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Abstract

We investigate the traffic behaviour in a network consisting of a local exchange and two exchanges
of the long-distance network being connected to each other by two distinct both-way trunk groups.
Modeling this network by means of a loss system with two Poissonian originating traffic streams
following a mutual overflow routing scheme and two Poissonian external traffic streams, we derive
a representation of the steady-state probabilities for the number of busy lines in both trunk groups.
Our theorectical results include simple expressions of time and individual call-congestion rates of
the arrival streams as well as a simple fixed-point approximation of these quantities. Finally, we
point out that lost calls selected from the originating and external traffic streams offered to each
trunk group form PH-renewal and MMPP processes.
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1. Introduction

Recently, considerable attention has been devoted to the analysis of advanced routing schemes in
circuit-switched digital networks based on efficient modern signalling systems such as CCS CCITT
No. 7.

In this paper we investigate the traffic behaviour in a subnetwork. It consists of a local exchange
which is connected with two exchanges of the long-distance network by two distinct both-way
trunk groups. The outgoing traffic of the local exchange is split into two portions and each portion
is offered to an outgoing group. These partial traffic strcams are routed according to a mutual
overflow scheme (cf. [12], [16]). Additionally each trunk group carries external traffic (cf. Fig. 1).
This paper is organized as follows. In section 2 we give a detailed mathematical description of this
subnetwork by means of a loss system. Assuming exponentially distributed interarrival and holding
times, we derive a Markovian model for the number of busy lines in both trunk groups. In section
3 we represent its steady-state probabilities in terms of Brockmeyer polynomials (cf. [2], [20], [12]).
In section 4 a simple fixed-point approximation of the average call-congestion rates of the total
arrival streams offered to both trunk groups is presented. In section 5 we point out that the
streams of lost calls corresponding to the outgoing and external traffic form PH-renewal and MMPP
processes. Assuming that these streams are offered to a group with an infinite number of lines and
.exponentially distributed holding times, we calculate simple expressions for the factorial moments
of busy lines. Based on these moment formulas the corresponding streams may be approximated
by simple traffic streams such as IPP’s employing standard moment-matching techniques (cf. [14],

(8], [19], [18]).
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2. A model of the overflow system

The subnetwork consisting of a local exchange and two exchanges of the long-distance network
which are connected to each other by two both-way trunk groups may be described by a loss
system being composed of two fully available trunk groups called systems 1 and 2 with N; and N,
lines, respectively. Two originating traffic streams (strcams 2 and 3) representing the portions of
the outgoing traffic and two incoming external traffic streams (streams 1 and 4) are offered to the
loss system {cf. Fig. 2). These arrival processes are modeled by mutually independent Poisson
processes with positive rates Ay, A3 and Ay, A4, respectively.

The external traffic streams 1 and 4 offered to systems 1 and 2 follow a random hunting scheme
for free lines. Their calls are lost without further impact on the system if the corresponding trunk
group is busy upon arrival. The outgoing streams 2 and 3 follow a mutual overflow routing scheme.
This means, that upon arrival at system 1 a call of flow 2, for instance, is searching for a free line.
If possible, a free trunk is selected in a random manner and occupied. If system 1 is busy and there
are free lines in system 2, the incoming call from flow 2 will immediately overflow to system 2 upon
arrival and occupy a line selected at random. If both systems are busy, the call will be blocked and
lost without further impact on the system (lost calls cleared).

Call holding times are considered to be mutually independent exponentially distributed random
variables with a finite common mean 1/p. They arc also assumed to be independent of the arrival
processes.

The occupation of groups can be modeled by an irreducible, homogeneous continuous-time Markov
chain {X(2),t > 0} with state variables {X;(¢) denoting the number of busy trunks in group i at
time ¢, i = 1,2, and a finite state space S = {(i,7) | 0 < ¢ < Ny;0 < j < Ny }. Its limiting
distribution P = (Pj)i=0,.,N;j=0,...Ny, Pij = limenso P(X(2) = (i,4)), is the unique solution of

'

the normalization condition Y i, §V=20 ;; = 1 and the balance equations
P; . [(/\1(1 - 6N+ /\2)(1 — &i.ny 6_,"/\/2) +in (1)

+  (Aa+ A1 = 8,m))(1 = bi v 65v, ) + ]
A+ A2+ A36;,0,)(1 = Gio) - Py + (E 4 1)p(1 = & vy ) - Pigsj
+ A+ A+ b v 1= 850) - Pisoy + (5 + V(L = 65 3,) - Pijar

Il

0<¢< Ny, 0L 5 <Ny, where 6y =1 for k =1 and O otherwise (cf. [6, Satz 12.1, p. 121]).
Obviously, the steady-state probability vector P = (Pog, Pory---, PoNgy- -y PNy0y -+ Py, )! i the
unique positive, normalized solution of the homogeneous linear system A . P = 0 where A = —~Q‘ is
the negative transpose of the generator matrix @ associated with {X(2),¢2 > 0}. A is an irreducible,
singular M-matrix with block tridiagonal structure and tridiagonal regular M-matrices along its
diagonal. Furthermore, e‘A = 0 holds where e denotes the vector with all ones. Thus, A is a
weakly 2-cyclic consistently ordered Q-matrix (cf. [13], (25], {24], [1]). Taking advantage of the

]
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Figure 1: Model of the circuit-switched subnetwork
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block structure of A4, the steady-state vector P may be computed by an efficient convergent block
iterative scheme derived from an R-regular splitting of A (cf. [13], [24], [19]).

3. Analysis of the steady-state distribution

Solving the difference equations (1) we apply a combined series representation and separation
method which has been introduced by Morrison [20] for similar models. It is possible to prove
that the steady-state probabilitics may be represented by a linear combination of products of the
well-known Brockmeyer polynomials s,(A, A) (cf. [4, p. 226f], [20, Appendix A]). Due to the
limitation of space the details will be omitted (cf. [13]). We only summarize the result in the

following theorem.

Theorem 1
Let Ay = (A1 + X))/ >0, Ay = (A3 + Ay)/p > 0 be the offered loads of the mutual overflow model.

Then the unique limiting distribution P = (P;) of the ergodic Markov chain {X(t),t > 0} modeling
the number of busy lines in both trunk groups may be represented sn the form of

B A} /i AL/
Pij - N1 Ar/r' ZszAr/1.| (2)
Nz
+ ch si(p, A1) - 8;(—pi, A2) + D Di - 3i(B1, A1) - 3;(—fi, Az)
k=1 i=1

for 0K i< Ny, 0K j<Na.

{p1,--., oM} € (—o00,—1) denote the N, simple zeros of sn,(1 + p, A1) whereas
{B1;---18n;} C (1,00) are the N, simple roots of sn,(1 — B, A3). The unique real coefficients
Ci,...,Cnyy D1,..., Dn, are the unique solution of the following snhomogeneous linear system of

order Ny + Ny:

N,
Y Cul(—pr) - 8ilpr, Av) - 88, (1 = pry Az) + A /1t - 3i(=1 + pu, Ar) - 38, (=P, A3)]

k=1
Ny
A 8;(—1,A;) sn,(0,45)
+ DilA 1‘3.'_‘1’*‘ ’A . 8 — ’A = —— ! L A2
g l[ 3/’ ( B 1) Nz( ﬂl 2)] " 81\',(1,141) 3N2(11A2)

0<i< Ny -1 (3)

N,
ZDI[ﬁI * 8N (1 + ﬂl’Al) : 'sj(—'ﬂhAQ) + A?/ﬂ * SN (ﬂl)Al) * "j(—'l - ﬂIaA2)]
=1
N
‘ . Ce(1— _ s (0, A1) 5i(=1, As)
* ZCk[,\Z/” le(pk’Al) 83( ' pk,A?)]‘— B . 5N1(11A1) ' 3N2(1;A2)

k=1 ’
0<j<N-1 (4)

O

4. Fixed-point approximation of congestion rates

4.1 Calculation of flow-dependent call-congestion rates

We assume the occupation process X(t) to be in steady state and analyse an isolated trunk group,
for instance, group 1. Three streams are offered to this subsystem: two Poisson processes with rates
A1 and A and the stream formed by those calls of the Poisson process with rate Az overflowing
from group 2 to 1. If we mark the incoming calls of all Poisson streams by four different colours
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(customer types), the isolated trunk group may be described by a G3/M /N /0-model (cf. [5, p.
61]) . Let us denote the individual call-congestion rate of the customer stream of type j offered to
group i by Bi;, i € {1,2},5 € {1,...,4}.

Due to the PASTA-Theorem [9, 11-2, p. 391{] time- and call-stationary probabilities (cf. {5, p.
58ff), [7, §11, p. 517ff]) coincide in the case of arriving Poisson streams, thus By = By =
Py, = P(Xy = Ny),Byy = Bay = Py, = P(Xo = N32). The time congestion of the entire system
is denoted by Py, n, = P(Xy = Ny, Xp = Ny). Applying a well-known result [5, 5.3.5, p. 154 ] we
conclude that the call-congestion rates of the overflow streams are given by By = Py, n, /Py, and
Bys = Pn,N,/Pn,. The average call-congestion rates corresponding to the total streams of calls
offered to groups 1 and 2 read '

_ (Mt Ae) Py 429 P,y
AL+ Ay + Ay - Py,

_ (A3+A4)-PN2+)\2-PN1N2
’\3+’\4+’\2'PNl

()

Bl ) B2

(cf. [5, p. 154], [15, p.790]).

Obviously, it is sufficient to calculate the time-congestion rates of the entire system, Pw,n,, and of
groups 1 and 2, Py,, Pu,. On the other hand, the latter quantities are determined by the average
blocking rates in a unique manner, too :

Py = Bi(As + A)[A1 + A2+ A3 By] — Pnyvy As[As + Aq + A By] (6)
! (A4 X)(As + Aq) — X223 B, By

Py, = By(Ar + A2)[As + Ag + A Bi] = Prnyvy AafAr + Ag + A3 By )
2 (Al + Az)(A'; + /\4) - /\2/\33132

Numerical experiments have shown that the differences between customer specific call-congestion
rates and average call-congestion rates decrease if the offered traffic increases.

4.2 Approximation of congestion rates

To approximate the call-congestion rates related to each trunk group we assume the overflow pro-
cesses which are offered to each trunk group in addition to the originating and external traffic
streams to be Poissonian. Morcover, these streams are supposed to be independent of the Poisson
streams originally offered to the corresponding trunk groups.

Due to the PASTA-Theorem (cf. [9, §11-2, p. 391f]) originally offered and overflowing calls expe-
rience the same call-congestion rates under these assumptions. Thus, flow-depenrdent and average
call-congestion rates coincide with time-congestion rates, i.e. Py, = By = B); = Bj3 = By and
Py, = Byz = By3 = By = Bs.

Applying the upper bound 0 < 5‘975 E(m,A) < 1/A for the derivative of Erlang’s loss formula
E(m,A), m € IN, A>0 (cf. [12], [11]) it is possible to dcrive the following fixed-point formula
for estimating the average call-congestion rates of both trunk groups.

Lemma 1
Let A > 0, A3 > 0. Then there exists a unique fized point (B}, B;) € (0,1)? determined by the
fized-point equations:

Ag

Aty 1’1;) (8)

A
34;/\4+B

A
BI:E(N11 +B2_,:3')) B2:E(N2’

For each initial point Bgo) it may be computed by the convergent ite-

rative scheme Bg"H) = E(Nay(A3 + Ag)/p+ Aofpe- E(Ny, (A + X))/ + Bg")A;,/u)) , n>0, set-
ting B = Bg"), B} = E(Ny, (A1 + A2)/ e+ B3Xs /1) after convergence. O

All results derived so far, especially Theorem 1 and Lemma 1, also hold if the mean holding times



149

in both trunk groups are different (cf. [13]). Only in the next conclusion do we have to assume
explicitly that all holding times are equally distributed. Without loss of generality we suppose
p = 1. Now the individual call-congestion rates Bj3, Bys may be approximated by the average
rates B;, B;. Based on the relation

Py, (A2 + A3) = A3Pn, - Bis+ Ay Pn, - Bag & A3Pn, - By + A Py, - By, (9)

the substitution of the unknown time-congestion rates Py,, Py, by the formulas (6), (7) yields the
following approximation of the overall time-congestion Py, n, in terms of the average call-congestion
rates By, By which may be computed by means of (8):.

PNlNz = Ji((?ligz)) (10)
Z(B1, Bz) = E(N1,/\1 + A + Bzz\g)(/\[ + Ag + Bg/\;;)(Ag + /\4))\331
+E(Na, A3 + Ay + B1A2)(A3 + Ag + BiA2)(A1 + A2)A2Bs (1)
N(Bi;Bz) = (A2 + A)[(Ar + A2)(A3 + Ag) — A2A3 B, By)
+A2(A3 + Ay + BiXA)E(N, Ay + Ay + Bydg)
+/\g(/\1 + Aq + Bg/\;;)E(Ng, Az + Ay + Bl/\z) (12)

If the average call-congestion rates are known, it is possible to determine the time-congestion rates
Py,, Py, by (6), (7), (10). As expected (cf. [10]), these estimates derived from the proposed
fixed-point approach are very accurate for heavy traffic.

5. Analysis of the loss streams

The loss streams are formed by those calls of the originating and external traffic streams which
cannot find a free line upon arrival. Subsequently, we assume that the ergodic Markov chain
{X(t),t > 0} is in steady state and ¢ = O is an instant of a loss. Furthermore, we suppose Ay > 0,
Az > 0. Without loss of generality we shall only investigate the loss streams corresponding to the
offered streams 1 and 2.

5.1 Stochastic structure of the loss streams

A call of stream 2 is lost if and orly if it finds the overflow system in state (N;, N2) upon arrival.
Thus, the corresponding loss stream can be described by a Markov-modulated Poisson process
(MMPP) (cf. [7, §7.4.2, p. 3611f], [19], [21], [17]) with representation (Q,A3). Here Q € RN*V,
N = (N, +1)-(N; +1), is the generator matrix of X(2) and Ay = Ay - ey - efy € IRV*Y is the rate
matrix where ey € IRY denotes the Nth unit vector.

As lost calls can only occur during a sojourn of the controlling Markov chain X(t) in state (N, N2),
the resulting loss stream is a stationary PH-rencwal stream with an irreducible representation
(en, @ —Az) (cf. [17, Theorem 2.5, p. 18], [21, Chap. 2]). Its corresponding interarrival time distri-
bution is given by H(z) =1—el -e(@-A)2. ¢ £ >0, and has the Laplace-Stieltjes transform
(LST) ®y(s) = [ e " dH(t) = Ag-ely - (s] — Q + A3)"' -en, Re(s) > 0 ([17, Theorem 2.5, p.
19)).

A call of the external traffic strzeam 1 is lost if and only if it finds the overflow system in some
state (Ny,j), 7 € {0,..., No}, upon arrival. Hence, the stream of lost calls selected from flow 1 is
a Markov-modulated Poisson process (MMPP) with the representation (Q, A;) where @ € RV*N
is again the generator matrix of X(¢) and

_ (00 NxN
Al—-(o A, )EIR (13)
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is the rate matrix. This MMPP is a special Semi-Markov process (cf. {17, p. 9], [3, Chap. 10})
with the Semi-Markov matrix

F(z) = /;e”'“”"m dt=(I- @MY (A - Q) Ay (14)

whose LST is ®1(8) = (s] — Q + A;)"'Ay, Re(s) > 0 ([17, p. 10]). The transition probability
matrix R = (~Q + A))"'A; of its embedded Markov chain has the stationary distribution

T_AI’PZ( 0 )’ (15)

T PtAse Py, [(Py, - ¢)

where P is the stationary distribution of @ and Py, = (Pn, 0,--- Prny,ny)-
The distribution function G of the generic time distance between consecutive loss instants of the

external traffic stream 1 is given by
G(z)=rt - F(z)-e=1—rt.eQ7A)e. ¢ 2>0, (16)

It is corresponding to a PH-renewal process with an irreducible representation (r,@ — A;) and the
LST ®(s) =r!-(s] - Q + A1) L-A;-e.

5.2 Approximation of the loss streams

If the overflow model with external traffic is a subsystem in a large network, it is necessary to
approxmiate the streams of lost calls by simple point processes, for instance, IPP- or PH-renewal
processes (cf. [14], [19], [18], [26]) in order to analysc the adjacent part of the network. A well-
known approach is an approximation by IPP-processes based on Kuczura’s three-moment-matching
procedure (cf. [14], [19]).

In order to apply this technique to the loss strcam resulting from stream 2, the first three factorial
moments of the number of busy servers in a GI/M /oo system with mean holding time 1/p have
to be computed for this PH-rencwal process. Then this loss stream has to be approximated by an
IPP with the same first thrce moments. Suppose the rate of this equivalent IPP is A/, its mean
on-time 1/v and its mean off-time 1/w ([14, p. 438 ]). Kuczura’s three-moment-match yields the
relations (cf. [19], [8, (20) - (22), p. 1220])

606y + 6169 — 26564 (X /p—8y) _w/u(N [~ b)

= g A R0 17
2% — 60— 62 ' EXNyu(e — ) T H 8o (1)

N=np

where 6; = f;41/f; , 1=0,1,2, fo = 1, denote the ratios of factorial moments of the PH-renewal
process.The latter are given by (cf. [23], [7, §2.2.2.2, p. 81])

fi = Mp=XPyn/a (18)
A

fo = PR efv - (] — Q)" - Age (19)

fs = 2 ;\—z ceby (I — Q)7 Age-ely - (2uI — Q)7L Age (20)

where A = Ay - Py, N, denotes the mean arrival rate of the PH process and A™! = el (A — Q) 'e
is the mean interarrival time ([22, Corollary 1, p. 448]). Py, n, is the steady-state probability of
state (le Nz)

These moments may be computed by means of the unique solutions of the linear systems

(I—QYya=en, (2upI-QY-yz=en (21)
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applying a standard iterative scheme, for instance, a block Gauss-Seidel procedure (cf. [19, §4 ],
[13]). Taking into account fo = fi - Az - (y2)n, f3 = 2- A2- fa- (y3)n, the IPP parameters X, v, w
may be calculated on the basis of (17) by inserting

bo=A-Pnyny /ey 6=X-(32)nv, 62=2:X (3a)n. (22)

The MMPP stream formed by lost calls of the external traffic stream 1 can be approximated
either directly by an IPP-renewal stream or by its associated PH-renewal stream corresponding
to the generic interarrival time distribution G(z) =1 — 7t -e(@=A1)% . ¢ of consecutive calls. The
corresponding factorial moments of these streams are given in Table 1.

Moment | PH/M [oo MMPP|M]oo
i |- Qe [ 1P
0 “TALe v -
f 11—1(&,{1?;1‘7\1,)—1}1” LAy (eI — Q)" Ase

1 - -1 . — —
fo | 2frERer e | 2Pty (ul - Q)7 AL (20T - Q)M Ase

Table 1: Factorial Moments

Obviously, the first moments are equal, fIPH = fMMPP — /y. Pt Ae=1/p-N 'PIt\’n -e, whereas
the second and third moments are different. These moments may be computed by means of an

efficient scheme which is similar to (21).

6. Conclusion

We have studied a telecommunication network consisting of a local exchange and two exchanges of
the long-distance network being conrected to each other by two distinct both-way trunk groups.
Modeling this network by means of a loss system with two Poissonian originating traffic streams
following a mutual overflow routing scheme and two Poissonian external traffic streams, we derived
a representation of the steady-state probabilities for the number of busy trunks in both groups in
terms of Brockmeyer polynomials.

Moreover, we have pointed out that lost calls selected from the originating and external traffic
streams by each trunk group form PH-renewal and MMPP processes. The factorial moments of
these streams resulting from their occupation on a G/M /oo system have been computed. In view
of these results it is possible to construct appropriatc approximations of these loss streams, for
instance, IPP-renewal processes by a moment-matching approach (cf. [14]).

Furthermore, we have developed an efficient and accurate fixed-point approximation method for
calculating time-congestion and call-congestion rates of the model.

Thus, our analysis is the basis for generating simple point processes which approximate the streams
of blocked and carried calls of this telecommunication model.

Acknowledgment :
The author wishes to express his appreciation to Dr. Willie for his continued encouragement and

critical comments throughout the course of this work.
References

[1] A.Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Acade-
mic Press, New York, 1979.



(2]

[3]
4]
(5]

[6}
7]

(8

[

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

18]

[19]

[20]

[21]

22]

152

E. Brockmeyer. Det simple overflowproblem i telefontrafikteorien. Teleteknsk, 5(4),361-374,
1954.

E. Cinlar. Introduction to Stochastic Processes. Prentice Hall, Englewood Cliﬁ's, 1975.
A. Erdélyi et al. Higher Transcendental Functions. Volume 2, McGraw-Hill, New York, 1953.

P. Franken, D. Konrig, U. Arndt and V. Schmidt. Queues and Point Processes. John Wiley,
New York, 1982.

K. W. Gaede. Zuverldssigkeit, Mathematische Modelle. Carl Hanser Verlag, Miinchen, 1977.

B. W. Gnedenko and D. Konig. Handbuch der Bedienungstheorie II. Akademie-Verlag, Berlin,
1984.

H. Heffes. Analysis of first-come first served quening systems with peaked inputs. Bell System
Technical Journal, 52(7),1215-1228, 1973.

D.P. Heyman and M. J. Sobel. Stochastic Models in Operations Research. Volume I: Stochastic
Processes and Operating Characteristics, McGraw-Hill, New York, 1982.

F.P. Kelly. Blocking probabilities in large circuit-switched networks. Adv. Appl. Prob., 18,473-
505, 1986.

U. Krieger. Analysis of a Loss System with Mutual Qverflow. Technischer Bericht, 4302 TB 9
E, Forschungsinstitut der DBP, Darmstadt, 1988.

U. Krieger. Analysis of a loss system with mutual overflow. In International Teletraffic
Seminar on Teletraffic and Network, Beijing, September 12-16, 1988, Proceedings, pages 331-
340, 1988.

U. Krieger. Untersuchung eines Nachrichtenverkehrsmodelles mst wechselseitigem Uberlauf
und Ezxternverkehr. Preprint, V 88-12-01, Forschungsinstitut der DBP, Darmstadt, 1988.

A. Kuczura. The interrupted Poisson process as an overflow process. Bell System Technical
Journal, 52(3),437-448, 1973.

A. Kuczura. Loss systems with mixed renewal and Poisson inputs. Operations Research,
21,787-795, 1973.

F. LeGall and J. Bernussou. An analytical formulation for grade of service determination in
telephone networks. JEEE Trans. on Communications, 31(3),420-424, 1983.

K. Meier. A statistical procedure for fitting Markov-modulated Poisson processes. PhD thesis,
University of Delaware, 1984.

K. Meier-Hellstern. The analysis of a queue arising in overflow models. Technical Report,
AT&T Bell Laboratories, Holmdel, 1988.

K. Meier-Hellstern. Parcel overflows in queues with multiple inputs. In Proceedings,ITC 12,
Tursno, Italy, pages 5.1B.3.1 — 5.1B.3.8, 1988.

J. A. Morrison. Analysis of some overflow problems with queuing. Bell System Technical
Journal, 59(8),1427-1462, 1980.

M. F. Neuts. Matriz-Geometric Solutions in Stochastic Models. Johns Hopkins University
Press, Baltimore, 1981,

M.F. Neuts. Renewal processes of phase type. Naval Research Log. Quart., 25,445-454, 1978.



{23] V. Ramaswami and M.F. Neuts.

153

Some explicit formulas and computational methods for

infinite-server queues with phase-type arrivals. J. Appl. Prob., 17,498-514, 1980.

7(3),390-398, 1986.

rations Research, 30(1),125-147, 1982,

J
loss stream 1

/\lpl‘h

|
loss strecam 3

AP N,

Trunk group 1

N, trunks

external traffic 1
rate A,

exp. holding
times with
rate

fully available

originating traffic 2
rate Aq

overflow
traffic 2
APy,

originating traffic 3
rate A;

[24] D. Rose. Convergent regular splittings for singular M-matrices. SIAM J. Alg. Disc. Meth.,

[25] R. Varga. Matriz Iterative Analysis. Prentice-Hall, Englewood Cliffs, 1962.

(26] W. Whitt. Approximation a point process by a renewal process, I: Two basic methods. Ope-

overflow
stream 3
A3 Py,

Trunk group 2

N, trunks

external traffic 4
rate Ay

exp. holding
times with
rate pu

' fully available

carried traffic 1
(AL + X)(1 = Py,)
+A3(Pn, — P, N,)

loss stream 2
’\2PN. N

loss stream 4
A41')1\/2

carried traffic 2
(A3 +M)(1 = Pp,)
+A2(Pn, = Py,

Figure 2: Loss system with mutual overflow and external traffic
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