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ANALYSIS OF A LOSS SYSTEM WITH MUTUAL 
OVERFLOW AND EXTERNAL TRAFFIC 

Abstract 

Udo R. Krieger 
Research Institute of the Deutsche Bundespost, 

Am Kava.llericsa.nd 3, D-6100 Darmstadt, F.R.G. 

We investigate the traffic beha.viour in a. network consisting of a. local exchange and two exchanges 
of the long-distance network bcing connected to each other by two distinct both-way trunk groups. 
Modeling this network by rnea.ns of a loss systcm with two Poissonia.n origina.ting traffic streams 
following a mutual overflow routing scheme a.nd two Poissonian externa.l traffic streams, we derive 
a represen tation of the steady-state probabilitics for the number of busy lines in both trunk groups. 
Our theorectical results include simple cxpressions of time and individual call-congestion rates of 
the arrival strea.ms as well as a simple fixcd-point approximation of these quantities. Finally, we 
point out that lost calls selected from the originating and externa.l traffic streams offered to each 
trunk group form PH-renewal and MMPP processes. 
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1. Introduction 

Recently, considerable attention has been devoted to the a.nalysis of adva.nced routing schemes in 
circuit-switched digital networks ba.sed on efficient modern signa1ling systems such a.s CCS CCITT 
No. 7. 
In this paper we investigate the traffic behaviour in a. subnctwork. lt consists of a local exchange 
which is connected with two excha.nges of the long-dist.ance network by two distinct both-wa.y 
trunk groups. The outgoing traffic of the local exchangc is split into two portions and each portion 
is offered to an outgoing group. These partial traffic strcams are routed according to a mutual 
overflow scheme (cf. [12}, [161). Additionally each t.runk group carries cxternal traffic (cf. Fig. 1). 
This pa.per is organized as follows. In section 2 we give a. deta.iled ma.thematica.l description of this 
subnetwork by means of a lass system. Assuming exponcntially distributed intera.rrival a.nd holding 
tirnes, we derive a. Ma.rkovia.n model for the nnmber of busy lines in both trunk groups. In section 
3 we represent its steady-state probahilitics in terms of Brockmeyer polynomials (cf. [2], [20], [12]). 
In section 4 a. simple fixed-point a.pproximation of thc avera.ge call-congestion rates of the total 
a.rrival strea.ms offered to both trunk groups is prcscnted. In scction 5 we point out tha.t the 
strea.ms oflost ca.lls corresponding to the outgoing and cxterna.l tra.ffic form PH-renewal and MMPP 
processes. Assuming that these strea.ms are offcr<'d to a. group with a.n infinite number of lines a.nd 
exponentia.lly distributed holding times, we calcnlate simple exprcssions for the factorial moments 
of busy lines. Ba.sed on thcse rnoment formulas the corresponding strea.ms ma.y be a.pproximated 
by simple tra.ffic strea.ms such a.s IPP's employing standard moment-ma.tching techniques (cf. [14], 
[8], [19), [18]). 
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2. A model of the overflow system 

The subnetwork consisting of a local exchange a.nd two exchanges of the long-distance network 
which are connected to each other by two both-way trunk groups may be described by a loss 
system being composed of two fully available trunk groups called systems 1 and 2 with Ni and N2 
lines, respectively. Two originating tra.ffic strea.ms ( strea.ms 2 and 3) represen ting the portions of 
the outgoing traffic and two incoming external traffic strca.ms (streams 1 and 4) a.re offered to the 
loss system (cf. Fig. 2). These arrival processes are modeled by mutually independent Poisson 
processes with positive rates >.2, >.3 and >.1, >.1, respectively. 
The external traffic streams 1 and 4 offered to systems 1 and 2 follow a random hunting scheme 
for free lines. Their calls are lost without further impact on the system if the corresponding trunk 
group is busy upon arrival. The outgoing strcams 2 and 3 follow a mutual overfl.ow routing scheme. 
This means, that upon arrival at system 1 a call of fl.ow 2, for insta.nce, is searching for a free line. 
If possible, a free trunk is selected in a random ma.nner a.nd occupied. If system 1 is busy and there 
are free lines in system 2, the incoming call from flow 2 will immediately overflow to system 2 upon 
arrival and occupy a line selectecl at random. If both systems are busy, the call will be blocked and 
lost without further impact on the system (lost calls clearecl). 
Call holding times are considered to be mutually indepcndent exponentially distributed random 
variables with a finite common mea.n 1 / /L. Thcy a.re also assumed to be independent of the arrival 
processes. 
The occupation of groups can be modcled by an irreducihle, homogeneous continuous-time Markov 
chain {X(t), t ~ O} with state variables X;(t) denoting the number of busy trunks in group i at 
timet, i = 1,2, and a:finite state space S = {(i,j) 1 0 $ i $ N1;0 $ j $ N2 }. Its limiting 
distribution P = (P;j)i=O,.„,N1 :fv=O,.„,N2 , P;j = lim 1_."° P(X(t) = (i,i)), is the unique solution of 
the norma.lization condition L::;0 L~o P;j = 1 and thc balance equations 

P;j [(>.1(1 - Oi,N1) + ..\2)(1 - Oi,N1 Oj,N2) + ifL (1) 
+ (,\3 + ..\1(1- Oj,N1))(l - Oi,N10j,N1) + jµJ 

(>.1 + ..\2 + .\:i6j,N1 )(1- 6;.o) · Pi-tj + (i + 1)/t(l - Oi,N1 ) • P;+1j 

+ (.\3 + A.1 + A26i,N1 )(1 - Oj,o) · P;j-1+(i+1)/t(l - Oj,N2 ) • P;j+1 , 

0 :'.5 i :'.5 N1, 0 :'.5 j :'.5 N2, where Dk,I = 1 for k = l a.nd 0 otherwise (cf. [6, Satz 12.1, p. 121]). 
Obviously, the steady-state probability vector P = (P00 , Po1, ... , PoN2 , ••• , PN10 , ••• , PN1 N 1 l is the 
unique positive, normalized solution of the homogeneons linear system A. P = O where A = -Qt is 
the negative transpose of the generator matrix Q assoda.ted with {X(t), t 2:: O}. Ais an irreducible, 
singular M-matrix with block tridiagonal strncture '1nd tridiagonal regular M-matrices along its 
diagonal. Furthermore, etA = 0 holds where e denotc8 the vector with all ones. Thus, A is a 
weakly 2-cyclic consistently ordered Q-ma.trix (cf. (13], (25], (24], [l]). Ta.king advantage of the 
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Figure 1: Model of thc circuit-switchcd subnetwork 
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block structure of A, the stea.dy-state vector P ma.y bc computed by an efficient convergent block 
iterative scheme derived from an R-regular splitting of A (cf. [13], [24], [19]). 

3. Analysis of the steady-state distribution 

Solving the difference equations (1) we a.pply a com hincd serics represen ta.tion and separation 
method which has been introduced by l\forrison [20] for similar models. It is possible to prove 
that the steady-state probabilities may be represen ted hy a linea.r combination of products of the 
well-known Brockmeyer polynomia.ls -'"n(>., A) (cf. [4, p. 226iJ, [20, Appendix A]). Due to the 
limitation of space the deta.ils will bc omittecl (cf. [13]). We only summarize the result in the 
following theorem. 

Theorem 1 
Let Ai= (>.i + >. 2)/µ > 0, A2 = (>.3 + >. 4 )/ll > 0 be the offered load., of the mutual overfiow model. 
Then the unique limiting distribution P = (Pij) of the ergodic Markov chain {X(t), t ~ O} modeling 
the number of busy lines in both trunk group,, may be represented in the form of 

Af/i! A~/j! 
~Ni A'/ '. ~N1 A'/ ' L-r=O l r. L-r=O 2 T. 
Ni N2 

+ L ck. s;(pk,At). ·'j(-pk,A2) + L D1. s;(ß1,Ai). Sj(-ß1,A2) 
k=i l=i 

for 0 ~ i $ Ni, 0 ~ j ~ N2. 

(2) 

{pi,.„,pN1 } ~ (-oo,-1) denote the Ni simple zero3 of BN,(1 + p,Ai) wherea3 
{ß1, ... , ß N 2 } ~ ( 1, oo) are the N 2 simple roots of s N 2 ( 1 - ß, A2). The unique real coefficients 
C 1 , ... , CNi, D1 , •.. , DN2 are the unique solution of the following inhomogeneous linear system of 
order Ni+ N2: 

N1 

L Ck[(-Pk) · s;(Pk,At) · SN2 (1- Pk,A2) + >.:i/ll · .9;(-1 + Pk,Ai) · ·'N2 (-Pk,A2)J 
k=i 

N2 
L D1[ß1. 8N1 (1 + ßi. At). Sj(-ß1i A2) + >.2f 1t. ·'Ni (fJ1, Ai). ·'j(-1 - ßi. A2)] 
l=l 

~ ( >.2 BN1(0,Ai) Bj(-l,A2) + L Ck[).2/µ · 8N1 Pk1 Ai)· Bj(-1 - Pk1 A2)] = -- · (l A ) · (l A ) 
k=l µ BN1 , 1 BN2 , 2 

O $ j $ N2 - 1 

0 

4. Fixed-point approximation of congestion rates 

4.1 Calculation of flow-dependent call-congestion rates 

(3) 

(4) 

We assume the occupation process X( t) to bc in stea.dy sta.te and a.nalyse an isola.ted trunk group, 
for instance, group 1. Three streams a.rc offered to this subsystem: two Poisson processes with ra.tes 
Ä1 and Ä2 and the stream formed by thosc ca.lls of the Poisson process with rate ).3 over:flowing 
from group 2 to 1. If we mark the incoming calls of all Poisson strea.ms by four different colours 
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(customer types), the isolated trunk group ma.y bc dcscrihcd by a G3/M/Ni/O-model (cf. [5, p. 
61]) . Let us denote the individual call-congcstion rate of the customer strea.m of type j off'ered to 
group i by B;j, i E {1,2},j E {1, ... ,4}. 
Due to the PASTA-Theorem [9, 11-2, p. 39lfj time- and call-sta.tiona.ry proba.bilities (cf. [5, p. 
58ffl, [7, §11, p. 517ff]) coincide in the case of auiving Poisson streams, thus B11 = B12 = 
PN, = P(X1 = Nt), B2a = B21 = PN2 = P(X2 = N2)· The time congestion of the entire system 
is denoted by PN1N2 = P(X1 = N1,X2 = N2)· Applying a well-known result [5 1 5.3.5, p. 154] we 
conclude that the call-congestion rates of the overflow streams are given by B13 = PN1 N2 / PN2 and 
B22 = PN,Nzf PN,. The average caU-congcstion ra.tes corrcsponding to the total streams of calls 
off'ered to groups 1 and 2 read 

(5) 

(cf. (5, p. 154], (15, p.790]). 
Obviously, it is suflkient to calculate the time-congcstion ratcs of the entire system, PN1N 2 , and of 
groups 1 and 2, PN,, PN2 • On the other hand, thc la.ttcr qua.ntities are detcrmined by the average 
blocking rates in a. unique manncr, too : 

B1(>.3 + ..\1)[>.1 + >.2 + >.aB2J - PN1N2 Aa(-Xa + ,\4 + -X2BiJ 
(..\1 + .X2)(,\3 + ..\1) - .X2.X3B1B2 

B2(..\1 + ..\2)[>.3 + ..\1 + ..\2Bt] - PN1N 2 A2[..\1 + >.2 + >.aB2] 
(>.1 + .X2)(,\:i + .X1) - >.2.X3B1B2 

(6) 

(7) 

Numerical experiments have shown that the diffcrences bctween customer speciftc call-congestion 
rates a.nd average call-congestion rates decrea.se if thc off'ercd traffic increases. 

4.2 Approximation of congestion rates 

To approximate the call-congestion rates related to cach trunk group we a.ssume the over:fiow pro-
cesses which a.re off'ered to each trunk group in addition to the origina.ting and external traffic 
streams to be Poissonian. Morcover, thcse streams are supposed tobe independent of the Poisson 
streams originally offered to the conesponding trunk gronps. 
Due to the PASTA-Theorem (cf. (9, §11-2, p. 39lfj) originally offercd and overflowing calls expe-
rience the same call-congestion rates nnder these assumptions. Thus, fl.ow-dependent and average 
call-congestion ra.tes coincide with time-congestion rates, i.e. PN1 = B11 = B12 = B13 = Bi and 
PN2 = B22 = B23 = B24 = B2. 
Applying the upper bound 0 < 8

8A E(m,A) < 1/A fnr thc derivative of Erlang's loss formula 
E(m,A), m E lN, A > 0 (cf. (12], [11]) it is possihle to derive the following fixed-point formula 
for estimating the average call-congestion rates of both trunk groups. 

Lemma 1 
Let >.2 > 0 1 ,\3 > 0. Then there exi.~ts a uniqtte fixed point (Bi, Bi) E (01 1)2 determined by the 
fixed-point equations: 

(8) 

For each initial point B~o) it may be computed by the convergent ite-
rative scheme B~n+l) = E(N2 1 (>.a + >.1)/ll + A.2//t · E(N1 1 (A.1 + >.2)/1i + B~n),\3/µ)) 1 n 2: O, set-
ting B2 = B~n), Bi = E(N11 (..\1 + ..\2)/ µ + B2..\:i/ 11) after convergence. D 

All results derived so far, especially Theorem 1 a.nd Lemma 1, also hold if the mean holding times 



149 

in both trunk groups are different (cf. [13]). Only in the ncxt conclusion do we have to a.ssume 
explicitly that all holding times are equa.lly distributcd. Without lass of generality we suppose 
µ = 1. Now the individual call-congestion rates B13 , B22 may be a.pproximated by the average 
rates Bi, B2. Based on the relation 

the substitution of the unknown time-congestion rates PN1 , PN2 by the formulas (6), (7) yields the 
following approximation of the overall time-congcstion PN1 N2 in terms of the avera.ge call-congestion 
rates B1 , B2 which may be computed hy means of (8):. 

Z(B1, B2) 
N(B1, B2) 

E(N1, ..\1 + ..\2 + B2..\3)(,\1 + ..\2 + B2..\:i)(..\:i + ..\4)..\3B1 
+E(N2, ,\3 + ..\4 + B1..\2)(..\3 + ..\4 + B1..\2)(,\1 + ..\2)..\2B2 

(,\2 + ..\3)[(,\1 + ..\2)(..\3 + ..\4) - ..\2..\3B1B2] 
+..\~(,\3 + ..\4 + B1..\2)E(N1, ..\1 + ..\2 + B2..\3) 
+,\~(,\1 + ,\2 + B2,\.1)E(N2, ,\3 + ,\4 + B1>.2) 

(10) 

(11) 

(12) 

If the average call-congestion rates are known, it is possible to determine the time-congestion rates 
PN1 , PN2 by (6), (7), (10). As expected (cf. [10]), thesc estimates derived from the proposed 
fixed-point approach are very a.ccurate for hcavy traffic. 

5. Analysis of the loss streams 

The loss streams are formed by those ca.lls of the originating a.nd external traffic streams which 
cannot find a free line upon arrival. Subsequently, wc assume that the ergodic Markov chain 
{X(t), t 2::: O} is in steady state a.nd t = 0 is a.n instant of a loss. Furthermore, we suppose ,\2 > O, 
>.a > 0. Without loss of gcnerality we shaJl only investigatc the lass strea.ms corresponding to the 
offered streams 1 and 2. 

5.1 Stochastic structure of the loss streams 

A ca.11 of stream 2 is lost if and only if it finds the ovcrflow system in state (N1 , N2) upon arrival. 
Thus, the corresponding loss stream ca.n be dcscribcd by a l\farkov-modula.ted Poisson process 
(MMPP) (cf. [7, §7.4.2, p. 361fi], [19], [21], [17]) with rcprcsenta.tion (Q, A2). Here Q E m.NxN, 

N = (N1+1) · (N2 + 1), is the generator ma.trix of X(t) and A2 = ,\2 · eN · e~ E m,NxN is the rate 
matrix where eN E m.N denotes the Nth unit vector. 
As lost calls can only occur during a sojourn of the controlling Markov chain X(t) in state (N1, N2), 
the resulting loss stream is a stationary PH-rencwal stream with an irreducible representation 
(eN,Q-A2) (cf. [17, Theorem 2.5, p. 18], [21, Chap. 2J). Its corresponding interarrival time distri-
bution is given by H(x) = 1 - e~ · eCQ-A 2 )-x • e, x 2::: 0, a.nd ha.s the Laplace-Stieltjes transform 
(LST) 'P2(a) = /0

00 e-atdH(t) = ..\2 · e~ · (1tl - Q + A2)- 1 · eN, Re(s) 2::: 0 ([17, Theorem 2.5, p. 
19]). 
A call of the external traffic strea.m 1 is lost if and only if it finds the overflow system in some 
state (N1,j), i E {o, .„,N2}, upon arrival. Hcmce, the stream of lost calls selected from fl.ow 1 is 
a Markov-modulated Poisson process (MMPP) with thc rcprcsentation (Q, A1) where Q E m.NxN 
is again the generator matrix of X(t) and 

(13) 
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is the rate ma.trix. This MMPP is a. special Semi-1\farkov process (cf. [17, p. 9], [3, Cha.p. 10)) 
with the Semi-Markov matrix 

F(x) = fo"' e(Q-A1 )·t Ai dt = (I - e(Q-A1 )x). (Ai - Q)-i. Ai (14) 

whose LST is '1ii(s) = (sl - Q + Ai)- 1A1 , R.c(s) ~ 0 ([17, p. 10]). Thc transition proba.bility 
ma.trix R = ( -Q + Ai )-i A1 of its cm beddcd Markov chain ha.s the sta.tionary distribu tion 

Ai· P ( o ) 
r = P 1Aie = PN1 /(Pfv

1 
• e) ' (15) 

where P is the sta.tiona.ry distribution of Q and I'Jv
1 

= ( I'N1 ,o, ... PN1 ,N1 ). 

The distribution function Gof the generic time dista.nce hctween consecutive loss insta.nts of the 
externa.l tra.ffic stream 1 is given by 

G(x) = r1 · F(x) · e = 1 - r1 · r/Q-Ai)·x · e ,x ~ 0. (16) 

lt is corresponding to a. PH-renewa.l process with an irreducible representa.tion (r, Q - Ai) a.nd the 
LST <li(s) = r1 • (sl - Q + At)-t · A1 • e. 

5.2 Approximation of the loss streams 

If the overfl.ow model with externa.1 tra.ffic is a suhsystcm in a. la.rgc nctwork, it is nccessa.ry to 
a.pproxmia.te the strea.ms of lost ca.lls by simple point proccsscs, for instancc, IPP- or PH-renewaJ 
processes (cf. [14), [19], [18), [26]) in order to ana.lysc the adjaccnt pa.rt of the nctwork. A well-
known a.pproa.ch is a.n a.pproxima.tion by IPP-proccsses bascd on Kuczura.'s three-moment-ma.tching 
procedure (cf. [14], [19]). 
In order to a.pply this technique to the loss stream rcsulting from stream 2, the first three factoria.l 
moments of the number of busy servers in a. GI/M/oo systcm with mea.n holding time 1//L have 
to be computed for this PH-renewa.l proccss. Then this loss strea.m ha.s to be approxima.ted by a.n 
IPP with the same first three momcnts. Supposc thc rate of this equivalent IPP is .X', its mea.n 
on-time 1/'Y a.nd its mea.n off-time 1/w ([14, p. 438 ]). Kuczura.'s three-moment-ma.tch yields the 
relations (cf. [19}, [8, (20) - (22), p. 1220]) 

tio(A 1/fL-t5i) w-µ 
- >...'/lt( fq - 60) ' 

w//L(A1//L - Oo) 
'Y = µ tio 

(17) 

where Oj = fj+i/fj, j = O, 1, 2, / 0 = 1, denote the rat.ios of fa.ctoria.l moments of the PH-renewal 
process.The latter a.re given by (cf. [23}, [7, §2.2.2.2, p. 81]) 

ft J../1t=J..2·I'N1 N2 //L 

'2 = ~ · e1', · (µ! - Q)-1 · A2e 
/l 

A '3 2 · - · e1', · (lll - Q)-1 
• A2e · e1', · (2/Ll - Q)- 1 

· A2e 
/L 

(18) 

(19) 

(20) 

where A = A2 · PN1N2 denotes the mea.n a.rrival rate of the PH proccss a.nd ,x-t = e~(A2 - Q)-1e 
is the mean interarriva.l time ([22, Corolla.ry 1, p. 448]). PN, N2 is the stea.dy-sta.te proba.bility of 
state (N1,N2). 
These moments ma.y be computed by mea.ns of t.he unique solutions of the linea.r systems 

(21) 
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applying a standard iterative scheme, for instance, a block Gauss-Seidel procedure (cf. [19, §4 ], 
(13]). Ta.king into account '2 = /1 · A2 · (Y2)N, /3 = 2 · A2 · '2 · (Y:i)N, the IPP pa.rameters A', -y, w 
may be calcula.ted on the hasis of (17) hy inscrting 

(22) 

The MMPP stream formcd hy lost calls of the extcmal traffic strea.m 1 can be a.pproximated 
either directly by an IPP-rencwal strea.m or by its associa.tcd PH-renewa.l strca.m corresponding 
to the generic interarriva.l time distribution G( x) = 1 - rt · eC Q-A • )·x · e of consecutive caJls. The 
corresponding fa.ctoria.l moments of these strca.ms a.re given in Table 1. 

Moment PH/M/oo MMPP/M/oo 
/1 (/LT1(A1 - Q)-1ej-l ;r1A1e 

h f r1(~I-Q+Ai}-1 A1e 
1 t-r 1(1t1-Q+A1 )-I A1e *P1A1(1L!- Q)- 1A1e 

/J 2/ ,1{2~/-Q+AJ)-1 A1e 
21-r 1(2µ!-Q+Ai)- 1 At e ~PtA1(tLI- Q)- 1A1(21Ll - qr1A1e 

Ta.hie 1: Fa.ctoriaJ Moments 

Obvionsly, the first moments are equal, f{ H = ff'1 M PP = 1 / /L · pt · A1 · e = 1 /lt· At · P}v
1 

• e, wherea.s 
the second and third moments a.re different. These moments ma.y be computed by mea.ns of an 
effi.cient scheme which is simila.r to (21). 

6. Conclusion 

We ha.ve studied a telecommunication network consisting of a loca.l excha.nge and two exchanges of 
the long-dista.nce network being connected to each othcr by two distinct both-way trunk groups. 
Modeling this network by mea.ns of a loss system with two Poissonian origina.ting traffi.c streams 
following a mutual overflow routing scheme a.nd two Poissonian external tra.ffi.c strea.ms, we derived 
a representation of the steady-state probabilities for the nnrnbcr of bnsy trunks in both groups in 
terms of Brockmeyer polynomials. 
Moreover, we ha.ve pointed out tha.t lost calls selectcd frorn the origina.ting and extemal tra.ffi.c 
strea.ms by each trunk group form PH-renewal and Ml\f PP processcs. The fa.ctoria.l moments of 
these strea.ms resulting from their occupa.tion on a. G //II /oo systcrn have becn computed. In view 
of these results it is possible to construct a.ppropriatc approxima.tions of these loss streams, for 
instance, IPP-renewa.l processes by a moment-ma.tching approach (cf. [14]). 
Furthermore, we ha.ve developcd a.n efficient a.nd accurate fixcd-point a.pproximation method for 
ca.lculating time-congestion a.nd ca.11-congestion rates of the model. 
Thus, our a.nalysis is the ba.sis for genera.ting simple point processes which approximate the streams 
of blocked a.nd carried caUs of this telecommunication modcl. 
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