Inaugural Dissertation

Housing Markets, the Real Economy and
Macroeconomic Policy: A Boundedly Rational

Heterogeneous Agents Perspective

vorgelegt von

CAROLIN MARTIN

Fakultit Sozial- und Wirtschaftswissenschaften

Otto-Friedrich-Universitat Bamberg

Bamberg, 2022



Housing Markets, the Real Economy and
Macroeconomic Policy: A Boundedly Rational

Heterogeneous Agents Perspective

Inaugural Dissertation

zur Erlangung des Doktorgrades

der Fakultat Sozial- und Wirtschaftswissenschaften

Otto-Friedrich-Universitat Bamberg

vorgelegt von

CAROLIN MARTIN



Datum der miindlichen Priifung: 17. Oktober 2022

Erstgutachter:
Prof. Dr. Frank Westerhoff
Lehrstuhl fiir Volkswirtschaftslehre, insb. Wirtschaftspolitik

Otto-Friedrich-Universitdat Bamberg

Zweitgutachter:

Prof. Dr. Christian R. Proano

Lehrstuhl fiir Volkswirtschaftslehre, insb. Angewandte Wirtschaftsforschung
Otto-Friedrich-Universitdt Bamberg

Drittgutachter:

Prof. Mishael Milakovi¢, Ph.D.

Lehrstuhl fiir Volkswirtschaftslehre, insb. Internationale Wirtschaft
Otto-Friedrich-Universitdt Bamberg

p K 045
]
PROMOTIONSKOLLEG

Gefordert durch die

Hans Bockler
Stiftung mm

Mitbestimmung - Forschung - Stipendien

This work is available as a free online version via the Current Research Information System (FIS;

fis.uni-bamberg.de) of the University of Bamberg. The work - with the exception of cover, quotations

and illustrations - is licensed under the CC-License CC-BY-NC.

URN: urn:nbn:de:bvb:473-irb-566420
DOTI: https://doi.org/10.20378 /irb-56642



SYNOPSIS

The housing market plays a crucial role in economic and social life. The development of house prices
has an impact on both the business cycle dynamics and the performance of the financial system.
Against this background, the insolvency of Lehman Brothers, but also recently the financial woes of
"Evergrande", has shown the dramatic consequences an overheating housing market and, associated
therewith, the bubble formation may have on the real economy. Thus it is of utmost importance to
gain a better understanding of the complex boom-and-bust behavior of housing markets. This doctoral
thesis develops a new housing market model that links the expectation formation and learning behavior
of heterogeneous and boundedly rational investors to an elementary housing market. The model is
able to produce endogenous house price dynamics with significant bubbles and crashes. With this
model framework it is then analyzed how fiscal and monetary policies may affect the housing market’s
steady state, its stability and out-of-equilibrium behavior. In particular, these policies include public
housing construction programs, various interest rate rules by the central bank and different tax policies.
The thesis also examines the interactions between the housing market and the real market. These
approaches are discussed in four papers which are briefly summarized in the following.

In Paper 1 we explore whether public housing construction programs are able to stabilize the
dynamics of housing markets. For this purpose, we use the standard user cost housing market model
established by Dieci and Westerhoff that involves a rental and a housing capital market determining key
relations between house prices, the housing stock and the rent level. The complex interplay between
speculative and real forces can produce realistic housing market dynamics with lasting periods of
overvaluation and overbuilding. Housing market investors may switch between an extrapolative and
a regressive expectation rule depending on the prevailing market circumstances in order to forecast
future house prices. In this model framework we explore the effects of four plausible and well-intended
policy measures on the housing market dynamics. Our first intervention strategy implies that public
housing construction increases in line with house prices. The second intervention strategy suggests
increasing public housing construction in periods in which the housing market is overvalued. With the
third strategy, public housing construction increases in periods in which the housing stock is below its
fundamental value. The fourth strategy recommends rising public housing construction if house prices
increase. Our analysis reveals that these four policy measures may turn out to be a mixed blessing.
While they may lower average house prices, neither the amplitude of house price fluctuations nor their
volatility can significantly be reduced by these programs. Another undesirable effect is that private
housing construction is crowded out by public housing construction through depressed house prices.

In Paper 2 it is examined how the interest rate setting of central banks may affect the stability of
housing markets. In contrast to Paper 1, we generalize the stylized housing market model by Dieci
and Westerhoff along two important dimensions: First, we introduce a central bank that follows a
simple leaning-against-the-wind interest rate rule. Based on this rule, the central bank may not only

adjust the base (target) interest rate but also change the interest rate depending on mispricing in the



housing market. The latter one means that the central bank increases (decreases) the interest rate if
the housing market is overvalued (undervalued) in order to dampen (stimulate) the housing market.
And second, we endogenize investors’ variance beliefs, i.e. investors may update their variance beliefs.
The analytical and numerical analysis reveal that increasing the base (target) interest rate has only
limited effects on the housing market. The reason is that high interest rates reduce investors’ demand
pressure on house prices and, additionally, decrease the fundamental house price which may result in
undesirable consequences for the real economy. However, central banks applying the leaning-against-
the-wind interest rate rule have a great ability to control housing market fluctuations which significantly
improve the stability of housing markets. This can be explained by countering the demand fluctuations
driven by investors’ destabilizing extrapolative expectations.

The goal of Paper 3 is twofold. First, a novel housing market model is proposed that seeks to explain
the complex boom-and-bust behavior of housing markets. Second, this model is used to explore the
extent to which policy makers may influence such dynamics by adjusting housing market-related taxes.
For this purpose, we include the expectation formation and boundedly rational learning behavior of
risk averse housing market investors into a standard user cost housing market setup. Investors choose
between extrapolative and regressive expectation rules to forecast future house prices subject to an
evolutionary fitness, given by the rules’ past profitability. We analytically and numerically show that
endogenous boom-and-bust housing market dynamics may arise if investors rely heavily on extrapola-
tive expectations. Moreover, this model framework allows us to study the effect of five different tax
policies. First, policy makers may impose a property tax on the value of houses periodically. Second,
we propose a tax on rental income which has similar effects as a property tax. Third, policy mak-
ers may also levy a tax on owning housing stock. Fourth, policy makers may decide to tax housing
construction. And fifth, we suggest a taxation of capital gains on housing. As it turns out, both a
property tax and a tax on rental income have a stabilizing effect on housing markets. Unfortunately,
it also affects the housing market’s steady-state level which could have undesired consequences on the
real economy.

Paper 4 demonstrates how a gradually linkage of the housing market and the real market affects
the dynamics and stability of these two markets. The basic idea is that such a comprehensive model
allows for the simultaneous development of business cycles and house price fluctuations. The user
cost housing market model involves a rental and a housing capital market while the real market is
represented by an aggregate-demand-aggregate-supply model augmented with a Taylor rule describing
the interest setting of the central bank. Expectations in both submodels are formed by boundedly
rational and heterogeneous agents choosing between two competing forecasting rules depending on
the rules’ past accuracy. It is shown that both the housing market model and the real market model
are able to produce complex endogenous boom-and-bust dynamics. In addition, we explore how the
dynamics changes by merging the housing market model with the real market model in four steps.
First, the housing market’s interest rate is no longer constant, but develops according to the Taylor

rule. Simulations reveal that the house price and the output gap then exhibit pro-cyclical boom-and-



bust dynamics over time. Second, the house price distortion is included in the Taylor rule. As a result,
the volatility on the housing market can be dampened while the real market remains largely unaffected.
In a third step, the house price trend is added to the inflation equation. As it turns out, the distortion
in the housing market can be significantly reduced without having considerably effects on the real
market. In a fourth step, the aggregate demand equation also depends on the house price distortion.
The analysis reveals that the distortion in the housing market can be significantly reduced. However,
the volatility of the real market is strongly increased by the adjusted aggregate demand equation.
Each of these four papers is independent from each other and can be read without any prior
knowledge of the others. The first paper is jointly written with my Ph.D. supervisor Frank Westerhoff
and is published in the Journal of Economics and Statistics. The second and third paper are jointly
written with Frank Westerhoff and Noemi Schmitt and are published in Macroeconomic Dynamics
and in the Journal of Economic Behavior and Organization. For all papers, each author contributed
equally. Thus, my contribution share for Paper 1 is one half and for Paper 2 and Paper 3 one third

each. The fourth paper is written by myself and has not been published yet.
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Regulating speculative housing markets
via public housing construction programs:
Insights from a heterogeneous agent model

Carolin Martin and Frank Westerhoff

Abstract

Since the instability of housing markets may be quite harmful for the real economy, we explore whether
public housing construction programs may tame housing market fluctuations. As a workhorse, we use
a behavioral stock-flow housing market model in which the complex interplay between speculative
and real forces triggers reasonable housing market dynamics. Simulations reveal that plausible and
well-intended policy measures may turn out to be a mixed blessing. While public housing construction
programs may reduce house prices, they seem to be incapable of bringing house prices much closer
towards their fundamental values. In addition, these programs tend to drive out private housing con-

structions.
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1. Introduction

The collapse of the U.S. housing market in 2006 was at least partially responsible for a global financial
crisis that pushed many countries around the world into deep economic recession.! Figure 1 depicts
the enormous dimension of the U.S. housing bubble. Real house prices in the U.S. almost doubled

between 1997 and 2006 - and then the U.S. housing market crashed. Without question, it is thus
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Figure 1: The evolution of Shiller’s U.S. house price index from 1994 to 2017, based on 288 monthly observations. The
dataset is available at http://www.econ.yale.edu/~shiller/data.htm.

of utmost importance to better understand the complex behavior of housing markets. According to
Shiller (2015), the dynamics of housing markets depend to a large extent on market participants’
expectations. For instance, a fundamentally justified upswing may turn into a speculative boom if
investors’ expectations become optimistic. Likewise, a dramatic housing market bust may occur if
investors’ expectations spontaneously turn pessimistic. Following this lead, a number of behavioral
housing market models have been proposed in the recent past (see, e.g. Dieci and Westerhoff 2012,
Geanakoplos et al. 2012, Bolt et al. 2014, Kouwenberg and Zwinkels 2014, Eichholtz et al. 2015,
Burnside et al. 2016, Diks and Wang 2016, Baptista et al. 2016 and Chai et al. 2017), which explain
the intricate dynamics of housing markets via the interactions and the expectation formation behavior
of boundedly rational and heterogeneous investors.

In this paper, we seek to go one step further. We use the framework established by Dieci and
Westerhoff (2016) as a workhorse to explore whether public housing construction programs are able to
stabilize the dynamics of housing markets. Our analysis reveals that well-intended and, at least at first
sight, plausible and properly implemented intervention policies may turn out to be a mixed blessing.
While these programs may reduce average house prices, they fail to bring house prices much closer
towards their fundamental values. Moreover, by depressing house prices, public housing construction
drives out private housing construction. Overall, our analysis suggests that neither the amplitude of
house price fluctuations nor their volatility can significantly be reduced by these programs, i.e. the

boom-bust nature of housing markets seems to be a robust phenomenon.

L As is well known, Japan’s housing market crash in 1991 also triggered a prolonged economic recession. See Shiller
(2015) for many more historical examples.



More precisely, Dieci and Westerhoff (2016) develop a stock-flow housing market model in which
speculative forces interact with real forces. The model’s basic structure may be summarized as follows.
According to the model’s rental (flow) market, the rent level decreases with the housing stock. The
model’s capital (stock) market implies that house prices depend positively on investors’ future house
price expectations and on the rent level. Investors’ expectation formation is crucial for the model’s
dynamics. In line with empirical evidence (Hommes 2011), investors use extrapolative and regressive
expectation rules to forecast future house prices. In particular, more and more investors rely on
regressive expectations when the housing market’s misalignment increases. Furthermore, house prices
depend negatively on the housing stock, which, in turn, depends positively on housing construction and
negatively on housing depreciation. Finally, housing construction increases in line with house prices.
As it turns out, the dynamics of their model is driven by a two-dimensional nonlinear stochastic map,
i.e. house prices and housing stock in period ¢ depend in a nonlinear way on house prices and housing
stock in period ¢t — 1 plus some exogenous shocks.

Dieci and Westerhoff (2016) show that their model can produce realistic housing market dynamics
with lasting periods of overvaluation and overbuilding. It is important to note that the underlying
parameter setting implies that the model’s fundamental steady state is unstable due to a Neimark-
Sacker bifurcation, i.e. the dynamics of their stochastic housing market model has a strong endogenous
component. In a nutshell, the functioning of this model may be summarized as follows. Suppose that
the housing market is slightly overvalued. In such a situation, most investors rely on destabilizing ex-
trapolative expectations. As a result, a bubble may emerge during which an increasingly larger number
of housing constructions triggers a lasting and substantial overbuilding process. A major market cor-
rection may set in once sufficiently many investors switch to the stabilizing regressive expectation rule.
Since the rent level has also become rather low due to the overbuilding process, a high housing stock
meets a low housing demand. The market’s consequent crash may become quite dramatic. Decreasing
house prices turn investors’ expectations increasingly pessimistic. Since it takes some time for housing
depreciation to correct overbuilding, a lower and lower housing demand is confronted with a still high
and only slowly decreasing stock of housing. Eventually, however, the housing market recovers. If
house prices are very low, investors return to regressive expectations. In such a situation, they expect
increasing house prices and are willing to buy more houses, also because the rent level eventually
improves. The lower the stock of housing has become during the downturn, the faster the recovery
of the housing market. It is important to note that the model’s boom-bust dynamics depends on the
combined effect of real and speculative forces, as is the case in real housing markets.

Since their model is able to match some important properties of actual housing markets, it seems
suited for conducting a number of policy experiments. In particular, we are interested in the effects of
four simple public housing construction programs that policymakers may use to seek to tame housing
market dynamics. Our first intervention strategy implies that public housing construction increases
in line with house prices. The second intervention strategy recommends increasing public housing

construction in periods in which the housing market is overvalued while the third intervention strat-



egy suggests increasing public housing construction in periods in which the housing stock is below
its fundamental value. According to the fourth intervention strategy, public housing construction is
positive if house prices increase. Although these rules affect the dynamics of housing markets in dif-
ferent ways, they have a number of common effects. First of all, all intervention strategies increase
the housing stock. However, a higher housing stock depresses the rent level and, consequently, house
prices decrease. Lower house prices reduce the incentive of private constructors to build new houses,
yet this crowding out effect does not overcompensate public housing construction, i.e. the total stock
of housing increases. In the unregulated housing market, house prices and the housing stock oscillate
around their fundamental values. Due to public housing construction programs, the housing stock
oscillates on a higher level in the regulated housing market. Similarly, lower house prices imply that
house prices tend to fluctuate below their fundamental values. On average, we thus observe an in-
crease in house price distortion, i.e. an increase in the average distance between a house price and its
fundamental value, and, ergo, less efficient housing markets. Our analysis also reveals that none of the
four intervention strategies manages to reduce the volatility of house prices. Of course, this does not
mean that there do not exist other (more sophisticated) public housing construction programs which
may achieve to tame housing markets. Moreover, the core predictions of our model should ideally be
stress tested against a number of competitor models.

A few additional comments are in order. Our paper is, amongst others, motivated by the current
house price hike in Germany. A popular policy remedy frequently reported in the news media is that
policy makers simply have to increase the existing housing stock to counter the pressure on house
prices. And, in fact, our initial guess was that such programs - even if difficult to implement in reality
- may (easily) stabilize housing markets. Yet, quite to our astonishment, our simulations indicate
the opposite. In this sense, it is interesting to recall that already Baumol (1961) points out that
countercyclical intervention rules may fail to stabilize business cycles.

In general, however, this does not mean that simple feedback rules are unable to stabilize markets.
Quite to the contrary: Westerhoff (2008) and, more recently, Franke and Westerhoff (2018) show that
policymakers may stabilize financial markets either by trading against the current price trend or by
targeting fundamental values. In doing so, they counter the behavior of speculators who rely on ex-
trapolative expectations or they support the behavior of speculators who form regressive expectations,
quite similar to the expectation feedback structure within the current housing market model. The
stabilizing effects of the interventions in these environments is also surprising since the evolution of
financial markets is close to a random walk and thus much more complex than business cycles or house
price dynamics. As will become clearer in the sequel, a major reason for the apparent failure of public
housing construction programs - with respect to their ability to stabilize housing markets - has to do
with a peculiar property of housing markets, namely the durability of the housing stock. Note that a
period featuring a larger number of public housing construction increases the current housing stock.
Given that depreciation rates of housing markets are quite low, it may take years for overbuilding in

a housing market to dissolve. Finally, the effectiveness of public housing construction programs may



be better if they could also decrease the existing stock of housing. Since the demolition of housing
stock seems to be politically unfeasible, we have abstained from experiments in this direction so far.?
On the other hand, the effectiveness may also worsen. We assume that public housing construction
programs are executed without any significant delays, i.e. they react to the last observable house price.
In reality, the initiation of public housing construction programs may take a considerable length of
time, which, in turn, can hamper their stabilizing effects even more.

Our paper adds to the literature which deals with the regulation of housing markets. Glaeser et al.
(2008) demonstrate that housing bubbles are more likely to occur in places in which housing supply
is relatively inelastic. To obtain fewer and shorter bubbles with smaller price increases, policy makers
need to make housing supply more elastic, e.g. by providing more building land, as is also argued by Saiz
(2010) and Mian and Sufi (2011). Floetotto et al. (2016) study the effect of government interventions
that involve aspects such as house buyer tax credits, the introduction of taxes on imputed rents and
the removing of tax deductions for mortgage interest payments. Grenadier (1995, 1996) demonstrates
that the duration and magnitude of boom-bust cycles in the housing market depends on construction
lags and the phenomenon of overbuilding, i.e. the addition of new supply in the face of already high
housing stocks. Hence, a policy implication is to help builders to better time their constructions, e.g.
by reducing housing market uncertainty. Geanakoplos et al. (2012) and Baptista et al. (2016) study
the (dangerous) role of leverage for the emergence of housing market bubbles in a behavioral model
with heterogeneous interacting agents.

The remainder of our paper is organized as follows. In Section 2, we first recap the housing market
model by Dieci and Westerhoff (2016) and explain its functioning. In Section 3, we then explore the
effectiveness of a number of public housing construction programs. In Section 4, we finally conclude

our paper and point out some avenues for future research.

2. Boom-and-bust housing market dynamics

To understand the complex boom-and-bust behavior of housing markets, Dieci and Westerhoff (2016)
develop a housing market model in which speculative forces interact with real forces. In Section 2.1, we
recap their approach. In Section 2.2, we discuss the model’s steady state and stability properties while
we explore the functioning of their calibrated model in Section 2.3. As we will see, the model is able to
produce reasonable housing market dynamics with lasting periods of overvaluation and overbuilding,
providing a stage for investigating how certain public housing construction programs may influence
the performance of housing markets. In Section 2.4, we introduce a number of summary statistics to
measure the performance of housing markets and to evaluate the effects of public housing construction

programs.

2However, there are some historical examples in which the housing stock has been destroyed to regulate housing
markets. For instance, in Eastern Germany a substantial number of buildings (Plattenbauten) have been removed in the
late 1990s and early 2000s.



2.1. The basic model setup

Dieci and Westerhoff (2016) propose a stylized stock-flow housing market model, based on Poterba
(1984, 1991) and Wheaton (1999), with boundedly rational housing market investors. The housing
market consists of two connected markets, namely a rental (or flow) market and a capital (or stock)
market. To begin with the rental market, the demand for housing services D; in each period ¢ is
defined as Dy = koR; k¥ This isoelastic demand function states that D; is a decreasing function of the
rent level Ry, the price of housing services. Parameter kg is a positive parameter and k > 0 outlines
the constant elasticity of the demand for housing services. The flow of housing services S; in the same
period is proportionally dependent on the initial housing stock H;, i.e. S; = bH;, where b > 0. Given
these two requirements, the market clearing condition for housing services in period ¢, D; = S;, leads
to the expression koR; ¥ = bH;. Accordingly, the rent level depends negatively on the current housing

stock, so that
Mo

Ry = —2
t Hgn’

(1)

where m = % > 0 and mg := (k—l’o)’% > (0. Parameter m represents the reciprocal value of the demand
elasticity.

Concerning the market for housing capital, investors’ demand for housing stock is modeled on the
basis of a standard one-period mean-variance framework. Assume that a representative investor is able
to spread his wealth between housing capital and an alternative riskless asset over the time horizon
from ¢ to t + 1. From this perspective and given a hypothetical house price level P; at time ¢, the

investor’s end-of-period wealth Wy, is
Wt+1 :(1+T)Wt+HtD(Pt+1+Rt—(1+7"+(s)Pt) (2)

Note that HP denotes the number of housing units held at time ¢, and all random variables are indexed
with ¢ + 1. Parameter § > 0 stands for the housing depreciation rate and r > 0 is the interest rate.
The latter comprises the profit on alternative assets, i.e. the opportunity cost of capital, as well as
additional costs of owning a house.® According to the real estate literature (Himmelberg et al. 2005),
the amount r + § can be characterized as the user cost of housing.

The aim for housing market investors is to maximize the certainty equivalent for final wealth that

leads to the following mean-variance optimization problem
A
mazgp | Be(Weer) = 5Ve(Wepa)| - (3)

The functions E¢(-) and V() represent investors’ expectation and variance conditional on final wealth
Wit1, and the coefficient of (absolute) risk aversion is indicated by A > 0.

For simplicity, investors’ beliefs about the variance of the price and payout at the end of the period
is assumed to be constant over time, i.e. V;(P;11) = o2. In addition, the market expectation of

Py, is formed at the beginning of period ¢ based on observations up to period ¢ — 1, and is defined

3These additional costs are expressed on a proportional basis and include, for instance, insurance and property taxes.



as PPy = Ey(Piy1). As a result of these considerations, the solution of the above maximization

problem is
D PHi+Re—(1+r+0)P
o Ao2 ’

(4)

Obviously, investors’ optimal demand for housing stock is a downward-sloping function of current
price P; and user cost r + 6. Moreover, it depends positively on investors’ one-period-ahead price
expectations Pf,,, as well as on current rent level R;.
In the following, the total number of investors is set to one. The market clearing condition for the
stock of housing
HP = H; (5)

implies that
Pte,t+1 + Rt - .I:It)\O'2

P:
! 14+r+6

; (6)

so that P; outlines the market clearing price. The term H;\o? in equation (6) denotes the risk premium
and thus R; — H;Ao? can be interpreted as the risk-adjusted rent.*

The evolution of the housing stock is described as
Hy=(1-0)H, 1 +I+1I. (7)

I} denotes private housing investments or, in other words, the amount of new private housing con-
structions in period ¢, and is defined as

1] = qPl,, (8)

where ¢y > 0. Parameter ¢ > 0 describes the constant elasticity of the supply of new housing.
Accordingly, the number of new private constructions in period t is an upward-sloping function of the
price of the previous period t — 1, where I} > 0 for P > 0. Initially, public housing constructions are
set to zero, i.e. I = 0.5

In combination with the equation for private housing investment (8) and with the assumption of

I? =0, the development of the housing stock in (7) can be rewritten as
Ht = (1 — 5)Ht,1 + QOPtq,y (9)

A further important component of this model concerns investors’ rule-based expectation formation
behavior. Based on Dieci and Westerhoff (2016) and consistent with the approaches by Day and
Huang (1990), Brock and Hommes (1998), Boswijk et al. (2007) and Westerhoff and Franke (2012),

two important expectation rules can be distinguished. First, extrapolative expectations are defined as

4Note that (5) implies that the total demand for housing completely stems from the housing demand of investors.
See Baptista et al. (2016) for a framework in which the demand for housing depends on renters, first-time buyers,
home-movers and buy-to-let investors.

5 According to (7), there are no differences in the quality of public and private housing constructions. See Baptista et
al. (2016) for a framework in which the housing stock displays different quality levels. Moreover, we make the assumption
that building land is not restricted in our model, although recent research (Glaeser et al. 2008, Saiz 2010 and Mian and
Sufi 2011) point out the relevance of this aspect.



follows:

Pte,tJrl,E =P 1 +y(P1 - PP). (10)

As can be seen, investors with extrapolative expectations forecast that the price will continue to move
further away from its fundamental value Pj, and thus they have a destabilizing effect on prices.’
Second, investors with regressive expectations act as a stabilizing force because they forecast that

price movements will return towards the fundamental value, which can be illustrated by
Piiiir=P1+0(Pf = Pi1). (11)

Parameters v > 0 and 0 < 0 < 1 indicate the intensity of investors’ reactions to the observed mispricing,
i.e. the deviation of the price from its fundamental value.

Investors tend to switch between the extrapolative and the regressive expectation rule depending on
the prevailing market circumstances. While investors seek to chase price trends, they also fear bursting
bubbles. Investors therefore prefer the regressive expectation rule with increasing misalignments.”

According to that, the share of investors w; that has extrapolative expectations can be described by
B 1
14 Vi(P—y — P72’

The weighting function (12) has a bell shape, which means that the closer the house price is to its

(12)

Wy

fundamental value, the higher the market impact of the extrapolative rule. In this case, if the price
moves away from its fundamental benchmark, most investors expect this gap to become greater and
greater, and they seek to profit from it. But with increasing deviation from the fundamental value,
the risk of a bursting bubble is assessed as being high by more and more investors. As a consequence,
an increasing share of investors turn to the regressive rule. The greater the sensitivity of investors
towards the perceived mispricing, expressed by V; > 0, the more quickly such switching occurs.

Note that housing market booms are more pronounced and longer lasting than housing market
busts. It is therefore assumed that investors switch more quickly and strongly to the regressive ex-
pectation rule if the price is below its fundamental value and simultaneously more strongly distorted.
This idea is formalized by

Vi Uy + (P — PY) P, > Py 7 (13)
v — ¢ (P, — Py) P, < Py
where v; > v, > 0 and ¢ > ¢, > 0.

A weighted average of extrapolative and regressive expectations is called the aggregate market

expectation Pf;,, and is expressed by

Piyoy=wiPf g+ (1 —w)Pi g (14)

6Throughout this paper, the fundamental steady states of house prices and housing stock are indexed with 1 due to
the existence of further non-fundamental steady states.

"The concept of modeling changes in market sentiment with respect to market circumstances can be traced back to
de Grauwe et al. (1993). See Dieci and He (2018) for an excellent survey about the role of expectations in heterogeneous
agent models of financial and housing markets.



or

P = wi(Pe1 +9(Po1 = Pr)) + (1 = wi) (P + 0(PF — Pio1)), (15)

respectively, which completes the description of our model.

2.2. Steady states and stability analysis

Combining (1), (6), (9), (12), (13) and (15) reveals that the model dynamics is driven by a two-
dimensional nonlinear map

Py =F(P1,Hi1) (16)

and

H, = G(P,_1,Hy_y). (17)

Dieci and Westerhoff (2016) define a fundamental steady state (FSS), say (P;, Hy), as a steady state
at which expectations are realized, i.e. P~ = Py. Moreover, they show that the FSS is implicitly

defined by

pp = Ao 1)
and
LI
Hy = 5 (19)
where R} = 77 and IP* = qo(Py)?. Accordingly, the fundamental price P; is equal to the dis-

counted value of future (risk-adjusted) rents. Note that (18) gives rise to two no-arbitrage conditions.
First, agents are indifferent between investing in the safe asset and in the housing market. Second,
agents are indifferent between owning and renting a house. From an economic perspective, the FSS
thus has desirable properties.®* Moreover, the fundamental housing stock depends on the steady-state
investment level and the depreciation rate such that housing depreciation is only set off by new housing
construction.

The FSS becomes unstable due to a Neimark-Sacker bifurcation if the stability condition
<7 + 26
1-9

is violated. In such a situation, endogenous quasi-periodic dynamics is set in motion. However, the

(20)

FSS may also become unstable due to a Pitchfork bifurcation. If the stability condition
(A\o? — R'(H*)I”'(PY)
1)

is violated, the FSS becomes unstable and two new non-fundamental steady states (NFSS), say

(Py,Hy) and (P, Hy), where Py < Pf < P; and Hj < Hf < Hj, are born. The housing mar-

y<r+0+ (21)

ket may then get stuck in a permanent bull or permanent bear market. Note that the Pitchfork

8Due to the isoelastic nature of the demand and supply curves, the FSS can only be expressed explicitly if investors

J _m__ R - J -
are risk-neutral. For A = 0, the FSS is given by P} = (;4%)TFma (%) THma and Hy = (7535%)1Fma () THma.



bifurcation boundary is more binding if (\o® — R'(H}))IF' (P}) < w. From an empirical per-
spective, however, the Neimark-Sacker bifurcation is more relevant than the Pitchfork bifurcation (see
Section 2.3). Nevertheless, the Pitchfork bifurcation may play an important role for the model’s global
behavior.? Overall, these results indicate that the stability of housing markets depends on speculators’

extrapolative behavior and a number of real factors such as the interest rate and the depreciation rate.

2.3. Unregulated housing market dynamics

Dieci and Westerhoff (2016) explore how the complex interplay between real and speculative forces
shapes the dynamics of housing markets. A time period in their calibrated model corresponds to a
quarter of a year. Table 1 provides an overview of the model parameters. The real parameters, e.g.
the interest rate or the supply elasticity, are based on empirical observations. The remaining model
parameters, in particular those that capture agents’ expectation formation, are fixed such that the
model dynamics mimics a number of important features of actual housing markets. Note that a small
amount of exogenous noise is added to the house price equation (shocks are normally distributed with

mean zero and standard deviation o,,). See Dieci and Westerhoff (2016) for more details.

Table 1: Base parameter setting used in the simulations

Interest rate r =0.005
Depreciation rate 6 = 0.005
Extrapolation parameter v =0.15

Regression parameter 0 =0.125

Price volatility (beliefs) oc=2

Absolute risk aversion coefficient A = 0.00125

Additive price noise op =2

Switching parameters v = vy = 0.01,¢;, = 0.01,¢, =0
Demand elasticity m = 4,mo = 1.5 108
Supply elasticity g=4,90=5*107"°

Note that the calibrated model parameters imply that the FSS is given by P = Hf = 100. For
completeness, we also mention that the level of private housing construction at the FSS amounts to
0.5 and that all agents form extrapolative expectations. Moreover, v = 0.15 implies that the FSS
is unstable due to a Neimark-Sacker bifurcation, which occurs at vV° =~ 0.0151. Since a Pitchfork
bifurcation would require that v exceeds v¥ = 0.27, we also know that the FSS is the unique steady
state of the calibrated model. In the absence of exogenous noise, the model’s house price and housing

stock display strong oscillatory fluctuations around their FSS levels.'?

9Theoretically, the model’s dynamical system may also give rise to a Flip bifurcation. Instead of a locally stable FSS,
we then observe an attracting period-two cycle. Since the stability condition ()\asz’(Hf))IP/ (PF) < (2=0)(24+7r+6+7)
is always fulfilled for realistic parameter values, we can safely neglect this scenario.
10 According to Shiller (2015), the instability of housing markets depends strongly on market participants’ expectations.
As pointed out by an anonymous referee, however, the magnitude of housing market bubbles differs across countries and
time. A model extension in which the extrapolation parameter 7 is time-dependent can account for these observations.
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Figure 2 depicts a stochastic simulation run of the model. Since one period corresponds to a quarter
of a year, the 200 observations represent a time span of 50 years. The panels show from top to bottom
the evolution of house prices (black line) and housing stock (green line), the market share of regressive
expectation and private (black line) and public housing constructions (red line), respectively. The
gray line featured in the top panel represents the fundamental value of both house prices and housing
stock. As can be seen, the housing market is quite volatile and subject to significant bubbles and
crashes. Furthermore, there is a mismatch between the fluctuations and turning points of house prices
and housing stock. Recall that private housing construction depends on past prices. Hence, the
current housing stock may still increase when house prices start to deflate, provided that new housing
construction offsets housing depreciation. As it turns out, the level of overbuilding reached during a
boom period is, along with investors’ price expectations, a crucial factor for the timing and size of
housing market crashes.!!

To be more precise, the functioning of the model - despite being quite intricate due to the complex
interplay between speculative and real forces - may be explained as follows. First of all, note that the
majority of investors relies on extrapolative expectations when house prices are near their fundamental
value. Since extrapolative expectations are destabilizing, we may observe the start of a bubble. In our
simulation run, such a development takes place shortly before period 50. As the price runs away from
its fundamental value, the market share of regressive expectations increases. This has a stabilizing
impact on the dynamics, as can be seen shortly after period 50. However, a real crash typically occurs
only in this model if the housing stock also reaches high levels. In fact, shortly after period 50, house
prices first recover before they begin to tumble. Recall that a high housing stock implies low rents.
Hence, in periods with high house prices and high levels of housing stock, investors predict a price
decline, and it is economically uninteresting (low rents) to invest in the housing market. Both effects
together depress housing demand which, in turn, pushes house prices downwards. Moreover, once
house prices drop below the FSS, investors relying on extrapolative expectations become pessimistic
and predict a further price decline. Since the housing stock remains high for a while (the depreciation
rate is low), the rent level does not recover. For this reason, the housing market decline continues up
to period 100. Now the situation starts to change. Investors switch to regressive expectation and pre-

dict an increase in house prices. Eventually, housing demand improves and house prices increase again.

2.4. Performance of the housing market
To evaluate the effects of public housing construction programs and to better understand the function-
ing of our model, we introduce nine summary statistics. The house price distortion D, given by the

average absolute relative deviation between house price P; and its fundamental value P}, is computed

UDieci and Westerhoff (2016) provide a more detailed discussion of the phenomenon of overbuilding and its relevance
for housing market crashes. Shiller (2015) presents an interesting overview of the boom-bust behavior of the U.S. housing
market and a number of selected cities and metropolitan areas. Similar accounts, also highlighting the relevance of the
overbuilding phenomenon, are given by Glaeser et al. (2008), Grenadier (1995, 1996) and DeCoster and Strange (2012).
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Figure 2: A simulation run under i.i.d. normal additive noise on house prices. The panels show from top to bottom
the dynamics of house prices (black line) and housing stock (green line), market impact of regressive expectations, and
private (black line) and public housing construction (red line). Parameters as in Table 1.

by
1 < |P, — P}|
pP =Nt _~11 (22)
T2 B
where T denotes the sample length. Similarly, the housing stock distortion D! is captured by
T
1« |H: — Hf|
D" = — 2
T )

representing the average absolute relative deviation of housing stock H; from its fundamental value

Hi. Furthermore, the volatility of house price V is defined as

T
1 | Py — P_q|
S N e 24
1% T; P (24)

reflecting the average absolute relative house price change. Average house price P and average housing

stock H can be described by

el

1 T
P=_>"P (25)
t=1
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and

N

1 T
F = ZHta (26)
t=1

respectively. In addition, average private housing construction I” and average public housing con-

struction IS are characterized by

1 T
P === > 1f (27)
t=1
and
1 T
75 _ Z S
I B T B t=1 It ’ (28)

respectively. To understand the functioning of the model, we also keep track of the average market

share of extrapolators

el

1 T
W= w (29)
t=1

as well as the average rent level

=

1Y R, (30)
t=1

el

Computing these nine summary statistics on the basis of T' = 50,000 observations (after omitting a
larger transient period) reveals that the unregulated housing market is not efficient.!? In particular,
DP =0.062 and D¥ = 0.051 imply that house prices and the housing stock deviate significantly from
their fundamental levels. Note also that house prices are quite volatile (V' = 0.016). Moreover, the
average house price (P = 100.30) is slightly higher than the fundamental house price (P; = 100).
This stems back from the fact that the appearance of bull and bear markets is asymmetric, due to
speculators’ switching between expectation rules. High house prices induce more average private hous-
ing construction (I” = 0.52) than in the steady state (I’ = 0.5). This, in turn, results in a higher
average housing stock of H = 104.39 compared to the fundamental value of Hy = 100. Due to the
high housing stock, the average rent level R = 1.29 is lower than the steady-state rent level R} = 1.5.
Initially, average public housing construction 15 is set to zero, i.e. IS = 0, while the average market

share of extrapolators is given by w = 0.56.

3. Effects of public housing construction programs

So far, we have set public housing construction to zero. Hereafter, we explore the effectiveness of four
hypothetical public housing construction programs. In Section 3.1, we present the first intervention
strategy, which states that public housing construction depends positively on the level of house prices.

In Section 3.2, we consider the second intervention strategy, which implies that public housing con-

12 Alternatively, one may compute these summary statistics as averages over 250 simulation runs with 200 observations,
deleting each time a larger transient period.
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struction increases in periods of overvaluation of the housing market. In Section 3.3, we introduce the
third intervention strategy, which recommends increasing public housing construction in periods in
which the housing stock is below its fundamental value, while the fourth intervention strategy suggests

that public housing construction is positive if house prices increase, as described in Section 3.4.

3.1. Dependency on price levels
The first intervention strategy we evaluate implies that public housing construction increases in line

with house prices, and can be described by
I7 = 2Py, (31)

where x > 0 is defined as the public intervention parameter. Accordingly, the higher the house prices
of the previous period P;_1, the higher the level of public housing construction ;.

To illustrate the performance of this intervention strategy, we depict a simulation run with 200
observations in Figure 3. Since we want to compare the housing market dynamics that arise in the
unregulated housing market with those that occur in the regulated market, we use the same design as
in Figure 2. The intervention parameter is set to x = 0.0015. The first panel shows the evolution of
house prices (black line) and housing stock (green line). Apparently, periods of lasting appreciation
still alternate with periods of lasting depreciation, i.e. the simulated price dynamics continues to
display bubbles and crashes. However, compared to Figure 2, the housing stock oscillates on a higher
level and the level of house prices is lower, implying that periods of undervaluation persist longer
than periods of overvaluation. For instance, shortly before period ¢ = 200, house prices are below
the fundamental value in the regulated market and fluctuate very close around P} in the unregulated
market. Here again, crashes are particularly pronounced if the housing stock reaches high levels,
as can be seen around period ¢ = 100. The second panel shows the corresponding market share of
regressive expectations which, compared to Figure 2, is lower in periods of overvaluation and higher
if house prices are below the fundamental value, due to the overall drop of house prices. This can
be seen between periods ¢ = 50 and ¢t = 90. In the regulated market, house prices fluctuate closer
to the fundamental value than in the unregulated market. Therefore the market share of regressive
expectations is lower, and most investors follow the destabilizing extrapolative expectation rule.'® Tt
becomes evident from the bottom panel that private housing construction (black line) fluctuates on a
lower level in the regulated housing market. Obviously, public housing construction depresses house
prices, driving out private housing construction.

In the following, we use our nine statistics to explain the working of this strategy in more detail.

First of all, public housing construction (ﬁ = 0.14) increases the housing stock, which is now at the

13 As will become more clear in the sequel, public housing construction programs affect investors’ expectation formation
behavior. In particular, all four intervention strategies increase the price distortion in the housing market, prompting
investors to put more weight on regressive expectations. Nevertheless, one may argue that investors’ learning/adaptation
behavior could be more pronounced, e.g. by a change of their expectation rules or their switching behavior. This critical
aspect, reminiscent of the famous Lucas critique, is discussed in more detail in Franke and Westerhoff (2018).
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Figure 3: The dynamics of the housing market model, including the first intervention strategy for x = 0.0015. The
panels show from top to bottom the dynamics of house prices (black line) and housing stock (green line), the market
impact of regressive expectations, and private (black line) and public housing construction (red line). The simulation
run is based on 200 observations, and parameters are as in Table 1.

average level of H = 109.87. Consequently, the housing stock distortion increases to D = 0.099.
The higher supply of housing depresses the rent level (R = 1.04) which, in turn, reduces house prices,
meaning that the average house price level drops to a value of P = 94.59. Hence, on average the house
price distortion rises slightly to D = 0.066 which, in turn, results in a decreased average market
share of extrapolators (w = 0.39). Due to the lower level of house prices, private constructors have less
incentives to build new houses and, consequently, private housing construction decreases to an average
value of TP = 0.41. However, the total stock of housing increases since the crowding out effect does
not overcompensate public housing construction. On average, the volatility of house prices increases
(V =0.018).

In Figure 4, we show how the model performance depends on our first public intervention strategy.
The panels illustrate from top left to bottom right the behavior of our nine statistics D, D¥, P, H,
IP, IS, w, R and V for increasing values of parameter x. As can be seen, the results from Figure 3

are confirmed by Figure 4. Obviously, average public housing construction IS increases in line with

parameter = (panel 6). Thus, the stronger the intervention, the higher average housing stock H is
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Figure 4: The impact of the first intervention strategy on the performance of the housing market. The panels reveal
how the nine statistics D¥, D, P, H, I”, IS, w, R and V depend on the intervention parameter . The computation
of the nine statistics is based on 50,000 observations and the base parameters are as in Table 1.

(panel 4). Consequently, both average rent level R (panel 8) and average house price P (panel 3)
decrease with parameter z. Due to the crowding out effect, average private housing construction 17
decreases in line with parameter = (panel 5). However, the rise of I3 overcompensates the decline of
TP so that the average housing stock increases in line with parameter z. As can be seen in the first
panel, the house price distortion DY initially marginally declines in line with parameter z, but as of
x = 0.001, the price distortion increases sharply. Similarly, the housing stock distortion D (panel 2)
also grows in line with parameter x. Due to the higher price distortion, the average market share of
extrapolators (panel 7) decreases in line with parameter . To sum up, the first public intervention
strategy fails to stabilize the dynamics in the housing market, as can also be seen in the last panel,

which shows a slightly growing volatility of house prices as parameter x increases.'*

3.2. Measures against positive mispricing

According to our second intervention strategy, the level of public housing construction increases in line

with the overvaluation of the housing market, i.e. the further house prices move above the fundamental

14 As a robustness check, we also investigated the dynamics of the housing market for variants of the first intervention
strategy. For this purpose, we conditioned the intervention strategy on threshold values of house prices and housing
stock. Furthermore, we also explored the effects of nonlinear intervention functions. However, none of these variants led
to a significant reduction of the distortion of house prices. Likewise, we increased the supply-response lag of public and
private housing construction. Simulations indicate that market efficiency decreases further if housing supply becomes
more sluggish.
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price, the higher the level of public housing construction. In case of undervaluation, public housing

construction is set to zero. This strategy can be characterized by

(P — PY) P> Pf
5 = ' b (32)
0 Py < P
The simulation run depicted in Figure 5 is based on z = 0.05. All other parameters used in the

simulation are defined as in Table 1. For comparability, the design of Figure 5 is as in Figures 2 and

3. Figure 5 reveals that house prices oscillate around the fundamental value P;* = 100 (gray line) and
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Figure 5: The dynamics of the housing market model, including the second intervention strategy for « = 0.05. The
panels show from top to bottom the dynamics of house prices (black line) and housing stock (green line), the market
impact of regressive expectations, and private (black line) and public housing construction (red line). The simulation
run is based on 200 observations, and parameters are as in Table 1.

that significant bubbles and crashes may occur. However, the average house price level is lower than
in the unregulated housing market, i.e. house prices fluctuate more frequently below P;. In addition,
fluctuations in the housing stock are more pronounced and H; reaches higher levels than in Figure 2
(above H = 115). Therefore, housing market crashes turn out to be stronger, which results in sharp
declines in the housing stock. This development can be observed shortly after period 150. After the

housing stock rises to over 115, house prices decline sharply and the housing stock falls again. Due to
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the lower level of house prices, the market share of regressive expectations is lower in periods in which
the housing market is overvalued and is higher in periods of undervaluation. This can be seen shortly
before period 200. In the regulated market, house prices are below the fundamental value, therefore
the market share of regressive expectations is higher than in the unregulated market in which P,
fluctuates very close to P;*. Due to the crowding out of private housing construction by public housing
construction, I fluctuates on a lower level. The more the housing market is overvalued, the higher
public housing construction is. In periods in which P; is equal to or below the fundamental value, I
is zero.

The functioning of the second intervention strategy is surprisingly similar to the first intervention
strategy. Due to public housing construction (IT; = 0.08) in periods of overvaluation, the housing
stock rises sharply after a short time lag and reaches an average level of H = 107.6. The distortion of
the housing stock also increases to D = 0.081. This leads to a strong decrease in the average rent
level (R = 1.16), and thus to a sharp drop in house prices (P = 97.16). As soon as P; falls below
the fundamental value, there is no more public housing construction, i.e. I = 0. Consequently, the
housing stock declines with the result that house prices revert towards the fundamental value. Once
P; is higher than the fundamental value, public housing construction and hence H; increases until
the housing market crashes again and the story repeats itself. In fact, this is exactly what we observe
between period 50 and 100. Since public housing construction crowds out private housing construction,
I} drops to an average value of IP = 0.46. Moreover, the average market share of extrapolators falls
to w = 0.49, and the house price distortion decreases slightly to D¥ = 0.061. Since we observe only a
small improvement in D but otherwise a deterioration of the other statistics, especially the volatility
of house prices increases to V = 0.017, the second intervention strategy is also incapable of improving
the performance of the housing market.

Figure 6 shows that there is no value of the intervention parameter at which the dynamics of the
housing market can be stabilized. Note that the nine statistics depicted in Figure 6 evolve very sim-
ilarly to those depicted in Figure 4. To be more precise, as the intervention parameter increases, so
do average public housing construction, average housing stock and the distortion of the housing stock
(panel 6, 4 and 2, respectively). Consequently, the average rent level R (panel 8) and the average price
level (panel 3) are in constant decline. Up to 2 = 0.03, the price distortion decreases slightly (panel 1).
As parameter x increases further, D rises strongly, resulting in a decreasing average market share of
extrapolators (panel 7). Average private housing construction I7 (panel 5) decreases as IS increases,
i.e. there is a crowding out effect. Finally, the volatility of house prices rises slightly with increasing
parameter x (last panel). In summary, we can say that the second intervention strategy also fails to

stabilize the dynamics on the housing market.'®

15\We also examined variations of the second intervention strategy. For instance, we replaced the fundamental price
by different threshold price levels P. This means that the further price P;_; moves away from P the higher the level
of public housing construction is. If P < P, it follows that I = 0. However, this alternative strategy also failed to
stabilize the housing market.
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Figure 6: The impact of the second intervention strategy on the performance of the housing market. The panels reveal
how the nine statistics D¥, DH, P, H, IP, IS, w, R and V depend on intervention parameter . The computation of
the nine statistics is based on 50,000 observations, and the base parameters are as in Table 1.

3.3. Countering underbuilding

The third intervention strategy assumes that public housing construction increases in periods in which
the housing stock is below its fundamental value, i.e. policymakers seek to counteract housing short-
ages. However, if the housing stock is equal to or greater than HY, there is no public housing con-

struction, i.e. I = 0. This relationship can be formulated by

15— x(Hf — Hy—1) Hf > Hi . (33)
0 HY <H;

Figure 7 depicts a simulation run with 200 observations, following the design of Figures 2, 3 and 5.
The base parameter setting is as in Table 1, and the intervention parameter is set to x = 4. As can be
seen, the dynamics only change very little compared with those that occur in the unregulated market.
The reason for this is that in our simulation run, the housing stock falls slightly below its fundamental
value only between period ¢ = 25 and ¢ = 50, and thus public public housing construction can only
be observed in this period. Consequently, the housing stock is slightly higher and the price level is
slightly lower than in Figure 2. As a result, this intervention has no effect on the further evolution
of the dynamics. Changes in the development of the market impact of regressive expectations are
virtually invisible. The third panel reveals that public housing construction occurs in periods in which

the housing stock is below its fundamental value H; = 100, which is the case before ¢ = 50. Due to
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Figure 7: The dynamics of the housing market model, including the third intervention strategy for x = 4. The panels
show from top to bottom the dynamics of house prices (black line) and housing stock (green line), the market impact of
regressive expectations, and private (black line) and public housing construction (red line). The simulation run is based
on 200 observations, and parameters are as in Table 1.

the small effect of public intervention, private housing construction changes negligibly.

The third intervention strategy functions according to similar principles as the previous two strate-
gies. Public housing construction in periods in which the housing stock is below its fundamental value
leads to an increased average housing stock (H = 104.7). Since public housing construction is for the
underlying intervention parameter rather low (IS = 0.016), all other statistics change only marginally.
As a result of public intervention, H moves closer to the fundamental value, whereby the distortion of
the housing stock decreases to D¥ = 0.047. Consequently, the average rent level declines (R = 1.27)
as well as the average house price level (P = 99.64), which, in turn, causes the house price distortion
to fall to a value of D¥ = 0.06. Due to the crowding out effect of public housing construction, the
average value of private housing construction falls to I” = 0.51. In addition, the average market
share of extrapolators is smaller than in Figure 2 (w = 0.55). The third intervention strategy is also
incapable of reducing the volatility of house prices (V = 0.017).

Figure 8 demonstrates that there is no value of intervention parameter x that can improve the

values of the nine statistics. As parameter x rises, public housing construction increases (panel 6), as
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Figure 8: The impact of the third intervention strategy on the performance of the housing market. The panels reveal
how the nine statistics D¥, DH, P, H, IP, IS, w, R and V depend on intervention parameter . The computation of
the nine statistics is based on 500,000 observation runs, and the base parameters are as in Table 1.

does the average housing stock (panel 4). As a result, both the average rent level and the average
price level drop as the intervention parameter rises (panels 8 and 3, respectively). After a slight im-
provement of the two statistics D and D (panels 1 and 2), both of them rise sharply as parameter
x increases further. Due to the increasing price distortion, the average market share of extrapolators
falls in line with parameter  (panel 7). Again, the rising level of average public housing construction
drives out private housing construction and, consequently, TP declines (panel 5). As the volatility
of house prices also increases slightly in line with increasing public intervention (panel 9), the third

intervention strategy has no stabilizing effect on the housing market dynamics.'®

3.4. Anti-trend measures

The fourth strategy proposes that public housing construction increases if house prices increase. In
case of falling or constant house prices, there is no public housing construction. This can easily be
defined by
2(Pi—1 — Pi_2) Pi_1>P_y
IP = : (34)
0 P 1< P o

16We also evaluated alternative versions of the third intervention strategy. For instance, we supersede the fundamental
housing stock H} by a threshold value of housing stock H. In this case, public housing construction is positive in periods

in which H > H; 1 and set to zero otherwise. This variation does not result in stable housing market dynamics either.
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To illustrate the results of this intervention strategy, we set x = 0.15 and show in Figure 9 the
dynamics of the consequent housing market. The design is as in Figures 2, 3, 5 and 7, and the base

parameters are specified as in Table 1. It can be seen from the top panel of Figure 9 that house prices
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Figure 9: The dynamics of the housing market model, including the fourth intervention strategy for z = 0.15. The
panels show from top to bottom the dynamics of house prices (black line) and housing stock (green line), the market
impact of regressive expectations, and private (black line) and public housing construction (red line). The simulation
run is based on 200 observations, and parameters are as in Table 1.

fluctuate on a lower level around the fundamental price P = 100, while the housing stock is always
above Hy = 100, and thus reaches higher values than in Figure 2. Since investors put less weight
on extrapolative expectations in undervalued markets, the overall drop of house prices leads to an
increase in the market impact of regressive expectations. The bottom panel shows that public housing
construction reaches repeatedly high levels and is strongly fluctuating due to the significant house price
fluctuations. In contrast, the level of private housing construction decreases to a lower level.

The mode of action of the fourth intervention strategy is again similar to the effects of the previous
three strategies. As soon as house prices rise, public housing construction is positive. The stronger
prices increase, the higher the level of public housing construction. Due to high price volatility, the
average level of public housing construction is quite high (ﬁ = 0.12), which, in turn, causes the

private housing construction to fall to a value of TP = 0.42. As a result, the housing stock grows
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to a higher level (H = 108.72). Therefore, the distortion of the housing stock intensifies to more
than twice its value in Figure 2, namely D = 0.087. Consequently, both the average rent level and
average house prices decrease to values of R = 1.08 and P = 95.24, respectively. The market impact
of destabilizing extrapolators decreases (w = 0.42), but the house price distortion is only marginally
lower (DF = 0.063). Moreover, the volatility is higher compared to Figure 2 (V = 0.017).

Figure 10 shows that no value of public intervention parameter z diminishes the oscillations of

the housing market. An increasing parameter x leads to growing levels of public housing construction
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Figure 10: The impact of the fourth intervention strategy on the performance of the housing market. The panels reveal
how the nine statistics D, DH | P, H, IP, IS, W, R and V depend on intervention parameter z. The computation of
the nine statistics is based on 50,000 observations, and the base parameters are as in Table 1.

(panel 6). However, interventions increase the average housing stock (panel 4), while the average rent
and average price level clearly decline (panels 8 and 3, respectively). Higher intervention forces do not
bring about a reduction of the housing stock distortion (panel 2), but worsen the situation. It becomes
apparent that higher values of parameter = are able to decrease house price distortion in the first place
(panel 1), but fail to perform well for values higher than about = 0.1. Panel 9 shows that volatility
does not change significantly at all. Due to the increasing house price distortion, the average market
impact of extrapolators decreases sharply as parameter x increases (panel 7). Finally, private housing

construction is crowded out by public housing construction (panel 5).17

L70f course, we also discussed variants of the fourth intervention strategy to see if the dynamics of the housing market
can be calmed. For instance, we looked not only at the price trend of the last two consecutive periods, but took larger
lags into account. But these studies do not lead to any other result either.
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4. Conclusions

Housing markets have repeatedly displayed dramatic boom-bust fluctuations in the past. Guided by
empirical evidence, the behavioral stock-flow housing market model by Dieci and Westerhoff (2016)
explains such oscillations via the interplay between speculative and real forces. In particular, they show
that the expectation formation behavior of bounded rational and heterogeneous investors is a crucial
factor for the emergence of intricate housing market dynamics. However, the supply side of the housing
market, namely price-dependent housing construction in the private sector and the slow depreciation
of the existing stock of houses, further complicates these dynamics. Together, these forces can initiate
lasting periods of overvaluation and overbuilding, including a mismatch between the fluctuations and
turning points of house prices and the housing stock, as is the case in real markets.

Since their model is able to mimic the behavior of actual housing markets at least to some degree,
we use it as a workhorse to explore the effectiveness of a number of stabilization policies. Overall,
our analysis reveals that plausible and well-intended public housing construction programs fail to tame
housing markets. While these programs may reduce average house prices, they do not bring house prices
much closer towards their fundamental values. By lowering house prices, public housing construction
also crowds out private housing construction, an aspect that most economists would probably regard
as undesirable. The main reason for the apparent failure of public housing construction programs
has to do with the long-lived durability of the housing stock. During a housing market bubble,
private housing construction may create a lasting and substantial overbuilding process. Public housing
construction programs that seek to counter a housing market boom amplify the overbuilding process,
and thus are at least partially responsible for the consequent housing market bust. Compared to
many other intervention policies, say countercyclical governmental expenditure, the effects of public
housing construction programs on the existing stock of houses cannot easily be reversed, except if the
demolition of houses is considered, which may be quite costly and politically unfeasible.

We conclude our paper by illustrating a number of possible extensions of our work. A first possible
extension concerns the underlying housing market model in which investors switch between extrap-
olative and regressive expectation rules with respect to current market circumstances. A question
requiring investigation is whether the simple public housing construction programs we discuss in our
paper may appear in a more (or even less) favorable light if investors rely on alternative expectation
rules and /or switching motives. For instance, one may study the effects of these programs in a setup
in which investors explicitly extrapolate past price changes and/or select expectation rules according
to their past performance. Relatedly, one may assume that private housing constructors are able
to learn, e.g. by forming expectations that are more sophisticated than those assumed in Dieci and
Westerhoff (2016). With respect to the supply side of our model, private constructors may also face
larger production lags, different cost functions and land restrictions. Moreover, buildings may have
different quality levels and, in particular, public constructors may engage in social building. Within

a true agent-based model, one can track the behavior of individual agents and consider, for instance,
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that they are financially constrained and may become bankrupt. Although we carried out a number
of robustness checks, one may consider policymakers applying more complicated intervention policies,
depending, for instance, on the housing market’s price-rent level or other early warning indicators that
may signal the possibility of the onset of a new housing market bubble. Of course, one may also use
our setup (or an extended version of it) to explore the effectiveness of alternative policy measures such
as subsidizing private housing construction, transaction costs, taxes on rents or rent controls. To sum
up, research in this area, despite its obvious relevance, is surprisingly scant so far. We hope that our

paper stimulates more work in this important direction.
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1. Introduction

The past has repeatedly demonstrated that the instability of housing markets may pose serious threats
for the real economy. As discussed in Taylor (2009), Glaeser et al. (2013), Shiller (2015) and Piazzesi
and Schneider (2016), the enormous boom-bust cycle of the U.S. housing market, which peaked in
2006, initiated one of the most harmful global recessions in history. As a matter of fact, the U.S.
housing market boom was caused at least in part by the low interest rate policy adopted by the
Federal Reserve System (Fed) in its efforts to combat financial and economic distress in the aftermath
of the dot-com bubble. While Himmelberg et al. (2005) conclude that the major decline in interest
rates during the early 2000s merely resulted in a (massive) fundamental house price increase, Taylor
(2009) critically argues that the Fed’s aggressive interest rate adjustments were responsible for the
appearance of the U.S. housing market’s boom-bust cycle and the consequent financial market turmoil.
The intensity of the academic controversy in this line of research over the last couple of years should
not be underestimated. Immediately before the crash of the U.S. housing market, Yellen (2005) stated
that monetary policy is not the best tool for deflating housing market bubbles, and ventured that
economies will be little affected by shrinking housing markets. Ten years later, Glaeser and Nathanson
(2015) warn that policymakers should never again be so confident that a housing market crash would
not have serious economic consequences. Against this backdrop, the goal of our paper is to explore
how the interest rate setting of central banks may affect the stability of housing markets. In particular,
we study the conditions under which central banks may prevent — or at least tame — boom-bust cycles
in the housing market, and which policies may trigger the opposite effect.

As a workhorse, we use the behavioral stock-flow housing market model by Dieci and Westerhoff
(2016). Their model reveals that nonlinear interactions between speculative and real forces can generate
significant endogenous fluctuations in the housing market. The speculative forces in this model result
from the expectation formation behavior of boundedly rational and heterogeneous investors. Inspired
by Day and Huang (1990), de Grauwe et al. (1993) and Brock and Hommes (1998), investors switch
between extrapolative and regressive expectation rules to forecast future house prices with respect to
current market circumstances.! The real forces in this model are due to a standard housing market
model (Poterba 1984, 1991, Wheaton 1999) with a rental market and a housing capital market, tying
key relations between house prices, the rent level and the housing stock. Based on an empirically
motivated parameter setting, the model is able to generate cyclical housing market dynamics with
lasting periods of overvaluation and overbuilding, as observed in real markets.

We generalize the model by Dieci and Westerhoff (2016) along two important dimensions. First, we
introduce a central bank that follows a simple leaning-against-the-wind interest rate rule (Taylor 2009,

Lambertini et al. 2013), consisting of two components. Not only may the central bank autonomously

I'Deviations from a fully rational behavior are strongly supported by empirical and experimental evidence (Case and
Shiller 2003, Case et al. 2012, Hommes 2011). Moreover, Glaeser (2013) and Hommes (2013) point out that simple and
plausible rule-governed behavior seems to describe reality better than fully rational behavior.



adjust the base (target) interest rate, it may also decide to automatically change the interest rate with a
view to mispricing in the housing market. In the latter case, the central bank increases (decreases) the
interest rate if the housing market is overvalued (undervalued) in order to deflate (fuel) the housing
market. Second, we endogenize investors’ variance beliefs. In the model by Dieci and Westerhoff
(2016), investors have constant variance beliefs. Since the central bank’s interest rate setting shapes the
dynamics of the housing market, we let investors learn (update) their variance beliefs (Gaunersdorfer
2000, Chiarella et al. 2007). While this model feature has interesting implications per se for the model
dynamics, since it may amplify housing market crashes, for instance, it also influences the effectiveness
of the central bank’s interest rate policy.

Our main results may be summarized as follows. The dynamics of our model is driven by a four-
dimensional nonlinear map. The model possesses a fundamental steady state in which the price of
houses reflects their future risk-adjusted rent payments. However, the fundamental steady state may
become unstable due to a Neimark-Sacker bifurcation, i.e. endogenous house price fluctuations arise
if investors extrapolate house prices too strongly. Note that such fluctuations are characterized by
short-run momentum, long-run mean reversion and excess volatility, important empirical features of
actual housing market dynamics (Glaeser 2013). Moreover, the fundamental steady state may also
become unstable due to a Pitchfork bifurcation. In such a scenario, two locally stable nonfundamental
steady states — surrounding the unstable fundamental steady state — emerge, implying that the housing
market is either permanently overvalued or undervalued. The Pitchfork scenario occurs if the housing
supply is rather sluggish and if investors use the extrapolative expectation rule too strongly. Finally,
there is also the (theoretical) possibility that a Flip bifurcation compromises the stability of the housing
market. Interestingly, a certain extrapolative strength of investors is then needed to ensure stability of
the fundamental steady state. From an empirical perspective, the Neimark-Sacker bifurcation scenario
seems to be the most realistic one. For instance, the calibrated housing market models by Wheaton
(1999), Dieci and Westerhoff (2016), Glaeser and Nathanson (2017) and Schmitt and Westerhoff (2019)
as well as the estimated housing market models by Kouwenberg and Zwinkels (2014, 2015) produce
endogenous house price oscillations. However, Bolt et al. (2019) and ter Ellen et al. (2020) detect
empirical evidence of multiple steady states.

As it turns out, the central bank has a limited ability to increase the parameter domain that
guarantees stability of the fundamental steady state by autonomously increasing the base (target)
interest rate. Economically, higher interest rates reduce investors’ demand pressure on house prices.
From a quantitative perspective, the additional gain in the stability-enforcing parameter domain seems
to be negligible. Moreover, high interest rates decrease the fundamental house price (and may lead
to further adverse effects outside the scope of our model). Simulations also reveal that a decrease in
the base (target) interest rate can spark a temporary bubble or even create permanent house price
oscillations — a situation reminiscent of the start of the aforementioned U.S. housing market bubble.
Central banks should keep this in mind when planning to adjust the interest rate.

Fortunately, the central bank has a great ability to control housing market fluctuations by dy-



namically adjusting the interest rate with a view to mispricing in the housing market. By increasing
(decreasing) the interest rate in periods of overvaluation (undervaluation), such a leaning-against-the-
wind policy smooths investors’ expectation-driven housing demand. Most importantly, this policy
allows the central bank to prevent (or at least reduce) the instability of the housing market arising
from the Neimark-Sacker bifurcation, i.e. the housing market remains stable or its oscillations are
characterized by a lower amplitude. The stabilizing effect of the central bank’s dynamic interest rate
setting is also present in the Pitchfork bifurcation scenario, i.e. the central bank has an effective tool to
prevent the appearance of nonfundamental steady states. The Flip bifurcation boundary only becomes
more relevant if the central bank reacts very aggressively to the housing market’s mispricing (though
this possibility requires some more extreme parameter constellations).

The remainder of our paper is organized as follows. In Section 2, we survey some related literature.
In Section 3, we extend the housing market model by Dieci and Westerhoff (2016). We present our
analytical and numerical results in Sections 4 and 5, respectively. In Section 6, we conclude our paper.

Proofs and model extensions are presented in the Appendix.

2. Related literature

The important yet intricate relationship between house prices, interest rates and expectations has
received increasing academic attention in the recent past. Unfortunately, no clear consensus about
their interplay has been reached so far. For instance, Himmelberg et al. (2005) argue that the rapid
price growth in the U.S. housing market in the 2000s was primarily caused by fundamental economic
factors, especially by low interest rates. The relevance of interest rates for the formation of house prices,
already articulated by Poterba (1984, 1991) to explain housing market fluctuations in the 1970s and
1980s, is, more recently, also stressed by Landvoigt (2017). However, Glaeser et al. (2013) conclude
that interest rate changes cannot account for more than one-fifth of the U.S. housing market boom.
Instead, they conjecture that overly optimistic expectations and mass psychology, as put forward by
Case and Shiller (2003), Case et al. (2012) and Piazzesi and Schneider (2009), are major drivers of
house price dynamics. Glaeser (2013) and Shiller (2015) sketch a typical boom-bust cycle as follows.
While a decrease in interest rates may set in motion a fundamentally justified increase in house prices,
the behavior of optimistic momentum investors can transform the initial price increase into a serious
boom, resulting, of course, in an inevitable bust at a later stage.

For this reason, the expectation formation behavior of boundedly rational investors is a crucial
factor in the housing market model by Dieci and Westerhoff (2016), forming the core of our model,
and a number of related housing market models, e.g. by Dieci and Westerhoff (2012), Kouwenberg
and Zwinkels (2014), Eichholtz et al. (2015), Burnside et al. (2016), Diks and Wang (2016), Chia
et al. (2017), Glaeser and Nathanson (2017), Ascari et al. (2018), Bao and Hommes (2019), Bolt
et al. (2019), Schmitt and Westerhoff (2019) and ter Ellen et al. (2020). Overall, these models

demonstrate that investors’ expectation formation behavior can induce significant endogenous house



price oscillations. Although this line of research is still at an early stage, it is worth noting that it
is deeply rooted in the heterogeneous agent asset-pricing literature, a rather powerful research strand
that convincingly explains the dynamics of financial markets, see, e.g. Day and Huang (1990), de
Grauwe et al. (1993), Lux (1995), Brock and Hommes (1998), Farmer and Joshi (2002), Huang and
Zheng (2012) and Franke and Westerhoff (2012). Dieci and He (2018) provide an insightful survey.

Returning to the interest rate setting of central banks, Taylor (2009) forcefully states that monetary
excess caused the U.S. housing market bubble. It is clear that such a view — stressing a strong relation
between interest rates and house prices — has straightforward policy implications. In fact, Taylor
(2009) is convinced that a rule-based interest rate policy, moderately adjusting the interest rate with
respect to inflation and output (the so-called Taylor principle, going back to Taylor 1993), would
have considerably dampened the magnitude of the housing market’s boom-bust cycle. In a similar
vein, Agnello et al. (2018), exploring the dynamics of housing markets for 20 industrial countries
between 1970 and 2012, find that housing market bubbles can be deflated by increasing the interest
rate. Therefore, they argue that their work supports the idea that a leaning-against-the-wind monetary
policy rule can help to stabilize the housing market. Related to this, Lambertini et al. (2013) show that
an interest rate rule that responds to house price growth can foster welfare by reducing the volatility
of house prices. In contrast, Iacoviello (2005), also using a model with rational and optimizing agents,
concludes that an interest rate response to house prices does not yield significant welfare gains as it
fails to improve market stability. Yellen (2005) is even more pessimistic, claiming that monetary policy
should not be used to deflate housing market bubbles.

However, it is important to note that a related line of research underlines the role of the supply
side for the stability of housing markets. In particular, Glaeser et al. (2008) show that housing market
bubbles are more likely to occur in places where housing supply is rather inelastic. They argue that
policymakers need to make housing supply more elastic, e.g. by providing more building land or
reducing construction costs, to obtain fewer and shorter bubbles with shorter price increases. Similar
arguments are offered by Gyouroko et al. (2013), who argue that limitations in building land increase
building costs, and by Glaeser and Gyourko (2018), who point out that overly regulated housing
markets also exhibit higher building costs. Obviously, elementary laws of demand and supply imply
that housing markets will exhibit stronger price reactions to shifts in housing demand, e.g. triggered
by changes in interest rates or expectations, when housing supply is inelastic than when it is elastic.
Such aspects should not be overlooked when it comes to explaining the dynamics of housing markets.

Our results may help to disentangle the intricate relationship between house prices, interest rates
and expectations. On the one hand, our model reveals that interest rates affect the fundamental
value of house prices, particularly if interest rates are already low. On the other hand, actual house
prices heavily depend on investors’ expectation formation behavior. Clearly, investors’ expectations
can induce endogenous house price fluctuations in which house prices significantly oscillate around their
fundamental value, letting any (steady-state) response of the fundamental house price appear rather

small. Moreover, a reduction in interest rates may spark a temporary housing market boom or, by



increasing investors’ demand for housing, permanently compromise the stability of housing markets.
Naturally, an increase in the interest rate reduces house prices and enforces more stability, albeit
with a rather small effect. The good news is that the central bank can stabilize housing markets by
dynamically adjusting the interest rate with a view to mispricing in the housing market. Our analytical
and numerical results suggest that, as long as the reaction parameter of the interest rate rule is not too
strong, a leaning-against-the-wind interest rate policy will substantially increase the parameter domain
that ensures the stability of the housing market or, at least, significantly reduces the amplitude of house
price cycles. While the supply side of the housing market influences the duration and magnitude of
boom-bust cycles, the central bank can always control these effects by manipulating the demand side
of the housing market, which it can do by dynamically adjusting the interest rate. Indeed, it is the
demand side of the housing market that is subject to the optimistic/pessimistic expectations of housing

market investors.?

3. The housing market model

Dieci and Westerhoff (2016) combine a standard stock-flow housing market framework (Poterba 1984,
1991, Wheaton 1999), comprising explicit relations between house prices, the rent level and the housing
stock, with a parsimonious approach that captures the expectation formation behavior of boundedly
rational and heterogeneous investors (Day and Huang 1990, de Grauwe et al. 1993, Brock and Hommes
1998). According to the stock-flow housing market part of their model, the housing market consists
of two interrelated markets: a rental (flow) market and a housing capital (stock) market. For a given
housing stock, the demand for housing services determines the rent level in the rental market. House
prices depend on investors’ demand for housing stock relative to the existing housing stock. Investors’
demand for housing stock is a function of their house price expectations, the rent level, the perceived
housing market risk and the interest rate, while the housing stock evolves with respect to new housing
construction and housing depreciation. The expectation formation part of their model assumes that
investors rely on extrapolative and regressive expectation rules to forecast future house prices. In
particular, investors increasingly turn to the regressive expectation rule as house prices disconnect
from their fundamental values. We extend the model by Dieci and Westerhoff (2016) by introducing
a central bank that adjusts the interest rate with a view to mispricing in the housing market. Since
the central bank’s interest rate setting may affect the (perceived) riskiness of the housing market, we
also let investors update their variance beliefs. Technically, this turns the original two-dimensional
framework into a four-dimensional model.

Let us start with the rental market. The market clearing condition for housing services implies

that the demand for housing services D; in each period t is equal to the supply (or flow) of housing

2Martin and Westerhoff (2019) explore whether public housing construction programs may stabilize housing markets.
As it turns out, it is difficult to counter expectation-driven demand changes via supply adjustments, due to the long
durability of the housing stock. While the housing stock may grow during a boom to dampen the increase in house
prices, the housing stock remains high for a considerable length of time, and may thus worsen the subsequent bust.



services S; in the same period, i.e.

Dt = St. (]‘)

The demand for housing services is written as
Dt =a— bRt (2)

Since parameters a and b are positive, (2) indicates that D; depends negatively on rent level Ry, the
price of housing services.? The supply of housing services is proportional to the initial stock of housing
H;, and is described as

S, = cH,, (3)

where ¢ > 0. By inserting (2) and (3) in (1), rent level R, is given by a decreasing function of the
current housing stock

R, = o — BH;, (4)

where o = ¢ > 0 is a scaling parameter and 3 = § > 0 represents the sensitivity of the rent level with
respect to the housing stock. Of course, a and 8 have to be such that R; > 0.

As regards the capital market, the market clearing condition for housing stock
Zy = Hy (5)

indicates that the demand for housing stock Z, is equal to the supply of housing stock H;.* The

development of the housing stock is given by
Ht = It + (]. - 5)Ht,1, (6)

where 0 < § < 1 is the housing depreciation rate and I; denotes the amount of new housing con-
struction. We assume that houses are built with a one-period production lag. Moreover, home
builders are risk neutral and maximize expected profits subject to a quadratic cost function, i.e.
mazxy,{Ei—1[P]I, — C;}, where Cy = %If, resulting in I; = vFE;_1[P;]. For simplicity, home builders
form naive expectations, i.e. E;_1[P;] = P,_1.5 As a result, housing construction in period ¢ is given
by

Iy =vPi 4, (7)

implying that
Ht = ’YPt—l + (1 - 6)Ht—1- (8)

3Dieci and Westerhoff (2016) show that their housing market model produces quite similar dynamics when the linear
relation between the demand for housing services and the rent level is replaced by an isoelastic one.

4We assume market clearing in the rental and housing capital market, accomplished via an instantaneous adjustment
of the rent level and the house price. The disequilibrium asset-pricing approach by Hommes et al. (2005) may serve as
an avenue to overcome this assumption. Examples of disequilibrium housing market models include Dieci and Westerhoff
(2012, 2013), Geanakoplos et al. (2012), Erlingsson et al. (2014) and Campisi et al. (2018).

5Dieci and Westerhoff (2012) study the case in which home builders have perfect foresight expectations, while Campisi
et al. (2018) elaborate on the case in which firms rely on a mix of perfect foresight and naive expectations. In Appendix
C, we sketch a model framework with larger production lags.



Note that a decrease in the inverse cost parameter v > 0 makes the construction of new houses more
expensive and the housing stock more sluggish. Since Glaeser et al. (2008) argue that the duration
and magnitude of housing bubbles crucially depend on the price-responsiveness of the supply side,
parameter v is a key parameter of our model.

We model investors’ demand for housing stock using a standard one-period mean-variance frame-
work. More precisely, investor i faces a wealth allocation problem between housing capital and an
alternative riskless asset over the time horizon from period ¢ to ¢t + 1. For a hypothetical house price

level P; at time t, investor i’s end-of-period wealth is given by
Wiy =0 +r)W} + Z(Ps1 + Ry — (L+ 71+ 6)Py), (9)

where W} and Z} stand for the wealth and the amount of housing units held by investor i at the
beginning of the period. Note that variables indexed with ¢t + 1 are random. Rent level R; and
interest rate r; are determined at the beginning of the period. The goal of housing market investors
is to maximize the certainty equivalent of final wealth. For investor 4, this results in the following

mean-variance optimization problem
)\i
2

where E}[W/, ;] and V;[W/ ;] represent investor i’s conditional expectation and variance about his

max z; EZ[WZ-H]* Vti[Wti-H] ) (10)

end-of-period wealth, while parameter A\’ > 0 reflects his (absolute) risk aversion. As is well known,

investor i’s solution to the above maximization problem yields
E{[Py1]l+ R — (1 +r +0)P, (11)
AV Prya]

Obviously, investor i’s optimal demand (amount of housing units) increases in line with the expected

7l =

future house price and the rent level, while it decreases in line with the interest rate, the (current)
house price and the perceived housing market risk.%

In our paper, we consider the case in which investors’ beliefs about future house prices are heteroge-
neous, while their beliefs about the variance of future house prices are homogeneous, yet time-varying.”
Let F:[P;+1] stand for investors’ average future house price expectation and V;[P;41] for their variance
beliefs. Normalizing the mass of investors to one and assuming the same risk aversion for all investors

allows us to express investors’ total housing demand as

_ Et[PtJ,_l] +Rf — (1+Tt+5)Pt
AVi[Pyi] .

7 (12)

6As we will see, investors’ housing demand is strictly positive at the steady state and remains positive most of the
time when the housing market is out of equilibrium. During larger house price swings, however, investors’ housing
demand may become negative. Of course, short selling is easier in housing markets than it is in stock markets. The work
by Anufriev and Tuinstra (2013), in’t Veld (2016) and Dercole and Radi (2020), who study the effects of short-selling
constraints within the asset-pricing model by Brock and Hommes (1998), may be useful for studying possible implications
of this model aspect in more detail.

"For analytical convenience, Brock and Hommes (1998) assume that investors have homogenous and constant variance
beliefs, arguing that investors agree more about the variance than about the mean. Gaunersdorfer (2000) and Chiarella
et al. (2007, 2013) generalize this assumption by introducing homogenous, yet time-varying variance beliefs. Since the
interest rate policy of the central bank affects the underlying data-generating process, we follow their approach, i.e.
investors update their variance beliefs.



From the market equilibrium condition (5), we then get

p, _ BilPial+ B = HOVi[Pa] (13)
t 1+r:+0 K

where ¢; ~ N(0,02) reflects additional exogenous noise affecting the housing market. Apparently, the

house price depends positively on investors’ house price expectations and the rent level, and negatively
on the stock of housing, investors’ risk perception and the interest rate.?

Hommes (2013) argues that agents are boundedly rational and, when facing complex decision
problems, rely on simple yet plausible heuristics. A similar view is offered by Glaeser (2013). To keep
the model tractable, investors select only between two expectation rules to forecast future house prices:
an extrapolative and a regressive expectation rule. Moreover, expectations formed in period ¢ about
the house price in period t+ 1 rely on the last observable house price, namely the house price in period
t — 1. According to the extrapolative expectation rule, investors predict the next period’s house price
by

EF[Pia] = Py 4 x(Pi1 — PY), (14)

where y > 0 denotes the rule’s extrapolation strength and P* stands for the housing market’s funda-
mental price. Hence, the extrapolative expectation rule predicts a continuation of the current boom
or bust period in the housing market. In contrast, the regressive expectation rule is based on the

assumption that the house price will revert to its fundamental value. This rule is formalized by
Ef[Piy1] = Py + ¢(P* — P_1), (15)

where 0 < ¢ < 1 stands for the rule’s mean-reversion speed. Note that expectation rules (14) and
(15) can be traced back to the seminal asset-pricing models by Day and Huang (1990) and Brock and
Hommes (1998). Empirical support for these rules is provided by contributions such as Boswijk et
al. (2007), Westerhoff and Franke (2012), Hommes and in’t Veld (2017), Bolt et al. (2019), Schmitt
(2020) and ter Ellen et al. (2020).°

Investors’ choice of prediction rules depends on current market circumstances. While investors seek
to chase price trends, they also fear fundamental price corrections. Assuming that investors prefer the
regressive expectation rule with increasing mispricing, the market share of investors that follow the

extrapolative expectation rule can be expressed by

1
NF = ) 16
¢ 14+n(P* - P_1)? (16)

8As in Bao and Hommes (2019), Bolt et al. (2019) and Schmitt and Westerhoff (2019), investors update their housing
demand in every period by solving a wealth allocation problem between housing capital and an alternative riskless asset.
In Appendix C, we propose a model extension in which only a smaller fraction of investors adjust their housing demand
in this sense. See Erlingsson et al. (2014) and Ozel et al. (2019) for alternative formulations of investors’ housing
demand.

9Expectation rules (14) and (15), as well as the switching function (16) and the interest rate rule (22), imply that
the fundamental house price is common knowledge. As we will see in more detail in Section 4, this is not a too strong
assumption since the fundamental house price corresponds to the discounted value of future (risk-adjusted) rents and
can thus be identified by investors and the central bank. In Section 5.4.3, however, we consider the case in which all
market participants use a moving average of the house price as a proxy for the fundamental house price. Moreover,
Schmitt and Westerhoff (2019) and Martin et al. (2020) consider related housing market models in which investors may
trend-extrapolate past house price changes.



Near the fundamental value, the market share of the extrapolative expectation rule is relatively high.
In such an environment, the bulk of investors regard any price change away from the fundamental
value as the start of an exploitable bull or bear market. However, the larger the switching parameter
n > 0, the faster investors switch to the regressive expectation rule as mispricing in the housing market
increases. Of course, the market share of the regressive expectation rule is given by NF =1 — NF.
The bell-shaped switching function (16) was originally proposed by de Grauwe et al. (1993) to explain
the dynamics of foreign exchange markets. See He and Westerhoff (2005), Gaunersdorfer et al. (2008),
Dieci and Westerhoff (2012, 2016) and Campisi et al. (2018) for related economic applications and
Kilian and Taylor (2003), Gaunersdorfer and Hommes (2007), Menkhoff et al. (2009), Franke and
Westerhoff (2012) and Kouwenberg and Zwinkels (2014) for general empirical support of this modeling
approach.?

Investors’ average house price expectations are defined by
Ei[Pit1) = NFEF [Pra] + NFE[[Piy]. (17)

Combining (14)-(17) reveals that
Py + x(Pio1 — P*) + Pan(P* — P1)® + ¢n(P* — P1)?
EL P, = 1
P Lt (P = Pia)? ’ 1o

i.e. investors’ expectation formation behavior adds a strong nonlinearity to our housing market model.

Following Chiarella et al. (2007, 2013), investors’ variance beliefs depend on a fundamental and a

speculative component, so that we can write
VilPria] = Q + sV, (19)

The fundamental variance component €2 is constant and captures investors’ perceived risk associated
with owning a house (e.g. damages to the house, not receiving the rent, unforeseen regulations con-
nected with buying and selling houses or other fundamental disturbances).!! The speculative variance
component V;% is time-varying and depends on housing market volatility, where parameter x > 0
measures investors’ sensitivity with respect to the latter component. Note that x = 0 implies that
investors’ variance beliefs are constant, as is the case in the original housing market model by Dieci
and Westerhoff (2016) and almost all other related heterogeneous agent asset-pricing models (see, for
instance, the recent survey by Dieci and He 2018).
We model investors’ speculative variance component using a learning rule introduced by Gauners-
dorfer (2000), that is
VS =oVE 4+ (1= ) (Pey = Upn)? (20)

100f course, there are alternative modeling approaches. For instance, Dieci and Westerhoff (2013), Bolt et al. (2019),
Schmitt and Westerhoff (2019), ter Ellen et al. (2020) and Martin et al. (2020) study predictor selection frameworks
based on the discrete choice approach, using squared prediction errors or realized profits as performance criteria.

U piazessi and Schneider (2016) point out that the volatility of house prices depends more strongly on idiosyncratic
shocks than the volatility of stocks. Since houses are indivisible (they are sold in their entirety and not in small pieces),
idiosyncratic shocks to housing are difficult to diversify. Furthermore, real housing markets are usually not very liquid,
and are characterized by high transaction costs, aspects that add to the risk of owning a house.
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and

Up=pUs1 + (1 — )Py, (21)

where 0 < v, 4 < 1 are memory parameters. Accordingly, investors update their speculative variance
beliefs by computing a weighted average of their past speculative variance beliefs and the most recent
observable squared deviation between the house price and an average house price. Obviously, the
average house price is also updated in the form of a weighted average.'?

Inspired by Taylor (2009), Lambertini et al. (2013) and Agnello et al. (2018), we consider the
case in which the central bank sets the interest rate with a view to the fundamental condition of the
housing market. More precisely, the central bank tries to stabilize the housing market by using the
following interest rate rule

L i P*) , (22)

Ty ="To+p ( P
where g is the central bank’s base (target) interest rate. Furthermore, p > 0 is a parameter that
controls how strongly the central bank reacts to mispricing in the housing market. Naturally, r; > 0,
i.e. the interest rate cannot become negative.!> Note that (22) suggests increasing (decreasing) the
interest rate if the housing market is overvalued (undervalued). In fact, recall from (12) and (13) that
higher (lower) interest rates — accomplished by adjusting the base (target) interest rate or reacting to
the fundamental condition of the housing market — decrease (increase) investors’ demand for housing
stock, and therefore depress (elevate) house prices. In the next sections, we use a mix of analytical

and numerical tools to explore the extent to which the interest rate rule (22) allows the central bank

to control the dynamics of housing markets.

4. Analytical insights

To be able to study the model’s deterministic skeleton, we abstract in this section from the exogenous
noise component added to the pricing equation (13). By setting ¢, = 0 and combining our equations,
we can easily express the model by the four-dimensional nonlinear deterministic map

P, = Ey[Pyi1]+a—(B+AVi[Pri1)YPe—1 —(B+AV [Pry 1 )(1—6) Hy 1

Lrotp( = ) +6

Hy=~vP_1+(1—-68)Hi1

VE =wVE + (1 =v)(Poy — Upa)?

Uy =pUi1 + (1 — )P

12Tn Appendix B, we study an alternative learning rule proposed by Chiarella et al. (2007, 2013). While their learning
rule may affect our model’s global behavior, it does not affect the fundamental steady state’s stability domain. Further
learning rules with fixed memory length are studied by Chiarella and He (2002).

13While the interest rate is always positive in the analytical part of our paper (Section 4), it may hit the zero-lower
bound when we simulate our model’s out-of-equilibrium dynamics (Section 5). In fact, (22) then implies that the model’s
map is piecewise defined, an aspect that may cause interesting side effects. See Avrutin et al. (2019) for an overview of
possible implications of such maps, and tools to explore them, and Schmitt et al. (2017) for economic examples.
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where
Py 4+ x(Pio1 — P*) + P_yn(P* — P_1)? + ¢n(P* — P,_1)3
1+ 77(P* — Pt_l)Q

Et[Pt+1] =

and

VilPiia] = Q+ wV/°.

As can be seen, the dynamics depends on 14 parameters: «, 3, v, §, A, V, i, ro, P, X, 1, ¢, = and Q.

Nevertheless, we are able to prove the following results (see Appendix A):

Proposition 1. The dynamical system (23) always gives rise to the fundamental steady state F'SS =
* * Sx *) * * * ) * ad

(P,H,V ,U)f(P,%P,O,P)thhP —m

stable if and only if (i) x > 4+2T°_29_5(5;j§_p)_7(ﬂ+’\9), (ii) x < w + 0+ 719+ p and (iii)

The FSS is locally asymptotically

x < 2‘13%2;0 +p, where a violation of the first, second and third inequality is associated with the emergence

of a Flip, Pitchfork and Neimark-Sacker bifurcation, respectively.

As shown above, the model has a fundamental steady state where the house price equals its fundamental
value, ie. P = P* = m, while the corresponding values for the housing stock, the
speculative variance component and the average house price are given by H* = 1 P*, VS* =0 and
U* = P*, respectively. Note that P* is independent of any behavioral parameters, such as x, ¢ or
71, and depends only on fundamental parameters. In particular, if the central bank increases the base
(target) interest rate 7o, the fundamental house price decreases, which, in turn, implies decreasing
values for the housing stock and higher rent levels (and vice versa).

Since the rent level at the fundamental steady state is given by R* = o — SH*, it follows that
P = %. By defining risk-adjusted rents as R* = R* — AQH* (see Dieci and Westerhoff (2016)
for more details), the fundamental house price can be expressed as the discounted value of future

risk-adjusted rents, i.e. P* = where the term g + ¢ reflects the user cost of housing. This is a

R
ro+9°
key property of Poterba’s (1984, 1991) seminal housing market model. As pointed out by Himmelberg
et al. (2005), the nonlinearity in the discounting of risk-adjusted rents can cause sharp fundamental
house price changes with respect to interest rate changes. In fact, the sensitivity of the fundamental
house price to changes in the interest rate is higher at times when interest rates are already low. In
a low interest rate environment, for instance, a given decrease in the interest rate induces a larger
increase in house prices than the same decrease in the interest rate would initiate starting from a high
interest rate. Of course, the reverse is also true. An increase in interest rates in a low interest rate
environment would cause a disproportionally large decline in house prices, especially if risk-adjusted
rents remain constant, or adjust only slowly.

To illustrate the stability domain of the fundamental steady state, we plot in Figure 1 the stabil-
ity conditions (i)-(iii) in (x,7)-parameter space. The depiction is stylized and based on p = 0. The
first, second and third stability condition is represented by the red, blue and green line, respectively.

Accordingly, the fundamental steady state is locally asymptotically stable for the parameter space

that is bounded by the three lines (highlighted in gray). For 0 < v < Al, an increase in investors’
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extrapolation behavior may violate the second stability condition, which is associated with a Pitchfork
bifurcation, i.e. the fundamental steady state becomes unstable and two additional nonfundamental
steady states are created. The housing market then remains permanently either overvalued or under-
valued. Note that this scenario may occur if the housing supply is rather sluggish. If A1 < v < A2, an
increase in y may cause a Neimark-Sacker bifurcation, and thus the onset of a quasi-periodic motion.**
If the housing supply reacts more strongly to the past house price, i.e. if A2 < v < A3, the local
asymptotic stability of the fundamental steady state requires that investors’ extrapolation behavior is
neither too low (violation of the Flip bifurcation boundary) nor too high (violation of the Neimark-
Sacker bifurcation boundary). Hence, there are scenarios where a modest extrapolative behavior of

investors is beneficial for the stability of housing markets. Finally, the fundamental steady state is

always unstable if v > A3, i.e. if the price-responsiveness of the housing stock becomes very large.

X H
ll i
] - Flip
! - Pitchfork
1
! — Neimark-Sacker
rn+2o6 i
1-6 h
f’0+(5 E

|4

Figure 1: Stability domain of the fundamental steady state in (x,y)-parameter space for p = 0. Since the blue, red
and green lines represent the three stability conditions, the parameter space highlighted in gray illustrates the region for
which the fundamental steady state is locally asymptotically stable.

The central bank may be able to influence the stability domain of the fundamental steady state by
varying 7o and p. If the central bank increases the base (target) interest rate, all three stability
conditions become relaxed, and the region for which P* is locally asymptotically stable becomes
larger. From an empirical perspective, however, this effect seems to be rather limited. This can be
explained by the following example. For quarterly data, rg = § = 0.005 is a reasonable assumption,
implying that yV° =~ 0.015. Since 7 seems to be much larger empirically, say ™ = 0.15 (see
Section 5 for more details), extremely high (and unrealistic) base (target) interest rates may be needed
to stabilize housing markets. In contrast, the stabilizing effect of an increase in the central bank’s

reaction parameter p appears to be much stronger. While an increase in p makes the presumably

14Several empirical papers indicate that the cyclical nature of housing markets is due to a Neimark-Sacker bifurcation,
e.g. Wheaton (1999), Kouwenberg and Zwinkels (2014, 2015), Dieci and Westerhoff (2016) and Glaeser and Nathanson
(2017). However, Bolt et al. (2019) and ter Ellen et al. (2020) detect empirical evidence for coexisting attractors due to
a Pitchfork bifurcation.
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not so important Flip bifurcation boundary more binding, it relaxes the highly relevant Pitchfork and
Neimark-Sacker bifurcation boundaries. Given ryg = § = 0.005 and x¢™P = 0.15, for instance, the
central bank needs to set p ~ 0.135 to ensure stability of the fundamental steady state.

To sum up: investors’ extrapolation behavior may destabilize housing markets. In particular, a
violation of the Neimark-Sacker bifurcation can set endogenous house price cycles in motion. While
the central bank has a limited ability to tame housing markets by increasing the base (target) interest
rate, it has a strong potential to stabilize housing markets by following a leaning-against-the-wind
interest rate rule. In this sense, our local stability results support the view of Taylor (2009), Agnello

et al. (2018) and Lambertini et al. (2013).

5. Numerical insights

Equipped with our analytical insights, we are now ready to explore the model’s out-of-equilibrium
behavior. In Section 5.1, we first introduce our base parameter setting and explain the functioning
of our model. In Section 5.2, we investigate in more detail the extent to which the central bank can
stabilize housing markets by adjusting the interest rate with a view to mispricing of the housing market,
paying special attention to the Neimark-Sacker bifurcation scenario (Section 5.2.1), the Pitchfork
bifurcation scenario (Section 5.2.2) and the Flip bifurcation scenario (Section 5.2.3). In Section 5.3,
we discuss how the central bank influences the housing market by adjusting the base (target) interest

rate. In Section 5.4, we carry out a number of robustness checks.

5.1. Base parameter setting and functioning of the model

Our base parameter setting, reported in Table 1, closely follows Dieci and Westerhoff (2016). A time
period is equivalent to one quarter of a year. The real parameters, such as the base (target) interest rate
and the depreciation rate, are grounded on empirical observations. The remaining model parameters,
in particular those that include agents’ expectation formation, are set such that the model dynamics
reflects a number of basic characteristics of real housing markets. In particular, we will see that our
model is able to produce boom-bust cycles with short-run momentum, long-run mean reversion and
excess volatility, crucial features of actual housing market dynamics (Glaeser and Nathanson 2015,
Piazzesi and Schneider 2016). In some of our simulations, a small amount of exogenous noise is added

to the house price equation.!®

The calibrated model parameters imply that the FSS is given by P* = E[P] = U* = 100 and
H* =1000. Since the rent level at the FSS amounts to R* = 2, it follows that the (annual) price-rent
ratio is

% = 12.5. Furthermore, the steady-state level of investors’ variance beliefs and the interest

Future work should try to estimate the parameters of our model. The work by Kouwenberg and Zwinkels (2014,
2015), Hommes and in’t Veld (2017), Chia et al. (2017), Bolt et al. (2019), Schmitt (2020) and ter Ellen et al. (2020)
may be useful in this respect. However, some parameters may also be identified empirically. For instance, Goldbaum and
Mizrach (2008) and Goldbaum and Zwinkels (2014) exploit survey studies to characterize investors’ heuristic switching
behavior. Experimental work, as done by Anufriev and Tuinstra (2016) and Anufriev et al. (2018), may also be helpful
in this respect.
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Table 1: Parameter setting used in the simulations (quarterly data)

a =62 scaling parameter rental market
8 =0.06 sensitivity of rental market

=005 | sensitivity of home building | supply side of housing market -
6 =0.005 depreciation rate

Trg=0.005 | 1 base (target) interest rate | ~ central bank
p=0.1 reaction parameter of central bank

x=015 | extrapolative parameter | price expectations
¢ =0.125 regressive parameter
n =0.01 switching intensity

SA=0.00025 | risk aversion | risk aversion and
Q=4 base fundamental risk variance beliefs
k =0.25 sensitivity to speculative risk
v=20.5 memory parameter variance
w=20.5 memory parameter mean

"o0=2 |  standard deviation of noise | exogenous shocks

rate is V*[P*] = 4 and r* = 0.005, respectively. As in Dieci and Westerhoff (2016), the level of
exogenous noise (if switched on) corresponds to investors’ constant fundamental variance perception,
ie. Q =02 = 4. At the FSS, all agents form extrapolative expectations, i.e. N¥* = 1. Note that
the Neimark-Sacker condition is violated while the Flip and the Pitchfork conditions hold. Hence, the
fundamental steady state is unique but unstable.

To start, Figure 2 shows the functioning of a restricted version of our model. In the depicted
simulation run, the parameter of agents’ sensitivity to speculative risk x and the central bank’s reaction
parameter p are set to zero, i.e. investors’ variance beliefs are constant and r; = rg. A small amount
of exogenous noise is added to the dynamics (¢ = 2). Note that this setup is close to that of Dieci and
Westerhoff (2016), who show that their model can produce reasonable housing market dynamics with
lasting periods of overbuilding and overvaluation. The 200 observations represent a time span of 50
years. The panels show, from top left to bottom right, the evolution of house prices, the housing stock,
the market share of regressive expectations, the rent level, investors’ variance beliefs, and the interest
rate, respectively. The gray lines shown in the panels depict the fundamental values. For comparability,
we also use this design for Figures 3-5. Obviously, investors’ extrapolative behavior causes significant
housing market fluctuations. The functioning of the restricted model can be summarized as follows.
Initially (at ¢ = 1), the housing market is strongly overvalued, which means that the market share of
regressive expectations is relatively high. Since regressive expectations have a stabilizing effect, house
prices return towards their fundamental value. Moreover, high house prices induce substantial new
housing construction, which leads to an expansion of the housing stock and a depression of the rent
level. Once house prices drop below their fundamental value, investors with extrapolative expectations
become pessimistic. Since their market share is relatively high, prices drop even further until shortly
after period ¢t = 50. At this point, the situation starts to change. If house prices are very low, more and
more investors will switch to the regressive expectation rule and predict an increase in house prices.

Since the housing stock is still relatively small, the rent level recovers and the story repeats itself until
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the next crash occurs.
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Figure 2: The functioning of the model with constant variance beliefs and a constant interest rate. The panels show, from
top left to bottom right, the evolution of house prices, the housing stock, the market share of regressive expectations,
the rent level, investors’ variance beliefs, and the interest rate, respectively. Base parameter setting, except that k = 0

and p = 0.
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Figure 3: The functioning of the model with endogenous variance beliefs and a constant interest rate. The panels show,
from top left to bottom right, the evolution of house prices, the housing stock, the market share of regressive expectations,
the rent level, investors’ variance beliefs, and the interest rate, respectively. Base parameter setting, except that p = 0.



To investigate how endogenous variance beliefs change the dynamics of the housing market model,
we now set the parameter of agents’ sensitivity to speculative risk to k = 0.25 instead of kK = 0. The
dynamics of the model with endogenous variance beliefs and constant interest rates (i.e. p = 0) is
illustrated in Figure 3. As can be seen from the bottom left panel, investors’ variance beliefs fluctuate
slightly above the fundamental value V*[P*| = 4, except around period t = 65, where variance beliefs
increase to over V; = 20. According to equations (13) and (19), a rapid drop in house prices leads to
an increase in V,°, and thus an increase in variance beliefs V;. In fact, this is exactly what we observe.
Around period t = 65, house prices fall sharply due to the high level of the housing stock and the
low rent level, causing a rapid increase in investors’ variance beliefs. Put differently, the sharp drop
in house prices makes the housing market appear more risky. Investors then retreat, amplifying the
crash, and house prices drop below P; = 75. This gives the model a slightly asymmetric nature, i.e
the level of the housing stock decreases and the rent level increases. As house prices rise, investors’
uncertainty recedes and their housing demand increases, which further strengthens the upward trend.
Glaeser and Nathanson (2015) remark that, while real housing markets are excessively volatile, house
prices do not display a constant level of volatility. Instead, house prices experience brief moments of
extreme variance that interrupt longer periods of lower variance. Note that our model with endogenous

variance beliefs can replicate this empirical property.
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Figure 4: The functioning of the model with endogenous variance beliefs and a constant, yet high interest rate. The
panels show, from top left to bottom right, the evolution of house prices, the housing stock, the market share of regressive
expectations, the rent level, investors’ variance beliefs, and the interest rate, respectively. Base parameter setting, except
that ro = 0.04 and p = 0.

In Figure 4, we examine the dynamics of the housing market with endogenous variance beliefs

and with a constant, yet high interest rate. As can be seen, an increase in the base (target) interest
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rate has a weakly stabilizing effect on the housing market, since both house prices and the housing
stock, as well as the rent level, fluctuate slightly closer around their fundamental values. To be able to
visualize these weak effects, here we set the base (target) interest rate to rg = 0.04, i.e. we increase the
annual interest rate from 2% (Figure 3) to 16% (Figure 4). In line with Himmelberg et al. (2005), the
fundamental values of house prices and the housing stock decrease to P* = 94.66 and H* = 946.57,
respectively, and the fundamental value of the rent level increases to R* = 5.21 (the scaling of H, R
and r has been adjusted accordingly). Since a higher interest rate increases the opportunity cost of
buying a house, housing demand becomes depressed, pushing house prices down. As a result, housing
construction and thus the housing stock decrease, resulting in higher rent levels. While the higher
interest rate may slightly stabilize the dynamics of the housing market, decreased house prices and
housing stock may result in undesirable consequences that may not be justified by marginally more

stable markets.
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Figure 5: The functioning of the model with endogenous variance beliefs and endogenous interest rates. The panels
show, from top left to bottom right, the evolution of house prices, the housing stock, the market share of regressive
expectations, the rent level, investors’ variance beliefs, and the interest rate, respectively. Base parameter setting.

Finally, we investigate the complete model with endogenous variance beliefs and interest rates.
Figure 5 reveals that the dynamic part of the interest rate rule manages to stabilize housing markets.
On average, we observe a decrease in house price distortion, i.e. a decrease in the average distance
between house prices and the fundamental value, and, hence, a more efficient housing market. Since
house prices fluctuate significantly closer around their fundamental value, no strong bubbles or crashes
occur. The same can be observed for the housing stock and the rent level, both of which move closer

to their fundamental values. A further stabilizing effect of the interest rate rule is that investors’
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variance beliefs are less extreme. This can be explained as follows. In boom periods, i.e. if P, > P*,
the interest rate is relatively high, leading to a decline in housing demand. This causes house prices
to fall. But since the drop in house prices is less extreme, investors’ variance beliefs, and thus their
demand, remain more balanced. Moreover, new housing construction, the housing supply and the rent
level also benefit from more stable house prices. This becomes apparent between periods t = 1 and
t = 50. In the other case, if P, < P*, the interest rate decreases, which can be observed between
periods t = 50 and ¢ = 100. As housing demand increases, so do house prices. Note that the interest
rate fluctuates mainly between 0 and 0.01, which seems to be reasonable. Furthermore, the stability
condition is still violated, i.e. the deterministic model still produces endogenous cycles, albeit with a
much lower amplitude.

For our further analysis, it is helpful to introduce a policy measure. Let us define the housing

market’s distortion by

T *
distortion = 1—30 ;(Ptpf)?, (24)
where T indicates the sample size, set to 7" = 50000 in our experiments. For our base parameter
setting, except that p = 0, the housing market’s distortion is given by distortion = 1.19. If the central
bank uses the leaning-against-the-wind interest rate rule with p = 0.1, however, the distortion reduces
to distortion = 0.44. Note that these statistics correspond to the dynamics depicted in Figures 3 and
5. Should the central bank decide to become more aggressive, e.g. by using p = 0.5, the housing

market’s mispricing decreases further to a value of distortion = 0.19.16

5.2. Endogenous interest rate adjustments

In this section, we discuss in more detail how the endogenous component of the central bank’s interest

rate rule may affect the dynamics of the housing market.

5.2.1. The Neimark-Sacker bifurcation scenario

In Figure 6, we use bifurcation diagrams to relate the house price to the extrapolative parameter y in
the Neimark-Sacker scenario. The parameter setting is as in Table 1, except that Kk =0, p=0, 0 =0
in the top left panel, p = 0, ¢ = 0 in the top right panel, K = 0, 0 = 0 in the center left panel, 0 = 0 in
the center right panel and x = 0 in the bottom left panel. The top panels of Figure 6 reveal that the
stronger investors’ extrapolation is, the larger the amplitude of house price fluctuations. Furthermore,
the bifurcation route evolves from a stable steady state to quasi-periodic dynamics as y increases from
0 to 0.4. To be more precise, for small values of x, the model’s fundamental steady state is stable, but

becomes unstable when the extrapolative parameter exceeds y = 0.015, as predicted by our analytical

160f course, one may also consider different policy measures. For instance, the central bank may already be satisfied
with the performance of the housing market if the house price remains near its fundamental value. To get a better idea
about the significance of bubbles and crashes in the housing market, we remark that the housing market stays outside a
price interval of +10% around the fundamental house price about 39% of the time if the central bank keeps the interest
rate constant (p = 0). This statistic decreases to a value of 11% if the central bank dynamically adjusts the interest
rate, using p = 0.1 (respectively to 4% for p = 0.5). See Agnello et al. (2015, 2020) for alternative duration measures.
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Figure 6: The destabilizing effect of extrapolative expectations in the Neimark-Sacker bifurcation scenario. The panels
show bifurcation diagrams for the house price versus extrapolative parameter x. Base parameter setting, except that
k=0, p=0,0=0 (top left), p =0, 0 = 0 (top right), kK = 0, 0 = 0 (center left), o = 0 (center right), x = 0 (bottom
left). Moreover, parameter x is varied between 0 and 0.4.

results. To explore the effect of endogenous variance beliefs, we repeat our simulations from the top left
panel in the top right panel, but now with the base setting x = 0.25. The corresponding bifurcation
route shows that the amplitude of house price swings is biased downwards for high values of parameter
X, an outcome which is due to the crashes induced by variance beliefs.

The stabilizing impact of an endogenous interest rate on house price swings is shown in the two
center panels. As can be seen, the amplitude of house price fluctuations can be significantly reduced
in both cases, with constant and endogenous variance beliefs. Moreover, the housing market remains
stable for larger values of x, namely up to about xy = 0.15. Again, this observation is in line with
our analytical results. Thus the central bank’s dynamic interest rate rule has a significant stabilizing
effect on the housing market’s dynamics by reducing instability, which arises from the Neimark-Sacker
bifurcation. The two bottom panels repeat our simulations in a noisy environment. As it turns out,

the distorting effect of endogenous variance beliefs is robust with respect to additional exogenous noise
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— at least with a view to the amplitude of price fluctuations.

Figure 7 illustrates how the dynamics changes with respect to the central bank’s reaction parameter
p. The extrapolative parameter in the top left panel is set to x = 0.4, i.e. investors extrapolate house
prices quite strongly. Note that if the central bank reacts more aggressively to mispricing in the housing
market, the amplitude of house price fluctuations decreases. Moreover, a convergence to the steady
state sets in when p exceeds 0.385. In the center left panel, we repeat these simulations for the base
setting, and again observe a stabilizing effect: the steady state is reached for a lower value of the central
bank’s reaction parameter, namely for p = 0.13. In addition, house price fluctuations are significantly
more dampened for increasing values of p. According to the top right and the center right panel, the
stabilizing effect of an increasing parameter p holds with respect to exogenous noise, which, in turn,
is further supported by the two bottom panels in which we compute the housing market’s distortion.
Note that both the distortion for x = 0.4 (bottom left panel) and the distortion for x = 0.15 (bottom

right panel) decrease strongly as parameter p increases from 0 to 0.5.
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Figure 7: The stabilizing effect of the endogenous part of the interest rate rule in the Neimark-Sacker bifurcation scenario.
The first four panels show bifurcation diagrams for the house price versus the central bank’s reaction parameter p. The
bottom two panels show the distortion of the housing market versus the central bank’s reaction parameter p. Base
parameter setting, except that x = 0.4, o = 0 (top left), x = 0.4 (top right), o = 0 (center left), x = 0.4 (bottom left).
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5.2.2. The Pitchfork bifurcation scenario

In Figure 8, we analyze the Pitchfork bifurcation scenario. The panels show how extrapolative expec-
tations (top panels) and the endogenous part of the interest rate rule (center and bottom panels) affect
the dynamics of our model. Recall that the Pitchfork bifurcation scenario occurs if the housing supply
is relatively sluggish. It becomes apparent from the top left panel (base parameter setting, except that
o =0, 8=0.0005 and p = 0) that if investors use the extrapolative expectation rule too strongly, the
steady state becomes unstable and two locally stable nonfundamental steady states emerge, surround-
ing the unstable fundamental steady state. The housing market then remains permanently overvalued
(red line) or undervalued (blue line). Furthermore, mispricing in the housing market increases with
the extrapolative parameter x. The bifurcation route in the top right panel (base parameter setting,
except that o = 0 and S = 0.0005) shows that an endogenous interest rate causes the bifurcation to
occur for a higher value of the extrapolative parameter, namely for y = 0.128 instead of x = 0.028,
as can be verified analytically. A comparison of the two top panels also reveals that mispricing in the
housing market is — for a given value of y — lower if the central bank dynamically adjusts the interest
rate.

To illustrate these results in more detail, we present three bifurcation diagrams in which we vary
the central bank’s reaction parameter p between 0 and 0.5. In the center left panel (base parameter
setting, except that ¢ = 0, 8 = 0.0005 and x = 0.4), investors strongly extrapolate prices, and the
corresponding bifurcation route undoubtedly reveals that mispricing in the housing market decreases
with p. As depicted in the center right panel (base parameter setting, except that o = 1, 8 = 0.0005 and
x = 0.4), this result is robust with respect to noise, but we observe attractor switching (for more details,
see Figure 9). This attractor switching occurs more frequently with higher noise, which is illustrated
in the bottom left panel (base parameter setting, except that ¢ = 5, 5 = 0.0005 and y = 0.4). Here
again, the amplitude of house price fluctuations decreases as p increases. Further evidence of this result
is provided by the bottom right panel (base parameter setting, except that ¢ = 5, 8 = 0.0005 and
x = 0.4), which reveals that distortion decreases with p. Thus, the central bank’s dynamic interest
rate setting is an effective instrument for preventing the appearance of nonfundamental steady states.

In Figure 9, we analyze coexisting attractors and basins of attraction in the Pitchfork bifurcation
scenario in more detail. The top left panel (base parameter setting, except that 8 = 0.0005, o = 1
and p = 0) shows a time series for constant interest rates. As can be seen, house price P; fluctuates
around the lower nonfundamental steady state (blue line), and hence the average price is below P*
(gray line). An increase in p from 0 to 0.13 brings the nonfundamental steady states closer towards
P*, as depicted in the bottom left panel. As a result, we may observe attractor switching and thus a
price correction towards the fundamental price P*, which is in accordance with the center right panel
of Figure 8. The corresponding change in the basins of attraction is visualized in the right panels of
Figure 9. In fact, compared to the top right panel (with p = 0), the basin of the upper nonfundamental
steady state (red area) becomes smaller and the basin of the lower nonfundamental steady state (blue

area) becomes larger due to the introduction of an endogenous interest rate. In the bottom right panel,
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Figure 8: The destabilizing (stabilizing) effect of extrapolative expectations versus the endogenous part of the interest
rate rule. The top left panel shows a bifurcation diagram for the house price versus the extrapolative parameter x for
the base parameter setting, except that o = 0, 8 = 0.0005 and p = 0. The top right panel shows the same, except that
o =0 and 8 = 0.0005. The center left panel shows a bifurcation diagram for the house price versus the endogenous part
of the interest rate p for the base parameter setting, except that o = 0, 5 = 0.0005 and x = 0.4. The center right panel
shows the same, except that o = 1, 8 = 0.0005 and x = 0.4. The bottom left panel shows the same, except that o = 5,
B =0.0005 and x = 0.4. The bottom right panel shows the corresponding distortion.

however, nonfundamental steady states (red and blue dot) are closer to the borders of their basins of
attraction, which explains attractor switching (a nontrivial effect of p).

Coexisting attractors may have interesting policy implications. Suppose that the price has con-
verged towards the model’s lower nonfundamental steady state in a constant interest rate environment.
As long as exogenous shocks are not too large, the system will not leave the steady state’s basin of
attraction (blue area), and endogenous forces will drive the price back towards its equilibrium value.
While endogenous interest rates cause the blue area to increase, nonfundamental steady states move
closer to the boundary of their basins of attraction. Policymakers may thus have the opportunity
to drive back nonfundamental steady states towards P* by increasing p, reducing mispricing in the

housing market.
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Figure 9: Coexisting attractors and basins of attraction in the Pitchfork bifurcation scenario. The top left panel shows
a simulation run of house prices for the base parameter setting, except that f = 0.0005, 0 = 1 and p = 0. The
nonfundamental and fundamental steady states are given in red, blue and gray. The bottom left panel shows the
same for p = 0.13. The right panels visualize the corresponding basins of attraction for initial conditions of P and H,
abstracting from exogenous noise.

5.2.8. The Flip bifurcation scenario

Figure 10 illustrates how extrapolative expectations (top panels) and an endogenous interest rate
(center and bottom panels) affect the dynamics of our model in the Flip bifurcation scenario. The left
(right) panels show the dynamics of house prices (interest rates). As can be seen in the top panels
(parameter setting, except that o = 0 and p = 2.5), the Flip bifurcation value is x = 0.4915, hence
this extrapolative strength is needed to ensure housing market stability. For xy < 0.4915, the steady
state is unstable and the system tends to explode until interest rates hit the zero lower bound at which
the map becomes piecewise defined (Avrutin et al. 2019). The destabilizing impact of endogenous
interest rates is depicted in the second line of panels (base parameter setting, except that o = 0 and
x = 0.01). If the central bank reacts very aggressively to mispricing in the housing market (from a
value of xy = 0.01), the steady state becomes unstable, and chaotic dynamics emerges. This finding also
holds in a noisy environment, as is witnessed in the bottom left panel (base parameter setting, except
that o = 0.2 and x = 0.01). The corresponding distortion (bottom right panel) further supports our

findings. Clearly, the distortion increases with p.

5.3. Exogenous interest rate adjustments

Finally, we investigate the extent to which the autonomous part of the interest rate rule is able to
tame housing markets in the Neimark-Sacker bifurcation scenario. The left (right) panels of Figure
11 rely on our base parameter setting, except that x = 0.014 and ¢ = 0 (¢ = 0). In the top left

(center left) panel of Figure 11, we increase (decrease) the base (target) interest rate rq in period 100
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Figure 10: The stabilizing (destabilizing) effect of extrapolative expectation (endogenous interest rates) in the Flip
bifurcation scenario. The first line of the panels shows bifurcation diagrams for house prices and the interest rate versus
parameter x for the base parameter setting, except that ¢ = 0 and p = 2.5. The second line of the panels shows
bifurcation diagrams for house prices and the interest rate versus parameter p for the base parameter setting, except
that 0 = 0 and x = 0.01. The third line of the panels shows bifurcation diagrams for house prices and distortion versus
parameter p, except that ¢ = 0.2 and x = 0.01.

from 0.005 to 0.010 (0.0005). Before ¢ = 100, the house price is equal to the fundamental steady
state. The increase in 7y in ¢ = 100 makes the system more stable, but creates an adjustment process
with strong house price fluctuations towards a lower steady-state house price level. While our main
focus is on endogenous housing dynamics, the relevance of temporary housing dynamics should not be
underestimated. For instance, Glaeser and Nathanson (2017) discuss in detail how exogenous shocks
may cause temporary fluctuations in a housing market model in which agents form extrapolative
expectations. Moreover, Taylor (2009) argues that the Fed’s strong interest rate adjustments between
2001 and 2006 have greatly contributed to the instability of the U.S. housing market. Note that a
decrease in 7y can create permanent house price oscillations around an increased steady-state price
level. We may observe similar effects of the increase (decrease) in the interest rate in period 500

from 0.005 to 0.05 (0) in the top right (center right) panel. While an increase in 7 leads to smaller
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Figure 11: Some effects of the autonomous part of the interest rate rule in the Neimark-Sacker bifurcation scenario. The
left panels rely on the base parameter setting, except that x = 0.014 and o = 0. Moreover, in the top left (center left)
panel, the interest rate increases (decreases) in period 100 from 0.005 to 0.010 (to 0.0005). The right panels rely on the
base parameter setting, except that o = 0. In addition, in the top right (center right) panel, the interest rate increases
(decreases) in period 100 from 0.005 to 0.050 (to 0).

amplitudes of house price fluctuations around a lower steady-state level, a decrease in ry enlarges the
amplitude of house price oscillations. Further evidence of these results is provided in the bottom panels,
which show the model dynamics for increasing ro. It can be seen that, with increasing base (target)
interest rates, the amplitude of house price fluctuations becomes smaller up to the bifurcation value
ro = 0.00393 (bottom left panel) and 7o = 0.13925 (bottom right panel), respectively. At this point,
the quasi-periodic dynamics segues into a stable fundamental steady state. However, the fundamental
house price P* decreases with parameter rg, which may have further unfavorable effects. All in all,
the central bank’s ability to reduce the dynamics on housing markets by increasing the base (target)

interest rate, weakening the demand pressure on house prices, is rather limited.

5.4. Robustness checks

In this section, we carry out a number of robustness checks.
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5.4.1. Base (target) interest rate

So far, we have set the annual base (target) interest rate to 2 percent. As revealed by Figure 5,
depicting our base scenario, the annual interest rate then tends to fluctuate between 0 and 4 percent.
Since the central bank may opt for a higher or a lower annual base (target) interest rate during specific
macroeconomic periods, the question arises as to the extent to which different levels of the base (target)
interest rate may affect the effectiveness of the leaning-against-the-wind interest rate rule. In the top
left (right) panel of Figure 12, the annual base (target) interest rate is assumed to be 4 percent (1
percent). The black line reveals how the distortion of the housing market reacts to an increase in the
central bank’s reaction parameter p (the gray line recalls the results for our base parameter setting).
The depicted simulations underline the robustness of our results, at least from a qualitative perspective.
From a quantitative perspective, however, we see that the effectiveness of the central bank’s interest
rate rule decreases somewhat when the base (target) interest rate is set to a lower value. The main
reason for this outcome is that the central bank’s interest rate adjustments hit the zero lower bound
more frequently when the base (target) interest rate is set to a lower value, losing part of its stabilizing
potential in the process. Put differently, the interest rate rule looks more favorable when the base
(target) interest rate is set to a higher value, simply because the zero lower bound then affects the

central bank’s interest rate adjustments less frequently.

5.4.2. The central bank’s perception of the fundamental house price

The leaning-against-the-wind interest rate policy may be difficult to implement in reality because the
central bank does not generally know the true fundamental house price. As a further robustness check,
we therefore assume that the central bank uses a moving average of house prices as a proxy for the

fundamental house price, that is

P =mP; | +(1—m)P, (25)

where 0 < m < 1 is a memory parameter. The center left (right) panel of Figure 12 shows how the
distortion of the housing market reacts to an increase in the central bank’s reaction parameter p for
our base parameter setting, except that m = 0.95 (m = 0.9). As can be seen, our results are relatively
robust, at least as long as the central bank’s memory parameter is sufficiently high. Interestingly,
Hennequin and Hommes (2019) report experimental evidence that is consistent with our finding. See
also the related study by Bao and Zong (2019). We also simulated scenarios (not depicted) in which
the central bank misperceives the fundamental house price, say by overestimating or underestimating
its value by 5 or 10 percent. As long as its perception error is not too large, the central bank can

stabilize the housing market by following the leaning-against-the-wind interest rate policy.

5.4.3. Perception of the fundamental house price by all market participants
Within our model, investors switch between extrapolative and regressive expectations, subject to the
market’s actual mispricing. In doing so, we assume that investors are able to compute the true

fundamental house price. As a final robustness check, we now assume that all market participants,
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Figure 12: Robustness checks. The top left (right) panel shows the distortion versus parameter p for our base parameter
setting, except that 7o = 0.01 (ro = 0.0025). The center left (right) panel shows the distortion versus parameter p for
our base parameter setting, except that the central bank uses a moving average of the house price as a proxy for the
fundamental house price with m = 0.95 (m = 0.9). The bottom left (right) panel shows the same, except that all market
participants use a moving average of the house price as a proxy for the fundamental house price. The gray lines report
the distortion for the base parameter setting.

i.e. investors and the central bank, use (25) to compute the fundamental house price.!” Note that this
affects expectation rules (14) and (15), the switching device (16) and the interest rate policy (22). The
bottom panels of Figure 12 depict our results for m = 0.95 (left) and m = 0.9 (right). Once again,
our results appear to be quite robust: while the magnitude of housing bubbles tends to increase when
market participants use a moving average of the house price as a proxy for the fundamental house
price, the central bank is still able to tame the dynamics. We would like to stress that we find these
results quite remarkable. Although market participants are unaware of the true fundamental house
price, the dynamics does not get out of bounds. The reason why the house price still fluctuates around

its true fundamental value has to do with the real side of the housing market. If investors’ optimistic

7Since it is difficult to determine the fundamental house price in reality, we remark that such a setup may be more
suitable when it comes to estimating our model. See also ter Ellen et al. (2020) in this respect.
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house price expectations drive the housing market upwards, new housing constructions increase the
housing stock, which, in turn, depresses the rent level and makes the housing market less attractive to
investors. This mechanism anchors the dynamics of the housing market and keeps investors’ perception
of the fundamental house price bounded, provided that they do not place too much weight on current

house prices.

6. Conclusions

Shiller (2015), Glaeser (2013) and Piazzesi and Schneider (2016) demonstrate that, while the U.S.
housing market bubble between 1998 and 2012 may seem extreme, it was hardly unique. In fact,
history is replete with dramatic housing market instabilities that have had dire economic consequences.
Unfortunately, the economics of housing market bubbles is still in its infancy. According to Glaeser
and Nathanson (2015), many important questions remain unresolved, e.g. why did the U.S. boom-bust
cycle occur, and what are its policy implications? The goal of our paper is to shed light on the intricate
relationship between house prices, expectations and interest rates, also keeping in mind the supply side
of the housing market.

For this reason, we generalize the behavioral stock-flow housing market model by Dieci and West-
erhoff (2016). Our analysis reveals that interactions between investors’ expectations, their variance
beliefs and the supply side of housing markets may give rise to substantial boom-bust dynamics. More-
over, we use our setup to explore whether the central bank is able to stabilize the housing market via
interest rates. Using a mix of analytical and numerical tools, we find that the central bank has only
a limited ability to tame housing markets by increasing the base (target) interest rate. Moreover,
any change in the base (target) interest rate causes at least temporary housing market fluctuations.
However, we are also able to show that a leaning-against-the-wind interest rate rule, which adjusts the
interest rate with a view to mispricing in the housing market, can significantly improve the stability
of housing markets. Within our model, and in line with empirical evidence (Case and Shiller 2003
and Case et al. 2012), housing market bubbles are driven by investors’ optimistic expectations, an
aspect that greatly destabilizes the demand for housing. An interest rate policy that counters these
fluctuations in demand may effectively stabilize housing markets.

A few final comments are in order. In this paper, we use a stylized, analytically tractable housing
market model to show that the central bank can stabilize the housing market if its interest rate setting
takes into account the development of the housing market. Since official central bank mandates are
usually geared to control consumer price inflation, policymakers must consider and disentangle the
empirically blurry relationship between house prices and consumer prices. Without question, future
work should thus study this issue using more elaborate macroeconomic models that explicitly include a
housing market, such as the frameworks proposed by Erlingsson et al. (2014), Ozel et al. (2019) and de
Grauwe and Macchiarelli (2019). Moreover, these models may also be used to analyze the effectiveness

of macroprudential policies, e.g. of loan-to-income or loan-to-value measures. In this respect, we note
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that Geanakoplos et al. (2012) and Baptista et al. (2016) develop quite realistic agent-based models
of the housing market that allow them to investigate the complex effects of leverage and collateral.
To conclude, we hope that our paper fosters our understanding of the functioning of housing markets
and enables us to design better tools that reduce damage arising from bursting bubbles. More work is

undoubtedly needed in this important research direction.

Appendix A

In this appendix, we prove Proposition 1. A steady-state solution (P, H, VS,U) of the dynamical

system (23) necessarily satisfies the conditions

P +a— B+ MU+ 6V )VP — (B+NQ+£V))(1 - 0)H
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U=pU+(1-pP,

where E[P] denotes the price expectations at the steady state. Let us define the fundamental steady
state F'SS = (P*, H*, V5% U*) as a steady-state solution to (23) in which E;[P] = P and r; = ry, i.e.
P* = P. Therefore, expectations are realized at the steady state and the central bank does not change
its base (target) interest rate, since prices mirror their fundamental values. It follows that the price at

the fundamental steady state is given by
ad
T o+ 0)5+ (B+ Q)7
while H* = %P*, U* = P* and V°* = 0. However, the dynamical system (23) may also give rise to

*

further nonfundamental steady states (P, H, VS,U), such that F;[P] # P. While these steady states
cannot be expressed analytically, we will numerically encounter them in Section 5.

From the Jacobian of the fundamental steady state, i.e.
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we immediately see that two eigenvalues are given by z; = v and 2o = p. Since 0 < v, 4 < 1, we have
|z1,2] < 1. The two further eigenvalues are the ones of the 2-D block

1—p+x—v(B+AQ)  (6—1)(B+IQ)
Q _ 1+6+7r0 1+5+ro0

5 1-6

from which we obtain the characteristic polynomial P(z) = 22 — 2T7(Q) + Det(Q) with Tr(Q) =

Hﬁ’g—w +1—6 and Det(Q) = %. Necessary and sufficient conditions (Gandolfo
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2009, Medio and Lines 2001) for z3 4 to be smaller than one in modulus, which implies local asymptotic
stability of the fundamental steady state, are given by 1+7r(Q)+ Det(Q) > 0, 1-Tr(Q)+ Det(Q) > 0

and 1 — Det(Q) > 0. Rewriting these inequalities in terms of the parameters reveals
4+2rg—2p—=0(0 +10—p) —v(B+ Q)
> )
§—2
(B +2AQ)
)

X

X < +d+ 1o+ p,

and
26 + 719
-5

X <

Note that the violation of the first, second and third stability condition is a necessary condition for the
emergence of a Flip, Pitchfork and Neimark-Sacker bifurcation. Combined with numerical evidence

indicating that such bifurcations occur, they constitute strong evidence (Medio and Lines 2001).

Appendix B

In this appendix, we follow Chiarella et al. (2007, 2013) and express the investors’ speculative variance
component as

‘/tS == m‘/ts_l + m(l - m)(Pt - Ut—1)27

where

Ut = mUtfl + (1 — m)Pt

Note that 0 < m < 1 also represents a memory parameter. The higher m is, the higher the weight

given to past prices. Considering this alternative learning rule yields the following dynamical system
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S ,

V¥ =mVE +m(l —m)(P, — Up—1)?

Ut = mUtfl + (]. — m)Pt
where

P+ x(P—1 — P*) 4+ Po_in(P* — P,_1)? + ¢n(P* — P_q)?

Ey[Pry1] = . 3
1+n(P* = P1)

and

VilPra] = @+ V.

Straightforward computations reveal that the fundamental steady state is also given by FSS =

(P*,H*,V5* U*) = (P*,1P*,0,P"), where P* = m. The Jacobian can be written
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as
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revealing that two eigenvalues are given by 21/, = m. Since 0 < m < 1, the local stability of the

fundamental steady state depends only on the two eigenvalues of the remaining 2-D block

1—p+x—7(B+AQ)  (6—1)(B+AQ)
Q _ 14+6+7ro 140419

~y 1-6

Since it is the same 2-D block as in the other case, we have the same stability conditions for |z5 4| < 1.

Appendix C

In this appendix, we briefly sketch three consecutive model extensions. The first extension affects
investors’ housing demand. In our original model, each investor reconsiders his housing demand in
every period. In reality, however, only a (small) fraction of investors will do so. Inspired by the
asynchronous updating approach proposed by Hommes et al. (2005), let us define investors’ effective
housing demand by

Zy =0 —h)Z;_1 + hZ,, (26)

where h is the fraction of investors who adjust their housing demand, represented by (12), and 1 — h
is the fraction of investors who adhere to their previous choices. Of course, parameter h is bounded
between 0 and 1. From the market equilibrium condition 7 = H;, we then obtain the house price

equation B
Et[Pt+1] + Rt - %/\%[Pt—kl]
Pt =
1 + Tt + 5

+ €. (27)

Obviously, we recover our original model by setting h = 1. Moreover, the implications of (26) crucially
depend on investors’ risk aversion. If investors turn risk neutral, i.e. if A — 0, then the frequency
with which investors update their housing demand becomes irrelevant. The top left panel of Figure
13 shows a simulation run based on our standard parameter setting, except that the central bank
is inactive (p = 0) and that only 5 percent of investors update their housing demand in the current
period (h = 0.05). As can be seen, our first model extension yields dynamics that is comparable to that
generated by our original model. In fact, the mispricing of the housing market, at distortion = 1.16,
is quite similar to the mispricing observed in our original model (Figure 3, distortion = 1.19). The
top right panel of Figure 13 depicts the dynamics for A = 0.05 and p = 0.1. The central bank is able
to stabilize the housing market accordingly by dynamically adjusting the interest rate. To be precise,
mispricing decreases to distortion = 0.55, a slightly higher value than observed for our original model
(Figure 5, distortion = 0.44).

In our original model, housing construction depends on the last observable price, a setup that is
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consistent with a one-period production lag and naive expectations. To allow for larger production

lags, let us express housing construction by
1

Iy :7;;3—17 (28)
where parameter 7 > 1 indicates home builders’ maximal production lag. The center left panel of Figure
13 presents a simulation run based on our standard parameter setting, except that = 0.05, p = 0 and
7 =12, i.e. housing construction depends on the last 12 observable house prices, representing a time
span of three years. Simulated house prices still display bubbles and crashes. Since the housing stock
now adjusts with a larger delay, mispricing increases to distortion = 1.50. However, the center right
panel of Figure 13 reveals that the central bank can still stabilize the housing market by dynamically
adjusting the interest rate. For h = 0.05, p = 0.1 and 7 = 12, mispricing reduces to distortion = 0.68.

As a final model extension, let us assume that housing construction depends negatively on the

interest rate. We thus rewrite (28) by
1 1O
I = M- Z; P — V22 Z;Tt—i + 73, (29)
1= 1=

where 1 = 7 > 0, 72 > 0 and 3 = 79719 > 0. The inclusion of 3 simply ensures that the model’s
steady-state values remain as they are. The bottom left panel of Figure 13 shows the dynamics for
h =0.05, 7 = 12, 79 = 50 and p = 0. As long as the central bank keeps the interest rate constant,
this model extension will not affect the dynamics (this panel is identical to the center left panel). The
bottom right panel of Figure 13 reveals that the central bank is able to tame housing market dynamics
if we consider all model extensions. For h = 0.05, 7 = 12, 75 = 50 and p = 0.1, distortion decreases to
distortion = 0.80. The decline in effectiveness of the leaning-against-the-wind interest rate rule may
be explained as follows. The central bank increases (decreases) the interest rate when the house price
is above (below) its fundamental value to reduce (increase) investors’ housing demand. However, the
resulting stabilizing effect is partially offset by the fact that there is less (more) housing construction

in boom (bust) periods, impeding the stabilizing adjustment of the housing stock.
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1. Introduction

Glaeser (2013), Shiller (2015) and Piazessi and Schneider (2016) stress the fact that history is replete
with dramatic housing market bubbles that had serious effects on the real economy. Unfortunately,
the reasons for such market turbulence are still not well understood. Against this backdrop, the goal
of our paper is twofold. First, we propose a novel model to enhance our understanding of the complex
boom-and-bust, behavior of housing markets. Second, we use our model to explore the extent to which
policy makers can influence such dynamics by adjusting housing market-related taxes.

Our model reveals that endogenous housing market fluctuations may emerge through the interaction
of real and behavioral forces. The real forces acting inside our model originate from a standard user
cost housing market setup in the spirit of Poterba (1984, 1991), involving a rental and a housing capital
market; these forces tie basic relations between house prices, the housing stock and the rent level. The
model’s behavioral forces are due to the expectation formation behavior of housing market investors
who display a boundedly rational learning behavior, as put forward by Brock and Hommes (1997, 1998).
Accordingly, investors choose between extrapolative and regressive expectation rules to forecast the
future evolution of housing markets, based on the rules’ relative past profitability — an assumption that
is also in line with empirical observations (Case and Shiller 2003, Hommes 2011, Case et al. 2013, Bao
and Hommes 2019). With a view to the omnipresent wilderness-of-bounded-rationality critique, Glaeser
(2013) and Hommes (2013) argue that a simple and plausible rule-governed expectation formation
scheme describes reality better than a framework with fully rational expectations. Obviously, we
follow their line of reasoning in our paper.

Despite the behavioral nature of our model, it possesses a unique (fundamental) steady state, given
by the discounted value of future risk-adjusted rents or, in the jargon of the housing market literature,
by the relation between risk-adjusted rents and the user cost of housing. Moreover, we analytically
derive the conditions under which the housing market’s steady state becomes unstable. As it turns
out, the steady state’s stability domain depends on the housing market’s real and behavioral side.
For instance, higher interest rates are beneficial for market stability, while the housing market loses
its stability and starts to display significant oscillatory fluctuations if investors rely heavily on the
extrapolative expectation rule. Policy makers may therefore seek to stabilize the housing market by
imposing housing market-related taxes. Using a mix of analytical and numerical tools, our model allows
policy makers to clarify how such taxes may affect the housing market’s steady state, its stability and
out-of-equilibrium behavior.

Our paper is organized as follows. After reviewing some related literature in Section 2, we present
our model in Section 3. In Section 4, we study its steady state, stability and out-of-equilibrium
behavior, and explore how different tax regimes affect the main properties of our model in Section 5.

In Section 6, we conclude our paper.



2. Related literature

In reality, housing market participants face a number of different tax policies. For instance, Barrios
et al. (2019), Fatica and Prammer (2018) and Lunde and Whitehead (2016) survey the main features
of housing taxation in European countries, covering property (transfer) taxes incurred when buying a
house, recurrent property taxes owed by households, (imputed) rent taxation and housing capital gains
taxes. Almost all countries in Europe impose a transaction tax on transfer of a primary residential
property, with tax rates ranging from one to ten percent. With very few exceptions, European countries
also impose a recurrent property tax on owner occupied houses. As pointed out by Barrios et al. (2019),
recurrent property taxes represent by large the biggest tax component of the user cost of housing in
most European countries. Housing capital gains taxes, in contrast, are less popular in Europe, though
Tse and Webb (1999), Shan (2011) and Agarwal et al. (2020) report that this tax is more popular in
other regions of the world, e.g. in the United States or in China. For further international evidence
on real-world housing taxation, see, e.g., Martin and Hanson (2016) and Norregaard (2013).

To embed our contribution into the theoretical literature, let us briefly discuss some related research
in which the effects of expectations and taxes on housing market dynamics were studied. First of all,
it is important to note that Poterba (1984) developed his user cost model to explore the extent to
which the U.S. housing market boom in the 1970s can be explained by changes in housing market-
related taxes. In particular, he demonstrates that a decrease in property taxes led to a reduction of the
user cost of housing, which, in turn, was at least partially responsible for the substantial house price
increase at that time. Poterba (1984) assumes that housing market investors have perfect foresight,
implying that his model exhibits the saddle-path stability property. If the steady state of his model is
disturbed, there is a unique path (the so-called "stable arm") along which the system will approach its
new steady state. The adjustment path can be summarized as follows. At the time of the shock, the
house price overshoots its new steady state since the housing stock is initially fixed. As the housing
stock also begins to adjust towards its new steady-state value, the house price monotonically converges
towards its new steady state.

While Poterba (1991) underscores the fact that changing tax policies were an important contribu-
tory factor in the house price rise in the late 1970s, he also admits that his user cost argument is less
able to explain the consequent housing market decline. To better understand the boom-bust behavior
of housing markets, Poterba (1991) recommends to take into account the possibility of housing market
investors extrapolating past price changes. Weil (1991) and Shiller (1991) strongly agree with this
view. For instance, Weil (1991, p. 188) states that "economists are going to have to bite the bullet and
look at models that allow for not-fully rational expectations”, advocating, amongst others, the mod-
eling of extrapolative expectations. Moreover, Shiller (1991, p. 189) questions both the efficiency of
housing markets and investors’ forecasting ability, and ultimately stresses that there "appears to be a
purely speculative component of real estate prices”. In the end, Poterba (1992) concludes that his user

cost framework allows a clear-cut analysis of how tax reforms affect the steady-state levels of house



prices, the rent level and the stock of housing, but that future work needs to study the dynamics and
adjustment processes of (inefficient) housing markets in more detail.!

Despite such prominent encouragements, an empirically motivated modeling of market participants’
house price expectations within a dynamic context is only slowly taking place in the economic profes-
sion. A rare and early exception is Wheaton (1999), who demonstrates that Poterba’s (1984, 1991) user
cost framework can produce more realistic oscillatory house price dynamics if housing market investors
follow a simple rule-of-thumb behavior to predict house prices. Dieci and Westerhoff (2012) present a
stylized model of a speculative housing market in which investors switch between extrapolative and re-
gressive expectation rules, subject to the market’s mispricing, thereby generating complex house price
fluctuations. Dieci and Westerhoff (2013) extend the latter analysis by considering, amongst others,
that investors may follow nonlinear expectation rules. Diks and Wang (2016) exploit elements from
catastrophe theory to study a housing market model with extrapolators and mean reversion believers.
Based on U.S. house price data, Kouwenberg and Zwinkels (2014, 2015) find empirical support for
models in which investors switch between heterogeneous expectation rules according to their forecast-
ing ability. Interestingly, the parameter estimates for their nonlinear housing market models suggest
that housing markets may indeed be characterized by cyclical dynamics. Similar conclusions can be
drawn from the work by Eichholtz et al. (2015) who utilize 350 years of house prices along the Heren-
gracht in Amsterdam. However, the estimation results offered by Bolt et al. (2019) and ter Ellen et al.
(2020) suggest that housing markets may be characterized by multiple nonfundamental steady states.
Technically speaking, the boom-bust nature of housing markets may therefore also be due to attractor
switching phenomena. Relatedly, Bao and Hommes (2019) design an experimental housing market to
study how the interplay of real and speculative forces affects the formation of bubbles and crashes.
Importantly, all these empirical works indicate that investors’ adherence to extrapolative and regressive
expectation rules amplifies housing markets’ boom-bust behavior. For simplicity, these models abstain
from developing an endogenous mechanism for the formation of the rent level, a crucial ingredient of
our model.

Another line of research is motivated by Shiller’s (2015) observation that mass psychology and
investor sentiment are elements that play an important role in the determination of house prices.
Burnside et al. (2016) explain the irregular boom-bust behavior of housing markets by a model in
which housing market investors’ projection of the future (fundamental) state of the housing market is
either optimistic or pessimistic; they show that irregular boom-bust house price dynamics may occur
due to waves of optimism and pessimism. Piazzesi and Schneider (2009) show that even a small fraction
of optimistic housing market investors may be enough to trigger a housing market bubble. Glaeser
and Nathanson (2017) propose a powerful framework in which housing market investors are boundedly

rational, overconfident and extrapolate past house price changes into the future. Interestingly, their

IFurther tax-related housing market papers with a similar spirit include Poterba and Sinai (2008) and Himmelberg
et al. (2005). Poterba’s (1984, 1991) model has been extended in many more directions. See Glaeser and Nathanson
(2015) for a recent appraisal.



calibrated model matches key stylized facts of housing markets quite well, thereby underscoring the
explanatory power of models that deviate from the assumption of full rationality.

However, our work is related more closely to the papers by Dieci and Westerhoff (2016) and Schmitt
and Westerhoff (2019). Dieci and Westerhoff (2016) present a discrete-time generalization of Poterba’s
(1984, 1991) user cost model in which housing market investors can choose between different expecta-
tion rules, subject to market circumstances. Their goal is to explore how the housing market’s supply
side, in connection with speculative forces, may trigger and shape boom-bust dynamics.? Based on the
same user cost model, Schmitt and Westerhoff (2019) assume that risk-neutral housing market investors
switch between extrapolative and regressive expectation rules with respect to the rules’ forecasting
accuracy, measured in terms of squared prediction errors. Since investors are risk neutral, the funda-
mental house price is given by the discounted value of future rent payments. Moreover, they show that
endogenous housing market dynamics, characterized by short-run momentum, long-run mean reversion
and excess volatility, may only arise if investors rely heavily on extrapolative expectations. Note that
this is one of the few contributions in the field where market participants display a boundedly rational
learning behavior — an important model ingredient to counter the wilderness-of-bounded-rationality
criticism, as advocated in Glaeser (2013) and Hommes (2013).

As already mentioned, the goal of our paper is twofold. First, we develop a novel model to foster
our understanding of housing market dynamics. Second, we use our model to explore the extent to
which policy makers may influence housing markets by adjusting the tax code. To achieve our goals,
we follow Brock and Hommes (1997, 1998) by assuming that housing market investors are risk averse
and switch between competing expectation rules subject to the rules’ past profitability.® In contrast to
Schmitt and Westerhoff (2019), the fundamental house price thus corresponds to the discounted value
of future risk-adjusted rent payments, an aspect that also influences the model’s stability properties
and out-of-equilibrium behavior. Due to investors’ profit-dependent rule-selection behavior, our model
may furthermore serve as a framework to explore the effects of housing market-related taxes. As we
will see, policy makers have the opportunity to affect the housing market via the housing market’s real
and behavioral side. As far as we are aware, such a modeling and, in particular, policy perspective is

new in this line of research.

3. The basic model framework

Our model combines the housing market framework by Poterba (1984, 1991) with the heuristic switch-
ing approach by Brock and Hommes (1997, 1998). In particular, the housing market consists of two

interrelated markets — a rental market and a housing capital market — that fix basic relations between

2Martin et al. (2020) use the model by Dieci and Westerhoff (2020) to explore to which extend central banks may
stabilize the dynamics of housing markets by adjusting the interest rate.

3The heuristic switching approach by Brock and Hommes (1997, 1998) has been used in numerous models and
applications. Powerful examples include Droste et al. (2002), de Grauwe and Grimaldi (2006), Boswijk et al. (2007)
Anufriev and Hommes (2012) and Schmitt and Westerhoff (2015). Dieci and He (2018) provide a detailed review of this
field, and also discuss its connection with the housing market literature.



house prices, the housing stock and the rent level. Investors’ demand for housing stock depends on
their house price expectations. Motivated by the aforementioned theoretical and empirical literature,
we assume that housing market investors select between an extrapolative and a regressive expectation
rule to forecast future house prices, depending on the evolutionary fitness of these rules, measured
in terms of past realized profits. For ease of exposition, we first abstain from considering housing
market-related taxes. These will be introduced in Section 5.

Let us turn to the details of the model. Market clearing in the rental market takes place in every
period t, implying that the demand for housing services D; is equal to the supply of housing services
Si, i.e.

Dy = S,. (1)

Demand for housing services is assumed to be linearly decreasing at the current rent level R;, the price

of housing services, and is formalized as
Dy =a— bRy, (2)

where a and b are positive parameters. The supply of housing services is proportional to the current

housing stock Hy, and can be expressed by
St = cHy, (3)

where ¢ > 0. Combining (1), (2) and (3) reveals that the rent level R; depends negatively on the
existing housing stock, i.e.

R, = o — BH;, (4)

where o = 7 > 0 is a scaling parameter and 8 = § > 0 denotes the sensitivity of the rent level with
respect to the housing stock.? Of course, the model parameters have to ensure that R; > 0.

Housing market investors can invest in a risk-free asset or in housing capital over the time horizon
from period ¢ to period ¢t + 1. The risk-free asset pays a fixed rate of return r» > 0, while housing
generates (imputed) rents R;, which are fixed at the beginning of the period. By defining P; as a

hypothetical house price level at time ¢, the wealth of investor ¢ in period ¢ + 1 is given by

Wiy =QQ+nrW+Z{(Py1+ R — (1+71+0)P), (5)
where W/ and Z} represent the wealth and demand for housing stock of investor i at time t. Note that
parameter 0 < § < 1 denotes the housing depreciation rate and that variables indexed with ¢ 4+ 1 are
regarded as random.

Housing market investors are assumed to be myopic mean-variance maximizers, implying that their

demand for housing stock follows from

max zi {Etz[ t}l] - %i‘/?[ t}1]} ) (6)

4For analytical tractability, we model the rental market such that the rent level linearly decreases with the existing
stock of houses. See Dieci and Westerhoff (2016) for an isoelastic setup. Of course, extending our partial equilibrium
model into a general equilibrium model would be a worthwhile endeavor.



where Ef[W{, ] and V;/[W/, ] describe the belief of investor ¢ about the conditional expectation and
conditional variance of his wealth in period ¢ + 1, while parameter A\’ denotes the corresponding

(absolute) risk aversion. Solving (6) for Z;} then yields
E;’[Pt+1]+Rt_(].+’r+5)Pt (7)
AV Prya] .

Accordingly, investor i’s optimal demand for housing stock depends positively on house price expec-

Zj =

tations and the rent level, and negatively on the interest rate, the depreciation rate, the current house
price and the perceived housing market risk.

In the following, we introduce a few simplifying assumptions. First, investors’ beliefs about con-
ditional variance of the price are constant for all ¢+ and uniform across all investors i, i.e. V;'[Pi41] =
0% > 0. Second, all investors have the same risk aversion, i.e. A\’ = A > 0. Therefore, investors’ total

housing demand can be expressed as Z, = Y Z; = 13 (% S E{P]+ R — 147+ 6)Pt>. Finally,
i=1 i=1

2

by denoting investors’ average house price expectations by E;[P,11] = + Y. Ej[P;41], we obtain

=1

EP1]+ Ry — (L +7r+0)P,
Ao? ’

To spare one parameter, let us normalize the mass of investors to N = 1.

Z,=N (8)

As equilibrium of demand and supply in the housing capital market is given by
Zt = Ht7 (9)

the market clearing price P; can be expressed as
_ Ey[P1] + R
1+r496

where R, = R, — H o> Accordingly, the house price is equal to the discounted value of investors’

P, , (10)

next period’s average house price expectation plus risk-adjusted rent payments; a standard no-arbitrage
condition common in models with an asset-pricing nature.
The housing stock evolves as

H =1+ (1-96)H;1, (11)

where I, indicates the amount of new housing construction in period ¢. Note that we assume that

houses are built with a one-period production lag. Moreover, home builders are risk neutral, and

maximize expected profits, subject to a quadratic cost function, i.e. maxy,{E:—1[P;|I; — C:}, where
1

C, = ﬂlf. Consequently, new housing construction is given by

Iy = yEi 1 [Py, (12)
where v > 0 is an inverse cost parameter which implies that a lower value of v generates higher building

costs and a more sluggish housing supply. By assuming that home builders form naive expectations,

i.e. Ei_1[P;] = Pi_1, the evolution of the housing stock can be rewritten as
Ht = ")/Pt,1 + (1 - 5)Ht,1. (13)

Let us now turn to the expectation formation behavior of housing market investors. Inspired by



Brock and Hommes (1997, 1998), investors select between competing expectation rules to forecast
future house prices. In this paper, we concentrate on two representative types of expectation rules: a
free extrapolative expectation rule, denoted by EF[P;. 1], and a costly regressive expectation rule, i.e.

EE[P,y1]. Investors’ average house price expectations can thus be defined as
Ei[Pra] = NEEP[Pra] + NFES [P, (14)

where NF and N[ stand for the market shares of investors relying on extrapolative and regressive
expectations, respectively. Extrapolative expectations presume that house prices move in trends; it
can be expressed by

Ef[Pi1] = Pt 4 X(Pio1 — Pioa). (15)

Accordingly, extrapolators pay attention to the most recent price trend, where x > 0 indicates how
strongly investors extrapolate past house price trends into the future. For x = 0, (15) implies naive

expectations. In contrast, regressive expectations are formalized as
Ef[Piy1] = Py + ¢(F = Pi), (16)

where F' represents the housing market’s fundamental value and 0 < ¢ < 1 the expected adjustment
speed. Thus, investors who follow this rule believe that house prices will return towards their funda-
mental value over time. We assume that investors have access to the true fundamental value of the
housing market, given by F = W (see the appendix for its derivation). The underlying
time structure of investors’ expectation rules is as follows. At the beginning of period ¢, investors
have to predict the house price for period ¢ 4+ 1. Since the house price of period ¢ has not yet been
determined (it depends on investors’ demand, which, in turn, depends on their expectations), their
predictions are conditional on information up to period ¢ — 1. As in Brock and Hommes (1998) and
many other related models, investors thus have to predict the house price two-time steps ahead.

In each time step, housing market investors have to determine which expectation rule to follow.
This decision depends on the rules’ fitness. We assume that the higher the fitness of an expectation
rule, the more investors will follow it. As in Brock and Hommes (1997, 1998), and based on Manski and
McFadden (1981), we update the market share of investors using the extrapolative and the regressive

expectation rule via the multinomial discrete-choice model. Therefore, we obtain

AE}
NF = ol 17
¢ exp[VAF] + exp[v AL (7
and
R
NtR _ exp[rA;T] (18)

exp[vAF] + exp[vAF]’
where AF and AF denote the fitness of extrapolative and regressive expectations in period ¢, respec-
tively. Parameter v > 0 measures how sensitively investors choose the most attractive expectation
rule. For v = 0, investors do not observe any fitness differentials between the two expectations rules,
and both market shares will be equal to % As the intensity of choice parameter v increases, more and

more investors switch to the expectation rule with the higher fitness. For v — o0, fitness differentials



are perfectly observed, and all investors opt for the expectation rule yielding the highest fitness. Since
the weights of the two expectation rules add up to 1, the market share of extrapolative (regressive)
expectations can also be written as NF =1 — NF (Nft =1 - NF).

The fitness of the two expectation rules in period ¢ depends on realized past profits and can be

described by

A = (P, 1+ R o — (1 +7+0)P o) ZF, (19)
and
AR = (P 4+ R o —(1+7r+0)P_2)ZE, —c, (20)
where
ZtE _ EtE[PH-l]‘FRt* (1+T+5)Pt (21)
Ao?
and

Ao?
represent, investors’ demand for housing stock in period ¢ when forming extrapolative and regressive
expectations, respectively. Accordingly, the expectations rules’ fitness of period ¢ depends on investors’
housing demand of period ¢ —2 and investors can determine the fitness values for period ¢ as soon as the
house price for period ¢t — 1 is observable. Note that it may be costly to use the regressive expectation
rule since investors have to acquire some kind of knowledge about the economy. In particular, investors
have to examine what the housing market’s fundamental house price will be, and how quickly the
housing market will return to this value. We follow Brock and Hommes (1998) and capture this effort
by the information cost parameter ¢ > 0, which reduces the fitness of regressive expectations. As
pointed out by Hommes (2013), realized net profits are a natural candidate for an evolutionary fitness

measure since this is what investors seem to care about most in real markets.

4. Implications of our basic model framework

We now explore our basic model framework. In Section 4.1, we first present our main analytical results.

In Section 4.2, we then continue with a numerical investigation of our model.

4.1. Analytical insights

In the appendix, we show that the dynamics of our model is driven by a six-dimensional nonlinear

map, and prove the following results.

Proposition 1. The model’s unique steady state, implying, amongst others, that P = F, where

F = (TJF(;)(;_;Z%_F,\UQ)V = E;{‘gﬁ, H = %ﬁ and R = o — BH, loses its local asymptotic stability if

either

., —FE ~(B+AH) N x ~ R 2541
(i) Noxs+ 20000 < N4 2y




or

(ii) N'g+ 2820 « 94 p 542Ny

. —E —R . S
becomes wviolated, where N~ = and N = respectively. Moreover, a violation

1 1
1+exp[—vc] 1+explrc]’

of the first (second) inequality (while the other inequality holds) is associated with a Neimark-Sacker

(Flip) bifurcation, giving rise to cyclical dynamics (a period-two cycle).

Proposition 1 deserves comment. Let us start with the properties of the model’s steady state. Note

that P, H and R are independent of any behavioral parameters. Since P = F = % = T—f(s,
it becomes clear that investors discount future risk-adjusted rent payments to compute the housing
market’s fundamental value. This is also in line with Poterba (1984, 1991), who defines the term
r 4+ d as the user cost of housing. Although he considers perfect foresight, our steady state is basically
equivalent to the one in his models because our housing market investors make no prediction errors at
the steady state. For this reason, we regard the model’s unique steady state as a fundamental steady
state.

Proposition 1 allows us to draw the following steady-state conclusions. An increase in the interest
rate decreases investors’ demand for housing stock and, consequently, leads to a reduction of the house
price; a lower housing stock; and a higher rent level. Comparable effects are observed if housing market
investors become more risk averse and/or perceive a higher housing market risk. If it gets cheaper to
build new houses, i.e. if the inverse cost parameter 7 increases, house prices as well as the rent level
decrease, while the housing stock increases. A higher depreciation rate reduces the stock of housing
and, consequently, yields a higher rent level. However, house prices only decrease if § > \/m.
In this case, the effects of an increase in the interest rate and the depreciation rate are qualitatively
the same. With respect to the parameters describing the rental market, we can conclude that an
increase in the scaling parameter « increases the house price, the housing stock and the rent level,
while an increase in the sensitivity parameter S causes the opposite. For completeness, we mention
that Z° = Z" = H, A" = (R~ (r + 6)P)H and A" = (R — (r + 6)P)H — c. Since 4" — A" = ¢,
the steady-state fractions of investors relying on extrapolative and regressive expectations, given by
~F

R . . . .
and N = %, depend only on investors’ intensity of choice and on the costs

_ 1
 14exp[—vc] 1+4explrve

of forming regressive expectations.

Let us now turn to the steady state’s stability properties. Note that both stability conditions depend
on real and behavioral parameters. Since housing markets display cyclical dynamics, a phenomenon
associated with a Neimark-Sacker bifurcation, our main focus is on Proposition 1’s first stability

condition.® First of all, if we assumed naive versus regressive expectations, i.e. y =0 and 0 < ¢ < 1,

5A Neimark-Sacker bifurcation occurs if the modulus of a pair of complex, conjugate eigenvalues crosses the unit
circle, giving rise to periodic or quasi-periodic motion. The contributions by Wheaton (1999), Kouwenberg and Zwinkels
(2014), Dieci and Westerhoff (2016), Glaeser and Nathanson (2017) and Bao and Hommes (2019) also focus on scenarios
with complex, conjugate eigenvalues, seeking to explain the oscillatory boom-bust behavior of real housing markets, as
documented by Glaeser (2013), Shiller (2015) and Piazzesi and Schneider (2016). In contrast, a Flip bifurcation requires
that a real eigenvalue passes through -1, causing the emergence of a period-two cycle.
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the Neimark-Sacker condition would always be fulfilled. Cyclical housing market dynamics can thus
only arise within our model if investors extrapolate past price changes. However, it is also obvious
from stability condition (i) that cyclical housing market dynamics becomes less likely if investors expect
house prices to return towards their fundamental value more quickly. Furthermore, the Neimark-Sacker
condition is also violated when NEX moves towards 1+ r + ¢ (see the denominator of the second term
on the left-hand side). In this respect, it might be insightful to explore two extreme scenarios. If either
information costs ¢ or the intensity of choice parameter v converge to infinity, then all investors form
extrapolative expectations. Hence, stability will be lost at the latest as x approaches 1 +r + 4. If ¢
and/or v converge to zero, only half of investors form extrapolative expectations, and stability will be
lost at the latest as x approaches 2(1+r+¢). In this sense, we can conclude that an increase in ¢ or v
may destabilize the model’s steady state. Finally, increasing values of the real parameters 3, v, A and
0? harm the stability of housing markets, while an increase in 7 has a beneficial effect. Introducing
the innocuous assumption that » + § < 1 furthermore reveals that an increase in the depreciation rate
also contributes to the stability of housing markets.

From an economic perspective, the violation of the Flip bifurcation boundary, causing a period-
two cycle, is of secondary importance. Nevertheless, the second stability condition of Proposition
1 reveals that an increase in parameter ¢, capturing investors’ expected mean reversion speed, may
create a period-two cycle, provided that parameters 3, v, A and o2 are sufficiently large. Such a
bifurcation becomes more likely if the market share of regressive expectations increases, which is
the case if information costs and/or investors’ intensity of choice decrease. Finally, we note that an
increase in the interest rate, the depreciation rate or investors’ extrapolation strength may reverse a

Flip bifurcation.

4.2. Numerical insights

Equipped with our analytical insights, we are now ready to explore the model’s out-of-equilibrium
behavior. Table 1 presents the base parameter setting for our numerical investigations. Since the
interest rate and the depreciation rate are given by five percent, one time step in our simulations
may roughly be regarded as one year. Accordingly, the production lag in the housing market is
also given by about one year, which seems to be a reasonable choice for a model like ours. The
remaining parameters are selected such that our model is able to mimic - at least in a qualitative sense
- the boom-bust behavior of housing markets, as documented in Glaeser (2013), Shiller (2015) and
Piazzesi and Schneider (2016). However, we remark that the behavioral parameters of our model, in
particular those affecting investors’ expectation formation, are in line with empirical and experimental
observations (Case and Shiller 2003, Case et al. 2012, Anufriev and Hommes 2012, Bao and Hommes
2019 and ter Ellen et al. 2020).

Note that the base parameter setting implies that P = F = 1, H = 20, R = 0.3 and NE ~ 0.731.
Furthermore, the model’s steady state is unstable. For instance, the extrapolation parameter, which is

given by x = 1.1, is slightly above the Neimark-Sacker threshold x5 ~ 1.08 (while the Flip condition

crit
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Table 1: Base parameter setting

a=23
8=0.1
,%,:,1,,,,
6 =0.05

r = 0.05
x=11
¢ =0.6
vr=1
A=6.25
0?2 =0.0016
R

scaling parameter
sensitivity of rental market
sensitivity of home building
depreciation rate
interest rate
extrapolative parameter
regressive parameter
intensity of choice
risk aversion
variance beliefs
information cost

rental market

fitness

is not violated). And, in fact, the dynamics depicted in Figure 1 displays endogenous boom-bust

housing market dynamics. To be precise, the panels show, from top to bottom, the evolution of house

prices, the market share of extrapolators, the housing stock and the rent level, respectively. The

simulation run comprises 30 observations; a longer transient period has been deleted.
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Figure 1: Snapshot of the model dynamics for our base parameter setting. The panels show, from top to bottom, the
evolution of house prices, the market share of extrapolators, the housing stock and the rent level, respectively. The
dynamics is depicted for 30 time steps; a longer transient period has been deleted.

The functioning of the model may be explained as follows. Suppose that the house price has
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just increased above its fundamental value. In such a situation, the extrapolative expectation rule
has correctly predicted a further price increase, while regressive expectations have falsely predicted a
reversion towards the fundamental value. For this reason, the extrapolative expectation rule is more
profitable than the regressive one. As extrapolative expectations now attract more followers, house
prices increase further. Eventually, however, the market loses momentum. This could happen for
several reasons. First, the market share of extrapolators cannot grow forever. Second, the remaining
investors who rely on the regressive expectation rule bet increasingly aggressively on a mean reversion
of the housing market. Third, the housing stock has increased due to the construction of new housing
during the formation of the bubble. This depresses the rent level and therefore dampens house prices,
too. At the bubble’s turning point, extrapolative expectations are wrong, while regressive expectations
are right. But once the direction of the housing market reverses, both expectation rules correctly
anticipate a downturn of the housing market. Moreover, new housing construction — due to house
prices that are still relatively high — lets the housing stock grow for a few more periods, pushing the
rent level down further. Together, these behavioral and real forces lead to an overshooting in the
housing market, i.e. house prices drop below their fundamental value. Then, we once again have a
situation in which extrapolative expectations produce more accurate predictions than the regressive
expectation rule. However, investors’ learning behavior depends on past realized profits, which is why
the market share of extrapolators recovers with some delay. In between, the rent level increases again.
Since a considerable fraction of investors still uses the regressive expectation rule, prices are pushed
upwards, and we see the emergence of the next housing market bubble.

In fact, it is the complex interplay between real and behavioral forces that keeps the dynamics alive.
While real forces, in particular the housing stock and rent adjustments, tend to stabilize the housing
market, behavioral forces have a double-edged effect. Extrapolative expectations tend to push house
prices away from fundamentals; regressive expectations, in turn, exercise mean-reversion pressure. Note
that the boom-bust cycle depicted in Figure 1 repeats itself in a more or less regular manner. Figure
2 reveals, however, that our model is also able to produce more irregular dynamics. The simulation
run — now for 60 time steps — rests on the base parameter setting, except that x = 1.35, ¢ = 0.75 and
v = 1.3. These parameter changes leave the model’s fundamental steady state unaffected, although
N increases from 0.731 to 0.786. Of course, the model’s instability is still due to a Neimark-Sacker
bifurcation. As can be seen, stronger house price cycles result in strong housing stock oscillations,
and thus in more volatile rent levels. Needless to say, irregular dynamics may also be observed in
the presence of exogenous noise (not depicted), although our model may generate them completely
endogenously.

To demonstrate how the dynamics of our model depends on its parameters, we next present a
number of bifurcation diagrams in Figure 3. Bifurcation diagrams are a powerful graphical tool to
visualize the dynamics of a non-linear dynamical system with respect to its parameters. The so-called
bifurcation parameter is discretely varied between selected boundary values. For each parameter value,

the model’s dynamics is then plotted in the bifurcation diagram, omitting a sufficient large transient
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Figure 2: Snapshot of the model dynamics for an alternative parameter setting. The panels show, from top to bottom,
the evolution of house prices, the market share of extrapolators, the housing stock and the rent level, respectively. The
dynamics is depicted for 60 time steps; a longer transient period has been deleted. Parameter setting as in Figure 1,
except that x = 1.35, ¢ = 0.75 and v = 1.3.

period. Here, we provide examples of how our behavioral parameters x, ¢, ¢ and v may influence
house price dynamics. The panels depict, from top left to bottom right, bifurcation diagrams for
1.04 < x < 1.16, 0.52 < ¢ < 0.78, 0.8 < ¢ < 1.2 and 0.8 < v < 1.2, respectively. As already stated
in Proposition 1, these parameters do not affect the housing market’s fundamental steady-state price,

ie. P =F = 1. In the top left panel, the fundamental steady state is initially stable and loses

NS

its stability as soon as x exceeds the critical value x.,7; ~ 1.08, for which endogenous quasi-periodic

dynamics emerges. While the amplitude of house price fluctuations becomes larger if extrapolators
react more aggressively to past house price trends, the top right panel shows that a stronger belief

in mean reversion reduces their amplitude. In fact, a convergence to the steady state sets in when

¢ surpasses ¢N2 a2 0.674. Of course, these observations correspond to our analytical results, which
are supported further by the bottom two panels. The bifurcation diagram for parameter ¢ shows that
the fundamental steady state becomes unstable at cg:ft ~ 0.953, after which the amplitude of house
price dynamics increases with information costs. The reason for this is that rising information costs

increasingly reduce the fitness of the stabilizing regressive expectation rule. Consequently, more and
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Figure 3: Effects of behavioral parameters on house price dynamics. The panels show, from top left to bottom right,
bifurcation diagrams for the extrapolative parameter x, the regressive parameter ¢, information costs ¢ and the intensity
of choice v. Parameters are as in our base parameter setting.

more investors switch to extrapolative expectations, which has a destabilizing impact on housing market
dynamics. A very similar bifurcation route can be observed in the bottom right panel. As can be seen,

NS
at Verit

~ 0.953, the fixed-point dynamics turns into quasi-periodic motion. The destabilizing impact
of an increasing intensity of choice can be easily explained. Recall that extrapolative expectations
have a higher steady-state fitness than regressive expectations. Since investors react more sensitively
to fitness differences as v increases, more and more of them will opt for extrapolative expectations,
which destabilizes the dynamics, and the amplitude of house price fluctuations increases.®

In Figure 4, we show how house prices react to an increase in the model’s real parameters. The six
panels show bifurcation diagrams for 0.02 < r < 0.1, 0.045 < § < 0.065, 0.9 < v < 1.1, 0 < A < 12.5,
0.09 < B < 0.11 and 2.15 < o < 2.45. It can be seen from the top left panel that an increasing

interest rate decreases the amplitude of house price fluctuations. Moreover, the quasi-periodic dynamics

NS

converges into a stable fixed point when r exceeds 7.7, = 0.06. However, the steady-state house price

P decreases with r. Similar observations are apparent in the top right panel, where the amplitude
of house price fluctuations becomes smaller when the depreciation rate increases. At 6% ~ 0.058,

the quasi-periodic dynamics segues into our stable fundamental steady state which, in turn, increases

6Interestingly, similar effects of the behavioral parameters can be observed in the related asset-pricing and cobweb
model by Brock and Hommes (1997, 1998).
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Figure 4: Effects of real parameters on house price dynamics. The panels show, from top left to bottom right, bifurcation
diagrams for the interest rate r, the depreciation rate ¢, the inverse cost parameter -, the risk aversion parameter A, the
sensitivity parameter 8 and the scaling parameter . Parameters are as in our base parameter setting.

with §. The destabilizing impact of the inverse cost parameter 7y, the risk aversion parameter A\ and
the rental market’s sensitivity parameter § are presented in the two middle panels and the bottom
left panel, respectively. Note that their bifurcation routes are very similar. For increasing values
of parameters v, A and [, the stable steady-state house price decreases and becomes unstable at
bifurcation values 75 ~ 0.933, AN ~ 1.65 and BY5 ~ 0.093, respectively. At these points, a
Neimark-Sacker bifurcation occurs, and the amplitude of house price fluctuations becomes larger as
the parameters increase further. Finally, it becomes apparent from the bottom right panel that the

scaling parameter « has no effect on the stability of housing market dynamics, as the amplitude of

house price oscillations basically remains constant as « increases.

16



5. The housing market model with taxes

In Sections 5.1 to 5.5, we explore the model’s steady state and stability properties as well as out-
of-equilibrium effects when various different tax policies are considered. In doing so, we seek to
demonstrate that our model provides a useful framework to address the effects of housing market-
related taxes. With respect to the steady state’s stability domain, we focus on the emergence of
cyclical dynamics, that is on the Neimark-Sacker stability condition. Our main results are summarized
by Propositions 2 to 5 (their proofs are analogous to the one of Proposition 1, see the appendix) and

illustrated in Figure 5.

5.1. Taz on the value of houses

Let us start our analysis with the case of a property tax, imposed periodically (annually) on the value

of houses. Note that such a tax affects investor i’s wealth equation, which turns into
Wiy =Q+nrW,+Z{(Py1+ R — (1+7+05+7)P), (23)
where 7 stands for the tax rate. Straightforward computations reveal that investors’ total demand then

Ei[Pis1]+Ri— (147404 7) Py BolPal+R
Ao? Tr4o+7

becomes Z; = , implying that house prices follow P, = . Moreover,
the fitness functions of the extrapolative and regressive expectation rule now read AF = (P,_1+R;_o—
(A+r+8+7)P2)ZF y and AR = (P_1+ Ri—a— (1+7+0+7)Pi_2)ZE , — ¢, respectively. All other

equations remain as before. Proposition 2 summarizes our main analytical results.

ol _ T _ 1P
r+6+7)0+(B+A02)y T F,H=3P

Proposition 2. At the model’s unique steady state, we have P = 0
and R = o — BH, implying that N = m and N© =
R ~E J—
locally asymptotically stable. If NEX(H— M < NRd)—i— 204147 s violated, a Neimark-Sacker
1+r+0+7—N"x 1-4
bifurcation occurs, giving rise to cyclical dynamics.

W. Suppose that the steady state is

A comparison of Propositions 1 and 2 shows that an increase in the property tax rate 7 has quite
similar effects as an increase in the interest rate r. More precisely, higher tax rates make the housing
market less attractive for investors. Therefore, the demand for housing stock decreases, which causes
the fundamental house price P to fall. Consequently, the fundamental housing stock H declines and
the fundamental rent level R increases.” Importantly, higher tax rates may prevent a Neimark-Sacker
bifurcation. Note that this also becomes obvious from the bifurcation diagram depicted in the top left
panel of Figure 5. Here, we use our base parameter setting, except that 7 is varied between 0 and 0.1,
and show how the dynamics of the housing market depends on the tax rate. As can be seen, higher
property taxes rates initially decrease the amplitude of house price fluctuations, and a convergence to

NS

the steady state sets in when 7 exceeds 7,5 ~ 0.010. We can therefore conclude that a property tax

cri

"Note that Best and Kleven (2018) and Fritzsche and Vandrei (2019) provide empirical evidence according to which
even small increases (decreases) in property taxes may significantly decrease (increase) investors demand for housing
stock. Moreover, Barrios et al. (2019) report that property taxes represent a significant component of the user cost of
housing in several European countries.
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has a stabilizing effect on housing markets, although it also yields lower house prices and, consequently,

a lower housing stock and higher rent levels.

[=]
T
[=]
=

o =

=
=
[=]
[=]
T
[=]
=
[=]
=
=
[=]
=]

Figure 5: Effects of taxes on the value of houses, rental income, owning housing stock, revenue of housing constructors
and capital gains, respectively. Base parameter setting, except that 7 is varied as indicated on the axis.

5.2. Taz on rental income
A tax on rental income changes investor i’s wealth equation to

Wiy =Q+nWi+Z/(Py1+ (1 —7)Re — (1+71+6)P,), (24)
where 7 again denotes the tax rate imposed by policy makers. Accordingly, investors’ total demand

By [Pya]+(1—7) Ri— (147+5) P,
o2

_ EPi1)]+R—TR,
= 1+r+d - The

two fitness functions modify to A = (P,_1 + (1 = 7)Ry_oa — (1 +7+0)P_2)ZE , and AF = (P,_; +

becomes Z; = , and the house price is given by P;

(1—=7)Ri—2 — (1 +7r+8)P,_2)Z}', — c. Since the other equations do not change, we arrive at the

following results.

Proposition 3. At the model’s unique steady state, we have P = (T+6)6+((1(II)T(;Z+MQM =F H= %ﬁ
and R = o — BH, implying that N = m and Nt = m Suppose that the steady state is

P 2\ 7T E J—
locally asymptotically stable. I NEX(SJr 7((17T)ﬂ+)‘i2N X < NR + 24T s violated, a Neimark-Sacker
I4r4+6—N 1-o
r+6—N"x

bifurcation occurs, giving rise to cyclical dynamics.

Proposition 3 reveals that a tax on rental income has a similar effect on the model’s steady state as a

property tax. With an increasing tax rate on rental income, investors have fewer incentives to invest
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in the housing market. As a consequence, the demand for housing stock is lower and the fundamental
house price P declines. Therefore, the fundamental housing stock H decreases and the fundamental
rent level R increases. A higher tax on rental income makes a Neimark-Sacker bifurcation also less
likely. The bifurcation diagram depicted in the top right panel of Figure 5 shows that increasing values
for 7 make the amplitude of house price fluctuations smaller up to the point where the threshold value

7_NS

ri1 = 0.073 is reached. Then, quasi-periodic dynamics turns into fixed-point dynamics.

5.3. Tax on owning housing stock

Policy makers may also consider imposing a tax on owning housing stock. Investor i’s wealth equation

can then be written as

Wiy=Q+nrW,+Z(Py1+ R —7— (1+71+6)P), (25)

E¢[Pii1]+Ri—7—(1414+6)P;
2

where 7 is the tax rate.® Investors’ total demand becomes Z; = v

E¢[Piyq]+R—7
T+r43

r+0)P_9)ZE, and Al = (P + Ry_o —7— (1+7+6)P_2)ZE , — c. The following proposition

, house prices

are given by P, = , and the fitness functions turn into AX = (P,_1 + Ry — 7 — (1 +

summarizes the main effects of such a tax.

Proposition 4. At the model’s unique steady state, we have P = % =F, H= %F and
R = o — BH, implying that N = m and N =

— < _
locally asymptotically stable. If NEX(S + % < NR¢ + 242 s violated, a Neimark-Sacker
r4+-N"x

bifurcation occurs, giving rise to cyclical dynamics.

m. Suppose that the steady state is

Proposition 4 shows that higher tax rates on owning housing stock also reduces the fundamental house
price P. As a result, the fundamental housing stock H decreases and the fundamental rent level R
increases. However, the Neimark-Sacker stability condition reveals that it is independent of the tax
rate 7. Moreover, the bifurcation diagram depicted in the center left panel of Figure 5 indicates that
house price oscillations remain basically constant if the tax rate increases. Hence, a tax on owning

housing stock merely shifts the dynamics downwards.

5.4. Revenue taz for housing constructors

Alternatively, policy makers may decide to tax housing constructors. For instance, a revenue tax for

housing constructors turns their profit maximization problem into
mam;t{(l —T)Et_l[Pt]It —Ct}, (26)
where 7 denotes the tax rate. The optimal supply of new housing is then given by I; = (1 — 7)yP;_1,

and the housing stock evolves as Hy = (1 — §)H;—1 + (1 — 7)yP;—1. Since all other equations remain

unaffected by such a tax, we arrive at the following results.

8Note that our modeling of a tax on owning housing stock is reminiscent to a tax on the cadastral value of a property,
as, for instance, imposed by a number of EU countries. See Barrios et al. (2019) and references therein for evidence.
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Proposition 5. At the model’s unique steady state, we have P = (r+6)6+(ﬂi§\a2)(1—f)«/ =F, H=

—T)IY S koY =T . . —F —R
(=r)y 5 YD and R = a — BH, implying that N~ = m and N = H%p[w]' Suppose that the
; - ~F A=m)V (BN _ 7R 0 254r ;oo
steady state is locally asymptotically stable. If N~ x0 + PR, < N ¢+ 25 is violated, a
T+6—N"x

Neimark-Sacker bifurcation occurs, giving rise to cyclical dynamics.

As stated in Proposition 5, the effects of an increasing revenue tax for housing constructors are qual-
itatively similar to those of a decrease in the inverse cost parameter «, i.e. to higher building costs.
This can be explained as follows. Higher tax rates make housing construction less profitable for con-
structors. Since fewer houses are built, the fundamental housing stock H declines. Therefore, both
the fundamental house price P and the fundamental rent level R increase. A higher tax rate for hous-
ing constructors is beneficial for market stability in the sense that it may counter a Neimark-Sacker
bifurcation. In fact, it becomes clear from the bifurcation diagram presented in the center right panel
of Figure 5 that the amplitude of house price fluctuations becomes smaller as the tax rate increases.

Moreover, the steady state becomes stable if 7 exceeds the critical value 7.V ~ 0.067.

5.5. Tax on capital gains

Finally, we explore how a taxation of capital gains on housing may affect the dynamics of housing mar-
kets. In the presence of a tax on housing capital gains, investor ¢’s end-of-period wealth is determined
by
i (1+T)Wg+Z;(Pt+1+Rt—(1+T+5)Pt)—T(Pt+1—Pt)Z; ifpt+1—Pt>0 (27)
t+1 — , , ’
(A +7r)W{ +Zi{(Py1 + Ry — (1 +7+6) ) if Py — P <0
9

where 0 < 7 < 1 denotes the tax rate imposed by policy makers on his housing capital gains.

Accordingly, investor i’s optimal demand for housing stock would be given by

(1*T)EZ[Pt+1]+Rt7(1+r+577')Pt . _
i 2NV [Prot] if Py — P >0 . o8)

El[Pi 1]+ Ri—(1+r+38)P; .
t )\Vti[PtJrl] lf Pt+1 - Pt § O

However, investor ¢ does neither know P, nor P, when he enters the housing market. In the following,
we assume that the demand for housing stock of an investor opting for the extrapolative expectation

rule is given by

(1—-1)EE [P 1]+ Re—(1+r+6—7) P, if Py —P_5>0

zF = (=730 (29)
Ef[Pt+1]+I;;;(l+r+5)Pt if Py — P 2<0
while that of an investor selecting the regressive expectation rule is given by
(A=n)Bf [Pryal+Re—(14r+6—7)Pr o 1o
2t = AL 8= P >0 (30
Ef[Pz+1]+§;;(1+T'+5)Pt itF—-—P_; <0

9Future work may consider the case in which housing capital gains are waived if investors hold their housing stock
long enough.
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Consistent with his expectation rule, an investor using the extrapolative expectation rule beliefs that
he has (not) to pay housing capital gains taxes when house prices have increased (decreased) in the
recent past, predicting a continuation of the current upward (downward) price trend. In contrast,
an investor applying the regressive expectation rule beliefs that he has (not) to pay housing capital
gains taxes when the housing market is currently undervalued (overvalued), projecting a price recovery
(decline).'®

Due to investors’ demand schedules, the house price is determined by the following piecewise defined

map
E nE R R 2 2
A-7) (N By [Pt+1]+1\§t+fjr([$1iti1])+Rt—(1—7') Ao” Hy fP  >P oANF>P_,
(1—7)NEEE[P 1|+ NER4+(1—7)) NE(EE [P ]+R)—(1—7)2No?H, .
p T NF et A NE (L rte) S P> P AFS P (31)
t —_— .

(1-7)2’NE(BE[Pet1 ]+ R)+(A—T)NEEER [P 1]+ NER,—(1—7)%Xo?H, .
A—7)2NEF(14r+8)+NE(1+r+o—7) Py <P ANF>Py

NEEEIP |+ NEER P 1]+ R —No%H .
o L if Py <P g AF <Py

Since the expectation rules’ fitness depends on past realized profits, housing capital gains taxes imply

that
AP — (P—1+Rio— (1471 +0)P2)ZE ) —7(Proy — P2)ZF o if Py —Pig>0 32
(Poi+ R o— (1+71+08)P_9)ZE, ifP_1—P_5<0
and
AR = (P14 Rio—(1+1r4+08)P_0)ZF g —c—7(P_y — P_3)ZF, if P,y —P,_5 >0 .

(Poy+ Ry o— (1+7r+0)P )2, —¢ if P,y —P,_5<0
respectively. Clearly, the expectation rules’ fitness does not depend on investors’ aforementioned
belief assumptions — equations (32) and (33) measure their actual realized profits. The model’s other
equations remain as before.

A few comments are in order. First, all investors expect to pay housing capital gains taxes when
the housing market is increasing and undervalued. The upper branch of (31) captures this scenario.
Second, no investor expects to pay housing capital gains taxes when the housing market is declining
and overvalued; a scenario that the lower branch of (31) comprises. Third, no investor has to pay
housing capital gains taxes when the housing market is at rest, independently of whether the house
price mirrors its fundamental value or not. Fourth, each of the four branches of map (31) gives rise to
a different (virtual) steady state. Recall that a virtual steady state of a branch of a piecewise defined
map is a steady state that exists outside the domain for which the branch is defined. Moreover,
virtual as well as real steady states may have a significant impact on the dynamics of their underlying

branches and, consequently, on the dynamics of the whole system. Fifth, the lower branch of map

10 Alternative modeling assumptions are possible. For instance, investors may rely on a time-varying weighted average
of the upper and lower branch of their demand schedules, where the weights attached to the two branches indicate the
strength of their beliefs in rising and falling prices. For simplicity, we assume in (29) and (30) that investors select either
the upper or lower branch of their demand schedules.
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(31) represents the case in which the housing market is at rest and properly reflects its fundamental
value. Since investors neither expect nor have to pay housing capital gains taxes, the steady state of
the lower branch of (31) is identical to the one of our original model. We therefore continue to assume
that investors compute the housing market’s fundamental value by F = W.

Since our model with housing capital gains taxes precludes a deeper analytical investigation, we
continue our study with numerical experiments. The bottom left panel of Figure 5 reveals that a tax
imposed on investor’s housing capital gains has a destabilizing impact on the dynamics of housing

markets.!!

Although difficult to disentangle, additional simulations (not depicted) suggest that the
main reason for this outcome may be summarized as follows. Note first that there are four stages of
a housing market cycle: (i) the housing market increases and is overvalued, (ii) the housing market
decreases and is overvalued, (iii) the housing market is undervalued and decreases and (iv) the housing
market is undervalued and increases, i.e. all four branches of (31) matter. Note furthermore that the
differences between the four branches of map (31) increase in line with the tax rate imposed on housing
capital gains, as can easily be checked by comparing its upper and lower branch. Since all branches of
map (31) are associated with a different (virtual) steady state, their distance and thus the amplitude
of the housing market cycles increases with the tax rate. We conclude this section with an important
warning message. Well-intended tax policies may not always contribute to a stabilization of housing

markets. In particular, the effects of state-dependent tax policies are difficult to anticipate and may

yield unintended outcomes.

6. Conclusions

Housing markets regularly display dramatic bubbles. According to Case and Shiller (2003) and Case
et al. (2013), such dynamics, which may be quite harmful for the real economy, are due to investors’
optimistic house price expectations. However, Glaeser et al. (2008) argue that the real side of housing
markets is also relevant for the formation and duration of bubbles. By combining Poterba’s (1984,
1991) user cost model and Brock and Hommes’ (1997, 1998) heuristic switching approach, we develop
a novel housing market model that seeks to take these observations into account.

The real part of our model comprises a rental market and a housing capital market, and determines
key relations between the house price, the housing stock and the rent level. The behavioral part of
our model consists of housing market investors who switch between competing expectation rules with
respect to their past performance, thereby reflecting a boundedly rational learning behavior. Amongst
others, our model reveals that endogenous boom-bust housing market dynamics may arise if investors
rely heavily on extrapolative expectations. Fortunately, policy makers have the opportunity to stabilize

such dynamics by adjusting the tax code. For instance, a property tax or a tax on rental income tames

I Although intuitively appealing, at least at first sight, Case (1992) already argued that capital gains taxes might not
be effective in curbing speculative housing market bubbles. Amongst others, he reports that Japan had a very high tax
on housing capital gains during the 1980s, yet it experienced a dramatic real estate bubble.
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the housing market. However, such a tax also affects the housing market’s steady-state level, an aspect
which should not be overlooked.

Without question, the dynamics of housing markets is driven by a complex interplay between real
and behavioral forces, and a complete understanding of the functioning of housing markets is still
lacking. However, we hope that our model makes some progress in this direction. Moreover, we would
like to stress that our model may serve as a framework to explore how policy makers may affect the
steady state, its stability and the out-of-equilibrium behavior of housing markets via adjusting the tax

code. Of course, much more work is needed in this exciting and relevant research field.

Appendix

Here, we provide a detailed proof of Proposition 1. Note that the derivation of Propositions 2-7 follows
along quite similar lines of reasoning. First of all, we need to express our model in form of a dynamical
system. We therefore introduce the auxiliary variables x; = P;_1, ys = x4_1, 2¢ = ys—1 and k; = Hy_4.
Moreover, it is helpful to use the difference in fractions, given by m; = Nf—NF = Tanh[4(Af—AF)].
Since Nf*+ NF = 1, it follows that N = 1=t and N* = 2™ The dynamical system of our model

can thus be summarized by the following six-dimensional nonlinear map

P = Ey[Pii1]+a—B(YPi—14+(1—8)Hi—1)— Ao (yPi_1+(1—8)Hy—1)
t— 1+r+o
Hy=~vP 1 +(1—-06)H;
xy =P
T: ,
ky=H; 4
Yt = Te—1
2t = Yt—1
where
1—-m 1+m
Ey[P1] = 5 L (Pt71 + X (P11 — xt71)) + 5 : (Pt71 + ¢(F — Ptfl))
and

my = Tanh [;{(Pt_1 +a—Bki1—(1+r+ 5)xt_1) O(F — yi—1) ;;(2(%—1 — Z—1) _ C}} _

By imposing the fact that price expectations are realized at the steady state, i.e. E;[P] = P, im-

plying that P = F, the model’s dynamical system gives rise to the unique steady state FSS =

e T _PY Q . .
TS (o) T Ao and H = P%. Since prices mir

ror their fundamental value at the steady state, we call it the fundamental steady state. Furthermore,

R—\c’H
r+o

To explore the steady state’s stability properties, we use the Jacobian matrix, computed at the

by using R = o — BH we can also express steady-state prices as P = F =
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fundamental steady state, i.e.

2—2y(B+v0?)—d+x—(d+x)m  (6—1)(B+Ac?) x(1—mm)

2(1+r+9) 1+r+8 “ary 0 00
~ 1-5 0 00 0
1 0 0 00 0
HES5) = 0 1 0 00 0]
0 0 1 00 0
0 0 0 010

where T = Tanh[—%c]|, and derive the characteristic polynomial

/13(.%3 — a1k — agk — ag) =0,

(0-1)(=2+¢+me)+(m—1)(6—-2)x

 —442r(5—1)4+28% 427 (B4 o)+ o+ (T —1) o 7
where a1 = 2(71+r+5) X qy = St d) and ag =
—% The fixed point of our model is locally asymptotically stable if and only if all six

eigenvalues of the Jacobian matrix are less than one in absolute value. Note that three eigenvalues,
say K1,2,3, are equal to zero, while the other three eigenvalues, say r45,6, result from the remaining
third-degree characteristic polynomial. For this reason, we follow Lines et al. (2020), who provide
a simplified set of conditions to explore a steady state’s stability properties for such a problem. In
fact, they show that a fixed point of a third-degree characteristic polynomial loses its stability if (I)
14+a;+az+az >0, (1) 1 —ay +az—az > 0or (III) 1 —az +ajaz —a? > 0 is violated by a continuous
change of a model parameter. Moreover, a violation of (I), (IT) or (IIT), while the other two conditions
hold, is associated with a Fold, Flip and Neimark-Sacker bifurcation, respectively. In our case, tedious

computations reveal that this results in

1) o(1+m)s > —2(By +6(r + 8) +vAd?),

02
(IT) ¢(1+m)<2(r+7(gt;))+2+5+><mx)
and 2
_ 29(B + Ao?)(1 —m)x B 2(26 + 1)
(I11) (l—m)x5+2(1+r+5)_(1_m)x<(1+m)¢+17_6

Recall that 0 < ¢ < 1,0 < § < 1 and f8,7,7, A2 > 0. Also, we have 0 < 7 < 1 which implies that
—R —E —E

condition (I) is always satisfied. Finally, weuse m = N — N , N = 5™ and Nt = LM and

rewrite inequalities (II) and (I1I) as

2
(I) NR¢+W%A50)<2+7«+5+2XNE
and o
-
(1) NEX(S-F v(B+ Ao )]XEX <NR¢+25+’F’
l+r+6—N x 1-4

which correspond to (ii) and (i) in Proposition 1, respectively. For the derivation of Propositions 2-5,
it is helpful to note that the tax parameter 7 is always closely related to a real or behavioral model
parameter, as pointed out in Section 5. For instance, in the case of a property tax, 7 always appears

in connection with r.
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Abstract

We develop a behavioral macroeconomic model which allows us to analyze interactions between the
housing market and the real economy. The user cost housing market model involves a rental and
a housing capital market while the real economy is represented by an aggregate-demand-aggregate-
supply model complemented by a central bank which influences the interest rate based on a Taylor
rule. Our model framework is able to produce complex endogenous boom-and-bust dynamics which
arises through the expectation formation behavior of boundedly rational and heterogeneous agents.
Moreover, we demonstrate by numerical simulations how a gradually linkage of the housing market

and the real market through four steps effects the dynamics and stability of the two markets.
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1. Introduction

The crash of the U.S. housing market in 2006 and the following global economic and financial crisis have
shown how interconnected the markets are within an economy. As a consequence, the developments in
the housing market can have serious effects on the real economy. Glaser et al. (2013), Shiller (2015)
and Piazzesi and Schneider (2016) emphasize the serious effects huge cyclical movements with strong
pronounced bubble formations and volatility in the housing market can have on the real economy.
Without doubt, the housing market plays a major role in a country’s whole economy. According to
Leung (2004) the development of house prices has an effect on business cycle dynamics. He argues that
changes in house prices may have significant wealth effects on consumption as well as on investment
decisions. Thus, he emphasizes the need to include the housing market in macroeconomic analysis.
Recently, Tripathi (2019) also stresses the relevance of macroeconomic determinants to control the
house price fluctuations, such as inflation, GDP growth rate and real exchange rate. He shows that
these macroeconomic variables have a positive and statistically significant impact on house prices and
recommends the policy makers to adjust monetary policies such that house prices could be tamed.
Similar arguments are offered by Tsatsaronis and Zhu (2004), who state that the strong and durable
relation between inflation and nominal interest rates on the one hand and house prices on the other
hand should be considered by the policy of monetary authorities.

Against this background, we pursue two goals in our paper. First, we propose a behavioral macroe-
conomic model as a working basis to analyze the complex boom-and-bust behavior of housing markets
and the real economy. Second, we use our model to explore interactions between the housing mar-
ket and the real economy in order to present proposals for monetary and policy authorities to tame
housing markets. The elementary housing market model is based on Dieci and Westerhoff (2016) and
Schmitt and Westerhoff (2019) and reveals that the interacting real and behavioral forces can produce
endogenous housing market fluctuations. The model’s real forces originate from a standard user cost
housing market setup according to Poterba (1984, 1991), involving a rental and a housing capital
market which link fundamental relations between house prices, the housing stock and the rent level.
The acting behavioral forces come from the expectation formation behavior of boundedly rational and
heterogeneous housing market investors in the spirit of Brock and Hommes (1997, 1998). Accordingly,
investors switch between extrapolative and regressive expectation rules to forecast future house prices,
based on the rules’ past accuracy. The real market is represented by a standard aggregate-demand-
aggregate-supply model, consisting of the output gap and the inflation rate equation as established
by De Grauwe (2010a, b, ¢, 2012). Furthermore the Taylor rule describes the behavior of the central
bank which reacts to deviations of inflation and output gap from their target values. We modify the
Taylor rule in the vein of Sbordone et al. (2010). The expectation formation behavior of boundedly
rational and heterogeneous agents creates endogenous real market dynamics. As in the housing market
model, agents select between extrapolative and fundamentalist expectation rules to forecast the future

evolution of the output gap and the inflation rate. This selection mechanism leads the agents to choose



the expectation rule which offered the highest performance in the past.

Our main results may be summarized as follows. We show that both the housing market model and
the real market model are able to generate complex endogenous boom-and-bust dynamics. Moreover,
we investigate the interaction of both markets by means of four steps. First, we investigate the dynamics
of the housing market and the real market arising by including the Taylor rule in the housing market.
The relevance of a rule-based interest rate policy is emphasized by Taylor (2009). He is convinced that
the US housing market bubble, which peaked in 2006, would have been significantly mitigated if the
central bank had followed the Taylor rule originating from Taylor (1993). We show that by merging
the two submodels using the Taylor rule, the house price and the output gap exhibit pro-cyclical
boom-and-bust dynamics over time. Ahearne et al. (2005) also detects an overlap between house price
booms and an overheating in real economic activity as well as a house price that precedes the inflation
rate.

Second, we examine the effects of an interest rate response to house prices by including the house
price distortion in the Taylor rule. In an empirical study, Agnello et al. (2018) show that an increase
in the interest rate can dampen housing market bubbles and underline that this evidence supports
the idea of a leaning-against-the-wind monetary policy rule to stabilize the housing market. In the
same vein, Lambertini et al. (2013) illustrate that an interest rate rule that responds to an increase
in house prices and thus reduces house price volatility can stimulate welfare. In fact, our numerical
results confirm that an interest rate that reacts to the deviation of the house price from its fundamental
value can dampen the housing market’s boom-and-bust dynamics and thus brings the house price, the
housing stock and the rent level closer to their fundamental values. The dynamics of the real market
is not significantly affected by this modification.

In a third step, we investigate how the dynamics of the housing market changes if the house price
trend is added to the inflation equation. This approach stems back to the fact that in the euro area the
Harmonised Index of Consumer Prices (HICP) only includes rents but excludes owner-occupied housing
costs. However, the European Central Bank (ECB) recently proposed the inclusion of owner-occupied
housing (OOH) into the HICP as described in Nickel et al. (2021). The importance of owner-occupied
housing costs for the inflation rate is already stressed by Cournéde (2005). Even if he lists a number
of reasons against the inclusion in a price index, he concludes that it is nevertheless worthwhile since
- to give a brief explanation - a considerable part of private consumption is spent on owner-occupied
housing services and thus also has effects on households’ decisions. Consequently, housing costs play
an important role when households make economic decisions. Against this background, we show
numerically that taking the house price into account in the inflation rate leads to a significant decrease
in the distortion of the house price, the housing stock and the rent level without having considerably
effects on the real market.

Conclusively, in a fourth step we study the impact of including the house price distortion in the
aggregate demand equation on the model dynamics. The relevance of this approach is shown by Case

et al. (2005) who explore the relation between housing market wealth and consumption using a cross-



sectional time-series data set and find empirical evidence that aggregate house prices and aggregate
consumption are strongly correlated. They also show that in developed countries the housing market
has a stronger effect on consumer spending than the stock market. Similar results are offered by
Campbell and Cocco (2005) who estimate the response of homeowners’ consumption to house prices
using household level data from the UK. In our paper, the numerical analysis reveals that the adjusted
aggregate demand equation brings the house price, the housing stock and the rent level much closer
to their fundamental values. However, this destabilizes the real market as the magnitude of the real
market’s boom-and-bust fluctuations is increasing significantly.

The remainder of our paper is organized as follows. In Section 2, we introduce the housing market
model by Schmitt and Westerhoff (2019) and the real market model by De Grauwe (2010a, b, c, 2012).
We show our analytical and numerical insights of the model in Section 3. In Section 4, we merge the
two markets via four steps and explore the effects each has on the model’s dynamics. In Section 5, we

conclude our paper.

2. Model setup

In the following we present a behavioral model which allows us to analyze interactions between the
housing market and the real economy. First, we consider and analyze both markets separately and
without interaction, and then we link the two markets via four steps. The total number of agents
in both markets is normalized to one, i.e. N = 1. In addition, a central bank is able to influence
the interest rate directly via monetary policy. The housing market and the real market feature agents
with bounded rationality who choose between extrapolative and regressive expectation rules to forecast
cither the future development of the house price (weighted by w! ™" and w®) or the future evolution
of output gap (weighted by w?/, w?*) and inflation (weighted by w*/ and w®) depending on which
market they are active in. These rules depend on their evolutionary fitness, measured in terms of
squared prediction errors. Since agents of both markets tend to exhibit a rather slow and lagged
action reaction we use the same time scale for both markets. We consider it to be one quarter of
a year. Finally, several stochastic components are added to the model to make its dynamics more
realistic. Note, however, this is not needed for the model to produce endogenous dynamics. Let us
begin with describing the building blocks of the two markets separately, before we gradually merge
them. We first present the elementary housing market model in Section 2.1 and in Section 2.2, we

introduce the real market model.

2.1. The housing market model

We model the housing market according to Dieci and Westerhoff (2016) and Schmitt and Westerhoff
(2019) and combine a standard user cost housing market setup as proposed by Poterba (1984, 1991)
with the heuristic switching approach by Brock and Hommes (1997, 1998). The housing market can be
divided into two interrelated markets, namely a rental market and a housing capital market, specifying

elementary relation between the house price, the housing stock and the rent level. Let us turn to the



details of the model and begin with the rental market. The rent level R; can be derived from the

market clearing condition in the rental market and is defined as
Rt = — BHtv (].)

implying a negative dependency of the rent level from the existing housing stock H;.! Parameter
« > 0 is a scaling parameter and § > 0 indicates how strongly the rent level reacts to changes in the
current housing stock. Note that o and 5 must be chosen such that R; > 0. Concerning the housing
capital market, the evolution of the housing stock depends positively on the amount of new housing

construction I; as well as the housing stock of the previous period H;_; less housing depreciation, i.e.
Hy =1+ (1 —-6)H;_1, (2)

where 0 < § < 1 is the housing depreciation rate.? By defining housing investments I, as positively

dependent on the past house price P;_q, i.e.
Iy =~P_q, (3)
with v > 0 representing an inverse cost parameter, the housing stock evolution can be rewritten as
Hi=~P,_1+ (1 —0)H:1. (4)

Thus, a decrease in parameter v means higher building costs and a more sluggish housing supply.
The single house price P, derived from a standard intertemporal no-arbitrage condition (see Dieci
and Westerhoff (2016) and Martin et al. (2021, 2022) for more details), is paid by all homebuyers
and expressed by the discounted value of investors’ next period’s expected house price E, [P:+1] plus
risk-adjusted rent payments, i.e. R

B P+ Ry

p =il T
! T+ito ¢ (%)

Parameter i > 0 is the risk-free interest rate and the random variable ¢, ~ N(0,02) represents addi-
tional exogenous noise affecting the housing market. Thus the house price increases with investors’
house price expectations and the rent level, while it decreases with the interest rate and the deprecia-
tion rate. The tilde on top of the expectation operator points out the bounded rationality of housing

market investors’ expectations.

L According to Dieci and Westerhoff (2016), market clearing in the rental market implies that, in every period ¢, the
demand for housing services, Dy = a — bRy, is equal to the supply of housing services, S = cH¢, with a,b,c > 0. Thus,
it follows from D; = S; that Ry = a — 8H¢, with a = % >0 and 8 = % > 0.

2 At this point, it is important to mention some assumptions have to be made concerning housing construction. First
of all, houses are built with a one-period production lag. Furthermore, home builders are risk neutral and maximize
expected profits maxy, { E;—1[P;]I; — Ct}, subject to the quadratic cost function C; = %IE Finally, they form naive

expectations, i.e. Ey_1[P;] = Pi_1.



Concerning investors’ expectation formation behavior we follow Brock and Hommes (1997, 1998)
and define the average house price expectation of heterogeneous and boundedly rational housing market
investors as

E[Pry1] = w" E{[Pra] + w} “Ef[Piya). (6)

Similar to Dieci and Westerhoff (2016), investors select between two expectation heuristics to forecast
future house prices, namely a regressive expectation rule E~tr [P;+1] and an extrapolative expectation
rule Ete [P;41], weighted by wf " and wtp *“_ respectively. Note that housing market investors form their
expectations in period ¢ about the house price in period ¢ + 1 using the last available information set
of period t — 1. Investors relying on the regressive expectation rule, called fundamentalists, predict the

house price to move back to its fundamental value F' over time, which is formalized by

E{[Pisa] = Py + ¢(F — Pi—y). (7

The reaction parameter 0 < ¢ < 1 indicates how fast the investors expect the house price reverting
towards F'. This fundamental house price F' is assumed to be known by all housing market investors
and given by F = ,8v+§7€i+6)'3 According to (7), investors assume the price to rise if the last period’s
house price lies below F', and vice versa.

In contrast, investors forming extrapolative expectations, so-called extrapolators, consider the latest

observable house price change. This is described by

Ef[Pii1] = Py + x(Pi—1 — Py_2), (8)

stating that investors extrapolate past house price trends into the future. More precisely, we assume
that at the beginning of period ¢, extrapolators observe the development of the house price over the
past two periods and form a forecast concerning the house price over the current period. Accordingly,
a realized increase in the house price P;,_1 — P;_o > 0 is an indication of a further expected rise in
t + 1. Naturally, the exact opposite is true for a house price decrease P;_; — P,_s < 0. The reaction
parameter x > 0 measures how aggressively investors react to changes in the house price from period
t—2tot—14

Investors’ decision on which expectation rule to follow depends on the rules’ evolutionary fitness
and has to be updated in each time step. We form the fitness functions of the two expectation
rules according to Schmitt and Westerhoff (2019, 2022) by using the squared forecasting errors which

investors can calculate for each rule and compare them with each other. Thus, the evolutionary fitness

3Note that investors make no prediction errors at the steady-state. As illustrated in Section 3.1, F equates to the
discounted value of future rents. Therefore investors are able to compute the fundamental house price. See Section 3.1
for more analytical insights and Schmitt and Westerhoff (2019) for more details of the derivation.

41f x = 0, Equation (8) is reduced to Ef[PtJrl] = P,_1, which means naive expectations.



of the regressive expectation rule is given by

A) = —g(Prsy — E_y[Pr1))? (9)
and the evolutionary fitness of the extrapolative expectation rule by

Af = —g(Pio1 — Ef 5[P1))?, (10)

where ¢ > 0 indicates how strong the expectation rules’ fitness react to the past forecasting accuracy.®
Consequently, the smaller the respective forecasting error, the higher is the perceived fitness by the
investors.

Inspired by Brock and Hommes (1997, 1998) and in line with Schmitt and Westerhoff (2019) and
Martin et al. (2021) we formulate the market share of investors relying on the regressive and the

extrapolative expectation rule by using the multinomial discrete-choice approach respectively, i.e.

P exp[vA7]

= 11
U S ol AT + explo A (n
and
Ae
th,e: eXp[V t] (12)

exp[vA¢] + exp[v AL
Accordingly, the higher the fitness of an expectation rule, the more investors will rely on it. Parameter
v describes the intensity of choice indicating to what degree investors’ decision about which expectation
strategy to follow is rational given the available information set. Thus, v is often called rationality
parameter. In this context, two extreme cases can be distinguished: For v = 0, investors are indifferent

. . . P P
between the two expectation rules which results in w, " = w, ©

= 1, such that half of the housing
market investors rely on regressive expectations and the other half on extrapolative expectations. As v
increases, more and more investors observe fitness differentials and switch to the expectation rule which
provides the higher fitness. In the case of ¥ — oo, all investors immediately choose the expectation
strategy with the highest fitness. Two additional properties of (11) and (12) should be highlighted.
First, the market shares are bounded between zero and one, i.e. 0 < wf’r7wf’e < 1. Second, the
sum of the market shares of the two expectation rules is equal to 1, such that the following applies

Pr Pie .
w; " =1—w," and vice versa.

2.2. The real economy model

We continue by specifying the real economy in the form of the behavioral macroeconomic model inspired

by De Grauwe (2010a, b, ¢, 2012). The macroeconomy is described by three equations: an aggregate

58chmitt and Westerhoff (2019, 2022) and Martin et al. (2021) assume that the use of regressive expectations may
be costly since, among other things, investors have to obtain knowledge about F'. Since the fundamentalist expectation
rule in the real market does not include such costs, we also dispense with them in the housing market for the sake of
comparability.



demand (AD) equation representing the output gap, an aggregate supply (AS) equation, describing
the inflation rate and a Taylor rule (TR), depicting the nominal interest rate. Following De Grauwe
(2010a, b, c), the first two equations are micro-founded. This means that they are based on dynamic
utility and profit maximization as it is commonly done in Dynamic Stochastic General Equlibrium
(DSGE) models. The third equation is taken from Sbordone et al. (2010) and in line with Demary
(2017) and De Grauwe and Ji (2020) and describes the behavior of the central bank.

The aggregate demand equation takes the form
ye = a1 Eyfyria] + (1= an)ye— + azliy — Ey[mga]) + 7o, (13)

where y; represents the output gap in period ¢ and is an economic measure of the difference between
an economy’s actual output and its potential output. i; is the nominal interest rate in period ¢ while
m; describes the inflation rate in period ¢. The current output gap is specified by a forward-looking
component Ey[y,;1] and a lagged one y;,_; which are weighted by parameter 0 < a; < 1. Moreover, it
depends negatively on the real interest rate i;— E;[1y41]. as < 0is a negative sensitivity parameter. The
random variable 7; ~ N(0,02) is a white noise disturbance term at time t representing, for instance,
an aggregate demand shock affecting the real market. In addition, the tilde above the expectation
operator E; emphasizes that agents who form expectations in ¢ about the real economy in t 4+ 1 are
not perfectly rational, but boundedly rational as is also the case concerning house price expectations.
The expectation formation process will be described later on.
The aggregate supply equation - in the form of the so called New Keynesian Philips Curve - is
given by
T = b1 Ey[ms] + (1 — by)me—1 + baye + ny, (14)

where the random variable 7y ~ N (0, 0727) is a white noise disturbance term and can be understood
as an aggregate supply shock. The Philips curve is also determined by a forward-looking inflation
variable F, [r:+1] and a backward-looking one 7;_; which are weighted by parameter 0 < b; < 1. In
addition, by > 0 is a positive parameter which measures how flexible the inflation rate reacts to changes
in the current output gap. Consequently, a positive output gap implies inflationary pressures, while a
negative output gap results in deflationary pressures.

Finally, the central bank sets the interest rate according to

it =c3i—1 + (1 —c3)(@i* + 1 (me — 7o) + ca(yr — y*)) + 64, (15)

*

which is commonly known as the Taylor rule originally established by Taylor (1993). * and y*
are the fundamental values of the nominal interest rate and the output gap, respectively, and =*

is the inflation’s fundamental steady state or, more specifically, the central bank’s inflation target.%

6Tn contrast to De Grauwe (2010a, b, ¢, 2012) who sets the inflation target equal to zero, we analytically find in



Moreover, the random variable 6, ~ N (0, 03) is a white noise disturbance term and can be interpreted
as a monetary policy shock. Following Demary (2017) and De Grauwe and Ji (2020) and in contrast to
De Grauwe (2010a, b, ¢, 2012) we assume that the central bank smooths the interest rate by adjusting
1 as the weighted average of the lagged interest rate i;_; and the term (i* + ¢1(m — 7*) + ca(ye — y*))
where the weighting is given by 0 < ¢3 < 1. This interest rate rule implies that, if inflation increases
above the inflation target, the central bank raises the interest rate with an intensity given by parameter
c1 > 0. Similarly, in case of a positive deviation of the output gap from its fundamental value, the
central bank increases the interest rate to dampen investment and consumption. Parameter co > 0
describes the intensity of the central bank’s reaction in this regard. Of course, the opposite is true for
an inflation rate and output gap below their fundamental values.

We now specify how heterogeneous and bounded rational agents form their expectations concerning
the future output gap E, [y+1] as well as the future inflation rate E, [m¢41]. For the sake of consistency
and comprehensibility, the expectation formation in the real market has the same structure as that of
the housing market described in Section 2.1 and is modeled in the same vein of Brock and Hommes
(1997, 1998), De Grauwe (2010a, b, ¢, 2012) and De Grauwe and Ji (2020). Agents again use heuristics
and are assumed to select between two competing forecasting rules depending on the rule’s fitness: a
fundamentalist and an extrapolative expectation rule. Compared to the original De Grauwe model,
we use slightly different expectation rules that are more in line with those typically assumed in agent-
based financial market models (Brock and Hommes 1997, 1998) and which we already applied in the
housing market’s house price expectation. We now explain in detail the two rules and the selection
mechanism for the expectation formation of the future output gap and afterwards in a short version
the expectation formation for future inflation rate due to high comparability.

Agents’ weighted average expectations of the output gap are given by
Erfyesr] = wi Bl [yea] + wf  Ef [yr4], (16)

where w} 7 and w?"® denote the market shares of agents relying on fundamentalist expectations Etf [ye+1]
and extrapolative expectations Ef [y++1] concerning future output gap, respectively. Agents applying
the fundamentalist forecasting rule expect the output gap to return to its fundamental value y* if it

has deviated from y* in the previous period. This fundamentalist rule can be expressed by

Byl =ver + f,(6* —wis1), (17)

where 0 < f, < 1 indicates how fast the fundamentalists assume the output gap to move back to
its fundamental value y*. For the sake of simplicity, all agents in the model have the identical view

concerning the fundamental value of the output gap such that we can assume y* is constant. This is

Section 3.2 that y* = 0 and that i* = «*.



in contrast to De Grauwe (2010a, b, c, 2012) who normalizes the fundamentalist expectation rule to

zero.” In contrast, extrapolative expectations are based on trend extrapolation and are formalized by

Ellyi11] = yi—1 + ey (Ye—1 — y—2). (18)

Agents who make use of this rule expect the output gap to further increase from ¢ to ¢ + 1 if it has
already risen from ¢t — 2 to t — 1 and vice versa. Hence, e, > 0 is a positive reaction parameter which
indicates how strongly and aggressively the extrapolators react to the output gap trend. This also
differs from De Grauwe (2010a, b, ¢, 2012), who uses a naive forecasting rule which states that agents
extrapolate the latest observable output gap into the future.?

Similarly to the housing market, agents exhibit a learning behavior, which means that they are
not limited to one expectation rule but switch between the two forecasting rules in (17) and (18).
Inspired by De Grauwe (2010a, b, ¢, 2012) and Brock and Hommes (1997, 1998) and following the
discrete choice approach, this selection mechanism is based on the evolutionary fitness of these rules
depending on mean squared forecasting errors that are updated in each period. Thus, agents calculate

the forecast performance, or rather the utility of the fundamentalist rule according to

Uty’f =— Zwk(yt—k - Ez{—k‘—l[yt*k])Q (19)
k=1

and of the extrapolative rule pursuant to

U == wilymi — By 1 [ye—s])? (20)
k=1
and choose the rule that performed best in the past. To include the forgetfulness of agents in the model,
parameters wy, are specified as geometrically declining weights and are defined as wy, = (1—¢q)¢*, where
0 < ¢ <1 (see De Grauwe (2010a, b, c, 2012)).°
In each period and based on the rules’ fitness, agents have to decide which expectation rule to
follow. In line with De Grauwe (2010a, b, ¢, 2012) and as in Brock and Hommes (1997, 1998) the

weights of agents relying on the fundamentalist and on the extrapolative expectation rule for future

"In his paper, De Grauwe assumes that agents forecast the future output gap by estimating the fundamental steady-
state equilibrium value of the output gap. De Grauwe normalizes this steady state value to zero, i.e. there is no gap
in the equilibrium. For f, = 1 and y* = 0 the fundamentalist forecasting rule in (17) collapses to the one used in De
Grauwe (2010a, b, c, 2012).

81n his work, De Grauwe justifies the agents’ naivety with the fact that the respective agents do not know the output
gap’s steady state value. For ey = 0 our extrapolative forecasting rule can be shortened to the naive one used in De
Grauwe (2010a, b, c, 2012).

9See De Grauwe and Ji (2020) for a short derivation of (19) and (20). Furthermore, parameter 0 < ¢ < 1 is defined
as agents’ memory. Accordingly, if ¢ = 0 agents have no memory and only remember the last periods’ forecast error. In
contrast, if ¢ = 1 agents have infinite memory and all past forecast errors are equally weighted.
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output gap at time ¢ are given by

Uy’f
wf’f _ ew}ﬁ?[” ] _ (21)
expvU" ] + expvUY ]
and
y,e
Wi — explvU; ] (22)

caplvUPT) + explvUf )’

respectively. Parameter v > 0 is called intensity of choice which determines the agents’ switching
sensitivity with which they choose the most attractive expectation rule. We assume that all agents in
the economy have the same switching sensitivity and thus the intensity of choice parameter is identical
to that of the housing market in Equations (11) and (12) and exhibits the same properties. Conse-
quently, for v = 0, the weights of both expectation rules are exactly 0.5 since agents cannot differentiate
between the fitness of the two rules. With growing parameter v, the weight of the expectation rule
with the higher fitness increases. For v — 400, all agents choose the expectation rule with the high-
est fitness since they perfectly realize fitness differences. Note that 0 < w?’,w?* < 1 and that the
weight of the fundamentalist (extrapolative) expectation rule can also be expressed as w?/ = 1 —w?*
(wf® =1 —w).

Agents also have to predict the future inflation rate, using very similar two expectation rules and
selection mechanisms as when forming expectations regarding the output gap. Note that expectations
for output gap and inflation rate do not intermingle, although the expectation formation process
follows identical equations in both cases. It is a concurrent and independent process for both variables.

Accordingly, agents’ weighted average inflation expectations are defined by

Eyfmii1] = wi ! B [myi] + w] Ef [m41], (23)

s

where w[/ and w*

stand for the weights of agents that follow the fundamentalist £} [r,] and
the extrapolative expectation rule Ef [m+1], respectively. Thus, agents can decide to make use of the

fundamentalist expectation rule which is formulated as

Bl [r1] = mio1 + fa(m" = moy), (24)

where the central bank’s inflation target 7* is assumed to be known by all agents. Furthermore,
0 < fr < 1is a reaction parameter that captures the agents’ expected adjustment speed of the
inflation rate towards its fundamental value 7*. Accordingly, if the inflation rate in ¢t — 1 is above its
fundamental value 7*, the boundedly rational agents expect it to fall again, and vice versa. This is
departing from De Grauwe (2010a, b, ¢, 2012) who assumes that agents use the central bank’s inflation

target to forecast inflation.'® Alternatively, agents can choose to follow the extrapolative expectation

10De Grauwe argues that agents using this rule trust the central bank’s announced inflation target 7* which he assumes
to be zero. If this is not the case, agents follow the extrapolative expectation rule. By setting fr = 1 Equation (24) is

11



rule which is given by

Etewt[ﬂﬁl] =T+ ex(Te—1 — Te—2), (25)

where parameter e, > 0 specifies how strongly the respective agents react to changes in the inflation
rate. Thus, agents in the model using extrapolative expectations anticipate a further increase (decrease)
in the inflation rate if m has already risen (declined) since the period before. Here again, De Grauwe
(2010a, b, c, 2012) uses a reduced form of Equation (25) since he states that agents extrapolate the
previous observed inflation rate into the future.'!

The switching mechanism defining which expectation rule concerning inflation forecasting in the
real market is dominant in each period is, also for the sake of consistency, formulated in the identical
way as in case of output gap expectations above. Hence, the utility of using the fundamentalist and

the extrapolative expectation rule are given by the mean squared forecasting errors of the expectation

rules and are formulated as

o]
UZr’f = - Zwk(m_k - Etj:kﬂ[ﬂt—k])Q (26)
k=1
and o
Up© =~ Zwk(ﬂt—k — By [m—k))?, (27)
k=1

respectively. Here again, parameters wy are geometrically declining weights catching the agents’ for-

getfulness in the model. Concerning the weighting functions, we have

explvUrd
’U)Zr’f _ — ?[ t ] — (28)
expvU; ] + exp[vU;"°]
as the probability of agents relying on the fundamentalist expectation rule and
wp = — U] (29)

explvUT] + explyUl ]

determining the probability of agents following extrapolative expectations in period t concerning in-
flation. The interpretation is very similar to the weighting functions in Equations (21) and (22). The
higher the past forecast performance of the fundamentalist expectation rule relative to that one of the
extrapolative expectation rule, the more (less) attractive appears the fundamentalist (extrapolative)
expectation strategy to the agents and the more (less) agents will follow it. The sensitivity parameter
v > 0 controls how fast agents switch to the more attractive expectation rule with increasing utility.

7, f T

Here, the following two properties also applies: 0 < w, w® < 1 and w/ = 1—w]*°, and vice versa.

the same as presented in De Grauwe (2010a, b, c, 2012).
H1For er = 0 the expression breaks down to the one used in De Grauwe (2010a, b, ¢, 2012).
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3. Analytical and numerical insights of our basic model framework

In order to understand the structure and the functioning of our model, we next analyze the model’s
dynamics, which arises through the agents’ interactions and strategy-switching decisions. First of all,
we investigate the dynamics of both submodels separately, namely in Section 3.1 of the housing market

and in Section 3.2 of the real market.

3.1. Analytical and numerical insights of the housing market model

Table 1 presents the base parameter setting that we use for our housing market simulations. The
choice of the model’s parameter values is inspired by Martin and Westerhoff (2019) and Schmitt and
Westerhoff (2019). The interest rate and the depreciation rate are set to one percent meaning that one
time step in our simulations corresponds to one quarter of a year. In addition, some parameters are
adjusted such that our model qualitatively reflects important characteristics of housing markets, espe-
cially the boom-and-bust dynamics as described by Agnello et al. (2015), Kouwenberg and Zwinkels
(2015) and Ascari et al. (2018).

Table 1: Base parameter setting of the housing market model

a=12 scaling parameter rental market
B8 =0.1 sensitivity of rental market
~ v =0.01 | sensitivity of home building | supply side of housing market -
0 =0.01 depreciation rate
1 =0.01 interest rate
"X=23 | extrapolative parameter | price expectations
¢=0.9 regressive parameter
v=>5 intensity of choice
"g=0.1 | fitness reaction parameter | fitness
“P*=100 | fundamental house price |  fundamental values
H* =100 | fundamental housing stock
R*=2 fundamental rent level

As shown in Schmitt and Westerhoff (2019), the dynamics of the housing market model is driven
by a five-dimensional nonlinear map. Moreover, the model’s unique fundamental steady state (FSS)
is specified by the fundamental house price P* = F = W&H) and the fundamental housing stock
H* = T P* (see Schmitt and Westerhoff (2019) for more details on the derivation). As P* = F = i{%,
investors discount future rent payments to determine the fundamental house price, more precisely, the
steady state at which expectations are realized and investors make no prediction errors.'?> Note that
P* and H* are only dependent on real parameters. Hence an increase in « leads to a rising P* while
an increase in ¢, v and § causes the fundamental house price to fall. A higher depreciation rate only
decreases P* if § > /B~. For completeness, we mention that the fundamental rent level is expressed

by R* = o — BH*. Given the parameter setting, the model’s FSS is defined at P* = 100, H* = 100,

2Tn line with Poterba (1984, 1991), the term i+ is called the user cost of owning a house. As described in Himmelberg
et al. (2005) the user cost may also comprise further components as, for instance, a risk premium for owning instead of
renting a house, as well as the expected capital gain (or loss).
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R* = 2 and wf e = 0.5, which implies that at the FSS, half of investors follow the extrapolative
expectation rule and the other half rely on regressive expectations.

Let us now focus on the steady state’s stability properties. Schmitt and Westerhoff (2019) show that
the fundamental steady state is locally asymptotically stable if two stability conditions are fulfilled,

namely ¢ < HHCHDLIC) and x4+ 52— < ¢ + 22 Obviously, both stability

conditions hinge on behavioral and real parameters. A violation of the first stability condition is
associated with a Flip bifurcation, whereas a violation of the second inequality is associated with a
Neimark-Sacker bifurcation and endogenous quasi-periodic dynamics is set in motion. Since these
cyclical dynamics can be observed in real housing markets, we focus on the second stability condition
in the further analysis. As can be seen from the Neimark-Sacker condition, an increase in parameters
X, B and v may contribute to a destabilization of the FSS and thus to endogenous cycles. In contrast,
growing parameters ¢ and ¢ stabilize the system, just like  under the assumption that i+ 9 < 1 holds.
It is also important to mention that endogenous oscillations only emerge if housing market investors
form extrapolative expectations. Thus, in a model with naive versus regressive expectations, i.e. if
X = 0, the Neimark-Sacker condition is always fulfilled.

Given the parameter setting in Table 1 the FSS is unstable since the extrapolation parameter

NS
crit

x = 2.3 is above the threshold value x ~ 2.04 at which a Neimark-Sacker bifurcation emerges.
And, in fact, our model is able to produce endogenous boom-and-bust housing market dynamics as
can be seen in the simulation run displayed in Figure 1. The depicted 100 time steps represent a
period of 25 years and the parameter setting is as in Table 1. Furthermore, the panels show from top
to bottom the evolution of the house price, the market share of extrapolative expectations, the housing
stock and the rent level, respectively. The gray horizontal line in each panel illustrates the respective
fundamental value. The functioning of the housing market model can be explained as follows. At
the beginning of the simulation (at period ¢ = 1), the house price is slightly above its fundamental
value. In such a situation, the regressive expectation rule is more profitable than the extrapolative
expectation rule since it has properly forecasted a reversion of the house price to its fundamental value
and thus, more and more investors follow it. As regressive expectations have a stabilizing impact
on the dynamics, the house price falls further towards P* and even below it. Declining house prices
mean less new housing constructions, which leads to a falling housing stock and consequently to a
rising rent level with a short time lag. As soon as the house price falls below its fundamental value,
the situation starts to change since now extrapolative expectations are right in predicting a further
house price decline and therefore attract more followers. The destabilizing behavior of extrapolators
leads to a crash. After the crash’s turning point the house price moves back towards its fundamental
value. Now both expectation rules correctly predict an upward trend of the housing market. But
the closer the house price gets to its fundamental value, the more investors switch to the now more
profitable regressive expectation rule. Once the house price rises above its fundamental value, investors

relying on extrapolative expectations are getting more and more optimistic predicting a further price

increase. As a result, the amount of new housing construction increases stimulating the housing stock
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and depressing the rent level until the housing market bubble bursts and the house price falls towards

its fundamental value again.
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Figure 1: The dynamics of the housing market model for our base parameter setting (Table 1). The panels show, from
top to bottom, the evolution of the house price, the market share of extrapolators, the housing stock and the rent level,
respectively. The dynamics is depicted for 100 time steps and a longer transient period has been cleared.

Next, we examine how the model’s dynamics depends on the extrapolation parameter y for our
base parameter setting. For this we present a bifurcation diagram in Figure 2 showing the house price
dynamics for 1.9 < x < 2.4. As can be seen, this graphical analysis confirms our analytical results.
Accordingly, the fundamental steady state is initially stable. At the bifurcation point xV3 ~ 2.04 the
system loses its stability and endogenous quasi-periodic dynamics emerges. As parameter x rises, i.e.
the more aggressively the extrapolators react to past house price trends, the larger the amplitude of
house price fluctuations.

In Figure 3, we show a stochastic simulation run under i.i.d. normal additive noise on house

prices € ~ N(0,1) resting on the base parameter setting, except that x = 0.35 and ¢ = 0.125. The

simulation run depicts 200 time steps, representing a period of 50 years. Since the FSS is independent
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Figure 2: The destabilizing effect of extrapolative expectations on house price dynamics. The panel shows a bifurcation
diagram for the house price depending on the extrapolative parameter x. A Neimark-Sacker bifurcation sets in at
x = 2.04 for the base parameter setting (Table 1).

of any behavioral parameters, it is not influenced by the parameter change. As can be seen, the
housing market is very volatile and exhibits significant bubbles and crashes with lasting periods of
overvaluation and overbuilding. This boom-and-bust dynamics is maintained through the complex
interplay between real and behavioral forces. As this stochastic simulation run produces more realistic

housing market dynamics than in Figure 1, we use it for the following analysis.

3.2. Numerical insights of the real market model

Let us now turn to the analysis of the real market model with focus on numerical simulations.
The base parameter setting for our simulations is shown in Table 2 which is mostly the same as in De
Grauwe (2010a, b, ¢). Thus one time unit is considered to be one quarter of a year, as is also the case
in the housing market model. As already mentioned we assume that all agents in the economy have
the same degree of rationality to decide which expectation strategy to follow. For this reason, we take
the same value for the intensity of choice parameter as in the housing market, i.e. v = 5. Furthermore,
concerning agents’ expectation formation we introduce extrapolative and regressive parameters for
both the output and inflation expectations to control the trend extrapolation and mean-reversion
components, respectively. Taking into account the fact that expectations are realized at the steady
state and simultaneously it holds that w1 = m = m41 = 7%, we get from Equation (14) that the
fundamental output gap is zero, i.e. y* = 0. From Equation (13) it then follows that in the equilibrium,
the fundamental values of the inflation rate and the interest rate must be equal, 7* = i*, implying
that the fundamental real interest rate is zero. Thus, the fundamental values of output gap, inflation
rate and nominal interest rate are given by y* = 0, 7* = 0.01 and * = 0.01, respectively.

In Figure 4 we show a deterministic simulation run of the real market model for 100 time steps
representing a period of 25 years and the parameter setting is as in Table 2. The panels show, from

top to bottom, the evolution of the output gap, the inflation rate, the market share of extrapolators
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Figure 3: A stochastic simulation run of the housing market model under i.i.d. normal additive noise e ~ N(0,1) for
our base parameter setting (Table 1), except that x = 0.35 and ¢ = 0.125. The panels show, from top to bottom, the

evolution of the house price, the market share of extrapolators, the housing stock and the rent level, respectively. The
dynamics is depicted for 200 time steps and a longer transient period has been cleared.

concerning the output gap (black line) and inflation (red line) expectations and the nominal interest
rate, respectively. As can be seen, the model is able to generate endogenous quasi-periodic boom-and-
bust dynamics. Moreover, the output gap precedes the inflation rate. This observation is in line with
Claus (2000) who examines whether the output gap indicates inflationary pressures. He argues that
output gap does not reliably predict inflation, however can still be a valid tool for the central bank
since in two third of the cases there is a relation between a positive (negative) output gap and an
increasing (decreasing) inflation in the next quarter.

Next we will look at the dynamics and expectation formation with regard to the output gap.
Initially (at ¢ = 1) the output gap is still high but decreasing towards its fundamental value which
means that the fundamentalist expectation rule is more precise than the regressive expectation rule
and thus attracts more and more followers. Due to the stabilizing impact of the fundamentalist rule,

the output gap falls further and even below its fundamental value y*. With a short time lag the
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Table 2: Base parameter setting of the real market model

a; =05 coefficient of expected output output equation
as = —0.2 interest elasticity
ey =3.5 extrapolative parameter
fy =09 regressive parameter
by =0.5 | coefficient of expected inflation | inflation equation
bs = 0.05 coefficient of output
ex = 3.5 extrapolative parameter
f==09 regressive parameter
=15 | coefficient of inflation | Taylor rule
co =05 coefficient of output
cs = 0.5 interest smoothing parameter
v=5 | intensity of choice parameter | weighting function
wy = 0.25 geometrically declining weight
wo = 0.125 geometrically declining weight
w3 = 0.0625 geometrically declining weight
yt=0 | equilibrium output gap | fundamental values
7 =0.01 central bank’s inflation target
" =0.01 equilibrium nominal interest rate

inflation and the interest rate also decrease towards their fundamental values. Once the output gap
drops below y* the price signals are very low for the fundamentalists, but high for the destabilizing
extrapolators, which leads the output gap to fall until the turning point around period ¢ = 6. Since
the deviation of the output gap from y* is now relatively large, the fundamentalist expectation rule
becomes more profitable again and gains weight which leads the output gap to return to its fundamental
value again. As soon as the output gap increases above y*, extrapolative expectations produce more
precise predictions. Consequently, the extrapolators take over the market again, which leads to the
next boom around period ¢t = 12.

The evolution of the inflation rate and the corresponding expectation formation is very similar to
the one of the output gap and can be described in the same way. Note that the function of the inflation
rate depends on the output gap positively and linearly. Finally, the nominal interest rate i, develops
as we described in Section 2.2, i.e. the interest rate is positive in periods in which the output gap and
inflation rate are above their fundamental values and vice versa.

In addition to the endogenous quasi-periodic boom-and-bust dynamics in Figure 4, we show a
stochastic simulation run of the real market model in Figure 5 depicting 200 time steps, that exhibit
more irregular but more realistic real market dynamics. In order to achieve this, we add normal additive
noise on the output gap 7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest rate
8 ~ N(0,0.001). The parameter setting is as in Table 2, except that e, = e, = 1.1 and f, = fr = 0.35.
The parameter change does not affect the model’s fundamental steady state due to its independence
of behavioral parameters. The functioning of the stochastic version of the model can be described in
the same way as in Figure 4. Thus, extrapolative expectations destabilize the system by pushing the
output gap and inflation rate away from their fundamental values, while fundamentalist expectations

have a stabilizing effect through their mean-reversion pressure. Depending on the respective shock,
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Figure 4: The dynamics of the real market model for our base parameter setting (Table 2). The panels show, from top to
bottom, the evolution of the output gap, the inflation rate, the market share of extrapolators concerning the output gap
(black line) and inflation (red line) expectations and the nominal interest rate, respectively. The dynamics is depicted
for 100 time steps and a longer transient period has been cleared.

other cycles can be generated that have the same general properties.

Next, we analyze step by step how the dynamics of the real market model depends on the extrap-
olative parameters of both the output gap and the inflation expectations using a number of bifurcation
diagrams in Figure 6. We proceed as follows. First we neglect the inflation expectations and analyze
the output gap dynamics for an increasing extrapolation parameter e, for both a high and a low value
of the regressive parameter f,. Then we do the same concerning the inflation rate, i.e. we neglect
the output gap expectations and investigate how the extrapolative parameter e, affects the inflation
dynamics considering two different values of the regressive parameter f.. In a final step, we analyze
the respective dynamics if agents form expectations concerning both the output gap and the inflation
rate.

Let us start by considering the output gap dynamics. For this we assume that all agents trust

the central bank’s inflation target 7* and use it to forecast future inflation, i.e. Ei[m;y1] = 7*. The
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Figure 5: A stochastic simulation run of the real market model under i.i.d. normal additive noise on the output gap
7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest rate 6 ~ N(0,0.001) for our base parameter setting
(Table 2) except that ey = ex = 1.1 and fy = fr = 0.35. The panels show, from top to bottom, the evolution of the
output gap, the inflation rate, the market share of extrapolators concerning the output gap (black line) and inflation
(red line) expectations and the nominal interest rate, respectively. The dynamics is depicted for 200 time steps and a
longer transient period has been cleared.

corresponding bifurcation diagrams are illustrated in the two top panels of Figure 6 both of which
relate the output gap y to the extrapolative parameter 3.0 < e, < 5.0. The parameter setting is used
as in Table 2, except that the regressive parameter is set to f, = 0.9 in the top left panel (as in Table 2)
and to f, = 0.4 in the top right panel. In both cases the model’s fundamental steady state is initially
stable, but loses its stability as soon as a critical value is exceeded, from which quasi-periodic dynamics
emerges. This point is reached in the top left panel with a higher extrapolative parameter, namely
at eg’"” ~ 4.03, than in the case of a lower mean reversion speed depicted in the top right panel (at
ezm ~ 3.99). Furthermore, the amplitude of output gap fluctuations increases with the extrapolative
parameter regardless of the level of the regressive parameter. However, y oscillates with a smaller
amplitude in the top left panel, namely between —0.3 and 0.3, compared to oscillations between —0.5

and 0.5 in the top right panel, if e, = 5.0. Thus, the stabilizing effect of a higher regressive parameter
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fy on the output gap dynamics is clearly confirmed.

The bifurcation diagrams in the two center panels depict how the inflation rate reacts to an increas-
ing extrapolative parameter e, for two different levels of the regressive parameter f. using the base
parameter setting. More precisely, we show the inflation rate dynamics for 3.0 < e, < 5.0 with a high
regressive parameter, namely fr = 0.9 in the center left panel (as in Table 2) and for 3.0 < e, < 4.2
with a low regressive parameter, namely f, = 0.4 in the center right panel. In addition, we assume
that all agents have constant output gap expectations, i.e. E, [y++1] = y*. The center left bifurcation
diagram shows a bifurcation route that evolves from fixed-point dynamics into quasi-periodic motion

crit

at the critical point e’

~ 3.88. In contrast, this point is reached at a smaller extrapolative parameter
in case of a lower mean-reversion speed, namely at e ~ 3.86, in the center right panel. Further-
more, the amplitude of inflation fluctuations increases with parameter e, in both bifurcation diagrams.
However, in the center right panel the amplitude of inflation oscillations is nearly twice as large as in
the case of a high regressive parameter. Consequently, a stabilizing effect of the regressive parameter
can also be demonstrated for the inflation dynamics.

And finally, in the two bottom panels we investigate the model dynamics if heterogeneous agents
form expectations concerning output gap and inflation rate. The bottom left panel illustrates a bifur-
cation diagram that relates the output gap y to the extrapolative parameter 3.0 < e, < 5.0 for the
base parameter setting. As can be seen, the fundamental steady state becomes unstable at e;”t ~ 3.13
and the stable fixed point converges into quasi-periodic dynamics. Moreover, the amplitude of output
gap fluctuations becomes larger when the extrapolative parameter increases. Similar observations can
be made in the inflation rate dynamics of the bottom right panel for 3.0 < e, < 4.4, using the base
parameter setting. Thus, the fundamental steady state becomes unstable at e ~ 3.29 after which
the amplitude of inflation dynamics increases with e,. As a result, expectations about both the output
gap and inflation rate makes the system more unstable since the bifurcation points are reached at a

significantly smaller extrapolative parameter compared to the respective panels in the top row.

4. Interactions between the housing market and the real market

So far we have analyzed the dynamics of the housing market and the real market separately. In Section
4.1 we take the first step in order to combine the two markets. First of all we include the interest rate
as set by the Taylor rule into the housing market instead of a fixed interest rate as discussed above.
The resulting dynamics provides the basis for the further investigations, in which we merge the two
markets in three further steps. In Section 4.2 we vary the Taylor rule by also making it dependent on
the house price distortion. Next, in Section 4.3 we examine how the inclusion of the house price trend
in the inflation equation affects the dynamics. And finally, in Section 4.4 we analyze the effects on the

model dynamics if the aggregate demand equation also depends on the house price distortion.
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Figure 6: The destabilizing effect of the extrapolative parameters e, and e, in the Neimark-Sacker bifurcation scenario.
The two top panels show bifurcation diagrams for the output gap versus extrapolative parameter e, in case of output
gap expectations for f, = 0.9 (top left panel) and f, = 0.4 (top right panel). The two center panels display bifurcation
diagrams for the inflation rate related to the extrapolative parameter e, in case of inflation expectations for fr = 0.9
(center left panel) and fr = 0.4 (center right panel). The bifurcation diagram in the bottom right panel (bottom left
panel) relates the output gap (inflation rate) to the extrapolative parameter ey (er) in case of output gap and inflation
expectations for the base parameter setting.

4.1. Inclusion of the Taylor rule in the housing market

Initially in Sections 2.1 and 3.1 we assume the interest rate in the housing market constant and to be
set by the central bank. We now extend on this assumption by taking into account the interest rate
the central bank determines through the Taylor rule in each time step ¢. Thus including the Taylor
rule (15) in the house price equation (5) gives us

. Et[Pt+1] + Ry

P=—— ~ N 2
t 1 —|—Zt —|—(5 +Et, €t (0,0’6) (30)

where i; is the nominal interest rate at time ¢. The FSS of the housing market is not affected by this
change since the interest rate on the housing market in Section 2.1 is the same as the fundamental

interest rate on the real market, i.e. i = i* = 0.01. Accordingly the house price rises more sharply
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in periods in which the interest rate is below its fundamental value than is the case with a constant

interest rate and vice versa.
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Figure 7: A stochastic simulation run of the housing market and the real market model under i.i.d. normal additive
noise on the house price e ~ N(0, 1), the output gap 7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest
rate 6 ~ N(0,0.001) for our base parameter setting (Tables 1 and 2), except that x = 0.35, ¢ = 0.125, ey = ex = 1.1 and
fy = fx = 0.35. The housing market is connected to the real market via Taylor rule. The panels show, from top left to
bottom right, the evolution of the house price, the output gap, the market share of extrapolators concerning house price
expectations, the inflation rate, the housing stock, the market share of extrapolators concerning the output gap (black
line) and inflation (red line) expectations, the rent level and the nominal interest rate, respectively. The dynamics is
depicted for 200 time steps and a longer transient period has been cleared.

Figure 7 presents a stochastic simulation run of the dynamics of our merged model, i.e. the housing
market is connected to the real market via the Taylor rule. Normal additive noise is added to the house
price € ~ N(0,1), the output gap 7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest
rate § ~ N(0,0.001). The 200 time steps represent a period of 50 years and the parameter setting is
as in Tables 1 and 2, except that x = 0.35, ¢ = 0.125, ey = e = 1.1 and f, = fr = 0.35. The panels
show, from top left to bottom right, the evolution of the house price, the output gap, the market share
of extrapolators regarding house price expectations, the inflation rate, the housing stock, the market
share of extrapolators regarding output gap (black line) and inflation (red line) expectations, the rent
level and the nominal interest rate. The gray lines depict the fundamental values. For comparability
we also use this design in Figures 10, 12 and 14. As can be seen, the house price and the output

gap both show a similar boom-and-bust development over time. In fact, the two variables exhibit a
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correlation coefficient of Corr(P,y) = 0.61 indicating a positive linear relationship between the house
price and the output gap. This is in line with Ahearne et al. (2005) who provide empirical evidence
indicating that house prices are pro-cyclical moving with output gaps. They show that house price
booms coincide with a strong upturn on the real market, i.e. a positive output gap, just as a downswing
of house prices is related to a negative output gap. Furthermore, if we compare Figure 7 with Figure
3, the dependency of the house price on the Taylor rule makes the housing market more unstable.
The house price, the housing stock and the rent level fluctuate with larger amplitudes around their
fundamental values. If the interest rate falls below its fundamental value, for instance around period
t = 10 and shortly after ¢ = 150, the house price rises more strongly than in case of a constant interest
rate ¢ = 0.01. The opposite can be observed in periods in which the interest rate increases above its
fundamental value, which is the case, for instance, shortly after periods ¢ = 50 and ¢ = 100. During
these time periods the high interest rate leads to more pronounced housing market crashes. Thus the
dynamic interest rate intensifies the bubbles and crashes on the housing market. At its peak, the house
price in Figure 3 reaches a value of about P = 108, while in Figure 7 a value of about P = 116, which
is, referred to the fundamental value, twice as high. Moreover, a more volatile house price leads to a
more distorted housing stock and rent level. One explanation for this development is that the interest
rate only depends on y; and 7, but does not react in any way to the house price. Thus in Section
4.2 we examine how the dynamics changes if the Taylor rule also takes into account the house price

distortion.

baseline adjusted Taylor Rule

101+ 101

P 100 P 100
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adjusted AS adjusted AD
101+ 101+
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99 99+
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Figure 8: The destabilizing effect of the extrapolative parameter x on house price dynamics in the Neimark-Sacker
bifurcation scenario. The panels show bifurcation diagrams for the house price versus extrapolative parameter x in case
that the housing market is connected to the real market via Taylor rule (top left panel), the Taylor rule depends on the
house price distortion (top right panel), the house price trend is added to the inflation equation (bottom left panel) and
the house price distortion is included in the aggregate demand equation (bottom right panel). Base parameter setting
(Tables 1 and 2), except that fy = fr = 0.8 and ey = ex = 1.5.
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Figure 9: The destabilizing effect of the extrapolative parameter x on house price dynamics in the Neimark-Sacker
bifurcation scenario under i.i.d. normal additive noise on the house price ¢ ~ N(0,1). The panels show bifurcation
diagrams for the house price versus extrapolative parameter x in case that the housing market is connected to the real
market via Taylor rule (top left panel), the Taylor rule depends on the house price distortion (top right panel), the
house price trend is added to the inflation equation (bottom left panel) and the house price distortion is included in the
aggregate demand equation (bottom right panel). Base parameter setting (Tables 1 and 2), except that fy = fr = 0.8
and ey = er = 1.5.

Before continuing, we show in Figure 8 how the housing market dynamics depends on the extrap-
olative expectations. For comparability, the four bifurcation diagrams exhibit the same structure and
relate the house price P, to the extrapolative parameter x for the base parameter setting except that
fy = f= = 0.8 and e, = e, = 1.5. The bifurcation diagram in the top left panel represents the
baseline case that the interest rate of the housing market develops according to the Taylor rule. The
critical value at which the stable steady state passes into a Neimark-Sacker bifurcation is reached at
X a2 2.03. Moreover, the amplitude of house price fluctuations increases with growing parameter y.
In Figure 9 we repeat our simulations from Figure 8, but now with i.i.d. normal additive noise on the

house price € ~ N(0,0.01). As it turns out, the destabilizing effect of the extrapolative parameter y is

robust with respect to additional exogenous noise.

4.2. Inclusion of the house price distortion in the Taylor rule

Including the house price distortion in the Taylor rule turns equation (15) into

it = c3it—1 + (1 —c3)(i* + e1(me — 7°) + ey — v*) + ca(pr—1 — p*)) + s, (31)
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where p;_1 and p* denote the logarithmic house price in ¢ — 1 and the logarithmic fundamental house
price, respectively.!> Parameter ¢, > 0 indicates how strongly the central bank reacts to the deviation
of the house price from its fundamental value. Here, we set ¢4 = 0.05.1% Obviously, if the housing
market is overvalued, i.e. if p,_1 — p* > 0, the central bank will increase the interest rate, while in
periods of undervaluation (p;—1 — p* < 0) the central bank will decrease the interest rate. According
to Equation (30), a higher (lower) interest rate depresses (raises) the house price. In Figure 10, we
show a stochastic simulation run depicting the model dynamics in case of the adjusted Taylor rule.
In fact, we observe a stabilization of the housing market. The house price, the housing stock as well
as the rent level fluctuate significantly closer around their fundamental values. This can be explained
as follows. For instance, around period ¢ = 10 and shortly after ¢ = 150 the central bank reacts to
the house price distortion and consequently the interest rate does not fall as sharply as in Figure 7,
which leads to a dampened house price and less pronounced bubbles. The opposite can be observed
shortly after periods ¢t = 50 and ¢ = 100. The less rapidly rising interest rate means that there are
less pronounced crashes on the housing market. Simultanously, the market share of extrapolators is
smaller while the market share of fundamentalists has increased. Moreover, new housing construction,
the housing supply and the rent level benefit from a more stable house price which becomes apparent
shortly before period ¢ = 50 and between periods ¢ = 100 and ¢t = 150. Furthermore, the adjusted
Taylor rule does not have a significant impact on the dynamics of the real market.

Figure 11 illustrates how the model performance depends on the house price distortion in the Taylor
rule and as such, on parameter c4 for the base parameter setting (Tables 1 and 2), except that xy = 0.35,
¢ =0.125, e, = e, = 1.1 and f, = fr = 0.35. The panels show from top left to bottom right the

behavior of nine statistics for increasing values of parameter 0.0 < ¢4 < 0.1. The nine statistics include

the house price distortion D¥ = T Zt 1 |PtP* | , the housing stock distortion DH = T Zt 1 [Hy _fl I,
the volatility of house price V¥ = 1 Zt 1 |PtPtPt1 1l the average house price P = & thl P;, the

average housing stock H = & >°/_, H;, the average rent level R = £ 3°7_ | Ry, the average output gap
7= Zthl yt, the average interest rate i = + Zthl iy and the average inflation rate 7 = % Zthl -
For comparability Figures 13 and 15 have the same design. As can be seen, our previous results from
Figure 10 are confirmed. It is evident that the average house price P (panel 4) decreases in line with
parameter c4. This incurs a decline in the average interest rate i (panel 8). Thus the average housing
stock H (panel 5) falls with increasing parameter ¢, which leads to an increasing average rent level R
(panel 6). Since P and H move towards their fundamental values with increasing c4, both the house

price distortion DP (panel 1) and the housing stock distortion D (panel 2) decrease the stronger

13Since all elements in the original Taylor rule are described in percentages (see Taylor 1993), we also express the house
price distortion as the percent deviation of the house price P;_; from its fundamental value P* using the logarithm.
More precisely, if for example, P,_; = 101 and P* = 100, the central bank increases the interest rate by 0.0005 or 0.05
percentage points, under otherwise identical conditions as in Section 4.1.

MMartin et al. (2022) explore whether a central bank may stabilize the dynamics of housing markets by setting
different interest rates. Among others, they introduce a dynamic interest rate rule with which the central bank adjust
the interest rate with respect to mispricing in the housing market. As it turns out, this dynamic interest rate rule gives
the central bank a great ability to control housing market fluctuations.
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Figure 10: A stochastic simulation run of the housing market and the real market model under i.i.d. normal additive
noise on the house price € ~ N(0, 1), the output gap 7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest
rate 6 ~ N(0,0.001) for our base parameter setting (Tables 1 and 2), except that x = 0.35, ¢ = 0.125, ey = ex = 1.1 and
fy = f= = 0.35. The Taylor rule depends additionally on the house price distortion (c4 = 0.05). The panels show, from
top left to bottom right, the evolution of the house price, the output gap, the market share of extrapolators concerning
house price expectations, the inflation rate, the housing stock, the market share of extrapolators concerning the output
gap (black line) and inflation (red line) expectations, the rent level and the nominal interest rate, respectively. The
dynamics is depicted for 200 time steps and a longer transient period has been cleared.

the central bank reacts to the house price distortion. Additionally, an increase in parameter c4 has
a slightly stabilizing effect on the real market. The average inflation rate 7 (panel 9) falls with cq,
moving in the direction of its fundamental value. The average output gap 7 (panel 7) initially decreases
up to ¢4 = 0.06 and grows again as c4 increases further.

Next, we examine in the top right panel of Figure 8 how the dynamics of the house price depends
on the extrapolative parameter 1.9 < x < 2.2 using the adjusted Taylor rule. As can be seen, the
amplitude of house price fluctuations can be significantly reduced. However, the stable fundamental
steady state becomes unstable when the extrapolative parameters already exceeds x =~ 2.0. To explore
the effect of additional exogenous noise, we repeat our simulations in the top right panel of Figure 9
but now with noise on the house price € ~ N(0, 1). The corresponding bifurcation route is very similar
to the one of the top right panel of Figure 8. Therefore, the amplitude of house price fluctuations

increases with parameter x and is smaller than in the baseline scenario of the top left panel.
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Figure 11: The impact of the house price distortion in the Taylor rule on the performance of the housing and real market.

The panels display how the nine statistics DP, D#, VP P H, R, 7, i and @ depend on the central bank’s reaction
parameter c4. The computation is based on 5000 observations and the parameter settings of Tables 1 and 2 are used,
except that x = 0.35,  =0.125, ey = ex = 1.1 and fy = fr = 0.35.

4.8. Adding the house price trend into the inflation equation

In contrast to the USA, house prices in the euro zone are not yet included in the inflation calculation,
except for rents. However, the European Central Bank (ECB) recently proposed to include owner-
occupied housing (OOH) into the Harmonised Index of Consumer Prices (HICP). See Nickel et al.
(2021) for more details on this project of the ECB. In the following we therefore examine how, in
addition to the adjusted Taylor rule, the inclusion of the house price trend in the inflation equation

affects the dynamics of the housing and the real market. This turns the inflation equation into
T = biEympr + (1= by)m—1 + baye + bs(pe—1 — pe—2) + my, (32)

where parameter b3 > 0 indicates how sensitively the inflation rate reacts to the house price trend.
We define b3 = 0.05. Accordingly, if the house price has increased from period ¢ — 2 to period ¢t — 1,
i.e. ps_1 —pi—2 > 0, the inflation rate increases, while in the opposite case, i.e. if p;,_1 —p_o < 0, the
inflation rate decreases. Figure 12 reveals that taking the house price trend into account in the inflation
equation leads to a significantly more stable housing market. On average we observe a decrease in the

distortion of the house price, housing stock and rent level, which means that all three variables move
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significantly closer to their fundamental values compared to Figure 7 and also to Figure 10. As a result
no strong bubbles and crashes occur. Moreover, the market share of extrapolators is smaller which
intensifies the stabilizing effect. Regarding the real market a slightly stabilization of the dynamics
can be observed since the output gap fluctuates closer around its fundamental value. The adjusted
inflation equation results in the following effect. A rising house price leads to a higher inflation rate
as can be seen shortly after periods ¢ = 10 and ¢ = 150. A higher inflation rate, in turn, increases the
interest rate, which leads to a falling house price and weakened bubble formation. The opposite can
be observed shortly after period ¢ = 100. A falling house price means deflationary pressure which in

turn leads the central bank to decrease the interest rate. As a result the house price increases.
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Figure 12: A stochastic simulation run of the housing market and the real market model under i.i.d. normal additive
noise on the house price e ~ N(0, 1), the output gap 7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest
rate § ~ N(0,0.001) for our base parameter setting (Tables 1 and 2), except that x = 0.35, ¢ = 0.125, ey = ex = 1.1
and fy = fr = 0.35. The inflation equation additionally depends on the house price trend (b3 = 0.05). The panels
show, from top left to bottom right, the evolution of the house price, the output gap, the market share of extrapolators
concerning house price expectations, the inflation rate, the housing stock, the market share of extrapolators concerning
the output gap (black line) and inflation (red line) expectations, the rent level and the nominal interest rate, respectively.
The dynamics is depicted for 200 time steps and a longer transient period has been cleared.

These numerical results are confirmed by Figure 13, which has the same design as Figure 11. As
the reaction parameter b3 increases, so does the average inflation rate 7 (panel 9). The average interest
rate i (panel 8) decrease up to b3 = 0.06 and then rises again, while the average output gap 7 (panel

7) decreases with bs. As a result the average house price P and the average housing stock H decline
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(panels 4 and 5) and the average rent level increases R (panel 6). This leads to a falling house price
distortion D (panel 1) and housing stock distortion D (panel 2) as bs increases. At least, the
volatility of the house price V¥ falls with increasing reaction parameter b3 (panel 3). In summary, the
adjusted inflation equation manages to stabilize the housing market and leads to a slightly more stable

real market.
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Figure 13: The impact of the house price trend in the inflation equation on the performance of the housing and real

market. The panels display how the nine statistics D¥, D, VP, P, H, R, 7, i and T depend on the reaction parameter
b3. The computation is based on 4000 observations and the parameter setting of Tables 1 and 2 are used, except that
x =0.35, ¢ =0.125, ey = ex = 1.1 and fy, = fr = 0.35.

The bottom left panel of Figure 8 illustrates the effect on the house price dynamics with respect to
the extrapolative parameter 1.8 < y < 2.2 if the inflation rate also reacts to the house price trend. As
can be seen, the amplitude of house price fluctuations can be reduced and is even smaller than in case
of the adjusted Taylor rule (top right panel). However, the bifurcation point is reached at a lower value
of x, i.e. the stable steady state turns into quasi-periodic dynamics at y = 1.88. According to the
bottom left panel of Figure 9, the destabilizing effect of an increasing extrapolative parameter x holds
with respect to exogenous noise on the house price ¢ ~ N(0,1). Furthermore, the bifurcation route
shows higher house price fluctuations between x = 1.9 and x = 2.0 which also confirms the results of

the bottom left panel from Figure 8.
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4.4. Including the house price distortion in the aggregate demand equation

In a final step we examine how the dynamics of the housing and the real market change if the aggregate

demand equation additionally depends on the house price distortion, i.e. Equation (13) turns into
ye = a1Eyyesr + (1= a1)ye—1 + as(ry — Evmer) + as(pi—1 — p*) + € (33)

Parameter ag > 0 denotes the sensitivity of the aggregate demand with respect to the house price
distortion, which is set to a3 = 0.05. Correspondingly, an overvaluation of the house price, i.e. if
pi—1—p* > 0, leads to an increase in aggregate demand, while an undervaluation (p;_; —p* < 0) causes
y¢ to fall.'® The stochastic simulation run in Figure 14 reveals that the adjusted aggregate demand
equation leads to a stabilization of the housing market but destabilizes the real market. As can be seen,
the house price, the housing stock and the rent level fluctuate very closely around their fundamental
values in small boom-and-bust movements, however without the emergence of strong bubbles and
crashes. Furthermore, the market share of extrapolative expectations is observably dropped which
also contributes to a more stable market. However, the adjusted aggregate demand equation has a
destabilizing effect on the real market as the output gap fluctuates with larger amplitudes around
its fundamental value. This effect is strengthened by an increased market share of extrapolative
expectations. This can be explained as follows. Around period ¢t = 20, for instance, the housing
market is overvalued which leads to an increasing output gap and thus to a more articulated output
gap bubble. A higher output gap increases the inflation rate both of which raises the interest rate. In
addition, a higher interest rate dampens the housing market bubble by decreasing the house price and
thus has a stabilizing effect on the housing market. The opposite effect can be observed shortly after
period ¢ = 100, where the house price falls below its fundamental value which leads to a strong drop
in the output gap.

Figure 15 confirms our presented results, which shows the development of the nine statistics for an
increasing parameter az. As can be seen, the average output gap ¥ (panel 7) increases in line with
parameter az which leads to a rising average inflation rate 7 (panel 9) up to az = 0.07 after which it
slightly decreases. As a result, the average interest rate i rises up to az = 0.06 and then falls slightly.
The increasing average interest rate leads to a falling average house price P (panel 4) and average
housing stock H (panel 5) and a rising average rent level R (panel 6) with increasing parameter as.
Although this leads to a decrease in both the house price distortion D (panel 1) and the housing
stock distortion D (panel 2), which is a positive effect, the house price volatility V¥ (panel 3) cannot
be reduced by increasing parameter as.

The bottom right panel of Figure 8 illustrates how the house price evolves with increasing extrap-

15This seems intuitive and in line with historical experience (see, for example, Iacoviello (2011)). For instance, prior
to the subprime crisis in the USA persons without creditworthiness all of the sudden were capable of getting loans to
purchase houses. Due to ever-raising house prices creditors were able to increase consumption often using housing as
collateral.
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Figure 14: A stochastic simulation run of the housing market and the real market model under i.i.d. normal additive
noise on the house price € ~ N(0, 1), the output gap 7 ~ N(0,0.001), the inflation rate n ~ N(0,0.001) and the interest
rate @ ~ N(0,0.001) for our base parameter setting (Tables 1 and 2), except that x = 0.35, ¢ = 0.125, ey = er = 1.1
and fy = fr = 0.35. The aggregate demand equation additionally depends on the house price distortion (a3 = 0.05).
The panels show, from top left to bottom right, the evolution of the house price, the output gap, the market share of
extrapolators concerning house price expectations, the inflation rate, the housing stock, the market share of extrapolators
concerning the output gap (black line) and inflation (red line) expectations, the rent level and the nominal interest rate,
respectively. The dynamics is depicted for 200 time steps and a longer transient period has been cleared.

olative parameter 1.9 < x < 2.2 in case of the adjusted aggregate demand equation. The previous
observed stabilizing effect cannot be confirmed. The system loses its stability at a smaller parameter
X, as the bifurcation point is at xy = 1.77. Moreover, the amplitude of house price fluctuations is
slightly larger compared to the other three scenarios in Figure 8. Similar results can be observed in
the bottom right panel of Figure 9 which repeats the simulation in a noisy environment. As can be

seen, the house price exhibits larger fluctuations with increasing x compared to the other three panels.

This observation is most evident between xy = 1.9 and y = 2.0.

5. Conclusions

The dramatic global economic and financial crisis that followed the collapse of the U.S. housing market
in 2006 has intensly demonstrated that developments in the housing market may have serious effects
on the real economy. According to Tsatsaronis and Zhu (2004) and Tripathi (2019), interdependencies

between the housing market and the real economy should therefore be taken into account. By merging
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Figure 15: The impact of the house price distortion in the aggregate demand equation on the performance of the housing

and real market. The panels display how the nine statistics D, DH, VP P, H, R, 7, i and 7 depend on the inflation’s
reaction parameter az. The computation is based on 4000 observations and the parameter setting of Tables 1 and 2 are
used, except that x = 0.35, ¢ =0.125, ey =ex = 1.1 and f, = fr = 0.35.

Schmitt and Westerhoff’s (2019) housing market model and De Grauwe’s (2010a, b, ¢, 2012) real
market model, we develop a model framework that seeks to take these observations into account.

The housing market model comprises a rental market and a housing capital market determining
fundamental relations between the house price, the housing stock and the rent level. The real market
is represented by a standard aggregate-demand-aggregate-supply model, consisting of the output gap
and the inflation rate, complemented with a Taylor rule describing the behavior of the central bank.
Expectations in both submodels are formed by heterogeneous and boundedly rational agents who select
between two competing expectation rules depending on the rules’ recent forecasting success. We show
that this expectation formation behavior means that both the housing market and the real market
model are able to generate complex endogenous boom-and-bust dynamics.

Interaction between the housing market and the real market model is examined by four consecutive
steps that function as follows. First, we set the interest rate the central bank determines through the
Taylor rule in the housing market. Second, we extend the Taylor rule by including the house price
distortion. Third, the inflation equation is adjusted by adding the house price trend. Fourth, we

include the house price distortion in the aggregate demand equation. We find that a gradually linkage
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of the two submodels makes the housing market more stable since both the volatility and distortion
of the house price, the housing stock and the rent level decrease. However, there is no significant
stabilizing effect on the real market. The real market becomes even more unstable by an adjusted
aggregate demand equation.

It remains without question, the interactions of the housing market and the real economy is very
complex and a complete understanding of these interdependencies is still lacking. However, we hope
that our work may offer some new insights in this research field. Moreover, we would like to emphasize
that this paper should be seen as an early stage in a broader research agenda and offers a lot of

expansion potential. Of course, much more work is needed in this captivating and major research field.
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