
Hypriot Cluster Lab:
An ARM-Powered Cloud Solution Utilizing Docker

Marcel Großmann, Andreas Eiermann, Mathias Renner
Faculty of Information Systems and Applied Computer Science

Otto-Friedrich University,
Bamberg, Germany

Email: marcel.grossmann@uni-bamberg.de, {andreas | mathias}@hypriot.com

Abstract—Following the establishment of virtualization ap-
proaches, cloud services within data center environments have
become easily manageable. Modern infrastructures use virtual
machines as a platform for service delivery, requiring powerful
servers. Conjointly, the uprising of the Internet of Things implies
new challenges to provide applications that can successfully
manage data and communicate with a large number of con-
nected devices. The standards of entry have resulted in extreme
difficulties for small enterprises and educational institutions
trying to provide their own virtualized services. The Hypriot
Cluster Lab (HCL) - made publicly available on Github1 - offers
cloud functionality while running on ARM processors, thereby
minimizing costs. Due to the fact that such processors offer
less computational power, services are packaged into lightweight
containers built using the Docker framework, which avoid the
overhead associated with virtual machines.

I. FOG COMPUTING CLUSTERS

In recent years single board computers (SBC) have gained
tremendous computing power, resulting in a need for rethink-
ing the structures of the Internet, especially the placement
of powerful and energy-hungry data centers. As proposed
by Azam and Huh [1] the Internet of Things (IoT) endorses
unnecessary data communications that burden core networks
and data centers in the cloud. They propose fog computing
as one possible solution for relocating virtualized services
from the cloud to the network edge. At this point HCL could
provide the basis for a virtualized edge because it runs on
ARM architecture, which behaves like a small data center and
ships energy efficient features by design.

The survey of the Linux Foundation [2], which covered 53
different SBCs, demonstrated that the Raspberry Pi (RPi) 2
Model B surpasses others. However, full virtualization that
depends on virtual machines (VM) outperforms the capacities
of small SBCs. Therefore, we only consider Linux container
virtualization approaches such as Docker. As Felter et al.
[3] explain, this is a great benefit for small SBCs because
containers “offer the control and isolation of VMs with the
performance of bare metal” [3].

Compared to similar platforms (e.g. Apache Mesos2 or
Google’s Kubernetes3) that offer containerized cluster com-
puting (mainly for data centers), HCL enables the same

1https://github.com/hypriot/cluster-lab
2http://mesos.apache.org/
3http://kubernetes.io/

functionality on inexpensive and energy efficient hardware,
like the RPi.

II. HYPRIOT CLUSTER LAB

The activities required to initialize HCL are depicted in
Figure 1. First an IEEE 802.1Q VLAN with a predefined ID
is set up on every node so that the existing network is not
polluted by broadcast messages of the cluster. Subsequently,
a fixed IP address is used temporarily to listen for a specific
zeroconf service that announces whether a cluster is already
running in the VLAN. When the service exists, the temporary
IP address is deleted and a new one is requested via DHCP
(cf. the yellow activities in Figure 1). When the service is
unavailable, the IP address is changed to the first subnet and
the node publishes a zeroconf service. Additionally, a DHCP
server is configured, such that other nodes allocate their IP
addresses dynamically (cf. the blue activities in Figure 1).

boot create VLAN

set temporary
static IPavahi-browse

cluster
exists?

unset temporary IP

set first IP of subnet

create avahi service file

configure and start
dnsmasq

unset temporary IP

reconfigure docker
engine

create and start
docker-compose.yml

Cluster is configured.
Happy playing!

request IP via DHCP

no yes

Figure 1. Activity Diagram of the node configuration of HCL. White activities
occur on all nodes, while blue are associated with master nodes and yellow
ones with slave nodes.

Subsequently, this first node initiates a Consul4 container,
which is a key-value store with a built-in DNS server. Other

4https://github.com/hashicorp/consul

https://doi.org/10.20378/irbo-51198

mailto:marcel.grossmann@uni-bamberg.de
mailto:andreas@hypriot.com
mailto:mathias@hypriot.com
https://github.com/hypriot/cluster-lab
http://mesos.apache.org/
http://kubernetes.io/
https://github.com/hashicorp/consul


nodes join the existing Consul service. As with Consul, all
nodes also interconnect with Docker Swarm5.

After the entire cluster is configured, one is able to use
Docker-Compose5, Consul4, Docker Swarm5 and other suit-
able tools. Therefore, one must be aware of the architecture
of Docker images in order to run them on ARM.

III. USE CASES FOR HCL
We reveal how HCL works in two use cases that involve

setting it up by flashing HCL’s image6 on three SD cards.
Subsequently, one RPi is booted from them and is referred
to as the master node. The hardware of HCL is configured
like depicted in Figure 2. After approximately two minutes,
we point a browser to the IP address or hostname of the
master and append port 8500, e.g., http://master:8500. The
web interface of Consul is displayed, listing one node up
and running. Next, we boot up two more RPis and the web
interface shows three nodes as running two minutes later. To
configure Docker, we log into the master via SSH. Finally, we
set an environment variable that maps all Docker commands
to the Docker Swarm API, which is useful for easily managing
containers on different hosts.
export DOCKER_HOST=tcp://master:2378

A. Starting a Webserver in an Overlay Network

A very basic use case involves spinning up a webserver on
one node and displaying it from a second node through an
overlay network. In doing so, we create an overlay network
demo with the webserver placed on the master node.
docker network create -d overlay demo && \
docker run -d --name=webserver \
--net=demo -e "constraint:node==master" \
hypriot/rpi-nano-httpd

Because of name=webserver, nodes inside the demo net-
work reach this container at http://webserver. Thereafter, a
second container is started on a slave node that displays the
contents of the webserver residing on the master node.
docker run --net=demo \
-e "constraint:node!=master" \
hypriot/armhf-busybox \
wget -O- http://webserver/index.html

In summary, Docker containers can perform multi-host
communication with the help of overlay networks. Under the
hood, VXLAN is used to setup overlay networks.

B. Load Balancing of Webservers in the Cluster

This use case implements HAProxy as a load balancer
on the master, which distributes incoming requests to other
slave nodes in the cluster that eventually serve content. It is
useful to set up at least three RPis for this use case. Docker
Compose allows the setup to be automated to a large extent.
First, prepared setup files7 are downloaded to the master of

5https://docs.docker.com/
6http://blog.hypriot.com/post/introducing-hypriot-cluster-lab-docker-

clustering-as-easy-as-it-gets/
7https://github.com/hypriot/rpi-cluster-demo

Internet

Master nodeSlave nodeSlave node

Figure 2. Example RPi configuration for example use cases of HCL

the cluster for this demo. Within the downloaded folder, we
change to the subfolder loadbalancing_with_haproxy, allow-
ing all components to be initiated with a single command:
docker-compose -p loadbalancing up -d

This command sets up three services with one container
each: HAProxy, which receives incoming HTTP requests that
are forwarded to slave nodes, which are listed in the configu-
ration of HAProxy (regularly updated by Consul-template).
Consul-template has instructions for maintaining a list of
available webservers in HAProxie’s configuration. Consul-
template is triggered by Registrator, which monitors the cluster
for new containers and reports them to Consul-template. Thus,
when pointing a browser from a device outside the cluster (but
from within the same network) to the IP address of the master
node, a website with the ID of the website’s container appears.

Finally, we increase the number of webservers to be dis-
tributed on all slave nodes with this single command:
docker-compose -p loadbalancing scale \
demo-hostname=10

When reloading the website in the browser, a round-robin
strategy routes requests one by one to ten different web server
containers.

IV. CONCLUSION & FUTURE WORK

This demonstration illustrated the ease of setting up a
small energy-efficient virtualized cloud on affordable hard-
ware. However, the single point of failure of HCL is the master
node, which manages the swarm. To overcome this, a future
extension of HCL could include failover mechanisms for
the master node based on high availability features5 recently
published for Docker Swarm.

REFERENCES

[1] M. Aazam and E.-N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in Future Internet of Things and
Cloud (FiCloud), 2014 International Conference on, Aug 2014, pp. 464–
470.

[2] E. Brown, “Top 10 linux and android hacker
sbcs of 2015,” 2015, (accessed 2015-Sept-2). [Online].
Available: https://www.linux.com/news/embedded-mobile/mobile-linux/
834861-top-10-linux-and-android-based-hacker-sbcs-of-2015

[3] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” technology,
vol. 28, p. 32, 2014.

http://master:8500
http://webserver
https://docs.docker.com/
http://blog.hypriot.com/post/introducing-hypriot-cluster-lab-docker-clustering-as-easy-as-it-gets/
http://blog.hypriot.com/post/introducing-hypriot-cluster-lab-docker-clustering-as-easy-as-it-gets/
https://github.com/hypriot/rpi-cluster-demo
https://www.linux.com/news/embedded-mobile/mobile-linux/834861-top-10-linux-and-android-based-hacker-sbcs-of-2015
https://www.linux.com/news/embedded-mobile/mobile-linux/834861-top-10-linux-and-android-based-hacker-sbcs-of-2015

	Fog Computing Clusters
	Hypriot Cluster Lab
	Use Cases for HCL
	Starting a Webserver in an Overlay Network
	Load Balancing of Webservers in the Cluster

	Conclusion & Future Work
	References

