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Measuring Power in Voting Bodies: 
Linear Constraints, Spatial Analysis, and a Computer Program 

H Rattinger, Freiburg 

1. Introduction 

The purpose of this contribution is to present some extensions of an established 
method for measuring the distribution of power amöng the various groups within any 
voting body. If there are no formal alignments of individual voters - like parliamentary 
groups or fractions - within such a unit, and if voting occurs on a purely individual basis 
according to a "one man one vote" rule, all members obviously possess the same voting 
power in that they are all equally decisive for voting outcomes. If, on the other hand, 
voting patterns are mediated, so to speak, by a division of the voting body into several 
voting blocs with a fairly high probability of joint voting, as is the case for parliamentary 
groups within legislatures, then the voting power of individual members can vary between 
blocs depending upon the number of individuals in each bloc and the decision rule. In 
highly simplified economic terms this means that if one wants to "buy" the one decisive 
vote for a particular motion, then in the former case each member would be worth the 
same amount of money whereas in the latter case this amount would have to be weighted 
by the odds that an individual member will belong to the decisive voting bloc. In other 
words, the "price" paid for each voting bloc should covary with its probability ofturning 
the outcome which is a straightforward measure of its power. 

These basic notions about measuring power in voting bodies have received widespread 
acceptance and application following Shapley 's [ 1953] and Shapley 's/Shubik 's [ 1954] 
seminal work. Their power index is presented as a standard tool for game-theoretical anal-
ysis of politics in textbooks [ e.g., Riker/Ordershook, eh. 6], and it has been usefully ap-
plied to the analysis of the distribution of power in several legislatures [ e.g., Frey; Weiers-
müller; Zerche; Holler/Kellermann]. 

The intention of the present contribution is not to extend this series of applications of 
the "classical" power index but rather to attempt to overcome one of its serious deficien-
cies in empirical research. This shortcoming is the assumption implicit in calculations of 
the values of the index that all voting sequences within a given voting body are equally 
likely. After briefly discussing the conventional power index we will concern ourselves 
with various methods for avoiding this unrealistic assumption. We shall introduce either 
one-dimensional or spatial constraints on joint voting, or shall weight voting coalitions 
with the probability of joint voting of their participants. Finally, a computer program de-
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signed to perform this kind of modified computations of the power index will be pres-
ented together with an illustrative example. 

2. Shapley's Power Index 

223 

If voting within a voting body is simply according to a "one man one vote" rule and if 
there are no voting blocs or alignments whatsoever, then there is no need for a power 
index. WithN individual voters (and therefore N individual votes) each vote is equally 
likely tobe decisive or "pivotal" for a given motion. Each voter clearly holds one N-th of 
the total voting power, i.e „ in an infinite series of voting procedures his vote is expected 
to decide the outcome in one N-th of the total number of cases. 

Empirically, voting bodies without any formal subdivisions are the exception rather 
than the rule. Whenever such subdivisions exist, then there is the problem of measuring 
their voting power. The simplest measure is the vote share commanded by each group or 
voting bloc, which is analogous to ascribing a power share of l/N to each voter in the case 
of an unstructured voting body. The problem with this measure is that it is only in ex-
ceptional cases - e.g„ if all voting blocs are of equal size - identical to the likelihood of 
each group to be decisive for voting outcomes. In most other circumstances vote shares 
and probabilities for being "pivotal" differ, the most extreme discrepancy occuring when 
one voting bloc commands just over half of the total number of votes. 

This insight was the starting point for the development of Shapley's power index. lt 
proceeds from the simple consideration that in a voting body with K units {fractions, par-
ties, voting blocs ), K blocs of votes are cast in any voting procedure if all units vote ho-
mogeneously. As blocs of votes are regarded as units, and not the individual votes, the 
weight of a unit is defined as the number of its individual votes. 

lf one assumes that in deciding on a particular motion the votes of all K units are ho-
mogeneously cast in a sequential fashion, unit after unit, there are PK == K! possible se-
quences of voting. If one further assumes that the votes of each bloc are homogeneously 
cast in identical direction (pro or con) to those of the previous blocs, one can for each of 
the PK sequences determine which unit establishes a majority (pro or con) by adding its 
votes to those previously cast. For each unit i, let Ti denote the number ofvoting se-
quences in which i plays this pivotal role. Then obviously: 

K 
1.: T. = PK. 

i=l l 

Shapley's power index Si for each unit i is defined as Si = Ti/PK, so that naturally the 
values of Si for all units sum to unity. This index can be substantially interpreted as the 
probability that unit i, by casting its votes, establishes a winning majority of minimum 
size in any voting sequence or, to put it differently, as the relative frequency with which 
unit i plays the pivotal role in an infinite number of random majority coalitions among 
theK units. 

According to Shapley [ 1953] any attempt to measure the distribution of power among 
the units i in a voting body under his set of axioms either produces an index equivalent 
to Si or leads to logical inconsistencies. lt should be noted that Shapley's power index in 
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its initial formulation is defined for the absolute majority rule, "majority" being the 
smallest integer greater than N/2. This restriction is not a logical necessity. In fact, it is 
possible to define any fraction of N as the required threshold of votes without affecting 
the logic of the power index itself or the logic of its computation. Therefore, the comput-
er program to be presented below has been designed to compute the distribution of pow-
er, alternatively, for absolute and two-thirds-majority as the two most frequent decision 
rules for parliamentary voting. 

The power index Si represents an a priori distribution of power which does not take 
any restrictions on joint voting and on coalition formation into account - be they politi-
cally, sociologically, psychologically, or otherwise determined. Each numerically possible 
voting sequence which secures a majority is treated as equally likely. That is in many 
cases of course a gross distortion of reality. We will now turn to several strategies for 
avoiding this unrealistic assumption by introducing measures for the chances that various 
given units will jointly appear in a majority coalition into the computation of the power 
index. Let us start with linear constraints along a continuum. 

3. One-Dimensional Constraints on Coalition Formation 

In introducing linear constraints on coalition formation into the computation of the 
power index we proceed from the assumption of the existence of a one-dimensional ordi-
nal policy space. This means that the K voting blocs can be arranged in an order conform-
ing to their relative positions in this policy space. The obvious exatnple naturally is an 
ideological left-right dimension where for any two voting blocs i and j the first unit i ide-
ologically stands to the left of unit j if and only if i < j. With this kind of ordinal policy 
space it is assumed, of course, that the size of the intervals between positions has no rele-
vance. 

If such a transitive order of K voting blocs along any simple dimension of policy pref-
erences exists, then obviously not all minimum winning coalitions are equally likely. The 
more dispersed a minimum winning coalition is along the relevant policy dimension the 
less likely is its formation, and vice versa, for the conflict of interest within a coalition de-
pends upon its dispersion [Axelrod, p. 169). The conflict of interest within a coalition is 
minimized - and therefore the coalition's utility for participating voting blocs is maxi-
mized - if dispersion along the policy dimension it kept to a minimum. Dispersion is 
lowest, however, if a coalition consists of adjacent voting blocs, or, to follow Axelrod's 
terminology, if it is connected. 

More formally, the property of connectedness can be defined as follows: If K voting 
blocs have been arranged transitively along a one-dimensional policy space, then a coali-
tion consisting of n voting blocs m is connected if and only if max (m) -min (m) = 
n - 1. If a minimum winning coalition is also connected, it is called a minimum con-
nected winning coalition. 

If we proceed from the basic logic of the Shapley-Shubik index and in addition assume 
that - given an ordinal policy space - only minimum connected winning coalitions will 
be formed, the voting power of any voting bloc i is clearly the share of all those coalitions 
in which it is pivotal. In order to find this share, all we have to do is find the number TAi 
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of connected coalitions among the T; minimum winning voting sequences in which i is 
pivotal. This can be easily performed by applying the numerical criterion given above 
[Rattinger, 1979]. We therefore obtain a modified power index for the units in a voting 
body which can be represented by an ordinal policy dimension: 

TAi 
SA.= 

l K 
I: TA. 

i=l l 

4. Spatial Constraints on Coalition Formation 

The consideration that policy preferences along a policy dimension influence coalition 
formation, certainly represents an important step towards a more realistic measurement 
of voting power. However, one might argue that in many cases the assumption of a one-
dimensional ordinal policy space still constitutes a gross oversimplification. lt is conceiv-
able that in a voting body dominated by ideological positions, coalitions among extremist 
voting blocs or factions from both left and right are more probable than coalitions com-
prising middle-of-the-road and extremist groups from either side. In such a situation cer-
tain minimum connected winning coalitions will not be formed whereas certain realistic 
coalitions are not connected. 

Here generalizing the concept of connectedness for multi-dimensional ordinal pclicy 
spaces does not lead us any further. Instead, we have to assume that for each pair of two 
voting blocs i andj, out of the total of K voting blocs, we know whether or not i andj are 
willing to join forces in a coalition. Let vii = 1 if and only if i regards j as an acceptable 
partner in a coalition, and let v;i = 0 otherwise. We then have a binary K X K adjacency 
matrix V= [vij] with all entries vu on the main diagonal trivially being 1. Obviously ma-
trix V does not D.ave to be symmetrical as it is entirely conceivable that voting bloc i 
would accept j as a partner in a joint coalition, so that vii = l, whereas j rejects i, so that 
Vji = 0. 

In this contribution we shall not concern ourselves with the problem of empirically ar-
riving at the adjacency matrix V. We assume V to be given and demonstrate the opportu-
nities for the measurement of voting power if information of the sort contained in V is 
available. Any minimum winning coalition can be formed if and only if for every pair of 
two voting blocs i andj in this coalition Vij = 1, i.e., if each voting bloc is adjacent to all 
the other participants in this coalition. In graph-theoretical terms this means that if an 
empirical binary adjacency relation is represented by an adjacency digraph, then any em-
pirically feasible minimum winning coalition has tö correspond to a complete, reflexive, 
symmetric, and connected sub-digraph which, of coutse, is represented by a sub-matrix of 
V with entries of only 1. If at least one voting bloc i in a numerically possible minimum 
winning coalition is rejected by at least one other member j, i.e„ Vji = 0, then this coali-
tion cannot be formed. 

From these considerations the following concept of voting power constrained by spa-
tial adjacency is derived: For each voting bloc i !et TBi be the number of those minimum 
winning coalitions for which i is pivotal and which are represented by a sub-matrix of V 
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containing only entries of 1, then a second modified Shapley-Shubik-type power index 
SB; is given by: 

TBi 
SB;= K 

k TB. 
i=l 1 

S. Policy Distance and V oting Power 

The above concepts of adjacency or mutual acceptability between voting blocs within 
a voting body are obviously based upon a dichotomization of a more general concept of 
policy distance in multi-dimensional space. lf policy distance between two units is below 
a certain threshold, they are said to be adjacent or mutually acceptable as partners in a 
joint coalition, and vice versa. All distances above the particular threshold are represented 
by an entry of zero in matrix V, entries of one correspond to distances below this thresh-
old. Information on policy distance between i and j is reduced to information on whether 
or not they can appear'together in one coalition. This logical relationship does not imply, 
however, that policy distances will have to be measured empirically before one can set up 
matrix V. In many cases it will be much easier to obtain the kind of categorical judge-
ments contained in V, than to arrive at precise policy distance readings. Here SB; is a use-
ful improvement over Shapley's initial power index. 

Let us now assume, however, that information on the policy distance between any two 
units i and j within a voting body is empirically available. Let D = [d;;] be a K X K dis-
tance matrix with du= 0 and 0 ~ d;; ~ Z, where Z is any positive integer denoting the 
maximum value of the distance scale. d;; is the policy distance perceived by unit i vis-h-vis 
voting bloc j. d;; and d;; can be equal empirically, but need not be identical for logical 
reasons. 

If we assume coalition formation to be a process of policy distance minimization [De 
Swaan], then each numerically possible minimum winning coalition for which a given unit 
i is pivotal has to be weighted by its probability of occuring. This probability has to be an 
inverse function of the policy distances among the participating voting blocs. In order to 
arrive at appropriate probability weights, let us first define a K X K matrix Q = [q;;] with 
q;; = Z -d;j- q;; = 0 if i sees j at maximum political distance from itself, and q;; = Z if i 
and j in i's judgement have identical policy positions. lt should be noted that Q it not a 
probability matrix in the conventional sense. However, if we assume that the probability 
that i will join j in a coalition depends inversely and in a linear fashion upon the policy 
distance between i andj as perceived by i, and ifwe further assume that the maximum 
distance Z corresponds to a probability of zero then Q can be transformed into a proba-
bility matrix by an (unknown) similarity functionf (q;;) = aq;;. But this kind of transfor-
mation is not required for the present purpose of weighting minimum winning coalitions, 
for which Q suffices. 

Our problem now becomes how to assign weights to minimum winning coalitions 
which covary with their probabilities of formation. If such a coalition consists of only 
two voting blocs, the solution is fairly straightforward. But if there are more than two 
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participants, there is no single compelling way of aggregating an overall probability 
weight. Instead, we have to rely on plausibility and face validity. One solution would be 
to compute a weighted mean of % for all pairs of participants, weighting by n;, the num-
ber ofvotes in each voting bloc i. Let us assume that a minimum winning coalition is 
established by voting blocs i, j, and k, with n; == ni == nk, and Qij == Qji = Qjk == Qkj with 
Qij close to Z, and Qik = Qki with Qik close to zero. A weighted mean would yield a fairly 
high probability weight in the neighborhood of 2Z/3, whereas obviously this coalition is 
extremely unlikely as i and k, for all practical purposes, will not join in a coalition. A 
second solution, therefore, would be to take the smallest probability score of joint mem-
bership in a coalition for all pairs of its participants as the probability weight of a mini-
mum winning coalition. 

For this second solution it proves inconvenient that Q need not be symmetric. Before 
formally describing the two weighting procedures we therefore define a symmetric K X K 
matrix P = [pii J with Pij == Pji = (n;Qij + njQj;)/(n; + ni ). For any two units i and j, P con· 
tains a probability weight for their joint appearance in a coalition which is derived as a 
weighted average from both units' evaluations of their proximity. 

Given matrix P it is now possible to formally define the two strategies (as above) for 
assigning probability weights to minimum winning coalitions. We shall start with the first 
approach. Let M;m be the set of voting blocs which form the m-th minimum winning 
coalition for which unit i is decisive, and let a;m be the number ofunits in this coalition. 
Then the weighted average probability score, Wim, for this minimum winning coalition is: 

K K 
.:r: I: p.k (n. + nk) w. = J=l k=l 1 J 

im K 
I: 2(a. -l)n. 

j=l im l 

where: jEMim 

kEMim 
j =I= k. 

If T; is the total number of minimum winning coalitions for which i is pivotal, TC; is the 
sum of the probability weights of all those coalitions: 

Then obviously a third modified power index taking policy distances into account can be 
defined as: 

SC.= 
l K 

1: TC. 
i=l l 

Following the second strategy we obtain the probability weight w: for the m-th mini-1m 
mum winning coalition for which i is pivotal: 

where: j EMim 

kEMim 
j =I= k. 



228 

Therefore: 
T; , 

TDI.= ~ w . . 
m=l zm 

H. Rattinger 

Accordingly, our fourth and final modified power index, in which minimum winning coa-
litions are discounted by minimum proximity among participants is: 

TD. 
SD.= 1 

z K 
~ TD. 

i=l 1 

Whether one prefers SC or SD, when information on policy distances is available, will 
depend upon personal judgement and upon empirical patterns of distances. lf policy dis-
tances are highly "intransitive", so to speak, i.e., if within many minimum winning coali-
tions policy distances between participating voting blocs vary widely, then both indices 
will yield divergent results on voting power. Comparing the findings from both methods 
might lead to useful insights. 

6. The Program 

The five indices ofvoting power here described, can be computed within one 
FORTRAN-program.1) The basic idea of the program is to start with the votes of the 
first voting bloc and to add the votes of the second, third, etc. voting blocs until a mini-
mum winning coalition is reached. This process is repeated for all the K! logically possible 
permutations. Each minimum winning coalition is ascribed to the pivotal voting bloc. For 
each unit i there are five "accounts". In the first account, Ti, we have all minimum win-
ning coalitions which i can establish. In the second and third accounts, TAi and TBi, only 
those minimum winning coalitions (established by i) which meet the appropriate numeri-
cal criteria are included. The final two accounts, TCi and TD;, sum the probability 
weights ofthe minimum winning coalitions for which i is decisive. Standardization across 
all i, finally yields the five measures of voting power described in this contribution. 

A significant reduction of computing time is derived from the following consideration: 
lf i is pivotal for a minimum winning coalition consisting of m voting blocs, then there are 
(K - m)! permutations which contain exactly the same coalition in the first m places. We 
cannot only write one, but (K - m)! minimum winning coalitions into the accounts of i 
and, therefore, take only a fraction of K! loops to go through all permutations. 

The program currently exists for a maximum of K = 12 voting blocs. As input it re-
quires the number of voting blocs, the total number of votes, a vector of the numbers of 
votes in each bloc, a parameter which switches the program to absolute or to two-thirds-
majority, an adjacency matrix V, and, finally, a distance matrix D. One has the option to 
rearrange voting blocs, as normally in the computation of SA their position in the input 
vector will be interpreted as their position in a one-dimensional ordinal policy space. The 
program's output will now be illustrated by the following example. 

1
) The program was written by Gertrud Steigmiller proceeding from a program written by my-

self for the purpose of analyzing voting power in the European Parliament (Rattinger]. 
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7. An Example 
In our example, K has the maximum value of 12. The program first prints back a sym-

metrized matrix Vand matrixP. In the example these matrices look as follows: 

Matrix V 
1 0 1 0 
1 1 1 0 1 0 
1 1 0 0 0 
1 1 0 0 1 0 
1 1 1 1 1 
1 1 0 1 0 
1 1 1 1 1 1 1 1 0 
1 1 0 0 1 1 1 1 
0 0 0 0 0 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 

MatrixP 
5,0 3,9 3,6 3,0 3,0 2,4 2,1 2,1 1,2 2,1 2,1 0,1 
3,9 5,0 3,9 3,6 3,3 3,0 2,7 2,4 1,5 2,1 2,1 0,5 
3,6 3,9 5,0 3,6 3,0 2,4 2,1 1,8 1,2 2,4 2,1 0,9 
3,0 3,6 3,6 5,0 3,9 3,3 2,4 1,8 1,5 2,7 2,4 1,5 
3,0 3,3 3,0 3,9 5,0 3,6 3,3 3,0 2,7 2,4 2,1 2,1 
2,4 3,0 2,4 3,3 3,6 5,0 3,9 3,0 1,8 3,0 3,0 1,8 
2,1 2,7 2,1 2,4 3,3 3,9 5,0 3,6 3,0 2,4 2,1 1,8 
2,1 2,4 1,8 1,8 3,0 3,0 3,6 5,0 3,9 3,6 3,3 3,0 
1,2 1,5 1,2 1,5 2,7 1,8 3,0 3,9 5,0 3,6 2,7 2,4 
2,1 2,1 2,4 2,7 2,4 3,0 2,4 3,6 3,6 5,0 3,9 3,6 
2,1 2,1 2,1 2,4 2,1 3,0 2,1 3,3 2,7 3,9 5,0 3,6 
0,1 0,5 0,9 1,5 2,1 1,8 1,8 3,0 2,4 3,6 3,6 5,0 

We then receive information on the total number of permutations, the number of 
minimum winning coalitions satisfying the criteria of connectedness and of spatial adja-
cency, the number of program loops, the total number of votes, the number of independ-
ent votes not belonging to any voting bloc, and, finally, the requested type of majority 
and its numerical value. These figures are all presented below. Note that, on the average, 
slightly above 63 permutations per loop were dealt with. In spite of this reduction, more 
then 90 minutes CPU-time were required. 

"f,T ~TA "f,TB Program-loops 
479001600 4440960 45688320 7585920 

Total votes Independent votes Absolute Majority 
380 10 191 



Votes 

Votes Share 

T 
s 
TA 
SA 

TB 
SB 

SC 
SD 

2 3 4 5 6 7 8 9 10 11 12 

30 10 20 30 40 50 60 10 40 40 20 20 

.079 .026 .053 .079 .105 .132 .158 .026 .105 .105 .053 .053 

37929600 11923200 24503040 37929600 51788160 67063680 83358720 11923200 51788160 51788160 24503040 24503040 

.079 .025 .051 .079 .108 .140 .174 .025 .108 .108 .051 .051 

0 0 29376 380160 587520 1054080 1261440 241920 414720 207360 0 0 

0 0 .066 .086 .132 .237 .284 .055 .093 .047 0 0 

4510080 1330560 2592000 3732480 6238080 7758720 9383040 466560 207360 6238080 3231360 0 

.099 .029 .057 .082 .137 .170 .205 .010 .005 .137 .071 0 

.077 .025 .051 .079 .110 .142 .175 .025 .106 .109 .051 .049 

.067 .025 .052 .084 .116 .150 .185 .027 .099 .116 .056 .025 

N w 
0 

;z: 
~ e s· 
~ .... 
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The final and most important segment of the program 's output is a table which for 
each unit contains a column with the following data: absolute number ofvotes, vote 
share, number of minimum winning coalitions (1), of minimum connected winning coali· 
tions (TA), and of spatially adjacent minimum winning coalitions (TB) for which this 
unit is decisive, and the five indices of voting power described in this contribution. 

As our example is purely fictitious, it would not be very useful to analyze it in great 
detail. Let us, therefore, conclude with some very obvious observations. First, with just 
12 voting blocs we already see vote shares and Shapley's basic index converging as there 
are no clearly preponderant units. Second, the assumption that only minimum connected 
winning coalitions will be formed leads to a substantial concentration ofvoting power in 
the middle of the underlying policy dimension. Third, as the matrices V and P also ex-
hibit a moderate one-dimensional pattern of coalition preferences along the main diago-
nal, SB, SC, and SD do not deviate drastically from SA. With different matrices V and P, 
these discrepancies between the various power indices could be much stronger. If this 
were the case it would be a matter of substantive reasoning to decide which version of the 
index should be preferred. 
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