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‘Like, the joyous, sprightly spring,
Forever follows an icy winter streak,
When things are going not quite well,

Wait! Life flips, sooner than we can tell.”

From the poem Braving the Weather
— Myself

Dedicated to the cosmos that destined and acted through its elements
and agents to make this happen.






ABSTRACT

Facial expressions constitute one of the main channels through which
humans convey a rich variety of non-verbal cues that facilitate com-
munication and interaction with other humans. Affective computing
systems usually analyse human facial expressions in order to recog-
nise the affective, mental, or psychophysiological states of humans.
This has the potential to enhance human-machine interaction as well
as facilitate the development of assistance systems for improving the
quality of life of humans. The Facial Action Coding System (FACS)
is used by psychologists as the standard for describing facial expres-
sions objectively in terms of their constituent facial muscle movements,
known as Action Units (AUs). Analysis of the semantics and nuances
of facial expressions is then performed in terms of AUs.

Computer vision researchers have developed several approaches
for automatically recognising AUs and their intensities from facial
images or videos. One category of approaches focuses on using data-
driven machine learning methods to detect AUs based on patterns in
visual input data. Another category of approaches focuses on using
deformable face models that describe AUs semantically in terms of the
facial shape deformations that they cause. While the former category
of approaches can attain good predictive performance by learning
robust patterns covering large variance in input training data, the
latter category of approaches facilitates interpretability by virtue of
using AU-based deformable face models. Therefore, a combination
of both categories of approaches could help in building interpretable
systems for automatic facial expression analysis with good predictive
performance.

This dissertation presents a probabilistic state estimation framework
for integrating data-driven machine learning models and a deformable
facial shape model in order to estimate continuous-valued intensities
of 22 different AUs. A practical approach is proposed and validated
for integrating class-wise probability scores from machine learning
models within a Gaussian state estimation framework. Furthermore,
driven mass-spring-damper models are applied for modelling the dy-
namics of facial muscle movements. Both facial shape and appearance
information are used for estimating AU intensities, making it a hybrid
approach.

Several features are designed and explored to help the probabilistic
framework to deal with multiple challenges involved in automatic AU
detection. On the human front, these features calibrate the person-
specific facial shape and appearance, and enable adaptation to the
viscoelastic properties of different facial muscles. On the technical

ix



front, these features (i) deal with the similarities in facial shape defor-
mations caused by various AUs, (ii) handle the disproportional shape
deformations caused by subtle and pronounced AUs, and (iii) confine
the estimated AU intensities to a valid range. On the practical front,
these features enhance robustness by handling missing or anomalous
information.

The proposed AU intensity estimation method and its features
are evaluated quantitatively and qualitatively using three different
datasets containing either spontaneous or acted facial expressions with
AU annotations. The proposed method produced temporally smoother
estimates that facilitate a fine-grained analysis of facial expressions.
It also performed reasonably well, even though it simultaneously
estimates intensities of 22 AUs, some of which are subtle in expression
or resemble each other closely. The estimated AU intensities tended
to the lower range of values, and were often accompanied by a small
delay in onset. This shows that the proposed method is conservative.
In order to further improve performance, state-of-the-art machine
learning approaches for AU detection could be integrated within the
proposed probabilistic AU intensity estimation framework.

In addition to AU intensity estimation, this dissertation explores the
applicability of the estimated AU intensities for automatic analysis
of mental states such as pain and distraction. A survey of automatic
pain detection approaches, conducted as part of this dissertation,
highlights the progress and deficits in this field. Several AU-based
rules are designed for pain intensity estimation based on psychological
evidence, and their performance is evaluated empirically. The potential
of these AU-based rules to automatically generate explanations for
pain detections is also illustrated. Furthermore, a preliminary analysis
of the estimated AU intensities shows differences in facial actions
between various distraction scenarios during simulated driving.

Facial expressions are not the only channel through which mental
states are expressed. Physiological changes also accompany changes
in mental states. However, these physiological changes vary between
persons, and are influenced by a multitude of other factors. This dis-
sertation presents some initial efforts made towards dealing with these
challenges. The results of this dissertation show that more interdis-
ciplinary research is needed to address the open challenges in the
field of automatic mental state analysis, particularly to build refer-
ence datasets, to model interpersonal differences, and to generate
human-comprehensible explanations of predictions.



ZUSAMMENFASSUNG

Mimik ist einer der wichtigsten Kanile, {iber die Menschen eine Viel-
zahl von nonverbalen Signalen vermitteln, die die Kommunikation
und Interaktion mit anderen Menschen erleichtern. Affektive Compu-
tersysteme analysieren in der Regel menschlichen Gesichtsausdriicke,
um die affektiven, mentalen oder psychophysiologischen Zustiande
von Menschen zu erkennen. Dies hat das Potenzial sowohl die Mensch-
Maschine-Interaktion zu verbessern als auch die Entwicklung von As-
sistenzsystemen zur Verbesserung der Lebensqualitidt von Menschen
zu ermoglichen. Das Facial Action Coding System (FACS) wird von
Psychologen als Standard zur objektiven Beschreibung von Gesichts-
ausdriicken auf Basis von konstituierenden Gesichtsmuskelbewegun-
gen verwendet, die als Action Units (AUs) bezeichnet werden. Die
Analyse der Semantik und der Nuancen von Gesichtsausdriicken wird
dann mithilfe von AUs durchgefiihrt.

Forscher im Bereich des maschinellen Sehens haben mehrere An-
siatze entwickelt, um AUs und ihre Intensititen automatisch aus Ge-
sichtsbildern oder Videos zu erkennen. Eine Gruppe von Ansitzen
konzentriert sich auf den Einsatz datengetriebener Methoden des
maschinellen Lernens, um AUs auf der Grundlage von Mustern im vi-
suellen Eingabedaten zu erkennen. Eine andere Gruppe von Ansitzen
konzentriert sich auf die Verwendung von verdnderbaren Gesichtsmo-
dellen, die AUs semantisch, in Bezug auf Gesichtsformverdnderungen,
beschreiben. Wahrend die erste Gruppe von Ansétzen eine gute Vor-
hersageleistung durch das Lernen robuster Muster erreichen kann,
die eine grofie Varianz in den Trainingsdaten abdecken, erleichtert die
zweite Gruppe von Ansédtzen die Interpretierbarkeit durch die Ver-
wendung von AU-basierten verdnderbaren Gesichtsmodellen. Daher
wiirde eine Kombination beider Kategorien von Ansétzen dabei helfen,
interpretierbare Systeme fiir die automatische Gesichtsausdrucksana-
lyse mit guter Vorhersageleistung zu bauen.

Diese Dissertation prasentiert ein probabilistisches Framework zur
Zustandsschdtzung, das datengetriebene Modelle des maschinellen
Lernens und eines verdnderbaren Gesichtsformmodells integrieren,
um kontinuierlicher Intensitdten von 22 verschiedenen AUs zu schit-
zen. Es wird ein praktischer Ansatz zur Integration von Wahrschein-
lichkeiten aus Klassifikatoren innerhalb eines Gaufischen Zustands-
schdtzungs-Frameworks vorgeschlagen und validiert. Dariiber hinaus
werden Masse-Feder-Dampfer-Modelle, die durch dufiere Kraft ange-
trieben werden, zur Modellierung der Dynamik von Gesichtsmuskelbe-
wegungen eingesetzt. Sowohl Gesichtsform als auch Texturmerkmale
werden zur Schitzung der AU-Intensitdten verwendet, so dass es sich
um einen hybriden Ansatz handelt.
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Es wurden mehrere Funktionen entwickelt und untersucht, um die
verschiedenen Herausforderungen bei der automatischen Erkennung
der AUs zu bewiltigen. Erstens wurden Losungen entwickelt, die die
personenspezifische Gesichtsform und das Aussehen kalibrieren und
die Anpassung an die viskoelastischen Eigenschaften verschiedener
Gesichtsmuskeln ermdoglichen. Zweitens wurden Losungen konzipiert,
die (i) die Ahnlichkeiten der durch verschiedene AUs verursachten
Gesichtsformverdnderungen behandeln, (ii) die durch subtile und
markante AUs verursachten disproportionalen Formverdnderungen
berticksichtigen und (iii) die geschitzten AU-Intensitdten auf einen
giltigen Bereich beschranken. Drittens wurden Losungen entworfen,
die fehlende oder anomale Informationen robust behandeln.

Die vorgeschlagene Methode zur Schiatzung der AU-Intensititen
wird quantitativ und qualitativ unter Verwendung von drei verschie-
denen Datensédtzen bewertet, die entweder spontane oder gespielte
Gesichtsausdriicke mit AU-Annotationen enthalten. Die vorgeschlage-
ne Methode fiihrte zu zeitlich glatteren Schatzungen, die eine feinkor-
nige Analyse der Gesichtsausdriicke ermdglichen. Sie hat auch eine
recht gute Leistung erbracht, obwohl sie gleichzeitig Intensitdten von
22 AUs schétzt, von denen einige im Ausdruck subtil oder einander
sehr dhnlich sind. Die geschétzten AU-Intensitdten tendierten dazu, in
einem relativ niedrigen Wertebereich zu bleiben, und wiesen oft einen
etwas verzogerten Beginn auf. Dies zeigt, dass die vorgeschlagene Me-
thode konservativ ist. Um die Leistung weiter zu verbessern, konnten
die modernsten Ansétze des maschinellen Lernens zur AU-Erkennung
in den vorgeschlagenen probabilistischen Framework zur Schitzung
der AU-Intensitdten integriert werden.

Zusitzlich zur Schitzung der AU-Intensitdten, wird in dieser Dis-
sertation auch die Anwendbarkeit der geschidtzten AU-Intensitdten
fiir die automatische Analyse von mentalen Zustdnden wie Schmerz
und Ablenkung untersucht. Ein im Rahmen dieser Dissertation durch-
gefiihrter Survey iiber die Ansdtze zur automatischen Schmerzer-
kennung zeigt die Fortschritte und Defizite in diesem Bereich auf.
Mehrere AU-basierte Regeln werden fiir die Abschidtzung der Schmer-
zintensitdt auf der Grundlage psychologischer Evidenz konzipiert und
empirisch bewertet. Das Potenzial dieser AU-basierten Regeln zur
automatischen Generierung von Erklarungen fiir die Schmerzerken-
nung wird ebenfalls dargestellt. Dariiber hinaus zeigt eine vorldufige
Analyse der geschidtzten AU-Intensitdten, dass es Unterschiede in den
Gesichtsausdriicken zwischen verschiedenen Ablenkungsszenarien
beim simulierten Autofahren gibt.

Die Mimik ist nicht der einzige Kanal, durch den mentale Zustdnde
ausgedriickt werden. Physiologische Verdnderungen gehen auch mit
Verdanderungen der mentalen Zustdnde einher. Diese physiologischen
Veranderungen sind jedoch von Person zu Person unterschiedlich
und werden von einer Vielzahl anderer Faktoren beeinflusst. In die-
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ser Dissertation werden erste Arbeitsansidtze zur Bewiltigung dieser
Herausforderungen vorgestellt. Die Ergebnisse dieser Dissertation
zeigen, dass mehr interdisziplindre Forschung erforderlich ist, um die
Herausforderungen auf dem Gebiet der automatischen Analyse der
mentalen Zustdnde anzugehen, insbesondere um Referenzdatensitze
zu erstellen, zwischenmenschliche Unterschiede zu modellieren und
tiir den Menschen verstandliche Erklarungen zu generieren.
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INTRODUCTION

Humans are social beings and engage in social interactions, which
require them to infer the mental states of others. Psychologists and
cognitive scientists have been (i) studying the socio-cognitive processes
in the brain that provide humans with this ability to infer the mental
states of others [7, 178], (ii) developing theories on how external or
internal events influence mental states [131, 132, 162], and (iii) inves-
tigating how the mental state affects the behaviour and physiology
of the individual [73, 91, 97, 106, 157]. Computer scientists have ap-
plied these pieces of knowledge to develop methods to automatically
detect mental states based on observable behavioural or measurable
physiological signals [88, 170, 188].

Such automatic mental state analysis finds application in many
fields. In human-robot interaction, automatic analysis of the human
user’s mental state could help to adapt the robot’s behaviour. For
example, in [112], a robot basketball coach adapts the game’s difficulty
level based on the anxiety levels of the player. Further, automatic
mental state analysis could contribute to preventive healthcare, by
monitoring and detecting unhealthy stress levels at workplaces or in
everyday life [15]. In the medical field, mental state analysis could
assist professionals in the diagnosis of psychological conditions such
as depression [151], or assist caregivers in efficient detection and
subsequent treatment of pain [68, 198]. In the field of market research,
automatic mental state analysis could be used to study a subject’s
emotional response to advertisements (e.g. [60]). As can be seen from
these examples, the mental states (e.g. anxiety, stress, depression, pain,
emotions) that are analysed depend on the application or use case.

Mental states can be analysed using different behavioural and phys-
iological signals. Behavioural signals include, for example, facial ex-
pressions, vocalisations and body movements. Physiological signals
include electrocardiogram, electromyogram, electroencyphalogram
and body temperature, to name a few. The signals that are analysed
depend on the mental state that is to be detected. Facial expressions
have been found to be important for non-verbal communication [66,
126, 142], which includes communication of information about mental
states such as emotions and pain [31, 45, 47, 97]. Body movements and
vocalisations are also useful for assessing pain (cf. [33, 91, 102, 192]).
Speech or auditory signals have been found to be useful for communi-
cating emotions [51] or attitude [126]. Stress influences physiological
signals [49], and can be observed through physiological parameters
such as Heart Rate Variability (HRV) [73] and Skin Conductance (SC)
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[106]. The analysis of eye movements could be useful in detecting
distractions [89, 160]. Although certain signals might contribute more
information than others, combining information from multiple signals
could improve the performance of automatic mental state analysis by
making use of redundant as well as complementary information (cf.
[57, 182, 196]).

Given the prominence of facial expressions in the communication
of mental states, the automatic analysis of facial expressions using
images and videos has received a great deal of attention from the
computer vision research community. Over the last two decades, good
progress has been made in this field [124, 159]. Several datasets with
annotated facial videos and images have been published (see [124,
159]), several data-driven machine learning (e.g. [35, 109, 118]) and
deformable face model-based (e.g. [37, 38]) approaches have been
investigated, and international competitions (e.g. FERA Challenge
[185], AVEC Challenge [151], EmotiW [34]) have been organised to
promote the development of efficient and robust methods for facial
expression analysis and facial expression based mental state analysis.

Psychologists have analysed facial expressions using two approaches:
message judgment and sign judgment [21, 22]. This terminology can be
adopted to categorise the computer vision methods for automatic
facial expression analysis (cf. [188]). The methods for message judg-
ment detect the mental state or ‘message’” communicated through
facial expressions. The most common goal is either the recognition of
the basic emotions identified by Paul Ekman and colleagues'[43—45]
(categorical model) (e.g. [35]) or the estimation of the valence and
arousal dimensions of emotions proposed by Russell [155] (dimen-
sional model) (e.g. [53, 150]). The methods for sign judgment (e.g.
[109]) detect basic facial movements known as Action Units (AUs) that
are defined in the Facial Action Coding System (FACS) [46], and thus
produce an objective description of the facial expression.

Message judgment methods learn the target categories either di-
rectly from visual data (one-step) (e.g. [92]) or from the output pro-
duced by sign judgment methods (two-step) (e.g. [10]). In the latter
case, the complexities involved in the automatic detection of mental
states are divided into two parts. The first part-AU detection—deals
with the complexities and challenges at the level of facial image/video
processing, in order to produce a high-level, semantic description
of facial expressions in terms of AUs. The second part-mental state
detection—deals with the complexities at the level of inferring mental
states by applying domain knowledge and by using noisy estimations
of facial muscle movements (i.e. AUs). Since AUs can be used to describe
any facial expression at a fine-grained level, AU detection systems can
support the analysis of a broader range of facial expressions, beyond

Basic emotions identified by Paul Ekman and colleagues [44] are fear, anger, sadness,
disgust, happiness, contempt and surprise.
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the prototypical facial expressions associated with basic emotions (cf.
[22]). Consequently, AU detection systems can be used in a variety of
application domains, for example, human-robot interaction, market
research and healthcare, where different context-dependent ‘'messages’
are conveyed through diverse, subtle and spontaneous facial expres-
sions. The use of automatically learned or empirically determined
rules for inferring these messages (see [133, 172, 202]) could improve
the interpretability of the system’s decisions.

This work focuses on the automatic estimation of intensities of AUs
(sign judgment), and its application to the detection of experimentally
induced acute pain in laboratory settings and experimentally induced
distractions in a simulated driving setting (message judgment). For
automatic AU intensity estimation, computer vision researchers have
used data-driven machine learning approaches (e.g. [82, 87, 161] as
well as deformable face model-based approaches (e.g. [37, 38]). While
deformable face models are interpretable, data-driven models are capa-
ble of covering large variance in input data. Therefore, a combination
of these two types of methods could take the field of automatic mental
state analysis towards strong and ultra-strong models—as envisioned
by Michie [129]-that have good predictive performance and are, at the
same time, comprehensible to humans.

In this thesis, a novel combination of data-driven machine learning
and deformable face model-based approaches is developed to esti-
mate AU intensities. A Gaussian state estimation based framework®
integrates (i) an AU-based deformable face model, (ii) a viscoelastic
facial muscle motion model, (iii) several data-driven AU classification
models based on appearance information, and (iv) a data-driven facial
landmark detection model that provides shape information. Due to
the use of both facial shape and appearance information, the proposed
method is a hybrid approach for AU intensity estimation. Several
enhancements to this framework are designed and explored for im-
proving the quality of estimates and for enhancing the robustness
in real-world applications. These enhancements take person-specific,
facial muscle-specific, and deformable face model-specific properties
into consideration, and handle cases of missing or anomalous infor-
mation. The estimated AU intensities are then used to detect pain on
the basis of AU-based rules, and to analyse facial expressions under
different types of distractions during simulated driving.

In addition to the above, this dissertation also examines several chal-
lenges that need to be addressed in order to build practically useful
automatic mental state analysis systems. As mentioned earlier, mental
states also cause changes in the physiology of a person. Multimodal
systems for automatic mental state analysis that combine evidence

An earlier version of this framework, developed during my master’s thesis [69],
integrates the deformable, AU-based face model, a constant velocity motion model,
and facial landmarks detected by a deformable face model fitting algorithm.
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from facial and physiological signals could be helpful in improving
predictive performance, as shown in [196]. However, the quality and
characteristics of the data used for developing such systems play a cru-
cial role in determining whether these systems generalise well to new
subjects, when applied in the real world. In addition, a thorough inves-
tigation and modelling of interpersonal differences in the facial and
physiological expression of mental states is necessary. Furthermore,
in order to ensure ethical and responsible use of automatic mental
state analysis systems, it is crucial that humans can comprehend the
underlying Artificial Intelligence (AI) models. Some initial work was
done within the scope of this doctoral research in order to deal with
these challenges. This includes the gathering of requirements for refer-
ence datasets for mental state analysis, the modelling or inspection of
interpersonal differences in responses to painful or arousing stimuli,
and the generation of different explanations for automatic detections
of pain.

1.1 SCOPE OF THESIS

This doctoral thesis is restricted to the following scope:

e There are 44 AUs defined in FACS [46] and each has a numerical
code. In consultation with psychologists at the Swiss Center
for Affective Sciences, 22 of these AUs were selected for this
work. The selection was based on three criteria3, guided by
evidence from literature (see [27, 127, 163]): (i) AUs that have
been frequently reported in the literature as being important
for expressing emotions; (ii) AUs that have been predicted to be
related to appraisal inferences?; (iii) AUs that actors could display
in the laboratory. The AU intensity estimation system developed
in this thesis estimates the intensities of these 22 AUs. However,
this system can be extended easily to include additional AUs or
additional sources of information without changing the existing
parameter configuration.

e Only visual information in the form of time-sequences of 2D
facial colour/greyscale images is considered in this work. Exten-
sions to other forms of visual input (e.g. depth, thermal, infrared)
as well as integration of auditory or physiological signals (e.g.
facial electromyogram) could be considered in future work.

e This work is mainly concerned with nearly-frontal head poses
involving minimal out-of-plane head rotations. Some robustness

3 Credits to Dr. Marcello Mortillaro, Swiss Center for Affective Sciences, University of
Geneva, for clarifying these three AU selection criteria and for sharing the references.

4 Appraisal inference refers to the process by which an observer detects an expressor’s
emotional appraisals (evaluations) of a stimulus on the basis of the expressed facial
actions [163].
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to fast head movements and facial occlusions is built-in in the
proposed AU intensity estimation method and its anomaly detec-
tion feature. However, a systematic evaluation of its performance
under non-frontal head poses and facial occlusions is out of
scope of this work.

e To illustrate the applicability of the estimated AU intensities for
inferring mental states, two use cases were selected: (i) experi-
mental acute pain; and (ii) driver distraction during simulated
driving sessions.

e Practical applicability was a key motivator for the project, which
this work was part of. Therefore, several design decisions per-
taining to the system were taken with the objective of enabling
robustness in practical and uncontrolled settings, and for practi-
cal convenience.

1.2 RESEARCH QUESTIONS

This thesis primarily deals with the estimation of intensities of 22 AUs
from 2D facial colour/greyscale image sequences. Following this, auto-
matic mental state (pain, distraction) analysis based on AU intensities
is explored. The main research questions investigated in this doctoral
thesis are as follows:

1. How can data-driven machine learning approaches be combined
with deformable face model-based approaches for AU intensity
estimation inside a Gaussian state estimation framework? Would
such a combined approach improve predictive performance?

2. How can the viscoelastic facial muscle motion be modelled as
a first-order Markov process for integration within a Gaussian
state estimation framework that estimates AU intensities? How
can this model be adapted to the properties of the particular
facial muscle or group of facial muscles that produces a specific
AU?

3. How do the differences in the physical expressiveness of AUs in-
fluence the quality of AU intensity estimation? How can negative
effects be mitigated?

4. How can the estimated AU intensities be ensured to be in confor-
mance with FACS as well as with the design of the deformable
face model?

5. How can the geometric/semantic similarities and dissimilari-
ties between AUs inform the design of the components of the
Gaussian state estimation framework?
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6. How does the proposed method for AU intensity estimation fare
qualitatively and quantitatively against a state-of-the-art method
on AU recognition and AU intensity estimation tasks?

7. How can the proposed AU intensity estimation method be made
robust against anomalous detections made by the data-driven
face and facial landmark detection models?

8. Which approaches have been explored so far by computer vision
researchers for automatic detection of pain from facial expres-
sions?

9. How can pain be defined in the form of simple mathematical
expressions involving AU intensities? How can these mathemati-
cal expressions or rules be used to create verbal explanations for
pain detections in terms of AUs?

10. Can facial activity, described in terms of AUs, provide clues
about different types of distraction while driving in simulation
settings?

11. Which technical and annotation requirements should be fulfiled
by a reference dataset for mental state analysis in order to enable
the creation of generalisable, reliable and comparable models?

12. How can interpersonal differences in the expression of mental
states be considered during the development of automatic mental
state detection systems?

1.3 SCIENTIFIC CONTRIBUTIONS

The investigation of the above-mentioned research questions led to
scientific contributions that can be grouped into three areas: (i) auto-
matic facial action estimation, (ii) automatic mental state analysis, and
(iii) addressing open challenges in automatic mental sate analysis. The
scientific contributions are listed in the following subsections.

1.3.1 Automatic Facial Action Estimation

In this doctoral work, a Gaussian state estimation based approach is
developed as the basic framework for estimating AU intensities. This
framework models the dynamics of facial muscle motion and fuses
shape and appearance information about AUs. Several enhancements
are proposed to the basic framework to enhance robustness and to
handle the properties of AUs. The main scientific contributions that are
related to the basic framework and its enhancements are listed below:

e In Preprint C.2.1, I categorised the automatic AU intensity esti-
mation methods into data-driven machine learning methods and
deformable face model-based methods.
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e In Publication B.2.1, I proposed a novel and practical method
to integrate categorical probability outputs from a data-driven
classifier within a continuous, Gaussian state estimator. I applied
the proposed method to fuse facial shape and appearance infor-
mation for AU intensity estimation. The integration of categorical
probability outputs from AU classifiers that were trained on facial
appearance features improved the AU recognition performance
of a Gaussian state estimator that previously used only shape
information in the form of facial landmark positions.

e To model the dynamics of facial muscle movements, I applied
a set of driven mass-spring-damper models. Each AU was mod-
elled using a separate driven mass-spring-damper model. These
were used as process models in the Gaussian state estimator, in
order to model how AU intensities change over time. The values
of the model parameters and the integration of the models in
the Gaussian state estimator are elaborated in Patent D.1.1.

e In order to adapt each AU-specific driven mass-spring-damper
model to the viscoelastic properties of the corresponding facial
muscle or muscle group, I proposed a method that is based on
the facial muscle fibre composition. According to this method,
the facial muscles (a.k.a. mimic muscles) containing more Type
I fibres [50, 64] are modelled using stiffer and more strongly
damped springs. The proposed method and qualitative results
are presented in Section 3.3.4.

e In order to prevent the state estimator from using subtle AUs
such as AUo6-CheekRaiser to correct errors in predicted facial
landmark positions, I proposed the use of a fully dependent
facial landmark noise configuration, in addition to the indepen-
dent landmark noise configuration. Under the fully dependent
noise configuration, the noise in each landmark is assumed to be
dependent on the noise in every other landmark. Consequently,
the proposed AU intensity estimation framework uses two state
estimators, one with the full landmark noise configuration, and
the other with the independent landmark noise configuration.
The decision about which state estimator is to be used for which
AUs, was made on the basis of empirical analysis.

e In Publication B.2.2, I extended the state constraints on AU inten-
sities to the driven mass-spring-damper process models. In order
to ensure that the AU intensities belonged to the valid range of
values, additional constraints were applied on the driving forces
acting on the mass-spring-damper systems. The effect of the
constraints was validated through a histogram analysis of the
estimated AU intensities. A reinterpretation and visualisation of
the operation of the state constraints was also done.
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e To quantify the similarities in the facial shape deformations

caused by different AUs, I computed the cosine of the angle
between each pair of mean-normalised AU-based facial shape
deformation vectors. I proposed to use these cosines as corre-
lation coefficients for modelling the correlations between noise
in AU intensities. These correlation coefficients were used to
determine the AU noise covariances in the noise covariance ma-
trices associated with the initial state, the process model and the
AU constraint model. This is described in detail in Patent D.1.1.
Based on empirical evaluation results, the use of correlation
coefficients has been selectively turned off for specific AUs.

In order to deal with anomalies in detected facial landmark
positions, I proposed a solution involving three steps. In the
first step, I applied the anomaly detection method based on nor-
malised innovation squared [136], in order to identify anomalous
facial landmark detections. The threshold needed to flag a set
of detected facial landmark positions as an anomaly, was deter-
mined empirically. In the second step, the AU intensity estimates
were prevented from being updated, in the event of anomalous
facial landmark detections. Finally, if the number of consecutive
anomalous detections crossed a pre-defined upper limit, state
estimation was suspended and the state estimator was later reset,
when the suspension exceeded a pre-defined duration of time
and facial landmark detections were available. Anomaly han-
dling is presented in detail in Section 3.3.3. To handle missing
facial landmark detections, a strategy similar to the last two
steps of anomaly handling was devised. This is also mentioned
in Section 3.3.3.

I compared the performance of the proposed AU intensity es-
timation system with a state of the art system from Dapogny
et al. [30]. The AU recognition performance as well as the AU
intensity estimation performance were compared using different
performance metrics. Qualitative analysis of the outputs from
the two systems was also performed. For the evaluation, the
Actor Study Database [168], the UNBC-McMaster Shoulder Pain
Expression Archive Database [121], and a proprietary market-
research database [70] were used. The results, along with a dis-
cussion of the pros and cons of the two systems, are presented
in detail in Preprint C.2.1. Benchmark results were computed on
the Actor Study Database [168] using the system developed by
Dapogny et al. [30], and are included in Publication B.2.3.
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1.3.2 Automatic Mental State Analysis

In this doctoral work, the AU intensities estimated by the pro-
posed Gaussian state estimation based approach are used to
detect pain and analyse driver distraction. The main scientific
contributions that are related to these mental state analyses are
listed below:

In Publication B.1.1, I surveyed the state of the art in automatic
pain detection from facial expressions. The papers published
during the period 2006—2018 were reviewed. I categorised the
pain detection approaches into one-step and two-step approaches,
depending on whether or not an intermediate step of AU de-
tection was involved. I also categorised the extracted features,
learning tasks and machine learning methods. Deficits in the
state of the art were identified and future research directions
were proposed. A very short summary of the state of the art
is presented in Publication B.1.2, where I categorised the meth-
ods into single-level and two-level methods, and additionally,
grouped them on the basis of learning goals.

I defined and evaluated several rules for automatic pain detection
using AU intensities (two-step approach). The pain detection
rules are defined on the basis of psychological evidence from
studies conducted by Kunz and Lautenbacher [97], as well as
Prkachin and Solomon [146]. While the work of Prkachin and
Solomon [146] has inspired a few two-step approaches [125, 202],
the pain clusters identified by Kunz and Lautenbacher [97] have
not yet been applied for automatic AU-based pain detection. The
proposed pain detection rules and their evaluation are described
in Preprint C.2.1.

I performed a preliminary analysis of the facial activity under
the influence of different sources of distraction during simulated
driving sessions. Facial activity was determined using the AU in-
tensities (and their time-derivatives) estimated by the proposed
Gaussian state estimation based approach. Between different dis-
traction conditions, differences in the facial activity were found.
The details are presented in Section 2.2.1. Based on these insights,
I conceptualised and supervised a research study to create ma-
chine learning models to predict driver distraction based on AU
intensities. This study also explored the combination of facial
and physiological signals for driver distraction detection. The
results of this study are presented in Preprint C.1.1 (Update
02.08.2020: This is now published in IEEE Access. See [56]).

11
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1.3.3 Addressing Open Challenges in Automatic Mental State Analysis

Three key challenges in the field of automatic mental state analysis
include: (i) a lack of reference datasets for benchmarking algorithms,
(ii) interpersonal differences in responses to stimuli, and (iii) a lack
of interpretable models for automatic mental state detection. As part
of this doctoral work, some basic steps towards addressing these
challenges were explored, mainly in the form of research performed
by master-level students, (co-)supervised by me. As a result, (i) a
set of requirements for building a multimodal reference dataset for
detecting human stress was developed, (ii) interpersonal differences
in pupillary responses to an arousal stimulus were examined, and
(iii) a qualitative comparison of different explainable Al methods
was performed, to interpret and explain deep Convolutional Neural
Network (CNN) models for distinguishing pain from happiness and
disgust. The main scientific contributions made by me in these research
tasks are listed below:

o I conceptualised several requirements to be fulfiled by reference
datasets, in order to promote the building of sensor-independent
and generalisable models for automatic mental state analysis.
More specifically speaking, I conceptualised the requirements
related to documenting sensor calibration and sensor noise char-
acteristics, gathering annotation data using different methods,
and including ’signature’ modalities for mental states (for ex-
ample, heart activity and electrodermal activity for stress). In
Publication B.3.1, these requirements are formulated for refer-
ence datasets for human stress detection. These requirements can
be generalised to multimodal reference datasets for any mental
state, as described in Section 4.1.

e In Publication B.3.2, I conceptualised and supervised a personali-
ty-based analysis of pupillary responses to an arousal stimulus,
in order to examine interpersonal differences.

e Using the AU-based rules, I created verbal explanations for pain
detection in terms of AU activations as well as in terms of discre-
tised AU intensities. The terminology defined in FACS [46] for dis-
crete AU intensities was adopted for use in the explanations. The
generation of these explanations is illustrated in Preprint C.2.1.
In order to facilitate a future comparison of AU-based expla-
nations with image-based explanations, I conceptualised and
co-supervised a research work that applied different explainable
Al methods to generate explanations for predictions made by
deep CNN models for automatic pain detection. The results are
published in Publication B.3.3.
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1.4 STRUCTURE OF THESIS

The rest of the thesis is organised as follows: Chapters 2 to 4 provide
a synopsis of the research and development performed as part of this
doctoral work. Section 2.1 summarises the state of the art in automatic
pain detection from facial expressions, and then presents the pro-
posed two-step approach for automatically detecting pain. Section 2.2
describes the preliminary analysis of facial activity during different
types of distractions while driving. Chapter 3 summarises the state of
the art in automatic analysis of facial actions, and describes in detail,
the AU intensity estimation method developed in this doctoral work.
The basic framewok is explained in Section 3.2 and the enhancements
are explained in Section 3.3. A brief summary of the quantitative
and qualitative evaluations of the proposed AU intensity estimation
method is also included in Chapter 3. Chapter 4 summarises the
research contributions towards addressing three challenges in the
field of automatic mental state analysis that pertain to multimodal
reference datasets, interpersonal differences and interpretability of
machine learning models. Chapter 5 concludes this thesis, providing
an outlook for future research. Appendix A presents some additional
results of the evaluation and analysis performed in this work. In Ap-
pendix B, all the publications that resulted from this doctoral work are
attached, and in Appendix C, all the preprints or planned submissions
are attached. In Appendix D.1, the patent that contains contributions
from this doctoral work is attached. A list of the scientific and written
contents contributed by me is provided in the Appendix, along with
each attached publication, preprint, or patent.
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AUTOMATIC MENTAL STATE ANALYSIS

2.1 AUTOMATIC PAIN DETECTION

Pain is defined as “an unpleasant sensory and emotional experience
associated with actual or potential tissue damage, or described in
terms of such damage”’ [128, p. 209]. Pain is assessed by clinical staff
by observing behavioural cues such as facial expressions, vocalisations
and body movements (cf. pain scales such as Behavioral Pain Scale
(BPS) [33], Pain Assessment in Advanced Dementia (PAINAD) [192],
Neonatal Infant Pain Scale (NIPS) [102]). Among these cues, facial
expressions have been found to be a valid indicator [99, 171]. In this
section, the work on automatic pain detection® from facial expressions
is described.

2.1.1  Summary of State of the Art

Over the last decade, researchers have applied automatic facial expres-
sion analysis methods to automatically detect pain. In the process,
several datasets consisting of facial expressions of pain have been
created. A survey of these automatic pain detection methods and the
pain datasets is provided in Hassan et al. [68] (Publication B.1.1). The
key findings are summarised in this section.

Automatic pain detection from facial expressions has followed two
types of approaches, namely one-step and two-step. The difference
between the two types of approaches lies in whether or not an inter-
mediate AU-based representation of facial expressions is learned before
learning the pain-related targets. While one-step approaches involve
only pain-related learning tasks, two-step approaches involve learning
of AU-related targets followed by learning of pain-related targets. So
far, one-step approaches predominate the field of automatic pain de-
tection, and the binary classification task of detecting the presence or
absence of pain has received the most attention. Besides pain versus no
pain (e.g. [5, 12, 92]), other classification tasks such as distinguishing
pain from other emotions or states (e.g. [13, 62, 135]), distinguishing
facial expressions of genuine pain from those of faked pain (e.g. [10,
110, 111]), and detecting different discrete levels of pain intensity (e.g.
[55, 77, 197, 202]) have been investigated. The regression task of esti-
mating continuous-valued pain intensity has also been investigated in
the published literature (e.g. [40, 87, 152]). Automatic pain detection
methods almost always employed supervised learning strategy that re-

1 The term "detection’ is used here to refer to both classification and regression tasks.
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quires ground truth annotations for every learning instance. The pain
datasets provided ground truth about pain at frame-level, segment-
level, or sequence-level (see Publication B.1.1 for details). Frame-level
annotations included labels of pain or distress states, a set of AUs and
their intensities, or discrete pain intensity levels computed from AU
intensities using the Prkachin-Solomon Pain Intensity (PSPI) scale [146].
Sequence-level annotations were mostly pain scores collected from self
or observer reports. Segment-level annotations consisted of AUs and
their intensities as well as self-reports. The intensity level of pain stim-
ulus applied in experimental settings, or the type of stimulus (genuine
pain, posed pain, different induced emotions) was also sometimes
provided as segment-level or sequence-level annotation. The most
widely used pain dataset is the publicly available UNBC-McMaster
Shoulder Pain Expression Archive Database [121].

Among supervised machine learning methods, Support Vector Ma-
chines (SVMs) were used most widely for pain-related classification
tasks. Random forests, neural networks and variants of AdaBoost have
been used for pain-related supervised classification and regression
tasks. More recently, deep learning methods such as CNNs and Long
Short-Term Memory (LSTM) recurrent neural networks have been used
for supervised pain intensity estimation (see Publication B.1.1 for de-
tails). Weakly supervised and unsupervised methods were used very
rarely. Semi-supervised methods were not explored. Pain detection
tasks were performed at frame-level (e.g. [5, 12, 152]) or sequence-level
(e.g. [10, 114, 173, 197]). Occassionally, frame-level predictions were
aggregated to obtain sequence-level predictions (e.g. [5, 125]).

To train pain detection models, features were first extracted from the
visual input (single image or a sequence of images). The extracted fea-
tures can be categorised into spatial or spatiotemporal features, depend-
ing on whether temporal information was included in the features, in
addition to spatial information. Spatial features are extracted from sin-
gle images and include geometric or textural features that describe the
facial shape or appearance, respectively. Spatiotemporal features refer
to geometric or textural features extracted from a sequence of images.
These features were used either alone or in different combinations to
develop automatic pain detection approaches. For example, [87] used
a combination of spatial geometric and textural features; [197] used a
combination of spatiotemporal geometric and textural features; [40]
used a combination of spatial and spatiotemporal features.

Facial landmark positions, or distances and angles between facial
landmarks are examples of spatial geometric features. Statistical fea-
tures extracted from a series of these geometric features constitute
spatiotemporal geometric features. Gabor filter coefficients [32, 48,
52], Local Binary Patterns (LBP) [137, 138] and Histogram of Ori-
ented Gradients (HOG) [29] are often used to describe facial texture.
Spatiotemporal variants of LBP and HOG extract features from Three
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Orthogonal Planes (TOP) defined by the time and 2D pixel axes. These
dynamic features are therefore known as LBP-TOP [203] and HOG-TOP
[19], respectively. Hankel matrix representation of time series of spatial
textural features (cf. [115, 145]) is another example for spatiotemporal
textural features. Deep learning methods automatically extract spatial
or spatiotemporal textural features from the visual input. In one-step
approaches, these features were used for pain detection, whereas in
two-step approaches, these were used for AU detection. For pain detec-
tion, the two-step approaches used the AU detection outputs directly
as features (e.g. [119]) or extracted temporal features from a time-series
of AU detection outputs (e.g. [10]).

It was noted that the approaches for automatic pain detection were
predominantly based on data-driven machine learning methods. Mod-
els based on expert and interdisciplinary knowledge about pain and
facial expressions were limited to the use of the PSPI scale for pain
intensity estimation based on AU intensities, in two-step approaches
(e.g. [202]). Data-driven machine learning approaches are capable of
covering large variance in input training data, without the need for
modelling each variance by hand. However, computational models
designed by experts would not only allow to incorporate interdis-
ciplinary knowledge about facial muscle properties and dynamics,
possible facial shape deformations, and the facial expressions of pain,
but also facilitate human comprehension of their predictions. A combi-
nation of such model-based and data-driven machine learning based
approaches is developed in this doctoral work, in order to bring
together the strengths of both types of approaches. The next subsec-
tion provides an overview of these models and components that are
brought together in a two-step approach for pain detection.

2.1.2 A Two-Step Approach

Kunz et al. [100] provides a roadmap for developing solutions for
automatic pain detection from facial expressions through joint inter-
disciplinary research. In addition, the outline of a two-step approach
for automatically detecting pain is presented in Fig. 1 in [100]. A more
detailed view of this approach is given in Figure 2.1, showing the com-
bination of model-based constructs and data-driven machine learning
methods. The components of the proposed approach are described
below:

e Shape model: In this work, the facial shape is described by a
vector of 68 facial landmark positions. A 3D, linear, parame-
terised, deformable model constitutes the facial shape model.
This is similar to the Point Distribution Model (PDM) proposed
by Cootes et al. [25]. The facial shape model consists of a vector

This facial shape model was also used in the master’s thesis [69] that preceded this
doctoral work.
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Figure 2.1: A two-step approach for automatic pain detection: The approach
combines data-driven machine learning approaches with different
mathematical models representing interdisciplinary knowledge.
The components marked in grey were not developed as part of
this doctoral work.

representing the shape of a mean, neutral face and 83 additional
vectors representing various deformations that can be caused to
the neutral facial shape. Twenty-two of these deformation vectors
represent transient shape deformations caused by 22 different
AUs, and the remaining 61 deformation vectors represent the
relatively permanent person-dependent facial shape variations.
Table 2.1 provides the list of 22 AUs used in this face model. The
AU deformation vectors represent the direction and magnitude of
maximum anatomically possible facial shape changes that can be
caused by the AUs. These deformation vectors are derived from
the high-poly 3D mesh models of AU expressions designed by
psychologists [96, 153]. The Shape Unit (SU) deformation vectors
represent person-dependent facial shape variations, and were
derived statistically from the facial morphs in the software Face-
Gen Modeller [75]. Equation 2.1 represents the 3D deformable
facial shape model. In this equation, m represents the mean,
neutral shape as a column vector; A represents the matrix of the
22 AU deformation vectors and x, represents the column vector
of 22 AU parameters, equivalent to AU intensities; S represents
the matrix of 61 SU deformation vectors and xs represents the
column vector of the su parameters. The elements of each defor-
mation vector in S and A are distances in meters, and the AU
and SU parameters in x, and xs are unitless intensities/weights.
Rotation, translation and scaling can be applied to the model
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in Equation 2.1 in order to account for global head motion or
pose changes, as shown in Equation 2.2. The rotation, translation
and scaling parameters ©, t and p constitute the rigid parame-
ters, and the AU and SU parameters in x, and xs constitute the
non-rigid parameters of the facial shape model. By applying
the camera model to Equation 2.2, the 3D facial shape model
can be perspective-projected onto 2D image space. Figure 2.2
provides an illustration of the perspective-projected deformable
facial shape model. In Patent D.1.1, Figure 3 shows the facial
shapes resulting from the application of the AU deformation
vectors to the mean, neutral face.3

QO =m + Ax, + Sxs (2.1)

Q' = p(ReQ) +t (2.2)

e Appearance model: AUs cause not only transient changes in the
shape of facial features, but also transient changes in the appear-
ance of the face. Changes in the form of transient wrinkles and
folds on different regions on the face are characteristic of specific
AUs. For example, AUog-BrowLowerer causes vertical folds in
between the eyebrows, and AUo06-Cheek Raiser creates wrinkles—
commonly known as “crow’s feet”—at the outer corners of the
eyes [42, 46]. Appearance of the face is affected by several factors,
for example, age, skin texture, skin colour and illumination con-
ditions. Therefore, a data-driven machine learning approach is
necessary to cover these large variances and learn a robust model
to discriminate between different AUs based on appearance or
appearance changes. The outputs of the data-driven machine
learning approach are then mapped to AU parameters by the
appearance model. In this work, the identity function is used as
the appearance model in order to map the output probabilities
produced by data-driven AU classifiers onto AU parameters or
AU intensities.

e Dynamics model: Facial expressions are caused by facial muscle
movements. Different mechanical models can be used to model
the dynamics of facial muscle motion. Very simple models like
Gaussian random walk (see [37, 76]) or autoregressive models
(see [38]) have been used in the context of facial action intensity
estimation. Complex models involving several interconnected
springs (see [180, 193]) have been used to model facial deforma-
tions, especially in the fields of computer graphics and computer
animation. Hill [72] proposed a mathematical model for muscles,
which consists of a spring connected in parallel with a viscous

3 Both Figure 2.2 in this work and Figure 3 in Patent D.1.1 were created as part of the
master’s thesis [69] that preceded this doctoral work.
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Table 2.1: List of 22 AUs included in the deformable facial shape model used
in this thesis. The numerical codes and names of these AUs as well
as the facial muscles that generate these AUs—as defined in FACS
[42, 46]-are listed here (see also [22]). Images showing the shape
and appearance patterns associated with these AUs are available in

[22].

AU Code | AU Name Facial Muscle(s)

01 Inner Brow Raiser Frontalis (pars medialis)

02 Outer Brow Raiser Frontalis (pars lateralis)

04 Brow Lowerer Depressor supercilii, corrugator
supercilii

05 Upper Lid Raiser Levator palpebrae superioris

06 Cheek Raiser Orbicularis oculi (pars orbitalis)

07 Lid Tightener Orbicularis oculi (pars palpe-
bralis)

09 Nose Wrinkler Levator labii superioris alaeque
nasi

10 Upper Lip Raiser Levator labii superioris

11 Nasolabial Deepener | Zygomaticus minor

12 Lip Corner Puller Zygomaticus major

13 Sharp Lip Puller Levator anguli oris (a.k.a. Cani-
nus)

14 Dimpler Buccinator

15 Lip Corner Depressor | Depressor anguli oris (a.k.a. Tri-
angularis)

16 Lower Lip Depressor | Depressor labii inferioris

17 Chin Raiser Mentalis

20 Lip Stretcher Risorius with platysma

23 Lip Tightener Orbicularis oris

24 Lip Pressor Orbicularis oris

25 Lips Part Depressor labii inferioris or re-
laxation of mentalis, or orbicu-
laris oris

26 Jaw Drop Masseter, relaxed temporalis
and internal pterygoid

27 Mouth Stretch Pterygoids, digastric

43 Eyes Closed Relaxation of levator palpebrae

superioris; orbicularis oculi

(pars palpebralis)
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I

(b) AU12 deformation vector (c) An SU deformation vector

(d) Combined shape

Figure 2.2: 2D perspective projections of three components of the 3D de-
formable facial shape model and the combination of these com-
ponents. As can be seen, a round, smiling face was created when
the mean neutral face, AU12-LipCornerPuller, and the sU that
produces a round face were combined. The AU12 deformation
vector is derived from [96].
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damper and in series with another spring (see also [169]). This
model has been applied to study the force-length responses of
gastrocnemius muscles in frogs [169]. In this doctoral work, a sin-
gle mass-spring-damper system, consisting of a spring attached
in parallel to a viscous damper, is used to model the viscoelas-
tic properties of the facial muscle or muscles group associated
with each AU. This model was chosen by keeping practical con-
venience in mind, to reduce the complexity of the developed
system and the number of unknown parameters to be modelled.
A similar model was used by Liu and Ebbini [113] to model
the viscoelastic properties of stiff tissues. More details about the
modelling of facial dynamics is provided in Section 3.2.1.

Constraints model: As mentioned above, the shape model con-
sists of 22 anatomically based AU deformation vectors. That is,
each of these vectors define the anatomically possible maximum
facial shape deformations that can be caused by the correspond-
ing AU. Consequently, the AU parameters in the model have a
valid range of [0, 1]. Negative values for AU parameters are not
conformant with the definitions of AUs and their intensities in
FACS [42, 46]. In this work, a linear model is applied to constrain
the AU intensities to this range. More details are provided in
Section 3.3.2.

Facial landmark detection or face alignment: A data-driven
machine learning approach is used to locate the 2D positions of
68 facial landmarks in an image. This process of determining
the geometry/shape of the face and facial features in terms of
positions of specific fiducial points/landmarks is referred to
as face alignment [16, 63, 9o]. The 2D facial landmark positions
used in this work are detected using the face alignment method
proposed by Kazemi and Sullivan [9o]. The empirical modelling
of uncertainties in these detected facial landmark positions is
explained in Section 3.2.2.

Appearance-based AU classification: Data-driven machine learn-
ing approaches are used to learn appearance patterns associated
with different AUs. Textural features such as those specified in
Section 2.1.1 can be used to describe facial appearance in an
image or facial appearance changes in a sequence of images.
Classifiers trained to identify the presence or absence of individ-
ual AUs, or regression models trained to estimate intensities of
different AUs can be used. In this work, SVMs trained on LBP or
HOG features extracted from each frame in an image sequence
are used as appearance-based AU classifiers. The output from
these classifiers are probabilities for the presence or absence
of specific AUs or AU combinations. More information about
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these classifiers and the modelling of the uncertainties in their
predictions is provided in Section 3.2.3.

e AU intensity estimation: This is the first step in the two-step
approach for automatic pain detection. A Gaussian state estima-
tion framework integrates the above-mentioned mathematical
models of facial shape, appearance, dynamics and constraints,
with the outputs from the data-driven facial landmark detec-
tion and appearance-based AU classification methods, in order
to produce continuous-valued estimates of AU intensities. The
uncertainties associated with these components are modelled
as Gaussian noise, and are integrated in the state estimation
process. A detailed description of this AU intensity estimation
framework is provided in Chapter 3.

e Pain detection: This is the second step in the two-step approach
for automatic pain detection. It can either be based on simple
models that are PSPI scale-like (e.g. [125, 202]), or use empirically
determined thresholds (cf. [77]) or learned grammar rules (e.g.
[164, 172]). More complex machine learning models based on
SVMs or neural networks could be considered, along with appro-
priate methods for enhancing the interpretability and explain-
ability of models. In this doctoral work, a set of PSPI scale-like
rules is used for pain detection. These rules are described and
evaluated in the to-be-submitted Preprint C.2.1, which also illus-
trates the verbal explanations generated for pain detected using
these rules.

Among the components described above, facial shape model, facial
landmark detection, and appearance-based AU classification were not
developed by me. Only the final models and the outputs from these
components were applied in this doctoral work.

2.2 AUTOMATIC DISTRACTION DETECTION

Distraction is defined in the Cambridge Dictionary as “something that
prevents someone from giving their attention to something else” [36].
Distractions during driving increase safety risks [140]. Regan et al.
[148] used the term “Driver Diverted Attention” to refer to distraction,
and defined it as “diversion of attention away from activities critical
for safe driving toward a competing activity, which may result in
insufficient or no attention to activities critical for safe driving” [148,
p- 1776]. The causes of distraction may or may not be related to driv-
ing tasks. Olson et al. [140] quantified the safety risks contributed by
different sources of distraction. Mobile phone usage, reading, writ-
ing, and checking route maps were noted as activities that increase
safety risks. Automation levels 2 and 3 defined in SAE International’s
standard J3016 [156] require human attention and readiness to take

23



24

AUTOMATIC MENTAL STATE ANALYSIS

over control in difficult situations or when the vehicle requests. As the
level of automation increases, the probability of distraction due to en-
gagement in non-driving tasks increases. Therefore, driver distraction
monitoring is necessary even in vehicles with partial automation. In
this section, the use of facial expression analysis for driver distraction
detection is discussed.

2.2.1  Driver Distraction and Facial Activity

Driver distraction is typically detected on the basis of head and eye be-
haviours, or using physiological signals [88]. Eye gaze patterns (cf. [65,
105]), eye blink frequency (cf. [104]), head movements (cf. [130]), and
skin temperature at nose tip (cf. [78]) and around the eyes (cf. [200])
have been reported to reveal information about cognitive distraction
of the driver. Apart from eye and head movements, facial expressions
have been generally used less in driver distraction detection. However,
facial expressions might have the potential to reveal cues about driver
distraction, especially when the distraction is caused by emotional
stressors.

In order to study the potential of facial expressions in detecting
different types of distractions during driving, an initial, coarse analysis
was performed on the facial videos provided in the dataset from Taam-
neh et al. [177]. This dataset contains data recorded from 68 human
subjects while they were driving on predefined routes in a driving
simulator under different conditions. Cognitive, emotional and senso-
rimotor stressors were used to induce distraction during driving. In
addition, a case of unexpected system failure leading to loss of vehicle
control was also introduced. Practice, normal and relaxed drives, as
well as a baseline where the subjects did not drive are also included
in the dataset. Facial videos, various physiological signals, and drive
parameters were recorded using multiple wearable and contactless
sensors. The facial videos were analysed using the AU intensity estima-
tion approach introduced in Section 2.1.2 and elaborated in Chapter 3.
This produced a multivariate time series consisting of intensities of 22
AUs for each facial video. Time-derivatives of these AU intensities were
then computed, resulting in a time series of AU velocities for each fa-
cial video. The AU intensities and AU velocities were then averaged for
each facial video, and grouped based on the driving condition. The AU
intensity and AU velocity pairs were used to represent facial activity. A
2D histogram of these pairs was plotted for each driving condition, in
order to visually examine the distribution of facial activity. Figure 2.3
shows the 2D histograms for two conditions, namely, driving under a
cognitive stressor and driving under an emotional stressor. The plots
show differences in the distribution of AU intensities and AU velocities
under the two conditions. Facial activity during the other six driving
conditions is presented in Appendix A.1.
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On the whole, the average facial activity is not very high during
the different driving sessions. However, facial videos recorded during
drives with emotional stressors showed more spread in AU intensities
and AU velocities than the facial videos recorded during drives with
cognitive stressors (see Figure 2.3). This hints at more facial activity
during distraction caused by emotional stressors. This preliminary
analysis shows that an AU-based two-step approach could have the
potential for detecting driver distraction under different conditions.

These initial observations are based on the average facial activity
over all 22 AUs and over all frames in a sequence. A closer look at the
level of individual AUs is necessary, in order to gain more insights into
the facial activity that might accompany different types of stressors.
For example, startle and fear expressions might occur in the case of
unexpected system failure, yawns might occur during a relaxed drive,
and lip movements caused by speech might accompany cognitive
and emotional stress. A research study was conceptualised to explore
various data-driven classical machine learning methods as well as dif-
ferent deep neural network architectures to detect driver distraction.*
This study is described in detail in Preprint C.1.1 (Update 02.08.2020:
This is now published in IEEE Access. See [56]). It was found that the
intensities of AU25-LipsPart produced the most informative feature
for recognising cognitive distraction. In addition, it was observed that
AU intensities estimated by the proposed state estimation framework
performed well in recognising distracted driving sessions (F1-scores
above 90%). Combinations of facial and physiological signals were
also explored in this study.

2.3 CHAPTER SUMMARY

This chapter summarised the state of the art in automatic pain detec-
tion from facial expressions, and presented an overview of the two-step
approach for AU-based pain detection that was developed in this doc-
toral work. This two-step approach first estimates AU intensities by
fusing facial shape and appearance information within a Gaussian
state estimation framework. Afterwards, it feeds these AU intensities
into pre-defined rules, in order to produce pain intensity estimates.
This chapter also presented the analysis of facial activity during differ-
ent types of distractions induced during simulated driving. The facial
activity, described on the basis of AU intensities from the Gaussian
state estimation framework, was found to differ between different
types of distractions. The next chapter will elaborate the proposed
Gaussian AU intensity estimation framework and its features.

4 The machine learning models were designed, trained and validated by Martin
Gjoreski, as part of a research collaboration between Fraunhofer IIS, Germany, and
Jozef Stefan Institute, Slovenia.
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Figure 2.3: 2D histograms showing the distribution of sequence-level facial
activity during drives under emotional and cognitive stressors,
computed on the dataset from Taamneh et al. [177]. Facial activity
is represented by pairs of AU intensities (horizontal axis) and
AU velocities (vertical axis). AU intensities are unitless and AU
velocities have the unit seconds™!.
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FACS identifies and codes 44 AUs, which are the basic facial muscle
movements that can be visually distinguished by an observer [46].
Automatic detection of AUs from facial images and videos is the first
step of two-step approaches for automatic mental state analysis. Apart
from this, automatic AU detection is also useful as a stand-alone
tool for faster annotation of facial expressions, in order to support
behavioural and psychological research. Research on automatic facial
action (AU) analysis has generally focused on the multi-class, multi-
label classification problem of recognising AUs in the visual input,
or on the task of estimating the intensities of those AUs [124]. Apart
from these, the task of identifying the temporal phases, i.e. neutral,
onset, apex and offset phases of the portrayed AUs, has also been
examined in the published literature (e.g. [183]). In this doctoral work,
the focus is on the regression task of estimating intensities of 22 AUs.
In this chapter, the proposed AU intensity estimation framework, its
components and features, and performance evaluation are described.

3.1 SUMMARY OF STATE OF THE ART

Research on automatic facial expression analysis gained momentum
following the success of the real-time object detection algorithm pro-
posed by Viola and Jones [189] in 2001, which enabled fast and robust
face detection in images. Initial research on automatic facial action
analysis focused predominantly on designing geometric and textural
features that would better describe facial expression patterns, and con-
sequently improve performance [124]. Machine learning models were
trained with one or more of these features. More recently, CNNs re-
placed hand-crafted features with self-learned features (e.g. [58]). In all
of these approaches, the main focus was the improvement of predictive
performance, often measured in terms of accuracy for classification
tasks and in terms of error and correlation metrics for regression tasks.
These approaches are referred to here as data-driven machine learning
approaches [70].

Data-driven machine learning approaches have used hand-crafted
textural features such as Gabor filter coefficients (e.g. [108]), LBP (e.g.
[18]), Local Phase Quantization (LPQ) [139] (e.g. [83]) and HOG (e.g.
[20]). Combinations of textural features such as Local Gabor Binary
Patterns (LGBP) [195] have also been examined for automatic facial
action analysis (see [167]). Some works used spatiotemporal textu-
ral features such as LBP-TOP (e.g. [84]), LPQ-TOP [84] and LGBP-TOP
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[4]. Among machine learning methods, SVMs have been used widely
for automatic facial action analysis [124]. In addition, boosting algo-
rithms and artificial neural networks have also been used [124]. For
continuous-valued AU intensity estimation, Support Vector Regres-
sion (SVR) (see [82, 161]) and Relevance Vector Regression (RVR) (see
[87]) have been used [124]. Tong et al. [181] and Li et al. [103] used
AU annotations to learn the structure and parameters of a Dynamic
Bayesian Network (DBN) to represent the semantic and temporal re-
lationships between AUs. Self-learned spatial features using CNN (see
[58]) as well as self-learned spatiotemporal features using a combina-
tion of CNN and LSTM recurrent neural networks (see [80]) have been
used for the task of recognising AUs.

In parallel, another line of research explored the use of statistically
or empirically determined parameterised and deformable models of
facial shape and appearance for facial action analysis (e.g. [37, 38]).
These are referred to here as deformable face model-based approaches.
Different model-fitting methods to optimise the fitting of 3D shape
and appearance models to 2D images of objects (e.g. faces) have been
developed. These include Active Shape Model (ASM) [24], Active Ap-
pearance Model (AAM) [23, 26], Constrained Local Models (CLM) [28],
and several variants of CLM, such as the regularised landmark mean-
shift method [158] and the discriminative response map fitting method
[6]. Such model-fitting methods have been developed with the objec-
tive of minimising the face alignment or face reconstruction errors,
and are static methods that do not model the dynamic properties of
rigid or non-rigid facial motion. Therefore, such model-fitting methods
have been combined with state estimation methods such as Kalman
filter and particle filter, which allow the modelling of the dynamics of
model parameters separately (see [37, 38, 144]).

The statistically learned facial shape models, like the 79-point PDM
of face used in [144], contain orthogonal vectors representing the most
common non-rigid shape deformations of the face. These vectors need
not necessarily provide direct semantic information about shape defor-
mations caused by individual facial actions or AUs. Therefore, models
such as CANDIDE-3" [2], which contain semantic deformation vectors
representing AUs, were used for facial action analysis (see [37, 38,
76]). As already mentioned, the algorithms for model-fitting aimed to
minimise fitting and reconstruction errors, and cannot-without addi-
tional modifications in some cases—deal with domain-specific semantic
relationships or constraints between model parameters. For example,
FACS does not allow negative intensity codes for AUs. The lowering of
eyebrows can therefore not be coded as the raising of eyebrows in the
opposite direction. It would be difficult to model such constraints on
selected model parameters using the existing model-fitting algorithms.
Therefore, these model-fitting methods were more often used for pre-

1 CANDIDE model is available for download at [3].
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processing facial images in data-driven machine learning approaches,
rather than as standalone solutions for automatic AU detection. For
example, Chew et al. [20] used CLM as well as AAM for face alignment
and tracking. Subsequently, they used the results of these model-fitting
methods to define pixel-level appearance features for AU detection.
Prabhu et al. [144] used the face model fitting results of ASM as noisy
observations in their Kalman filter based facial landmark tracking
approach. With respect to facial action analysis, the results from de-
formable face model-based approaches have been limited to either
qualitative results or to a very limited number of AUs. Furthermore,
very simple dynamic models such as autoregressive model (see [38])
or Gaussian random walk (see [37, 76]) have been used for modelling
AU dynamics. None of these existing approaches have explored the
use of viscoelastic models for modelling facial muscle dynamics. In
addition, it was noted that those methods that attempted to estimate
AU parameters (e.g. [38, 76]), did not enforce any range constraints
on these parameters to resolve semantic ambiguties and to ensure
FACS conformance. This makes the AU intensity estimates produced by
these approaches difficult to compare or interpret consistently across
different sequences.

Data-driven machine learning methods have the advantage that
they can learn general models covering large variance in the training
data, resulting in very good predictive performance. In contrast, the
performance of deformable face model-based approaches could be
limited by the accuracy and correctness of the models and the assump-
tions involved. However, the strength of deformable face model-based
approaches lie in the interpretability of the models and its param-
eters, and the possibility to integrate interdisciplinary and human
expert knowledge. Combining the two approaches could help in mov-
ing towards strong or ultra-strong Al systems [129] for facial action
and mental state analysis that have good predictive performance and
facilitate comprehensibility of decisions.

In this doctoral work, a Gaussian state estimation based method
for estimating continuous-valued AU intensities is developed. This
method combines an AU-based, deformable facial shape model, a
viscoelastic model of facial muscle motion, and data-driven machine
learning models for facial landmark detection and AU classification.
Some researchers have already integrated probability outputs from
data-driven machine learning methods in discrete state estimation
frameworks. For example, Kriiger et al. [95] combined SVM outputs
within a Hidden Markov Model (HMM) for speech recognition; Valstar
and Pantic [184] combined svM and Hidden Markov Model (HMM) for
recognising the temporal phases of AUs; Tong et al. [181] integrated
outputs from a set of AdaBoost classifiers as noisy measurements (or,
observations) within a DBN for recognising the presence of 14 AUs; Li
et al. [103] integrated outputs from a set of SVMs as observations in a
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DBN for estimating six discrete AU intensity levels for 12 AUs. Unlike
these methods, in this dissertation, the fusion of the class-wise prob-
ability outputs from machine learning methods such as sVM, within
a continuous, Gaussian state estimation framework is explored. The
proposed AU intensity estimation framework is implemented mainly
in the programming language Lua® [74]. The following subsections
provide more details about the design of the proposed AU intensity
estimation method.

3.2 BASIC FRAMEWORK: PROBABILISTIC, DYNAMIC, HYBRID

A dynamic, probabilistic state estimation framework is used to esti-
mate continuous-valued intensities of the 22 AUs listed in Table 2.1.
State estimation methods track the state of a system with the help of a
model describing how the state changes over time and by measuring
the observable properties of the system. Mathematically, the state of a
system is represented by a vector of variables, of which, some, all, or
none may be directly observable. A dynamic model of the process that
causes the state changes is called the transition model. This model is
often not known accurately, and therefore, is a noisy approximation of
the actual process. An observation model defines a mapping of the state
to the system’s observable/measurable properties. Actual observations
are also usually ridden with noise. State estimation methods allow
modelling of noise in parametric or non-parametric ways. Parameterised
noise models describe noise in the form of a mathematical function.
An example of a parameterised noise model is a single or multivariate
Gaussian model with mean(s) and covariances as parameters. Non-
parametric noise models represent or encode noise as a collection of
points in a corresponding sample space. For example, noise in a state
estimate could be represented as a set of plausible state estimates. In
the non-parametric case, the underlying noise distribution is encoded
non-parametrically in the distribution of the sample points. In this
work, a state estimation framework with the parameterised Gaussian
noise model is chosen, for practical convenience. As will be seen later,
the state space is high-dimensional. Therefore, a large set of sample
points would be required to model noise non-parametrically. This
could prove to be computationally expensive and therefore, unsuitable
for practical, real-time applications.

There are two main steps in the dynamic state estimation process
[175], as shown in Figure 3.1: (i) prediction and (ii) correction. Starting
with a pre-defined initial state at time step k = 0, the prediction
step predicts the state at the current time step k based on the state
at the previous time step k — 1, by applying the transition model
that describes how the state changes over time. In other words, the
evolution of the state during the time interval (f;_1, f¢] is computed

2 https:/ /www.lua.org/
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Figure 3.1: State estimation involves two steps: prediction and correction. In
the prediction step, the aposteriori state estimate from the previous
time step k — 1 or the initial state at time ty, if k = 1, is transformed
through the transition model to obtain the apriori estimate for the
state at the current time step k. This is followed by a correction
step, in which the apriori state estimate is corrected based on the
evidence provided by the noisy observations. The observation
model predicts the observable properties based on the apriori state
estimate. After correction, the less noisy aposteriori state estimate
for the current time step k is obtained.

using the transition model3. The predicted state is referred to as the
apriori estimate at time step k, and is denoted as Xi. The noise in &
is a combination of the noise in the state estimate from the previous
time step k — 1 and the noise in the transition model that was applied.
In the correction step, measurements or observations about the state
are used to correct X. The amount of correction applied depends
on two factors: (i) the difference between the actual observations zy
and the observations predicted based on X; and (ii) the amount of
noise in the actual and predicted observations. To predict observations,
observation models that map the state to observations are used. The
new state estimate resulting from the correction step is referred to as
the aposteriori or filtered estimate at time step k, and is denoted as xy.
It is used in the prediction step of the next time step k + 1.

The Kalman filter, as described in [85, 86], is a linear state estimation
framework that models the noise in the state transition model and the
noise in the observations in terms of a unimodal, zero-mean, Gaussian
distribution. The Kalman filter or one of its variants that is used with
non-linear systems—-the extended Kalman filter [81]-has the following
features:

e Predictions based on dynamic models: Xy is predicted using a
noisy state transition model that approximates the dynamics of
internal process(es) that cause(s) the observed system behaviour.

It is assumed that there are no external control inputs to the system to influence the
state estimate.

31



32

AUTOMATIC FACIAL ACTION ESTIMATION

This model is also known as process model. The true process
models of real-world systems are usually unknown or difficult
to model accurately. Therefore, approximate models, defined as
state transition functions fy are used, and the mismatch with the
real system behaviour is modelled as epistemic noise or process
noise. This noise is represented using an error covariance matrix
referred to as process noise covariance matrix, Q. Thus, fi and Qy
together constitute the process model (see Equation 3.1). Xy is
computed as shown in Equation 3.5.

Reasoning based on uncertainty: Xy is computed using a noisy
process model and a noisy xx_3. The noise in X is therefore a
sum of Qy and the noise transferred from xy_1, and is repre-
sented using the apriori state estimation error covariance matrix Py
(see Equations 3.3 and 3.6). The methods used for observing or
measuring system properties or its changes are also prone to
noise. This noise is modelled using the measurement noise covari-
ance matrix Ry. While computing x, the noisy X is corrected
on the basis of the noisy zy in a proportion that is determined
by P and Ry (see Equations 3.7 and 3.8). The greater the noise
Ry in the measured observations zy compared to the noise in
the observations predicted using Xy, the smaller is the applied
correction. The noise in xi is represented by the aposteriori state
estimation error covariance matrix Py (see Equation 3.4), and is
computed as shown in Equations 3.7 and 3.9. As a result of the
correction step, the overall noise or uncertainty in the state esti-
mate is reduced, and therefore, x is less noisy or more certain
than %i. The computation of Xy, Py, xi and Py is elaborated in
[14, 81] as well as in Patent D.1.1.

Fusion of multiple information sources: The measurements
or observations of the system could come from one or more
sources. The sources may be either sensors or data processing
methods. Fusion of multiple observation sources is enabled by (i)
augmenting the observations vector zy and the noise covariance
matrix Ry, and (ii) by defining observation models, for each
observation source. The observation models are denoted as hy
(see Equation 3.2).

R = fi(xac-1) + N (0,Qy) (3.1)
Zy = hk()A(k) +N(0, Rk) (3.2)
fic ~ N(0,By) (3:3)
xx ~ N (0, Py) (3-4)
K = fi(xc-1) (35)
Py = FiP_1F” + Qy, where Fy is Jacobian of fxat xx—1 (3.6)
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P H, T . .
Ky = ~ , where Hy is Jacobian of hy at X .
= HPH § R, kis] fheatXe (3.7
Xk = i + Kie(zic — hue(%x)) (3-8)
Py = Py — K Hy Py (3-9)

The Gaussian state estimation framework used in this doctoral work
to estimate AU intensities has the following assumptions and features
(see Patent D.1.1 for more details):

e State estimation method: In this work, it is assumed that the
process models are first-order Markov processes, i.e. the apriori
state estimate at time step k depends only on the aposteriori state
estimate at the previous time step k — 1. The noise is assumed to
follow parametric, unimodal, zero-mean Gaussian distributions.
As will be seen later, the process models are non-linear, are con-
tinuous in time, and are represented using differential equations.
But, the observations are available at discrete time steps. There-
fore, a continuous-discrete extended Kalman filter (see pages
290-293 in [14]) is used as the state estimation method.* The pa-
rameters of the 3D, deformable facial shape model, namely head
pose parameters, AU parameters and SU parameters, constitute
the main state variables. Depending on the process models used,
additional parameters or variables are also included in the state
vector.

e Process models: In this work, first-order Markov processes based
on constant position model, constant velocity model and driven
mass-spring-damper model are used as noisy process models.
Just like in the preceding work [69], constant position model
is used for the relatively constant SU parameters, and constant
velocity model is used for the rigid, head motion parameters, i.e.
3D translation and 3D rotation parameters.> In contrast to [69], in
this doctoral work, a driven mass-spring-damper model is used
to model the AU parameters that are controlled by facial muscle
motion. Taken together, these three process models describe how
different elements of the 3D, deformable facial shape model
evolve over time. For simplicity, it is assumed that the noise
in these three categories of process models are independent of
each other. The state vector contains a total of 185 elements. In
Section 3.2.1, the driven mass-spring damper model and the
associated Gaussian noise model are explained in detail. The
noise in the process models correspond to epistemic uncertainty.

4 The preceding work [69] had used the discrete form of extended Kalman filter, because
the process model and process noise used in that work modelled the cumulative
effect over the time interval (f;_q, t].

5 The scaling factor is set to 1.0 and kept constant. In effect, the scaling of the face
model in the 2D perspective projection is effected via the translation along the z-axis.
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e Noisy observations: The two sources of observation used in this
work comprise facial landmark detection and appearance-based
AU classification. As mentioned in Section 2.1.2, facial landmark
detection provides the 2D positions of 68 facial landmarks in a
facial image, and appearance-based AU classification uses textu-
ral features to detect the presence of specific AUs. The noise in
the detected facial landmark positions is determined empirically,
and the noise in the AU detections is modelled mathematically.
The noise in the measurements represent aleatoric uncertainty.
More details about the noise modelling are given in Sections 3.2.2
and 3.2.3.

e Observation models: The 3D deformable facial shape model in
Equations 2.1 and 2.2 serves as the basis for the observation
model to map state variables to facial landmark positions. Per-
spective projection of this facial shape model converts the state
variables into 2D facial landmark positions by applying camera
parameters. The rotation parameters as well as the perspective
projection introduce non-linearity in the observation model as-
sociated with facial landmark positions. For the AU detections
from the classifiers, an identify function maps the probability
output for each AU to the corresponding AU parameter. More
details are provided in Section 3.2.4, including a description of
how the two sources of noisy observations are fused.

3.2.1 Driven Mass-Spring-Damper Model

AUs are caused by facial muscle movements that are characterised by
the viscoelastic properties of the associated facial muscles or muscle
groups. To model these viscoelastic properties, a mass-spring-damper
system is used. It consists of a mass m attached to a spring having
spring constant k and a damper having viscous damping coefficient
¢, and assumed to be moving on a frictionless surface. Compressing
or extending the spring displaces it from its resting position. On
the one hand, this creates a restoration force fr in the spring that acts
along the axis of the spring and in a direction opposite to that of the
displacement of the spring. On the other hand, the damper opposes
the motion of the spring by creating a viscous friction (damping force
F;) that acts in the direction opposite to the direction of motion of
the spring. The restoration force tries to bring the spring back to
its resting position and is proportional to the displacement X of the
spring (Hooke’s law), provided the displacement falls within the limit
of proportionality of the spring, i.e. F, = —k%. The damping force
tries to slow down the motion of the spring, and is proportional to
the velocity 7 of motion, i.e. 1:";1 = —c?. When an external force is
applied to the mass, it elongates or compresses the spring, and thereby
creates opposing restoration and damping forces. In the absence of a
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Figure 3.2: A mass-spring damper system driven by external force F, is used
to model the facial muscles that cause AUs. In this model, a mass
m is attached to a spring with spring constant k and to a damper
with viscous damping coefficient c. The external force F, acting
on the mass displaces the system from equilibrium, and thereby
causes motion. Here, ¥ is the displacement vector, 7 is the velocity
vector, F, is the restoration force, and 1-:,} is the damping force.

damper, under ideal conditions, a displaced spring will produce non-
stop simple harmonic oscillation, after the external force is removed.
The frequency of this oscillation is referred to as the natural frequency

wp of the mass-spring system and is given by wy = \/% . It is the
viscous friction provided by the damper that enables a mass-spring-
damper system to eventually settle to equilibrium. Three types of
damping effects are possible: overdamped, underdamped and critically
damped. This is determined by the damping ratio {, which is defined

c

as { = N If { < 1, the oscillation is underdamped; if { > 1,

the oscillation is overdamped; if { = 1, the oscillation is critically
damped.

Figure 3.2a shows a mass-spring-damper system and Figure 3.2b
shows the free-body diagram of the forces acting on the mass m, when
an external force F, is applied to it. Based on the forces acting on
m, the net acceleration @ of m is the vector sum of the accelerations
caused by F,, F, and F;. The net acceleration @ can be derived as given
in Equations 3.10 to 3.13. Figures 3.3 and 3.4 show the response of
different configurations of mass-spring-damper systems to a driving
force having the form of a square pulse or a trapezoidal pulse. These
figures reveal the non-linearity in the motion of mass-spring-damper
systems.

To model AU dynamics using a driven mass-spring-damper system,
the direction of elongation of the spring is assumed to be identical
to the direction defined by the corresponding AU deformation vector.
The external force E, is modelled to act in this direction in order to
create a positive displacement of the mass-spring-damper system.
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Figure 3.3: The plots in the bottom row show the responses (displacement in

meters (m)) of three mass-spring damper systems to an external
driving force (unit: newton (N)) having the form of a square
pulse or a trapezoidal pulse. The square pulse includes a positive
and a negative step (top left). The trapezoidal pulse includes
a positive and a negative ramp (top right). The delay between
successive time steps was set to 40 ms. All three mass-spring-
damper systems had a natural frequency of 3 Hz, but differed in
the damping ratio: 0.8 for underdamped, 1.2 for overdamped, and
1 for critically damped. It can be seen that during the positive step
or positive ramp, the underdamped system produced the highest
peak displacement, and the overdamped system produced the
lowest peak displacement. Moreover, the underdamped system
showed faster motion than the overdamped system. During the
negative step or negative ramp, the underdamped system was the
fastest to touch the equilibrium position (displacement = 0), but
also overshot it. In contrast, the overdamped system needed more
time to approach the equilibrium position, but did not overshoot.
The responses of the critically damped system lie in between that
of the other two systems.
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Figure 3.4: The plots in the bottom row show the responses (displacement in

meters (m)) of two overdamped mass-spring damper systems to
an external driving force (unit: newton (N)) having the form of
a square pulse or a trapezoidal pulse. The square pulse includes
a positive and a negative step (top left). The trapezoidal pulse
includes a positive and a negative ramp (top right). The delay
between successive time steps was set to 40 ms. Both mass-spring-
damper systems had a damping ratio of 1.2, but different natural
frequencies of 2 Hz and 3 Hz. The stiffer the spring, the higher is
its natural frequency. It can be seen that the stiffer system (natural
frequency 3 Hz) was displaced less and slower than the less stiff
system (natural frequency 2 Hz), under the influence of the same
driving force. Similarly, after the removal of the driving force, the
stiffer system showed a slower rate of decrease in displacement.
However, the stiffer system returned to the equilibrium position
earlier due to it being closer to the equilibrium position.
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Consequently, the magnitude of the displacement X represents the
intensity of the corresponding AU. In order to prevent the mass-spring-
damper system from overshooting the equilibrium position, when
the external force is removed, a critically damped or overdamped
configuration can be used. This, together with a restriction of L to
non-negative values, ensures that the AU intensity estimates given by
this dynamic model are non-negative. More details on constraining
the range of AU intensity estimates are provided in Section 3.3.2.

F=FE+FE+F (3.10)
= mad = ma, — kX — ¢ (3.11)
Diving both sides by m,
jﬁ:}—@—g (3.12)
m m
Introducing wp and ¢,
— 4 =4, — wiX — 20wyd (3.13)

A separate driven mass-spring-damper model is used for each AU.
To integrate these models in the Gaussian state estimation method,
five entities need to be defined for each driven mass-spring-damper
model: (i) state vector x; (ii) state transition function fy; (iii) Gaussian
noise in process model Qy; (iv) initial state xo; and (v) Gaussian
noise in initial state Py.® The state vector representation includes
all factors on the right-hand side of Equation 3.13, namely x, v, 4.,
wo and (.7 Since the model parameters wp and { are not known
exactly, and the external force F,, which represents the facial muscle
activation, changes dynamically according to the facial expression,
wo, ¢, and a, are included in the state vector and estimated along
with the variables x and v. The state transition function fj takes
the form of a set of continuous-time ordinary differential equations
(see Equation 3.14). Each equation defines the time-derivative of one
element of the state vector. The elements a,, wy and { are assumed
to be constant; hence, their time-derivatives are set to zero. However,
these are updated during the correction step, based on the evidence
provided by the observations zi. To compute Xy, these differential
equations are integrated numerically, with initial conditions set as
x(0) = xx_1. Fourth-order Runge-Kutta method with a single iteration
(as per Table 6.5 in [79]) is used as the numerical method to solve these
differential equations. The step size is set to t; — tx_1. The definitions
of the state vector as well as fy are based on the work of Liu and
Ebbini [113]. However, this doctoral work differs from [113] in the

The suffix k in fi and Qy is used to indicate time-dependence, in general. However,
these entities may also be unchanging or independent of time.

For simplicity, the vector notation”is ignored here, and the vectors are represented
as scalars, since the positive direction is defined implicity by the corresponding AU
deformation vector.



3.2 BASIC FRAMEWORK: PROBABILISTIC, DYNAMIC, HYBRID

treatment of the external force F,. In [113], F, is treated as a control
input. In this doctoral thesis, F, is treated as an unknown/hidden
model parameter to be estimated by the state estimation method, and
is included in the state vector (in the form of acceleration a,). Moreover,
only one iteration of fourth-order Runge-Kutta method is used, in
contrast to the 32 iterations in [113]. This is because no significant
differences were found in the empirical results when 32 iterations
were used instead of one iteration. In addition, fewer iterations reduce
computational cost. The application domain also differs between the
two works. In [113], a driven mass-spring-damper system (referred to
as “forced harmonic oscillator”) is used for modelling the dynamics of
viscoelastic tissue displacements. In this doctoral work, mass-spring-
damper models are applied to model the dynamics of different facial
actions or viscoelastic facial muscle movements.

EZ:?}; ilzt)za; GZIEZO; d;;OZO; LZZf:O (3.14)

The process noise Qy associated with the mass-spring-damper
model is modelled using non-zero variances for each of the differential
terms given in Equation 3.14, excluding v. Since v is the time integral
of 4, the noise in v is contributed by the noise in a. Therefore, no sepa-
rate noise is modelled for v in Qy (i.e. the variance of Gaussian noise
in v is set to zero). In this doctoral work, the values for these noise
variances were determined empirically as 0;0.03;0.0001;0.0001; 100,
respectively, for the differential terms in Equation 3.14. Furthermore,
the noise in each differential term is considered to be independent
of the noise in the other terms (i.e. noise covariances between these
terms are set to zero).

As mentioned above, fi, computes the time-derivatives of the ele-
ments of the state vector. Accordingly, the continuous-discrete Kalman
filter defines a differential form of the state estimation error covari-
ance matrix, for use in the prediction step (see pages 290—293 in [14]).
This is given in Equation 3.15. This equation is also numerically inte-
grated using a single iteration of fourth-order Runge-Kutta method
with initial conditions set as P(0) = Px_4, in order to compute Py. Fy
represents the Jacobian matrix of fi computed at the state xi_1.

A

dpP

dt

The initial state xg was setas x = 0; v = 0; a, = 0; wg = 3 Hz;

¢ = 1.2 (overdamped). The noise covariance matrix Py was configured

as given in Equation 3.16, where At is the interval between two con-

secutive time steps (At = t; — t;_1). In the context of this thesis, At

represents the interval between two consecutive image frames in a
video.

So far, the process of incorporating a single driven mass-spring-

damper model in the Gaussian state estimation method was described.

= F P+ PR +Qy (3.15)
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In order to extend it to include several driven mass-spring-damper
models—one for each of the 22 AUs-the vectors and matrices mentioned
above (xy, fx, Qk, xo, Po) are augmented appropriately with the ele-
ments for each mass-spring-damper model. In this way, the process
models for all 22 AUs can be integrated into the same Gaussian state
estimation framework. See also Patent D.1.1 for details.

[ 03 03(AH)1 0 0 0]
03(At)~1 03(AH)2 0 0 0
Py = 0 0 0.0001 0 0 (3.16)
0 0 0 0.0001 0
0 0 0 0  100]

3.2.2 Noise in Facial Landmark Detection

Similar to the preceding work [69], the noise in the detected facial
landmark positions was computed empirically. The CK+ dataset [120]
was used for this purpose. It contains annotations of 68 landmark
positions in 2D pixel coordinates.® In this dissertation, a state-of-the-
art face alighment method based on [9o] is used to detect the facial
landmark positions. The facial landmark positions detected for the im-
ages in the CK+ dataset were compared with the annotated positions,
and subsequently, the sample mean and sample variance of the errors
normalised by the distance between the eyes were computed. The
noise in the landmark positions were computed under two different
assumptions: (i) The noise in the pixel coordinates of each landmark
are correlated with each other, but are uncorrelated with the noise in
the pixel coordinates of other landmarks (independent noise config-
uration); (ii) The noise in the pixel coordinates of each landmark is
correlated with the noise in the pixel coordinates of every other land-
mark (full noise configuration). These two noise configurations lead
to two different state estimators. The independent noise configuration
is used for AUos, AU10, AU13, AU16, AU17, AU23, AU27 and AU343.
The full noise configuration is used for AUo1, AUo2, AUo4, AUO6,
AUoy, AUog, AU11, AU12, AU14, AU15, AU20, AU24, AU25 and
AU26. The full noise configuration lends greater robustness or noise
resistance to the state estimator, since individual landmarks cannot as
easily influence the state estimate as in the independent noise configu-
ration. Therefore, it is good for subtle AUs such as AU06-CheekRaiser
and for AUs such as AUo2-OuterBrowRaiser that might be incorrectly
used to cover interpersonal shape variations in facial features such
as eyebrows. The independent noise configuration can be visualised
graphically in the form of 1-¢ error ellipses, as shown in Figure 3.5a.

In the pixel coordinate system, the x-axis goes from left to right, and y-axis from top
to bottom, with the origin at the top, left corner of the image.
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The error ellipses represented in this figure correspond to the face
alignment method based on [90]%, and are therefore different from the
noise ellipses shown/used in the master’s thesis [69] preceding this
work. It can be seen from Figure 3.5a that the noise is normally higher
along the edges than across them. The landmarks located on the facial
boundary are more noisy than those located on the eye lids, nose and
upper lip boundary. Figure 3.5b shows the same error ellipses shifted
by adding the mean noise. The mean noise represents the systematic
error in the facial landmark detections, and is subtracted from the
facial landmark detections, before they are used to correct the state
estimate.

(a) 1-0 error ellipses (b) 1-¢ error ellipses shifted by adding the
mean errors

Figure 3.5: 1-0 error ellipses representing the empirically computed noise in
the facial landmark detections from the face alignment method
[90] applied in this work. The empirical noise was computed on
the CK+ dataset [120]. The ellipses and the mean errors have been
rescaled based on the 2D distance between the centers of the eyes
in this perspective-projected wireframe model of the neutral face
deformed with a mild parting of lips (AUz25). The mean errors
represent the empirically determined systematic error in the facial
landmark detections.

9 The face alignment method based on [9o] was not implemented by me. Only the
outputs from this method were used in this doctoral work.
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3.2.3 Noise in Action Unit Classification

In this dissertation, SVMs trained on HOG or LBP features are used as
appearance-based classifiers.® The integration of these SVM classifier
outputs in the state estimation method is an important contribution of
this thesis, and is published in [70] (Publication B.2.1).

The appearance-based AU classifiers used in this work are of three
different types: two-class, multiclass Type-I and multiclass Type-IL
Two-class classifiers predict the probability of presence or absence of
a single AU. In this work, two-class classifiers are used for detecting
AUo2, AU06, AUog, AU17 and AU25. Mutliclass Type-I classifiers
predict the probabilities of all Boolean combinations of a selected
number of AUs. In this work, a multiclass Type-I classifier is used for
two AUs, namely AUo1 and AUo4. This classifier predicts probabilities
for four classes: (i) both AUo1 and AUog4 present; (ii) AUo1 present,
but not AUog4; (iii) AUog present, but not AUoz1; (iv) neither AUo1 nor
AUo4 present. From a multiclass Type-I classifier, the probabilities for
individual AUs can be computed using the marginalisation technique.
In the above example, the probability of presence of AUo1 can be
obtained by adding the probabilites for classes (i) and (ii). Similarly,
the probability of presence of AUo4 can be obtained by adding the
probabilities for classes (i) and (iii). Multiclass Type-II classifiers pre-
dict probabilities of a set of individual AUs. In this work, a four-class
SVM that detects the presence of AU12, presence of AU15, presence
of AU26, and absence of AU12, AU15 and AU26 is used. This is an
example of a multiclass Type-II classifier. With multiclass Type-II clas-
sifiers, the probability of presence of an AU is the probability output
for that class.™

In order to integrate these AU probability outputs in the Gaussian
state estimation method, the probabilities should first be converted to
Gaussian noise variances. The probability p of presence of an AU A
defines a Bernoulli distribution, where the Boolean random variable
A takes value 1 (presence of AU) with probability p and value 0
(absence of AU) with probability 1 — p. The second moment of this
distribution is utilised as the Gaussian noise variance, for integration
in the state estimation method. Figure 3.6 shows the second moment
or variance of Bernoulli distribution as a function of the probability p
that the Boolean random variable takes the value 1. As can be seen,
the variance is highest when the probability is 0.5. This is the point of

The design, training and testing of the SVM classifiers were not done by me. Only the
outputs from the SVMs were used in this doctoral work.

All the sVM classifiers used in this work have been created using the LIBSVM [17]
software library. To convert the real-valued scores given by SVMs into pairwise class
probabilities, LIBSVM uses the method proposed by Lin et al. [107], which is an
improvement of Platt’s method [143]. Individual class probabilities are computed
from the pairwise class probabilities via pairwise coupling based on the second
approach proposed by Wu et al. [201].
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Figure 3.6: Variance of Bernoulli distribution, as a function of the probability
of the Boolean random variable taking the value 1. This figure is
also published in [70].

highest uncertainty about the value taken by the random variable, i.e.
whether the AU A is present or absent. More details can be found in
the Publication B.2.1.

3.2.4 Fusion of Multiple Noisy Observations

As mentioned earlier, the observation model for facial landmark po-
sitions is given by the perspective projection of the 3D, deformable
facial shape model. The observation model for appearance-based AU
classification is the identity function that interprets the probabilities as
AU intensities [70]. This is based on the rationale that AUs expressed at
higher intensities will create stronger appearance changes that lead to
higher classification probabilities. A similar rationale was adopted in
other works [9, 61]. Since probabilities as well as valid AU intensities
belong to the range [0, 1], a rescaling of probabilities is not necessary.
In order to fuse the noisy observations from facial landmark detec-
tion and appearance-based AU classification, the observation vector
z, the observation model hy, and the measurement noise covariance
matrix Ry are augmented. The performance improvement through the
fusion of facial shape and appearance information was successfully
demonstrated on three upper face AUs, namely AUo1-InnerBrowRaiser,
AUog-BrowLowerer and AUo6-CheekRaiser, using image sequences
from a proprietary market-research database (see Table 2 and Figure 3
in [70] or Publication B.2.1).
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3.3 ENHANCEMENTS

In this section, several enhancements made to the basic state estimation
framework in order to deal with practical as well as domain-specific
challenges are discussed.

3.3.1 Action Unit Correlations in Noise Models

The AU deformation vectors in Equation 2.1 represent the displace-
ments in the positions of facial landmarks that are caused when AUs
are displayed at maximum anatomically possible intensities. A visual
inspection of these deformation vectors would reveal that several AUs,
especially those in the same facial region, cause facial shape defor-
mations that appear to be very similar to each other and involve the
movement of similar facial landmarks, either in the same or in the
opposite direction. For example, Figures 3.7a and 3.7b show that the
deformation vector for AUog4-BrowLowerer pulls the inner corners of
the eyebrows downwards, whereas the deformation vector for AUo1-
InnerBrowRaiser pushes them upwards. From Figures 3.7c and 3.7d,
it can be seen that AU12-LipCornerPuller and AU13-Sharp LipPuller
vectors raise the lip corners upwards, but in slightly different angular
directions. Computationally, the degree of similarity between any two
AU deformation vectors can be determined by calculating the Pearson’s
correlation coefficient p. This is computed by first mean-normalising
each of the 3D vectors, and then by computing the cosine of the an-
gle between each pair of mean-normalised 3D vectors (cf. [41]). This
correlation coefficient p is invariant to both scale and translation. It
takes a value in the interval [—1, 1], with negative values indicating
negative correlation and positive values indicating positive correlation
between the vectors. The higher the magnitude of p, the stronger is the
correlation (positive/negative similarity). A value of zero represents
independence (no similarity) between the vectors, in which case, the
vectors are orthogonal to each other.” The closer the magnitude of
p is to zero, the higher is the dissimilarity between the two vectors.
Between the deformation vectors for AUo1 and AUo4, p had the value
—0.78, indicating a strong negative correlation. Between the deforma-
tion vectors for AU12 and AU13, p had the value 0.94, indicating a
strong positive correlation. When two AUs involve the movement of
different facial landmarks, correlation coefficients are close to zero.
For example, between AUo1 and AU12, p had the value —0.06.

The values for p that were computed for each pair of AUs are visually
depicted in Figure 3.8 as a matrix of ellipses. This visualisation of cor-
relations as ellipses is inspired by [134]. In Figure 3.8, the blue ellipses
represent positive correlations, and the red ellipses represent negative
correlations. This information is also represented by the slopes of

12 Correlation coefficients are computed between two non-zero vectors.
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(c) AU12-LipCornerPuller (d) AU13-SharpLipPuller

Figure 3.7: 2D perspective projections of the deformation vectors for AUoz,
AUo4, AU12 and AU13 that are part of the face model in Equa-
tion 2.1. The vectors are derived from [96].

the (semi-)major axes that are marked using black arrows. Negative
slopes of (semi-)major axes denote negative correlations, and positive
slopes denote positive correlation. In addition, the length of a minor
axis is inversely related to the strength of the correlation. That is,
the stronger the correlation (positive or negative) between the corre-
sponding pair of AUs, the shorter is the minor axis, and the narrower
is the ellipse. In Figure 3.8, the strong negative correlation between
AUog-BrowLowerer and AUo1-InnerBrowRaiser is indicated by the
narrow, red ellipse, whereas the strong positive correlation between
AUz12-LipCornerPuller and AU13-SharpLipPuller is indicated by the
narrow, blue ellipse. An AU has the maximum positive correlation of
1 with itself, in which case, the minor axis of the ellipse has length
zero. This reduces the ellipse to a straight line segment with a slope
of 1. In contrast, the more uncorrelated the corresponding AU vec-
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tors (p values closer to zero), the more circular are the ellipses, with
major and minor axes of more or less equal lengths. For example,
AUo1-InnerBrowRaiser and AU12-LipCornerPuller are uncorrelated,
as represented by the red circle.
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Figure 3.8: Correlation coefficients computed between pairs of AU deforma-

tion vectors. Positive correlations are shown using blue ellipses,
and negative correlations are shown using red ellipses. The black
arrows represent the semi-major axes of the ellipses. Positive or
negative slope of a semi-major axis indicates positive or negative
correlation between the corresponding AUs. Narrower ellipses rep-
resent stronger correlations. The more circular an ellipse, the more
uncorrelated are the corresponding AU vectors. A black-and-white
version of this figure is also published in the Patent D.1.1.

As can be seen in Figure 3.8, many of the AU deformation vectors
have strong positive or negative correlations with each other. There-
fore, the AU intensities that represent the displacements along these
vectors cannot be considered as being uncorrelated to each other. Con-
sequently, these AU correlation coefficients were introduced in the
process noise covariance matrix Qy, in the initial state error covariance
matrix Py, as well as in the AU constraint models, so that the noise
in each AU intensity contributes a proportional amount of noise in
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another AU intensity. The proportionality constant was set to the corre-
lation coefficient between the corresponding AU deformation vectors.
It is to be noted that the covariances between AU intensities computed
in this way represent the face model-based noise and do not reflect the
probability of co-occurrence of AUs. These covariances operate in such
a way that higher uncertainties in one AU intensity estimate increase
the uncertainties in the intensity estimates of other positively corre-
lated AUs, and decrease the uncertainties in the intensity estimates of
other negatively correlated AUs.

Another way to deal with the non-orthogonality of the facial shape
deformations caused by AUs would have been the use of principal com-
ponents of the original set of AU deformation vectors. However, this
removes the semantic information about AUs and therefore, muscle-
specific modelling of AU dynamics would no longer be possible. To
learn the process model for the parameters associated with the prin-
cipal components, a good amount of data with reliable AU intensity
annotations would be required. However, this still remains an unre-
solved challenge.

3.3.2 Constraints on Action Unit Intensity Range

The AU deformation vectors defined in Equation 2.1 represent the
maximum shape deformations that are anatomically possible when
expressing the AUs. By virtue of this, the maximum value that can be
taken by the AU parameters or AU intensities is 1. Furthermore, AU
intensities are non-negative by definition in FACS [46]. Hence, the valid
AU intensities are limited to the range [0, 1]. In order to ensure that the
estimated AU intensities belonged to this valid range, state constraints
were introduced in the extended Kalman filter framework. There are
several ways of doing this, as mentioned in [174]. In the preceding
work [69] that used a constant velocity model for facial motion, soft
constraints were applied to the AU parameters during the correction
step. Soft constraints do not have to be strictly met, in contrast to hard
constraints. The underlying idea was to introduce an effect of pushing
(or, equivalently, pulling) the AU intensities towards zero. The negative
estimates were pushed more strongly than the positive estimates. In
order to realise this, (i) additional measurements of zero—one for each
AU parameter—were introduced in the observation vector zy, (ii) a
zero-mean Gaussian noise was defined to control the softness of the
constraint, and (iii) a linear observation model was defined to convert
the noisy apriori AU intensity estimates to predicted observations.
The same principle was adopted and extended in this doctoral work,
in which the constant velocity models are replaced by driven mass-
spring-damper models. In order to enforce the AU parameter range
constraints, it is necessary to also constrain the direction in which the
driving force is applied to the mass-spring-damper system, so that it

47



48

AUTOMATIC FACIAL ACTION ESTIMATION

causes displacements only along the direction of the AU deformation
vector. The modelling, working and impact of the constraints are
described in [67] (Publication B.2.2).

3.3.3 Handling of Anomalies in Face Alignment

In this work, a face alignment method [90] is used to detect the
positions of 68 facial landmarks in an image frame. These positions
are used directly as observations in the AU intensity estimation method.
These are also used to define the face region(s) from which textural
features are extracted for AU classification. Occasionally, unseen'3 or
sudden variations in facial shape and texture introduced by changes
in illumination, face and head motion, or facial expressions can result
in anomalous facial landmark detections that differ significantly from
the predicted facial landmark positions. Furthermore, illumination
changes or body movements can affect the texture of the clothing or
the background. This could cause a sudden displacement of the facial
landmark detections to a completely different region in the image
frame. Since the accuracy and precision of face alignment are central
to the performance of the AU intensity estimation method, anomalies
in face alignment should be detected and prevented from being used
to correct the apriori AU intensity estimates.

Detection of anomalies in measurements is a well-known prob-
lem in Kalman filter-based tracking applications. In [136], a solution
based on normalised innovation squared is presented. Normalised
innovation squared is a measure of divergence between the actual
measurements and those predicted based on the apriori state estimates.
Normalised innovation squared values follow chi-square distribution.
The 68 2D facial landmarks contribute 136 degrees of freedom. There-
fore, the normalised innovation squared values should be less than
192.707 to ensure a p-value of 0.001. However, in this doctoral work,
the threshold for the normalised innovation squared values was set
empirically to 325, by examining examples where face alignment pro-
duced anomalous results. The threshold was set very high, so that
the sudden changes in facial landmark positions caused by facial
muscle movements are not flagged wrongly as anomalies. This is
more likely to happen in the case of AU43-EyesClosed, which involves
a quick movement of eyelids, and in the case of AUs related to the
opening of the mouth, namely AU25-LipsPart, AU26-JawDrop and
AUz27-MouthStretch. If the changes caused by these AUs are flagged
as anomalies, then the state estimation method will miss to detect the
activation of these AUs, thereby affecting its AU intensity estimation
performance. With a high threshold, only extremely unlikely facial
landmark detections would be flagged as anomalies. Figure 3.9 il-
lustrates an anomalous and a non-anomalous set of facial landmark

13 Here, "unseen’ stands for 'not seen during the training of the face alignment method.’
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detections, in two consecutive image frames, and also provides the
value of normalised innovation squared computed in each case.

Freme 225 - : Fremme 224

Erigtmer22 4

Eriamey223

s =

(c) Frame no. 223 with detected land- (d) Frame no. 224 with detected land-
marks marks

Figure 3.9: An instance of anomaly in facial landmark detection in a sequence
from the UNBC-McMaster Shoulder Pain Expression Archive
Database [121]. On Frame 223, the value of normalised innovation
squared was 135.441 (p-value > 0.001). This was well below the
empirically determined threshold of 325. Therefore, the facial
landmark detections for Frame 223 are marked as non-anomalous
measurement. However, on Frame 224, the value of normalised
innovation squared was 483.993, which exceeded the empirically
set threshold of 325. Therefore, the facial landmark detections
for Frame 224 are flagged as a highly unlikely or anomalous
measurement. Facial images (© Jeffrey Cohn.

If detected, anomalous facial landmark positions are not used to cor-
rect the apriori state estimate. The plot at the top in Figure 3.10 shows
how an anomalous face alignment output in one frame corrupted the
AU intensity estimates for several successive frames. The plot at the
bottom in Figure 3.10 shows the AU intensity estimates for the same
image sequence, when the anomalous facial landmark detections were
ignored and not used to update the AU intensities. The noisy effect
of the anomalies on AU intensity estimates were eliminated. If several
successive frames are flagged as anomalies and dropped from the cor-
rection step, then the apriori state estimates will gradually drift over
time and the normalised innovation squared based method would flag
such situations as anomalous, even when the face alignment is correct.
Furthermore, an update after several time steps would introduce noise
in the AU intensity estimates. Therefore, if more than a specific number
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Figure 3.10: An illustration of the effect of the proposed strategy for handling

anomalies in facial landmark detections. The effect is illustrated
on a sequence from the proprietary market research database
[70], recorded at 25 frames per second. For clarity, only two AUs,
namely AUo4 and AU17, are shown in the plots. The plot at the
top shows the AU intensity estimates obtained when anomaly
detection was not activated. The plot at the bottom shows the
AU intensity estimates obtained when the anomaly was detected
and removed from state estimation. This illustrates that, through
anomaly handling, the noisy effects of anomalous facial land-
mark detections can be eliminated, which in turn would enhance
the robustness of the system.

of consecutive frames produce anomalous facial landmark detections,
then the state estimation should be suspended. The state estimator can
later be reset, when a pre-defined timeout on suspension is exceeded
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and facial landmark detections are available. The frames count for con-
secutive anomalies and the duration of timeout for resetting the state
estimator could be determined empirically, as part of a future work.
During the initial feasibility tests, the state estimation was suspended
after three consecutive anomaly detections (frames count set to three),
and reset when the next frame with facial landmark detections became
available (timeout set to zero).

Sometimes, facial landmark detections are not available for a frame
(missing measurement). In these cases, the correction step in state
estimation is skipped. However, if no facial landmark detections are
available for a pre-defined number of consecutive frames, then the
state estimation is suspended until facial landmark detections become
available again. In this work, the frames count for suspending state
estimation due to missing facial landmark detections is set to three.
If any of the AU classifiers fail to produce a prediction, then the
corresponding elements are excluded from the observation vector, and
the correction step is performed with the remaining measurements.

3.3.4 Muscle-specific Models for Action Units

As shown in Equation 3.13, the mass-spring-damper model for each
AU has two internal parameters, namely the natural frequency of os-
cillation wy and the damping ratio {. These parameters are part of
the state vector, and are allowed to be dynamically updated, in order
to account for epistemic modelling errors. These parameters were
initialised identically for all AUs using values determined through trial
and error. However, these parameters could be initialised differently
for each AU, depending on the characteristics of the facial muscle(s)
that produce(s) it. For this, a simple method based on facial muscle
fibre composition is proposed here. Several histochemical studies [50,
64] have examined the composition of facial muscles. Happak et al.
[64] grouped facial muscles based on the percentage of Type I mus-
cle fibres that they contained. The subsequent work by Freilinger et
al. [50] labelled these groups as phasic, intermediate and tonic mus-
cles. Phasic facial muscles contain less proportion (14% to 15%) of
Type I fibres. The orbicularis oculi muscle that is involved in AUo6-
CheekRaiser, AUo7-LidTightener and AU43-EyesClosed belongs to
this category. Intermediate facial muscles are composed of 28% to
37% Type I fibres. The muscles involved in several lip movements
(AU1o-UpperLipRaiser, AU12-LipCornerPuller, AU13-SharpLipPuller,
AUz1s-LipCornerDepressor and AUz2o-LipStretcher) fall in this cat-
egory (muscles: zygomaticus major, levator labii superioris, levator
anguli oris, depressor anguli oris, and platysma [64]). Tonic facial
muscles contain high proportions (41% to 67%) of Type I fibres. The
occipitofrontal muscle involved in raising of eyebrows (AUo1 and
AUo2) and the buccinator muscle involved in AU14-Dimpler belong
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to this category. Phasic muscles respond fast, while tonic muscles
are slow in responding to stimuli. As shown in Figures 3.3 and 3.4,
mass-spring-damper systems with stiffer springs or stronger dampers
are slower and milder in their responses to the driving force, whereas
less stiff springs and weaker dampers respond faster and stronger
to the driving force. Based on these pieces of information, different
initial values could be configured for wy and { for different AUs. In
this work, a less stiff spring with wy set to 0.8 and ( set to 1.0 (critically
damped) was used for AUo6, AUoy and AU43, which are AUs that
involve the action of the phasic orbicularis oculi muscle. Figure 3.11
gives a qualitative illustration of the effect of this adapted mass-spring

055 T T T T
—  Default model
0.5} —— Muscle-specific model | |
0.45
04

0.35

0.3

AUy3 intensity estimate

10 20 30 40 50 60 70 80 90 100 110
Frame No.

Figure 3.11: The plot illustrates the effect of using a muscle-specific model
for AU43-EyesClosed on a sequence selected from the UNBC-
McMaster Shoulder Pain Expression Archive Database [121]. The
default model used a spring with wy set to 3 Hz and a damper
with { set to 1.2. The muscle-specific model used a spring with
wo set to 0.8 Hz and a damper with { set to 1.0. With this
muscle-specific model: (i) the peaks of AU43 intensity estimates
are sharper and higher; (ii) the intensities are able to come closer
to zero, when the eyes are reopened; (iii) and the estimates
increase or decrease at a faster rate. In sum, the responsiveness
of the AU43 intensity estimates improved through the use of a
muscle-specific model.
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damper model on AU43 intensity estimates. It can be seen that the
estimates obtained from the muscle-specific model show quicker and
higher responsiveness than the estimates obtained from the default
model. Empirical tuning of the parameters of the muscle-specific
mass-spring-damper models could be investigated in a future work.

3.3.5 Adapting to Person-Dependent Variations

The facial properties such as shape and appearance vary between
persons. These variations can affect the final shape and appearance
of the face, when a facial expression is displayed by different persons.
Figures 3.12 and 3.13 show some examples of facial shape or morphol-
ogy variations between persons. Facial morphology includes the shape
of face boundary as well as the shapes of facial features such as the
eyebrows, eyes, nose and mouth. These variations are modelled using
SU deformation vectors and SU parameters in the deformable facial
shape model (see Equation 2.1). Facial appearance varies between per-
sons due to the differences in the texture and tone of a person’s skin.
The textural variations include, for example, ageing-related wrinkles,
presence of facial hair (beard and moustache), and facial occlusions
caused by hairstyle. In this doctoral work, different methods have
been applied to account for these interpersonal variations or to min-
imise the effect of these variations on AU intensity estimation. These
methods can be categorised into (i) one-time calibration approaches,
and (ii) continuous calibration approaches. In one-time calibration ap-
proaches, the person-specific characteristics are determined before the
AU intensity estimation begins. In contrast, in continuous calibration
approaches, the determination of person-specific characteristics and
estimation of AU intensities are performed simultaneously.

One-time calibration of person-dependent facial shape and appear-
ance can be performed on the first few frames of the sequence, if the
person shows a neutral expression at the beginning of the sequence.
Alternatively, it can be performed on a separate sequence, where the
same person shows a neutral expression. First, let us look at one-time
facial shape calibration. To determine the SU parameters in these cases,
the state estimation process is run on these neutral (sub)sequences
with AU intensity estimation disabled by setting the inital AU parame-
ters, their error covariances, and the AU-related process noise to zero.
This causes the state estimation process to estimate only the head pose
(rigid) parameters and the SU parameters. The aposteriori SU parameter
estimates obtained for the last frame of a neutral (sub)sequence are
then used as fixed/calibrated SU parameters for the corresponding
person. The AU parameter estimation is then activated by setting the
AU-related process noise as modelled in Section 3.2.1. In the case
where the SU parameters are determined on the first few frames of
the sequence, the final aposteriori state estimation error covariances
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of the SU parameters are transferred to the AU parameters, before
the AU parameter estimation is activated. This is done to transfer the
facial landmark fitting errors to the corresponding AU parameters. It
is also done so as not to disturb the equilibrium of the system through
sudden changes in the error covariances. This transfer of noise uses
the Jacobian (H) of the 2D perspective projection of the 3D deformable
facial shape model, and the aposteriori state estimation error covari-
ance matrix P. The transfer of noise is described in Equations 3.17
to 3.19. The subscripts 1, s, a, and 1 represent the row /column indices
of the rigid parameters, SU parameters, AU parameters, and facial land-
mark coordinates, respectively. Further adaptation of SU parameters
is disabled during AU parameter estimation by setting the su-related
process noise and error covariances to zero.

(a) (b)

Figure 3.12: Different facial morphologies: Examples from Actor Study
Database [168].

(b)

Figure 3.13: Different facial morphologies: Examples from the UNBC-
McMaster Shoulder Pain Expression Archive Database [121].

Images (© Jeffrey Cohn.
Hi, Paa Hia' = Hig Pos His' (3-17)
Hl,r Pr,a Hl,aT = Hl,r Pr,s Hl,sT (3'18)

Hl,a Pa,r Hl,rT = Hl,s Ps,r Hl,rT (319)
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Next, let us look at one-time facial appearance calibration. Variations
in facial appearance influence the performance of the SvM-based AU
classifiers that use textural features. This influence could be mitigated
by debiasing the probability outputs produced by the AU classifiers.™+
This is done by computing the average of the probability outputs for
each AU on the neutral (sub)sequence and subtracting these average
values from the probability outputs produced by the classifiers dur-
ing AU parameter esitmation. A rescaling of the debiased probablity
outputs can also be performed to ensure that they belong to the range
[0,1].

In contrast to one-time calibration approaches, the continuous cali-
bration approaches determine the person-dependent facial shape and
appearance variations during AU parameter/intensity estimation, and
do not necessarily require a separate neutral (sub)sequence. In this
doctoral work, the continuous approach to estimate person-dependent
facial shape variations was also explored. It estimates SU parameters
simultaneously with AU parameters as part of the same state estimator.
In order to enable the slow adaptation of SU parameters, a constant
position process model with low process noise is used. Constraints
are also imposed on SU parameters to control the divergence of SU
parameters from zero. These constraints act equally on positive and
negative values of SU parameters. This continuous approach to deal
with person-dependent facial shape variations was also part of my
master’s thesis [69] that preceded this doctoral research. A continuous
approach for mitigating the effects of person-dependent facial appear-
ance variations was not explored in this doctoral thesis, and could be
examined in a future work.

There are evidences for interpersonal variations in muscle fibre
composition of facial muscles such as those involved in jaw movements
[93, 154]. These differences influence the dynamics of facial muscle
motion. Therefore, the parameters wy and ¢ of the mass-spring-damper
models used to model facial muscle motion should be able to adapt
to these interpersonal variations. In order to do this, a continuous
approach is used in this doctoral work. The parameters wg and { are
included in the state vector and estimated simultaneously with the AU
intensities. A one-time approach could also be used, in which case, wy
and ( are set as fixed after the calibration phase.

Figures 3.14 and 3.15 compare the results of one-time facial shape
calibration and continuous facial shape calibration. Figure 3.14 ex-
amines the positions of facial landmarks estimated using the two
approaches. It can be seen that there is no visually discernible differ-
ences in the facial landmark positions estimated by the two approaches.
However, Figure 3.15 shows that the quality of AU intensity estimates
improved when one-time facial shape calibration was used. This is
due to the reduced interference from SU parameters, as they are es-
timated separately. Although the qualitative results speak in favour
of one-time facial shape calibration, this approach requires a neutral

14 This approach was suggested by Dr. Jens-Uwe Garbas from Fraunhofer IIS.
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(a) One-time shape calibration (b) Continuous shape calibration

Figure 3.14: Qualitative results showing the positions of facial landmarks
estimated using one-time versus continuous facial shape cali-
bration for the first frame of a sequence from the Actor Study
Database [168]. In the one-time approach, only the sU and rigid
parameters are used to fit the deformable facial shape model to
the observed facial landmark detections. The resulting estimated
facial landmark positions are shown in Subfigure 3.14a. In the
continuous approach, the SU and AU parameters are estimated
simultaneously, and are used along with the rigid parameters to
fit the observed facial landmark positions. The facial landmark
positions so estimated are shown in Subfigure 3.14b. The esti-
mated facial landmark positions are almost similar in both cases.
A few very subtle differences (which are not easily discernible
via visual inspection) exist along the facial boundary, lips and
eyelids.

(sub)sequence, to achieve best results. This is, however, difficult to
mandate or control in real-world applications.

3.4 PERFORMANCE EVALUATION

Previous sections in this chapter already mentioned the qualitative
or quantitative evaluation of various components and features of the
proposed AU intensity estimation approach. In addition to these, the
performance of the AU intensity estimation approach was compared
with the performance of a state-of-the-art system for AU recognition
[30]. The evaluation was performed on three datasets, namely the
Actor Study Database [168], the UNBC-McMaster Shoulder Pain Ex-
pression Archive Database [121], and a proprietary market-research
database that is not yet published. All datasets contain AU anno-
tations at frame-level. The evaluation is described in detail in the
to-be-submitted Publication C.2.1. It was found that the proposed
approach performed quite well in recognising AUs, despite simultane-
ously estimating intensities for several closely resembling AUs. It also
produced temporally smooth AU intensity estimates, which facilitates
the identification of the different temporal phases of AUs.

In general, the estimates from the proposed approach are conser-
vative, with delayed onsets and lower range of values for estimated
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Figure 3.15: Qualitative results showing the effect of one-time versus continu-

ous facial shape calibration on a sequence from the Actor Study
Database [168], in which the actor displays AU43-EyesClosed.
One-time shape calibration was performed iteratively on the first
frame which was duplicated for 20 time steps. The aposteriori
SU parameter estimates from the 20" time step was used as the
calibrated facial shape. After this calibration phase, the noise
was transferred from SU parameters to AU parameters. In the
plots above, it can be seen that continuous calibration created
noisy intensity estimates in two ways. On the one hand, it used
AUs for modelling person-dependent facial shape variations. For
example, although the sequence did not inolve a stretching of
lips, non-zero intensities are estimated for AUz20-LipStretcher
throughout the sequence. On the other hand, it used SU parame-
ters to co-model AU-related facial shape changes. For example, it
can be seen that the intensity estimates for the displayed AU43-
EyesClosed became more prominent, when SU parameters were
deactivated after the calibration phase of the one-time approach.

AU intensities. To make the intensity estimates less conservative as

well as to

improve the generalisation performance on unseen data, in

the future, outputs from data-driven machine learning approaches
such as [30] could be integrated within the proposed state estimation
framework as additional evidence for AUs.
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3.5 CHAPTER SUMMARY

This chapter described the probabilistic AU intensity estimation frame-
work that was developed as part of this doctoral work. The framework
is based on a Gaussian state estimation method, and it combines an AU-
based deformable face model with data-driven AU classifiers. It models
the facial muscle movements using driven mass-spring-damper sys-
tems, and fuses facial shape and appearance information to estimate
continuous-valued intensities of 22 AUs. This chapter also presented
the proposed practical approach to integrate probability scores from
classifiers into a Gaussian state estimation framework. Several enhance-
ments to deal with the person-specific and facial muscle-specific varia-
tions, and solutions for practical challenges such as anomalous and
missing observations were also discussed. Additional features were
presented to handle subtle AUs, to deal with the non-orthogonalities of
facial shape deformations caused by AUs, and to enforce valid range
constraints on AU intensity estimates. These components and features
are summarised in Table 3.1. This chapter also provided a summary
of the performance evaluation of the proposed AU intensity estima-
tion approach on three facial expression datasets. The next chapter
will discuss three open challenges in the field of automatic mental
state analysis, and present some intial work done to address these
challenges.

Table 3.1: Overview of the components and features of the proposed AU
intensity estimation framework. These are grouped on the basis of
the state estimation step where they are introduced. In addition,
the features of the initial state are also listed.

Step Components and Features

Prediction | Driven mass-spring-damper models for AUs
AU correlations in process noise covariances

Adaptation of facial shape and dynamics

Correction | Two different facial landmark noise configurations
Fusion of facial shape and appearance measurements
Constraints on range of AU intensities

AU correlations in constraint noise covariances
Handling of anomalous or missing measurements
Adaptation of facial shape and dynamics

Application of calibrated facial appearance

Initial state | Neutral facial expression

Muscle-specific mass-spring-damper parameters

AU correlations in initial state noise covariances




ADDRESSING OPEN CHALLENGES IN AUTOMATIC
MENTAL STATE ANALYSIS

The multimodality and interpersonal variations associated with the
expression of mental states call for building multimodal datasets and
performing detailed analyses of the influence of various internal and
external factors, such as personality, age, gender, diagnostic status,
context and cultural background, on the activation and expression
of mental states. Moreover, medical applications such as pain or de-
pression detection [186] demand transparency in the decision models.
That is, the learned models should be interpretable to humans, and
it should be possible to generate comprehensible explanations of the
predictions made by the models [59, 194].

In this chapter, some preliminary work done towards addressing
three open challenges in the field of automatic mental state analysis is
summarised. This includes the development of a set of requirements
for reference datasets for mental state analysis, the analysis and mod-
elling of interpersonal differences in the expression of mental states,
and the generation of explanations for mental state detections.

4.1 REQUIREMENTS FOR MULTIMODAL REFERENCE DATASETS

Mental states such as stress and pain have been analysed via multiple
modalities: physical (facial, vocal and muscular) and physiological
(skin conductance, heart and breathing signals) [166, 170, 198]. Several
datasets are available for mental state analysis that contain multimodal
data (e.g. BioVid Heat Pain Database [190], WESAD [165]", a multi-
modal distracted driving dataset [177]). However, the stimuli used to
induce a mental state, the recorded modalities, the devices used to
acquire multimodal data, and the self or observer-reporting methods
used for annotating data vary between datasets [68, 166, 170, 198],
making models developed on one dataset not comparable with those
developed on another dataset. The use cases and settings that are con-
sidered for data collection also vary between datasets. Stress datasets
have been collected for application contexts such as driving, computer-
based work, or public speaking [123]. Pain datasets have been collected
mostly under experimental conditions and occassionally under clinical
settings [68]. Since there can be use case-specific opportunities and
challenges in the acquisition of data, and use case-specific differences
in the features and methods used for mental state detection, separate

WESAD is a publicly available database containing stress and affect data recorded
using wearable sensors.
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datasets for each use case is necessary. However, there is a need for
defining a uniform framework for data collection and annotation, so
as to improve the comparability of models. Earmarking a dataset or
a group of datasets as a reference dataset, would enable more effective
benchmarking.

A set of requirements that should be fulfilled by a multimodal
reference dataset of human stress data is presented in [123] (Publi-
cation B.3.1).> These requirements can be generalised to mental state
analysis as follows:

e A representative sample size: The number of subjects to be
included in the reference dataset should be determined based on
the statistics of the actual population cohort that is targeted. The
distribution of the subcohorts within the chosen sample should
be determined in a similar way.

e An effective stimulus: The stimuli chosen for inducing the tar-
get mental states in the subjects should be effective in eliciting
the desired response. The characteristics of an effective stress
stimulus have been described in [122]. The type and strength
of stimuli should also be adapted to the individual sensitivity
thresholds. For example, in the BioVid Heat Pain Database [190],
the temperature levels for heat stimuli for pain induction were
adapted to each individual’s pain tolerance level.

e Multiple modalities: The reference dataset should include multi-
ple modalities in order to cover possible interpersonal variations
in the expression of the mental state. Moreover, the use of re-
dundant and complementary information provided by multiple
modalities could help in reducing false positives and false nega-
tives during the detection of the mental state (cf. [57, 182, 196]).
The reference dataset should include the modalities that have
been shown to be reliable indicators of the mental state. For ex-
ample, electrodermal activity and electrocardiogram should be
included in stress datasets due to their correlation with cortisol
levels [116, 187], and facial expressions should be included in
pain datasets due to their validity [99, 171] and similarity across
experimental and clinical pain conditions [98] as well as across
different diagnostic status [11, 99, 101].

e Information about personal and contextual factors: Compre-
hensive information should be gathered about the main internal
factors (e.g. age, gender, diagnostic status) and external factors
(e.g. medicine intake, exercise, food intake, sleep pattern) that
could influence the response to the administered stimuli. This is

2 These are results from the research and development work of Bhargavi Mahesh that
was co-supervised by me, together with Prof. Dr. Erwin Prassler, Bonn-Rhein-Sieg
University of Applied Sciences. My contributions are listed in Appendix B.3.1.



4.2 ANALYSIS OF INTERPERSONAL DIFFERENCES

necessary to filter or model any known impact of these factors
on the recorded multimodal response data.

e Sensor specification (noise, calibration information): In order
to build more generalisable and robust models that are device-
independent, it is essential to include information about the
noise in the recorded signals as well as information about the
calibration parameters of the sensors. These details should there-
fore be available in reference datasets.

4.2 ANALYSIS OF INTERPERSONAL DIFFERENCES

Interpersonal differences have been observed in the physical and phys-
iological responses to various stimuli intended to cause mental state
changes (cf. [54, 97, 176]). Taking these interpersonal differences into
consideration is crucial for building generalisable automatic mental
state analysis models. Some works attempted to implicitly learn differ-
ent models for different cohorts by including personalised features as
input to the learning algorithms. For example, Liu et al. [114] included
personal information such as age, gender and complexion as input
variables to learn models for estimating self-reported pain intensity
levels, whereas Lopez-Martinez et al. [118] computed a personalised
feature known as the individual facial expressiveness score, which
was used as an input feature for the same task. Pain detection models
have also been built to model each subject’s response separately [117,
199].

In this doctoral work, interpersonal differences have been taken into
consideration while designing the AU intensity estimation method
and the AU-based pain detection rules. As mentioned in Section 3.3.5,
several methods have been explored to account for the facial shape,
facial appearance, and muscle-specific properties of a person during
the AU intensity estimation process. The AU-based rules constructed
for estimating pain intensities include the four clusters of facial ex-
pressions of pain (excluding the stoic response) identified by Kunz
and Lautenbacher [97]. These rules are presented and validated in
Preprint C.2.1. Figure 14 in Preprint C.2.1 illustrates the application
of these rules to an image from the UNBC-McMaster Shoulder Pain
Expression Archive Database [121]. Such composite rules based on
individual clusters can help in detecting different types of facial ex-
pressions of pain, which would improve the generalisability of the
pain detection system.

Besides the facial expression based mental state analysis, a pre-
liminary investigation of the interpersonal differences in the pupil
diameter changes caused by an arousal stimulus was conducted under
my supervision. In this study [54] (Publication B.3.2)3, pupil diameters

3 This study was conducted by Pelin Genc, under my supervision.
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of subjects were recorded as they watched a video which contained
a brief arousal stimulus. A qualitative analysis of the recorded data
identified three types of pupillary response (i.e. changes in pupil di-
ameter): increasing, decreasing and constant. Differences were also
observed in the changes in the pupil diameters between different types
of personalities. More details are provided in Publication B.3.2.

4.3 INTERPRETABLE MODELS AND DECISION EXPLANATIONS

In several real-world applications of automatic mental state analysis,
especially in the medical field, it is crucial for humans to under-
stand how an automated system makes its decisions. However, some
of the most successful data-driven methods are based on svMs and
neural networks, which produce black-box models that are not com-
prehensible to humans [1, 59]. Therefore, these models—despite their
advantages—cannot be deployed in critical applications. In order to
improve the interpretability of black-box models and to make their
decisions transparent to humans, several methods are being developed
[59].

Following the success of deep CNNs in image recognition tasks [39,
94], more and more state-of-the-art approaches are applying CNNs
for facial image analysis (e.g. [141]), including automatic recognition
of pain from facial expressions (e.g. [179]). However, automatic pain
detection approaches have seldom tried to distinguish pain from
other emotions such as disgust and happiness [68]. Therefore, we
trained a CNN model to discriminate between pain, happiness and
disgust, and to apply explainable Al methods to make the predictions
made by this CNN model transparent. In [194] (Publication B.3.3),
the use of two explainable Al methods, namely Local Interpretable
Model-Agnostic Explanations (LIME) [149] and Layer-wise Relevance
Propagation (LRP) [8], to explain the pain, happiness and disgust
predictions made by the above-mentioned CNN model is illustrated
with the help of image samples taken from the BioVid Heat Pain
Database [190].> LIME and LRP can be used to make CNN models
transparent, and subsequently help in identifying discrepancies in the
models. In Publication B.3.3, qualitative explanations were generated
for both correct and incorrect predictions using LIME and LRP. Facial
regions around eyes, eyebrows, nose and lips were found to have
contributed to the correct predictions of pain, disgust and happiness
(see Figures 3, 5 and 6 in Publication B.3.3). For some input images,
non-facial regions were found to improve prediction (see Figures 4 and
6 in Publication B.3.3), pointing to errors in the learned CNN model.

4 This research was conducted by Katharina Weitz, as part of her master’s thesis that
was supervised jointly by me and Prof. Dr. Ute Schmid, University of Bamberg.

5 Explainable AT methods other than LIME and LRP were also applied in Katharina
Weitz’s master’s thesis to explain the predictions of the CNN model for recognising
pain, happiness and disgust.



4.4 CHAPTER SUMMARY

The two-step approach for AU-based pain detection (or, in general,
mental state detection) presented in Figure 2.1 and described in Sec-
tions 3.2 and 3.3 has both interpretable and black-box components.
These are described below:

e The 22 AU intensity estimates are interpretable, since they rep-
resent the amount of deformation along the facial shape defor-
mation vectors defined in the deformable face model given in
Equation 2.1.

e The components of the Gaussian state estimation framework
such as the state transition functions and observation models
are interpretable by virtue of design. The mass-spring-damper
model of facial motion dynamics as well as the observation
models for facial shape, facial appearance and AU intensity con-
straints can be presented graphically (see Figures 2.2 and 3.3 in
this dissertation, and Figures 1.2 and 1.3 in Publication B.2.2).
Such graphical representations aid in interpreting these models
and their influence on AU intensity estimates.

e The uncertainties associated with the state estimates and ob-
servations can also be represented graphically (see Figures 3.5
and 3.6 in this dissertation, as well as Figures 6 and 7 in the
Preprint C.2.1), which in turn facilitate the interpretation of their
influence on AU intensity estimates.

e With regard to observations, the facial landmark detections can
be visualised by superimposing them onto the input image. This
helps in identifying any errors through visual inspection. As
described in Section 3.2, the proposed AU intensity estimation
approach uses predictions from SVM classifiers as additional
observations. SVMs are, however, black-box models. To explain
the decisions/predictions made by SvMs, the model-agnostic
method LIME [149] or other explainable Al methods applicable
to SVMs can be used (see [59]).

e In general, rule-based models that infer different mental states
on the basis of AU intensities are interpretable. This is illustrated
in Preprint C.2.1, where verbal explanations are generated for
pain in terms of the detected AUs and their intensities, for a sam-
ple image from the UNBC-McMaster Shoulder Pain Expression
Archive Database [121].

4.4 CHAPTER SUMMARY

This chapter identified three open challenges in the field of automatic
mental state analysis, and summarised the initial work conducted
towards addressing these challenges. First, a set of requirements that
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should be fulfiled by multimodal reference datasets for automatic
mental state analysis was identified. Second, the interpersonal differ-
ences in facial or physiological responses to pain or arousal stimuli
were modelled or analysed. Third, the interpretable components of
the proposed two-step approach for pain detection were examined,
and sample explanations for pain detections were generated using
AU-based rules. In addition, the use of explainable Al methods to ex-
plain the pain, happiness and disgust predictions from a CNN model
was explored. More interdisciplinary research is required to address
these challenges, in particular, (i) to gather and annotate multimodal
reference datasets for mental state analysis, (ii) to systematically inves-
tigate the interpersonal differences in the expression of mental states
across different modalities, and (iii) to generate and validate human-
comprehensible explanations for automatic mental state predictions.



CONCLUSIONS AND OUTLOOK

5.1 AUTOMATIC FACIAL ACTION ESTIMATION

In this dissertation, a novel and hybrid approach for AU intensity esti-
mation has been proposed and validated. This approach is based on a
Gaussian state estimation framework, and it combines a deformable,
AU-based facial shape model, a viscoelastic model of facial muscle
motion, a set of appearance-based AU classifiers, and a facial land-
mark detection method. In order to integrate the probability scores
from apperance-based AU classifiers in the Gaussian state estimation
framework, a practical approach based on the variance of Bernoulli
distribution and the marginalisation technique has been proposed and
empirically evaluated. This integration of AU classifiers and AU-based
deformable face model was found to improve AU recognition perfor-
mance. The proposed AU intensity estimation approach provides both
continuous-valued AU intensity estimates as well as the uncertainty
associated with those estimates. This makes the proposed approach
suitable for real-world applications that require a fine-grained analysis
of facial expressions, accompanied by an uncertainty quantification,
for probabilistic decision-making based on detected facial expressions.

Several enhancements have been proposed and integrated in the
state estimation framework to deal with the person-specific properties,
as well as technical and practical challenges. These enhancements con-
tribute towards improving the quality of the estimated AU intensities.
The Gaussian noise models and the anomaly detection feature enhance
the robustness of the approach. Furthermore, several components of
the proposed AU intensity estimation approach can be represented
graphically, contributing to the enhancement of interpretability of the
approach.

Qualitative and quantitative evaluations were performed on three
facial expression datasets, in order to compare the performance of the
proposed AU intensity estimation approach with that of a state-of-the-
art, data-driven machine learning method for AU recognition [30]. It
was found that the proposed approach produces temporally smoother
estimates and performs quite well, even though it simultaneously
estimates intensities for 22 AUs, many of which resemble each other
closely. However, it was also found that the intensity estimates tend
towards the lower range of values and are often characterised by
delayed onsets. To overcome these limitations and to improve the
generalisation performance, the outputs from the above-mentioned
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state-of-the-art method could be integrated into the state estimation
framework of the proposed approach.

Several other measures could be taken to further improve the per-
formance of the proposed AU intensity estimation approach. The svMm
classifiers could be replaced or augmented by better AU classifiers,
probably based on deep CNNs, and trained on data containing more
variance. The parameters of the facial muscle motion model could
be tuned empirically with the help of sufficient amount of reliably
annotated AU intensity data and additional evidence from the fields
of biomechanics and histology. A deformable facial shape model of
higher resolution, i.e. a model containing more than 68 facial land-
marks, with denser coverage of cheeks, forehead and chin, combined
with a face alignment method that can detect more facial landmarks
could further improve AU intensity estimation performance. However,
edge information is hard to obtain on cheeks, forehead and chin, mak-
ing the annotation and detection of facial landmarks in these regions
difficult. Therefore, new approaches for face alignment should be
developed in the future, in order to overcome this challenge.

In addition, future work could explore whether human feedback can
be integrated into the state estimation framework in the form of control
commands in the process model. Such human feedback could help in
correcting the current and future predictions on-the-fly. This could be a
useful feature to speed up and improve the reliability of AU annotation
of facial expression videos, and can be applied in psychological and
behavioural research for facial expression annotation through human-
computer collaboration.

A key characteristic of the proposed AU intensity estimation method
is the assumption of unimodal Gaussian noise in the transition model
and observations. However, Gaussian mixture models could be used
for more realistic modelling of noise, and could be investigated in
the future. It would also be interesting to explore the potential of
Bayesian deep learning models [191] for probabilistic inference of
AU intensities. A comparison of the performance of such models
with the performance of the AU intensity estimation proposed in this
dissertation might provide useful insights to extend the state-of-the-
art.

In order to deal with practical challenges such as head rotations,
illumination variations and occlusions, a combination of hardware
and software solutions could be explored. Such solutions could use
different active or passive strategies. Active strategies could involve
repositioning of cameras or activation of artificial illumination. Passive
strategies could involve the usage of alternate image analysis methods
tailored for functioning under such challenging conditions. To deal
with low resolution images, non-frontal faces, facial occlusions, or
illumination variations, the use of face hallucination methods [147,
204] could be explored. Methods developed for face recognition from
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low-quality images (e.g. Herrmann et al. [71]) might also be useful in
processing low-resolution facial expression images and videos. Real-
time performance is often important for real-world applications. The
use of speed-optimised mathematical libraries and multithreading
could bring gains in computational speed, and could be investigated
in a future work.

5.2 AUTOMATIC MENTAL STATE ANALYSIS

In this dissertation, the AU intensity estimates produced by the pro-
posed method have been applied for automatic detection of pain and
for analysing facial activity during driver distractions. For automatic
pain detection, a set of AU-based rules were defined based on evidence
from experimental psychology [97, 146]. These rules were applied to
the AU intensity estimates and the estimated pain intensities were
evaluated empirically. In addition, the generation of verbal explana-
tions for pain detections has been illustrated with the help of these
AU-based rules. Future work could expand these explanations by in-
tegrating information about the uncertainty associated with the AU
intensity estimates provided by the Gaussian state estimation method.
In addition, these verbal explanations could be compared and con-
trasted with the explanations generated on the basis of image-based
CNN models (e.g. [194]), and subsequently, a multi-level explanation
strategy could be developed. The creation and evaluation of such
explanation strategies would require interdisciplinary collaboration,
especially between researchers from the fields of computer vision and
psychology.

The preliminary analysis of facial activity during simulated driving
sessions involving different types of distractions, showed differences
in facial expressions between different sources of distraction. This
inspired an effort to automatically detect driver distraction using
the AU intensity estimates (see Preprint C.1.1. Update 02.08.2020: See
publication [56]).

The results of automatic pain detection and driver distraction analy-
ses show that the AU intensities estimated by the proposed approach
are suitable for automatic mental state analysis. However, further re-
search is necessary to develop AU-based pain rules that include the
temporal characteristics of pain as well as contextual information such
as intake of medication. Further research is also necesasry to identify
the actual facial activity patterns associated with the different types
of distraction. Future work could explore the use of AU intensity esti-
mates and associated uncertainties for automatic mental state analysis
in other application domains such as human-robot interaction.

To take the field of automatic mental state analysis forward, good
quality data with reliable annotations are required. Interdisciplinary ef-
fort is needed to build reference datasets for benchmarking algorithms.
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A few requirements for such reference datasets have been proposed as
part of this doctoral thesis. Given the difficulty in manually annotating
large volumes of data, the use of of semi-supervised and unsupervised
methods for automatic mental state analysis should be investigated
more extensively in the future. Interpersonal differences influence
automatic mental state analysis. More interdisciplinary research is
required in order to model interpersonal differences effectively, and to
build systems that can dynamically adapt generic models to the ex-
pression characteristics of the individual. In cases where the identities
of the persons are known, customised models can be built and later
activated with the help of face recognition.

This thesis demonstrated that by combining data-driven machine
learning approaches with deformable face model and state estimation
methods, the predictive performance for AU detection can be improved,
while facilitating robustness and interpretability in automatic mental
state analysis based on facial expressions. Future research should
focus on integrating different Al methods, in order to build strong and
ultra-strong AU systems for automatic mental state analysis.
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ADDITIONAL RESULTS

A.1 MENTAL STATE ANALYSIS: DISTRACTION DETECTION

Figures A.1, A.2, A.3, and A.4 show additional results of the analysis
of facial activity during different driving conditions. The results are
obtained by analysing facial videos from the distracted driving dataset
collected by Taamneh et al. [177]. Facial activity is represented by pairs
of AU intensities and AU velocities. The AU intensities are obtained
using the AU intensity estimation method developed in this doctoral
work (see Sections 3.2 and 3.3). In the above-mentioned figures, prac-
tice drives, normal drives, relaxed drives, drives with unexpected
system failure, drives under sensorimotor distraction, and the base-
line (non-driving) conditions are included. The figures show that the
distribution of facial activity is different under different driving and
distraction conditions.

Sensorimotor Drive
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Figure A.1: 2D histogram showing the distribution of sequence-level facial
activity while driving under the influence of sensorimotor stres-
sors (dataset: [177]). Facial activity is represented by pairs of AU
intensities and AU velocities. AU intensities (on the horizontal
axis) are unitless. AU velocities (on the vertical axis) have the
units: seconds 1.
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Practice Drive
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(b) Facial activity during normal drive

Figure A.2: 2D histograms showing the distribution of sequence-level facial
activity during practice and normal drives (dataset: [177]). Facial
activity is represented by pairs of AU intensities and AU velocities.
AU intensities (on the horizontal axis) are unitless. AU velocities
(on the vertical axis) have the units: seconds™".
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Relaxing Drive
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(a) Facial activity during relaxed drive
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(b) Facial activity during system failure drive

Figure A.3: 2D histograms showing the distribution of sequence-level facial
activity during relaxed drive and drive with unexpected system
failure (dataset: [177]). Facial activity is represented by pairs of
AU intensities and AU velocities. AU intensities (on the horizontal
axis) are unitless. AU velocities (on the vertical axis) have the
units: seconds 1.
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Figure A.4: 2D histogram showing the distribution of sequence-level facial
activity while not driving (dataset: [177]). Facial activity is repre-
sented by pairs of AU intensities and AU velocities. AU intensities
(on the horizontal axis) are unitless. AU velocities (on the vertical
axis) have the units: seconds .
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B.1.1 Hassan et al. “Automatic Detection of Pain from Facial Expressions:
A Survey.” In: IEEE TPAMI 2019

Full Reference of Paper

Teena Hassan, Dominik Seuf3, Johannes Wollenberg, Katharina Weitz,
Miriam Kunz, Stefan Lautenbacher, Jens-Uwe Garbas, and Ute Schmid.
“Automatic Detection of Pain from Facial Expressions: A Survey.” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2019),
pp- 1-17. DOL: 10.1109/TPAMI.2019.2958341.

My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contributions, which are published in this paper:

e Defined the review methodology and framework for preparing
the survey.

e Collected, reviewed, and structured literature on automatic pain
detection from facial expressions that were published during the
period 2006 — 2018.

e Categorised the pain detection methods into one-step and two-
step methods depending on whether or not an intermediate step
of AU detection was involved.

e Categorised the pain detection methods based on the learning
tasks, the features, and the machine learning methods used.

e Identified deficits in the technical methods used to automatically
detect pain from facial expressions.

e Outlined future research directions to address these deficits.
Two of the key research directions proposed include the use of
weakly supervised, semi-supervised, and unsupervised methods
for automatic pain detection, and the development of integrative
approaches combining multiple tasks, algorithms, and context-
relevant information.
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Written Contents Contributed by Myself

I wrote nearly 85% of the contents of the paper. I contributed to all
sections in the paper, except Section 3 on facial expressions of pain. I
also did not contribute the contents from the field of psychology that
are included in the introduction (Section 1) and discussion (Section 6). I
also did not contribute the recommendations for future datasets, listed
at the end of Section 4. I also did not formulate the parts of discussion
related to interpretable machine learning based on grammar inference
and inductive logic programming, and their utility to medical staff.
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My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contributions, which were published in this paper:

e Categorised the state of the art methods in automatic pain de-
tection from facial expressions into four categories based on
their learning goals (referred to in the paper as “aims of assess-
ment”): (i) pain versus no pain; (ii) genuine versus faked pain;
(iii) pain versus other emotions; and (iv) continuous-valued or
discrete-valued pain intensities.

e Categorised the state of the art methods in automatic pain de-
tection from facial expressions into single-level and two-level
methods, based on whether or not an intermediate step of AU
detection was involved.

Written Contents Contributed by Myself

In this paper, I wrote a brief overview of the existing methods for
automatic pain detection from facial expressions. This included a
categorisation of the methods as mentioned in the subsection above,
and a brief comment on the different types of visual inputs used and
the different types of features (shape, appearance, temporal) extracted
from the visual input.

77






B.2 AUTOMATIC FACIAL ACTION ESTIMATION

B.2 AUTOMATIC FACIAL ACTION ESTIMATION

B.2.1 Hassan et al. “A Practical Approach to Fuse Shape and Appearance
Information in a Gaussian Facial Action Estimation Framework.”
In: ECAI 2016

Full Reference of Paper

Teena Hassan, Dominik Seuss, Johannes Wollenberg, Jens Garbas, and
Ute Schmid. “A Practical Approach to Fuse Shape and Appearance
Information in a Gaussian Facial Action Estimation Framework.” In:
ECAI 2016: 22nd European Conference on Artificial Intelligence, 29 August
- 2 September 2016, The Hague, The Netherlands - Including Prestigious
Applications of Artificial Intelligence (PAIS 2016). Frontiers in Artificial
Intelligence and Applications. The Hague, The Netherlands: IOS Press,
2016, pp. 1812-1817. DOI: 10.3233/978-1- 61499-672-9-1812.

My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contributions, which are published in this paper:

e Proposed and implemented a novel and practical approach to
integrate categorical probability outputs from data-driven classi-
fiers such as sVMs within a continuous state estimation frame-
work that uses a Gaussian noise model. The proposed method
uses the marginalisation technique as well as the variance of the
Bernoulli distribution defined by the binary class probabilities.

e Applied the proposed method to fuse facial shape and appear-
ance information within an extended Kalman fitler based frame-
work for AU intensity estimation. Performance evaluation on
three upper face AUs showed that fusion of shape and appearance
information using the proposed method improved AU recog-
nition performance, measured in terms of Area Under ROC
Curve (AUC).

Written Contents Contributed by Myself

I wrote nearly 70% of the paper. This includes the abstract, conclusion,
and the fusion approach (Section 4) entirely, as well as most part of the
introduction, related work, and evaluation. Within the introduction
(Section 1), I wrote the contents except those related to SHORE™,
Within the related work (Section 2), I prepared (i) the summary of
the state-of-the-art methods for facial expression analysis that are
based on state estimation methods such as Kalman filter, particle filter,
HMM, and DBN; (ii) the summary of the existing methods for fusing
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probability outputs from sVMs within a discrete state estimation frame-
work (HMM); and (iii) the problem formulation. Within the evaluation
section (Section 5.3), I prepared the entire content, except Figure 4.
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My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contributions, which are published in this paper:

e Extended the state constraints on AU intensities to the process
models based on driven mass-spring-damper systems. This re-
quired additional constraints to be defined for the driving force
acting on each mass-spring-damper system. The values for the
constraint parameters associated with the driving force were
determined empirically, and are provided in Table 1.1 in the

paper.

e Validated the impact of these state constraints on the range of
estimated AU intensities using histogram analysis. It was found
that 99.95% of the AU intensities estimated using driven mass-
spring damper process models were within the range [—0.2,1.2).

e The operation of these state constraints, with regard to the effects
of the constraint coefficient and the constraint offset, was re-
interpreted and visualised. This is illustrated in Figure 1.3 and
explained as part of Section 3.1 in the paper.

It is to be noted that the results for the Regularized Landmark
Mean-Shift (RLMS) [158] method and Constant Velocity (CVel) process
model based method were generated as part of my master’s thesis

[69].

Written Contents Contributed by Myself

I wrote the entire contents of the paper, including figures and tables.
However, Figures 1.1, 1.2 and 1.4 in the paper were originally created
as part of my master’s thesis [69].
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My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contribution, which was published in this paper:

e Evaluated the performance of a state-of-the-art AU recognition
system developed by Dapogny et al. [30] on the center view
images in the Actor Study Database [168]. The performance was
measured in terms of AUC, and the AU-wise results are presented
in the column labelled “ISIR” in Table IV in the paper.

Written Contents Contributed by Myself

I wrote the description of the state-of-the-art AU recognition system
developed by Dapogny et al. [30]. This description is included in
Section IV A of the paper, under the heading: AU detection system
from ISIR’. In addition to this, I also proofread and corrected the
manuscript.
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My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contributions, which are published in this paper:

e Formulated the research questions to guide the requirements
analysis for building a multimodal reference dataset for human
stress detection. This is part of Section III of the paper.

e Conceptualised the technical requirements related to sensor
calibration, sensor noise quantification, and time-synchronised
recording of multiple modalities (REQ-5 in the paper).

e Conceptualised the annotation requirement (REQ-4 in the paper)
related to the use of multiple self-reports to gather informa-
tion about internal and external factors that could influence the
response to stress stimuli.

e Conceptualised the requirement to include multiple modalities,
especially the reliable stress modalities of heart and skin activity
(REQ-3 n the paper).

e Formulated the evaluation criteria for evaluating the publicly
available stress datasets based on the results of the requirements
analysis. This is part of Section IV in the paper.

e Co-supervised this research work along with Prof. Dr. Erwin
Prassler, Bonn-Rhein-Sieg University of Applied Sciences.

Written Contents Contributed by Myself

I reorganised the contents of the paper, with a focus on the scientific
structure of arguments and flow of content. Apart from this, I wrote
the research questions in Section III of the paper, and contributed
written text to Section III E. (REQ-5) and Section IV (excluding Table
10).
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Within the scope of this dissertation, I made the following scientific
contributions, which are published in this paper:

e Conceptualised the personality-wise analysis of pupillary re-
sponses to arousal stimulus.

e Conceptualised the protocol for data collection (except the visual
stimulus and recording setup).

e Conceptualised the analysis of personality-specific response char-
acterisitcs based on the variances in pupil diameter.

e Conceptualised a visualisation of variances in pupil diameter for
reporting the results (Fig. 5 in the paper).

e Supervised this research work.

Written Contents Contributed by Myself

I reorganised and rephrased the contents of the paper, with a focus on
the scientific structure of arguments and flow of content. Apart from
this, I formulated the research questions in Section II.
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My Scientific Contributions

Within the scope of this dissertation, I made the following scientific
contributions, which are published in this paper:

e Defined the research questions for investigating the predictive
performance, interpretability, and explainability of a deep CNN
model to distinguish pain from disgust and happiness.

e Defined the materials to be used, the data preparation steps, and
the overall procedure to be followed for training, evaluating, and
interpreting the deep CNN model.

e Co-supervised this research work along with Prof. Dr. Ute
Schmid, University of Bamberg.

Written Contents Contributed by Myself
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focus on the flow of content and the scientific correctness of arguments,
explanations, and conclusions. Apart from this, I contributed to the
framing of the research questions in Section 3.
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research on driver distraction detection using facial and physio-
logical signals.

e Extracted AU intensities from the facial videos in the dataset
by applying the AU intensity estimation system that was devel-
oped as part of this doctoral work. This system is referred to as
AUReader in the paper.

e Downsampled the extracted AU intensities to 1 Hz by computing
the average of all valid intensities in each successive 1-second
interval.
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ABSTRACT

Psychologists use the Facial Action Coding System (FACS) to analyse
facial expressions recorded as part of behavioural and psychological
experiments. FACS defines basic facial muscle movements, known
as Action Units (AUs). Trained coders annotate the video recordings
of facial expressions in terms of these AUs. These annotated AUs
are then used for statistical analyses of the facial behaviour or facial
responses. However, manual coding of facial videos in terms of AUs
is time-consuming, costly, and prone to errors due to subjective bi-
ases. Automatic AU detection systems can support and accelerate
behavioural and psychological research by automating this process
of facial expression coding. This paper compares the qualitative and
quantitative performance of two automatic AU detection systems. One
of them uses static features and data-driven machine learning meth-
ods, while the other uses a probabilistic framework to fuse dynamic as
well as static information about AUs. The performance is evaluated on
three different datasets that contain AU annotations: the Actor Study
Database, the UNBC-McMaster Shoulder Pain Expression Archive
Database, and a proprietary market research database. AU recognition
as well as AU intensity estimation performance of the two systems
are compared. The strengths and weaknesses of the two AU detection
systems are then identified and the directions for future research are
drawn.

KEYWORDS: facial expression analysis, facial action units, machine
learning, probabilistic models, evaluation

1 INTRODUCTION

Facial expressions are an important channel used by humans to com-
municate non-verbal cues [22, 35, 40], including emotions [12] or other
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psychophysiological states such as pain [32]. Hence, analysis of facial
expressions is crucial not only for understanding human behaviour,
but also for building affective and empathic human-computer inter-
faces. Psychologists study facial expressions by either analysing the
‘message’ conveyed by the expressions (e.g. emotions, attitude) or by
decomposing the expressions into a set of objective ‘signs’ (e.g. facial
muscle movements) [6]. The former approach is referred to as message
judgment and the latter is referred to as sign judgment [6]. Sign judg-
ment allows a finer analysis of facial expressions, which is necessary
to investigate person-specific and context-specific variations in facial
expressions (cf. [31]). Although the sign judgment approach allows a
deeper analysis of facial responses, it involves the tedious process of
annotating facial muscle movements according to the Facial Action
Coding System (FACS) [16, 17]. FACS defines the fundamental, visu-
ally distinguishable facial muscle movements known as Action Units
(AUs), and also specifies five coding levels (A-E) for the intensities of
AUs. Trained FACS coders code facial expression videos in terms of
AUs and their intensities. FACS based analysis of facial expressions
has been performed extensively in pain research [32]. Furthermore,
some of the appraisal theories of emotions [45] suggest the use of AUs
as signs/cues to infer a person’s emotional appraisal of an event [46].
The use of an automatic AU detection system could support human
coders and has the potential to make the process of annotating facial
expressions less tedious. Systems that allow a human coder to correct
wrong AU predictions or AU intensity estimates would prove to be a
useful human-computer collaborative tool for promoting behavioural
and psychological research.

Several different approaches have been developed for automatic
AU detection over the past two decades [34, 44]. Several systems (e.g.
FaceReader,* Affectiva’s AFFDEX?) are also available in the commer-
cial market. However, a comprehensive evaluation of the quality of
outputs produced by these approaches and a comparison of their
predictive performance are often not performed. Therefore, in this
study, we compare two recently developed out-of-the-box systems for
automatic AU analysis. One of them, developed by Dapogny et al.
[11] at ISIR, Sorbonne University, Paris, recognises the presence of
12 AUs in facial images. The other, developed by Hassan et al. [24]
at Fraunhofer IIS, Erlangen, estimates continuous-valued intensities
of 22 AUs. For ease of reference, the former system is referred to as
ISIR-AU and the latter is referred to as AUReader. The two systems
differ not only in the AU analysis tasks, but also in the features and
methods used. In this study, we perform qualitative and quantita-
tive analyses of the outputs of the two systems in order to identify

1 https://www.noldus.com/facereader
2 https:/ /imotions.com/affectiva-requestdemo/
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their strengths and weaknesses with respect to their potential for
application in behavioural and psychological research.

In Section 2, an overview of the different approaches for automatic
AU detection is presented. Following this, in Section 3, the approaches
used in ISIR-AU and AUReader are described. The three datasets
used for evaluation are described in Section 4, and the performance
metrics used for quantitative evaluation are described in Section 5.
The qualitative as well as quantitative results obtained on the three
datasets are presented in Section 6. The general insights gained from
the evaluation are discussed in Section 7. Section 8 concludes the

paper.
2 RELATED WORK

As mentioned in the survey [34], computer vision research has focused
on several different tasks within the realm of automatic AU detection.
These mainly include the automatic recognition of whether an AU
is present in a facial image or video, the automatic prediction of the
discrete or continuous-valued intensities of AUs, and the automatic
recognition of the temporal phases of AUs (onset, apex, offset) [34].
Most of the approaches developed for automatic AU detection are
based on data-driven machine learning methods. Initially, such ap-
proaches used hand-designed features that described the facial shape
and appearance or their changes over time. Facial shape was usually
described in terms of positions of facial feature points, or distances and
angles between them (e.g. [28, 51]). Facial appearance was described
by image texture descriptors such as Gabor filters [13, 19, 20], Local
Binary Patterns (LBP) [38, 39] and Histogram of Oriented Gradients
(HOG) [10]. Such facial shape and appearance features extracted from
images are usually referred to as spatial features, and the features
that describe the changes in spatial features over time are usually
referred to as spatiotemporal features [44]. These features were fed as
input to machine learning methods such as Support Vector Machines
(SVMs), its variants, and boosting algorithms, for making predictions
related to the corresponding AU detection tasks [34]. Examples of
approaches that used spatial features include [4, 5, 28, 47], and those
that included spatiotemporal features include [3, 27]. More recently,
deep architectures of Convolutional Neural Networks (CNNs) are
increasingly being used to predict AUs (e.g. [21, 26]). These methods
perform end-to-end learning by taking an image or image sequence
as input, i.e. they extract facial image features on their own and do
not require hand-designed features as input.

Another category of approaches for facial AU detection used param-
eterised, deformable facial shape or appearance models. Model-fitting
methods such as Active Appearance Models (AAM) [7, 8] and Con-
strained Local Models (CLM) [9] were used to fit such deformable
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models to the faces in images and image sequences [5]. Such model-
fitting methods have been normally used for tracking the positions of
facial landmarks (e.g. [5, 41]). However, by combining dynamic, prob-
abilistic state estimation methods and AU-based deformable facial
shape models such as CANDIDE-3 [2], approaches have been devel-
oped for AU intensity estimation [14, 15, 25]. In these approaches,
state estimation methods such as Kalman filter, particle filter, or their
variants are used to model the dynamics of the face model parameters,
and to combine the dynamic model predictions with the observed
image properties. Such probabilistic state estimation approaches in-
herently provide a quantification of uncertainty in the AU intensity
estimates, which make them suitable for practical applications such as
human-robot interaction.

While data-driven machine learning methods can learn robust fea-
tures to deal with large variance in the data, the deformable face
model based approaches support interpretability of the mathematical
models involved. By combining the high predictive performance of the
data-driven machine learning methods with the better interpretability
of the state estimation and deformable face model based approaches,
it would be feasible to build strong learning systems, as defined by
Michie [36]. AUReader [23, 24] is an effort in this direction, whereas
ISIR-AU [11] is a data-driven approach based primarily on random
forest classifiers. The next section describes these systems in detail.

3 EVALUATED SYSTEMS

This section describes the methods used by the two AU detection
systems evaluated in this paper, namely AUReader [23, 24] and ISIR-
AU [11].

3.1 AUReader

The AUReader [24] uses a probabilistic framework for estimating
continuous-valued intensities of 22 AUs (see Table 1). It is based
on a Gaussian state estimation method that models the dynamics
of facial muscle movements and integrates the predictions of these
models with the observed facial shape and appearance. Facial shape
is represented by the positions of 68 facial landmarks and is detected
using a face alignment module [29] that uses a Random Forest (RF).
Facial apperance is represented indirectly by a set of SVM classifiers
trained on texture descriptors such as LBP and HOG. The Gaussian
state estimation method fuses these shape and appearance information
using the method described in [24]. A mass-spring damper system
is used to model the dynamics of the viscoelastic motion of facial
muscles. AUReader produces an AU intensity estimate for each image
frame in a video. Apart from this, the probabilistic framework used by
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AUReader also provides a measure of the Gaussian noise associated
with the AU intensity estimates. This Gaussian noise is estimated on
the basis of the noise in the modelling of facial muscle dynamics and
the noise in the detections of facial shape and appearance.

The AUReader uses a deformable, parameterised model of facial
shape that includes facial shape deformation vectors representing
shape changes caused by facial muscle movements or AUs [23]. These
AU deformation vectors were sampled from high-poly wireframe
models designed by psychologists [30, 43]. The strength of facial shape
deformation along each vector represents the AU intensity, which
is estimated by AUReader. The AU deformation vectors were de-
signed to correspond to the maximum possible shape deformation
that could be caused when an AU is displayed. Therefore, the AU
intensity estimates belong to a valid range of [0,1]. The modelling of
these range constraints is described in [23]. There are also a set of
deformation vectors that represent the facial shape variations between
individuals. Along with AU intensities, AUReader also estimates the
person-dependent shape of the face. Several of the AU deformation
vectors, especially those corresponding to AUs caused by neighboring
muscles, show geometric similarities. Correlation coefficients com-
puted between pairs of AU deformation vectors are used to adapt the
Gaussian noise covariances used in the state estimation framework.

Using the features and parameters associated with AUReader, dif-
ferent configurations can be created. For the purpose of performance
evaluation, a somewhat basic configuration of AUReader was used,
where some of the features were disabled. Precisely speaking, anomaly
detection and muscle-specific models were deactivated, since all the
parameters associated with these models had not yet been empirically
tuned. Consequently, all the mass-spring-damper models in AUReader
used the same natural frequency (wp) of 3 Hz and damping ratio ({)
of 1.2. In lieu of the anomaly detection feature that is based on the
computation of normalised innovation squared [37] values, a simpler
approach for detecting divergent AU intensity estimates was activated.
This approach checked whether the estimated AU intensities diverged
outside the interval (—1,2), and if so, marked the output for that
image frame as invalid. In addition to these simple divergence checks,
another quality assurance feature was also integrated in the AUReader.
This feature marks AU intensity estimates as invalid, if no facial land-
marks could be detected for three consecutive frames. Like anomaly
detection and muscle-specific models, texture calibration was also dis-
abled, since it was difficult to guarantee that all image sequences used
in this evaluation began with a neutral face. However, facial shape
calibration was performed online, simultaneously with AU intensity
estimation. Furthermore, after preliminary trials, the correlation co-
efficients between certain pairs of AUs were disabled (set to zero) in
order to improve the AU recognition performance. These AU pairs
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were (AUo1, AUo2), (AUo1, AUo4), (AUo2, AUos), (AUo1, AU09) and
(AUoz2, AUo09). The SVM classifiers that detect these AUs compensate
indirectly for this loss of information by providing appearance-based
evidence to resolve ambiguities during the process of AU intensity
estimation.

Table 1: List of the 22 AUs, whose intensities are estimated by AUReader.
These AUs are defined in FACS [16, 17]. ISIR-AU detects the presence

of 12 of these 22 AUs.
AU Code | AU Name
01 Inner Brow Raiser
02 Outer Brow Raiser
04 Brow Lowerer

05 Upper Lid Raiser
06 Cheek Raiser
07 Lid Tightener

09 Nose Wrinkler

10 Upper Lip Raiser
11 Nasolabial Deepener
12 Lip Corner Puller

13 Sharp Lip Puller

14 Dimpler

15 Lip Corner Depressor
16 Lower Lip Depressor
17 Chin Raiser

20 Lip Stretcher

23 Lip Tightener

24 Lip Pressor

25 Lips Part

26 Jaw Drop

27 Mouth Stretch
43 Eyes Closed

3.2 ISIR-AU

Unlike AUReader, ISIR-AU [11] uses data-driven machine learning
methods for detecting the presence of AUs in an image. It uses a
Random Forest (RF), in which each tree is trained on selected features
from a randomly chosen local region of the face. The feature candi-

99



100

PREPRINTS

dates are appearance features based on HOG and geometric features
such as distances and angles between facial landmarks. Features are
thresholded at every non-leaf node of the trees to split training in-
stances or to choose a search path. The leaf nodes of the trees predict
a facial expression category.3 The output of each tree is a probability
vector, with one entry for each facial expression category. The proba-
bility vectors from all trees are concatenated to obtain a second set of
candidate features from which a set of second-layer RFs are learned,
one RF for each AU. An autoencoder is used to predict confidence
levels for each local region. These confidence measures are intended
to provide robustness against partial occlusions. A weighted average
of these local confidence measures is computed, with the weights
determined by the proportion of root-level decisions contributed by
each local region towards AU classification.

It is to be noted that ISIR-AU system was trained on spatial fea-
tures and performs AU classification. Each AU-specific RF provides
a probability for the presence of that AU in the input image, along
with a measure of confidence in the prediction. The ISIR-AU system
used in this paper provided predictions for 12 AUs, namely AUo1,
AUo2, AUoyg, AUos, AUo6, AUog, AU12, AU15, AU17, AU20, AU25,
and AU26. In contrast to ISIR-AU, AUReader uses spatial and tem-
poral information, and estimates intensities of 22 AUs (see Table 1
for the list of 22 AUs). This set of 22 AUs include several AUs that
closely resemble each other, such as AUo6 and AUoy, AU12 and AU13,
and AU23 and AU24. It is also to be noted that while ISIR-AU has a
separate classification model for each AU, the AUReader estimates
intensities for all 22 AUs simultaneously. The features of AUReader
and ISIR-AU are summarised in Table 2.

4 DATASETS

The Actor Study Database [48] has facial expression sequences from
21 actors recorded from five different views. The actors performed
four different facial expression tasks. From these, 777 center (frontal)
view recordings at 24 frames per second were used in this paper.
These sequences are from Tasks 1 and 2, and contain acted/posed
expressions of AUs and AU combinations. The recordings from Task
2 contain acted AU combinations associated with five basic emotions—
sadness, happiness, anger, disgust and fear. The sequences from the
first 11 actors were used for training the SVM classifiers and for tuning
the parameters of other components of the AUReader. Therefore, only
the remaining 370 sequences from Actors 12 to 21 were used for
quantitative evaluation. Each sequence has frame-level annotations of
FACS AUs. Annotations are available for all 22 AUs listed in Table 1.

Here, a facial expression category refers to the neutral expression or the facial
expression of happiness, sadness, anger, disgust, surprise or fear.
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Table 2: Characteristics of the two AU detection systems—AUReader and

ISIR-AU-that are evaluated in this paper.

Characteristic | AUReader ISIR-AU

Task AU intensity estimation | AU recognition

Feature type | Spatial (shape, appear- | Spatial (shape, appear-
ance), temporal ance)

Methods used | Continuous-discrete ex- | RF, autoencoder
tended Kalman filter,
SVM, RF

Output Continuous-valued AU | Probabilities of pres-
intensities ence of AUs

Confidence Gaussian error variances | Scores based on proba-

measure and covariances between | bilities of occlusions in
AU intensities input image

Paradigm Estimates AU intensities | Uses independent AU-
jointly specific models

No. of AUs Twenty two Twelve

The UNBC-McMaster Shoulder Pain Expression Archive Database [33]
has 200 facial expression sequences recorded from 25 shoulder pain
patients, while they performed range of motion tests on left and right
arms. The database provides frame-wise annotations of 12 AUs, their
intensities on a 5-point scale as defined in FACS, positions of 66 facial
landmarks, and the Prkachin-Solomon Pain Intensity (PSPI) score.
Sequence-level annotations of observer-reported and self-reported
pain intensities are also available. In this study, only the frame-wise
AU annotations and PSPI scores are used.

A proprietary market research database (introduced in [24]) consisting
of recordings of spontaneous facial responses of 155 subjects watch-
ing commercial advertisement videos, is also used for quantitative
evaluation. This database was collected by the Nuremberg Institute
for Market Decisions (formerly GfK Verein), and includes 408 facial
expression sequences containing a rich variety of spontaneous facial
expressions. Frame-wise AU annotations are available for each se-
quence, and the annotations include all the 22 AUs listed in Table 1.
However, this database is not publicly available.

Table 3 lists the number of annotated frames available for each
AU in each of the above-mentioned databases. The facial expressions
selected from the Actor Study Database [48] are deliberately displayed
expressions, and the faces are nearly frontal. In contrast, the facial
expressions in the UNBC-McMaster Shoulder Pain Expression Archive
Database [33] and the proprietary market research database [24] are
spontaneous expressions, displayed in response to specific stimuli.
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These spontaneous facial expressions are occassionally accompanied
by out-of-plane head movements. Therefore, the latter two databases
pose a greater challenge for automatic AU recognition and automatic
AU intensity estimation.

5 PERFORMANCE METRICS

AUReader produces continuous-valued outputs. To evaluate its per-
formance, two strategies were adopted. The first strategy used each
AU intensity estimate as a decision threshold to detect the presence or
absence of an AU. The second strategy compared the AU intensity es-
timates directly with the annotated discrete intensity levels, after these
annotations were converted into numerical values within the range
[0,1]. The former strategy reframed the intensity estimation problem
into a classification task, and the latter retained it as a regression
task. The performance evaluation method was chosen according to
the strategy adopted for evaluation. Receiver Operating Characteristic
(ROC) curves suited the first strategy, and computation of absolute
errors suited the second strategy. The following paragraphs describe
briefly how these evaluation methods were applied to quantify the
performance of the AU intensity estimation method.

ROC curves [18] evaluate binary classification performance by mea-
suring how well positive instances of a class can be discriminated
from the negative instances. For this, firstly, the output scores from
a binary classifier are compared to a decision threshold to predict
whether an input is a positive or a negative instance of the target class.
This process is repeated on all instances in the test set. Subsequently,
the True Positive Rate (TPR) and False Positive Rate (FPR) are com-
puted by comparing the predictions with the annotations. TPR, also
known as sensitivity, indicates the proportion of positive instances
predicted as positive, and FPR, also known as inverted specificity, indi-
cates the proportion of negative instances predicted as positive. TPR
and FPR together represent the discriminative power of a classifier.
By varying the decision threshold, a set of (TPR, FPR) pairs can be
obtained. ROC curves are two dimensional plots of these (TPR, FPR)
pairs, with TPR plotted along y-axis and FPR along x-axis. A scalar
value, Area Under ROC Curve (AUC), is used to succinctly represent
the information contained in an ROC curve. Like TPR and FPR, AUC
also belongs to the range [0,1]. AUC above 0.5 is preferred, since it
represents performance better than chance. The higher the AUC above
0.5, the better is the performance. If the AUC is below 0.5, then the
decisions of the classifier are inverted. ROC curves can also be used
to find optimal decision thresholds for classifiers. The point on the
ROC curve that maximises F1-score is usually chosen as the operating
point for the classifier. F1-score is the harmonic mean of precision and
sensitivity, where precision denotes the proportion of true positives
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Table 3: Overview of the three datasets used for evaluation: The number
of subjects, the number of sequences, the total number of frames,
and the number of annotated frames per AU that are available in
each dataset are listed. In the case of Actor Study Database [48],
only sequences belonging to Actors 12 to 21 have been considered.
For brevity, the UNBC-McMaster Shoulder Pain Expression Archive
Database [33] is referred to as UNBC Pain in the table. Similarly, the
proprietary market research database [24] is abbreviated as Market

Research.

Actor UNBC Market

Study [48] Pain [33] Research [24]
Subjects 10 25 155
Sequences | 370 200 408
Frames 47730 48398 80600
AUo1 5609 0 4874
AUo2 4013 0 5422
AUoyg 5941 1074 11200
AUos 2601 0 1009
AUob 3414 5557 16090
AUoy 7048 3366 18182
AUog 1862 423 872
AU1o 1524 525 1478
AU11 612 0 1790
AU12 4248 6887 26729
AU13 831 0 1205
AU14 1186 0 4592
AU1s 1204 6 2987
AU16 494 0 644
AU1y 3604 0 3552
AU20 2227 706 1566
AU23 783 0 1055
AU24 1550 0 1953
AU25 6489 2407 8381
AU26 3951 2093 4251
AU27y 695 18 68
AlUg3 2136 2434 2456
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among all positive predictions. An ROC curve is generated for each
AU by using the AU intensity estimates produced on the test set as
decision thresholds. AUC for each ROC curve is then computed and
used as the measure of AU recognition performance. To generate the
ROC curves, to compute AUCs, and to determine the operating points,
an existing software library that was developed by Fraunhofer IIS was
used.

In contrast to ROC curve based evaluation, the computation of
absolute errors is used to measure performance in regression tasks.
Absolute error is the absolute value of the difference between an
annotated value and an estimated value. In this study, absolute error
is computed between annotated AU intensities and estimated AU
intensities. FACS based annotation of AU intensities is done on a
5-point ascending scale A-E, with ‘A" denoting “traces” of an AU [17].
In this study, the discrete AU intensity annotations are converted into
numerical values in two steps. The symbolic scale A-E is first mapped
to the numerical scale 1-5%, and then mulitplied by 0.2, in order to map
the annotated intensity levels to the set {0.2,0.4,0.6,0.8,1.0}. When
an AU is not annotated, the intensity level is taken as 0. Mean and
standard deviation of the absolute errors are computed for each AU
over all frames in all sequences in the test set, and these are used
as the measure of AU-wise intensity estimation performance. Mean
Absolute Error is abbreviated henceforth as MAE.

6 RESULTS

In this section, the results of the qualitative and quantitative evaluation
of the performance of AUReader and ISIR-AU are described. Table 4
provides an overview of the evaluations performed.

6.1 Actor Study Database

As mentioned in Section 4, the sequences belonging to Actors 12 to
21 were used for the evaluations on the Actor Study Database [48].
First of all, the AU intensity estimates produced by AUReader and the
AU detection probability scores provided by ISIR-AU were compared
qualitatively. Figures 1a and 1b illustrate the outputs for six AUs,
namely, AUo1, AUo4, AUo6, AU12, AUog and AU2z5, for selected
sequences from the Actor Study Database [48]. Figure 2 illustrates the
outputs for a simultaneous display of AUo1 and AUo4. The ground
truth curves in all cases were plotted by setting 1 to each frame that
was annotated with the corresponding AU, and 0 to every other frame.

A visual inspection of the plots show that:

In the UNBC-McMaster Shoulder Pain Expression Archive Database [33], the AU
intensities are already provided in the range 1-5.
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Table 4: Overview of the evaluations of AUReader and ISIR-AU conducted

using different datasets.

Evaluation Type

AUReader

ISIR-AU

Actor Study Database [48]

Quantitative

Qualitative

AU recognition

AU recognition

AU intensity esti-
mates

AU probability scores

UNBC-McMaster Shoulder Pain Expression Archive Database [33]

Quantitative AU recognition, AU recognition,
AU intensity estima- | AU intensity estimation
tion

Qualitative AU intensity error | AU confidence score

variance

Proprietary market research database [24]

Quantitative

Qualitative

AU recognition -

AU intensity esti-| —
mates

e The intensities estimated by AUReader are temporally smoother
than the probability scores from ISIR-AU. This is not surprising,
since ISIR-AU does not use temporal information. As a con-
sequence, the different phases of intensity variations are more
clearly observable in the estimates from AUReader than in the
scores from ISIR-AU (see the plots for AUo1 in Figure 1a and
AUo4 in Figure 2). This makes the estimates from AUReader
more suitable for a finer analysis of facial activity.

The scores from ISIR-AU tend towards higher values, causing
subtle displays to be completely missed (see AUog in Figure 1b).
This also shows that AUReader’s estimates might be more suit-
able for detecting subtle displays of AUs.

In general, ISIR-AU does not show delay in detecting an AU.
In contrast, AUReader often requires some time to pick up the
AU. This delay is mainly due to the constraints acting on the
state estimates, and the effect of process and measurement noise
models. In Figures 1a and 1b, this is especially visible in the
intensity estimates for subtle AUs such as AUo6 and AUog,
for which a full correlation between noise in facial landmark
detections was applied.

In sum, the delayed onsets and lower intensity estimates show that
the estimates of AUReader are more conservative, which in turn could
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potentially reduce sensitivity but improve specificity and precision.
In order to examine this more closely, the qualitative analysis was
followed up with a quantitative analysis based on ROC curves.
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Figure 1: AUReader [24] versus ISIR-AU [11]: Qualitative results for selected
single AU displays from Actor Study Database [48].

For each system, AU-specific ROC curves were generated. In the
case of AUReader, the AU intensity estimates from all sequences were
used as the decision thresholds to generate the ROC curves. In the
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Figure 2: AUReader [24] versus ISIR-AU [11]: Qualitative results for a se-
lected simultaneous display of AUo1 and AUog4 from Actor Study

Database [48].

case of ISIR-AU, the probability scores from all sequences were used
as the decision thresholds. AUC values were then computed for each
AU and for each system. These are shown in Figure 3. The following
observations can be made:

e The AUC values varied widely between AUs. In the case of
AUReader, 20 AUs scored AUC values above 0.6. Among these,
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15 AUs scored AUC values above 0.7, 11 AUs scored AUC
values above 0.8, and 2 AUs touched or crossed 0.9. The AUC
values for AU2o (LipStretcher) and AU24 (LipPressor) were
quite low, touching 0.52 and 0.45, respectively. This could be
due to their high resemblance with AU12 (LipCornerPuller) and
AU23 (LipTightener), respectively. Another reason for this low
performance could be the errors associated with the detections of
landmarks on the innner boundaries of the lips. Due to the lack
of edge features along the lips, the noise in the x-coordinates of
these landmarks tend to be relatively high. However, including
appearance-based evidence for AU20 and AU24 might help to
improve the performance in the future.

e For the 12 AUs that can be detected using both AUReader and
ISIR-AU, the AUC values for AUReader were either better or
comparable to the AUC values for ISIR-AU, except for AU15
(LipCorrnerDepressor) and AUzo (LipStretcher). Together with
the previous observation, this shows that AUReader is robust
and can discriminate reasonably well between geometrically
similar (non-orthogonal) AUs within the set of 22 AUs, whose
intensities it simultaneously estimates.

e In the case of the subtle AU0o6 and AUog, the performance of
AUReader and ISIR-AU were comparable (difference ~ +0.03).
Therefore, despite being conservative (due to delayed onsets and
low intensity estimates), AUReader could achieve a comparably
good sensitivity-specificity balance for AUo6 and AUog.

e Overall, ISIR-AU was able to analyze more frames than AU-
Reader. This difference in the number and index of analysed
frames is caused by the differences in the facial landmark detec-
tion methods> utilised by the two systems, and by the quality
assurance methods adopted by AUReader.

The sequences from Actors 1 to 11 in the Actor Study Database
[48] were used for training and tuning the components of AUReader,
whereas ISIR-AU was not trained on any image from this database.
Therefore, for a fairer comparison of the generalisation performance,
a database that was not used for training either AUReader or ISIR-AU
should be used for evaluation. For this purpose, the UNBC-McMaster
Shoulder Pain Expression Archive Database [33] was selected, due to
the availability of annotations of both AU and pain intensities. The
next subsection presents the results.

AUReader utilises facial landmark detection based on [29] and ISIR-AU uses the
method described in [50]
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Figure 3:
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AUReader [24] versus ISIR-AU [11]: Areas under ROC curves

obtained on the Actor Study Database [48] (Actors 12 to 21). AU-
Reader analysed 42954 frames and ISIR-AU analysed 46956 frames.

6.2 UNBC-McMaster Shoulder Pain Expression Archive Database

All 200 sequences in the UNBC-McMaster Shoulder Pain Expression
Archive Database [33] were used for quantitative evaluation. AUC and
MAE values were computed for comparing the AU recognition and
AU intensity estimation performance of AUReader and ISIR-AU.
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A comparison of the AUC values is presented in Figure 4. The
following observations can be made:

e Among the eight AUs that could be detected by both AUReader
and ISIR-AU, the latter performed better on five AUs. For the
remaining three AUs, the performances were almost identical.
Therefore, ISIR-AU showed better overall generalisation perfor-
mance for the task of AU recognition than AUReader.

e AUReader scored AUC values above 0.6 for ten AUs, and above
0.7 for six AUs. None of the AUC values were below 0.5.

e AUReader analyses more AUs than ISIR-AU, and this includes
AUs that resemble each other closely in the facial shape deforma-
tions that they cause. Among the AUs annotated in this database,
there are three AU groups (AUo6 and AUo7; AUog and AU1o0;
AUs 25, 26, and 27) that possess such geometric similarities. A
complete comparison of performance between AUReader and
the available ISIR-AU system was not possible, since the ISIR-
AU system did not provide scores for AUoy, AU10, and AU27.
However, in the case of AU25 and AU26, AUReader performed
slightly better than or comparable to ISIR-AU.

e Just like on Actor Study Database, AUReader analysed fewer
frames than ISIR-AU. This could be due to the differences be-
tween the facial landmark detection methods used by the two
systems, and the use of quality assurance methods such as tests
for divergence and for successive missing observations in AU-
Reader.

It can be concluded that overall ISIR-AU generalises better in terms
of AU recognition performance. However, it is to be noted that AU-
Reader analyses more AUs jointly, thereby dealing with greater possi-
bilities for misclassification (due to either false attribution or shared
attribution).® AUReader is conservative in its estimates due to the
influence of the constraints and noise models. This could lead to lower
sensitivity, which results in lower AUC values. As mentioned in [24],
AUReader uses probability scores from SVM classifiers as appearance-
based observations. Therefore, replacing the SVM models with the
ISIR-AU system might improve the generalisation performance of
AUReader on spontaneous facial expression databases.

In order to compare the AU intensity estimation performance of
AUReader and ISIR-AU, the AU-wise MAEs were computed for the
AU intensity estimates from AUReader and the AU probability scores
from ISIR-AU (see Table 5). As explained in Section 5, in order to
compute MAE, the five FACS AU intensity level codes A < B <

6 False attribution refers to the attribution of an observed facial deformation to a
different but closely resembling AU. Shared attribution refers to the sharing/splitting
of a facial deformation between multiple AUs.
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Figure 4: AUReader [24] versus ISIR-AU [11]: Areas under ROC curves ob-
tained on the UNBC-McMaster Shoulder Pain Expression Archive
Database [33]. AUReader analysed 41288 frames and ISIR-AU anal-
ysed 47859 frames.

C < D < E were converted into numerical codes with A = 0.2,
and each successive level given an increment of 0.2. This gives the
numerical intensity level codes 0.2 < 0.4 < 0.6 < 0.8 < 1.0. These were
used as AU intensity ground truth. The outputs from AUReader are
already AU intensity estimates. The AU probability scores provided
by ISIR-AU were interpreted as AU intensities for the purpose of
evaluation. MAE values were computed under two conditions. In
the first condition, all frames, for which AU intensity estimates or
AU probability scores were available, were included in the MAE
computation. In the second condition, only those frames, in which
the corresponding AU was annotated, were considered for MAE
computation.

The following observations can be made from the results presented
in Table 5:

e When all frames are considered, the MAE values for AUReader
are much lower than those for ISIR-AU. Since the number of

111



112

PREPRINTS

annotations are at least one order of magnitude smaller than the
number of non-annotated frames (see Table 3), the MAE values
are predominantly influenced by the intensity estimates for the
non-annotated frames. Therefore, the MAE values reveal that
the probability scores from ISIR-AU, in general, tend to indicate
AU intensities at level A or B, even when no AU is annotated.
In contrast, the AU intensity estimates from AUReader are, in
general, very close to zero.

e However, when only annotated frames are considered, the prob-
ability scores from ISIR-AU tend to have lower MAE values
that generally do not exceed two intensity levels on average (i.e.
< 0.4). In comparison, the MAE values for AUReader tend to be
numerically higher, although there are exceptions such as AU27,
AUz25, AU10, and AUo4. This reinstates that AUReader estimates
are conservative, i.e. they do not touch very high values rapidly.

e AUReader appears to have difficulty particularly in estimating
intensities of AU15 (LipCornerDepressor), as indicated by the
high MAE value of 0.59. However, there were only 6 frames that
were annotated with AU15, which makes it difficult to draw a
reliable conclusion about AUReader’s performance. Similarly,
the high MAE value of 0.55 for AU43 could be due to the binary
annotation of AU43 in the database (intensity level: 0 or 1).

This evaluation has a key limitation. Due to the constraints, the
noise models, and the damping and restoration forces acting on the
mass-spring-damper models, the higher range of intensity values are
not easy to attain for AUReader. Moreover, the intensity increments
between consecutive AU intensity levels cannot be considered to be
constant or linear, due to the nonlinearities in the models used for AU
intensity estimation. In addition, for AUReader, an AU intensity of 1
represents the maximum possible anatomical facial shape deformation.
This would not always correspond to the person-specific maximum
intensity of expression of an AU. Due to these reasons, an annotated
intensity level of E need not necessarily correspond to an AU intensity
of 1 (one) in the deformable face model used by AUReader. Due to
these reasons, the conversion of the symbolic FACS AU intensity codes
into numeric values should be performed based on the distribution of
AU intensities generated by an AU detection system.

Since ISIR-AU was not developed for intensity estimation, this com-
parison of AU intensity estimation performance may not be entirely
justifiable. However, continuous-valued, FACS-conform, dynamic AU
intensity estimation systems are scarce, which could likely be due to
the lack of sufficient datasets with reliable AU intensity annotations.

Figure 5 illustrates an example of how the confidence associated
with the AU intensity estimates from AUReader vary for a sample
sequence. The confidence intervals shown in the figure are the 2-¢
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Table 5:

AUReader [24] versus ISIR-AU [11]: Mean and standard deviation
of absolute errors on UNBC-McMaster Shoulder Pain Expression
Archive Database [33]. AUReader analysed 41288 frames, of which
23501 had AU annotations. ISIR-AU analysed 47859 frames, of which
19153 had AU annotations. In the table, NAA stands for No Annota-
tions Available and DND stands for Does Not Detect.

AU All Frames Only Annotated Frames
AUReader ISIR AUReader ISIR
AUo1 0.14 + 0.23 | 0.40 £ 0.16 | NAA NAA
AUo2 0.08 £ 0.11 | 0.36 £ 0.17 | NAA NAA
AUoyg 0.14 £ 0.12 | 036 £0.16 | 0.23 £o0.17 | 0.23 £ 0.13
AUos 0.05 + 0.08 | 0.37 £0.15 | NAA NAA
AUob 0.10 £ 0.15 | 0.12 £ 0.13 | 0.37 £ 0.21 | 0.17 £ 0.15
AUoy 0.08 £0.13 | DND 0.35 £ 0.22 | DND
AUog 0.04 £ 0.07 | 023+0.19 | 042+ 0.25 | 0.18 £ 0.15
AU1o 0.08 £ 0.12 | DND 0.23 £0.20 | DND
AU11 0.25 + 0.13 | DND NAA DND
AU12 0.10 £ 0.15 | 0.10 £0.12 | 0.34 £ 0.20 | 0.24 £ 0.16
AU13 0.16 = 0.11 | DND NAA DND
AU14 0.26 = 0.17 | DND NAA DND
AU1s 0.05 £0.07 | 036011 | 0.59+0.01 | 0.08=+ 0.03
AU16 0.07 £ 0.08 | DND NAA DND
AU1y 0.21 + 0.18 | 0.44 £ 0.09 | NAA NAA
AU20 0.06 + 0.08 | 0.32 £0.11 | 028 £0.17 | 0.15 £ 0.11
AU23 0.04 = 0.06 | DND NAA DND
AU24 0.04 £ 0.02 | DND NAA DND
AUz25 0.06 £ 0.10 | 0.20 £0.19 | 0.26 = 0.17 | 0.31 £ 0.20
AU26 0.08 + 0.11 | 0.27 £ 0.15 | 0.42 £0.23 | 0.29 £ 0.21
AUz27y 0.05 = 0.05 | DND 0.12 = 0.01 | DND
AUy3 0.12 £ 0.16 | DND 0.55 = 0.20 | DND

values computed from the state estimation error variances provided
by AUReader. Figure 6 shows the relative standard deviations for the
same sequence. The following key observations can be made:

e The confidence in the initial intensity estimates is low (larger
variance, larger relative standard deviation), and gets better over
time.
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e The confidence increases (or, equivalently, variance decreases),
when the AU intensity estimates change monotonously (same
direction and rate). This is evident in the short interval between
Frames 97 and 102, where a narrowing of the confidence interval
(in Figure 5) and a decrease in the relative standard deviation
(in Figure 6) are visible.

e The confidence decreases (or, equivalently, variance increases),
whenever the rate or direction of update of intensity estimate
changes. For example, the interval between Frame 120 and Frame
132 shows a change in direction and rate of the AU intensity
update, due to which the confidence interval in Figure 5 enlarges
and the relative standard deviation in Figure 6 increases.

e Based on the above two observations, it can be said that AU-
Reader grows more confident of its estimate, as subsequent
evidence confirms a pattern of update. This is as expected, since
AUReader is based on a state estimation method.

ISIR-AU also provides a confidence measure, which is a probabil-
ity score that is indicative of occlusions in different facial regions.
Therefore, lower confidence values indicate more occlusion or poorer
quality of input image. Figure 7 illustrates how the confidence as-
sociated with the AU detection probabilities given by ISIR-AU vary.
It can be seen that the confidence is relatively low throughout, and
drops further towards the end of the sequence, when the subject made
an out-of-plane head rotation that caused some regions of the face
to be occluded. It is to be noted that the confidence computation is
based on image properties and the pre-learned RF models. Therefore,
the confidence measure reflects the confidence in the input features
used for AU detection. This measure could therefore be indicative of
aleatoric uncertainty. Since ISIR-AU is trained on static features and
examines only the current image frame, the confidence measure does
not adapt over time.

The UNBC-McMaster Shoulder Pain Expression Archive Database
[33] has spontaneous facial expressions. However, annotations are not
available for all the AUs that AUReader can predict. Therefore, another
spontaneous facial expression database with annotations for all 22 AUs
was used for quantitatively evaluating the generalisation performance
of AUReader. The results are presented in the next subsection.

6.3 Proprietary Market Research Database

The performance of AUReader was evaluated quantitatively on all 408
videos in the proprietary market research database. The AUC values
are presented in Figure 8.
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Figure 5: Confidence bounds for intensities estimated by AUReader for AUo1
for a sequence in the UNBC-McMaster Shoulder Pain Expression
Archive Database [33]. For ease of identification of changes, the 2-c
confidence intervals are plotted here. Frames 97, 102, 120, and 132
have been marked using dashed, gray lines. Successive repetition of
the same pattern of updates increases the confidence and reduces
the variance (e.g. between Frames 97 and 102). When the direction
and rate of update changes, the confidence temporarily decreases
and variance increases (e.g. between Frames 120 and 132).
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Figure 6: lllustration of the relative standard deviation for AU intensity es-
timates provided by AUReader for the same sequence as shown
in Figure 5. It can be seen that the relative standard deviation
(o1, equivalently, uncertainty) drops as the intensity updates fol-
low the same pattern over time (e.g. between Frames 97 and 102),
and it increases temporarily, when the pattern changes (e.g. be-
tween Frames120, and 132). Frames 97, 102, 120, and 132 have been
marked using dashed, gray lines.
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Figure 7: The plot at the bottom shows the confidence measures for AUo4
probability scores provided by ISIR-AU for a sequence in the UNBC-
McMaster Shoulder Pain Expression Archive Database [33]. An
out-of-plane head rotation made by the subject after Frame 200
led to occlusions on the forehead, which in turn caused a drop in
confidence. This change in the head pose is visible in the images
provided at the top. Frame 150 and Frame 225 illustrate the head
pose before and after the out-of-plane head rotation. A sudden
drop in the AUog4 probability scores can also be observed, as a
result of this head rotation.

The following key observations can be made:
e The AUC values vary considerably between AUs.

e Except for four AUs, the AUC values are well above 0.5. AU11
(NasolabialDeepener) and AU24 (LipPressor) scored nearly 0.5,
while AU20 (LipStretcher) and AU15 (LipCornerDepressor) scored
below 0.5. Recall that AU20 and AU24 also scored low AUC
values on the Actor Study Database, indicating that these might
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be particularly hard for AUReader to discriminate from other
similar AUs.

e In the case of AUo2, AUo4, AUo7, AUog, AU10, AU13, AU16,
AU23 and AUz27, the AUC values are comparable to those ob-
tained on the Actor Study Database (difference in [—0.05, 0.05]).

Figures 9a and gb present qualitative plots of intensity estimates
produced by AUReader for a selection of six AUs. As in the illustra-
tions on Actor Study Database (see Figures 1a, 1b, and 2), here too,
similar observations can be made. These are listed below:

e The AU intensity estimates from AUReader follow a temporally
smooth course, with visually discernible onset, apex, and offset
phases.

e Delays in the onset of AUs are visible.

e The AU intensity estimates in these examples hardly came close
to 0.8. As discussed in the earlier subsections, different aspects
of the AUReader such as constraints, noise models, and the
properties of the mass-spring-damper motion models oppose
large and sudden changes in intensity estimates, and make it
harder for the AUReader’s intensity estimates to touch higher
ranges of values. This makes the AUReader predictions robust
and precise, however, at a potential cost to sensitivity or recall.

7 DISCUSSION

In this paper, we evaluated the qualitative and quantitative perfor-
mance of two automatic AU detection systems, namely AUReader [23,
24] and ISIR-AU [11]. Three different databases were used for perfor-
mance evaluation. The Actor Study Database [48] contains acted dis-
plays of AUs, the UNBC-McMaster Shoulder Pain Expression Archive
Database [33] contains spontaneous facial expressions of pain, and
the proprietary market research database contains spontaneous facial
responses to commercial advertisements. The qualitative evaluation
examined any delays in the detected onsets of AUs, and the range and
temporal smoothness of the AU intensity estimates. The quantitative
evaluation looked at the AU recognition and AU intensity estimation
performance. The following paragraphs highlight the main strengths
and weaknesses observed in AUReader and ISIR-AU.

The qualitative investigation of the outputs from AUReader and
ISIR-AU was performed on selected sequences from the Actor Study
Database [48] and the proprietary market research database. As ex-
pected, the outputs from AUReader were temporally smoother than
ISIR-AU due to the integration of temporal information in the state
estimation process. This made it easier to visually detect the different
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Figure 8: AUReader [24]: Areas under ROC curves obtained on the propri-
etary market research database. AUReader analysed 80, 228 frames.

phases of AU displays (onset, apex, offset) as well as the subtle varia-
tions in the intensities of the displays. AUReader was also found to do
well in recognising subtle (low intensity) displays of AUs (e.g. AUog
in Figure 1b). This makes AUReader more suitable for finer analysis of
facial expressions. However, due to the constraints acting on the AU
intensity estimates, the noise associated with the observations, and the
viscoelastic resistance of mass-spring-damper models, the intensity
estimates from AUReader showed delayed onset and tended more
towards the lower range of values. This shows that the AU intensity
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estimates from AUReader are more conservative, which makes the
estimates suitable for real world applications such as pain monitoring.

The performance of AUReader and ISIR-AU was evaluated quantita-
tively for two different tasks, namely AU recognition and AU intensity
estimation. The performance in the AU recognition task was measured
in terms of AUC. It was found that, in general, ISIR-AU generalised
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Figure 9: AUReader: Qualitative results on the proprietary market research
database for a selection of six AUs.
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better than AUReader to unseen subjects and spontaneous facial ex-
pressions. However, ISIR-AU did not include closely resembling AUs
(except AU25 and AU26, which differ in appearance), whereas AU-
Reader estimates several closely resembling AUs (e.g. AUo6 and AUoy;
AUog and AU10; AU12 and AU13; AU23 and AU24; AU26 and AU27).
The AUC values obtained on all three datasets show that AUReader
performs reasonably well in discriminating between geometrically sim-
ilar AUs, which is a more difficult task, especially when the resembling
AUs are subtly expressed. However, AU20 and AU24 appear to be dif-
ficult for AUReader to recognise well. This could be circumvented in
the future by incorporating appearance-based evidence. Since ISIR-AU
generalises well to unseen data, its AU predictions could be integrated
within the probabilistic framework of AUReader using the method
proposed in [24]. This might help in achieving better performance in
real world settings by combining the strengths of both the systems.

The performance of AUReader and ISIR-AU in estimating AU inten-
sities was evaluated on the UNBC-McMaster Shoulder Pain Expression
Archive Database [33] by computing MAEs (see Table 5). To perform
this evaluation, the annotated discrete intensity labels were rescaled
to belong to the set {0, 0.2, 0.4, 0.6, 0.8, 1}. As already indicated by
the qualitative results, the computed MAEs showed that AUReader’s
intensity estimates tended to the lower range of values, whereas those
of ISIR-AU tended towards the higher range of values. This is visible
in the non-zero offsets in ISIR-AU’s probability scores (see Figures 1a,
1b and 2). This is also visible in the differences in the results between
the two conditions under which the AU intensity estimation perfor-
mance was evaluated. When the non-annotated frames were included,
AUReader clearly showed less error. But, when only frames with anno-
tated AU intensities were used, AUReader showed, in general, higher
error than ISIR-AU. Therefore, it can be said that while ISIR-AU had
difficulties in estimating the lower range of AU intensities, AUReader
had difficulties in reaching the higher range of AU intensities. This
difference is due to the differences in the methods used in the two
systems. ISIR-AU is based on static, data-driven machine learning
models trained to recognise AUs, and it does not use a deformable
facial shape model that describes the semantics of AU intensities. But,
AUReader uses such a semantic model of AU intensities. Furthermore,
the probabilistic state estimation method used in AUReader allows
the specification of initial values for AU intensities and performs a
continous integration of information over time. Therefore, a combina-
tion of AUReader and ISIR-AU might help in increasing the coverage
of both the lower and higher ranges of AU intensities, and thereby
improve the AU intensity estimation performance.

Both AUReader and ISIR-AU provide estimates of uncertainties
associated with their AU predictions. The uncertainty estimates pro-
duced by AUReader pertain directly to the AU intensity estimates,
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and are created as part of the state estimation process. The AUReader
models the uncertainty as a zero-mean Gaussian noise, which consid-
ers the errors associated with the image-based observations (aleatoric
uncertainty) as well as with the dynamic process models (epistemic
uncertainty). State estimation based approaches (like AUReader) that
use empirically determined aleatoric uncertainty measures have the
drawback that they could trust incorrect measurements to the same
extent as correct measurements. This could produce incorrect AU
intensities that gain trust over time, unless measures for detecting
and handling such anomalies are introduced. In contrast, ISIR-AU
estimates an uncertainty score based on the quality of the facial image
(aleatoric uncertainty), and therefore, only indirectly measures the
uncertainties in the AU probability scores. In the future, aleatoric
uncertainty quantification methods that combine direct empirical ev-
idence from past instances with an indirect measure of confidence
based on the quality of the present instance could be developed or
explored.

The modular structure of the state estimation framework used in
AUReader [24] makes it possible to incorporate new methods for ex-
tracting facial shape and appearance information, either as additional
evidence of facial expression or as a replacement for the methods
currently used. Such changes do not require changes to other existing
modules. This flexibility is however difficult to achieve in data-driven
machine learning methods such as those used by ISIR-AU. Changes
to any stage in the pipeline could require a retraining of several (sub-
sequent) stages. The state estimation framework of AUReader also
facilitates the integration of interdisciplinary knowledge from diverse
fields. For example, evidences from histological or biomechanical
studies of facial muscles could help in adapting the parameters of
the mass-spring-damper models; methods developed in the field of
navigation and tracking could be applied to enhance the robustness of
the state estimation framework; control system theories could help in
analysing the stability of the system; evidences from experimental psy-
chology could be used to define higher-order semantic relationships
between AUs. Furthermore, the state estimation framework used by
AUReader has the potential to support on-the-fly user feedback in
the form of control inputs. Future work could explore this possibility
to develop AUReader into a collaborative tool for facial expression
analysis in psychological and behavioural research.

8 CONCLUSION

The comparison of AUReader and ISIR-AU, presented in this paper,
exemplarily elucidated the strengths and weaknesses of data-driven
machine learning methods and deformable face model based methods
for automatic AU analysis. It is hypothesised that a combination of the
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two approaches would help in building systems that generalise and
perform better in estimating AU intensities. Several future research
directions have been outlined. We hope that this paper would encour-
age an interdisciplinary discussion on the merits and applicability of
different techonological solutions for automatically detecting AUs in
human-centered research.

9 APPENDIX

As mentioned in the Introduction, AU analysis is widely pursued in
pain research [32]. Appendix 9.1 illustrates how the AU intensities
estimated by AUReader could be used to automatically detect pain
by applying evidences from experimental psychology. Appendix 9.2
illustrates how verbal explanations of AU-based pain detections could
be automatically generated to assist humans in understanding the
decisions made by the system.

9.1 Automatic Detection of Pain using AU Intensities

This section investigates the performance of the AU intensity estimates
from AUReader for the message judgment task of pain detection. A set
of simple rules were defined for computing pain intensities based on
the continuous-valued AU intensities from AUReader. The rules are
based on findings from psychological research on facial expressions
of pain. Precisely speaking, the rules are based on the PSPI scale
[42] and on the four clusters of facial expressions of pain (except the
stoic cluster) that were identified by the psychologists Miriam Kunz
and Stefan Lautenbacher at University of Bamberg (UB) [31]. Table 6
describes in detail, the rules that have been defined and applied for
pain detection in this study.

As given in Table 6, the pain rules have been categorised into contin-
uous, discrete and continuous-discrete rules, depending on the type
of AU intensity values used in the rule. Continuous rules used the
continuous-valued AU intensity estimates directly in the pain rule.
Discrete rules binarised the AU intensity estimates before using them
in the pain rule. The binarisation was performed on the basis of deci-
sion thresholds corresponding to the operating points with maximum
F1-score on the ROC curves obtained on the Actor Study Database [48].
These AU recognition thresholds are listed in Table 7. Continuous-
discrete rules used continuous AU intensity values for all AU terms
except AUy43, for which a binary value was used. Continuous and
continuous-discrete rules produce continuous-valued pain intensities,
and discrete rules produce discrete-valued pain intensities. Table 6
also shows that the pain rules have been categorised into max-rule
and sum-rule, depending on how the intensities of certain AU groups
are included in the rule. Max-rules consider only the maximum AU
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intensities (continuous or discrete) within pre-defined groups of AUs.
Sum-rules compute the sum of AU intensities (continuous or discrete)
within each predefined group of AUs.

Table 6: Definitions of AU-based rules for pain detection. In the rules with
discrete terms, the AU intensities were discretised using the operat-
ing point thresholds chosen from the ROC curves obtained on the
Actor Study Database [48] (see Table 7).

Rule ID | Category Rule Definition

PSPI-1 continuous, | AUog + max(AUo6, AUo7) + max(AUog,
max-rule AU10) + AU43

PSPI-II continuous, | AUo4 + AUo6 + AUo7 + AUog + AU10 +
sum-rule AUg3

PSPI-IIT | continuous- | AUo4 + max(AUo6, AUo7) + max(AUog,
discrete, AU10) + bool_AUj43
max-rule

PSPI-IV | continuous- | AUo4 + AUo6 + AUo7 + AUog + AU10 +
discrete, bool_AU43
sum-rule

PSPI-V discrete, bool_AUo4 + max(bool_AUo6,
max-rule bool_AUo7) + max(bool_AUog,

bool_AU10) + bool_AU43

PSPI-VI | discrete, bool_AUo4 + bool_AUo6 + bool_AUo7 +
sum-rule bool_AUog + bool_AU10 + bool_AUj43

UB-C-I continuous, | AUog + max(AUo6, AUo7) + max(AUog,
max-rule AU10)

UB-C-II continuous, | max(AUo6, AUoy) + max(AUz25, AU26,
max-rule AU27)

UB-C-III | continuous, | max(AUo1, AUo2)
max-rule

UB-C-IV | continuous, | AUog + max(AUo6, AUo7)
max-rule

The pain rules were evaluated on the UNBC-McMaster Shoulder
Pain Expression Archive Database [33]. The PSPI scores were used as
the ground truth. All frames with PSPI score greater than zero were
considered as positive instances of pain. Table 8 presents the AUC
values for all pain rules. The following key observations can be made:

e It is not surprising that the PSPI-based rules performed better
than the UB rules, since the ground truth are labeled using
PSPI scale. Among the PSPI-based rules, the ones that used
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Table 7: Decision thresholds used to binarise intensities of AU that are part of
the pain rules. The thresholds were determined from the ROC curves
computed on Actor Study Database [48]. The decision threshold
corresponding to the operating point with maximum F1-score was
chosen for each AU. The thresholds have been rounded to two
decimal places.

AU AUor_| AUo2 | AUog | AU06 | AlUo7 | AUog |
Decision 0.09 0.13 0.14 0.18 0.09 0.09
Threshold

AU - AUto | AU25 | AU26 | AU27 | AU43 | |
Decision 0.14 0.39 0.24 0.4 0.15
Threshold

continuous intensity values for some or all of the AUs performed
better than those that used only discrete (binary) AU intensities.

e It can also be seen that the pain rule UB-C-II performed compa-
rably to the PSPI-based rules. UB-C-II combines the maximum
of AUo6 and AUo7 (narrowing of eyes) and the maximum of
AUz25, AU26, and AU27 (opening of mouth) [31]. The pain rules
UB-C-I and UB-C-1V also include ‘narrowing of eyes’, but per-
form poorly in comparison to UB-C-II. From this, it can be
concluded that the opening of mouth often accompanies the
pain expressions annotated in the UNBC-McMaster Shoulder
Pain Expression Archive Database [33], even though it is not
part of the PSPI scale used for annotation.

e The poor performance of UB-C-III indicates that raised eyebrows
did not often accompany the pain expressions annotated in the
dataset.

The quantitative analysis has been followed by a qualitative analysis
of pain intensities at sequence and frame levels. Among the PSPI-based
rules, PSPI-III was chosen for qualitative analysis, since it performed
best in quantitative analysis and resembles the original PSPI scale the
most. Figures 10 and 11 show the pain intensities estimated by differ-
ent pain rules for two sequences selected from the UNBC-McMaster
Shoulder Pain Expression Archive Database [33]. It can be seen that,
in general, PSPI-III follows the ground truth more closely. PSPI-III and
UB-C-I differ only in a single term, namely AU43 detection. While
PSPI-III inlcudes AU43, UB-C-I excludes it. Therefore, the difference
between the two becomes marked, when AU43 is detected in the pain
sequence. In all other cases, they give the same pain intensity estimates.
UB-C-1V is also a subset of PSPI-III, and hence follows the overall
pattern of PSPI-III, but is insensitive to opening and closing of eyes
(AU43) and to the wrinkling of nose (AUog, AU10). In contrast to the
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Table 8: Performance of different pain rules on the UNBC-McMaster Shoulder
Pain Expression Archive Database [33]. The pain rules used AU
intensity estimates from AUReader [24].

Rule ID | Category Performance
(AUO)

PSPI-1 continuous, max-rule 0.65

PSPI-IT continuous, sum-rule 0.64

PSPI-IIT | continuous-discrete, max-rule | 0.65

PSPI-IV | continuous-discrete, sum-rule 0.65

PSPI-V discrete, max-rule 0.62
PSPI-VI | discrete, sum-rule 0.62
UB-C-1 continuous, max-rule 0.57
UB-C-II continuous, max-rule 0.62
UB-C-III | continuous, max-rule 0.39
UB-C-IV | continuous, max-rule 0.56

general observation from quantitative analysis, in the examples shown
in Figures 10 and 11, raised eyebrows (AUo1, AUo2) were detected
during the pain episodes, as indicated by the UB-C-III scores. Opening
of mouth (AU25, AU26, AU27) was detected during the pain episode
in Figure 11, as indicated by the changes in UB-C-II scores.

Figure 12 shows pain intensity scores for Frame 149 from the pain
sequence analysed in Figure 10. Intensity estimates for the AUs con-
stituent in the pain rules are also provided. The application of the
decision thresholds in Table 7 would indicate that AUo1, AUog, AUog
and AUj43 are active in Frame 149. Pain rules PSPI-III, UB-C-I, UB-C-III
and UB-C-1V, give pain intensities greater than the decision thresholds
of any constituent AU. Since these rules had at least one active AU,
each of these rules are considered to indicate the presence of pain
in the analysed image. This follows the logic that was used in the
UNBC-McMaster Shoulder Pain Expression Archive Database [33] to
annotate pain intensities based on the PSPI scale. In [33], if any of
the AUs in the PSPI scale were active, a non-zero pain intensity was
assigned.

By empirically determining decision thresholds for all five FACS AU
intensity levels (A-E), the AU intensity estimates from AUReader can
be converted into FACS intensity labels. For example, let us suppose
that the estimated AU intensities are mapped to FACS intensity levels
as follows:

1. AU intensity estimates < 0.1 represent absence of AU;

2. AU intensity estimates in (0.1, 0.25] represent intensity level A;
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Figure 10: Rule-based pain intensity estimates computed for a sequence
selected from the UNBC-McMaster Shoulder Pain Expression
Archive Database [33]. The pain rules used AU intensity estimates
provided by AUReader. PSPI-GT refers to the ground truth or
annotated pain score.

3. AU intensity estimates in (0.25,0.45] represent intensity level B;
4. AU intensity estimates in (0.45, 0.65] represent intensity level C;
5. AU intensity estimates in (0.65, 0.85] represent intensity level D;
6. AU intensity estimates > 0.85 represent intensity level E.

By applying this mapping of AU intensity estimates to FACS in-
tensity levels, the intensity of activation of AU43, AUo1, AUo4, and
AUog in Frame 149 can be determined (see Figure 12). The estimated
intensity of AUo1 is mapped to the FACS intensity level B, that of
AUo4 is mapped to level C, and that of AUog is mapped to level A.
Following the method in [33], this results in a PSPI score of 5, which
indicates a mild level of pain.” This estimate is close enough to the
annotated PSPI score of 6. However, some mismatches were observed
between the detected and annotated AUs and their intensities (see
the description of Figure 12). Before a conclusive comparison of the
pain predictions and pain annotations can be done, the thresholds for
mapping the continuous AU intensities from AUReader into discrete
intensity levels should be empirically validated and the ground truth
AU intensity annotations should be verified by experts.

Although Boolean or discrete terms would be better for generating
explanations, the use of continuous-valued AU intensities in the es-
timation of pain enables a fine-granular analysis of changes in pain

7 This PSPI score was computed using the formula AUo4 + max(AUo6, AUoy) +
max(AUog, AU10) + bool_AUy43 [42], with discrete and symbolic intensity levels A-E
mapped to the discrete and numeric intensity levels 1-5, as done in [33].
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Figure 11: Rule-based pain intensity estimates computed for yet another
sequence selected from the UNBC-McMaster Shoulder Pain Ex-
pression Archive Database [33]. The pain rules used AU intensity
estimates provided by AUReader. PSPI-GT refers to the ground
truth or annotated pain score.

intensity. This is indicated by the better quantitative performance of
continuous rules (see Table 8). The continous-valued pain intensities
could assist in analysing pain experience over longer periods of time,
and in adapting the dosage of pain medication.

9.2 Explaining Pain Detections: An Illustration

Pain rules, such as those defined in Table 6, enable automatic genera-
tion of explanations for pain detections. Explanations could be gener-
ated at frame-level or sequence-level. In this illustration, frame-level
explanations for pain detection are explored. These pain detections
can be explained as follows, in terms of the codes of activated AUs
and the facial actions they represent:

e PSPI-III detects pain in the image due to the activation of AUog4,
AUog and AUy3. In other words, pain is detected due to the
lowering of eyebrows, wrinkling of nose, and closing of eyes.

e UB-C-I detects pain in the image due to the activation of AUo4
and AUog. In other words, pain is detected due to the lowering
of eyebrows and wrinkling of nose.

e UB-C-III detects pain in the image due to the activation of AUo1.
In other words, pain is detected due to the raising of inner
corners of eyebrows.

e UB-C-IV detects pain in the image due to the activation of AUo4.
In other words, pain is detected due to the lowering of eyebrows.

127



128

PREPRINTS

e UB-C-II does not detect pain in the image because none of AU06,
AUoy, AU25, AU26 and AU2y is activated. In other words, pain
is not detected because neither the narrowing of eyes nor the
opening of mouth is detected.

Using the FACS intensity labels and their verbal descriptions as
provided in FACS [17], more detailed explanations could be generated
for the pain detections made by the pain rules, as given below:

o PSPI-III detects pain in the image due to “pronounced” lowering
of eyebrows (AUo4, level C), “traces of” nose wrinkling (AUog,
level A), and closure of eyes (AU43).

e UB-C-I detects pain in the image due to “pronounced” lowering
of eyebrows (AUo4, level C) and “traces of” nose wrinkling
(AUog, level A).

e UB-C-III detects pain in the image due to “slight” raising of
inner corners of eyebrows (AUo1, level B).

e UB-C-IV detects pain in the image due to the “pronounced”
lowering of eyebrows (AUo4, level C).

e UB-C-II does not detect pain in the image because neither the
narrowing of eyes nor the opening of mouth is detected.

The explanations presented so far interpreted both ‘+" and 'max’
operators in the pain rules as logical ‘OR’. However, in the case of UB
pain clusters [31], the ‘+” and ‘'max’ operators represent logical "AND’
and logical ‘OR’, respectively. Going by this definition, only UB-C-III
detects pain, due to the “slight” raising of inner corners of eyebrows
(AUo1, level B).

Even though the use of pain rules based on psychological evidence
is helpful in generating explanations for pain detections, the automatic
facial expression systems often suffer from missed detections or incor-
rect detections. Therefore, the question arises about how trustworthy
the pain detections made by an automatic system are. Empirical evi-
dence is not sufficient to guarantee that a detected AU is truly present.
Therefore, robust mechanisms should be built-in into the automatic
pain detection methods to improve the reliability of the predictions
at run-time. These mechanisms could include information about the
dynamics of facial expressions and the history of detected facial ex-
pressions. For example, if AUo1-InnerBrowRaiser is detected to be
active for several minutes, then it can be deduced that it is highly likely
to be a false detection. It would also be useful to explore the use of
uncertainty measures that combine aleatoric and epistemic uncertainty,
while generating explanations for pain detections. In addition to these,
multi-resolution explanations for pain detections might increase the
robustness of the generated explanations, and help in identifying any
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UB-C-I  o0.76
UB-C-II  -0.005
UB-C-IIl o0.42
UB-C-IV  o0.59

© Jeffrey Cohn

AUog o0.17 = 0.04 Level A
AU10 0.03 £ 0.02 Absent
AU25 -0.02 + 0.01 Absent
AU26 -0.02 £ 0.01 Absent
AU27 -0.03 £ 0.01 Absent
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Figure 12: Pain intensities estimated by five different pain rules for Frame 149
from the pain sequence analysed in Figure 10 (Dataset: The UNBC-
McMaster Shoulder Pain Expression Archive Database [33]) . The
AU intensities from AUReader that contributed towards these
estimates are listed below the image.

hidden errors. As an initial step in this direction, a combination of
image-based explanations (e.g. [49]) and AU-based explanations could
be explored.

Before generating explanations, it is essential to define the objective
of the explanation (see Figure 5 in [1]). Depending on whether the ob-
jective is to “justify”, “improve”, “control” or “discover” [1], different
types of explanation generation strategies might be necessary. In any
case, the generation of explanations for detections of pain is a very
challenging task, that should be looked at from different perspectives.
This calls for intense interdisciplinary collaborations to identify and

develop innovative solutions.

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

o Teena Hassan: Conceptualisation of this comparative study, In-
vestigation of systems” performance, Formal analysis of results,
Visualisation of results, Writing — Original draft preparation

e Dominik Seuss: Data curation, Project administration
e Ute Schmid: Supervision

e Jens Garbas: Supervision, Writing — Review & Editing

129



130

PREPRINTS

ACKNOWLEDGEMENTS

We would like to thank Anja Dieckmann and Matthias Unfried from
the Nuremberg Institute for Market Decisions, for their support during
the development of AUReader, as well as for their consent to use the
proprietary market research database for this work. We also thank
Miriam Kunz from the University of Augsburg and Stefan Lauten-
bacher from the University of Bamberg for providing insights and
clarifying doubts regarding facial expressions of pain and FACS.

REFERENCES

[1]

[2]

(3]

[4]

[5]

[6]

A. Adadi and M. Berrada. “Peeking Inside the Black-Box: A
Survey on Explainable Artificial Intelligence (XAI).” In: IEEE
Access 6 (2018), pp. 52138-52160. ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2018.2870052.

J. Ahlberg. CANDIDE-3 — an updated parameterized face. Tech. rep.
LiTH-ISY-R-2326. Sweden: Department of Electrical Engineering,
Linkdping University, 2001.

T. R. Almaev and M. F. Valstar. “Local Gabor Binary Patterns
from Three Orthogonal Planes for Automatic Facial Expression
Recognition.” In: 2013 Humaine Association Conference on Affective
Computing and Intelligent Interaction. 2013, pp. 356—361. DOI: 10.
1109/ACII.2013.65.

Jixu Chen, Xiaoming Liu, Peter Tu, and Amy Aragones. “Learn-
ing person-specific models for facial expression and action unit
recognition.” In: Pattern Recognition Letters 34.15 (2013). Smart
Approaches for Human Action Recognition, pp. 1964 —1970.
ISSN: 0167-8655. DOIL: https://doi.org/10.1016/] .patrec.
2013.02.002. URL: http://www.sciencedirect.com/science/
article/pii/S0167865513000469.

S. W. Chew, P. Lucey, S. Lucey, J. Saragih, J. F. Cohn, I. Matthews,
and S. Sridharan. “In the Pursuit of Effective Affective Com-
puting: The Relationship Between Features and Registration.”
In: IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 42.4 (2012), pp. 1006—1016. ISSN: 1941-0492. DOL:
10.1109/TSMCB.2012.2194485.

Jeffrey F. Cohn, Zara Ambadar, and Paul Ekman. “Observer-
based measurement of facial expression with the Facial Action
Coding System.” In: Series in affective science. Handbook of emotion
elicitation and assessment. Ed. by J. A. Coan and J. J. B. Allen.
Oxford University Press, 2007, pp. 203 —221.



C.2 AUTOMATIC FACIAL ACTION ESTIMATION AND PAIN DETECTION

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T.F. Cootes, G.J. Edwards, and C.J. Taylor. “Active appearance
models.” In: Computer Vision - ECCV’98. Ed. by Hans Burkhardt
and Bernd Neumann. Vol. 1407. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1998, pp. 484—498. 1SBN:
978-3-540-64613-6. DOI: 10.1007/BFb0054760. URL: http://dx.
doi.org/10.1007/BFb0054760.

Timothy F. Cootes, Gareth J. Edwards, and Christopher ]. Taylor.
“Active appearance models.” In: IEEE Transactions on pattern
analysis and machine intelligence 23.6 (2001), pp. 681-685.

David Cristinacce and Timothy F. Cootes. “Feature Detection
and Tracking with Constrained Local Models.” In: British Ma-
chine Vision Conference (BMVC’06). 2006, pp. 929-938.

Navneet Dalal and Bill Triggs. “Histograms of Oriented Gradi-
ents for Human Detection.” In: International Conference on Com-
puter Vision & Pattern Recognition (CVPR ‘o05). Ed. by Cordelia
Schmid, Stefano Soatto, and Carlo Tomasi. Vol. 1. San Diego,
United States: IEEE Computer Society, June 2005, pp. 886-893.
DOI: 10.1109/CVPR.2005.177.

A. Dapogny, K. Bailly, and S. Dubuisson. “Confidence-Weighted
Local Expression Predictions for Occlusion Handling in Ex-
pression Recognition and Action Unit Detection.” In: Interna-
tional Journal of Computer Vision 126.2 (2018), pp. 255-271. ISSN:
1573-1405. DOIL: 10 .1007 /s11263 - 017 - 1010 - 1. URL: https:
//doi.org/10.1007/s11263-017-1010-1.

Charles Darwin. The expression of the emotions in man and animals.
Original work published 1872. New York: Oxford University
Press, 1998.

John G. Daugman. “Image Analysis And Compact Coding By
Oriented 2D Gabor Primitives.” In: Image Understanding and the
Man-Machine Interface. Ed. by Eamon B. Barrett and James J.
Pearson. Vol. 0758. International Society for Optics and Pho-
tonics. SPIE, 1987, pp. 19 —30. poI: 10.1117/12.940063. URL:
https://doi.org/10.1117/12.940063.

Yanchao Dong, Zhencheng Hu, Yufeng Zhou, K. Uchimura, and
N. Murayama. “A robust and efficient face tracker for driver
inattention monitoring system.” In: Intelligent Control and Au-
tomation (WCICA), 2011 9th World Congress on. 2011, pp. 1212—
1217. DOIL: 10.1109/WCICA.2011.5970709.

F. Dornaika and F. Davoine. “Simultaneous Facial Action Track-
ing and Expression Recognition in the Presence of Head Mo-
tion.” In: International Journal of Computer Vision 76.3 (2008),
pp- 257—281.

P. Ekman, W. V. Friesen, and ]. C. Hager. The Facial Action Coding
System. 2nd ed. Salt Lake City, UT: Research Nexus eBook, 2002.

131



132

PREPRINTS

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Paul Ekman and Wallace V. Friesen. Facial Action Coding System.
Palo Alto, CA: Consulting Psychologists Press, 1978.

Tom Fawcett. “An introduction to ROC analysis.” In: Pattern
Recognition Letters 27.8 (2006). ROC Analysis in Pattern Recog-
nition, pp. 861 —874. 1SSN: 0167-8655. DOIL: https://doi.org/10.
1016/j.patrec.2005.10.010. URL: http://www.sciencedirect.
com/science/article/pii/S016786550500303X.

I. Fogel and D. Sagi. “Gabor filters as texture discriminator.”
In: Biological Cybernetics 61.2 (1989), pp. 103 —113. DOI: 10.1007/
BFO0204594. URL: https://doi.org/10.1007/BF00204594.

D. Gabor. “Theory of communication. Part 1: the analysis of
information.” English. In: Journal of the Institution of Electrical
Engineers - Part I1I: Radio and Communication Engineering 93 (26
1946), PP- 429—441. ISSN: 0367-7540.

A. Gudi, H. E. Tasli, T. M. den Uyl, and A. Maroulis. “Deep
learning based FACS Action Unit occurrence and intensity es-
timation.” In: 2015 11th IEEE International Conference and Work-
shops on Automatic Face and Gesture Recognition (FG). Vol. 06. 2015,
pp- 1-5. borL: 10.1109/FG.2015.7284873.

Robert G. Harper, Arthur N. Wiens, and Joseph D. Matarazzo.
Nonverbal communication: The state of the art. Oxford, England:
John Wiley & Sons, 1978.

T. Hassan, D. Seufs, A. Ernst, and ]. Garbas. “A Kalman filter
with state constraints for model-based dynamic facial action
unit estimation.” In: Forum Bildverarbeitung 2018. Ed. by Thomas
Langle, Fernando Puente Leén, and Michael Heizmann. KIT
Scientific Publishing, 2018. por: 10.5445/KSP/1600085290.

Teena Hassan, Dominik Seuss, Johannes Wollenberg, Jens Gar-
bas, and Ute Schmid. “A Practical Approach to Fuse Shape and
Appearance Information in a Gaussian Facial Action Estima-
tion Framework.” In: ECAI 2016: 22nd European Conference on
Artificial Intelligence, 29 August - 2 September 2016, The Hague,
The Netherlands - Including Prestigious Applications of Artificial
Intelligence (PAIS 2016). Frontiers in Artificial Intelligence and
Applications. The Hague, The Netherlands: IOS Press, 2016,
pp. 1812-1817. I1SBN: 978-1-61499-671-2, 978-1-61499-672-9. DOL:
10.3233/978-1-61499-672-9- 1812. URL: http://ebooks.
iospress.nl/volumearticle/45031.

Nils Ingemars. “A feature based face tracker using extended
Kalman filtering.” Bachelor’s Thesis. Institutionen for System-
teknik, Department of Electrical Engineering, Linkdping Univer-
sity, 2007.



C.2 AUTOMATIC FACIAL ACTION ESTIMATION AND PAIN DETECTION

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Jaiswal and M. Valstar. “Deep learning the dynamic appear-
ance and shape of facial action units.” In: 2016 IEEE Winter Con-
ference on Applications of Computer Vision (WACV). 2016, pp. 1-8.
DOI: 10.1109/WACV.2016.7477625

B. Jiang, M. Valstar, B. Martinez, and M. Pantic. “A Dynamic Ap-
pearance Descriptor Approach to Facial Actions Temporal Mod-
eling.” In: IEEE Transactions on Cybernetics 44.2 (2014), pp. 161—
174. ISSN: 2168-2275. DOIL: 10.1109/TCYB.2013.2249063.

Sebastian Kaltwang, Ognjen Rudovic, and Maja Pantic. “Con-
tinuous Pain Intensity Estimation from Facial Expressions.” In:
Advances in Visual Computing. Ed. by George Bebis et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 368—377. 1SBN:
978-3-642-33191-6.

Vahid Kazemi and Josephine Sullivan. “One Millisecond Face
Alignment with an Ensemble of Regression Trees.” In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2014.

E. G. Krumhuber, L. Tamarit, E. B. Roesch, and K. R. Scherer.
“FACSGen 2.0 animation software: Generating three-dimensional
FACS-valid facial expressions for emotion research.” In: Emotion
12.2 (2012), pp. 351-363.

M. Kunz and S. Lautenbacher. “The faces of pain: a cluster
analysis of individual differences in facial activity patterns of
pain.” In: European Journal of Pain 18.6 (2014), pp. 813-823.

M. Kunz, D. Meixner, and S. Lautenbacher. “Facial muscle move-
ments encoding pain—a systematic review.” In: Pain 160.3 (2019),
PP- 535549

P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, and L

Matthews. “Painful data: the UNBC-McMaster shoulder pain
expression archive database.” In: Face and Gesture 2011. 2011,

pp- 57-64.

B. Martinez, M. F. Valstar, B. Jiang, and M. Pantic. “Automatic
Analysis of Facial Actions: A Survey.” In: IEEE Transactions on
Affective Computing 10.3 (2019), pp. 325-347. ISSN: 2371-9850. DOL:
10.1109/TAFFC.2017.2731763.

Albert Mehrabian and Susan R. Ferris. “Inference of attitudes
from nonverbal communication in two channels.” In: Journal of
Consulting Psychology (1967), pp. 248 —252.

Donald Michie. “Machine Learning in the Next Five Years.” In:
Proceedings of the 3rd European Conference on European Working
Session on Learning. EWSL’88. Glasgow, UK: Pitman Publishing,
Inc., 1988, pp. 107-122. 1SBN: 0-273-08800-9. URL: http://dl.acm.
org/citation.cfm?id=3108771.3108781.

133



134

PREPRINTS

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Niu, P. K. Varshney, M. Alford, A. Bubalo, E. Jones, and
M. Scalzo. “Curvature nonlinearity measure and filter diver-
gence detector for nonlinear tracking problems.” In: 2008 11th
International Conference on Information Fusion. 2008, pp. 1-8.

T. Ojala, M. Pietikdinen, and T. Mdenpaa. “Multiresolution Gray-
Scale and Rotation Invariant Texture Classification with Local
Binary Patterns.” In: IEEE Transactions on Pattern Analysis &
Machine Intelligence 24.7 (July 2002), pp. 971-987. ISSN: 0162-8828.
DOI: 10.1109/TPAMI.2002.1017623.

Timo Ojala, Matti Pietikdinen, and David Harwood. “A compar-
ative study of texture measures with classification based on fea-
tured distributions.” In: Pattern Recognition 29.1 (1996), pp. 51—
59. ISSN: 0031-3203. DOIL: https://doi.org/10.1016/0031 -
3203(95)00067-4.

Brian Parkinson. “Do Facial Movements Express Emotions or
Communicate Motives?” In: Personality and Social Psychology Re-
view 9.4 (2005). PMID: 16223353, pp. 278-311. DOIL: 10.1207/
s15327957pspr0904 \ _1. URL: https://doi.org/10. 1207/
$15327957psprO904_1.

Utsav Prabhu, Keshav Seshadri, and Marios Savvides. “Au-
tomatic Facial Landmark Tracking in Video Sequences Using
Kalman Filter Assisted Active Shape Models.” In: Trends and
Topics in Computer Vision: ECCV 2010 Workshops, Heraklion, Crete,
Greece, September 10-11, 2010, Revised Selected Papers, Part 1. Ed.
by Kiriakos N. Kutulakos. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 86—99. 1SBN: 978-3-642-35749-7.

Kenneth M. Prkachin and Patricia E. Solomon. “The structure,
reliability and validity of pain expression: Evidence from pa-
tients with shoulder pain.” In: PAIN 139.2 (2008), pp. 267—274.
ISSN: 0304-3959. DOI: https://doi.org/10.1016/j.pain.2008.
04.010.

Etienne B. Roesch, Lucas Tamarit, Lionel Reveret, Didier Grand-
jean, David Sander, and Klaus R. Scherer. “FACSGen: A Tool
to Synthesize Emotional Facial Expressions Through Systematic
Manipulation of Facial Action Units.” In: Journal of Nonverbal
Behavior 35.1 (2011), pp. 1 —16.

E. Sariyanidi, H. Gunes, and A. Cavallaro. “Automatic Analysis
of Facial Affect: a Survey of Registration, Representation, and
Recognition.” In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 37.6 (2015), pp. 1113—-1133. ISSN: 0162-8828. DOI:
10.1109/TPAMI.2014.2366127.



C.2 AUTOMATIC FACIAL ACTION ESTIMATION AND PAIN DETECTION

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Klaus. R. Scherer. “Emotion in action, interaction, music, and
speech.” In: Language, music, and the brain: A mysterious relation-
ship. Ed. by Michael A. Arbib. MIT Press, 2013, pp. 107 —140.
DOI: 10.7551/mitpress/9780262018104.003.0005.

Klaus R. Scherer, Marcello Mortillaro, Irene Rotondi, Ilaria Sergi,
and Stéphanie Trznadel. “Appraisal-driven facial actions as
building blocks for emotion inference.” In: Journal of Personality
and Social Psychology 114.3 (2018), pp- 358 —379.

T. Senechal, V. Rapp, H. Salam, R. Seguier, K. Bailly, and L. Pre-
vost. “Facial Action Recognition Combining Heterogeneous Fea-
tures via Multikernel Learning.” In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 42.4 (2012), pp. 993—
1005. ISSN: 1941-0492. DOI: 10.1109/TSMCB.2012.2193567.

D. Seuss, A. Dieckmann, T. Hassan, J. Garbas, J. H. Ellgring, M.
Mortillaro, and K. Scherer. “Emotion Expression from Different
Angles: A Video Database for Facial Expressions of Actors Shot
by a Camera Array.” In: 2019 8th International Conference on
Affective Computing and Intelligent Interaction (ACII). 2019, pp. 35—
41. DOI: 10.1109/ACII.2019.8925458.

Katharina Weitz, Teena Hassan, Ute Schmid, and Jens-Uwe
Garbas. “Deep-learned faces of pain and emotions: elucidating
the differences of facial expressions with the help of explainable
Al methods.” In: tm-Technisches Messen 86.7-8 (2019), pp. 404~
412.

Xuehan Xiong and Fernando De la Torre. “Supervised Descent
Method and Its Applications to Face Alignment.” In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2013.

Z. Zafar and N. A. Khan. “Pain Intensity Evaluation through
Facial Action Units.” In: 2014 22nd International Conference on
Pattern Recognition. 2014, pp. 4696—4701.

135






PATENTS

D.1 AUTOMATIC FACIAL ACTION ESTIMATION
D.1.1 Patent US 10,275,640 B2. “Determining Facial Parameters.”

Full Reference of Patent

Determining Facial Parameters, by Dominik Seuss, Teena Chakkalayil
Hassan, Johannes Wollenberg, Andreas Ernst, and Jens-Uwe Garbas.
(2019, Apr. 30). Patent US 10,275,640 B2. Accessed on: Jan. 26, 2020.
[Online]. Available: USPTO PatFT Databases.

Patent Search URL

http://patft.uspto.gov/netahtml/PT0/search-bool.html

Innovations Contributed by Myself

Among the innovations/contributions included in this patent, the
following were created as part of my doctoral research:

e The application of driven mass-spring-damper models as transi-
tion models for AU parameters/intensities within a continuous-
discrete Gaussian state estimation framework.

e Fusion of noisy facial landmark positions and noisy probability
scores from SVM AU classifiers within a Gaussian state estimation
framework.

e Modelling of AU correlation coefficients on the basis of AU shape
deformation vectors, and the application of these correlation
coefficients in the Gaussian noise covariance matrices of the state
estimation framework.

Written Contents Contributed by Myself

Written contents pertaining to the above-mentioned innovations were
contributed originally by me. These have been included in Sections 4
and 5 in the patent, after mild revisions by the patent lawyers. It is to
be noted that these sections also contain material from my master’s
thesis that preceded this doctoral work. Among the figures listed in
Section 3, Fig. 8 and Fig. 9 were created by me as part of this doctoral
work.
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