u′. The goal is to prove that u′ ∈ ⊥IS . By the assumption u ̸∈ A and
by Def. 7.2.10 (blocking) and 7.2.3 (non-speculative) follows u = u′, which is
discussed as Case 1 for AIS above.

Regarding closedness under role-filling, let us assume u ∈ ⊥IS :

(i) We have to show that for all u ̸∈ A there exists a fallible filler, i.e., for all
R ∈ NR there exists an R-successor of u that is contained in ⊥IS . This
comes by construction ofRIS , viz., for every u ̸∈ A it holds that (u, u) ∈ RIS

by construction of RIS (Def. 7.3.3 (7.18)). Hence, for every fallible entity
there exists a fallible filler.

(ii) Next, we have to show that all R-successors of a fallible entity are fallible.
We argue this as follows: Let us assume that u ∈ ⊥IS and uRIS v. u ∈ ⊥IS

implies u ̸∈ A. Since by Def. 7.2.3 inactive entities cannot have ⪯- or
R-successors in S, v = u. Hence, v ∈ ⊥IS .

This shows that the canonical interpretation is indeed an interpretation for S. □

Definition 7.3.5 (Extended canonical interpretation (pre-model)). For a Θ-saturated,
clash-free, reduced and non-speculative constraint system S = (C,A) the extended
canonical interpretation (or pre-model) (IS, αS) is defined by:

• IS, the canonical interpretation of S by Def. 7.3.3, and

• αS(x) =df x, for all x ∈ Supp(C). ∇

Lemma 7.3.3. Let S = (C,A) be a Θ-saturated and non-speculative constraint
systemand IS be the canonical interpretation of S. If u ∈ A, u:+C ∈ C and u ⪯IS v

then v:+C ∈ C and v ∈ A. ∇

Proof. Let S = (C,A) be a Θ-saturated, clash-free and non-speculative constraint
system, S′ = red(S) = (C′,A) and IS be the canonical interpretation of S′. By
Prop. 7.3.2 it follows that S′ is Θ-saturated as well, and it is also non-speculative.
Suppose that u:+C ∈ C′ and u ⪯IS v. By Def. 7.3.3 there exists a non-empty chain
u1, u2, u3, . . . , un with u = u1 and v = un such that for all i, 1 ≤ i < n either
ui ⪯ ui+1 ∈ C′ or there exists w ∈ Supp(S′) such that ui is blocked by w and
w ⪯ ui+1 ∈ C′. Let i be such that 1 ≤ i < n. We proceed by induction over i to prove
ui:+C ∈ C and ui ∈ A:

261

7 Tableau-based Calculus for cALC

• In the base case i = 1, it trivially holds that u1 ∈ A and u1:+C ∈ C by
assumption.

• In the inductive step let 1 ≤ k < n. We proceed by case analysis:
Case 1. uk ⪯ uk+1 ∈ C′. The ind. hyp. implies that uk:+C ∈ C′. Since S′ is
non-speculative, it holds that uk ∈ A and from the fact that S′ is Θ-saturated
we can conclude by saturation (rule (→⪯+)) that uk+1:+C ∈ C′, Since S is
non-speculative, uk+1 ∈ A follows from Prop. 7.2.1.
Case 2. If uk is blocked by some w ∈ Supp(S′) then w ≺ uk, CA(u) ⊆ CA(w)

and w ⪯ uk+1 ∈ C′. The ind. hyp. implies that uk:+C ∈ C′, and it follows from
blocking that w:+C ∈ C′ and w ∈ A. Since S′ is Θ-saturated, it follows by
saturation (rule (→⪯+)) that uk+1:+C ∈ C′. Prop. 7.2.1 implies uk+1 ∈ A from
the fact that S is non-speculative.

Hence, u′:+C ∈ C′ and u′ ∈ A. □

Proposition 7.3.7 (Selfsatisfaction). Let S = (C,A) be a Θ-saturated, non-speculative,
clash-free and reduced constraint system, then the extended canonical interpretation of
S is a model for S. ∇

Proof. Let S = (C,A) be a Θ-saturated, non-speculative, clash-free and reduced
constraint system, IS the canonical interpretation of S and (IS, αS) the pre-model of
S. We have to show that IS;αS S, i.e., IS;αS c for all c ∈ C and αS(x) ̸∈ ⊥IS

for all x ∈ A.

• By construction IS, αS satisfies all constraints of the form u ⪯ u′ ∈ C. Note that
u is not blocked because of the fact that S is reduced.

• IS, αS satisfies all relational constraints of the form u R v ∈ C by construction.

• By Def. 7.3.3 all u ∈ A.αS(u) ̸∈ ⊥I , i.e. the assignment of all variables in A is
infallible.

• We show for an arbitrary concept C that for all u ∈ Supp(S),

u:+C ∈ C ⇒ IS;αS u:+C, (7.21)
u:−C ∈ C ⇒ IS;αS u:−C, (7.22)

u:−∃RC ∈ C ⇒ IS;αS u:−∃RC, (7.23)
u:−∀RC ∈ C ⇒ IS;αS u:−∀RC, (7.24)

262

7.3 Proof of Correctness

simultaneously by induction on the structure of C following the order of the four
cases above. In particular, we will justify the cases u:−∃RC ∈ C and u:−∀RC ∈ C

for arbitrary C relying on the proof of the former two cases:

Case 1. If u ̸∈ A then (7.21) follows trivially from the fact that u ∈ ⊥IS by
Def. 7.3.3. The cases (7.21)–(7.24) are not possible, since S is non-speculative
and therefore u is optimistic by Def. 7.2.3.

Case 2. Otherwise, u ∈ A and the cases (7.21)–(7.24) are as follows:

BC Base case: If u:+A ∈ C with A ∈ NC then IS;αS u:+A by construction
of AIS . Suppose that u:−A ∈ C. By assumption S is non-speculative and
clash-free. The former implies that u ∈ A and the latter lets us conclude
that u:+A ̸∈ C and u:+⊥ ̸∈ C. Hence, IS;αS u:−A.

If u:+⊥ ∈ C then u ̸∈ A, since otherwise this would contradict the as-
sumption that S is clash-free, and therefore u ∈ ⊥IS by definition of
⊥IS . Thus, IS;αS u:+⊥. Otherwise, if u:−⊥ ∈ C then the assump-
tion (non-speculative) implies that u ∈ A. Therefore u ̸∈ ⊥IS . Hence,
IS;αS u:−⊥.

(+C ⊓D) If u:+C⊓D ∈ C then by saturation (rule (→⊓+)) we have {u:+C, u:+D} ⊆
C. The ind. hyp. yields IS;αS u:+C and IS;αS u:+D. Then,
αS(u) ∈ CIS ∩ DIS , i.e., αS(u) ∈ (C ⊓ D)IS and therefore IS;αS

u:+C ⊓D.

(−C ⊓D) If u:−C ⊓ D ∈ C then by saturation of S (rule (→⊓−)) this implies that
either u:−C ∈ C or u:−D ∈ C. By ind. hyp. one can deduce IS;αS u:−C
or IS;αS u:−D, i.e., αS(u) ̸∈ CIS or αS(u) ̸∈ DIS which means
αS(u) ̸∈ CIS ∪ DIS . The latter implies that αS(u) ̸∈ (C ⊓ D)IS and
therefore IS;αS u:−C ⊓D.

(+C ⊔D) If u:+C ⊔D ∈ C then by saturation (rule (→⊔+)) of S either u:+C ∈ C or
u:+D ∈ C. By ind. hyp. this yields IS;αS u:+C or IS;αS u:+D, i.e.,
αS(u) ∈ CIS or αS(u) ∈ DIS , which means αS(u) ∈ (C ⊔D)IS . Hence,
IS;αS u:+C ⊔D.

(−C ⊔D) If u:−C⊔D ∈ C then by saturation of S (rule (→⊔−)) this implies u:−C ∈
C and u:−D ∈ C. By induction hypothesis we can deduce IS;αS u:−C
and IS;αS u:−D, i.e., αS(u) ̸∈ CIS and αS(u) ̸∈ DIS . This yields
αS(u) ̸∈ (C ⊔D)IS and therefore IS;αS u:−C ⊔D.

263

7 Tableau-based Calculus for cALC

(+C ⊃ D) Suppose that u:+C ⊃ D ∈ C. Let u′ ∈ ∆IS such that u ⪯IS u′ and
u′ ∈ CIS . From Lem. 7.3.3 it follows that u′:+C ⊃ D ∈ C and u′ ∈ A.
Because of u′ ∈ A, saturation (rule (→⊃+)) implies that u′:−C ∈ C or
u′:+D ∈ C.

Case 1. If u′:−C ∈ C then by ind. hyp. IS;αS u′:−C, i.e., u′ ̸∈ CIS .

Case 2. Otherwise, u′:+D ∈ C. It follows from the induction hypothesis
that IS;αS u′:+D, i.e., u′ ∈ DIS .

Hence, IS;αS u:+C ⊃ D.

(−C ⊃ D) If u:−C ⊃ D ∈ C then there are two cases:
Case 1. Suppose that u is not blocked. From saturation (rule (→⊃−))
we can conclude that {u ⪯ u′, u′:+C, u′:−D} ⊆ C and u′ ∈ A, which
implies u′ ̸∈ ⊥IS . From (7.14) it follows u ⪯IS u′. The ind. hyp. lets us
conclude that IS;αS u′:+C and IS;αS u′:−D, i.e., αS(u

′) ∈ CIS

and αS(u
′) ̸∈ DIS . Thus, IS;αS u:−C ⊃ D.

Case 2. u is blocked by some w ∈ Supp(S), i.e., w ≺ u and CA(u) ⊆
CA(w), which implies w:−C ⊃ D ∈ C. Since w ∈ A and w is not blocked,
it follows from saturation that {w ⪯ w′, w′:+C,w′:−D} ⊆ C. By Def. 7.3.3
w ⪯IS w′ and by ind. hyp. IS;αS w′:+C and IS;αS w′:−D, i.e.,
αS(w

′) ∈ CIS and αS(w
′) ̸∈ DIS . Since w′ ∈ A (non-speculative), it

follows that w′ ̸∈ ⊥IS . Because u is blocked by w it follows by (7.15) that
u ⪯IS w′. Hence, IS;αS u:−C ⊃ D.

(+∃R.C) If u:+∃R.C ∈ C then we have to show that IS;αS u:+∃R.C, which is
the case if for all ⪯IS-successors of u there exists an R-successor which is
in the interpretation of C. Let u′ ∈ ∆IS such that u ⪯IS u′. Lemma 7.3.3
implies u′:+∃R.C ∈ C and u′ ∈ A. We proceed by case analysis:

Case 1. If u′ is not blocked then it follows by saturation (rule (→∃+)) that
u′ R v ∈ C and v:+C ∈ C. By (7.16) u′ RIS v, and the ind. hyp. implies
that IS;αS v:+C, i.e., αS(v) ∈ CIS .

Case 2. Otherwise, u′ is blocked by some w such that w ≺ u′ and CA(u′) ⊆
CA(w), and in particular w:+∃R.C ∈ C. It follows from saturation (rule
(→∃+)) that w R v ∈ C and v:+C ∈ C. Due to blocking we have u′ RIS v

and the ind. hyp. yields IS;αS v:+C.

Hence, IS;αS u:+∃R.C.

264

7.3 Proof of Correctness

(−∃R.C) If u:−∃R.C ∈ C then the goal is IS;αS u:−∃RC, which holds if there
exists a refinement of u such that all its R-successors are not in CIS .

Case 1. u is not blocked. Saturation (rule (→∃−)) implies that ∃u′ ∈ A

such that u ⪯ u′ ∈ C and u′:−∀RC ∈ C. Def. 7.3.3 (7.14) implies u ⪯IS u′

and the induction hypothesis implies that IS;αS u′:−∀RC, which means
that all R-successors of u′ are not in CIS .

Case 2. u is blocked by some w ∈ A such that w ≺ u, CA(u) ⊆ CA(w)

and in particular w:−∃R.C ∈ C. Since w is not blocked, saturation (rule
(→∃−)) implies that ∃w′ ∈ A such that w ⪯ w′ and w′:−∀RC ∈ C. The
ind. hyp. yields IS;αS w′:−∀RC, and due to blocking it follows from
(7.15) that u ⪯IS w′.

Therefore, IS;αS u:−∃RC.

(+∀R.C) Suppose that u:+∀R.C ∈ C. The goal is to prove IS;αS u:+∀RC, which
holds if all RIS-successors of all ⪯IS-successors of u lie in the interpretation
of C. Let u′, v ∈ ∆IS such that u ⪯IS u′, u′ RIS v. Lemma 7.3.3 implies
u′:+∀R.C ∈ C and u′ ∈ A. We proceed by case analysis:

Case 1. If u′ R v ∈ C then u′ cannot be blocked by any other entity due to
the fact that S is reduced (see Def. 7.3.4). From saturation (rule (→∀+)) it
follows that v:+C ∈ C, which by the ind. hyp. yields IS;αS v:+C.

Case 2. u′:+⊥ ∈ C and u′ = v. It holds by Lem. 4.2.2 that ⊥IS ⊆ CIS .
Thus, IS;αS v:+C.

Case 3. Suppose that u′ ̸∈ A and u = v. The argument is analogously to
Case 2 above.

Case 4. u′ is blocked by some w ∈ A such that w ≺ u′, CA(u′) ⊆ CA(w)

and w R v ∈ C, in particular w:+∀R.C ∈ C. Now, saturation (rule (→∀+))
implies v:+C ∈ C, and the ind. hyp. lets us conclude that IS;αS v:+C.

Hence, IS;αS u:+∀RC.

(−∀R.C) If u:−∀R.C ∈ C, then one has to prove that IS;αS u:−∀RC, which
holds if there exists a refinement of u with an R-successor that is not in the
interpretation of C. We proceed by case analysis on u:

Case 1. u is not blocked, i.e., by saturation (rule (→∀−)) it follows that
u ⪯ u′ ∈ C, u′:−∃RC ∈ C, and u′ ∈ A (non-speculative). (7.14) implies
u ⪯IS u′ and the ind. hyp. lets us conclude that IS;αS u′:−∃RC, which
means that there exists an R-successor that is not in CIS .

265

7 Tableau-based Calculus for cALC

Case 2. u is blocked by some w ∈ A such that w ≺ u, CA(u) ⊆ CA(w),
i.e., w:−∃R.C ∈ C. Since w is not blocked, it follows from saturation (rule
(→∀−)) that w ⪯ w′ ∈ C and w′:−∃RC ∈ C. (7.15) lets us conclude that
u ⪯IS w′ and by ind. hyp. it follows that IS;αS w′:−∃RC.

Hence, IS;αS u:−∀RC.

(−∃RC) Suppose u:−∃RC ∈ C with u ∈ A. The goal is to demonstrate that IS;αS

u:−∃RC, i.e., there exists an R-successor of u that is not in CIS . By case
analysis on u:

Case 1. u is not blocked. Saturation (rule (→R∃−)) implies ∃v ∈ A such
that u R v ∈ C and v:−C ∈ C. It follows from (7.16) that u RIS v and the
induction hypothesis yields IS;αS v:−C.

Case 2. u is blocked by some w ∈ A such that w ≺ u and CA(u) ⊆ CA(w),
particularly w:−∃RC ∈ C. Since w is not blocked, saturation (rule (→R∃−))
implies ∃v ∈ A such that wR v ∈ C and v:−C ∈ C. (7.19) lets us conclude
that u RIS w and the ind. hyp. implies IS;αS v:−C, which was to be
shown.

Therefore, IS;αS u:−∃RC.

(−∀RC) Suppose u:−∀RC ∈ C with u ∈ A. The task is to show that IS;αS

u:−∀RC, which holds if all R-successors of u are not in CIS . Let v ∈ ∆IS

be such that u RIS v. We proceed by case analysis:

Case 1. If u R v ∈ C then u cannot be blocked, because S is reduced.
Saturation (rule (→R∀−)) implies v:−C ∈ C and v ∈ A. The ind. hyp.
yields IS;αS v:−C.

Case 2. If u:+⊥ ∈ C then this contradicts our assumption that S is clash-
free, considering that u ∈ A.

Case 3. u is blocked by some w ∈ A, i.e., w ≺ u and CA(u) ⊆ CA(w).
Then, w:−∀RC ∈ C and w R v ∈ C. Saturation (rule (→R∀−)) yields
v:−C ∈ C. (7.19) lets us conclude that u RIS v and the ind. hyp. implies
IS;αS v:−C. Thus, IS;αS u:−∀RC. □

266

7.3 Proof of Correctness

Proposition 7.3.8. A Θ-saturated, non-speculative constraint system is satisfiable if
and only if it contains no clash. ∇

Proof. (⇒) Let S = (C,A) be a Θ-saturated, non-speculative and satisfiable constraint
system, i.e., no more rule is applicable to any element of C and there is a pair (I, α)
which satisfies S. We have to show that S contains no clash. Suppose that S contains
a clash. Then, this would imply by Proposition 7.3.3 that S is not satisfiable, which
contradicts our former assumption. Hence S contains no clash.
(⇐) For a saturated constraint system S = (C,A) that is non-speculative and clash-

free, we can construct the reduced constraint system S′ = red(S), which is saturated,
non-speculative and clash-free by Lem. 7.3.2. By Proposition 7.3.7 S′ has a model,
which implies that S has a model as well. Therefore S is satisfiable. □

Theorem 7.3.1 (Soundness). Let S∗ be a Θ-saturated constraint system, which is ob-
tained by application of the derivation rules of Fig. 7.1 from a non-speculative constraint
system S. S is satisfiable if S∗ is clash-free. ∇

Proof. Let S∗ be a clash-free saturation of S obtained by application of the derivation
rules in Figure 7.1. Proposition 7.3.8 implies that S∗ is satisfiable. Satisfiability of S
then follows by Proposition 7.3.5 and induction over the number of rule applications,
i.e., one exploits by induction over the number of rule applications that applying a
tableau rule to an unsatisfiable constraint system does not yield a satisfiable constraint
system. □

Theorem 7.3.2 (Completeness). Let S be a finite, non-speculative constraint system
and Θ a TBox. If (S,Θ) is satisfiable then there exists a finite, non-speculative, clash-
free and Θ-saturated saturation S∗ of S which is derived by the application of the
completion rules from Fig. 7.1. ∇

Proof. Let S be a finite and non-speculative constraint system which is satisfiable.
By Prop. 7.3.1 after a finite number of rule applications we can reach a finite, non-
speculative Θ-saturation S∗ of S, which is still satisfiable by Prop. 7.3.5. By Prop. 7.3.8
S∗ is clash-free. □

267

7 Tableau-based Calculus for cALC

7.4 Towards Constructive ABox Reasoning – an Outlook

In classical ALC, the knowledge about individuals is expressed in terms of a set of ABox
assertions of the form a :C and a R b, which are expressed w.r.t. individual names a, b
from the alphabet NI . The interpretation I is extended to ABoxes by mapping each
individual name a ∈ NI to a possible world in the interpretation domain ∆I . Then, an
assertion a : C is satisfied if the mapping aI is part of CI , and a R b holds if aI RI bI .
Sometimes, a DL is required to satisfy the unique name assumption [16, p. 66], i.e.,
distinct names a, b require that aI ̸= bI holds. The most important inference tasks
w.r.t. ABoxes (see Chap. 2.1) are the consistency problem and instance checking: Let us
recall that an ABox is consistent if all individual names can be assigned to the elements
of the interpretation domain in a way such that all ABox assertions are satisfied, and
an assertion a : C is entailed by an ABox A if every model of A satisfies a : C as well.

The individual names of DLs correspond to nominals from hybrid logics [7]. According
to Areces and de Rijke [7], nominals allow to refer explicitly to the single states
(possible worlds) in a classical model. In DLs nominals can be seen as special atomic
concepts of the form {a} for all a ∈ NI , which are interpreted as singleton sets, i.e.,
{a}I = {aI} [16, pp. 170 f.]. The interpretation of nominals as singleton sets carries
over straightforward to DLs, which are based on an extension of standard intuitionistic
Kripke semantics (see Chap. 3). This semantics separates the intuitionistic preorder
from the modal accessibility relation by assigning a domain to each intuitionistic state
of knowledge, which is the set of possible worlds relative to which the interpretation
of roles takes place. Then, for each state of knowledge, the mapping of individual
names is done by assigning each individual name to an element of the state’s domain
with the requirement that the assignment of names has to preserve monotonicity w.r.t.
the intuitionistic preorder ⪯. Contrary, in the birelational semantics of cALC the
intuitionistic preorder and the modal accessibility relation are relations of the same
domain, i.e., the different states of a possible world are now elements of the same
set. This leads to a further complication as Braüner points out, namely, under the
birelational semantics the problem arises that ‘[. . .] if nominals are given their obvious
interpretation, namely singleton sets, then the interpretation of nominals cannot be
preserved by the partial order, thus, monotonicity is violated’ [49, p. 178]. Therefore,
the interpretation of nominals has to be adapted for the birelational semantics to
incorporate that the domain of an interpretation (possibly) contains several states of an
entity w.r.t. refinement ⪯. In the following, we will approach the problem of reasoning
w.r.t. ABoxes relative to birelational semantics by means of two examples, which outline
instance checking and countermodel construction.

268

7.4 Towards Constructive ABox Reasoning – an Outlook

Remark 7.4.1. Note that ABox assertions of the form a : C and a R b can only
express positive knowledge about an individual name a ∈ NI . Such assertions can
be trivially satisfied in a fallible entity, i.e., every ABox can be trivially satisfied by
an interpretation I that consists of a single fallible entity x, and by mapping each
name in NI to x. However, we are more interested in non-trivial models of an ABox,
in particular it seems to be appropriate to require that an ABox is satisfied w.r.t. a
non-empty TBox if there exists a non-trivial (infallible) interpretation that satisfies
both, the ABox and the TBox. ■

In the following two examples we will exemplify (i) a proof of instance checking w.r.t.
an ABox by internalising the ABox into a TBox, and (ii) a disproof of instance checking
w.r.t. an ABox and countermodel construction by extending the tableau calculus by
constraints and rules to deal with individual names.

Example 7.4.1 (Instance checking). In this example we extend the language of cALC
by nominals, that is, atomic concepts of the form {a} for a ∈ NI . They are used to
internalise an ABox A into a TBox by taking the following translation [16, p. 171]:

t(a : C) = {a} ⊃ C,

t(a R b) = {a} ⊃ ∃R.{b}.

Let us reconsider the Food&Wine knowledge base KF&W = (A,Θ) from Ex. 5.1.2,
where the ABox A is described by

RED : Colour, (RED, BAROLO) : isColourOf,

WHITE : Colour, (WHITE, CHARDONNAY) : isColourOf,

FISH : Food, (FISH, WHITE) : goesWith,

MEAT : Food, (MEAT, RED) : goesWith,

BAROLO : Wine, CHARDONNAY : Wine.

and the TBox Θ is given by

Θ = {Food ⊃ ∃goesWith.Colour,Colour ⊃ ∃isColourOf.Wine}.

Suppose we want to check whether MEAT is an instance of the concept

Food ⊃ ∃goesWith.(Colour ⊓ ∃isColourOf.Wine).

269

7 Tableau-based Calculus for cALC

The above instance checking problem can proved by showing that the constraint sys-
tem ({u0:+{MEAT}, u0:−Food ⊃ ∃goesWith.(Colour ⊓ ∃isColourOf.Wine)}, {u0}) is not
satisfiable w.r.t. TBox Θ ∪ t(A), where t(A) is the translation of the ABox A into a
TBox, given by:

{RED} ⊃ Colour, {RED} ⊃ ∃isColourOf.{BAROLO},
{WHITE} ⊃ Colour, {WHITE} ⊃ ∃isColourOf.{CHARDONNAY},
{FISH} ⊃ Food, {FISH} ⊃ ∃goesWith.{WHITE},
{MEAT} ⊃ Food, {MEAT} ⊃ ∃goesWith.{RED},

{BAROLO} ⊃ Wine, {CHARDONNAY} ⊃ Wine.

We will use the abbreviations r = {RED}, w = {WHITE}, f = {FISH}, m = {MEAT},
b = {BAROLO}, c = {CHARDONNAY}, R = goesWith, S = isColourOf, C = Colour,
F = Food and W = Wine in the following derivation, in which we only expand the
constraints that are relevant to obtain a clashing constraint system. Moreover, we
use the admissible rule (→ax+) stating that if C, u:+A ; A and A ⊃ C ∈ Θ then
C, u:+A, u:+C ; A, where A is an atomic concept.

C0 = u0:+m, u0:−F ⊃ ∃R.(C ⊓ ∃S.W) ; u0
(→⊃−)

C1 = C0, u0 ⪯ u1, u1:+F, u1:−∃R.(C ⊓ ∃S.W) ; u0, u1
(→∃−)

C2 = C1, u1 ⪯ u2, u2:−∀RC ⊓ ∃S.W ; A0 = u0, u1, u2
(→⪯+), (→ax+)

C3 = C2, u2:+m, u2:+∃R.r ; A0
(→∃+)

C4 = C3, u2 R v0, v0:+r ; A0
(→R∀−)

C5 = C4, v0:−C ⊓ ∃S.W ; A1 = A0, v0
(→⊓−)

C5, v0:−C ; A1
(→ax+)

C5, v0:−C, v0:+C ; A1

××××

C6 = C5, v0:−∃S.W ; A1
(→ax+)

C7 = C6, v0:+∃S.b ; A1
(→∃−), (→⪯+)

C8 = C7, v0 ⪯ v1, v1:−∀RW, v1:+∃S.b ; A1, v1
(→∃+)

C9 = C8, v1 S w0, w0:+b, ; A1, v1
(→R∀−)

C10 = C9, w0:−W ; A1, v1, w0
(→ax+)

C10, w0:−W,w0:+W ; A1, v1, w0

××××
■

Intuitively, the closed tableau derivation means that there exists no countermodel in
the birelational semantics. Granted that there exists a standard Kripke semantics for
cALC, with the property that there are more birelational models than Kripke models,
and each Kripke model can be encoded into a birelational model while preserving the
semantic consequence relation, it should follow that there exists no countermodel in
the standard Kripke semantics for the above example as well.

However, in the case of a failed proof, i.e., the tableau calculus stops with a saturated
and clash-free constraint system, the approach of internalising an ABox into a TBox

270

7.4 Towards Constructive ABox Reasoning – an Outlook

does not yet provide us with the construction of a countermodel that satisfies the
ABox and refutes the instance assertion to be entailed by the ABox. This case will be
discussed in the following example by introducing an interpretation of individual names
for birelational interpretations and special rules that explicitly treat ABox assertions.

Example 7.4.2 (Countermodel construction). Inspired by Chadha, Macedonio and
Sassone [61], we interpret ABox assertions by extending the constructive interpretation
I by a partial function ·I : ∆I → NI that maps an entity from ∆I to a single individual
name from NI such that for all x, y ∈ ∆I and a ∈ NI the following properties hold:

(i) Coherence [61, p. 11]: xI = a and x⪯I y implies yI = a

(ii) Refinement simulation: ⪯I ⊆ →, or in other words x ⪯I y ⇒ x→ y, where

a) A relation S ⊆ ∆I ×∆I is called a simulation if it holds for all (x, y) ∈ S

that:

• ∀a ∈ NI . x
I = a⇒ yI = a;

• ∀x′ ∈ ∆I , ∀R ∈ NR. x R
I x′ ⇒ ∃y′ ∈ ∆I . y RI y′ and (x′, y′) ∈ S.

b) Let → ⊆ ∆I ×∆I be the maximal simulation relation given by

→ =df

{S | S is a simulation}.

Note that if S1, S2 are simulations then S1 ∪ S2 is a simulation as well.

One can observe that (i) is a consequence of refinement simulation (ii), condition
⪯I ⊆ →.

Intuitively, an entity of ∆I in a birelational model corresponds to a single place at
a specific state of a Kripke model. Let ∆I

a =df {x ∈ ∆I | xI = a} denote the set of
entities in ∆I that are assigned to the name a. Then, an extended interpretation I
models a concept assertion a : C if ∀x ∈ ∆I

a . I;x C, and analogously I models a
role assertion a R b if ∀x ∈ ∆I

a .∃y ∈ ∆I
b . x R

I y. This is extended to a set (ABox) of
assertional axioms in the usual style.

Moreover, we extend the tableau calculus by constraints and rules to handle nominals
from the ABox explicitly. A nominal constraint is of the form u ↓ a, where a ∈ NI

and NI ∩ VE = ∅, and denotes that variable u is assigned the name a (or name a is
true at u). This constraint is a restricted form of the well-known satisfaction operator
@ua from hybrid logics [49, pp. 5 ff.]. However, we will not extend the language cALC
by a hybrid logical satisfaction operator here.

Moreover, we extend a general knowledge base to include an ABox as well by taking
K = (M,Θ,A), where M is a finite set of constraint systems, Θ a TBox and A an

271

7 Tableau-based Calculus for cALC

ABox. The tableau rules of cALC are extended accordingly to such extended GKBs,
and we require additionally to Def. 7.2.5 (local tableau rule) that no rule alters the
ABox, formally, (M,Θ,A) →ξ (M′,Θ′,A′) only if A′ = A. The nominals are treated
by the following rules w.r.t. an ABox A:

C, u ↓ a, u ⪯ u′ ; A
(→⪯a), u ∈ A & a ∈ Supp(A)

C, u′ ↓ a ; A
C, u ↓ a ; A

(→Ca), a:C ∈ A
C, u:+C ; A

C, u ↓ a ; A
(→Ra), a R b ∈ A, v is fresh

C, v ↓ b, u R v ; A

The rules (→Ca) and (→Ra) are not restricted to active entities, but applicable to
every u ∈ Supp(S) that satisfies their premise. Due to the fact that rule (→Ra) is a
generating rule and also applicable to inactive entities, we need to reconsider termination
and also allow blocking of inactive entities, since a cyclic ABox can lead to an infinite
sequence of applications of rule (→Ra) for inactive entities. Therefore, we additionally
require that if u ̸∈ A then rule (→Ra) is only applied if u is not blocked by any inactive
entity in Supp(S), analogously to the definition of blocking (see Def. 7.2.10).

Let us reconsider the customer topology ABox from Ex. 4.2.5, using the abbreviations
hasCustomer = R and Insolvent = I :

A =df {a R b, a R c, b R c, c R d, b:I, d:¬I}

A company is credit-worthy if it has an insolvent customer who in turn has at least
one solvent customer, formalised by the concept:

CW = ∃R.(I ⊓ ∃R.¬I).

Now, suppose we want to check if individual a is a credit worthy company. This
holds iff the following constraint system is not satisfiable w.r.t. ABox A:

S0 =df ({a0 ↓ a, b0 ↓ b, c0 ↓ c, d0 ↓ d,
a0 R b0, a0 R c0, b0 R c0, c0 R d0,

b0:+I, d0:+¬I, a0:−CW}, {a0}),

where the ABox is instantiated by fresh inactive variables, and variable a0 is switched
active. The derivation proceeds as follows:

272

7.4 Towards Constructive ABox Reasoning – an Outlook

b0:+I, d0:+¬I, a0:−∃R.(I ⊓ ∃R.¬I) ; A0 = {a0}
C0 = a0 ↓ a, b0 ↓ b, c0 ↓ c, d0 ↓ d, a0 R b0, a0 R c0, b0 R c0, c0 R d0,

(→∃−), (→⪯a)
C1 = C0, a0 ⪯ a1, a1:−∀RI ⊓ ∃R.¬I, a1 ↓ a ; A0, a1

(→Ra), (→Ca)
C2 = C1, a1 R b1, b1 ↓ b, b1:+I ; A0, a1

(→R∀−)
C3 = C2, b1:−I ⊓ ∃R.¬I ; A1 = A0, a1, b1

(→⊓−)
C3, b1:−I, b1:+I ; A1

××××
C4 = C3, b1:−∃R.¬I ; A1

(→Ra)
C5 = C4, a1 R c1, c1 ↓ c ; A1

(→R∀−), (→Ra)
C6 = C5, c1:−I ⊓ ∃R.¬I, c1 R d1, d1 ↓ d ; A2 = A1, c1

(→⊓−)

...

C7 = C6, c1:−I ; A2
C8 = C6, c1:−∃R.¬I ; A2

(→∃−)
C10 = C9, c1 ⪯ c2, c2:−∀R¬I ; A2, c2

(→Ra)
C11 = C10, c2 R d2, d2 ↓ d ; A2, c2

(→Ca), (→R∀−)
C12 = C11, d2:+¬I, d2:−¬I ; A2, d1, d2

××××

where the derivation of C7 continues as follows:

C7 = C6, c1:−I ; A2
(→Ra)

2, (→Ca)C13 = C7, b1 R c3, c3 ↓ c, c3 R d3, d3 ↓ d, d3:+¬I ; A2
(→∃−)

C14 = C13, b1 ⪯ b2, b2 ↓ b, b2:−∀R¬I ; A3 = A2, b2
(→Ra)

2, (→Ca)C14 = C14, b2 R c4, c4 ↓ c, c4 R d4, d4 ↓ d, d4:+¬I ; A3
(→R∀−)

C15 = C14, c4:−¬I ; A4 = A3, c4
(→⊃−)

C16 = C15, c4 ⪯ c5, c5:+I ; A5 = A4, c5
(→Ra), (→Ca)

C17 = C16, c5 R d5, d5 ↓ d, d5:+¬I ; A5

The calculus finishes with the saturated and clash-free constraint system (C17,A5),
from which it follows that entity a is not an instance of the concept CW . The generated
countermodel structure of the constraint system is depicted by Fig. 7.7, where solid
lines represent role R, dotted lines refinement ⪯, filled dots active entities, and
stands for inactive entities.

Note that the countermodel structure contains redundant information w.r.t. its inact-
ive entities, i.e., one can simplify the structure and identify d1–d4 with d0, and c2 with
c0. We can generate an interpretation from the countermodel structure in Fig. 7.7 which
is shown in Fig. 7.8. Observe, that this structure corresponds to the countermodel
given in Fig. 4.4 of Ex. 4.2.5, and expresses the two choices for individual c under the
EWOA, represented by c1 where ¬I holds (c2 in Ex. 4.2.5), and c4 that satisfies I (c1
in Ex. 4.2.5).

273

7 Tableau-based Calculus for cALC

a0:−∃R.(I ⊓ ∃R.¬I)

a1

b0:+I

c0

d0:+¬I

−∃R.¬I
b1:+I,

c1:−Ic2d2:+¬I d1:+¬I

b2:+Ic3:−¬Id3:+¬I

c4:+Id4:+¬I

Figure 7.7: Countermodel structure for Ex. 7.4.2.

Formally, the interpretation is given by I = (∆I ,⪯I ,⊥I , ·I), by taking

∆I =df {a0, a1, b0, b1, b2, c0, c1, c3, c4, d0};
⪯I =df {(a0, a0), (a0, a1), (a1, a1), (b0, b0), (b1, b1), (b1, b2), (b2, b2), (c0, c0), (c1, c1),

(c3, c3), (c3, c4), (c4, c4), (d0, d0)};
⊥I =df {b0, c0, d0};
RI =df {(a0, b0), (a0, c0), (b0, c0), (c0, d0), (a1, b1), (a1, c1), (b1, c0), (c1, d0), (b2, c3),

(c3, d0), (c4, d0), (b0, b0), (c0, c0), (d0, d0)};
II =df {b0, c0, d0, b1, b2, c4},

and the mapping of entities to individual names is given by

aI0 = aI1 = a,

bI0 = bI1 = bI2 = b,

cI0 = cI1 = cI3 = cI4 = c,

dI0 = d.

One can easily observe that the above interpretation I is a model of the initial ABox

274

7.4 Towards Constructive ABox Reasoning – an Outlook

a0:−∃R.(I ⊓ ∃R.¬I)

a1

b0:+I

c0
d0:+¬I

b1:+I,

−∃R.¬I

c1:−I

b2:+I

c3:−¬I

c4:+I

Figure 7.8: Countermodel for Ex. 7.4.2.

A =df {a R b, a R c, b R c, c R d, b:I, d:¬I} that satisfies the properties (i) coherence
and (ii) simulation.

Let us proceed by inspecting the ABox assertions of A. For instance, let us check the
relational assertion a R b, which holds if ∀x ∈ ∆I

a = {a0, a1}.∃y ∈ ∆I
b = {b0, b1, b2}

such that x RI y. For a0 there exists the entity b0 with bI0 = b, for a1 there exists
b1 with bI1 = b. Hence, I a R b. The remaining relational assertions are argued
analogously.

Secondly, let us discuss the conceptual assertions b:I and d:¬I. The first assertion
holds if ∀x ∈ ∆I

b = {b0, b1, b2}. I;x I , which follows immediately from the definition
of II . The second assertion d:¬I follows immediately from the fallibility of d0.

We conjecture that the countermodel of Fig. 7.8 can be transformed into a finite
standard Kripke model, which separates the intuitionistic preorder from the interpreta-
tion of the roles. Bozzato [39, p. 49, Ex. 4] has given such a countermodel for the same
example in the logic KALC. However, it seems we cannot obtain a finite standard
Kripke model from birelational models involving cycles, like the one given by Fig. 5.3
in Ex. 5.2.3.

275

7 Tableau-based Calculus for cALC

As a final remark, observe that the rules above, which treat ABox assertions explicitly,
are just another representation of the existing rules of TcALC, namely (→⪯+) and (→∃+),
in the sense that we can achieve the same by internalising an ABox into a TBox and
relaxing rule (→∃+) such that it can be applied to inactive (unblocked) entities as
well, in combination with an additional blocking condition on inactive entities. Then,
the construction of the assignment of entities to individual names is by mapping each
x ∈ {a}I to name a, for an individual name a ∈ NI . ■

7.5 Summary

This chapter presented a tableau-based calculus for cALC in the spirit of DL-style
tableau systems [16], showing soundness, completeness and termination. The tableau
calculus is inspired by a contextual Gentzen calculus for multimodal CK [196], but in
contrast, it relies on a constraint system as underlying data structure with labelled
and signed formulæ. This calculus closely follows the cALC Kripke semantics, with an
explicit treatment of refinement ⪯ and roles R, and it uses an encoding of constraints
similarly to the tableau calculus for CALCC by Odintsov and Wansing [219]. The
notion of active/inactive entities is necessary to distinguish non-trivial realisations of
entities in the form of active variables from fallible entities, which are represented by
inactive variables. Moreover, this notions are used to control the applicability of the
tableau rules in the construction of a tableau, i.e., the generating rule for positive ∃R.C
is restricted to create an inactive successor only, in order to refute the axiom schema
FS3/IK3 = ¬∃R.⊥.

We discussed the difficulties of interpreting ABox assertions in birelational models on
the basis of two example derivations in the tableau calculus, covering instance checking
in both directions: validation and countermodel construction. In the latter example
that covered countermodel construction, we sketched an alternative interpretation of
nominals inspired by [61], by using a partial function that maps entities to individual
names and respects the intuitionistic preorder of knowledge states, in contrast to the
usual mapping of individual names to singleton sets of possible worlds as used in DLs.

Although, we presented a sound and complete tableau calculus that ensures termin-
ation by relying on anywhere blocking, the calculus is inefficient due to the treatment
of duplication of intuitionistic implication. We leave it as future work to adapt the
standard techniques from [43; 45; 88; 150; 200; 219] to avoid duplications, and the state
of the art tableau optimisation techniques from DLs [16; 25] to the tableau calculus
of cALC in order to obtain an efficient and as-much-as-possible duplication-free de-
cision procedure. We conjecture that an extension of the calculus with a proof strategy

276

7.5 Summary

that avoids duplications and adapts the trace technique19[261, p. 30] yields a decision
procedure with an optimal worst case complexity, which should be not worse than
PSpace.

Notes on Related Work

Tableaux for KALC Tableaux for KALC and KALC∞ are introduced in [39; 45]
and [43; 270]. Similarly to TcALC, these calculi are based on sets of labelled and signed
formulæ, but use the positive sign T to represent the notion of a known formula and
the negative sign F to denote an unknown formula. In contrast to TcALC, both calculi
for KALC and KALC∞ efficiently handle duplications in the treatment of implication.

The calculus for KALC [39, pp. 27 ff.] avoids duplications of implication by using
a special sign Ts, which refers to the future states of a world w.r.t. ⪯. An infinite
expansion of TBox axioms is prevented by restricting the TBox to be acyclic and
using an expansion strategy of TBox axioms similarly to lazy unfolding [16, p. 344 ff.,
rule U3]. However, the calculus does not eliminate duplications completely, that is,
unknown existential restriction (F(c:∃R.C)), known universal restriction (T(c:∀R.C))
and TBox formulæ (T(A ⊑ C)) must still be duplicated. Bozzato [39] introduces a
decision procedure for KALC in the form of a graph-based expansion algorithm based on
the tableau calculus for KALC and proves its termination, soundness and completeness
w.r.t. the KALC-realisability relation, but restricted to acyclic TBoxes. Since KALC
uses a standard intuitionistic Kripke-semantics that separates the accessibility relation
from the intuitionistic refinement relation, the interpretation of ABoxes works just
like in classical DLs. Individual names are interpreted as singleton sets relative to
one possible world, and this mapping of names to the possible worlds of the domain
of a Kripke state is required to be static for all subsequent information states w.r.t.
refinement ⪯.

Game-theoretic Decision Procedure for cALC Sticht [254] proposes a tableau
based game theoretic decision procedure for the logic cALC, which is a direct ex-
tension of the tableau calculus TcALC presented in this chapter. The decision procedure
applies the ideas of dialogical logic introduced by Lorenzen and Lorenz [178] to cALC.
This proof-theoretical approach interprets the proof of a logical statement as a game-
based dialog between an opponent and a proponent. Both parties can apply rules and
attack or defend a formula in a turn based fashion. The proof system differentiates two
kinds of rules: (i) each move depends on a set of particle rules, which restrict the ways
to reason about a formula and correspond to the rules that expand formulæ, and (ii) the
19The idea of the trace technique is to restrict the required memory consumption to a single path of a

tableau and to use a depth-first search strategy.

277

7 Tableau-based Calculus for cALC

flow of the dialog is ruled out by so-called structural rules, which are differentiated
into game-rules and frame-rules. Game-rules generically specify the laws of the dialog
game, like for instance that the players apply game-moves alternately, and that a game
is won by a player if his opponent cannot move anymore. The structural rules handle
the organisation of a game and specify whether and how each player can access and
use the information within a game. These rules correspond to frame-axioms of the
underlying logic. The rules of the game theoretic decision procedure are derived from
the tableau rules of TcALC, but allow for a much finer control of the proof mechanics
and seem to be promising as a base to investigate the structural constraints of the
different IMLs within a single calculus. A prototype of the decision procedure has been
implemented in the functional programming language Haskell20. It is an open problem
whether this dialogical decision procedure for cALC is sound and complete, and what
its complexity is.

Tableau Calculus for CALCC The tableau calculus for cALC is similar to the calcu-
lus for CALCC in [220] in that CALCC is based on birelational interpretations and its
Fitting-style tableau rules use {+,−}-signed formulæ. The calculi differ in that cALC
relies on the active set to restrict the applicability of the tableau rules to infallible entit-
ies, while the calculus for CALCC treats constructive negation and its persistence with
specific rules, and explicitly adds relational constraints to force reflexivity and trans-
itivity of refinement ⪯, and the confluence of refinement w.r.t. role-filling. Similarly
to our calculus, the system in [220] for CALCC is not duplication-free. This problem
has been treated by the duplication-free tableau calculus for CALCC introduced in
[219]. This calculus uses the notion of active and passive formulæ to distinguish the
formulæ that have been expanded already or which need to be duplicated, that is, the
rules are applied to active formulæ only, and such formulæ become passive after a
rule application, except if they have to be duplicated. Like cALC, the logic CALCC

uses a birelational semantics. However, the authors do not address the problem to
constructively interpret ABox individuals in a birelational interpretation, i.e., they use
the classical interpretation of individual names by mapping them to single worlds of
the domain of an interpretation. However, since CALCC is based on a birelational
semantics, this interpretation of individual names does not preserve the partial order
and therefore seems to break the monotonicity property.

20See http://www.haskell.org.

278

http://www.haskell.org

CHAPTER 8

Conclusion

This thesis explored the model and proof theory of the constructive description logic
cALC. The starting point for this research is motivated by the insight that classical
DLs only support a static, closed interpretation of knowledge, and are insufficient to
express and reason about partial and incomplete information (cf. Sec. 1.1). However,
many application scenarios in the field of computer science, which are data- or process-
driven, demand for a constructive notion of truth, which is robust under abstraction and
refinement. Robustness of truth under abstraction and refinement are decisive to admit
(i) the semantic abstractions that arise in data-driven applications, when factoring out
non-relevant details or in terms of information compression to allow for the handling
of very large data sets; or (ii) the partial nature of data generated by computational
or business processes, which possibly never reach a final state, but are only defined up
to contextual properties such as time or resources. Our key mission statement was to
investigate a constructive variant of ALC, that on the one hand allows for the model
theoretical representation of partial and incomplete knowledge, and on the other hand
is compatible with the Curry-Howard isomorphism in order to lay the grounds for a
DL-based typing system.

We have presented a constructive semantics for ALC – denoted by constructive ALC
(cALC) – that refines the classical semantics by a constructive notion of truth (cf.
Chap. 4), and thereby generates a family of theories that admit the computational
interpretation of proofs according to the Curry-Howard isomorphism (cf. Chap. 5).
We have committed ourselves to base cALC on the constructive modal logic CK [27;
188; 272], the main reason being, that (i) it is characterised by a minimal Hilbert-style
axiomatisation; (ii) arguably, its axiomatisation reflects from our point of view the axiom
schemata that appear to be computationally justified in computational and modal type
theories [91; 159; 161; 162; 187; 198; 205; 209; 210; 226]; (iii) it does not require
additional frame axioms in contrast to normal intuitionistic modal logics [96; 103; 228;
249]; and (iv) it has been demonstrated [27; 80; 194; 198] to admit a term-assignment
relating proofs with λ-terms in Gentzen and natural deduction style, that is in line
with the Curry-Howard isomorphism.

279

8 Conclusion

By means of studying several examples and application scenarios, we have demon-
strated that the constructive semantics of cALC supports the representation of partial
and incomplete knowledge, and is crucial and to achieve consistency under abstraction
as well as robustness under refinement (cf. Ex. 4.2.2, 4.2.5 and 4.2.6). Besides the
model theoretical investigation we approached the proof theory of cALC by character-
ising it in terms of a Hilbert-style axiomatisation, a Gentzen sequent calculus and a
tableau-based decision procedure (cf. Chap. 5 and 7). The Hilbert calculus provides
us with a clear proof-theoretical characterisation of cALC in the form of a reference
definition. The benefit of the Gentzen sequent calculus and the tableau calculus is, that
the former is strongly related to the computational interpretation of cALC according to
the Curry-Howard isomorphism, while the latter establishes the base for an implement-
ation and is also related to the game-theoretic perspective of dialogical logic [178]. The
mentioned calculi support the standard reasoning services w.r.t. TBoxes, and admit
decidable reasoning with proof extraction and countermodel construction. This thesis
has also investigated the relation of cALC to classical description logics (cf. Chap. 6)
in terms of a faithful embedding, and by considering the sub-Boolean {⊔,∃}-fragment
UL [192], where the constructive semantics yields a complexity advantage over the
classical descriptive semantics w.r.t. the subsumption problem.

Concluding, the system cALC constitutes a well-behaved constructive description
logic, which uses the same syntactical representation as classical ALC, supports the
standard DL inference services w.r.t. TBoxes in terms of decidable calculi, but is
semantically more expressive and compatible with the Curry-Howard isomorphism.

8.1 Contributions

The central contributions of this thesis can be summarised as follows:

In Chapter 4, we have introduced cALC, that extends the classical semantics of
ALC by an intuitionistic (epistemic) preorder and fallible entities. The former admits
to semantically express states of knowledge that increase monotonically over time, and
the latter correspond to specific states where any concept becomes true. The definition
of the semantics stems from the study of several Kripke-style semantics of intuitionistic
modal logics (cf. Sec. 4.1), that differ mainly in that they impose alternative truth
conditions on the interpretation of the modalities 2 and 3, or require frame conditions
for the intuitionistic and modal accessibility relations [160; 196; 249]. Looking for a
minimal system as mentioned above, we decided to introduce cALC as a multimodal
generalisation of the modal logic CK, i.e., cALC is related to CKm just like ALC can
be viewed as a notational variant of the classical modal logic Km (cf. Sec. 2.1.5). The
semantics of cALC is defined in terms of birelational Kripke frames, i.e., the intuition-

280

8.1 Contributions

istic preorder and the modal accessibility relations are relations on the same domain.
On the one hand this allows us to obtain a proof of the finite model property [188;
249, pp. 148 ff.; 118, pp. 24 ff.], but on the other hand it rules out the usual interpret-
ation of ABox individual names and nominals as singleton sets [49, p. 178], like it is
defined in classical DLs. For this reason, we focussed upon the investigation of cALC
w.r.t. TBoxes only. The constructive properties of cALC were justified by showing
that it is a conservative extension of intuitionistic propositional logic, and accepts
only constructively accepted principles (cf. Examples 4.2.2–4.2.4 and 4.2.7). Moreover,
cALC is non-normal w.r.t. the interpretation of the possibility modality ∃R (3) [103;
249] in the sense that it rejects the principle of disjunctive distribution in its binary
FS4/IK4 =df ∃R.(C ⊔D) ⊃ ∃R.C ⊔ ∃R.D and nullary FS3/IK3 =df ¬∃R.⊥ variant,
where the latter is excluded by the addition of fallible entities [90]. Furthermore, cALC
also refutes the interaction schema FS5/IK5 =df (∃R.C ⊃ ∀R.D) ⊃ ∀R.(C ⊃ D).
These schemata are usually accepted by normal intuitionistic modal and existing pro-
posals for constructive description logics (cf. Sec. 2.2.2 and Chap. 3), but fail to have
a uniform computational justification from our view. We have given proofs for the
monotonicity property (cf. Proposition 4.2.2), the disjunction property (cf. Proposi-
tion 4.2.3), and the finite-model property (cf. Theorem 4.2.2) based on the filtration
technique. Further, we illustrated a strengthening of the open world assumption (called
evolving open world assumption) and suggested applications in the domain of auditing,
to use cALC as inference mechanism as well as a typing system for data streams. We
believe that the definition of the semantics is general enough such that it should be
applicable to other description logics as well.

Chapter 5 has demonstrated sound and complete Hilbert and Gentzen-style deduc-
tion systems that support the standard inference services of DLs w.r.t. TBoxes. The
Hilbert calculus characterises cALC in terms of axiom schemata and inference rules. Its
deduction relation differentiates between local and global (TBox) hypotheses, and ac-
cordingly, we demonstrated a modal deduction theorem w.r.t. local and global premises.
Soundness and completeness of the Hilbert calculus (cf. Theorem 5.1.2) follows from
that of the Gentzen sequent calculus, by demonstrating that any deduction in either
system can be translated into the other (cf. Proposition 5.2.1). A computational inter-
pretation of DLs was illustrated by means of an information term semantics, inspired
by [39; 41]. The Gentzen sequent calculus G1 is an unlabelled multi-succedent sequent
calculus with independent left- and right-introduction rules for the modalities ∃R and
∀R, in contrast to the previous approaches [27, p. 2; 80, pp. 5 ff.] for CK, which use a
single rule in which necessity and possibility are intertwined. We proved soundness and
completeness of G1 w.r.t. the birelational semantics (cf. Theorem 5.2.1), and argued its
decidability (cf. Theorem 5.2.4). Moreover, the sequent calculus supports countermodel

281

8 Conclusion

construction in the sense that each sequent specifies a single entity of the domain such
that the countermodel is specified in terms of the graph that is generated by the sequent
rules and equivalence classes of nodes (cf. Ex. 5.2.3). The final section discussed inter-
mediate systems between cALC and ALC by means of sound and complete extensions
of the Hilbert and Gentzen calculus by the axiom schemata FS3/IK3 – FS4/IK4 and
the Excluded Middle. We remark that the sequent calculus is not in proper first-order
Gentzen format, because its rules involve sets rather than individual formulæ. Moreover,
the proof of cut-elimination was obtained by semantic means (cf. Corollary 5.2.1). Thus,
the G1 calculus does not lend it self to a computational interpretation that admits
to relate proofs with λ-terms. This problem has been approached by the contextual
single-conclusion sequent calculus in [196] and its Curry-Howard term-assignment was
explored in [194; 197; 198].

Chapter 6 explored in the first part the relation between cALC and classical DLs.
We introduced a faithful embedding (cf. Theorem 6.1.2) of cALC into the fusion [103,
Chap. 3] S4n ⊗ Km, which corresponds to ALC extended by reflexive and transitive
roles. The embedding allows us to transfer results from bimodal logics to cALC, namely,
the finite model property (cf. Theorem 6.1.6), decidability (cf. Theorem 6.1.5), and
an upper bound for the complexity of the subsumption (and satisfiability) problem in
cALC. Moreover, the embedding of cALC into classical DLs admits the use of existing
highly optimised tableau reasoners from DL systems for the standard reasoning tasks
of cALC w.r.t. TBoxes. This has been evaluated by means of a case study relying
on the reasoner Racer. We demonstrated that the problem of deciding satisfiability
or subsumption of a cALC concept without TBoxes is PSpace-complete (cf. The-
orem 6.1.1), while it becomes ExpTime-complete in the presence of general TBoxes
(cf. Theorem 6.1.4). The second part of Chapter 6 summarises the result from [192]
that deciding the subsumption problem in the sub-Boolean {⊔,∃}-fragment UL is
tractable under the constructive semantics (cf. Theorem 6.2.2), but intractable under
the classical descriptive semantics (cf. Theorem 6.2.1). It extends [192] by presenting
the proof of the admissibility of the cut rule for the sequent calculus G1UL (cf. Pro-
position cut-admissible) of UL. However, the complexity result for UL is mainly of
theoretical interest, since the fragment UL is semantically very restricted, and at the
moment it is unclear whether UL may find practical applications.

Chapter 7 introduced the decidable tableau-based calculus TcALC, inspired by the
contextual sequent calculus for CKm [196], showing soundness, completeness and ter-
mination (cf. Theorem 7.3.1, 7.3.2 and Proposition 7.3.1). TcALC relies on a constraint
system as underlying data structure, assigns labels and signs to formulæ to accommod-
ate the constructive semantics of cALC, and uses blocking (loop-checking) to ensure
termination. Fallible entities are emulated by the notion of active/inactive entities

282

8.2 Future Perspectives

to allow for the distinction of non-trivial realisations of entities from fallible worlds.
The novel aspect of the tableau is given by the extra constraints u:−∀RC, u:−∃RC to
specify that ‘C is false in all R-successors’ and ‘C is false in some R-successor’, their
introduction by the independent right (negative) expansion rules (→∃−), (→∀−), and
their treatment by the independent rules (→R∃−), (→R∀−). This independent treat-
ment further generalises the focus shift rule Axf from the single conclusion sequent
calculus for CKn [196; 198]. The chapter closes by giving an outlook towards construct-
ive ABox reasoning w.r.t. birelational semantics. We discuss the problems that arise
when interpreting ABox assertions in birelational models, and sketch by means of two
examples (cf. Example 7.4.1–7.4.2) a possible solution. Both examples cover instance
checking. The first example (Ex. 7.4.1) presents a successful proof of instance checking,
and uses nominal concepts and an internalisation of the ABox into the TBox. The
second example (Ex. 7.4.2) discusses a failed proof of instance checking and illustrates
countermodel construction. Hereby we use an alternative interpretation of individual
names – inspired by [61] – in the form of a partial function that maps entities to
individual names. This approach separates the ABox from the constraint system, and
treats it more like a TBox. While this separation is not necessarily required, we believe
that on the one hand it simplifies the treatment of ABox assertions for tableau calculi
based on birelational semantics, and on the other hand it is in line with the idea of
constructive reasoning, to have a clear distinction between assertional hypotheses from
an ABox and their realisation by a concrete interpretation.

8.2 Future Perspectives

Future work on constructive DLs should be approached both from a theoretical and
a practical point of view. On the one hand, this should also address the following
open problems of this thesis: (i) A proof of the completeness of the R-infallible sequent
calculus G1RF (see p. 176). (ii) A proof of the admissibility of the cut rule for the sequent
calculus G1D (see p. 187). (iii) A characterisation of the axiom schema FS5/IK5 in
terms of a frame class/condition and an extension of the sequent rules of G1 (see p. 169).
(iv) A further investigation of the embedding of cALC into ALCR∗ to see, whether
reasoning of cALC remains PSpace-complete w.r.t. simple constructive TBoxes (see
p. 215). (v) The complexity of the subsumption problem in the systems UL− and
ELU under the constructive semantics (see p. 226). (vi) A deeper investigation of the
interpretation of ABox assertions w.r.t. the birelational semantics of cALC, possibly by
extending our proposal for constructive ABox reasoning (see p. 268). Moreover, on the
other hand, we suggest the following four possible directions for further investigations
regarding theoretical work.

283

8 Conclusion

8.2.1 Theoretical Aspects

Semantics for constructive ABoxes

Firstly, a desirable further development is to investigate the interpretation of ABox as-
sertions in cALC. In this thesis we have not developed a general theory for constructive
reasoning w.r.t. ABoxes under the birelational semantics of cALC, but rather gave a
sketch for a possible approach. The usual method in DLs and hybrid logics to give a se-
mantics to individual names and nominals is to map individual names to single elements
of the domain, and to interpret nominals as singleton sets. This semantics carries over
without difficulty to intuitionistic DLs (see Sec. 3) and hybrid logics [49, pp. 171 ff.] that
are based on standard intuitionistic Kripke semantics, where the intuitionistic preorder
and the modal accessibility relations are separated. However, under the birelational
semantics, this interpretation becomes infeasible, since it breaks with the monotonicity
property [49, pp. 177 f.]. Based on an idea of Chadha, Macedonio and Sassone [61],
we sketched an approach in terms of using a partial function that maps entities of the
domain to individual names, and by separating ABox assertions from the constraint
system to differentiate between ABox hypotheses and their concrete realisation. ABox
assertions are realised by additional rules that manage the naming of elements of the
domain and instantiate ABox hypotheses in the construction of birelational models. In
order to satisfy an ABox, such models are required to possess a consistent naming of
domain elements, expressed by the properties of coherence and simulation, i.e., the
naming of entities and the relational structure w.r.t. named entities must be robust
under refinement. Our approach needs further investigation, for instance by demonstrat-
ing the correctness of the extended calculus. It also seems helpful to us to study this
problem from the perspective of a standard intuitionistic Kripke semantics for cALC
and by investigating its relation to the birelational semantics. From our perspective
the key questions still to be addressed are: ‘What is the interpretation of individual
names/nominals under intuitionistic birelational semantics?’ and ‘What is constructive
ABox reasoning and how does it differ from its classical variant?’. We believe that an
interpretation of individual names/nominals under a birelational Kripke-style semantics
will not only be helpful for cALC in particular, but also allow to further investigate
birelational semantics for intuitionistic description [39; 43; 45; 64; 78; 125–127] and
hybrid logics [52; 61].

More expressive constructive DLs

Secondly, it seems to be desirable to further enrich cALC in terms of its expressivity with
language extensions known from very expressive DLs as SHROIQ [173]. The most
common extensions at the level of concept constructors are qualified number restrictions

284

8.2 Future Perspectives

(a.k.a. graded modalities in modal logics) and nominals. Cardinality restrictions allow
to restrict the number of role fillers in the form of at-least and at-most restrictions, e.g.,

≥ 1managedBy.CEO, and ≤ 4hasPart.Tire,

where the former describes the set of individuals that are companies managed by at
least one CEO, and the latter describes cars that possess at most four tires. Moreover,
DLs permit the use of individual names not only in ABoxes but also at the concept level,
denoted by nominals. Using the set constructor {i1, i2, . . . , in} that can be viewed as
an enumeration of names ik with 1 ≤ k ≤ n, we can specify for instance the concept
of the moons of planet Pluto by

MoonsOfPluto ≡ {Charon,Nix,Hydra,Kerberos, Styx}.

While the interpretation of nominals depends on the interpretation of ABox names
as mentioned before, it is a general problem whether there exists a constructively
acceptable interpretation of cardinality restrictions, since their semantics rely on the
identification of individuals, which becomes delicate when considering partially determ-
ined objects under constructive semantics. We believe that extensions at the level of
role restrictions are more feasible, for instance to extend cALC by transitive roles,
inverse roles, or role hierarchies and additional role constructors like role inclusion
R ⊑ S and role composition R ◦ S. Furthermore, besides the standard classical con-
structors, cALC can consider non-standard language extensions like n-ary relations [16,
pp. 221 ff.], temporal modalities for CK [162], McCarthy-style contexts [79; 156; 157;
188], or aggregating modalities to express statements up to resource bounds.

Computational Interpretation

One possible direction for future work is to explore cALC from a type-theoretic perspect-
ive and in particular, to extract proof terms/natural deduction rules for existential and
universal restriction (∃R and ∀R), to yield an extension of the simply-typed λ-calculus
that expresses context-dependent computations in structured data.

Although not being part of this thesis, this program has been started in [194; 196;
198] (see Sec. 3.5.2). In [196], a contextual cut-free Gentzen sequent calculus in proper
first-order representation has been introduced, which is derived from the multi-sequent
calculus G1 for cALC. The work in [194; 196] pursues this direction, by exploring
cALC from a type-theoretical perspective, introducing its computational λ-calculus
λCKn to give a computational interpretation for cALC according to the Curry-Howard
isomorphism. The modal type theory λCKn gives computational meaning for the

285

8 Conclusion

modalities ∀R and ∃R as type operators with natural and independent constructors
and destructors. Operationally, computations in λCKn are characterised by a form of
a restricted top-down data flow within the contextual structure, i.e., a computation
that lives in some given context cannot resort to information from earlier or external
contexts. Instead, the information flow is unidirectional from the actual context. This
scheme of information flow resembles the axiomatisation of cALC, and operationally
expresses the exclusion of the axiom schemata FS3/IK3 – FS5/IK5. The Gentzen-style
typing system of λCKn is sound and complete, can be used for goal-directed proof search
in CKn, and the λ-calculus λCKn satisfies subject reduction, strong normalisation and
confluence. Further issues that need to be investigated are decidability of typing and the
existence of most general types. We believe that a system such as λCKn can establish
the formal grounds for a contextually typed functional programming language, which
is suitable as a programming paradigm in the domain of knowledge representation and
semantic web applications.

Correspondence Theory

In Sec. 5.3, we have sketched the extension of cALC by the axiom schemata FS3/IK3
– FS4/IK4 and the principle of the Excluded Middle in terms of sound and complete
extensions of the corresponding Gentzen and Hilbert calculi. Note that the completeness
of the sequent calculus G1D that implements axiom FS4/IK4 relies on admissibility of the
cut-rule, which we left as an open problem. For future work, it seems to be appropriate
to systematically study extensions of cALC in terms of developing a constructive
correspondence theory [198]. For instance, other non-classical modal logics such as
IK [96; 228; 249], CS4 [4; 159; 226], PLL [90], or Masini’s deontic system[184] arise as
specialised theories of CK, as sketched in [196, p. 5]. We believe that by taking cALC
(CKm) as the base point of a constructive correspondence theory, it allows one to show
that classical DLs (and modal logics) as well as intuitionistic DLs (and IMLs) arise
as special theories of cALC, but also give rise to intermediate logics between cALC,
intuitionistic and classical DLs. From our point of view, the constructive dimension of
such a correspondence theory should relate theories and Kripke models from a model-
theoretic perspective, and, from a proof-theoretic perspective, establish Curry-Howard
correspondences between modal type theories and computational λ-calculi.

8.2.2 Towards Applications

Regarding practical future work, we propose to focus on the implementation of the
calculi of cALC and investigate its usage in potential applications.

286

8.2 Future Perspectives

Implementation

For the purpose of evaluating the practical importance and usability of cALC, it is
indispensable to implement its calculi and review it in terms of large confirmatory case
studies. Form our perspective, the critical factors for success are on the one hand
to provide the necessary reasoning infrastructure for cALC in terms of decidable and
highly optimised decision procedures, and on the other hand to establish practical
applications beyond classical DL-style knowledge representation, which extend the
traditional inference services w.r.t. TBoxes and ABoxes to support dynamic and stream
based knowledge. We believe that such an extension can constitute new reasoning tasks
that account for several possible dimensions of dynamics, e.g. time, context, degree of
information or up to resource bounds. Implementation-wise we see two key directions
for further investigation.

Firstly, it is desirable to implement the tableau calculus TcALC, aiming at the domain
of knowledge representation. An early version of the tableau calculus for cALC has been
implemented by Sticht [254] in Haskell from a game-theoretic perspective. Moreover,
TcALC was encoded in the generic tableau prover LoTRec v2.0 21 to evaluate several
theorems of TcALC and obtain explicit countermodels for non-theorems. However, these
proof-of-concept implementations only scratched the surface and did not employ optim-
isation methods from DL-style tableau reasoners. It is therefore our recommendation
to implement TcALC systematically with a long-term perspective in mind, and to allow
for a comparative evaluation with classical reasoning systems.

Secondly, we believe that an implementation of the sequent calculi and its associated
λ-calculus seems promising. Regarding the computational interpretation of cALC, the
calculus λCKn has been evaluated by means of an Haskell-implementation of its typing
system and β-reduction in the context of the Bachelor’s thesis of Gareis [107]. This
work uses maps for an efficient nameless representation of variables in λ-terms [241],
that is, a binary tree is used to indicate the position of bound variables, which gives
rise to a λ-calculus without need for α-conversion when reducing a term to its normal
form. However, proofs showing correctness of typing and β-reduction under the map-
representation of λCKn are still open problems. Moreover, an untyped variant of λCKn

was encoded in the Abella proof assistant [106], but solely used to give a formally
verified Tait/Martin-Löf-style confluence proof [26] for β-reduction of λCKn, borrowing
the technique from Accattoli [2]. Though Abella is well-suited to formalise and reason
about the meta-theory of logical systems, we believe it is not the adequate tool for a
systematic implementation. Going one step further, a fully formal implementation in

21LoTRec is available from http://www.irit.fr/Lotrec/.

287

8 Conclusion

a theorem prover like the Coq Proof Assistant22 seems to be desirable, in spite of the
tremendous effort required. A theorem prover like Coq provides the required facilities
to experiment with logical system, to evaluate larger case studies, and it is tailor-made
to suit the needs of a systematic implementation of the formal machinery of cALC.
On the one hand it allows for a rigorous verification to ensure that the implementation
behaves as expected, and on the other hand it allows for program extraction from proofs.
In particular, the proof assistant Coq would permit to automate inference services and
typing in cALC, by programming goal-oriented backward reasoning tactics. Moreover,
the extraction of programs from proofs would yield verified code for key components
implementing typing and β-reduction.

Applications

Besides the investigation of the classical inference services of DLs it seems desirable to
put the emphasis of future work on non-standard reasoning problems w.r.t. dynamic and
incomplete information. We believe that this approach may give rise to new application
scenarios, which have been infeasible under the classical semantics so far.

In this thesis we motivated the utilisation of cALC to represent and reason about
evolving knowledge that is generated by ongoing processes in the form of data streams [189;
193]. One particular domain of interest is financial auditing [3; 59; 60; 231; 258; 259].
We believe that extensions of cALC can be utilised as ontological specification languages
to characterise the semantics of financial information flows in terms of strongly typed
data streams. Constructive inference services like type-checking and model-checking
can be used to ensure the trustworthiness of next-generation auditing tools, and to
implement interactive audit scenarios based on stream-based executing models.

From a type-theoretic perspective, the computational interpretation of cALC can
form the cornerstone of a functional programming language, which employs DLs as
programming language type systems, and is able to express context-dependent compu-
tations with restricted information flow in relational data structures such as DL-style
knowledge bases, databases or data streams induced by ongoing processes. Ideally, this
may give rise to a component-based programming environment, which uses as design
language the combination of data flow and control flow programming. Then, cALC
types can specify the type of stream processing functions, and auditing procedures may
be implemented in terms of audit agents [3]. Such software agents can play the role
of intelligent audit procedures, which are acting as data flow processing nodes within
information networks that connect enterprises. They process the information of busi-
ness transactions in real-time and draw conclusions or fire events based on background

22Further information about the Coq Proof Assistant is available from http://coq.inria.fr/.

288

8.2 Future Perspectives

knowledge specified in terms of DL-style ontologies, when detecting irregularities or in
the presence of suspicious facts or fraud. Their implementation may arise from the proof
of specific audit statements and their code may be extracted from proof terms based
on a calculus. Concluding, we hope that cALC may give rise to DL-typed functional
programming languages that will find practical adoption in the domain of knowledge
engineering and data processing languages.

289

Bibliography

[1] S. Abramsky and A. Jung. ‘Domain Theory’. In: Handbook of Logic in Computer
Science. Ed. by S. Abramsky, D. M. Gabbay and T. S. E. Maibaum. Vol. 3.
Clarendon Press, Oxford, 1994, pp. 1–168 (cit. on p. 138).

[2] B. Accattoli. ‘Proof Pearl: Abella Formalization of λ-Calculus Cube Property.’
In: CPP. Ed. by C. Hawblitzel and D. Miller. Vol. 7679. Lecture Notes in
Computer Science. Springer, 2012, pp. 173–187 (cit. on p. 287).

[3] J. Akinyemi and S. Ehikioya. ‘A Predicate Logic Foundation for Financial Audit
Systems’. In: Software Engineering and Applications. Ed. by M. Hamza. ACTA
Press, 2004 (cit. on p. 288).

[4] N. Alechina, M. Mendler, V. de Paiva and E. Ritter. ‘Categorical and Kripke
Semantics for Constructive S4 Modal Logic’. In: Proc. of Computer Science Logic
2001 (CSL 2001). Ed. by L. Fribourg. Vol. 2142. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2001, pp. 292–307 (cit. on pp. 3, 33, 39 f.,
57, 61, 96 f., 182, 286).

[5] N. Alechina and D. Shkatov. ‘A general method for proving decidability of
intuitionistic modal logics’. In: Journal of Applied Logic 4 (3) (2006). Methods
for Modalities Workshop 3 (M4M-3), pp. 219–230 (cit. on pp. 33, 229).

[6] J. Andreoli. ‘Logic Programming with Focusing Proofs in Linear Logic’. In:
Journal of Logic and Computation 2 (1992), pp. 297–347 (cit. on p. 43).

[7] C. Areces and M. de Rijke. ‘From Description to Hybrid Logics, and Back’.
In: Advances in Modal Logic. Ed. by F. Wolter, H. Wansing, M. de Rijke and
M. Zakharyaschev. Vol. 3. CSLI Publications, 2001, pp. 17–36 (cit. on pp. 20,
25, 268).

[8] C. Areces, P. Blackburn and S. R. Delany. ‘Bringing them all together’. In:
Journal of Logic and Computation 11 (2001), pp. 657–669 (cit. on p. 20).

[9] C. Areces, P. Blackburn and M. Marx. ‘Hybrid Logics: Characterization, In-
terpolation and Complexity’. In: Journal of Symbolic Logic 66 (1999), p. 2001
(cit. on p. 20).

[10] A. Artale, C. Lutz and D. Toman. ‘A Description Logic of Change’. In: Int’l
Workshop on Description Logics (DL 2006). 2006, pp. 97–108 (cit. on p. 94).

291

Bibliography

[11] A. Artale and E. Franconi. ‘A survey of temporal extensions of description
logics’. In: Annals of Mathematics and Artificial Intelligence 30 (1-4) (2000),
pp. 171–210 (cit. on p. 94).

[12] M. van Atten and D. van Dalen. ‘Intuitionism’. In: D. Jacquette. A Companion
to Philosophical Logic. Blackwell Companions to Philosophy. Wiley, 2008,
pp. 513–531 (cit. on p. 30).

[13] A. Avellone, M. Ferrari and P. Miglioli. ‘Duplication-Free Tableau Calculi and
Related Cut-Free Sequent Calculi for the Interpolable Propositional Intermediate
Logics’. In: Logic Journal of the IGPL 7 (4) (1999), pp. 447–480 (cit. on p. 44).

[14] F. Baader, S. Brandt and C. Lutz. ‘Pushing the EL-envelope’. In: Proc. of
the 19th Joint Conf. on Artificial Intelligence (IJCAI 2005). 2005, pp. 364–369
(cit. on pp. 51, 217 f., 220).

[15] F. Baader, S. Brandt and C. Lutz. ‘Pushing the EL Envelope Further’. In:
Proc. of the OWLED 2008 DC Workshop on OWL: Experiences and Directions.
Ed. by K. Clark and P. F. Patel-Schneider. 2008 (cit. on pp. 217 f.).

[16] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-Schneider,
eds. The Description Logic Handbook: Theory, Implementations and Applications.
2nd ed. Cambridge University Press, 2010 (cit. on pp. iii, v, 1 ff., 14–20, 25, 61,
74 f., 97, 210, 212, 216 f., 227 f., 231 f., 237, 246, 268 f., 276 f., 285).

[17] F. Baader, C. Lutz, M. Milicic, U. Sattler and F. Wolter. ‘Integrating Description
Logics and Action Formalisms: First Results.’ In: AAAI. (9th–13th July 2005).
Ed. by M. M. Veloso and S. Kambhampati. Pittsburgh, Pennsylvania, USA:
AAAI Press / The MIT Press, 2005, pp. 572–577 (cit. on p. 49).

[18] F. Baader, C. Lutz and B. Suntisrivaraporn. ‘Is Tractable Reasoning in Exten-
sions of the Description Logic EL Useful in Practice?’ In: Proc. of the Methods
for Modalities Workshop (M4M-05). Berlin, Germany, 2005 (cit. on pp. 217 f.,
226).

[19] F. Baader. ‘Terminological Cycles in KL-ONE-based Knowledge Representation
Languages.’ In: AAAI. (27th July–3rd Aug. 1990). Ed. by H. E. Shrobe, T. G.
Dietterich and W. R. Swartout. Boston, Massachusetts, USA: AAAI Press /
The MIT Press, 1990, pp. 621–626 (cit. on p. 217).

[20] F. Baader. ‘Using automata theory for characterizing the semantics of terminolo-
gical cycles’. In: Annals of Mathematics and Artificial Intelligence 18 (2) (1996),
pp. 175–219 (cit. on pp. 217 f.).

292

Bibliography

[21] F. Baader. ‘Computing the Least Common Subsumer in the Description Logic
EL w.r.t. Terminological Cycles with Descriptive Semantics’. In: Conceptual
Structures for Knowledge Creation and Communication. Ed. by B. Ganter, A.
de Moor and W. Lex. Vol. 2746. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003, pp. 117–130 (cit. on pp. 51, 219).

[22] F. Baader. ‘Terminological Cycles in a Description Logic with Existential Re-
strictions’. In: Proc. of the 18th International Joint Conference on Artificial
Intelligence. IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Publishers Inc.,
2003, pp. 325–330 (cit. on pp. 51, 217 f.).

[23] F. Baader, M. Buchheit and B. Hollander. ‘Cardinality restrictions on concepts’.
In: Artificial Intelligence 88 (1–2) (1996), pp. 195–213 (cit. on pp. 237, 246, 251,
258).

[24] F. Baader, I. Horrocks and U. Sattler. ‘Description Logics’. In: Handbook of
Knowledge Representation. Ed. by F. van Harmelen, V. Lifschitz and B. Porter.
Elsevier, 2008. Chap. 3, pp. 135–180 (cit. on pp. iii, v, 1, 25).

[25] F. Baader and U. Sattler. ‘An Overview of Tableau Algorithms for Description
Logics’. In: Studia Logica 69 (1) (2001), pp. 5–40 (cit. on pp. 3, 122, 231 f., 243,
246, 250, 276).

[26] H. P. Barendregt. The Lambda Calculus – Its Syntax and Semantics. Vol. 103.
North-Holland, 1984 (cit. on p. 287).

[27] G. Bellin, V. de Paiva and E. Ritter. ‘Extended Curry-Howard Correspondence
for a Basic Constructive Modal Logic’. In: Methods for Modalities II. Nov. 2001
(cit. on pp. 8, 33, 39, 42, 60, 94, 96, 125, 229, 279, 281).

[28] N. Benton, G. Bierman and V. de Paiva. ‘Computational Types From a Logical
Perspective’. In: Journal of Functional Programming 8 (2) (1998) (cit. on p. 33).

[29] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Devel-
opment, Coq’Art: the Calculus of Inductive Constructions. Berlin, New York:
Springer, 2004 (cit. on p. 27).

[30] E. W. Beth. ‘Semantic Entailment and Formal Derivability’. In: Koninklijke
Nederlandse Akademie van Wentenschappen, Proc. of the Section of Sciences 18
(1955), pp. 309–342 (cit. on p. 122).

[31] G. Bezhanishvili. ‘Glivenko Type Theorems for Intuitionistic Modal Logics.’ In:
Studia Logica 67 (1) (2001), pp. 89–109 (cit. on p. 87).

[32] G. M. Bierman and V. de Paiva. ‘On an Intuitionistic Modal Logic.’ In: Studia
Logica 65 (3) (2000), pp. 383–416 (cit. on pp. 33, 40).

293

Bibliography

[33] P. Blackburn, M. de Rijke and Y. Venema. Modal Logic. Vol. 53. Cambridge
Tracts in Theoretical Computer Science. Cambridge: Cambridge University
Press, 2001 (cit. on pp. 2, 19–24, 38, 65, 70 f., 87, 182, 187).

[34] P. Blackburn and J. Seligman. ‘Hybrid Languages’. In: Journal of Logic, Lan-
guage and Information 4 (1995), pp. 41–62 (cit. on p. 20).

[35] P. Blackburn, J. van Benthem and F. Wolter. Handbook of Modal Logic. Studies
in Logic and Practical Reasoning. Vol. 3. New York, NY, USA: Elsevier Science
Inc., 2006 (cit. on p. 198).

[36] J. Blocki, N. Christin, A. Datta, A. D. Procaccia and A. Sinha. ‘Audit Games’.
In: CoRR abs/1303.0356 (2013) (cit. on p. 5).

[37] D. Bobrow, C. Condoravdi, R. Crouch, R. Kaplan, L. Karttunen, T. King, V.
de Paiva and A. Zaenen. ‘A Basic Logic for Textual Inference’. In: In Proc. of
the AAAI Workshop on Inference for Textual Question Answering. Pittsburgh,
PA, USA, July 2005 (cit. on p. 41).

[38] A. Borgida. ‘Diachronic Description Logics’. In: Int’l Workshop on Description
Logics (DL 2001). 2001, pp. 106–112 (cit. on p. 94).

[39] L. Bozzato. ‘Kripke Semantics and Tableau Procedures for Constructive De-
scription Logics’. PhD thesis. Università degli Studi dell’Insubria, Italy, 2011
(cit. on pp. 7, 43 f., 48 f., 54, 61, 95, 118, 120, 228, 232, 275, 277, 281, 284).

[40] L. Bozzato and M. Ferrari. ‘A Note on Semantic Web Services Specification and
Composition in Constructive Description Logics’. In: CoRR abs/1007.2364
(2010) (cit. on p. 49).

[41] L. Bozzato, M. Ferrari, C. Fiorentini and G. Fiorino. ‘A constructive semantics
for ALC’. In: Int’l Workshop on Description Logics (DL 2007). Ed. by D.
Calvanese, E. Franconi, V. H. D. Lembo, B. Motik, S. Tessaris and A.-Y. Turhan.
Brixen-Bressanone: Bolzano University Press, June 2007, pp. 219–226 (cit. on
pp. 7, 48 f., 54, 95, 117 f., 120, 125, 129, 281).

[42] L. Bozzato, M. Ferrari and P. Villa. ‘Actions over a constructive semantics
for ALC’. In: Proc. of the 21st International Workshop on Description Logics
(DL2008). Ed. by F. Baader, C. Lutz and B. Motik. Vol. 353. CEUR Workshop
Proceedings. CEUR-WS.org, 2008 (cit. on p. 49).

[43] L. Bozzato, M. Ferrari and P. Villa. ‘A note on constructive semantics for
description logics’. In: CILC09-24 Convegno Italiano di Logica Computazionale
(2009) (cit. on pp. 43 f., 54, 95, 232, 276 f., 284).

294

Bibliography

[44] L. Bozzato and M. Ferrari. ‘Composition of Semantic Web Services in a Con-
structive Description Logic’. In: Web Reasoning and Rule Systems. Ed. by P.
Hitzler and T. Lukasiewicz. Vol. 6333. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 223–226 (cit. on p. 49).

[45] L. Bozzato, M. Ferrari, C. Fiorentini and G. Fiorino. ‘A Decidable Constructive
Description Logic’. In: Logics in Artificial Intelligence. Ed. by T. Janhunen
and I. Niemelä. Vol. 6341. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pp. 51–63 (cit. on pp. 43 f., 54, 95, 232, 276 f., 284).

[46] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, L. A.
Resnick and A. Borgida. ‘Living with CLASSIC: When and How to Use a KL-
ONE-Like Language’. In: Principles of Semantic Networks. Morgan Kaufmann,
1991, pp. 401–456 (cit. on p. 117).

[47] S. Brandt. ‘Polynomial Time Reasoning in a Description Logic with Existential
Restrictions, GCI Axioms, and – What Else?’ In: Proc. of the 16th European
Conference on Artificial Intelligence (ECAI-2004). Ed. by R. L. de Mantáras
and L. Saitta. 2004, pp. 298–302 (cit. on pp. 217 ff.).

[48] S. Brandt. ‘Standard and Non-standard Reasoning in Description Logics’. PhD
thesis. Dresden University of Technology, Germany, 2006 (cit. on pp. 217, 226).

[49] T. Braüner. Hybrid Logic and Its Proof-theory. Applied Logic Series. Springer
London, Limited, 2011 (cit. on pp. 53 ff., 97, 268, 271, 281, 284).

[50] T. Braüner and V. de Paiva. ‘Intuitionistic Hybrid Logic’. In: Journal of Applied
Logic 4 (3) (Sept. 2006), pp. 231–255 (cit. on pp. 43, 53, 97).

[51] T. Braüner. ‘Axioms for classical, intuitionistic, and paraconsistent hybrid logic’.
In: Journal of Logic, Language and Information 15 (3 2006), pp. 179–194 (cit. on
p. 48).

[52] T. Braüner and V. de Paiva. ‘Towards Constructive Hybrid Logic (Extended
Abstract)’. In: In Elec. Proc. of Methods for Modalities 3. Springer, 2003,
pp. 79–92 (cit. on pp. 41 f., 97, 284).

[53] L. E. J. Brouwer. ‘Over de Grondslagen der Wiskunde’. PhD thesis. University
of Amsterdam, The Netherlands, 1907 (cit. on pp. 26, 28).

[54] O. Brunet. ‘A Logic for Partial System Description’. In: Journal of Logic and
Computation 14 (4) (2004), pp. 507–528 (cit. on pp. 75, 97).

295

Bibliography

[55] C. Caleiro, J. Rasga, C. Sernadas and W. Carnielli. ‘Fibring of Logics as a
Universal Construction’. In: Handbook of Philosophical Logic. Ed. by D. Gabbay
and F. Guenthner. 2nd ed. Vol. 13. Handbook of Philosophical Logic. Springer
Netherlands, 2005, pp. 123–187 (cit. on p. 55).

[56] C. Caleiro, A. Sernadas and C. Sernadas. ‘Fibring Logics: Past, Present and
Future.’ In: We Will Show Them! (1). Ed. by S. N. Artëmov, H. Barringer,
A. S. d’Avila Garcez, L. C. Lamb and J. Woods. College Publications, 2005,
pp. 363–388 (cit. on pp. 54, 58).

[57] D. Calvanese, G. D. Giacomo, M. Lenzerini and R. Rosati. ‘Actions and Pro-
grams over Description Logic Ontologies’. In: Description Logics. Ed. by D.
Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, A.-Y. Turhan and S.
Tessaris. Vol. 250. CEUR Workshop Proceedings. CEUR-WS.org, 2007 (cit. on
p. 6).

[58] W. Carnielli, M. Coniglio, D. M. Gabbay, P. Gouveia and C. Sernadas. Analysis
and Synthesis of Logics: How to Cut and Paste Reasoning Systems. Vol. 35.
Applied Logic. Springer Netherlands, 2008 (cit. on pp. 54 f., 58).

[59] R. Carvalho, S. Matsumoto, K. Laskey, P. Costa, M. Ladeira and L. Santos.
‘Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection
in Brazil’. In: Uncertainty Reasoning for the Semantic Web II. Ed. by F. Bobillo,
P. Costa, C. d’Amato, N. Fanizzi, K. Laskey, K. Laskey, T. Lukasiewicz, M.
Nickles and M. Pool. Vol. 7123. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 19–40 (cit. on p. 288).

[60] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle and J. I. den Hartog. ‘An
Audit Logic for Accountability’. In: Proc. of the Sixth IEEE Int’l. Workshop on
Policies for Distributed Systems and Networks (POLICY ’05). Washington, DC,
USA: IEEE Computer Society, 2005, pp. 34–43 (cit. on p. 288).

[61] R. Chadha, D. Macedonio and V. Sassone. ‘A Hybrid Intuitionistic Logic:
Semantics and Decidability.’ In: Journal of Logic and Computation 16 (1) (2006),
pp. 27–59 (cit. on pp. 271, 276, 283 f.).

[62] A. V. Chagrov and M. Zakharyaschev. Modal Logic. Vol. 35. Oxford logic guides.
Oxford University Press, 1997 (cit. on pp. 19–23, 26, 28, 30 f., 87, 211).

[63] B. Chellas. Modal Logic. Cambridge University Press, 1980 (cit. on p. 19).

[64] I. P. Clément. ‘Proof Theoretical Foundations for Constructive Description
Logic’. Master’s thesis. School of Computer Science, McGill University, Montréal,
Canada, 2008 (cit. on pp. 43, 54, 95, 125, 284).

296

Bibliography

[65] J. B. Copeland. ‘The Genesis of Possible Worlds Semantics’. In: Journal of
Philosophical Logic 31 (2) (Apr. 2002), pp. 99–137 (cit. on p. 53).

[66] T. Coquand and G. Huet. ‘The Calculus of Constructions’. In: Information and
Computation 76 (2-3) (Feb. 1988), pp. 95–120 (cit. on p. 27).

[67] R. Cote, D. Rothwell, J. Palotay, R. Beckett and L. Brochu. The systemat-
ized nomenclature of human and veterinary medicine. Tech. rep. SNOMED
International, Northfield, IL: College of American Pathologists, 1993 (cit. on
p. 217).

[68] H. B. Curry. ‘Functionality in Combinatory Logic.’ In: Proc. of the National
Academy of Sciences of the United States of America. Vol. 20. 11. Nov. 1934,
pp. 584–590 (cit. on p. 27).

[69] H. B. Curry. A Theory of Formal Deducibility. 2nd ed. Vol. 6. Notre Dame
Mathematical Lectures. Indiana: Notre Dame, 1957 (cit. on pp. 39, 59).

[70] H. Curry, R. Feys and W. Craig. Combinatory Logic. 3rd ed. Vol. I. Studies
in Logic and the Foundations of Mathematics. Amsterdam, The Netherlands:
North-Holland, 1974, p. 417 (cit. on pp. 27, 107).

[71] M. D’Agostino, D. M. Gabbay, R. Hähnle and J. Posegga, eds. Handbook of
Tableau Methods. Springer, 1999 (cit. on pp. 122, 232).

[72] D. van Dalen. ‘Intuitionistic Logic’. In: Handbook of Philosophical Logic. Ed. by
D. Gabbay and F. Guenthner. Vol. 5. Handbook of Philosophical Logic. Springer
Netherlands, 2002, pp. 1–114 (cit. on pp. 28–32).

[73] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. 2nd ed.
Cambridge University Press, 2002 (cit. on p. 138).

[74] R. Davies and F. Pfenning. ‘A Modal Analysis of Staged Computation’. In:
Journal of the ACM 48 (3) (May 2001), pp. 555–604 (cit. on p. 7).

[75] G. De Giacomo, M. Lenzerini, A. Poggi and R. Rosati. ‘On the Update of
Description Logic Ontologies at the Instance Level’. In: Proc., The 21st National
Conference on Artificial Intelligence and the 18th Innovative Applications of
Artificial Intelligence Conference. (16th–20th July 2006). AAAI’06. Boston,
Massachusetts, USA: AAAI Press, 2006, pp. 1271–1276 (cit. on p. 6).

[76] G. De Giacomo, M. Lenzerini, A. Poggi and R. Rosati. ‘On Instance-level
Update and Erasure in Description Logic Ontologies’. In: Journal of Logic and
Computation 19 (5) (Oct. 2009), pp. 745–770 (cit. on p. 6).

297

Bibliography

[77] V. de Paiva, E. H. Haeusler and A. Rademaker. ‘Constructive Description Logics
Hybrid-Style’. In: Electronic Notes in Theoretical Computer Science 273 (2011),
pp. 21–31 (cit. on pp. 45, 54, 95 f., 125, 228).

[78] V. de Paiva. ‘Constructive Description Logics: what, why and how’. In: Context
Representation and Reasoning. Riva del Garda, Aug. 2006 (cit. on pp. 7, 41 ff.,
45, 52 ff., 60 f., 95, 228, 284).

[79] V. de Paiva and N. Alechina. ‘Contextual Constructive Description Logics’. In:
The IJCAI-11 Workshop on Automated Reasoning about Context and Ontology
Evolution (ARCOE-11), Barcelona, Spain. July 2011, pp. 16–20 (cit. on pp. 46,
285).

[80] V. de Paiva and E. Ritter. ‘Basic Constructive Modality’. In: Logic without
Frontiers Festschrift for Walter Alexandre Carnielli on the occasion of his 60th
birthday. Ed. by J.-Y. Béziau and M. E. Coniglio. Vol. 17. Tributes. College
Publications, 2011, pp. 411–428 (cit. on pp. 33, 40, 42, 96, 279, 281).

[81] R. Dionne, E. Mays and F. J. Oles. ‘A Non-Well-Founded Approach to Termin-
ological Cycles’. In: Proc. 10th Nat’l Conference of the American Association
for Artificial Intelligence (AAAI’92). 1992 (cit. on p. 218).

[82] R. Dionne, E. Mays and F. J. Oles. ‘The Equivalence of Model-Theoretic and
Structural Subsumption in Description Logics’. In: Proc. of the 13th Int’l Joint
Conference on Artificial Intelligence (IJCAI’93). 1993, pp. 710–718 (cit. on
p. 218).

[83] F. M. Donini, M. Lenzerini, D. Nardi and W. Nutt. ‘The Complexity of Concept
Languages’. In: Information and Computation 134 (1) (1997), pp. 1–58 (cit. on
pp. 232, 246). Extended and revised version of F. M. Donini, M. Lenzerini, D.
Nardi and W. Nutt. ‘The Complexity of Concept Languages’. In: Principles of
Knowledge Representation and Reasoning: Proc. of the Second Int’l. Conference
(KR’91). Ed. by J. Allen, R. Fikes and E. Sandewall. San Mateo, CA: Kaufmann,
1991, pp. 151–162.

[84] A. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory. Trans-
lations of Mathematical Monographs. American Mathematical Society, 1988
(cit. on pp. 27 f., 122, 150, 210).

[85] M. Drira. ‘Essays on Auditor’s Client Acceptance and Continuance Decisions’.
PhD thesis. HEC Montréal, Québec, Canada, 2010 (cit. on p. 5).

[86] M. Dummett. Elements of Intuitionism. Oxford: Clarendon Press, 1977 (cit. on
pp. 27, 59).

298

Bibliography

[87] M. Dürig and T. Studer. ‘Probabilistic ABox Reasoning: Preliminary Results’.
In: Int’l Workshop on Description Logics (DL 2005). 2005 (cit. on p. 97).

[88] R. Dyckhoff. ‘Contraction-Free Sequent Calculi for Intuitionistic Logic’. In: The
Journal of Symbolic Logic 57 (3) (Sept. 1992), pp. 795–807 (cit. on pp. 44, 48,
276).

[89] W. B. Ewald. ‘Intuitionistic tense and Modal Logic’. In: Journal of Symbolic
Logic 51 (1986) (cit. on pp. 37, 53 f., 58).

[90] M. Fairtlough and M. Mendler. ‘Propositional Lax Logic’. In: Information and
Computation 137 (1) (1997), pp. 1–33 (cit. on pp. 33, 39, 55, 57, 59, 61, 94, 96 f.,
182, 209, 215, 228 f., 281, 286).

[91] M. Fairtlough, M. Mendler and M. Walton. First-order Lax Logic as a Framework
for Constraint Logic Programming. Tech. rep. MIP-9714. University of Passau,
July 1997 (cit. on pp. 39, 60, 97, 279).

[92] M. Fairtlough and M. Mendler. ‘On the Logical Content of Computational Type
Theory: A Solution to Curry’s Problem’. In: Types for Proofs and Programs.
Ed. by P. Callaghan, Z. Luo, J. McKinna, R. Pollack and R. Pollack. Vol. 2277.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 63–78
(cit. on pp. 39, 59).

[93] M. Ferrari, C. Fiorentini and G. Fiorino. ‘BCDL: Basic Constructive Description
Logic’. In: Journal of Automated Reasoning 44 (4) (2010), pp. 371–399 (cit. on
pp. 48 f., 54, 118, 120).

[94] G. Ferreira and P. Oliva. ‘On Various Negative Translations’. In: Proc. Third
International Workshop on Classical Logic and Computation, (CL&C 2010).
(21st–22nd Aug. 2010). Ed. by S. van Bakel, S. Berardi and U. Berger. Vol. 47.
EPTCS. Brno, Czech Republic, 2010, pp. 21–33 (cit. on p. 211).

[95] M. J. Fischer and R. E. Ladner. ‘Propositional Dynamic Logic of Regular
Programs’. In: Journal of Computer and System Sciences 18 (2) (1979), pp. 194–
211 (cit. on p. 20).

[96] G. Fischer-Servi. ‘Semantics for a Class of Intuitionistic Modal Calculi’. In:
Italian Studies in the Philosophy of Science. Ed. by M. L. Dalla Chiara. Vol. 47.
Boston Studies in the Philosophy of Science. Springer Netherlands, 1981, pp. 59–
72 (cit. on pp. 33, 38, 42, 47, 53, 55, 57 f., 195, 279, 286).

[97] F. B. Fitch. ‘Intuitionistic Modal Logic with Quantifiers’. In: Portugaliae
Mathematica (1948), pp. 113–118 (cit. on pp. 33, 59).

299

Bibliography

[98] M. Fitting. ‘Many-Valued Model Logics II’. In: Fundamenta Informaticæ 17 (1-2)
(1992), pp. 55–73 (cit. on p. 54).

[99] M. Fitting. Intuitionistic Logic, Model Theory and Forcing. Amsterdam, The
Netherlands: North-Holland, 1969 (cit. on p. 232).

[100] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Vol. 169. Synthese
library. Dordrecht, Holland: Springer Netherlands, 1983 (cit. on pp. 44, 47, 247).

[101] M. Fitting. ‘Basic Modal Logic’. In: Handbook of Logic in Artificial Intelligence
and Logic Programming. Logical Foundations. Ed. by D. M. Gabbay, C. J.
Hogger and J. A. Robinson. Vol. 1. New York, NY, USA: Oxford University
Press, 1993, pp. 368–448 (cit. on pp. 19, 101, 111).

[102] M. Fitting. ‘Modal Proof Theory’. In: P. Blackburn, J. van Benthem and F.
Wolter. Handbook of Modal Logic. Studies in Logic and Practical Reasoning.
Vol. 3. New York, NY, USA: Elsevier Science Inc., 2006. Chap. 2 (cit. on
pp. 101, 111).

[103] D. Gabbay, A. Kurucz, F. Wolter and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Vol. 148. Studies in Logic and the
Foundations of Mathematics. Elsevier, 2003, pp. 3–40 (cit. on pp. 2 f., 19 f., 24,
33, 38, 42 f., 54 f., 60, 93, 95, 182, 195, 197 f., 210, 215 f., 227, 279, 281 f.).

[104] D. M. Gabbay. ‘Fibred Semantics and the Weaving of Logics, Part 1: Modal and
Intuitionistic Logics’. In: Journal of Symbolic Logic 61 (4) (1996), pp. 1057–1120
(cit. on pp. 54 ff.).

[105] D. M. Gabbay. Fibring Logics. Clarendon Press, 1998 (cit. on pp. 54 ff., 58).

[106] A. Gacek. ‘The Abella Interactive Theorem Prover (System Description)’. In:
Proc. of the 4th international joint conference on Automated Reasoning. (IJCAR
’08). Sydney, Australia: Springer, 2008, pp. 154–161 (cit. on p. 287).

[107] J. Gareis. ‘Variablenfreie Darstellung und Implementierung des modalen λ–
Kalküls λ–CK und seine Typisierung mittels Maps in Haskell’. Bachelor’s thesis.
Faculty of Information Systems and Applied Computer Sciences, Otto-Friedrich-
University of Bamberg, Germany, Apr. 2014 (cit. on pp. 50, 287).

[108] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990
(cit. on p. 227).

[109] G. Gentzen. ‘Untersuchungen über das logische Schließen. I’. In: Mathematische
Zeitschrift 39 (1) (1935), pp. 176–210 (cit. on pp. 122, 125).

300

Bibliography

[110] A. Geser, J. Knoop, G. Lüttgen, B. Steffen and O. Rüthing. Chaotic Fixed
Point Iterations. Tech. rep. MIP-9403. Universität Passau, Germany, Oct. 1994
(cit. on p. 144).

[111] G. D. Giacomo and M. Lenzerini. ‘Boosting the Correspondence between De-
scription Logics and Propositional Dynamic Logics.’ In: AAAI. Ed. by B.
Hayes-Roth and R. E. Korf. AAAI Press / The MIT Press, 1994, pp. 205–212
(cit. on p. 25).

[112] G. D. Giacomo and M. Lenzerini. ‘Concept Language with Number Restrictions
and Fixpoints, and Its Relationship with Mu-Calculus’. In: Proc. of ECAI-94.
John Wiley and Sons, 1994, pp. 411–415 (cit. on pp. 20, 217).

[113] J. Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Cambridge University
Press, 1989 (cit. on pp. 6, 27).

[114] V. Glivenko. ‘Sur Quelques Points de la Logique de M. Brouwer’. In: Bulletins
de la classe des sciences. 5th ser. 15 (1929), pp. 183–188 (cit. on pp. 87, 211).

[115] K. Gödel. ‘Zum intuitionistischen Aussagenkalkül’. In: Anzeiger der Akademie
der Wissenschaften in Wien, Mathematisch-Naturwissenschatliche Klasse 69
(1932). Reprinted in [199] and translated into english in [116], pp. 65–66 (cit. on
pp. 197 f., 200).

[116] K. Gödel. Kurt Gödel: Collected Works: Volume I: Publications 1929-1936. Ed.
by S. Feferman. Collected Works. Clarendon Press, 1986 (cit. on p. 301).

[117] R. Goldblatt. ‘Mathematical Modal Logic: a View of its Evolution’. In: Journal
of Applied Logic 1 (5–6) (Oct. 2003), pp. 309–392 (cit. on pp. 19, 53).

[118] C. Grefe. Fischer Servi’s Intuitionistic Modal Logic and Its Extensions. Forschen
und Wissen - Mathematik. GCA-Verlag, 1999 (cit. on pp. 33, 37 f., 47, 60, 87 f.,
228 f., 281).

[119] V. Haarslev, K. Hidde, R. Möller and M. Wessel. ‘The RacerPro Knowledge
Representation and Reasoning System’. In: Semantic Web Journal 3 (3) (2012),
pp. 267–277 (cit. on pp. 207, 226).

[120] V. Haarslev and R. Möller. ‘RACER System Description’. In: Automated
Reasoning: First International Joint Conference (IJCAR 2001). Ed. by R. Goré,
A. Leitsch and T. Nipkow. Vol. 2083. Lecture Notes in Computer Science. Siena,
Italy: Springer, June 2001, p. 701 (cit. on p. 207).

[121] C. Haase. ‘Complexity of Subsumption in Extensions of EL’. Master’s thesis.
Dresden University of Technology, Germany, Aug. 2007 (cit. on pp. 217, 226).

301

Bibliography

[122] C. Haase and C. Lutz. ‘Complexity of Subsumption in the EL Family of Descrip-
tion Logics: Acyclic and Cyclic TBoxes’. In: Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI’08). Ed. by M. Ghallab, C. D. Spyro-
poulos, N. Fakotakis and N. Avouris. Vol. 178. Frontiers in Artificial Intelligence
and Applications. Patras, Greece: IOS Press, July 2008, pp. 25–29 (cit. on
pp. 217 f., 226).

[123] E. H. Haeusler, V. de Paiva and A. Rademaker. ‘Intuitionistic Logic and Legal
Ontologies’. In: Frontiers in Artificial Intelligence and Applications. Amsterdam,
The Netherlands: IOS Press, 2010 (cit. on pp. 45, 95).

[124] E. H. Haeusler, V. de Paiva and A. Rademaker. ‘Using Intuitionistic Logic as a
basis for Legal Ontologies’. In: Proc. of the 4th Workshop on Legal Ontologies and
Artificial Intelligence Techniques. Fiesole (Florence), Italy: European University
Institute, 2010 (cit. on pp. 45, 95).

[125] E. H. Haeusler, V. de Paiva and A. Rademaker. ‘Intuitionistic Description
Logic and Legal Reasoning’. In: 2011 Database and Expert Systems Applications,
DEXA, International Workshops. Toulouse, France: IEEE Computer Society,
2011 (cit. on pp. 45 f., 95, 284).

[126] E. H. Haeusler, V. de Paiva and A. Rademaker. ‘Intuitionistic Description Logic
for Legal Reasoning’. In: XVI The Brazilian Logic Conference. Petrópolis, Brazil,
2011 (cit. on pp. 45, 95, 284).

[127] E. H. Haeusler and A. Rademaker. ‘An Intuitionisticaly based Description Logic’.
In: CoRR abs/1402.0225 (2014) (cit. on pp. 46, 96, 284).

[128] R. Hakli and S. Negri. ‘Does the deduction theorem fail for modal logic?’ In:
Synthese 187 (3) (2012), pp. 849–867 (cit. on pp. 101, 111 f.).

[129] C. Halashek-Wiener, B. Parsia and E. Sirin. ‘Description Logic Reasoning with
Syntactic Updates’. In: Proc. of the 2006 Confederated international conference
on On the Move to Meaningful Internet Systems: CoopIS, DOA, GADA, and
ODBASE (ODBASE’06/OTM’06). Ed. by R. Meersman and Z. Tari. Vol. 1.
Lecture Notes in Computer Science. Montpellier, France: Springer, 2006, pp. 722–
737 (cit. on p. 6).

[130] J. Y. Halpern and Y. Moses. ‘A guide to completeness and complexity for
modal logics of knowledge and belief’. In: Artificial Intelligence 54 (3) (1992),
pp. 319–379 (cit. on pp. 19, 23 f., 210, 216, 227, 242).

[131] D. Harel, J. Tiuryn and D. Kozen. Dynamic Logic. Cambridge, MA, USA: MIT
Press, 2000 (cit. on p. 20).

302

Bibliography

[132] O. Hermant. ‘Semantic Cut Elimination in the Intuitionistic Sequent Calculus’.
In: Typed Lambda Calculi and Applications. Ed. by P. Urzyczyn. Vol. 3461.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 221–
233 (cit. on p. 150).

[133] A. Heyting. Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie.
Ergebnisse der Mathematik und ihrer Grenzgebiete Band 3, Ausgabe 4. Reprin-
ted 1974. Springer, Berlin, Heidelberg, New York, 1934 (cit. on p. 26).

[134] A. Heyting. Intuitionism: An Introduction. Studies in logic and the foundations
of mathematics. North-Holland, 1971 (cit. on pp. 27 f., 32).

[135] D. Hilbert. ‘Die logischen Grundlagen der Mathematik’. In: Mathematische
Annalen 88 (1-2) (1922), pp. 151–165 (cit. on p. 99).

[136] M. Hilia, A. Chibani and K. Djouani. ‘Trends and Challenges in Formal Spe-
cification and Verification of Services Composition in Ambient Assisted Living
Applications’. In: Procedia Computer Science 19 (2013). The 4th International
Conference on Ambient Systems, Networks and Technologies (ANT 2013), the
3rd International Conference on Sustainable Energy Information Technology
(SEIT-2013), pp. 540–547 (cit. on p. 49).

[137] M. Hilila, A. Chibani, K. Djouani and Y. Amirat. ‘Semantic Service Composition
Framework for Multidomain Ubiquitous Computing Applications’. In: Service-
Oriented Computing. Ed. by C. Liu, H. Ludwig, F. Toumani and Q. Yu. Vol. 7636.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 450–
467 (cit. on p. 49).

[138] B. P. Hilken. ‘Topological Duality for Intuitionistic Modal Algebras’. In: Journal
of Pure and Applied Algebra (Apr. 2000), pp. 171–189 (cit. on p. 39).

[139] J. R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997
(cit. on pp. 6, 27).

[140] J. R. Hindley and J. P. Seldin. Introduction to Combinators and (Lambda)
Calculus. London Mathematical Society Student Texts Series. University Press,
1986 (cit. on pp. 27, 35, 103 f.).

[141] W. van der Hoek. ‘On the Semantics of Graded Modalities.’ In: Journal of
Applied Non-Classical Logics 2 (1) (1992) (cit. on p. 20).

[142] W. van der Hoek and M. de Rijke. ‘Counting Objects.’ In: Journal of Logic and
Computation 5 (3) (1995), pp. 325–345 (cit. on p. 20).

303

Bibliography

[143] M. Hofmann. ‘Proof-theoretic Approach to Description-Logic’. In: Proc. of the
20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005). 2005
(cit. on pp. 51, 217–220).

[144] S. Hölldobler, N. H. Nga and T. D. Khang. ‘The Fuzzy Description Logic
ALCFLH’. In: Int’l Workshop on Description Logics (DL 2005). 2005 (cit. on
p. 97).

[145] L. Horn. A Natural History of Negation. Center for the Study of Language and
Information - Lecture Notes Series. CSLI, 2001 (cit. on pp. 48, 218).

[146] I. Horrocks and U. Sattler. ‘A Description Logic with Transitive and Inverse
Roles and Role Hierarchies’. In: Journal of Logic and Computation 9 (3) (1999),
pp. 385–410 (cit. on p. 246).

[147] I. Horrocks. ‘Applications of Description Logics: State of the Art and Research
Challenges’. In: Conceptual Structures: Common Semantics for Sharing Know-
ledge. Ed. by F. Dau, M.-L. Mugnier and G. Stumme. Vol. 3596. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 78–90 (cit. on
p. 231).

[148] I. Horrocks, U. Sattler and S. Tobies. ‘Practical Reasoning for Expressive
Description Logics’. In: Logic Programming and Automated Reasoning, 6th Int’l.
Conference, (LPAR’99). (6th–10th Sept. 1999). Ed. by H. Ganzinger, D. A.
McAllester and A. Voronkov. Tbilisi, Georgia: Springer, 1999, pp. 161–180
(cit. on p. 20).

[149] W. A. Howard. ‘The Formulas-as-types Notion of Construction’. In: To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Ed. by
J. P. Seldin and J. R. Hindley. Reprint of 1969 article. Academic Press, 1980,
pp. 479–490 (cit. on pp. iii, v, 27).

[150] J. Hudelmaier. ‘An O(n log n)-Space Decision Procedure for Intuitionistic
Propositional Logic’. In: Journal of Logic and Computation 3 (1) (1993), pp. 63–
75 (cit. on pp. 44, 276).

[151] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge
Chapman & Hall, 1996 (cit. on p. 19).

[152] International Health Terminology Standards Development Organisation. SNOMED
CT: Systematized Nomenclature of Medicine-Clinical Terms. Ed. by Interna-
tional Health Terminology Standards Development Organisation. Copenhagen,
Denmark, 2010 (cit. on p. 217).

304

Bibliography

[153] K. Kaneiwa. ‘Description Logics with Contraries, Contradictories, and Subcon-
traries’. In: New Generation Computing 25 (4) (2007), pp. 443–468 (cit. on
p. 48).

[154] Y. Kazakov and H. de Nivelle. ‘Subsumption of concepts in FL0 for (cyclic)
terminologies with respect to descriptive semantics is PSPACE complete’. In:
Proc. Int’l Workshop Description Logics (DL 2003). Vol. 81. CEUR Electronic
workshop proceedings. 2003 (cit. on p. 217).

[155] J. Kingston, B. Schafer and W. Vandenberghe. ‘Towards a Financial Fraud
Ontology: A Legal Modelling Approach’. In: Artificial Intelligence & Law 12 (4)
(2004), pp. 419–446 (cit. on p. 4).

[156] S. Klarman and V. Gutiérrez-Basulto. ‘Two-Dimensional Description Logics for
Context-Based Semantic Interoperability’. In: Proc. of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011. Ed. by W. Burgard and D. Roth. AAAI Press, 2011
(cit. on p. 285).

[157] S. Klarman and V. Gutiérrez-Basulto. ‘Description Logics of Context’. In:
Journal of Logic and Computation (2013) (cit. on p. 285).

[158] S. C. Kleene. Introduction to Metamathematics. Ishi Press International, Mar.
2009 (cit. on p. 28).

[159] S. Kobayashi. ‘Monad as Modality’. In: Theoretical Computer Science 175
(1997), pp. 29–74 (cit. on pp. 39, 60, 279, 286).

[160] K. Kojima. ‘Relational and Neighborhood Semantics for Intuitionistic Modal
Logic’. In: Reports on Mathematical Logic 47 (2012), pp. 87–113 (cit. on pp. 54,
57, 96, 280).

[161] K. Kojima. ‘Semantical study of intuitionistic modal logics’. PhD thesis. Depart-
ment of Intelligence Science and Technology, Graduate School of Informatics,
Kyoto University, Japan, 2012 (cit. on pp. 54, 56, 58 f., 61, 70, 96, 126, 169, 196,
279).

[162] K. Kojima and A. Igarashi. ‘Constructive linear-time temporal logic: Proof
systems and Kripke semantics’. In: Information and Computation 209 (12)
(2011). Intuitionistic Modal Logic and Applications (IMLA 2008), pp. 1491–
1503 (cit. on pp. 58, 70, 96, 196, 279, 285).

[163] A. Kolmogorov. ‘Zur Deutung der intuitionistischen Logik’. In: Mathematische
Zeitschrift 35 (1) (1932), pp. 58–65 (cit. on p. 26).

305

Bibliography

[164] D. Kozen. ‘Results on the propositional µ-calculus’. In: Automata, Languages
and Programming. Ed. by M. Nielsen and E. Schmidt. Vol. 140. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 1982, pp. 348–359 (cit. on
p. 20).

[165] D. Kozen. ‘Results on the Propositional mu-Calculus’. In: Theoretical Computer
Science 27 (1983), pp. 333–354 (cit. on p. 20).

[166] M. Kracht and F. Wolter. ‘Properties of Independently Axiomatizable Bimodal
Logics.’ In: Journal of Symbolic Logic 56 (4) (1991), pp. 1469–1485 (cit. on
p. 198).

[167] M. Kracht and F. Wolter. ‘Simulation and Transfer Results in Modal Logic - A
Survey’. In: Studia Logica 59 (1) (1997), pp. 149–177 (cit. on p. 198).

[168] S. Kripke. ‘Semantical Analysis of Modal Logic I. Normal Modal Propositional
Calculi’. In: Zeitschrift für Mathematische Logik und Grundlagen der Mathem-
atik 9 (1963), pp. 67–96 (cit. on pp. 21, 24, 53).

[169] S. Kripke. ‘A Completeness Theorem in Modal Logic’. In: Journal of Symbolic
Logic 24 (1) (1959), pp. 1–14 (cit. on pp. 24, 53).

[170] S. A. Kripke. ‘Semantical Analysis of Intuitionistic Logic I’. In: Formal Systems
and Recursive Functions. North Holland, 1963 (cit. on pp. iii, v, 30 f., 53).

[171] S. A. Kripke. ‘Semantical Considerations on Modal Logic’. In: Acta Philosophica
Fennica 16 (1963) (1963), pp. 83–94 (cit. on p. 53).

[172] S. A. Kripke. ‘Semantical Analysis of Modal Logic II. Non-Normal Modal
Propositional Calculi’. In: The Theory of Models. North Holland, 1965 (cit. on
p. 53).

[173] M. Krötzsch, F. Simancik and I. Horrocks. ‘A Description Logic Primer’. In:
CoRR abs/1201.4089 (2012) (cit. on pp. 18 f., 284).

[174] H. J. Levesque and R. J. Brachman. ‘Expressiveness and tractability in know-
ledge representation and reasoning’. In: Computational Intelligence 3 (1897),
pp. 78–93 (cit. on p. 217).

[175] J. Lipton and M. J. O’Donnell. ‘Some Intuitions Behind Realizability Semantics
for Constructive Logic: Tableaux and Läuchli Countermodels.’ In: Annals of
Pure and Applied Logic 81 (1-3) (1996), pp. 187–239 (cit. on p. 118).

[176] Z. Lis. ‘Wynikanie semantyczne a wynikanie formalne’. In: Studia Logica 10 (1)
(Dec. 1960), pp. 39–54 (cit. on p. 232).

[177] H. Liu. ‘Computing Updates in Description Logics’. PhD thesis. Dresden
University of Technology, Germany, 2010, pp. 1–132 (cit. on p. 6).

306

Bibliography

[178] P. Lorenzen and K. Lorenz. Dialogische Logik. Kurztitelaufnahme der Deutschen
Bibliothek. Wissenschaftliche Buchgesellschaft, 1978 (cit. on pp. 5, 277, 280).

[179] G. Lüttgen. Chaotic Fixed Point Iterations. Personal Communication. University
of Bamberg, Germany. Aug. 2014 (cit. on p. 144).

[180] C. Lutz, U. Sattler and F. Wolter. ‘Description Logics and the Two-Variable
Fragment’. In: Description Logics. Ed. by C. A. Goble, D. L. McGuinness,
R. Möller and P. F. Patel-Schneider. Vol. 49. CEUR Workshop Proceedings.
CEUR-WS.org, 2001 (cit. on p. 25).

[181] Y. Ma, P. Hitzler and Z. Lin. ‘Paraconsistent Resolution for Four-valued De-
scription Logics’. In: Int’l Workshop on Description Logics (DL 2007). 2007
(cit. on p. 97).

[182] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Notes by Giovanni
Sambin of a series of lectures given in Padua. Studies in proof theory. Bibliopolis,
Naples, 1984 (cit. on p. 27).

[183] A. Masini. ‘2-Sequent Calculus: A Proof Theory of Modalities’. In: Annals of
Pure and Applied Logic 58 (3) (1992), pp. 229–246 (cit. on p. 122).

[184] A. Masini. ‘2-Sequent Calculus: Intuitionism and Natural Deduction’. In: Journal
of Logic and Computation 3 (5) (1993), pp. 533–562 (cit. on pp. 122, 195, 286).

[185] A. Mayss. Principles of Conflict of Laws. Third Edition. Principles of law series.
Cavendish Publishing Limited, 1999 (cit. on p. 45).

[186] J. McCarthy. ‘Notes on Formalizing Context’. In: Proc. of the 13th International
Joint Conference on Artificial Intelligence. Chambery, France, 1993, pp. 555–560
(cit. on p. 46).

[187] M. Mendler. ‘A Modal Logic for Handling Behavioural Constraints in Formal
Hardware Verification’. PhD thesis. Department of Computer Science, University
of Edinburgh, ECS-LFCS-93-255, Scotland, Mar. 1993 (cit. on pp. 39, 60, 96,
102, 279).

[188] M. Mendler and V. de Paiva. ‘Constructive CK for Contexts’. In: Context
Representation and Reasoning (CRR-2005). Ed. by L. Serafini and P. Bouquet.
Vol. 13. CEUR Proceedings. July 2005 (cit. on pp. 8, 33, 39 f., 42, 46, 53, 55,
57–61, 88 f., 93 f., 96, 101, 111, 195, 279, 281, 285).

307

Bibliography

[189] M. Mendler and S. Scheele. ‘Constructive Description Logic cALC as a Type
System for Semantic Streams in the Domain of Auditing’. In: Proc. of the 1st
International Workshop on Logics for Agents and Mobility (LAM 2008). (4th–
8th Aug. 2008). Ed. by B. Farwer and M. Köhler-Bußmeier. Vol. 283. Berichte
des Departments Informatik. Hamburg, Germany: University of Hamburg, Aug.
2008 (cit. on pp. 11, 288).

[190] M. Mendler and S. Scheele. Towards Constructive Description Logics for Ab-
straction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik 77. Faculty of Information Systems and Applied Com-
puter Sciences, Otto-Friedrich-University of Bamberg, Germany, Sept. 2008 (cit.
on pp. 11, 64, 76, 123, 130 f., 135, 151).

[191] M. Mendler and S. Scheele. ‘Towards Constructive Description Logics for
Abstraction and Refinement’. In: 21st Int’l Workshop on Description Logics
(DL2008). Vol. 353. CEUR Workshop Proceedings. CEUR-WS.org, May 2008
(cit. on pp. 11, 50, 71, 75, 96, 123, 127).

[192] M. Mendler and S. Scheele. ‘Exponential Speedup in UL Subsumption Checking
relative to general TBoxes for the Constructive Semantics.’ In: Proc. of the 22nd
International Workshop on Description Logics (DL 2009). (27th–30th July
2009). Ed. by B. C. Grau, I. Horrocks, B. Motik and U. Sattler. Vol. 477. CEUR
Workshop Proceedings. Oxford, UK: CEUR-WS.org, 2009 (cit. on pp. 11, 197,
217–222, 225 ff., 280, 282).

[193] M. Mendler and S. Scheele. ‘Towards a Type System for Semantic Streams’.
In: Proc. of the 1st International Workshop on Stream Reasoning (SR 2009).
Ed. by E. D. Valle, S. Ceri, D. Fensel, F. van Harmelen and R. Studer. Vol. 466.
CEUR Workshop Proceedings. Heraklion, Crete, Greece: CEUR-WS.org, May
2009 (cit. on pp. 11, 288).

[194] M. Mendler and S. Scheele. ‘Towards a Simply Typed CALculus for Semantic
Knowledge Bases’. In: LAM’10. Ed. by B. Müller. Vol. 7. EPiC Series. EasyChair,
2010, pp. 52–67 (cit. on pp. 7, 11, 50, 96, 125, 279, 282, 285).

[195] M. Mendler and S. Scheele. ‘Towards Constructive DL for Abstraction and
Refinement’. In: Journal of Automated Reasoning 44 (3) (2010), pp. 207–243
(cit. on pp. 4, 11, 45 f., 54, 57, 59–62, 64 f., 67 f., 71 f., 75 ff., 96, 100 f., 117,
122–126, 128–131, 135, 145 f., 149 ff., 172 f., 182, 184, 190 ff.).

[196] M. Mendler and S. Scheele. ‘Cut-free Gentzen calculus for multimodal CK’. In:
Information and Computation 209 (12) (Dec. 2011). Special Issue: Intuitionistic

308

Bibliography

Modal Logic and Applications (IMLA 2008), pp. 1465–1490 (cit. on pp. 7, 11,
33, 39 f., 42, 50, 57–60, 69, 96, 100 f., 195, 210, 231, 276, 280, 282 f., 285 f.).

[197] M. Mendler and S. Scheele. On the Computational Interpretation of CKn for
Contextual Information Processing – Ancillary Material –. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik 91. Faculty of Inform-
ation Systems and Applied Computer Sciences, Otto-Friedrich-University of
Bamberg, Germany, May 2013 (cit. on pp. 11, 282).

[198] M. Mendler and S. Scheele. ‘On the Computational Interpretation of CKn for
Contextual Information Processing’. In: Fundamenta Informaticæ 130 (1) (Jan.
2014), pp. 125–162 (cit. on pp. 11, 33, 50, 125, 196, 279, 282 f., 285 f.).

[199] K. Menger, E. Dierker, K. Sigmund and J. Dawson. Ergebnisse Eines Mathe-
matischen Kolloquiums. Springer, 1998 (cit. on p. 301).

[200] P. Miglioli, U. Moscato and M. Ornaghi. ‘Avoiding duplications in tableau
systems for intuitionistic logic and Kuroda logic’. In: Logic Journal of the IGPL
5 (1) (1997), pp. 145–167 (cit. on pp. 44, 276).

[201] P. Miglioli, U. Moscato, M. Ornaghi and G. Usberti. ‘A constructivism based on
classical truth’. In: Notre Dame Journal of Formal Logic 30 (1) (1988), pp. 67–
90 (cit. on pp. 7, 48, 95, 118).

[202] M. Milicic. ‘Action, Time and Space in Description Logics’. PhD thesis. Dresden
University of Technology, Germany, 2008, pp. 1–160 (cit. on p. 6).

[203] M. Minsky. ‘A Framework for Representing Knowledge’. In: Mind Design:
Philosophy, Psychology, Artificial Intelligence. Ed. by J. Haugeland. Cambridge,
MA: MIT Press, 1981, pp. 95–128 (cit. on p. 1).

[204] G. Mints. A Short Introduction to Intuitionistic Logic. University Series in
Mathematics. Springer, 2000 (cit. on pp. 30, 74).

[205] E. Moggi. ‘Notions of Computation and Monads’. In: Information and Compu-
tation 93 (1) (1991), pp. 55–92 (cit. on pp. 39, 60, 279).

[206] R. Möller. ‘A Functional Layer for Description Logics: Knowledge Representation
Meets Object-Oriented Programming’. In: Proc. of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications
(OOPSLA ’96). San Jose, California, USA: ACM, 1996, pp. 198–213 (cit. on
p. 50).

[207] B. Motik, R. Shearer and I. Horrocks. ‘Hypertableau Reasoning for Description
Logics’. In: Journal of Artificial Intelligence Research 36 (2009), pp. 165–228
(cit. on p. 3).

309

Bibliography

[208] V. Murphy T., K. Crary, R. Harper and F. Pfenning. ‘A Symmetric Modal
Lambda Calculus for Distributed Computing’. In: Proc. of the 19th Annual
IEEE Symposium on Logic in Computer Science (LICS ’04). July 2004, pp. 286–
295 (cit. on p. 7).

[209] A. Nanevski. ‘From dynamic binding to state via modal possibility’. In:
Int’l. Conf. on PRinciples and Practice of Declarative Programming (PPDP’03).
Uppsala, Sweden, 2003, pp. 207–218 (cit. on pp. 39, 60, 279).

[210] A. Nanevski, F. Pfenning and B. Pientka. ‘Contextual Modal Type Theory’. In:
ACM Transactions on Computational Logic 5 (N) (Mar. 2007), pp. 1–48 (cit. on
pp. 33, 39, 60, 279).

[211] B. Nebel. ‘Terminological Cycles: Semantics and Computational Properties’.
In: Principles of Semantic Networks: Explorations in the Representation of
Knowledge. Ed. by J. F. Sowa. San Mateo: Morgan Kaufmann Publishers, 1991,
pp. 331–361 (cit. on pp. 51, 218).

[212] B. Nebel. ‘Terminological reasoning is inherently intractable’. In: Artificial
Intelligence 43 (2) (1990), pp. 235–249 (cit. on p. 217).

[213] B. Nebel and G. Smolka. Attributive Description Formalisms ... and the Rest
of the World. Tech. rep. DFKI, 1991, p. 20 (cit. on p. 20).

[214] S. Negri, J. von Plato and A. Ranta. Structural Proof Theory. Cambridge
University Press, 2008 (cit. on pp. 122, 152, 210).

[215] S. Negri. ‘Kripke completeness revisited’. In: Acts of Knowledge: History,
Philosophy and Logic ; Essays Dedicated to Göran Sundholm. Ed. by G. Primiero
and S. Rahman. Tributes (London, England). Kings College Publications, 2009
(cit. on pp. 24, 53).

[216] S. Negri. ‘Proof Theory for Modal Logic’. In: Philosophy Compass 6 (8) (2011),
pp. 523–538 (cit. on p. 231).

[217] D. Nelson. ‘Constructible falsity’. In: The Journal of Symbolic Logic 14 (01)
(May 1949), pp. 16–26 (cit. on pp. 46 f.).

[218] B. Nuseibeh and S. Easterbrook. ‘Requirements Engineering: A Roadmap’. In:
Proc. of the Conference on The Future of Software Engineering (ICSE ’00).
Limerick, Ireland: ACM Press, 2000, pp. 35–46 (cit. on p. 5).

[219] S. P. Odintsov and H. Wansing. ‘Inconsistency-tolerant description logic. Part
II: A tableau algorithm for CACLC’. In: Journal of Applied Logic 6 (3) (2008),
pp. 343–360 (cit. on pp. 44, 47 f., 61, 232, 276, 278).

310

Bibliography

[220] S. Odintsov and H. Wansing. ‘Inconsistency-tolerant Description Logic: Motiva-
tion and Basic Systems’. In: 50 Years of Studia Logica. Ed. by V. Hendricks and
J. Malinowski. Vol. 21. Trends in Logic. Springer Netherlands, 2003, pp. 301–335
(cit. on pp. 46 ff., 278).

[221] S. Odintsov. Constructive Negations and Paraconsistency. Trends in Logic.
Springer, 2008 (cit. on pp. 46 f.).

[222] H. Ono. On some intuitionistic modal logics. Tech. rep. Publications of Research
Institute for Mathematical Science, Kyoto University, Japan, 1977, pp. 687–722
(cit. on p. 54).

[223] C. M. Papadimitriou. Computational Complexity. Reading, Massachusetts:
Addison-Wesley, 1994 (cit. on p. 227).

[224] P. F. Patel-Schneider. ‘A four-valued semantics for terminological logics’. In:
Artificial Intelligence 38 (3) (1989), pp. 319–351 (cit. on p. 97).

[225] P. F. Patel-Schneider and I. Horrocks. ‘A Comparison of Two Modelling
Paradigms in the Semantic Web’. In: Web Semantics 5 (4) (Dec. 2007), pp. 240–
250 (cit. on p. 74).

[226] F. Pfenning and R. Davies. ‘A Judgemental Reconstruction of Modal Logic’. In:
Mathematical Structures in Computer Science 11 (4) (Aug. 2001), pp. 511–540
(cit. on pp. 33, 39, 60, 279, 286).

[227] F. Pfenning. Lecture Notes 15-816 on Modal Logic, Lecture 15: Intuitionistic
Kripke Semantics. Download from http://www.cs.cmu.edu/~fp/courses/
15816-s10/, 22. Aug. 2011. 2010 (cit. on p. 62).

[228] G. Plotkin and C. Stirling. ‘A Framework for Intuitionistic Modal Logics’. In:
Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About
Knowledge. Monterey, California, USA: Morgan Kaufmann Publishers Inc., 1986,
pp. 399–406 (cit. on pp. 33, 37 f., 42, 47, 53, 55, 57 f., 279, 286).

[229] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994
(cit. on pp. 19–22, 24, 94, 101).

[230] J. Porte. ‘Fifty Years of Deduction Theorems’. In: Proc. of the Herbrand
Symposium, Logic Colloquium ’81. Ed. by J. Stern. North-Holland, 1982, pp. 243–
250 (cit. on p. 29).

[231] G. Potamitis. ‘Design and Implementation of a Fraud Detection Expert System
using Ontology-Based Techniques’. Master’s thesis. School of Computer Science,
University of Manchester, 2013 (cit. on p. 288).

311

http://www.cs.cmu.edu/~fp/courses/15816-s10/
http://www.cs.cmu.edu/~fp/courses/15816-s10/

Bibliography

[232] A. Prior. Time and Modality. John Locke Lecture. Clarendon Press, 2003
(cit. on p. 87).

[233] M. Quillian. ‘Semantic Memory’. In: Semantic Information Processing. Ed. by
M. Minsky. Cambridge, MA: MIT Press, 1968, pp. 216–270 (cit. on p. 1).

[234] A. Rademaker. A Proof Theory for Description Logics. SpringerBriefs in Com-
puter Science. Springer, 2012 (cit. on p. 2).

[235] K. Ranalter. ‘Embedding Constructive K into Intuitionistic K’. In: Proceedings of
the 6th Workshop on Methods for Modalities (M4M-6 2009). Vol. 262. Electronic
Notes in Theoretical Computer Science. Amsterdam, The Netherlands: Elsevier
Science Publishers B. V., May 2010, pp. 205–219 (cit. on p. 229).

[236] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. Illustrated edition. Massachusetts, MA, USA: The
MIT Press, 2001 (cit. on p. 6).

[237] T. Riechert, K. Lauenroth, J. Lehmann and S. Auer. ‘Towards Semantic based
Requirements Engineering’. In: Proc. of the 7th Int’l. Conference on Knowledge
Management (I-KNOW). 2007 (cit. on p. 5).

[238] V. Royer and J. Quantz. ‘On Intuitionistic Query Answering in Description
Bases’. In: Proc. of Automated Deduction - CADE-12, 12th International Con-
ference on Automated Deduction, Nancy, France, June 26 - July 1, 1994. Ed.
by A. Bundy. Vol. 814. Lecture Notes in Computer Science. Springer, 1994,
pp. 326–340 (cit. on p. 51).

[239] H. Rückert. Dialogues As a Dynamic Framework for Logic. Dialogues and games
of logic. Kings College Publications, 2011 (cit. on p. 5).

[240] M. Saeki. ‘Semantic Requirements Engineering’. In: Intentional Perspectives on
Information Systems Engineering. Ed. by S. Nurcan, C. Salinesi, C. Souveyet
and J. Ralyté. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. Chap. 4,
pp. 67–82 (cit. on p. 5).

[241] M. Sato, R. Pollack, H. Schwichtenberg and T. Sakurai. ‘Viewing λ-terms
through maps’. In: Indagationes Mathematicæ 24 (4) (2013). In memory of N.G.
(Dick) de Bruijn (1918–2012), pp. 1073–1104 (cit. on pp. 50, 287).

[242] U. Sattler. Discussion about the notation of the subsumption relation. Personal
Communication. July 2009 (cit. on p. 71).

312

Bibliography

[243] U. Sattler. ‘A concept language extended with different kinds of transitive
roles’. In: German Annual Conference on Artificial Intelligence (KI96). Ed. by
S. H. G. Görtz. Vol. 1137. Lecture Notes in Computer Science. Springer, 1996,
pp. 333–345 (cit. on pp. 20, 210, 227, 242).

[244] S. Schacht and U. Hahn. ‘A Denotational Semantics for Joining Description
Logics and Object-Oriented Programming’. In: Proc. of the 6th Scandinavian
conference on Artificial intelligence (SCAI ’97). Helsinki, Finland: IOS Press,
1997, pp. 119–130 (cit. on p. 50).

[245] K. Schild. ‘A Correspondence Theory for Terminological Logics: Preliminary
Report’. In: In Proc. of IJCAI-91. 1991, pp. 466–471 (cit. on pp. 2, 19, 24 f.,
42, 94, 199).

[246] K. Schild. ‘Terminological Cycles and the Propositional µ-Calculus’. In: Proc.
of the 4th Int’l. Conference on Principles of Knowledge Representation and
Reasoning (KR’94). (24th–27th May 1994). Ed. by J. Doyle, E. Sandewall and
P. Torasso. Bonn, Germany: Morgan Kaufmann, 1994, pp. 509–520 (cit. on
p. 20).

[247] M. Schmidt-Schauß and G. Smolka. ‘Attributive concept descriptions with
complements’. In: Artificial Intelligence 48 (1) (Feb. 1991), pp. 1–26 (cit. on
pp. 13 f., 19, 44, 227, 232).

[248] H. Simmons. Derivation and Computation. Cambridge University Press, 2000
(cit. on pp. iii, v, 6, 27, 61).

[249] A. Simpson. ‘The Proof Theory and Semantics of Intuitionistic Modal Logic’.
PhD thesis. University of Edinburgh, Scottland, 1994 (cit. on pp. 8, 33, 37 f.,
40, 42 f., 45, 47, 53 ff., 57 f., 60, 62, 95, 195, 228 f., 279 ff., 286).

[250] M. K. Smith, C. Welty and D. L. McGuiness. OWL Web Ontology Language
guide – W3C recommendation. Tech. rep. Feb. 2004 (cit. on p. 3).

[251] R. Smullyan. First-order Logic. Dover Books on Advanced Mathematics. Dover,
1995 (cit. on p. 232). Repr. of First-order Logic. Ergebnisse der Mathematik
und ihrer Grenzgebiete. New York: Springer, 1968.

[252] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Studies in Logic and the Foundations of Mathematics. Vol. 149. New York, NY,
USA: Elsevier Science Inc., 2006 (cit. on pp. 6 f., 27).

[253] R. Statman. ‘Intuitionistic Propositional Logic is Polynomial-Space Complete’.
In: Theoretical Computer Science 9 (1979), pp. 67–72 (cit. on pp. 31, 197, 210 f.,
227 f.).

313

Bibliography

[254] M. Sticht. ‘The Design and Implementation of a Game-Theoretic Decision Pro-
cedure for the Constructive Description Logic cALC ’. Diplomarbeit. Faculty of
Information Systems and Applied Computer Sciences, Otto-Friedrich-University
of Bamberg, Germany, 2011 (cit. on pp. 125, 277, 287).

[255] U. Straccia. ‘Fuzzy ALC with Fuzzy Concrete Domains’. In: Int’l Workshop on
Description Logics (DL 2005). 2005 (cit. on p. 97).

[256] V. Švejdar. ‘On the polynomial-space completeness of intuitionistic propositional
logic’. In: Archive for Mathematical Logic 42 (7 2003), pp. 711–716 (cit. on
pp. 31, 211, 227).

[257] V. Švejdar. ‘On sequent calculi for intuitionistic propositional logic’. In: Com-
mentationes Mathematicae Universitatis Carolinae 47 (1) (2006), pp. 159–173
(cit. on pp. 122, 210).

[258] P. Teller. ‘Representation of Accounting Standards: Creating an Ontology for
Financial Reporting’. In: Proc. of the 15th Int’l. Conference on Software En-
gineering and Data Engineering (SEDE-2006). (6th–8th July 2006). Ed. by
W. Dosch and W. Perrizo. Omni Los Angeles Hotel at California Plaza, Los
Angeles, California, USA: ISCA, 2006, pp. 234–239 (cit. on p. 288).

[259] P. Teller. ‘A semantic and syntactic representation of accounting standards for
financial reporting’s future challenges’. In: RCIS. Ed. by C. Rolland, O. Pastor
and J.-L. Cavarero. 2007, pp. 425–432 (cit. on p. 288).

[260] R. H. Thomason. ‘Combinations of Tense and Modality’. In: Handbook of
Philosophical Logic: Volume II: Extensions of Classical Logic. Ed. by D. Gabbay
and F. Guenthner. Dordrecht: Reidel, 1984, pp. 135–165 (cit. on p. 198).

[261] S. Tobies. ‘Complexity Results and Practical Algorithms for Logics in Knowledge
Representation’. PhD thesis. RWTH Aachen University, Germany, 2001 (cit. on
pp. 44, 227 f., 238, 242, 277).

[262] A. S. Troelstra. ‘Realizability’. In: Handbook of Proof Theory. Ed. by S. R. Buss.
Elsevier, 1998. Chap. VI, pp. 407–474 (cit. on pp. 6, 75).

[263] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. II. North-
Holland, 1988 (cit. on pp. 59, 79).

[264] A. Troelstra. ‘From constructivism to computer science’. In: Theoretical Com-
puter Science 211 (1–2) (1999), pp. 233–252 (cit. on pp. iii, v, 27).

[265] A. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction.
Vol. 121. Studies in Logic and the Foundations of Mathematics 1. North-Holland,
1988 (cit. on pp. iii, v, 6, 26 ff., 30 ff., 80, 211).

314

Bibliography

[266] J. van Benthem. Modal Logic for Open Minds. CSLI lecture notes. Center for
the Study of Language and Information, 2010 (cit. on p. 19).

[267] J. van Benthem. ‘The information in intuitionistic logic’. In: Synthese 167 (2)
(2009), pp. 251–270 (cit. on p. 30).

[268] D. Van Dalen. ‘Intuitionistic Logic’. In: Handbook of Philosophical Logic. Volume
III: Alternatives in Classical Logic. Ed. by D. Gabbay and F. Guenthner. Vol. 166.
Synthese Library. Springer Netherlands, 1986. Chap. 4, pp. 225–339 (cit. on
pp. 26, 61, 66, 74, 79, 100).

[269] W. Veldman. ‘An Intuitionistic Completeness Theorem for Intuitionistic Logic’.
In: Journal of Symbolic Logic 41 (1976), pp. 159–166 (cit. on p. 40).

[270] P. Villa. ‘Semantics foundations for constructive description logics’. PhD thesis.
Università degli Studi dell’Insubria, Italy, 2010 (cit. on pp. 42 ff., 48 f., 54, 95,
232, 277).

[271] P. Villa. ‘KALC: A Constructive Semantics for ALC’. In: Journal of Applied
Non-Classical Logics 21 (2) (2011), pp. 233–255 (cit. on pp. 42 ff.).

[272] D. Wijesekera. ‘Constructive Modal Logic I’. In: Annals of Pure and Applied
Logic 50 (1990), pp. 271–301 (cit. on pp. 8, 33, 39, 57–61, 66, 94, 96, 100, 195,
279).

[273] D. Wijesekera and A. Nerode. ‘Tableaux for constructive concurrent dynamic
logic’. In: Annals of Pure and Applied Logic 135 (1–3) (Sept. 2005), pp. 1–72
(cit. on pp. 39, 59).

[274] T. J. Wilks and M. F. Zimbelman. ‘Using Game Theory and Strategic Reasoning
Concepts to Prevent and Detect Fraud’. In: Accounting Horizons 18 (3) (Sept.
2004), pp. 173–184 (cit. on p. 5).

[275] F. Wolter and M. Zakharyaschev. ‘The relation between intuitionistic and
classical modal logics’. In: Algebra and Logic 36 (2) (1997), pp. 73–92 (cit. on
pp. 23, 33, 38, 56, 58, 198, 229).

[276] F. Wolter and M. Zakharyaschev. ‘Intuitionistic Modal Logic’. In: Logic and
Foundations of Mathematics. Ed. by A. Cantini, E. Casari and P. Minari. Vol. 280.
Synthese Library. Springer Netherlands, 1999, pp. 227–238 (cit. on pp. 33, 38,
56).

[277] F. Wolter and M. Zakharyaschev. ‘Modal Description Logics: Modalizing Roles’.
In: Fundamenta Informaticæ 39 (4) (1999), pp. 411–438 (cit. on p. 46).

315

Bibliography

[278] F. Wolter and M. Zakharyaschev. ‘Intuitionistic modal logics as fragments of
classical bimodal logics’. In: Logic at Work. 1997, pp. 168–186 (cit. on pp. 33,
38, 56, 198, 229).

[279] D. Zowghi and R. Offen. ‘A logical framework for modeling and reasoning about
the evolution of requirements’. In: Proc. IEEE Int’l Symposium Requirements
Engineering. IEEE Computer Society Press, 1997, pp. 247–259 (cit. on p. 5).

316

Index

Page numbers given in boldface type refer to the principal treatment
of a subject and those in italic to examples.

Notation Index

Languages and Logics
IALC∞ . 228
IALC . 42, 95
ALC . 13, 14, 227
ALCR+ 18, 227, 242
ALCR∗ 199, 226, 227
BCDL . 48
BCDLK .49
cALC . 42, 53, 60
cALCD . 184
cALCF . 172
cALCRF . 178
cALCPEM . 191
CALCC . 47, 278
CALCC− . 48
CALC2

∼ . 48
CALCN4 . 47
CALCN4d . 47
CCDL . 59
CK .38, 55, 88, 94
CK ⊕ 4 . 57
CPC . 19, 23
CS4 . 96–97
EL . 51, 217, 226
EL+ . 218
ELU . 218, 226
FL . 217
FL0 . 217, 220
FS/IK34, 55, 88, 95
iALC 42, 45, 95, 228
IKB . 43
IKD . 43
IKDB . 43

IKTB . 43
IntK2,3 . 56
IPC . 28, 100, 227
IQC . 31
IQC ⊕ KUR . 44
IS4.3 . 37
IS4 . 37
IS5 . 37, 43
IKT . 43
KALC43, 95, 228, 277
KALC∞44, 95, 228, 277
Km . 20
K4m . 24
L1 ⊗ L2 . 198
L⊕∆ . 24
LTL . 59
LU . 216
MLm . 21
N4 . 46
PLL .39, 55, 97, 228
QC . 25
QN4 . 47
S4m .24
S5m .24
S4 . 242
S4 ⊗ Km . 93, 197
(S4 ⊗ Km)U . 216
S,SHI,SHOI,SHOIQ,SHROIQ

18
UL . 217, 218–226
UL0 . 220
UL− .226

Logical connectives
⊥ . 14, 20, 60

317

Index

⊤ . 14, 20, 60
¬ .14, 20, 60
⊓ . 14, 60
⊔ . 14, 60
∃R . 14, 60
∀R . 14, 60
⊃ . 14, 20, 60, 71
⊑ . 15, 17, 71
≥ nR . 19
≤ nR . 19
{a} . 19, 269
∃ . 31
∀ . 31
∧ . 20
∨ . 20
3 . 19
2 . 19
3i . 20
2i . 20
⃝ . 97
2∀ . 216
3∃ . 216

Structures
F .21, 30, 32, 37
I . 15
I∗ . 145
Ics . 199
I1 . 80
Is . 170
IS . 258
Σ . 14, 60
K . 15
M . 21, 30, 32
(X,⩽) . 138
S = (C ; A). .233
(M,Θ) . 237
ThΓ . 89
x≡ . 89

Special sets
⊥I .62
⊥I|Γ . 89
cALCax . 101
CL(Γ) . 212

CA(u,S) .234
∀∗C . 111
∆I . 15, 62
∆I
c .63

∆I
a . 271

∆I|Γ . 89
∆∗ .138
A .17
Supp(A) . 17
T .16
NC .14, 60
NI . 14, 60
NR . 14, 60
ForMLm . 21
Γf . 102
Θf .102
IPCax . 29
IT(C) . 118
Φ ∪Ψ . 123
RK . 249
[x, y] . 138
dom(Σ), dom(Ψ) 122
Σ(R),Ψ(R) . 122
XL . 139
XcALC . 142
XcALCD . 186
XcALCPEM .192
XcALCF . 173
Sfc(C) . 88
F (x)R . 89
T (x) .89
sub(�) . 250
Supp(S) . 233
ThI(Γ) . 89
VE . 233

Operations on sets & formulæ
∧Σ . 154
∧Γ . 154
∨Φ . 154
∨Ψ . 154
d(�) . 220
D[], DC::l . 102
exp(Θ). .220
f(�) .24, 199
∀R−1 Σ . 89

318

Index

∀RΓ . 114
red(�) . 259
κ(u,S) . 259
∀R−1 Σ . 89
STx(�) . 25
τ(�) .200
τ ′(�) . 201
τ †(�) . 212
τ ‡(�) . 212

Relations
≺ . 233, 246
id∆I . 121
⪯ . 30, 32
⪯I .62
⪯I |Γ .89
→ . 271
K →ξ K′ . 237
S

Θ→ξ M .238
S →ξ S

′ . 238

Maps
[R →→ C] .123
Σ ∪ [R →→ C] . 123
α . 234
αS(x) . 261
X̂L . 139
s→ν s

′ . 139

Truth, validity and consequence
·I . 15, 62
·I|Γ . 89
I A . 17
I K . 17
I a : C . 17
I a R b .17
I C ≡ D .17
I C ⊑ D .17
I T . 17
K a : C .18
K a R b . 18
∆;Θ; Γ ϕ . 22

M;x ϕ . 21, 30, 32
M;x Γ . 21
V(�) . 21, 30
M ϕ . 21
F ϕ . 21
cs . 199
Ics;x cs C . 199
I;x C .65
I;x Γ . 65
I C . 65
C . 65
Γ .65

I Γ . 65
Θ;Γ C . 70
I;x� ⟨η⟩C .118
Θ ; Σ ; Γ ̸ Φ ; Ψ 123
cALCD ; Θ ; Σ ; Γ ̸ Φ ; Ψ 184
cALCF ; Θ ; Σ ; Γ ̸ Φ ; Ψ 172
cALCPEM ; Θ ; Σ ; Γ ̸ Φ ; Ψ191
cALCRF

; Θ ; Σ ; Γ ̸ Φ ; Ψ 178
I;α c . 234

Axioms and inference rules
4 . 24
5 . 24
K∀R 100, 124, 207, 248
K∃R . 100, 124, 207
B . 24
CPC1–CPC8 . 23
D . 24
FS1–FS6 . 34, 39
FS3/IK3 34, 40, 58, 69, 96, 169,

170–181
FS4/IK4 . .21, 34, 40, 58, 69, 78, 93, 95,

126–129, 169, 182–189, 207,
248

FS5/IK534, 40, 58, 69, 169
IK1–IK5 . 34, 39
IPC1–IPC7 . 28, 100
IPC2 .126
IQC∃ . 32
IQC∀ . 32
K . 23

319

Index

KUR . 43, 228
PEM . . .26, 31, 38, 69, 77, 78, 86, 169,

190–194, 209
T . 24
∃E . 32
∀I . 32
MP 23, 28, 34, 39, 100
Nec . 23, 34, 39, 100
Reg . 34

Admissible axioms and rules
(Bn) . 103
(FS1) . 104
(IPC8) . 104
(IPC9) . 104
(Kn) . 103
(Sn) . 104
B-combinator 35, 104
Bn-combinator see (Bn)
(I) . 103
(ARCW) . 106
(ARB) .106, 111
(ARC) . 106
(ARE) .106
(ARK) . 106
(ARM) . 106
(ARS) .106
(ARW) . 106

Deduction, judgements
Θ ; Γ H C . 101
cALCD ; Θ ; ∅ H C189
cALCF ; Θ ; ∅ H C 174
cALCRF

; Θ ; ∅ H C179
cALCPEM ; Θ ; ∅ H C193
CK-1 ϕ . 39
CK-2 ϕ . 39
FS ϕ .34
IK ϕ . 34
IPC ϕ . 28, 101
Γ IPC ϕ . 29
Km

ϕ . 23
∆;Γ; ∅ Km

ϕ . 23

Θ ; Σ ; Γ G1 Φ ; Ψ 122
Θ ; Σ ; Γ G1D

Φ ; Ψ 184
Θ ; Σ ; Γ G1PEM

Φ ; Ψ 191
Θ ; Σ ; Γ G1F

Φ ; Ψ 172
Θ ; Σ ; Γ G1

RF
Φ ; Ψ 178

⟨Θ ; Σ ; Γ Φ ; Ψ⟩137

Sequent calculi
G1 . 122, 124
G1D .184
G1PEM . 191
G1F . 172
G1RF .178
G1UL . 220, 221
G3im . 122
G3ip . 210
GHPC . 122, 210
LJ . 210

Sequent rules
⊓L . 124
⊓R . 124
∀L . 124
∀R .124
∃L . 124
∃LF . 177
∃R .124
∃R+ . 184
⊥L .123, 124, 221
⊥L+ .172
⊥LF .177
⊥RF . 177
Hyp1 . 124
Hyp2 . 124
⊃L . 124, 221
⊃R . 124
⊃R+ . 191
¬L . 125
¬R . 125
⊔L .124, 221
⊔R . 124
⊔R1,⊔R2 . 221
∃LR .221
⊤R . 221

320

Index

wLg . 222
wLl . 222
Ax . 124, 221
Cut . 150

Assertions and constraints
a : C . 17
a R b, (a, b) :R 17, 233
u:+C . 233
u ⪯ u′ . 233
u:−C . 233
u:−∀RC . 233
u:−∃RC . 233
u ↓ a . 271

Tableau rules
(→⊓+) . 239, 248
(→⊓−) . 239, 248
(→⊔+) . 239, 248
(→⊔−) . 239, 248
(→⊃+) . 239, 248
(→⊃−) . 239, 248
(→∀+) . 239, 248
(→∀−) . 239, 248
(→∃+) . 239, 248
(→∃−) . 239, 248
(→R∀−) . 239, 248
(→R∃−) . 239, 248
(→⪯+) . 239, 248
(→ax) .239, 248
(→⪯a) . 272
(→Ca) . 272
(→Ra) . 272

Miscellaneous
□,∇,■ . 13
Q∀ . 114
(F1), (F2) . 38
⟨α⟩C . 118
⟨⟨f⟩⟩C .118
Θs,Σs,Γs,Φs w.r.t. sequent s 137
R ;S . 55
Γ, ϕ . 28
Γ, Γ′ . 28

TcALC . 231, 238
r, s . 232
u, v . 232
c, d . 232

Main Index

Symbols
cNNF. .211
coNP-complete 217
coNP-hard . 218
ExpTime . 197
ExpTime-complete 215, 217, 226
ExpTime-hard.212, 220
I-assignment . 234
λ-calculus. .27
λCKn . 50
ω–chain. .138
ω-complete poset 138
ω-continuous. .139
⪯-successor . 234
⪯∗-successor . 234
PSpace-complete . . . 31, 209–215, 226
PSpace-hard . 211
PTime 197, 217, 220, 226
R-successor . 234
Ri-predecessor . 21
Ri-successor . 21
Θ-saturated see constraint system,

Θ-saturated
XL-saturated . 140
NRF -infallible see interpretation,

R-infallible

A
ABox . 17, 268

support of . 17
axiom see assertional axiom
consistency 2, 18, 268
instance checking 2, 18, 268
instance retrieval 18

abstraction . 67
accessibility relation 21
active set . 233
assertional axiom 17
auditing . 75, 78, 94

321

Index

B
blocking . 244, 246

anywhere . 246
condition . 246

bottom concept . 14
Brouwer–Heyting–Kolmogorov.see

interpretation, BHK

C
canonical interpretation

for cALC (G1) 145
for cALCD .187
for cALCF . 173
for cALCPEM 192
for cALC (TcALC) 258
selfsatisfaction 146, 262

chain . 138
clash . 236, 241, 257
clash-free . 237
classic embedding 211
classical forcing . 212
classical propositional logic23
closed world assumption 74
coherence . 271
complete partial order 138
completeness

G1 130, 135, 149
G1D . 186
G1PEM .193
G1F . 173
G1UL . 225
TcALC . 267

complexity
of ALCR∗ . 209
of cALC . 209

w.r.t. general TBoxes 215
w/o TBoxes.211

of IPC . 210
UL0 w.r.t. classical semantics . . 220
UL w.r.t. constructive semantics225

concept
assertion . 17
bottom . 15
conjunction . 15
deducible . 101
definition . 16
description 1, 14

disjointness18, 72, 235
disjunction . 15
equivalence 18, 72, 235
existential restriction 14, 15
existentially guarded 219
intersection . 14
name . 14
negation. .14, 15
primitive concept definition 16
satisfiability.2, 18, 72, 235
subsumption 2, 18, 72, 235
top . 15
union . 14
universal restriction 14, 15

conservative extension 210
constraint. .233

active . 233
assertion . 232
conceptual . 233
inactive . 233
optimistic variable 234
relational . 233
satisfiability.234
system . 232, 233
variable . 232

constraint system 232
Θ-saturated 241, 259
canonical interpretation 258
clash .241
clash-free . 241
countermodel construction 271
extended canonical interpretation

261
instance checking 269
invariance. .257
non-speculative 237, 240
pre-model . 261
reduced . 259
saturated . 241
selfsatisfaction 262
support . 233

constructive
logic . 26
proof. .26
satisfiability
G1 sequents 123
G1D sequents 184

322

Index

G1PEM sequents 192
G1F sequents.172
G1RF sequents 177
UL (simple) sequents 221

translation . 200
countermodel construction 248
Curry-Howard isomorphism6, 7, 27, 39,

41, 61, 79, 117
cut admissibility 225

for G1 .150
for UL . 222

CWA see closed world assumption

D
decidability 23, 150, 216
deduction theorem

for cALC . 111
for IPC . 29

directly uses relation 16
disjunction property 8, 94

cALC . 80, 85
for IPC . 29

disjunctive distribution . . 21, 39, 58, 87,
94, 96, 169

DL signature. .14
domain . 15
double negation . 94
dovetailing . 55
dualities . 94
dynamic and incomplete knowledge . 74

E
entity . 61, 62
EOWA see open world assumption,

evolving
Excluded Middle6, 8, 26, 40, 58, 67, 76,

94, 169
extensionality principles.100

F
fallible 61, 62, 64, 94, 96
fibring . 54, 58
filtration 43, 87–94, 129

model . 89
theorem. .91

finite model property 19, 23, 31, 43, 55,
87, 93, 94, 95, 150, 216

fmp see finite model property
function

increasing . 138
monotonic . 138

fusion . 93, 198

G
Gödel translation 197
general concept inclusion 15, 217
generalised knowledge base.237

clashed . 241
saturated . 241

Glivenko’s Theorem 87, 211
global semantic consequence

cALC . 70
Km . 22

H
Harrop concept . 80
heredity . 30, 66
Hilbert

admissible rule
composition 106
currying . 107
de-currying 107
elimination of neutral elements

107
for (Kn) . 106
for (Sn) . 107
monotonicity107
weakening 107
weakening-currying 107

combinator
function composition 103
generalisation of IPC1 103
generalisation of IPC2 103
identity . 103

compactness 102
global hypothesis 101
local hypothesis 101
system

for cALC 100
for FS/IK . 33
for IPC . 28
for IQC . 32
for Km . 22

hybrid logic . 271

323

Index

I
i-satisfies see satisfies, infallibly
IML see intuitionistic modal logic
inconsistency-tolerant paraconsistent

description logics 46
increasing. .139
independent joinsee fusion
indirect proofsee non-constructive proof
individual 1–3, 14, 61
infallible 169, 172, 173

R-predecessors 65
set of entities 63

information term 48, 118
instance checking . . . see ABox, instance

checking
interaction schema 169
internal agent . 126
interpretation . 2, 17

R-infallible . 176
BHK . 6, 118
classic. .15
confluent. .182
constructive . 62
degenerated . 190
domain. .2
function . 2
infallible . 170
join of see join model
stream . 77
stripped.170, 177

Intuitionism . 26
intuitionistic

birelational frame 37
first-order logic.31
frame . 30, 32
hybrid logic . 97
Kripke semantics 54
linear-time temporal logic 96
logic . 26
modal logic . 33
propositional logic 28

J
join

model . 80
world . 80

K
knowledge base . 17
Kripke complete . 24
Kripke semantics.see semantics
Kuroda principle 43, 95

L
least upper bound 138
linear-time temporal logic 58
local semantic consequence

cALC . 70
Km . 22

locally finite . 138

M
modal logic . 19

basic . 20
multimodal . 19
normal 2, 23, 38, 182, 195

modal satisfaction relation 21
modality . 19

necessity . 2
possibility . 2
universal . 216

model
ABox . 17
cALC . 65
constraint system 234
constructive . 62
intuitionistic first-order logic 32
intuitionistic propositional logic . 30
knowledge base 17
TBox . 17

modus ponens 23, 28, 34, 39, 100, 152
monotonic see function, monotonic
monotonicity

of derivations 102
property . 94
cALC . 66
for IPC . 30

N
necessitation 23, 34, 39, 100
necessity . 19
nominal . 18, 268

constraint . 271
non-constructive proof 26

324

Index

non-fallible entitiessee infallible entities

O
ontology see knowledge base
open world assumption 3, 74

classical .75
evolving 75–77, 94, 273

oscillation 67, 79, 95, 128
OWA.see open world assumption

P
paraconsistent logic 46
partially ordered set 138
Peirce’s law . 86
polarity see signed formula
possibility. .19
pre-model . 231, 236
proofs as programs 27
propositional lax logic 39, 55, 228
propositions as types 27

R
Racer . 208, 226
reachable . 234
realisability predicate 118
realiser . 118
reasoning tasks 2, 18, 72, 235
reductio ad absurdum. 26
refinement. .62, 67
refinement simulation 271
robust under refinement62, 66
role . 1

assertion . 17
filler . 15, 17
infallible . 176
successor . 15

role name . 14

S
satisfiable 30, 32, 237
satisfies

cALC . 65
concept assertion17
concept equality.17
concept inclusion 16
constraint system 234
infallibly . 177
role assertion.17

semantic consequence relation
cALC . 70
modal logic . 22

semantics . 30, 53
birelational 37, 55, 61, 268
descriptive . 217
fixed point . 217
for CK . 39
for FS/IK . 37
for cALC . 62
for IQC . 31
for IPC . 30
infallible . 169
standard intuitionistic 37, 268

sequent . 122
(constructively) satisfiable 123
consistent . 124
consistent and saturated extension

141
extension rule . . 139, 141, 173, 186,

192
finite. .138
global .123
local . 122
multi-conclusion 122
single extension step 139
subsequent . 138
tableau . 124
union of . 138

sequential composition 55
signed formula . 232
soundness

G1 . 130
G1D . 185
G1PEM .192
G1F . 173
G1RF .178
G1UL . 225
TcALC . 267

stages of information 30, 74
standard intuitionistic semanticssee

semantics
strong constructive negation 46
strongly completesee completeness, G1
subformula closed set 88
subsumption . 61

325

Index

T
tableau

closed. .247
Fitting-style 247
looping . 243
saturated . 247
termination 242–245

tableau rule. .237
generating . 238
local . 237
non-deterministic 238
non-generating 238
regular . 238, 253

tableau rules (cALC) 238
TBox . 71

acyclic 16, 217–218
axiom. 15
cyclic. .217–218
definitorial .16
existentially guarded.219, 225
general 16, 217–218

termination 249–252
terminology see TBox
top concept . 14
total order . 138
translation

cALC into ALC and vice versa 214
cALC into ALCR∗ and vice versa

200
classic . 201
double negation 87, 211
Gödel 198, 209, 211
PLL into S4 ⊗ S4215
sequent to Hilbert derivation . . . 154
standard . 25

U
upper bound . 138
uses relation . 16

V
valid . 30, 32
valuation . 21

326

eISBN: 978-3-86309-321-1

Description logics (DLs) represent a widely studied logical forma-
lism with a significant impact in the field of knowledge represen-
tation and the Semantic Web. However, they are equipped with a
classical descriptive semantics that is characterised by a platonic
notion of truth, being insufficiently expressive to deal with evol-
ving and incomplete information, as from data streams or ongoing
processes. Such partially determined and incomplete knowledge
can be expressed by relying on a constructive semantics. This
thesis investigates the model and proof theory of a constructive
variant of the basic description logic ALC, called cALC. The se-
mantic dimension of constructive DLs is investigated by replacing
the classical binary truth interpretation of ALC with a construc-
tive notion of truth. This semantic characterisation is crucial to
represent applications with partial information adequately, and
to achieve both consistency under abstraction as well as robust-
ness under refinement, and on the other hand is compatible with
the Curry-Howard isomorphism in order to form the cornerstone
for a DL-based type theory. The proof theory of cALC is investiga-
ted by giving a sound and complete Hilbert-style axiomatisation,
a Gentzen-style sequent calculus and a labelled tableau calculus
showing finite model property and decidability. Moreover, cALC
can be strengthened towards normal intuitionistic modal logics
and classical ALC in terms of sound and complete extensions and
hereby forms a starting point for the systematic investigation of a
constructive correspondence theory.

	Dissertation Stephan Scheele
	Title
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation: When Constructiveness matters
	1.2 Aims and Contributions
	1.3 Synopsis of the Thesis
	1.4 Publications

	2 Background
	2.1 Description Logic
	2.1.1 The Basic Language ALC
	2.1.2 DL Knowledge Base
	2.1.3 Standard Inference Problems
	2.1.4 Language Extensions of ALC
	2.1.5 Relation to Modal Logics

	2.2 Constructive Logic
	2.2.1 Intuitionistic Propositional and First-Order Logic
	2.2.2 Intuitionistic Modal Logic

	3 Constructive Description Logics – State of the Art
	3.1 Constructive Description Logics: What, Why & How?
	3.2 Intuitionistic Semantics via Translation into IQC
	3.2.1 Intuitionistic ALC (IALC)
	3.2.2 Intuitionistic ALC Kuroda Logic (KALC)

	3.3 Intuitionistic Semantics via Translation into FS/IK
	3.4 Constructive Inconsistency-tolerant Description Logics
	3.5 Computational Interpretations of Description Logics
	3.5.1 Information Term Semantics for ALC (BCDL)
	3.5.2 Type-theoretic Interpretation of CALC (LCKN)

	3.6 Minor Constructive Approaches to Description Logics
	3.6.1 Proof-theoretic Approach by Martin Hofmann
	3.6.2 Intuitionistic Approach to Query Answering in DLs

	3.7 Our Approach

	4 Constructive Semantics for ALC
	4.1 Kripke Semantics and the Choice of CALC
	4.1.1 Variants of Kripke Semantics
	4.1.2 Variants of Birelational Kripke Semantics
	4.1.3 The System cALC

	4.2 Syntax and Semantics of cALC
	4.2.1 Syntax
	4.2.2 Semantics
	4.2.3 Terminological Knowledge
	4.2.4 Representation of Dynamic and Incomplete Knowledge
	4.2.5 Disjunction Property
	4.2.6 Finite Model Property

	4.3 Summary

	5 Constructive Proof Systems for CALC
	5.1 Hilbert-style Axiomatisation
	5.1.1 Hilbert Calculus for cALC
	5.1.2 Modal Deduction Theorem
	5.1.3 Soundness and Completeness

	5.2 Gentzen Sequent Calculus G1 for CALC
	5.2.1 Soundness and Completeness
	5.2.2 Decidability of G1
	5.2.3 Equivalence of Gentzen and Hilbert systems

	5.3 Towards Intermediate Logics between CALC and ALC
	5.3.1 Infallible Kripke Semantics – Axiom fs3/ik3
	5.3.2 The Principle of Disjunctive Distribution – Axiom fs4/ik4
	5.3.3 The Principle of the Excluded Middle
	5.3.4 Obtaining classical ALC

	5.4 Summary

	6 The Relation of CALC to Classical Description Logics
	6.1 Embedding cALC into classical Description Logics
	6.1.1 Translation of CALC into ALCR*
	6.1.2 The Complexity of cALC
	6.1.3 Decidability and Finite Model Property

	6.2 The Fragment UL
	6.2.1 Introduction to Tractable DLs
	6.2.2 The Language UL
	6.2.3 Existentially Guarded UL0 is EXPTIME-hard for Classical Descriptive Semantics
	6.2.4 Existentially Guarded UL is in PTIME for Constructive Descriptive Semantics

	6.3 Summary

	7 Tableau-based Calculus for CALC
	7.1 Constraint System
	7.2 Tableau Rules
	7.2.1 Tableau Rules of TCALC
	7.2.2 Fitting-style Representation of TCALC

	7.3 Proof of Correctness
	7.3.1 Termination
	7.3.2 Soundness and Completeness

	7.4 Towards Constructive ABox Reasoning – an Outlook
	7.5 Summary

	8 Conclusion
	8.1 Contributions
	8.2 Future Perspectives
	8.2.1 Theoretical Aspects
	8.2.2 Towards Applications

	Bibliography
	Index
	Languages and Logics
	Logical connectives
	Structures
	Special sets
	Operations on sets and formulae
	Relations
	Maps
	Truth, validity and consequence
	Axioms and inference rules
	Admissible axioms and rules
	Deduction, judgements
	Sequent calculi
	Sequent rules
	Assertions and constraints
	Tableau rules
	Miscellaneous
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

