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Abstract
Faces undergo massive changes over time and life events. We need a mental representation which is

flexible enough to cope with the existing visual varieties, but which is also stable enough to be the

basis for valid recognition. Two main theoretical frameworks exist to describe facial representations:

prototype models assuming one central item comprising all visual experiences of a face, and exemplar

models assuming single representations of each visual experience of a face. We introduce a much

more ecological valid model dealing with episodic prototypes (the Episodic Prototypes Model—
EPM), where faces are represented by a low number of prototypes that refer to specific Episodes

of Life (EoL, e.g., early adulthood, mature age) during which the facial appearance shows only mod-

erate variation. Such an episodic view of mental representation allows for efficient storage, as the

number of needed prototypes is relatively low, and it allows for the needed variation within a pro-

totype that keeps the everyday and steadily ongoing changes across a certain period of time. Studies

1–3 provide evidence that facial representations are highly dependent on temporal aspects which is in

accord with EoL, and that individual learning history generates the structure and content of respec-

tive prototypes. In Study 4, we used implicit measures (RT) in a face verification task to investigate

the postulated power of the EPM. We could demonstrate that episodic prototypes clearly outper-

formed visual depictions of exhaustive prototypes, supporting the general idea of our approach.
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1. Introduction
Face researchers mainly concentrate on the perception of faces and how we can recognize them (see,
e.g., Akselrod-Ballin & Ullman, 2008; Burton et al., 2005; Carbon, 2011; Gao & Wilson, 2014;
Jenkins & Burton, 2008; Mileva et al., 2020; Patterson & Baddeley, 1977; Schneider & Carbon,
2017b). A topic which is much less investigated and systematized is how facial representations
and prototypes are generated, and on which experiences they are established.

With regard to prototypes in general, recognized scientific theories such as the ‘recognition by
prototypes’ theory (Basri, 1996) define prototypes as averages of given exemplars or of their prin-
cipal components (e.g., Burton et al., 2005; Gao and Wilson, 2014). Further theories (see, e.g.,
Busey, 1998; Valentine, 1991; Valentine and Endo, 1992) postulate a so-called multidimensional
face-space model. It is important to mention that such a face-space could mainly be interpreted in
two ways. First, population-level face-spaces (referring to face-spaces across different identities)
(e.g., Busey, 1998; Valentine and Endo, 1992). Here, the face-discriminating dimensions refer to,
e.g., ethnicity, distinctiveness, etc. Second, individual-level face-spaces: given a certain familiar
facial identity, the respective prototype (most typical face) provides the centroid of this face-space,
whereas less typical exemplars of the identity are less densely clustered in the periphery (we will
refer to this interpretation for the present study). All unique exemplars of a face are encoded as
points in this n-dimensional space along face-discriminating dimensions such as facial expression,
age, etc. The distances between two points are analogous to the dis-similarity between the respective
exemplars (see Figure 1). It is assumed that this face-space corresponds to one’s facial representation
of this particular identity in the associative network (see e.g., Benson and Perrett, 1993; Busey,
1998; Reinitz et al., 1992; Webster et al., 2004; Webster & MacLeod, 2011).

These intuitive face-space models describing the cognitive organization of faces in our mental
representation are indeed supported by findings of empirical studies on mental representations.
With respect to the so-called prototype-distance model or central tendency model (see e.g.,
Franks and Bransford, 1971), prototypes could be described as abstractions of a certain concept

Figure 1. An exemplary illustration of a “classical” individual-level face-space: facial exemplars are encoded as

points in this multidimensional space and their distances correspond to the perceived (dis-)similarity. In

classical individual-level face-space models (this is the term we will use to refer to face-space models for the

mental representations of facial depictions of individual persons), the average prototype which is usually

described as the centroid of the face-space consists of the sum of all exemplars and is assumed to be the most

typical presentation. © by Michael Langoth, who allowed us to use these pictures for our research and the

corresponding publication—see authors’ note.

2 i-Perception 12(5)



formulated by averaging characteristic features. Moreover, neither the prototype nor its features are
necessarily experienced in the past, since the prototype and its components emerge from an aver-
aging process based on direct experience with the exemplars. Accordingly, participants tend to
recognize an averaged dot pattern (prototype) with higher confidence even if they did not see this
prototype in the preceding learning session—the so-called “prototype effect” (Posner & Keele,
1968, 1970). This central tendency model was further extended by Reed (1972), who suggested
that the prototype is altered by each experience with a new object, with the influence of individual
stimuli decreasing as the total number of experienced objects increases. Similarly, Faerber et al.
(2016) recently postulated the so-called recalibration hypothesis wherein the process of updating
a prototype (= familiarization with a given face) is associated with an increasing level of typicality.
This is based on the idea of “resetting” and “readjustment”mechanisms propagated by Carbon et al.
(2007) for explaining long-term adaptation effects.

Alternative models like the exemplar-based representation models follow a completely different
conceptual idea. They postulate that a certain prototype does not necessarily exist (consisting of an
abstraction of all characteristic attributes of the respective concept). Instead, the mental representa-
tion consists of the entirety of all experienced objects of that concept (Brooks, 1978) as different and
explicit “exemplars”. Hintzman (1984, 1986) suggested an implementation of the exemplar-based
model idea, which he also empirically investigated—the so-calledMINERVA 2 model: Given a new
object that should be identified, the similarity to all exemplars stored in memory is calculated in a
first step. Then in a second step, the features of the stored exemplars are weighted with these values
of similarity. The features of exemplars with higher similarity are weighted higher, resulting in a
so-called “echo” as a next step. The simultaneous activation of all exemplars by a new object pro-
duces a single echo. The echo’s intensity is the sum of the activation levels of all represented exem-
plars. This echo is calculated by adding up all weighted features of inherent exemplars relating to a
concept. The new object is then matched to the concept with the strongest echo. These exemplar-
based models seem to have some interesting advantages over prototype models: Regarding facial
processing, recent studies investigated the highly related process of how an unfamiliar face
becomes familiar and revealed that learning a new face involves an abstraction of the variability
of different images belonging to the very same person’s face (see, e.g., Burton et al., 2016;
Kramer et al., 2017; Menon et al., 2015; Ritchie et al., 2018; Ritchie & Burton, 2017; Young &
Burton, 2017). The authors were able to show that faces vary in systematic ways, and that this varia-
bility is somehow “idiosyncratic”, for instance, facial expression and hairstyle. Accordingly, they
suggested that the process of learning a new face is based on learning how that face varies—pre-
cisely this might be the only straightforward approach to preventing rigid or “iconic” facial repre-
sentations (Carbon, 2008). Despite the fact that the variability of outward facial appearances plays a
major role in this approach, we are not offered any information about how these faces are mentally
represented (e.g., more exemplar-based vs. more prototype-based). Actually, even how variability
emerges and what kind of variability is of particular interest is not specified within these
approaches—in fact, even the most varying pictures which are utilized within these very promising
approaches originate from a rather limited time frame.

One major source of variability in outward facial appearances is aging (Davies et al., 1981;
Johnston et al., 1997). Focusing on aging factors will allow us to test explicitly how a face can
still be efficiently recognized when the target face has changed since the last encounter due to the
effects of aging (Carbon, 2008). This is exactly what is required in everyday life where we have
to face such effects. It is quite striking how much a face changes during a lifetime (Carbon,
2008)—especially in the first years of life, but also continuously throughout later life (see
Figure 2). In everyday life, we learn new faces by experiencing the respective person over a
limited stretch of some years, a very long time with temporal interruptions, or even continuously
across an entire lifetime. On the basis of such learning histories, a reliable recognition mechanism
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has to cope with these varieties (see, e.g., Matthews et al., 2018). From an evolutionary perspective,
it seems important to focus on the more recent experiences as the past is past, and so the representa-
tions of nearer-to-present experiences are probably better indicators for successful recognition in the
future. We can argue even more drastically: from an evolutionary perspective, it is relatively unclear
what the benefit of recognizing past pictures is at all as there is no such external memory as photo-
graphs in the realm of evolution. This bias towards the relevance of more recent information could
be addressed by weighting the temporal aspects of (visual) experiences—this mechanism can be
seen with the so-called figural after-effect, an adaptation mechanism towards recent experiences
with the respective individual (see, e.g., Carbon and Ditye, 2011, 2012)—see Strobach and Carbon
(2013) for a review on several adaptation factors. Accordingly, it seems obvious that a rigidly aver-
aged facial depiction of a particular person over a large span of time (e.g., in the sense of an exhaustive
prototype across several decades or even a full lifetime) certainly does not optimally correspond to the
actual mental representation of the respective face. More importantly, the actual existence of such
exhaustive representations seems to be idealistic since we will not find a person that has had equal
exposure to all instances of facial exemplars across the whole lifespan. Aside from the fact that
most past research never explicitly postulated such an exhaustive prototype it is at least compatible
with such averaging approaches since a prototype consisting of all possible (or at least as many as
possible) instances of an identity may be most likely to get recognized later on (see Burt and
Perrett, 1997; Burton et al., 2005; Jenkins and Burton, 2008; Posner and Keele, 1968, 1970).
However, with facial development over a more extended period of time, the idiosyncratic variability
increases and the informative content of an exhaustive prototype decreases. Accordingly, this exhaust-
ive prototype is relatively unspecific for the recent appearance of a given face.

Current representation models mostly neglect the aging factor. However, some very few studies
which considered age, explicitly encoded it as a factor or, in the case of the multidimensional face-
space, added an extra age dimension (e.g., Busey, 1998; Johnston et al., 1997); such approaches
handle age as a kind of abstracted individual-independent quale, operationalized by aging effects
across different individuals. It is clear that such an abstracted age dimension is highly implausible,
because aging is typically a much more idiosyncratic factor which is confounded by the alteration of
skin, with the adding of wrinkles and the overall morphological change towards a more asymmetric
outward appearance (see e.g., Azizi et al., 1988; Matts & Fink, 2010; Schneider et al., 2012). We
have called this age dimension “abstracted” as this approach makes us believe that age can be
abstracted from other facial dimensions; but this would imply that age is just an additional

Figure 2. Demonstration of the development of facial characteristics across a span of around 30 years of the

very same person’s life. Typically, the development of facial characteristics is stronger in the early years and

decreases with advancing age. © by Michael Langoth, who allowed us to use these pictures for our research

and the corresponding publication —see authors’ note.
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though not interactive factor—interactive based on idiosyncratic developments. Actually, an
abstracted age view would obviously lose a lot of explanatory variance of individual outward
appearances of faces and thus would operate sub-optimally. Only preliminary research (Mileva
et al., 2020) exists proposing that individual faces consist of physical commonalities across a life-
span. Importantly, the authors revealed that participants who learned clusters of faces within a time
period were able to cope with recognition tasks beyond that of identifying faces representing other
periods of a life. Besides the fact that this robust recognition performance may break down at a
certain level (e.g., after 30 years), these findings underline the importance of highlighting age as
a major source of face variability. These results typically rely on rather simulation-based studies
than on actual participant-based studies which reflect the more naturalistic way of learning faces.
Mileva et al. (2020) used sets of faces with no time gaps vs. 20-year time gaps vs. 40-year time
gaps to test the robustness and validity of such clusters with respect to face recognition across a life-
span. However, the specific mechanism of how we learn faces across a lifespan and how such clus-
ters are established remain unclear. Furthermore, we do not know whether the used sets actually
correspond to a facial representation of a presented identity and whether it is more likely that
such clusters are individually idiosyncratic of each identity.

A potential solution to this problem could be to propose prototypes that represent outward facial
appearances from specific time periods in an individual human life, e.g., a “baby episode”, a “young-
ster episode”, an “aged episode” etc. We would like to call such representations “episodic prototypes”
in the following (see Carbon, 2009). Episodes of this kind refer to distinctive sub-prototypical
representations. If a new exemplar of a face is too far away from the centroid of such an episodic pro-
totype, a new prototype has to be generated (see an illustration of such a process in Figure 3). This
proposed process means that one person’s outward facial appearance is potentially represented by
multiple episodic prototypes which are semantically linked together. In many cases, this will mean
that some episodic prototypes will be quite independently stored without such a semantic link. For
instance, if we know an actor from a certain time of her or his career only, and if we then encounter
the very same actor in a film of a different epoch showing a very different outward facial appearance,
we might not get this link as wemight solely rely on visual cues. There is some evidence that we might
identify this actor in a face recognition task after years (see e.g., Bruck et al., 1991), however, it might
take us longer in terms of a response since development / change of facial characteristics might be
quite substantial across different episodes of his life. These episodes reflect certain time spans or
Episodes of Life (EoL). As our model defines episodes according to aspects of similarity, these
episodes will evidently mimic specific EoL, although they might differ from the typical episodic
constructs assumed by developmental psychology.

What, however, determines whether a new episodic prototype has to be generated and why
should we have multiple (episodic) prototypes of a certain identity? Our postulated approach is
inspired by research from the field of human memory and cognition: so-called “generative
memory models” (e.g., Daw and Courville, 2008; Yu and Dayan, 2005) which postulate that envir-
onments tend to change slowly over time, but suddenly jump to a completely different “mode”
which requires the generation of a new memory trace (Gershman et al., 2014; Gershman et al.,
2017). Gershman et al. (2014) provided an example of such a generative memory model:
Usually, while the temperature within different parts of a building may fluctuate rather slowly,
going outside is characterized by very different (though also slowly changing) temperatures than
those that were in effect indoors. The authors further argue that we can recall the general temperature
inside the building, and separately, the temperature outside of the building. Humans seem to have
distinct and different memory traces according to multiple modes/states of a certain construct (in this
example, temperature). Similarly, another important approach what supports our postulation is the
so-called SUSTAIN model of categorial learning by Love et al. (2004): At the beginning of the
mental categorization procedure, SUSTAIN suggests a simple category structure. If the model
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processes a sudden or surprising event so that the simple structure proves to be inappropriate, a new
cluster is generated to represent this event. Other models like the predictive coding model follow a
similar categorial abstraction approach to make inferences about future events (e.g., Spratling,
2016). Applying this to facial prototypes and representations, variables such as facial mass,
which is highly correlated with body weight (e.g., Coetzee et al., 2009; Coetzee et al., 2010;
Schneider et al., 2012; Schneider & Carbon, 2017b) or hair style usually changes rather slowly
over the course of a human lifetime. For instance, the first author (Tobias) had an “Afro” in his
teenage years; later, he had longer hair (in his “rocker”–phase), and at present, he has short hair
and a beard (see Figure 4). When comparing these depictions, which are characteristic of episodes
of his life, the changes seem to be quite dramatic, but occurred over a period of 10–15 years.

Figure 3. The genesis of “episodic prototypes”. These episodes refer to best representations of certain EoL

(e.g., a “baby episode”, a “youngster episode”, an “aged episode” etc.). Given that a new facial exemplar i is
experienced, a maximum delta has to be calculated. This value (maximum delta) refers to the maximum

dis-similarity of a new experienced face to the existing episodic prototype and its exemplars. If the new face is

too far away from the existing exemplars of the corresponding episodic prototype1 (upper cloud), a new

prototype has to be generated (lower cloud); otherwise, this exemplar is integrated into the existing

face-space. This refers to the operation of comparing the maximum delta with a threshold-delta that is

pre-fixed. Note that this illustration is an exemplary demonstration of the genesis, starting with a single

pre-existing episodic prototype (prototype1). This integrating or generating process is ongoing, and so every

new experienced face will be matched to all existing episodic prototypesi.
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However, in the case of a sudden change (shown in Figure 4: e.g., Tobias cut his hair short in 2015),
there is a strong mismatch between past experiences of a given face and a new experience. By using
a simple similarity approach, the model provides a very efficient coding that allows effective retrie-
val because an outward facial appearance which is too dissimilar to already existing episodic pro-
totypes will automatically yield the generation and establishment of a new episodic prototype.
Every prototype is inherently optimized by being composed of similar but not identical exemplars.
This creates the required variety of exemplars that leads to reliable and fast recognition later on (e.g.,
Jenkins et al., 2011; Mileva et al., 2020; Ritchie and Burton, 2017). At the same time, as the forma-
tion of a new episodic prototype needs substantial deviation from already represented episodic pro-
totypes, the number of such prototypes is delimited to a low number that prevents overloading the
cognitive system.

The main aim of the present paper is to develop a new model for the genesis of facial prototypes
and representations. This model will explicitly consider variations of face exemplars mainly caused
by temporal factors across a lifetime, i.e., aging. A second aim of this paper is to probe the plausi-
bility of such an approach by investigating whether face variants are gathering within distinct tem-
poral clusters—similar to Mileva et al.,’s (2020) sub-prototypical representations. We will call such
clustersepisodic prototypes. The third aim of our paper is to investigate the process of learning faces
and the corresponding prototype formation over a large time span of facial depictions.

2. Study 1
Study 1 was conducted to investigate whether the process of facial development across a large span
of a human life is perceived as distinct episodes. We decided to use unfamiliar faces for Study 1
since the aim was to gain knowledge on episodes based on pure visual appearance that was not
being confounded with semantic information about the respective persons (e.g., the depicted identity
had a depressive episode for several years that could only be known for sure by a close friend or
family member).

2.1. Method
2.1.1. Participants. Twenty-four persons participated in the experiment (20 female; M = 23.5
years, SD = 5.0, range = 19 to 37 years) on a voluntary basis. Most of the recruited participants

Figure 4. Episodic prototypes are based on typical and distinct EoL. When past experiences with a face are

too different to present experiences (e.g., due to a very new hairstyle), a new prototype has to be generated in

order to limit the variance of the respective exemplars.
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were undergraduate students of the University of Bamberg and gained course credit to fulfill course
requirements. All participants were naïve to the aim of the study and were not familiar with the faces
presented. They were all assessed to be normal in terms of visual acuity, and color-vision tested via a
standard Snellen Eye chart test and a self-made short version of the Ishihara color test, respectively.
All participants gave written consent to participate in the study. All procedures and treatments of
participants were in accordance with the Declaration of Helsinki. The study was in full accordance
with the ethical guidelines of the University of Bamberg and was approved by the University Ethics
Committee on 18 August 2017.

2.1.2. Material. We collected 20 different facial presentations of four unfamiliar individuals (later
called “models”) spanning a period of approximately 60 years on average (with approx. 3 years
in-between different presentations). The first picture was always taken in the first year of the
person’s life; the last one was taken in the year 2015 in which we started this study, where the
models were at an average age of 57.3 years with a SD of 1.5. This resulted in 80 facial presentations
in total. Subsequently, each stimulus was graphically post-processed by converting it to grayscale
and by blurring the contextual content (such as the background) using Adobe Photoshop CC
2021. Resulting images were finally scaled to 591× 591 pixels. These images were mounted onto
24′′ displays that showed two images side by side. The distance to the center of the pictures was
15 cm. A chin rest was used to align the line of sight with the center of the display (with the distance
of the monitor to the eyes being approx. 60 cm). For each model we generated displays of all pos-
sible combinations of images per model, not taking the lateralization effects of the displays into
account: leading to 2 out of 20 combinations = 190 displays for each model, so 4 [models]× 190
[displays per model] = 760 combined displays for the entire set of single stimuli.

2.1.3. Procedure. Participants were asked to rate the similarity between both facial versions of one
model on a 7-point Likert scale (ranging from 1 = very unsimilar to 7 = very similar). They were
informed that the two presentations corresponded to the same person (without mentioning the vari-
able age as the core difference between the presentations). Each trial started with a fixation cross
(presented for 500 ms) in the center of the screen, followed by a blank screen (presented for 100
ms), followed by a display of two facial versions of one person which was present until the parti-
cipant made a response. The entire procedure, including instruction and personal assessments,
lasted approx. 40 min.

2.2. Results
For a better understanding of the analyses, we will first and foremost describe the methods used and
the rationale for employing them. The main idea behind the face-space is that the unique exemplars
of a face are encoded as points in this n-dimensional space and the distances between two points are
analogous to the dissimilarities between the respective faces. The most typical face provides the cen-
troid of a respective face-space, and less typical faces (or more distinctive faces) are located in a less
densely clustered way in the periphery of that face-space. We suggested episodic prototypes corre-
sponding to temporal clusters of facial representations. We followed this approach by employing an
exploratory approach to generating a face space based on dissimilarity ratings for all exemplars. This
was done by conducting cluster analyses. Research mainly focuses on two general types of cluster
analyses: 1) Agglomerative hierarchical and 2) iterative partitioning clustering methods.
Agglomerative hierarchical methods are similarity-based approaches (whereas dissimilarities are
often called or operationalized by distances) wherein exemplars or cases start as individual clusters
(number of clusters = number of cases); the most similar exemplars are then joined together step by
step. This is achieved by the use of a predefined metric and a linkage criterion likeWard’s criterion
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(Ward, 1963), which specifies the (dis)similarity of clusters as a function of the pairwise distances of
observations in the cluster. This process is irreversible so that neither can joined clusters be changed
nor exemplars be excluded anymore. In the case of iterative partitioning clustering (e.g., the k-means
approach), the researcher has to determine the number of clusters before running the routine. This
challenge can be solved by using several methods to find an appropriate number of clusters (see
below for methods used in this study). Based on the pre-set k of clusters, the respective centroids
are calculated, and exemplars are located to their nearest cluster centroid. This process continues
until all the exemplars belong to those clusters to which they have the smallest distances to the
respective cluster centroids. One advantage of this approach is that during the process of relocating
the centroids, the cluster-membership of the exemplars can be exchanged. For the present study, we
followed Milligan’s suggestion (1980) of performing a two-step algorithmic routine: first, a hier-
archical cluster analysis (Ward’s method) to determine the number of clusters, followed by a parti-
tioning clustering (k-means) for further optimization. All analyses were conducted by using the most
recent R 4.0.4 (R Core Team, 2013) for MacOS, utilizing the cluster package (ver. 2.0.4) by
Maechler et al. (2016). Additionally, besides the classical elbow criterion (a distinct drop of the
within-groups sum of squares), we used the gap statistic criterion (Tibshirani et al., 2001) using
the package NbClust (ver. 3.0) by Charrad et al. (2014) for an internal validation of the appropriate
number of clusters. One main advantage of this criterion is that it can be applied to any clustering
method.

For an external validation of the first step to automatically find the optimal number of clusters, we
invited 15 independent raters (seven female,M = 25.6 years, SD = 2.2) to find clusters on the basis
of the plotted face-space (without information about the exposure date). Note that outliers in face-
spaces could easily arise from face-irrelevant aspects like differences in brightness, contrast, focus
depth or background, hence they are processed and memorized as high distinctive faces (see e.g.,
Hancock et al., 2000). Most importantly, all these criteria should only be seen as a way of heuris-
tically extracting cluster structures. Thus, we followed this general procedure in the following study
of this paper. The whole process of analyzing the data in this way is shown in Figure 5.

Following former approaches toward generating two-dimensional face-spaces (e.g., Valentine,
1991) we chose Euclidean distance metrics. In the following, all results of the cluster analyses
are presented per photographed person, shortly called “model” in the following.

2.2.1. Model #1: Female, Born 1956 (Female1956). As shown in Figure 6, analyses revealed clear
sub-prototypical clusters in the outward facial appearance of the model (we will call this model
Female1956 in the following) providing first evidence that certain timespans reflect genuine proto-
types. This stands in contrast to the idea of an exhaustive prototype spanning the entire life of a
person. The elbow criterion, as well as the gap statistic criterion, revealed an optimal number of
three clusters, whereas hierarchical cluster analysis (Ward’s method) identified four clusters (see
Figure 6)—this variety of optimal solutions was reflected by the human raters: most raters (N=
9) chose 4 clusters, five raters identified 3 clusters: Five raters and one single rater found a
5-cluster solution the most appealing. Most of the discrepancies might be put down to a potential
separated cluster for just one exemplar which showed a non-frontally depicted baby in front of
some rather face-irrelevant contextual information (see Figure 6, dendrogram and four-cluster solu-
tion). In fact, this exemplar and the resulting cluster can be treated as an outlier—this means we
arrive at a 3-cluster solution (see Figure 6). We furthermore dropped the respective outlier face
from consideration in Study 2.

2.2.2. Model #2: Female, Born 1959 (“Female1959”). For the second female model (Female1959),
we also found clear episodic clusters. Interestingly, as with the first female model, our results
provide evidence for baby faces constituting their own class of facial representations:
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Presentations of the first two years were clustered separately (see Figure 7). However, as with the
first female individual, the major challenge for the second female individual was to find an appro-
priate number of clusters. In this case, neither the elbow criterion nor the other criteria yielded a
coherent solution. The gap statistic criterion suggested an optimal number of three clusters,
whereas all independent raters suggested a number of four clusters. Relating to the elbow criterion,

Figure 5. Flow chart demonstrating each step of our cluster analysis process.
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the 3-cluster solution was not necessarily an obvious solution (see Figure 7): there was still a sig-
nificant drop in the within-groups sum of squares moving from a 3-clusters solution to a 4-cluster
solution. Accordingly, on the basis of additionally considering the dendrogram and the hierarchical
clustering, we decided to finally use a 4-cluster solution—with an additional fourth cluster for the
latest episode (years 2001–2014; see Figure 7). All four revealed clusters represent a certain devel-
opmental episode: the first cluster could be identified as a “baby episode”, the second as a “young-
ster episode”, the third as a “middle-age episode” and the last cluster as an episode showing recent
developments. Furthermore, we found a large gap between the first cluster (consisting of the years
1959 and 1960) and the second cluster, suggesting a qualitative development regarding outward
facial appearance within the first two years.

2.2.3. Model #3: Male, Born 1955 (Male1955). Figure 8 shows the results of the first male model
(Male1955): In this case, we found a high consensus relating to the number of clusters. All criteria
suggested a 4-cluster solution (see Figure 8). Accordingly, hierarchical clustering, as well as parti-
tioning clustering, revealed a 4-cluster solution, again according to a “baby episode”, a “youngster
episode”, a “middle-age episode” and an episode from the most recent decade (see Figure 8 for
cluster memberships). Even if there was no single cluster for the baby face, the data for this indivi-
dual showed a clear chronological sequence in facial development across the timespan, wherein
almost every cluster reflects around a decade. Interestingly, the relatively large gap between the
first cluster (∼1990s) and the third cluster (∼2000s) suggests a pronounced facial development in
this model due to aging.

2.2.4. Model #4: Male, Born 1957 (“Male1957”). The mere visual inspection of the face space
depiction for the second male model (“Male1957”) again suggests an episodic clustering pattern
(see Figure 9). However, considering the criteria for determining the optimal number of clusters,
the results were inconsistent (see upper quadrants of Figure 9). The gap statistic criterion suggested
an appropriate number of three clusters, whereas the hierarchical clustering, as well as the elbow
criterion, revealed a 4-cluster solution. Most raters were attracted to a 5-cluster solution (N= 8), fol-
lowed by a 4-cluster solution (N= 4) and a 3-cluster solution (N= 3). As we did not observe a sig-
nificant drop in the within-groups sum of squares from a 4- to a 5-cluster solution, we decided to
conduct a partitioning clustering (k-means) with respect to a 4-cluster solution (see lower quadrants
of Figure 9). As a result, the only difference between these cluster solutions was that the baby-face
exemplar of the first year of the individual’s life (“1957”) was treated as a single-cluster solution in
the case of a 4-cluster solution. Reconsidering the dendrogram of the hierarchical clustering, we
decided to use a four-cluster solution, because the baby-face exemplar “1957” had the highest dis-
similarity to all other exemplars and would have led to an extreme within-cluster variance of the first
cluster (see Figure 9). As described before, we found clear temporal clusters reflecting the indivi-
dual’s facial development across the timespan of his life. The results also suggest that baby faces
constitute their own facial category, especially from the first year.

2.3. Discussion
The main aim of Study 1 was to investigate the plausibility of episodic prototypes. Supporting the
initial evidence of recent research (Mileva et al., 2020), we indeed found that faces are episodically
clustered and that these clusters reflect a typical temporal facial development of a person. This
finding emphasizes the weaknesses of rather exhaustive-based prototypes models to describe how
faces might be mentally organized. Our results suggest that facial development across about 60
years is optimally divided into approximately four clustered episodes, whereas baby faces constitute
their own episode of facial representations next to a “youngster episode”, a “middle-age episode”

Schneider & Carbon 11
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and an episode from the most recent decade. In the given cases of people being about 60 years old,
this latter episode coincides with an “elderly episode”. It is quite probable that extending the age
range, even more, will lead to more clusters, for instance, “old” and “very old” episodes. Except
in the case of the model Male1955, we found that such episodes cover different periods: the
baby episode covers just the first ten years, whereas the third prototype constituted presentations
of recent times. It seems reasonable to further assume that personal experience and the frequency
of encountering a person plays a role in the extension, level of detail and quality of such prototypes.
More in detail, frequent personal contact with a person leads to finer graded representations: e.g.,
even during the first three years of development, parents typically have the impression that their
baby changes its outward appearance quite quickly, so the updating of an existing episodic prototype
or the formation of a new one seems to be needed more frequently than for persons who encounter
the baby only occasionally.

Study 1 revealed reasonable temporal clusters that rely on visual similarity, suggesting that the
episodic clusters are more suitable to describe the facial representation of a certain person in the
sense of an episodic facial prototype. Following recognized scientific theories, prototypes are
defined as results of principal components or averages of given exemplars spanning a face-space
that corresponds to one’s facial representation of a certain person (see e.g., Benson and Perrett,
1993; Burton et al., 2005; Busey, 1998; Gao and Wilson, 2014; Reinitz et al., 1992; Webster
et al., 2004; Webster and MacLeod, 2011). However, these models neglect temporal facial develop-
ments; hence the respective prototype is highly dependent on temporal aspects like the process of
aging. Considering the results of Study 1, we propose the concept of multiple prototypes—or,
more specifically, the better economy of episodic prototypes per identity.

3. Study 2
Based on the results of Study 1, we investigated further how faces could be mentally organized in
episodic clusters in terms of episodic prototypes. We postulate that the most recent facial representa-
tion of a given person corresponds to a sum of more or less “recent” encounters with the respective
face—in other words: the best representation of a living person might be the most recent episodic
prototype. This idea is inspired by general memory theories and is further validated by, e.g.,
facial aftereffects (see e.g., Carbon and Ditye, 2011, 2012). We tested this idea by employing parti-
cipants who had experienced a long-term history of learning so-called “personally familiar faces”
(Carbon, 2008), in the of really deep visual knowledge employing social interaction. To realize
this, we invited first- and second-degree relatives of the respective models who provided the stimu-
lus material of Study 1 and allowed them to rate the prototypicality of all episodic prototypes. The
rationale behind this approach is that if we take participants who are highly familiar with the pro-
vided face material due to the fact of knowing the depicted individuals for a long time, we
expect that the prototypicality will increase the closer a facial depiction is to the current image a
person shows. In other words, the best representation of a living person might be the most recent
episodic prototype.

3.1. Method
3.1.1. Participants. We invited thirty-eight first- and second-degree relatives of the models from
Study 1 (approx. M = 9.5 relatives per individual), 17 female; M = 54.9 years, SD = 13.1, range
24 to 74 years. All participants had known the respective model for at least 20 years and were in
regular contact with them (please note that this combined criterion is essential for Study 2; hence
the facial prototype is highly dependent on temporal aspects like how long we have known and
how often we have experienced the respective person).

16 i-Perception 12(5)



3.1.2. Materials. Based on the data from Study 1, we generated episodic prototypes by morphing
respective faces comprising these prototype clusters via Abrosoft© FantaMorph V5 (5.4.6). We
defined a set of 63 facial landmarks which are unambiguously identifiable and which have
proven successful across a wide range of studies at our lab for more than a decade. The entire mate-
rial consisted of all unique exemplars of Study 1, plus the respective episodic prototypes (the
morphed representatives of the extracted clusters) and the exhaustive prototype (the morphed repre-
sentative of all exemplars of a model). On the one hand, cluster analyses of Study 1 revealed that
presentations of babies constituted separate clusters consisting of single facial presentations and
large distances to other presentations that may support our hypothesis of episodic prototypes repre-
senting each EoL. However, on the other hand, we deliberately decided to exclude this baby cluster
to avoid artificial cluster caking. Consequently, we yielded 3 episodic prototypes (youngster proto-
type, middle-age prototype, recent prototype) + 1 exhaustive prototype + 20 individual exemplars
= 24 facial exemplars per model set.

3.1.3. Procedure. Each participant was assigned to the set of the respective familial model. The par-
ticipant was asked to rate the typicality (as an operationalization of prototypicality) of each exemplar
on a 7-point Likert scale (ranging from 1= very untypical to 7= very typical). We provided the par-
ticipants with an explicit example: “You have now learned the face of a person. Please think of this
person. You might have a picture of this person in your mind. In this case, please match the follow-
ing presentations with your picture in your mind. “very typical”means that the presented picture fits
“very well” to your mental representation of the person. “very untypical” means that the presented
picture fits “very poorly” to your mental representation of this person”. The order of trials was ran-
domized for each participant. The whole procedure lasted approx. 15 min.

3.2. Results
In a first step, we investigated the hypothesis that we have multiple episodic prototypes of a certain
individual, and that more recent prototypes are stronger mentally represented and hence should be
rated as more typical compared to older presentations. Accordingly, we tested whether the age of the
unique exemplars could predict the perceived prototypicality. Four separated regression analyses
(one per model) revealed that age satisfactorily predicted the perceived prototypicality, see
Figures 10a and b as well as Table 1—we were able to reveal a close relationship between both vari-
ables when we rigidly used age as predictor as well as when we specifically fed in only the respective
age spans which were reflected by the duration of familiarity of the different experience (three)
groups (i.e., being familiar with the person for 50+ years, 30–40 years or less than 20 years).
Although this finding might not be ultimately surprising at first, the robust data pattern provides
strong indications of the episodic quality of facial representations and prototypes.

In view of the fact that, for instance, younger relatives (experience group 0–20 years) could only
experience the respective model for between a couple and up to 20 years, we further only considered
data from years of actual experience (see Figure 10b)—this was done to test the previous analyses of
potential artifacts. However, we revealed a very similar pattern: recent exemplars were perceived as
more prototypical, whereas older exemplars were perceived as less prototypical—again, reasonable
and consistent linear fits with positive slopes (see Table 1).

Relating to the episodic prototypes, we postulate that prototypes from recent decades are men-
tally activated to a higher degree than prototypes which are rarely referred to. Accordingly, we
investigated whether facial representations are temporally weighted as well as whether prototypical-
ity was dependent on the model’s age by conducting a two-factorial repeated-measures analysis of
covariance (rmANCOVA) with the within-subject factor episodic prototype [youngster prototype,
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middle-age prototype, recent prototype, exhaustive prototype] (note that for this analysis, prototy-
picality ratings were averaged across the four models), the between-subject factor participants’
sex to investigate whether female vs. male relatives share the same prototype, and the covariate par-
ticipants’ age to investigate the impact of the amount of personal experience with the respective pro-
totype. A univariate approach with Huynh-Feldt correction (Huynh & Feldt, 1976) for the degrees of
freedom (df) was used (correction factor ϵ), which should be applied if ϵ is >.75 (Girden, 1992), but
for a better flow of reading, the original value of the df is reported. Partial η2 (ηp2) is reported as a
measure of association strength. An α-level of .05 was used for all analyses reported in this paper
and all reported p-values are two-tailed. Pairwise comparisons (two-tailed two-sample t-tests) and
respective Cohen’s d were additionally calculated (see Figure 11). Further analyses were conducted
with a focus on the simple main effects. All assumptions for conducting an rmANCOVA were suffi-
ciently fulfilled: independence of observation, normality of distribution of residuals, linearity of
regression (linear relationship between the dependent variable and the independent variable), homo-
geneity of regression slopes as well as the homoscedasticity across and within all groups. All ana-
lyses were conducted on the R 4.0.4 (R Core Team, 2013) platform for macOS.

Analyses revealed that episodic prototypes had a significant effect on the perception of prototy-
picality, F (3, 105) = 4.86, p = .006, ηp2 = .12, ϵ = .96, where the episodic prototype of recent
decades (Mrecent = 5.05, SDrecent = 1.04) yielded the highest prototypicality ratings, followed by
the exhaustive prototype (Mexhaustive = 4.08, SDrecent = 1.91, d = 0.63), the middle-age prototype
(Mmiddle−age = 2.66, SDmiddle−age = 1.10, d = 2.23) and the youngster prototype (Myoungster =
2.18, SDyoungster = 1.60, d = 2.60). This suggests that facial prototypes are highly temporal-
dependent and that these representations are weighted toward recent experiences with the respective
face. More importantly, it clearly contradicts the thesis that artificial exhaustive prototypes actually
correspond to one’s facial representation (see Figure 11). We further found a small but significant
main effect of the between-subject variable participants’ sex, F(1, 35) = 4.47, p = .042, ηp2 = .11
with higher prototypicality ratings for female observers. However, there was no interaction between
the participant’s sex and the episodic prototypes indicating that male and female observers shared
the same prototype, F(3, 105) = 1.31, p = .275, n.s. With respect to the covariate participants’ age
we found no significant effect, F(1, 35) < 1, p = .386, n.s., suggesting an own-age-independent

Table 1. Relationship between the perceived prototypicality and the respective year of the respective depiction
across all models. Calculated R2 values are based on the averaged Fisher’s Z values of the individual regressions

per participant. Data was split into three age groups (“Experience Group”) indicating the duration of personal

experience with the relative (model): 0−20 years, 30−40 years and 50+ years plus an extra section for data on

all experience groups. R2 indicate correlations for time series with different experience levels: whether

participants’ ratings are based on all data (“all years”) or actual personal experience with the respective person /

model (“experienced years”). In the case of Female1959 there was no data available (n/a) for 50+ years, as for

this individual there were no relatives with experience of that timespan

Experience Group

0-20 years 30-40 years 50+ years all experience groups

Model

all

years

experienced

years

all

years

experienced

years

all

years

experienced

years

all

years

experienced

years

Female1956 .63 .36 .52 .13 .44 .34 .54 .21

Female1959 .54 .51 .74 .73 n/a n/a .68 .66

Male1955 .36 .08 .45 .18 .53 .59 .45 .26

Male1957 .06 .06 .64 .32 .81 .70 .60 .34
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genesis of prototypes (in the sense that younger and older relatives shared the same facial prototype,
respectively).

3.3. Discussion
In Study 2, we investigated whether the clusters of Study 1 can be taken to describe one’s facial
representation in the sense of an episodic facial prototype. The main challenge in addressing this
question is that it can only be answered validly by an already existing face-space (or an already exist-
ing facial representation). There are usually two ways to generate a facial representation: 1)
Familiarization by an experimentally controlled learning task (similar to Murphy et al., 2015;
White et al., 2014) or 2) familiarization by a lifelong learning-/experience-based process (e.g., in
the case of relatives). Using an approach based on lifelong learning/experiences has the advantage
that it accesses the ecological variations of an individual’s face (in the sense of an individualized
idiosyncratic face-space). This is in contrast to face-spaces spanning different persons and different
dimensions based on (dis)similarity ratings alone (e.g., Busey, 1998; Johnston et al., 1997).
However, besides the fact that recent studies which followed more sophisticated approaches by con-
sidering individualized, idiosyncratic factors (e.g., Burton et al., 2016; Kramer et al., 2017; Murphy
et al., 2015; Ritchie and Burton, 2017; Young and Burton, 2017; but see Mileva et al., 2020) did not
consider or control temporal aspects, the second approach reflects a more lifelike process of learning
faces (e.g., relatives, very close friends). Accordingly, the results of Study 2 strongly suggest that
facial representations are closely dependent on temporal aspects in which recent experiences
with the respective face were significantly rated as most prototypical (recent episodic prototype).
One mechanism for this could be the higher probability of the most recent episodic prototype
being activated as it reflects the latest or mist updated information for present and future recognition
requirements: an alternative mechanism could be an adaptation towards recent experiences (see e.g.,
Carbon and Ditye, 2011). Interestingly, the revealed pattern for younger relatives who in fact could
have experienced the respective face for only a few years was very similar to that of older relatives
having had much more experience across decades. This points to a universal mechanism where the
episodic prototype containing more recent outward appearances, actually those which are most
important for recognizing people in everyday life contexts, is primarily activated and referred to
when we think of the prototypical outward appearance of a target person. In order to be constantly
“up to date,” we have to assume that prototypes are dynamically generated using a rapid update
mechanism. In most real-world contexts, especially when we think of the natural familiarization
of people we know personally, such prototypes are chronologically ordered, and this order does
not just reflect similarity issues (see Study 1); and so facial prototypes and respective representations
will rely on temporal aspects. Such episodic prototypes can most accurately and economically repre-
sent certain phases in the development of a face, particularly the most recent episode in a face’s life.
As shown by Study 2, the most recent episodic prototype will even outperform an exhaustive pro-
totype which had been repeatedly demonstrated to be already quite powerful in representing faces
(see e.g., Burton et al., 2005; Gao and Wilson, 2014; Jenkins and Burton, 2008). Accordingly,
we postulate the Episodic Prototype Model (EPM) to describe the natural formation of facial proto-
types and representation of faces with respect to strong visual changes induced by temporal aspects
(e.g., aging, but see general discussion for further influential factors), see Figure 12.

The EPM (see Figure 12) combines the strength of exemplar-based representation models (e.g.,
the MINERVA 2 model) and the idea of different densities in the face-space induced by certain pro-
totypes which are defined by EoL. Such episodes refer to distinctive sub-prototypical representa-
tions. Given a new exemplar, the similarity to all exemplars stored in memory is calculated in a
first step. A so-called “echo” is calculated by adding up all weighted features of inherent exemplars
relating to a representation. The new object is then matched to the representation or prototype with
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the strongest echo. This matching procedure is much more efficient and valid as it postulates epi-
sodic prototypes. In contrast, the average prototype only produces a mid-level echo and does not
engage a distinct match. For example, a baby face is matched to the first episode of human life
(“baby episode”); the sum of all exemplars/instances of this episode produces the most extensive
echo for this new face. Note that there is a decrease and an increase in the echo moving from
one episode to the next (see Figure 12), respectively. The increasing echo coincides with the
average’s echo at the edge of an episode. The echo increases exponentially so that there is some
echo in the following episode. However, this echo falls far below the echo of the average prototype
until it disappears completely. This routine means that one person is potentially represented by mul-
tiple episodic prototypes that reflect one specific EoL. Although the EPM relies on a rather
exemplar-based approach, it could be understood as a hybrid model consisting of norm/average
—as well as exemplar-based aspects. Firstly, a prototype is reflected by a sum or an abstraction
of single exemplars that reflect a specific timespan in a human life (episodic prototypes) what is

Figure 11. Demonstration of prototypicality ratings for episodic and exhaustive prototypes (representations

are only examples, here Female1959). Observers rated morphs of actual decades as significantly more

prototypical. Error bars indicate ± 1 standard error from the mean. Dashed line indicates the mean level

(prototypicality) of the exhaustive prototype.
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in line with partial abstraction approaches such as the varying abstraction model (Vanpaemel &
Storms, 2008). But secondly, in accordance with rather exemplar-based models, it postulates that
there is no certain or exhaustive prototype which reflects a respective person’s face. Instead, the
model suggests that a person’s face is represented by multiple episodic prototypes.

With respect to the first two studies, it is important to note that learning facial variability across
longer time spans is very much dependent on the beholder’s experience. In Study 1, participants
were (pre-experimentally) unfamiliar with the presented faces, and the resulting episodic prototypes
are therefore not based on personal experiences. From this point of view, one could argue that the

Figure 12. The Episodic Prototypes Model (EPM). With respect to exemplar-based representation models (e.g.,
the MINERVA 2 model), episodic prototypes represent outward facial appearance during certain episodes of

human life (EoL). Such episodes refer to distinctive sub-prototypical representations. Given a new exemplar

(A, B or C) the similarities to all exemplars stored in the storage are calculated in a first step. A so-called “echo”
is calculated by adding all the weighted features of inherent exemplars relating to a representation. The new

object is then matched to the representation or prototype with the strongest echo (red “HIT”-area: a hit is
equivalent to a successful match). This matching procedure is much more efficient and valid as it is based on

episodic prototypes. In contrast, the average prototype (orange line and right column) only produces a mid-level

echo and does not engage a distinct match (below a pre-definite threshold; black line). For example, exemplar
A is matched to the first episode (first episodic prototype, first column); hence the sum of all exemplars/instances

of this episode produces the most extensive echo to Exemplar A. Note that there is a decrease and an increase

in the echo moving from one episode to the next (in the case of Exemplar A, symbolized by the blue graph),

respectively. The increasing echo coincides with the average’s echo at the edge of an episode. The echo

increases exponentially to such an extent that there is some echo in the following episode. However, this echo

falls far below the echo of the average prototype until it disappears completely. This routine means that one

person is potentially represented by multiple episodic prototypes which reflect one specific EoL. In contrast to

the exhaustive prototype, episodic prototypes of recent EoL are perceived as most prototypical, suggesting an

adaptation towards recent experiences with the respective face (blue arrow). For this illustration, we used k
episodes; however, please note that the number of episodes certainly depends on many factors (e.g., the

quality and quantity of events where we were able to become familiarized with the target person’s face).
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pattern of clustering in Study 1 could be different from personally experienced faces since episodic
prototypes of relatives may rely on different factors. Accordingly, the resulting episodic prototypes
in Study 1 may not reflect the actual facial representation of the relatives. Interestingly, concerning
exemplar-based analyses (see regression analyses in Figure 10a and 10b), Study 2 revealed that even
across different levels of experience with a respective face (e.g., 0–20 years vs. 50+ years) the
pattern remains quite similar: depictions of younger periods were perceived as less prototypical
whereas recent presentations were perceived as more prototypical. However, the question
remains whether and how personal facial experience affects the genesis of episodic prototypes.
Accordingly, to answer this question, we conducted a third study with a focus on the genesis of epi-
sodic prototypes of faces that are personally experienced.

4. Study 3
In contrast to the first two studies, we actually let participants learn unfamiliar faces to investigate the
process of prototype formation within a controlled lab experiment. For clarification of our idea, we
would like to provide an example: imagine that you had a school friend, and you only knew him
from his 10th to 20th year of life. Thirty years later (he is now around 50 years old), you meet
him somewhere by accident. It is highly probable that you will have some difficulties in recognizing
this person since you have a high level of experience with his younger face but no recent experiences
with his current facial appearance. Accordingly, it may be suggested that your facial representation
would refer to a rather young-looking person and, consequently, his recent facial appearance would
be rated as less prototypical since he will have changed dramatically across the years (e.g., facial
developments such as skin aging, wearing a beard, grey hair, partially tattooed and pierced, probably
also showing more facial mass). In contrast, another friend who became acquainted with him for the
first time only ten years ago would only have a limited, decade-long perceptual knowledge of him.
Logically, in his case, the facial representation is solely based on recent experiences (ideally given
that even older photos are not known).

Accordingly, Study 3 was conducted to investigate whether persons with different levels of
experience with a given face have different or similar episodic prototypes. Following the idea of
the EPM that facial prototypes are updated very quickly, we further investigated the perceived pro-
totypicality of actually experienced faces vs. faces which have not been experienced before (e.g.,
you only know a person from teenage times, but now you meet this person after 30 years).

4.1. Method
4.1.1. Participants. Twenty-four persons participated in Study 3 (15 female;M = 23.2 years, SD =
3.4, range 18 to 33 years) on a voluntary basis. They were undergraduate students of the University
of Bamberg and gained course credit to fulfill course requirements. All participants were naïve to the
aim of the study and were not familiar with the presented faces. They were all assessed as being
normal in terms of visual acuity, and color-vision tested via a standard Snellen Eye chart test and
a self-made short version of the Ishihara color test, respectively. All participants gave written
consent to participate in the study. All procedures and treatments of participants were in accordance
with the Declaration of Helsinki. The study was in full accordance with the ethical guidelines of the
University of Bamberg and was approved by the University Ethics Committee on 18 August 2017.

4.1.2. Materials. We used the same material from Study 1 and selected 16 different facial presen-
tations of each model. This resulted in 64 facial presentations in total. Subsequently, for each model
we created two different exposure conditions (Set 1: Eight younger presentations vs. Set 2: Eight
recent presentations, see Figure 13). Because baby faces seem to be represented differently, the
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selected presentations started from the age of five years with approx. Three years in between differ-
ent presentations). The first set (younger presentations) contained presentations up to the age of
approx. 30 years, whereas the second set (recent presentations) contained presentations starting
from the age of approx. 40 years up to the age of approx. 60 years. There was a deliberate gap of
ten years between the two sets to ensure the perceived facial difference was large enough.

Per set, images were mounted onto 24” displays that showed two images side by side. The dis-
tance to the center of the pictures was 15 cm. A chin rest was used to align the line of sight with the
center of the display (with the distance from the monitor to the eyes being approx. 60 cm). For each
model we generated displays of all possible combinations of images per model—not taking the later-
alization effects of the displays into account—leading to 2 out of 8 combinations = 28 displays for
each model, so 4 [models]× 28 [displays per model] = 112 combinatory displays for the entire set
of single stimuli.

4.1.3. Procedure. Participants were randomly assigned to one exposure condition of a model (e.g.,
Set 1 of model Female1956). Study 3 consisted of three phases across nine days (with a delay of 3
days between each phase) in a certain order: Phase 1: similarity rating + 1× deep evaluation; Phase
2: 3× deep evaluation; Phase 3: 1× deep evaluation + similarity rating (both sets) + prototypicality
rating. For details, see Figure 13.

Similarity rating. In the first phase, similarly to Study 1, participants were asked to rate the simi-
larity between both facial versions of one model on a 7-point Likert scale (ranging from 1 = very
unsimilar to 7 = very similar). Each trial started with a fixation cross (presented for 500 ms) in the
center of the screen, followed by a blank screen (presented for 100 ms), followed by a display of two
facial depictions of one person which remained present until the participant made a response. This
resulted in 2 out of 8 combinations = 28 displays for each model. In the case of Phase 3, participants
were presented with all presentations of both exposure conditions (younger presentations + recent
presentations), resulting in 2 out of 16 [Set 1 + Set 2] combinations = 120 displays for each model
(see Figure 13 for details). Participants were informed that the presented faces belong to the same
person (“please note that all presented facial depictions belong to the very same person”).

Deep evaluation. In Phase 2, participants learned the faces with respect to their allocated expos-
ure condition. Here we used the Repeated Evaluation Technique (RET) by Carbon and Leder
(2005), which could be used for deep evaluation and familiarization of a learning set. This technique
was further successfully used for e.g., priming, investigating mere exposure or adaptation studies in
different scientific contexts (e.g., Carbon et al., 2008; Faerber et al., 2010; Muth & Carbon, 2013;
Tinio & Leder, 2009). In this task, participants were repeatedly asked to rate stimuli across a large
number of variables, thereby learning the presented stimuli. For the present study, we used the fol-
lowing evaluation variables, which mainly focus on facial features (using a 7-point Likert scale):
skin quality (ranging from 1 = very unclear to 7 = very clear), skin tone (ranging from 1 = very
dark to 7 = very light), hair color (ranging from 1 = very dark to 7 = very light), hair length
(ranging from 1 = very short to 7 = very long), eye distance (ranging from 1 = very narrow to 7
= very spaced apart), eye shape (ranging from 1 = very narrow to 7 = very round) eyebrow con-
dition (ranging from 1 = very thin to 7 = very dense), facial salience (by asking the participants
“imagine that you see this person in group of other people. How salient would you rate the presented
face?”; ranging from 1 = very unremarkable to 7 = very remarkable) and sexual dimorphism
(ranging from 1 = very masculine to 7 = very feminine). The evaluation of the aforementioned vari-
ables was established blockwise in random order and was repeated three times but only at Phase 2,
resulting in 8 [presentations]× 9 [variables] = 72 trials for Phase 1 and Phase 3, but 8 [presenta-
tions]× 9 [variables]× 3 [repetitions] = 216 trials for Phase 2. In total (across all phases), partici-
pants evaluated the presented faces over 72 + 216 = 288 trials.
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Prototypicality rating. At the end of Phase 3, the prototypicality rating task was the same as in
Study 2, except there were only 2 episodic prototypes (morphed exemplars of younger vs. recent
depictions). As a result, we yielded 2 episodic prototypes (younger prototype and recent proto-
type) + 1 exhaustive prototype + 16 exemplars = 19 facial exemplars per model set.

4.2. Results
Concerning the similarity ratings, statistical analyses were executed in the same style as in Study 1
with the exception that for external validation of the first step to automatically find the optimal
number of clusters, we only invited five independent raters (4 female, M = 22.3 years, SD = 5.4)
to find clusters on the basis of the plotted face-space (without information about the exposure
date). All analyses focused on the difference between clusters of younger vs. recent exposure con-
ditions after participants learned the respective faces. Accordingly, cluster analyses were applied to
the data from Phase 3. In the following, all the results from the cluster analyses are presented per
model. We further refrained from presenting detailed plots with respect to determining the best
number of clusters. Instead, we will report the final results of these analyses.

4.2.1. Model #1: Female, Born 1956 (Female1956). As shown in Figure 14 (upper row), analyses
revealed clear sub-prototypical clusters in the outward facial appearance of the model, replicating
the results of Study 1 that certain timespans reflect genuine episodic prototypes. Comparing the
cluster solutions between the two exposure conditions (younger presentations vs. recent presenta-
tions), analyses revealed clear differences relating to the number of clusters as well as their config-
urations (e.g., cluster memberships). In the case of learning younger presentations (Set 1),
exemplars of recent times were clustered in a higher resolution and constituted an additional
cluster. In contrast, in the case of learning recent presentations (Set 2), exemplars of recent times
were clustered in relatively large clusters followed by another in-homogeneous cluster containing
exemplars from years in different decades (1984, 1993, 1997, and 2013)—see Figure 14. With
regard to determining the optimal number of clusters, all criteria revealed the same results.
Accordingly, the results of Model #1 provide the first hints that people who are (highly) familiar
with younger exemplars and are then confronted with recent exemplars (only once) rapidly
update their facial representation and build more highly graded sub-prototypes of recent times.
They further perceive actually experienced (younger) facial exemplars as relatively unsimilar (sug-
gested by the large gap between younger and recent exemplars).

4.2.2. Model #2: Female, Born 1959 (Female1959). As shown in Figure 14 (lower row), analyses
revealed a similar pattern of clustering as for Model#1. Comparing the cluster solutions between the
two exposure conditions (younger presentations vs. recent presentations), we replicated the differ-
ences relating to the number of clusters found for Model #1. Again, in the case of learning younger
presentations (Set 1), exemplars of recent times were clustered in a higher resolution and constituted
an additional cluster. In contrast to learning recent presentations (Set 2), exemplars of the last three
decades were clustered in three very homogeneous clusters—see Figure 14. Here (Set 2), partici-
pants perceived these exemplars as a single relatively large cluster. With regard to determining
the optimal number of clusters, all criteria revealed the same results for Set 1. In the case of Set
2, only the independent raters split the large cluster into two clusters.

4.2.3. Model #3: Male, Born 1955 (Male1955). Results for Model #3 are shown in Figure 15
(upper row). Also, for the first male model, the results were similar to the female models. In the
case of learning younger presentations (Set 1), exemplars of recent times were clustered in a
higher resolution and constituted an additional cluster, whereas learning recent presentations
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(Set 2) led to one rather large cluster from the last three decades. Prima facie, a three-cluster solution
for Set 2 may seem to be non-convincing. However, the gap statistic criterion, as well as the elbow
criterion, suggested an appropriate number of three clusters. Only the human raters tended to choose
a four-cluster solution (three out of five raters).

4.2.4. Model #4: Male, Born 1957 (Male1957). As shown in Figure 15 (lower row), there was
again a clear tendency for finer-graded clusters of recent decades when participants learned
younger faces (Set 1). When participants learned younger faces, there was a fourth additional
cluster for depictions of recent episodes.

4.2.5. Analyzing Perceived Prototypicality. We expected the genesis of facial prototypes to be based
on adaptation mechanisms (e.g., Carbon and Ditye, 2011, 2012). Accordingly, exemplars that are
experienced more frequently should be perceived as more prototypical. Similar to Study 2, we
tested whether the age of the unique exemplars could predict the perceived prototypicality. Eight inde-
pendent regression analyses (two per model: younger vs. recent faces) revealed that the predictor (inde-
pendent variable) age satisfactorily predicted the perceived prototypicality (criterion); see Figure 16 for
details. This finding contrasts our hypothesis that there is adaptation towards the level of exposure
(experiencing more younger vs. experiencing more recent faces). Furthermore, even if participants
only learned younger faces, presentations from recent decades were perceived as most prototypical.

4.3. Discussion
We conducted Study 3 to investigate the process of facial learning concerning the individual level
of experience. There are two main outcomes from this study. First, in line with the results of
Study 1, we suggest that learned faces can be mentally organized in clearly genuine temporal
clusters referring to certain EoL (what we call episodic prototypes, EP). In everyday life, learning
faces is usually not a uniform process over time with equally distributed exposures to faces, as we
might experience some more or less intense periods of familiarity with a person (and thus with
her or his face)—we might even encounter full interruptions of interactions with persons (e.g.,
due to lacking personal contact to a person over the years), meaning we will encounter
periods where no updated visual input related to the facial appearance of this person is available.
In order to investigate such typical face-learning and memorization processes, we exposed par-
ticipants to sets of faces relating to very different EoL (a youthful period vs. the most recent
period of life). Interestingly, learning younger faces led to more finely graded episodic prototypes
(in the sense that exemplars of an episodic prototype are perceived more similarly); in fact, it led
to an additional EP from recent years. We have to cope with dramatic facial changes (e.g., due to
the process of aging) and, based on deep elaboration of a young prototype, it seems that people
then perceive more finely graded differences with more recent pictures. This specific result pro-
vides an important insight: The task in which a person is initially encountered with photos of a
younger EoL simulates the learning of how a person’s face ages across a certain lifespan. In fact,
this requires the higher “resolution” of an EP in the sense that this process refers to a naturalistic
prototype formation. In contrast, people who have learned more recent faces do not differentiate
among them in detail but link them to one solid and long time-spanning cluster instead—it seems
that they extract the essence of all these faces with all the useful variance provided by different
depictions of a face (e.g., Burton et al., 2005; Burton et al., 2016; Ritchie and Burton, 2017;
Young and Burton, 2017). Analyses revealed that the mere frequency of specific face presenta-
tions had no measurable impact on the perceived prototypicality. This is in contrast to the hypoth-
esis that the process of prototype formation mainly relies on frequency-based adaptation (see e.g.,
Carbon and Ditye, 2011, 2012)—or on the general factor called “time” (Strobach & Carbon,
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2013) or “adaptation duration” (Strobach et al., 2011), but is in accord with already existing data
from other face learning paradigms (Schneider & Carbon, 2014). In situations where a face repre-
sentation is deeply established by lifelong learning, e.g., in the typical case of relatives whom we
have seen thousands of times in very different situations and under very different viewing con-
ditions, we revealed a rapid update mechanism that is very effective in updating the mental repre-
sentation instantly. This is quite surprising, as deeply established representations seem to need a
kind of inertia of adaptation in order not to be overwritten too quickly. We have, however, docu-
mented such cases before, for instance in the case of a very well-established face, the portrait of
Mona Lisa painted by Renaissance artist Leonardo da Vinci—this particular portrait is probably
the best-known one in the world with thousands of expositions across life; nevertheless, a severe
change to its facial configuration yields an instant change in the mental representation (Carbon &
Leder, 2006). Such a rapid update mechanism was also documented for faces which were also
mentally very well represented via a long learning history (Carbon et al., 2007)—an update of
the prototype which lasted for a long period of time, e.g., one week (Carbon & Ditye, 2011),
and persisted across different test settings (Carbon & Ditye, 2012). Actually, this potential
risk of updating an established prototype too quickly via new visual inputs is offset by a
potent mechanism to keep the mental representation up to date in order to be able to refer to
the latest outward appearance of a known person. Such a mechanism is therefore particularly
important for instances that refer to contemporary times but not to historical times where such
a change does not occur.

5. Study 4
From the previous three studies, we provided evidence for the following three insights. First: We
suggest age as a very potent factor for facial representations and prototypes. Even if we can mentally
categorize faces along other variables such as facial expression, ethnicity, or gender (see e.g.,
Valentine, 1991; Valentine and Endo, 1992), regarding lifelong learning scenarios, age seems to
have the strongest impact on the genesis of facial changes and so also on the genesis of facial repre-
sentations and prototypes. Second: Recent presentations are perceived as being more prototypical,
suggesting that the mental representation of a given face is adapted towards a more recent outward
appearance of the respective identity. Third: We could also show that the frequency of exposure of a
given face has no significant impact, contrasting evidence from classical frequency-based adaptation
studies (see e.g., Carbon and Ditye, 2011, 2012). More in detail, recent presentations of a given face
most likely correspond to one facial representation of a given identity (operationalized by perceived
prototypicality). Accordingly, in contrast to simple unifying average-based prototypes models (see
e.g., Burton et al., 2005; Jenkins and Burton, 2008; Valentine and Endo, 1992), we present the
Episodic Prototypes Model (EPM) as a hybrid-model combining the strengths of average- and
exemplar-based (e.g., Hintzman, 1984, 1986) approaches. More in detail, the EPM suggests that
faces are represented in distinct temporal clusters, so-called episodic prototypes (EPs) reflecting
the typical outward appearance of an episode of a human’s life. Recent and more sophisticated
approaches like the varying abstraction model (Vanpaemel & Storms, 2008) supports our idea of
a partial abstraction rather than an exhaustive approach.

Finally, we claim that the EPM is more efficient and outperforms average-based approaches,
which are commonly used in the research field of face perception. The previous three studies
already provided first indications that we can reveal data pattern in a multitude of empirical para-
digms which are compatible with Eps. Up to now, however, we lack rigorous experimental
testing showing the recognition power of EPs. Accordingly, we conducted a fourth and final
study to test this postulation by employing a face verification task utilizing reaction times (RTs)
as a key measure.

Schneider & Carbon 31



5.1. Method
5.1.1. Participants. Twenty-two persons participated in Study 4 (11 female;M = 26.5 years, SD =
7.1, range 20 to 51 years) on a voluntary basis. Most of the participants were undergraduate students
of the University of Bamberg and gained course credit or twenty Euros to fulfill course requirements.
All participants were naïve to the aim of the study and were not familiar with the presented faces.
They were all assessed as being normal in terms of visual acuity tested via a standard Snellen Eye
chart test. Color-vision for all participants was ensured by testing them via a self-made short version
of the Ishihara color test. All participants gave written consent to participate in the study. All pro-
cedures and treatments of participants were in accordance with the Declaration of Helsinki. The
study was in full accordance with the ethical guidelines of the University of Bamberg and was
approved by the University Ethics Committee on 18 August 2017.

5.1.2. Materials. We used the same material as in Study 1 but with the major difference that we
pre-processed all images by reducing color saturation (chroma), adding a sepia picture plane
(30% opacity) and slight blur in case of higher focus depth at the same level plus adding slight
scratches using Adobe Photoshop CC 2021. Some older depictions, especially from the 1970s
and 1980s were excluded from this procedure since this procedure would has added to much distor-
tion. The main idea behind this approach was to make the material visually more homogenous and
reduce available visual information such as the picture quality what can be used to make inferences
about the actual age of the picture. Please note that we did not aimed to eliminate any and all poten-
tial sources of biases such as passing fad or hairstyle what also might offer information to make
inferences about the actual age of the depicted individual. However, most of the participants
from the first three studies stated that the perceived age of the depicted individual had the highest
impact on their decisions.

Subsequently, we created morphs (EPs) for each decade of the model’s life (1960s, 1970s, 1980s,
1990s, and 2000s) using the photo-morphing software Abrosoft© FantaMorph V5 (5.4.6) and the
same morphing procedure as for Study 2. For each EP, we excluded the target exemplar from the
total number of exemplars (‘drawn without placing back’/’choosing without replacement’). For
example, in case of model Female1959, the set for the 2000s EP was based on five exemplars
from the years 2000, 2003, 2006, 2009, 2012, and 2013, so for a 2013 target we excluded that
2013 exemplar from the respective EP. This resulted in six versions of this EP so that each
version consisted only of five single exemplars (see Figure 17 for an example). Please note that
not every EP consisted of the same number of single exemplars. On average, each EP consisted
of 3.5 single exemplars. However, the EP of the 2000s consisted of 6 single exemplars on
average. We applied the same procedure to all exhaustive prototypes (comprising all 20 single exem-
plars per model). For example, in the case of the exhaustive prototype of model Female1956 (con-
sisting of all twenty exemplars), we created twenty versions of this exhaustive prototype where for
each version one single exemplar was excluded. The main idea behind this approach was to avoid
using the same stimulus material (with no sufficient variance) but still having enough trials for valid
reaction times measurements. Consequently, we yielded 70 versions of episodic prototypes (1960s,
1970s, 1980s, 1990s, and 2000s episodic prototypes) + 80 versions of exhaustive prototypes = 150
presentations in total.

5.1.3. Procedure. Study 4 was implemented in two steps. In a first step, participants were asked to
learn the faces applying the same deep evaluation technique as used in Study 3 with two important
differences: First, we also provided a fictional name for each model (Female1956 was named Elke,
Female1959 was named Gabi,Male1955 was named Theo, andMale1959 was named Luka) above
each presented face (e.g., “This is Elke…”). Second, we used the same nine evaluation variables as in
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Study 3 (skin quality, skin tone, hair color, hair length, eye distance, eye shape, eyebrow condition,
facial salience, and sexual dimorphism) but added chin form and head form (both ranging from 1 =
very narrow to 7 = very round) to also consider rather external face features—this should ensure
elaboration of the faces to a maximum of visual properties. The evaluation of the aforementioned
variables was established in random order resulting in 4× [models]× 20 [presentations]× 11 [vari-
ables] = 880 trials regarding the learning procedure.

The second step of Study 4 was a face verification task. All 150 versions of episodic prototypes +
exhaustive prototypes were presented in the middle of a 24” display in random order. Participants
were asked to decide whether there was a match between name and the presented face or not as
fast as possible by providing them with the question, e.g., “Is this Elke?” right above each face.
Combinations between faces and names were counterbalanced within the model’s sex. We recorded
reaction times (RT) and the quality of the response (correct vs. incorrect). Each trial started with a
fixation cross (200 ms) + blank screen (200 ms) followed by the target until a response was made by
the participant on the keyboard. With respect to the learning procedure, participants could take a
short break after every 88 trials. The whole procedure of Study 4 lasted approx. 75 min.

5.2. Results
5.2.1 Data Analysis Strategy. The data was processed using R 4.0.4 (R Core Team, 2013). In add-
ition to the lme4 package (Bates et al., 2015) to perform linear mixed-effects analyses, R packages
lmerTest (Kuznetsova et al., 2017) and ggplot2 (Wickham, 2016) were mainly used during the ana-
lysis of the data.

5.2.2. Data Analysis. The main hypothesis which we tested was that episodic prototypes are the
more adequate format to represent facial prototypes than exhaustive prototypes comprising all sin-
gular facial exemplars of a person. We operationalized this by a more efficient usage of episodic
prototype indicated by faster reaction times (RTs) in a face verification task. Before we conducted
analyses on the RTs, we tested for differences between the exhaustive and the EP models regarding
correctness data to be sure that RTs are not biased by a speed-accuracy tradeoff. This was done, like
all following statistical analyses, by means of utilizing Linear Mixed Models (LMM). We always
followed a subsequent testing strategy with increasing complexities of the employed models.
Therefore, we first defined a null model (Model #0) with factors involved for which we had no spe-
cific hypothesis in mind: Model #0 used no fixed factors, but only two random factors: CaseID (the
participant ID) and Model (depicted person: the four depicted persons, called “models”). For the
respective subsequent model, we added only one factor at a time to be able to via likelihood ratio
tests which model was the most adequate model concerning the degree of fitting while being still
parsimonious. Each model’s residuals were visually inspected to exclude models deviating from
homoscedasticity or normality.

To test the correctness data (M= 92.1%, see Figure 18 for details) for differences between the
general conditions of verifying a person on the basis of an exhaustive vs. episodic prototype, we
tested the Null Model for correctness against Model #1 for which we added the general prototype
model as fixed factor. The likelihood ratio test between Model#1 and the Null Modell yielded no
significant result (see Table 2) indicating no further predictive power of adding the general prototype
model, so a speed-accuracy effect could not be revealed.

Based on this, we further tested for effects of the specific prototype used on the efficiency of the
face verification process on the basis of reaction time data for correct responses. We first excluded
RT outliers on the following criterion: RTs (of correct responses) which were faster than 200 ms and
above 2.5 SDs of the individual mean of RTs were interpreted as RT outliers. This very conservative
criterion resulted in a data loss of 1.1%.
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Table 2 shows the subsequent testing of models (Model #1 again used the general prototype
model as fixed factor, Model #2 used the more fine-graded specific episodic prototypes compared
with the exhaustive prototype) resulting in identifying Model #2 as the most adequate model to
describe the data, explaining 47.9% of the variance of the data—details on the further outcome
of this model can be retrieved from Table 3.

As can be seen in Figure 19 (and which can be statistically retrieved from respective Table 3
about the LMM testing), all episodic prototypes were faster processed than the exhaustive prototype.

Table 2. Comparison of models for the dependent variables correctness and reaction times (RT) of correct

responses. Npar = number of model’s parameters, AIC = Akaike information criterion, an estimator of

prediction error, −2LL = likelihood ratio, df = degrees of freedom and p = p-value of the regarding χ2-test
(comparing the present model with the preceding one, e.g., the columns for Model #1 indicate the comparison

between Model #1 and Model #0).

Models for CORRECTNESS Npar AIC −2LL df χ2 p

#0: 1 + (1 ∣ MODEL) + (1 ∣ CASEID) 4 122,717 −61,355
#1: 1 + PROTOTYPE + (1 ∣ MODEL) + (1 ∣
CASEID)

5 122,717 −61,355 1 2.5 .1161

MODELS FOR RT (CORRECT) Npar AIC −2LL df χ2 p

#0: 1 + (1 ∣ MODEL) + (1 ∣ CASEID) 4 158,783 −79,387
#1: 1 + PROTOTYPE + (1 ∣ MODEL) + (1 ∣
CASEID)

5 157,055 −78,522 1 1,730.2 <.0001

#2: 1 + EPM_PROTOTYPE + (1 ∣ MODEL) + (1 ∣
CASEID)

9 156,831 −78,456 4 132.0 <.0001

Table 3. Linear mixed model #2 identified as most adequate to describe the reaction time (RT) data pattern by

subsequent testing of model #1 against model #0 and then model #2 against model #1 via likelihood ratio tests.

Bold numbers show significant results.

RT (correct)

Model2

Predictors Estimates p df

(Intercept) 790.80 ∗∗∗ <0.001 12,006.00

exhaustive Reference
1960s −96.88 ∗∗∗ <0.001 12,006.00

1970s −113.57 ∗∗∗ <0.001 12,006.00

1980s −117.42 ∗∗∗ <0.001 12,006.00

1990s −139.23 ∗∗∗ <0.001 12,006.00

2000s −161.68 ∗∗∗ <0.001 12,006.00

ICC 0.43

N Model 4

N SNr 22

Observations 12,015

Marginal R2 / Conditional R2 0.088 / 0.479

AIC 156,930.712

log-Likelihood −78,456.356
∗∗∗ p < 0.001

36 i-Perception 12(5)



F
ig
u
re

19
.
R
e
ac
ti
o
n
ti
m
e
s
(R
T
)
fo
r
th
e
d
if
fe
re
n
t
E
p
is
o
d
ic
P
ro
to
ty
p
e
M
o
d
e
l
(E
P
M
)
E
p
is
o
d
e
s
an
d
th
e
E
x
h
au
st
iv
e
P
ro
to
ty
p
e
.
B
o
x
p
lo
ts

al
o
n
g
w
it
h
in
d
iv
id
u
al
d
at
a

p
o
in
ts
sh
o
w
th
e
d
is
tr
ib
u
ti
o
n
o
f
R
T
s.
St
at
is
ti
ca
l
te
st
s
ar
e
b
as
e
d
o
n
th
e
L
M
M

ap
p
ro
ac
h
sh
o
w
n
in
T
ab
le
3
.
A
ll
d
if
fe
re
n
ce
s
b
e
tw

e
e
n
E
P
M

P
ro
to
ty
p
e
s
an
d
th
e
E
x
h
au
st
iv
e

P
ro
to
ty
p
e
w
e
re

fo
u
n
d
si
gn
ifi
ca
n
t
o
n
a
le
ve
l
o
f
p
<
.0
0
0
1
.

Schneider & Carbon 37



5.3. Discussion
Evidence from the first three studies demonstrates the strengths of the EPM in contrast to standard
exhaustive prototype models. Study 4 was conducted to investigate the postulated efficiency and
advantages of this approach. We could show that all episodic prototypes were processed signifi-
cantly faster than a given exhaustive prototype. This effect was remarkably large and yield an
average benefit of reaction times in the range of 96 to 161 ms (see Table 3). Importantly, this
effect was also very robust, as shown by similar effects across the participants. As can be retrieved
from Figure 19, not only the face verification was slowed down when exhaustive prototypes were
used instead of episodic prototypes, shown by significant effects of the exhaustive prototype against
any of the episodic prototypes, but there was also a further, seemingly hierarchical, effect of episodic
prototypes: The more recent an episodic prototype was, or put it differently: the closer an episodic
prototype was to the latest instances of an outward facial appearance, the faster a verification task
could be executed. This indicates that not only the mental representation of faces in terms of episodic
prototypes is beneficial, but that learning many versions of faces coming with an aging component
seemingly leads to a chronologically ordered relevance of episodic prototypes. And as long as we
rely on evolutionary-shaped cognitive mechanisms which evolved over a very long time of phylo-
genesis where clear-cut references to bygone times were not available, the latest representatives,
compiled together to the most recent episode of life, is the most important mental representation
as it is most indicative for successful face verification of versions similar to the current outward
appearance. Such a noticeable side finding that was not in the focus of our present work might
be most interesting for consequently developing a representational memory model based on
facial episodes further.

6. General Discussion
The main goal of the present study was to investigate the nature of facial representations and the
genesis of facial prototypes with a focus on temporal dynamics in facial development. In contrast
to classical average models (e.g., Burton et al., 2005; Franks and Bransford, 1971; Gao and
Wilson, 2014) of mental representations, which postulate that prototypes are abstractions of a
certain concept as a result of averaging characteristic features, we postulate the Episodic
Prototypes Model, which seems to be more economical while preserving the more typical charac-
teristics of a face.

In accordance with well-established exemplar-based models (e.g., the MINERVA-2 model by
Hintzman, 1984, 1986), we could demonstrate that the assumption of a particular exhaustive proto-
type—which should correspond to the facial representation of a particular person (see, e.g., Benson
and Perrett, 1993; Busey, 1998; Reinitz et al., 1992; Webster et al., 2004; Webster and MacLeod,
2011) for a long-term life phase or even the whole lifetime—is sub-optimal. In fact, an exhaustive
prototype cannot represent the typical characteristics of a face. Recent studies have investigated the
process of how a face becomes familiar and have revealed that learning a new face involves an
abstraction of the variability of different images belonging to the very same person’s face (see
e.g., Burton et al., 2016; Kramer et al., 2017; Matthews et al., 2018; Menon et al., 2015; Murphy
et al., 2015; Ritchie et al., 2018; Ritchie & Burton, 2017; White et al., 2014). However, the
process of learning a face could not be sufficiently described by such temporal-invariant models.
Although these recent approaches are more sophisticated than first-generation prototype models
from the 1990s (e.g., Valentine, 1991; Valentine and Bruce, 1986; Valentine and Endo, 1992),
they do not provide any decisive information about how faces are mentally represented (e.g.,
average-based vs. exemplar-based) or whether temporal aspects have a significant impact on the
genesis and representation of facial prototypes. The findings of the present study highlight a very
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critical problem in this respect. Although we have gained a varied body of information on how faces
are recognized (e.g., Akselrod-Ballin & Ullman, 2008; Bindemann et al., 2010; Bruce & Young,
1986; Burton et al., 2005; Carbon, 2008; Wirth & Carbon, 2017), face research still lacks knowledge
and theories on which variables (e.g., temporal) are essential for generating facial prototypes and
representations. Most research still does not deal with the variability of outward facial appearances.
Furthermore, the specific process of learning is hardly a topic for research. Real-life experiences and
learning in real-life conditions have been covered even less by recent approaches. All these methods
yield relatively simple models of facial representations, which typically refer to average or exhaust-
ive prototypes. An averaged representation produces and average “echo” (in the sense of
Hintzman’s 1984,MINERVA-2 Model)—see Figure 12—and thus provides a very economical solu-
tion to a simple representational basis which certainly outperforms mere single exemplar-based
approaches (see e.g., Busey, 1998; Valentine and Bruce, 1986; Valentine and Endo, 1992).
Furthermore, facial representations could be described as abstractions of all the characteristic attri-
butes of respective faces (e.g., Franks and Bransford, 1971). It is not surprising that averaged repre-
sentations of a person’s face are more reliably and quickly recognized than single exemplars, which
are used in passports (e.g., Benson and Perrett, 1993; Burton et al., 2005; Busey, 1998; Gao and
Wilson, 2014; Jenkins and Burton, 2008; Reinitz et al., 1992; Webster et al., 2004; Webster and
MacLeod, 2011). If the timespan to be integrated is too long, however, we face a striking loss of
variance for such singular prototypes.

In the present study, we demonstrated that this inherent problem could be avoided by assuming a
model that is much closer to the typical learning histories of faces. The Episodic Prototype Model
(EPM) explicitly deals with the typically increasing variability of facial representations over time
(Figure 12) by employing several prototypes of a given face that represent different EoL. Such pro-
totypes were indeed revealed by all three studies. Furthermore, we showed that the facial representa-
tion of a respective person is biased toward recent experiences when participants experienced a
larger number of younger presentations. At first glance, this result seems to be in contrast to the
attribute-frequency model (see e.g., Neumann, 1974, 1977; Solso and McCarthy, 1981b), which
postulates a prototype as a pattern that incorporates the most frequently experienced feature
within each attribute. Our results showed that this model remains valid for specific and limited time-
spans in extreme cases, such as are simulated in Study 3, we suggest that it is more economical for
the cognitive system to perform an almost instant update of the facial representation what is plau-
sible as we have to cope rapidly with dramatic facial changes after a long period of time. This pos-
tulation is supported by recent research, which revealed that the level of experience (frequency of
exposure) has no impact on the perceived prototypicality (Schneider & Carbon, 2014). In contrast,
it could be shown that familiarity is a more important predictor for prototypicality. Accordingly, we
suggest that we perceive recent presentations as more familiar, as we experience the respective
person in the present (and not in the past). Finally, we tested in Study 4 our major claims of the
EPM by using a well-established approach in face research (see e.g., Bruce & Young, 1986;
Burton et al., 2005; Thorpe, Fize, & Marlot, 1996). We used a face verification task and revealed
that episodic prototypes are significantly faster processed than exhaustive prototypes supporting
the idea that the EPM is more efficient and outperforms average-based approaches, which are com-
monly suggested to be good candidates for robust face representations (see e.g., Burton et al., 2005).

We would also like to make clear some limitations of our present study. First, the explicit usage
of authentic and highly idiosyncratic stimulus material made it rather hard to access professional and
standardized photo material. However, we also want to stress that recent research (Schneider &
Carbon, 2017a) indeed used highly professional and standardized stimulus material and still
found similar temporal cluster configurations, being in accordance with the EPM described here.
Thus, we expect that the stimulus material in the present study was of sufficient quality and reflected
the typical material we assess in everyday life. Second, with respect to the so-called representation
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enhancement hypothesis, there is some evidence that faces which were learned in motion can be
recognized more accurately than learned from static views (see e.g., Lander et al., 1999; Lander
& Bruce, 2000, 2003; Lander & Chuang, 2005; O’Toole & Roark, 2011). Accordingly, one
could suggest that facial representations are stored in motion. For Study 2, a large number of the
participants (who were relatives of the respective model) stated that they found the task very difficult
since they typically encountered the persons in real-life events in a dynamic and interactive way.
This fact could be crucial for further research into facial prototypes and representations. As men-
tioned in the introduction, there is only sparse knowledge on how the mental representation of a
face is built up and how exactly faces are further represented. This process, again, could be
mainly influenced by temporal as well as contextual variables (e.g., there is an “always-smiling”
relative whose prototype has a variety of smiling and moving facial expressions). This leads to
another important question that was considered before: how do multimodal information and
social interactions play a role in prototype formation?

With respect to the multidimensional face-space, past research has always been content to extend
this face-space with an additional and abstracted temporal dimension in order to describe temporal
aspects. The utility of such explicit and rather abstracted dimensions seems quite limited, as it does
not reflect the individually based face-space with respect to the aforementioned idiosyncratic and inter-
active temporal facial development. However, one important question remains: is age only one out of
several variables that affects the genesis of facial prototypes and presentations, or does it point to the
core of the whole generation principle of new episodic prototypes? Certainly, we would not disagree
with the idea that prototype formation may rely on aspects other than aging (e.g., changing facial
expression, fashion style—principally hairstyle—or most of all skin tone due to a severe health
problem) see e.g., Abudarham et al. (2019) and Gotlieb et al. (2020). However, in accordance with
recent research (e.g., Mileva et al., 2020), we propose that time is presumably the most important vari-
able since almost all facial changes across the whole lifetime are age-related or age-induced.

We hope that our Episodic Prototypes Model (EPM), together with the accompanying empirical
studies, contributes to the understanding of how facial representations are generated and retrieved.
The postulated EPM aims to further specify the nature of so-called face-spaces by propagating an
episodic view on facial representations. This might help to better understand why we are on the
one hand often so brilliant at recognizing familiar persons based on just one single image that fits
with experienced episodes of such a person, but why on the other hand we are often poor at iden-
tifying the very same person from lots of images which stem from other, less or not-experienced
episodes. Further research should investigate potentially interesting additions to the here developed
EPM such as individually weighted prototypes or specifically defined facial information, which lead
to more effective changes in prototypes. We would be very happy to see our preliminary approach
inspiring more work on this important field of face research.
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