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ABSTRACT
Nowadays, Artificial Intelligence (AI) algorithms show a strong
performance for many use cases, making them desirable for real-
world scenarios where the algorithms provide high-impact deci-
sions. However, one major drawback of AI algorithms is their sus-
ceptibility to bias and resulting unfairness. This has a huge influence
for their application, as they have a higher failure rate for certain
subgroups. In this paper, we focus on the field of affective comput-
ing and particularly on the detection of bias for facial expressions.
Depending on the deployment scenario, bias in facial expression
models can have a disadvantageous impact and it is therefore es-
sential to evaluate the bias and limitations of the model. In order to
analyze the metadata distribution in affective computing datasets,
we annotate several benchmark training datasets, containing both
Action Units and categorical emotions, with age, gender, ethnicity,
glasses, and beards. We show that there is a significantly skewed
distribution, particularly for ethnicity and age. Based on this meta-
data annotation, we evaluate two trained state-of-the-art affective
computing algorithms. Our evaluation shows that the strongest
bias is in age, with the best performance for persons under 34 and a
sharp decrease for older persons. Furthermore, we see an ethnicity
bias with varying direction depending on the algorithm, a slight
gender bias and worse performance for facial parts occluded by
glasses.
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1 INTRODUCTION
Artificial Intelligence (AI) has made great progress in recent years.
The relative abundance of computational power and concentrated
efforts to provide easily accessible, curated training data [11, 28]
has led to a surge in research on AI systems [47]. As a result, a grow-
ing number of companies are integrating AI into their products,
and with progressing digitalization, this trend is likely to continue.
Despite all the advantages those systems provide, AI algorithms
are still suffering from major problems which hinder its real world
application possibilities. One particular problem is bias in automatic
systems driven by AI, which has repeatedly led to major problems
in fairness [4]. This is particularly impactful when the information
gathered from those systems is used to assess humans regarding
their skills or intentions, since a bias in such a system can poten-
tially influence the treatment or even the future opportunities of
a person. One popular example for ethnic unfairness is images of
people of color being labeled as gorillas in the 2015 Google Lens
scandal. This lead to Google having to remove the ’gorilla’ label in
it’s entirety later [45]. An example for gender bias is Amazon’s AI
recruiting tool systematically disadvantaging women in 2018 [9].
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The technology behind automatic emotional analysis of humans
is called affective computing. [38]. While affective computing can
also process information like speech, body posture, or physiological
measurements, this study has a focus on facial affect recognition
where images or videos of human faces are processed. Image-based
modalities provide a high amount of information because humans
use facial expressions extensively when communicating [21], while
also relying on a type of sensor that is commonly available and
contact free.
In facial affective computing, there are twomain approaches on how
to judge the information content of a face. The first one is focused
on using categorical classifications such as happiness, sadness, or
fear developed in the late 1960s [15, 16]. This set of originally six
emotions (later extended by another 11 categorical emotions [13])
was thought to be independent of cultural background or educa-
tion and to be understood by any person. However today, the idea
of universal emotions is under strong criticism because more re-
cent research has shown that, in fact, emotion displays are at least
partially trained and not uniform across all people [5]. However,
since it does not require special training to annotate a dataset and
the annotation process is comparably fast, the categorical emotion
annotation is still very popular in affective computing to this date.
The main disadvantage of categorical emotion annotation is that
it is a subjective rating and the annotators are influenced by their
own backgrounds and interpretations. Even when the emotion is in-
duced in a controlled setting and the emotion displays are checked
afterwards, there is still no certainty regarding the success of the
emotion stimulus because subjects are not uniform in their reac-
tions to stimuli.
This problem has led to the development of the Facial Action Coding
System (FACS) [14, 17]. In a FACS annotation, a face is not scored
with an interpretation of an emotion, but with discrete movements
of independent muscle groups called Action Units (AUs). The FACS
system has been developed in order to provide a standardized, ob-
jective description manual for facial expressions and is mainly used
in psychology. Since the coding is very detailed, it requires a special
training and a considerable amount of time to annotate an emotion
display. A full FACS coding of a 1 minute video can take up to
30 minutes [51]. Since facial affective computing is already being
applied and likely to become a critical technology in the near future,
this paper looks into how much bias there is in training data and
how much effect bias can have in the deployment of the algorithm
regarding its fairness.
Bias in emotion recognition is a known problem and has been in-
vestigated in different types of commercial software [41]. Further
research both on detection and mitigation of different types of bias
in emotion recognition has been conducted [20, 30, 36]. Bias in
Action Unit Detection on the other hand has not been evaluated
for a wide range of datasets and algorithms. Churamani et al. [7]
evaluate and mitigate gender and ethnicity bias for facial expression
recognition and AU detection using the RAF-DB [29, 31] and BP4D
datasets. Deuschel et al. [12] intentionally induce sample bias for
gender and skin color and analyze the model bias qualitatively and
quantitatively using the CK+ and Actor Study datasets. Taati et
al. [43] examine algorithmic bias against cognitively impaired pa-
tients for two Action Units on a small sample size. They emphasize
that most datasets contain young, healthy patients and point out the

potential resulting disadvantages. To the best of our knowledge, we
are the first to evaluate such a broad range of Action Unit datasets
while taking age and partial facial occlusions into account as a
source of bias. Our evaluation reveals age as the most prominent
source of bias for Action Unit detection. In the following we list
our contributions and pose our research questions (in bold):

(1 a) We post-annotated the following affective computing
datasets which have a focus on Action Unit detection for
missing information about metadata like age, gender, eth-
nicity, glasses, and beards: AffWild2, BP4D, BP4D+, CK+,
DISFA, DISFA+, GFT, UNBC, and ERIK.

(1 b) We analyse the resulting meta annotation distributions in
those datasets.
RQ 1: Is there a bias in the metadata of AU datasets?

(2) We evaluate the susceptibility of two modern AU detection
algorithms regarding bias.
RQ 2: Are state-of-the-art AU detection algorithms
prone to bias?

(3) We evaluate the same algorithms regarding susceptibility to
bias in their output for categorical emotions.
RQ 3: Is Action Unit detection less prone to bias than
the detection of categorical emotions?

2 DATASETS
In this work, we investigate well-known AU benchmarking datasets
(e.g. CK+ or DISFA) as well as more context-specific AU data (e.g.
ERIK or AffWild2). To highlight the differences and commonalities
Table 1 characterizes the technical aspects of all ten FACS-coded
datasets.
AffWild2 is an extension of the former AffWild dataset [23, 24, 46].
It contains ground truth labels for three different tasks, leading
to three different subsets which are then further split into train-
ing, validation, and testing data. In this work, the AU validation
(AU-V ) and the AU training subset (AU-T ) are used. As the videos
are recorded in-the-wild, they differ in illumination, quality, and
recording angles. BP4D-Spontaneous [49], short BP4D, contains
not only FACS-coded image sequences but also three-dimensional
data. The illumination and background of the recording scenery are
constant. The extension of BP4D, namely BP4D+ [50], further in-
cludes additional subjects and multimodal data (e.g. thermal videos
or physiological parameters). The Extended Cohn-Kanade Dataset
[32], also known as CK+, is one of the most widely-used facial ex-
pression datasets. It was released in 2000 and contains Action Unit
and emotion coding. The sequence length is significantly shorter
than in the other datasets. Due to providing annotations for Action
Units as well as categorical emotions, CK+ is used to compare the
susceptibility to bias of both representations. The Denver Intensity
of Spontaneous Facial Action (DISFA) [35] database is a manually
FACS-coded collection of image sequences. While being shown a
4-minute video clip, the subjects’ reactions were recorded in front of
a uniform blue background and constant illumination.DISFA+ [34]
refers to an extension to the DISFA dataset where a small group of
subjects took part in acted sequences. ERIK is a dataset contain-
ing FACS-coded images of 13 children and hasn’t been published.
There are other categorical emotion datasets containing children,
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Table 1: Overview of technical aspects of different FACS-coded data, e.g. the number of subjects (subj.), the total frames, the
type of affect (spontaneous (spont.) or acted), and whether the AUs were coded per sequence (seq.) or per frame. Please note
that only parts of the datasets that are FACS-coded are considered here.

Dataset Subj. Frames/Subj. Frames Setup Affect Action Units Coding

AffWild2-AU-V 7 4,288-21,938 67,306 Wild Spont. 1, 2, 4, 6, 12, 15, 20, 25 FrameAffWild2-AU-T 40 180-47,435 235,944

BP4D 41 3,183-4,153 146,346 Lab Spont. 1, 2, 4-7, 9-20, 22-24, 27-39 FrameBP4D+ 140 1,202-2,201 197,875

CK+ 123 7-220 10,734 Lab Acted 1, 2, 4-7, 9-18, 20-31, 34, 38, 39,
41-46

Seq.

DISFA 27 4,845 130,815 Lab Spont. 1, 2, 4-6, 9, 12, 15, 17, 20, 25, 26 FrameDISFA+ 9 4,063-8,697 57,668 Acted

ERIK 13 70-342 2,700 Lab Acted 1, 2, 4-7, 9-18, 20, 22, 24-38, 43,
45, 51-58, 61-64 Frame

GFT 96 1,800 172,800 Lab Spont. 1, 2, 4-7, 9-12, 14, 15, 17-19, 22-
24, 28 Frame

UNBC 25 518-3,592 48,398 Lab Spont. 4, 6, 7, 9, 10, 12, 15, 20, 25-27,
43, 50 Frame

e.g. EmoReact [37], MMDB [40], and Dartmouth [8], but large FACS-
coded datasets for children are not publicly available at this point.
Therefore, ERIK is used to examine how the models perform on
children. Apart from high resolution and good illumination condi-
tions, the FACS-coding was performed frame-wise, which leads to
accurate information with little label-noise, therefore the technical
quality is above average. The Sayette Group Formation Task Spon-
taneous Facial Expression Database [18], also referred to as GFT,
shows 96 participants in social interaction in groups of three. Some
of the subjects drink alcoholic beverages. Although the videos are
recorded in a lab, the setup is not as controlled as for example in
BP4D, and sometimes the subject’s faces are occluded by glasses
or other subjects. The UNBC-McMaster Shoulder Pain Expression
Archive Database [33], short UNBC, contains video sequences of
subjects that suffer from shoulder pain. The recording setting is
controlled and illumination and background are similar in all ses-
sions. It was published in 2011. It is particularly interesting since
the subjects are significantly older than in other datasets. However,
due to low quality images, the dataset is challenging.

3 SUBJECT META DATA
3.1 Annotation Process
The datasets presented in Section 2 have been published with dif-
ferent meta information regarding their subjects. Table 2 shows
the details of the ground truth metadata annotation for the respec-
tive properties, which we considered in our post-annotation. A
per subject annotation means that the ground truth information is
published, but often only a distribution (denoted as dist.) or range
for the cumulative data is noted in the publication. GFT is the only

dataset with subject-wise ground truth information on gender, eth-
nicity, age, and glasses. Overall, few meta information about the
appearance of subjects is published in the datasets.
To obtain complete subject-wise meta information, four indepen-
dent coders estimated the missing properties retrospectively. There-
fore, videos or images of each subject werewatched and their gender
(female, male), age (as integer), and ethnicity (African-American,
Asian, Euro-American, Hispanic) was estimated based on their ap-
pearance. This set of ethnicities was used because it is commonly
referred to in the papers published with the used datasets. Further-
more, the information whether a person wears glasses or has a
beard was coded by one and checked by all other raters. In case of
disagreement the subject was reviewed, as these attributes are ob-
served rather than estimated. Whenever a dataset provided further
information concerning the meta information, e.g. the distribution
of ethnicities or an age range, these additional information were
taken into consideration during the estimation process.

3.2 Annotation Quality
To rate the inter-rater-reliability the codings are evaluated with
Krippendorff’s α [27] using PyPi’s implementation1. Krippendorff’s
α is defined as

α = 1 −
Do
De
,

with Do being the observed disagreement and De being the dis-
agreement expected in values of the same interval assigned by
chance [26]. Krippenddorff’s α ranges within [−1, 1], which rep-
resents systematic disagreement to systematic agreement. If α is
0, the assigned values are statistically not related. The minimum
1https://pypi.org/project/krippendorff/, retrieved 11/01/2021
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Table 2: Subject meta information published with the respective datasets.

Attribute AffWild2-AU BP4D BP4D+ CK+ DISFA DISFA+ ERIK GFT UNBC

Gender dist. per subject per subject dist. dist. - (forenames) per subject dist.
Ethnicity - dist. dist. dist. dist. - - per subject -
Age - range range range range range - per subject -

score required for reliability inevitably depends on the intended ap-
plication, however in this context α ≥ 0.8 indicates good reliability
and α ≥ 0.667 is sufficient for tentative conlusions [25]. A distance
metric is required to measure the levels of agreement. To retrieve
the scores presented in Table 3, the interval metric is used for age,
whereas nominal distance is determined for gender and ethnicity.
The gender estimations are the most reliable. Except for one sub-
ject in ERIK, all coders perfectly agreed for all subjects. Therefore,
the values can directly be assigned to the subjects. For ethnicity,
the scores range above 0.667 for all datasets apart from DISFA
and DISFA+, which are slightly lower, as well as ERIK. The latter
contains subjects that are mostly estimated as Euro-Americans or
Hispanics, two ethnicities that seem to be difficult to distinguish
visually, which serves as a potential explanation for the low score.
Nevertheless, the overall score for the combined data of α = 0.75
justifies the use. The scores for age estimations are comparably low
for each dataset. However, the overall score of α = 0.85 indicates
high agreement. This disambiguity is caused by the nature of α :
the disagreement is evaluated within the respective minimal and
maximal value, which is narrow in a majority of the datasets. For
a narrow age range the disagreement expected by chance De is
smaller, therefore α decreases for constant Do . The overall score
relates to the range from global minimum to maximum age across
datasets. Therefore, the overall score describes the actual process
of assigning an age from all reasonable possibilities better and rates
the age estimation for the entire data with very good reliability.
For age, the averaged value of all coders is assigned to the subjects.
For the subsequent evaluation of the algorithms, the ages are sum-
marized into age groups of ten years width. The resulting data is
explicitly considered estimative, as it was judged solely on appear-
ance and the individuals could not be asked how they identify due
to anonymization or missing contact data.
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Figure 1: Age distribution of all combined datasets, with hue
for dataset.
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Figure 2: Age distribution of all combined datasets, with hue
for gender.

3.3 Distribution of Properties
The combined Action Unit data contains 1,070,585 frames showing
526 individuals. These subjects are of different age (Figure 1 and
Figure 2), gender (Figure 2 and Figure 3), and ethnicity (Figure 3).
Age ranges from 5 to 78 years, with mean and median being 27.37
and 25 years, respectively. However, 70.97% of all frames show sub-
jects between 20 and 30 years. Mainly ERIK and UNBC contribute
to a wider range, the first containing only children and the second
mostly subjects older than 35 years (see Figure 6 in the appendix
for more detailed dataset-wise information on age distribution).
Figure 2 shows the age distribution with hue gender, revealing that
most of the subjects younger than 22 years are female, and sub-
jects over 34 years tend to be male. The peak at 19 years is mainly
caused by a single long video from AffWild2-AU-T that shows a
hispanic female (see Figure 7 in the appendix for more detailed
dataset-wise information on gender, ethnicity, and age). Gender
is distributed almost uniformly, with 50.64% of frames showing
females and 49.36% containing males. Out of the four ethnicities,
Euro-Americans are present in 62.08% of frames, Asians in 15.97%,
African-Americans in 11.13%, and Hispanics in 10.65%. Within the
ethnicity groups, gender is not as well-balanced as in the overall
data, with less female African-Americans, but more female Asians
and Hispanics. There is one subject in GFT whose ground-truth
ethnicity is ’Other’. Furthermore, 11.63% of frames show subjects
with glasses, and 30.03% of males have a beard (see Figure 3).
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Figure 3: Gender, ethnicity, beard, and glasses in all com-
bined datasets. (AA: African-American, AS: Asian, EA: Euro-
American,
HI : Hispanic, O: Other).
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Table 3: Krippendorff’s α of our post-annotations for the respective attribute and dataset, as well as for the combined data.

Attribute AffWild2-AU BP4D BP4D+ CK+ DISFA DISFA+ ERIK UNBC Combined Data

Gender 1 - - 1 1 1 0.95 1 0.99
Ethnicity 0.80 0.82 0.68 0.75 0.64 0.66 0.36 0.74 0.75
Age 0.92 0.34 0.57 0.46 0.66 0.35 0.39 0.71 0.85
Mean 0.91 0.72 0.75 0.74 0.77 0.67 0.57 0.82 0.87

4 MODELS
The distribution of the properties of commonly used Action Unit
datasets (examined in Section 3) enforces the hypothesis that algo-
rithms trained on this data for affect recognition are susceptible
to bias. Therefore, the underlying data and functionality of a state-
of-the-art model and an open-source facial analysis toolkit are
presented in the following.
Algorithms have been chosen with regard to the capability to score
categorical emotion and Action Units at the same time, performance
in doing so, availability of the code, and being in active deployment
(particularly OpenFace).

4.1 NISL2020
NISL2020 [10] is a model that produced excellent results in a
competition called “Affective Behavior Analysis in-the-wild” at
the 15th IEEE International Conference on Automatic Face and
Gesture Recognition in 2020 [22]. It is a multi-task model for Va-
lence/Arousal (VA) estimation, AU detection, and expression clas-
sification. The main focus of this work is on the AU detection; in
this category of the competition, NISL2020 was ranked second. It
was chosen for this work for its out-of-the-box functionality and
reproducibility: Preprocessing algorithms as well as trained models
are provided.2
NISL2020 explores two different approaches: The first is based on
a Convolutional Neural Networks (CNNs) with a ResNet50 back-
bone [19], the second approach uses the ResNet50 combined with
a Recurrent Neural Networks (CNN-RNNs) where Gated Recurrent
Unit (GRU) layers [6] are added to captivate temporal correlations.
For face extraction Deng et al. [10] use the existing preprocessing al-
gorithmMultitask Cascaded Convolutional Network (MTCNN) [48]
that detects, aligns, and crops a face. Only faces that are successfully
detected are processed by the networks. They propose a student-
teacher approach to tackle the challenge of incompletely labeled
data by using a supervised trained teacher to propose soft labels for
unlabeled data when training the student. As the NISL2020 CNN-
RNN approach with a sequence length of 32 frames is reported to
have the best performance, this approach is used on all datasets
except for CK+. This database contains sequences that are too short
for this approach, therefore, for comparability, the CNN approach is
used for the entire dataset. NISL2020 returns the predictions of the
teacher model and five student models. The students’ results are
averaged and binarized using individual thresholds per Action Unit.
This merged binary output is used as the final model prediction.
The authors of NISL2020 used the datasets AffWild2 and DISFA (see
Section 2) to train and validate their Action Unit detection. Please
note that we can only analyze the training data for the AU detection,
but since NISL2020 is a multi-task network the distribution of the
2https://github.com/wtomin/Multitask-Emotion-Recognition-with-Incomplete-
Labels, retrieved 05/02/2021.

training datasets for VA and categorical emotions potentially also
have an influence. Both DISFA and AffWild2 lacked subject meta
information in the original datasets, so it was post-annotated as
described in Section 3. The Action Unit training data for NISL2020
consists of 67 individuals with 180-47,435 frames per individual.
This results in 366,758 total frames. Of these frames, 53.46% dis-
play female subjects, opposed to 46.54% that show males. Figure 4
shows how different ethnicities are distributed. More than half
of the frames contain Euro-American subjects. Furthermore, the
gender imbalance within the African-American class is remarkable.
Although 8.59% of all samples show African-American subjects,
only 1.05% of the total frames show African-American females.
Figure 5 shows that the underlying training data of NISL2020 tends
to represent subjects between 15 and 34 years significantly better
than all other subjects. Whereas subjects between 15 and 24 years
and 25 and 34 years are shown in 42.82% and 45.82% of the images,
all other age groups are in less than 4% of the images respectively.
The age mean of all displayed faces is 26.47 years with a slightly
lower median age of 25 years. The minimum age is 5 years, the
maximum age 70 years. Furthermore it is denoted that 17.77% of
the total frames show subjects with beards, which are 38.19% of the
male subjects. Glasses are worn in 23.58% of all frames.

4.2 OpenFace
OpenFace 2.0 [2] is an open source toolkit3 with different facial
analysis functionalities, like eye gaze tracking or facial landmark
detection. It also provides AU detection algorithms [1]. OpenFace
has been chosen as the second model in this study due to being the
most popular and accessible open source AU detection.
OpenFace detects 18 Action Units, including all 8 that are recognized
by NISL2020, and is capable of scoring activity and intensity of
displayed Action Units. In our study, the binary activity values are
used for better comparability within the meta-groups. According to
the repository4 that provides the resources for release 2.2.0, seven
different datasets have been used for training the AU detection
model: BP4D [49], CK+ [32], DISFA [35], UNBC [33], and three other
datasets that are not part of our examinations [3, 42, 44]. Thus, the
metadata distribution concerning age, ethnicity, and gender of these
datasets is not analyzed here. Furthermore, this also implies that
these training datasets need to be excluded from testing OpenFace.

5 RESULTS
5.1 Dataset-wise Performance Evaluation
As outlined in Section 2, the testing datasets differ in many aspects,
e.g. recording setup, quality, but also the displayed subjects. There-
fore, the performance of the models needs to be judged with regard
3https://github.com/TadasBaltrusaitis/OpenFace, retrieved 05/02/2021.
4https://github.com/TadasBaltrusaitis/OpenFace/wiki/Action-Units, retrieved
02/02/2022.
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Figure 4: Distribution of ethnicity and gender in the Action Unit training data of NISL2020 shown as the number of subjects
(denoted as Subj.), frames per ethnicity (denoted as Ethn.), and gender (denoted as Gend.). AA stands for African-American, AS
for Asian, EA for European-American, and HI for Hispanic. F and M are short for female and male. Highest numbers are in
bold. The bar charts on the right show the distribution of glasses and beards.

Ethn. Subj. Frames Gend. Subj. Frames

AA 9 31,515 F 2 3,850
M 7 27,665

AS 7 38,372 F 4 18,861
M 3 19,511

EA 44 214,127 F 23 115,375
M 21 98,752

HI 7 82,744 F 4 57,970
M 3 24,774 AA AS EA H
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FalseTrue
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Figure 5: Distribution of age in the Action Unit training data of NISL2020 shown as the number of subjects (denoted as Subj.)
and frames per age group. Highest numbers are in bold. The bar chart on the right shows the age distribution separated by
datasets.

Age Subj. Frames

5-14y 5 13,890
15-24y 22 157,058
25-34y 31 168,052
35-44y 4 8,840
45-54y 3 10,084
55-64y 1 415
65-74y 1 8,419
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Table 4: Dataset-wise performance evaluation per model. For eachmodel, the minimum andmaximummacro F1-score is bold.
The numbers of Subjects and Frames refer to testing data, not training data.

NISL2020 NISL2020 cp OpenFace
Dataset Subjects Frames F1-Macro Frames F1-Macro Frames F1-Macro

AffWild2-AU-T 40 - - - - 213,077 0.332
AffWild2-AU-V 7 52,446 0.383 67,306 0.204 67,191 0.420
BP4D 41 121,016 0.657 146,346 0.512 - -
BP4D+ 140 182,147 0.602 197,875 0.544 - -
CK+ 123 10,711 0.639 10,734 0.636 - -
ERIK 13 2,699 0.723 2,700 0.723 2,700 0.649
GFT 96 160,555 0.508 172,800 0.438 172,800 0.399
UNBC 25 47,397 0.271 48,398 0.253 - -

to the dataset. Table 4 shows the overall performance of the mod-
els on all available testing datasets separately. As OpenFace was
trained on BP4D, CK+, and UNBC, and due to BP4D+’s similarity
to BP4D, these datasets are excluded when evaluating OpenFace.
For the same reason, the AffWild2 AU Training subset is used to

evaluate OpenFace, but excluded for NISL2020. To ensure equal
conditions, only Action Unit 4 (brow lowerer), 6 (cheek raiser), and
12 (lip corner puller) are considered, due to these being the Action
Units that are predicted by both models and annotated as ground
truth data in all used datasets.
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We measure bias by comparing the F1-score

F1 =
tp

tp + 1
2 (f p + f n)

across groups, where tp are the true positives, fp the false posi-
tives, and fn the false negatives. The F1-score ranges in [0,1], with
1 being the score for a perfect classifier. The macro F1-score is a
non-weighted mean over the F1-scores of the classes. It is com-
monly used for AU detection, as this metric is suited for multi-class
problems with a high ratio of negative samples.
Conspicuously, MTCNN, the pre-processing algorithm used with
NISL2020, only detects faces in 89.3% of the frames, although es-
pecially the lab-recorded sequences (see Section 2) contain faces
in every frame. Logically, the faces that are not detected are not
classified concerning Action Units. This effect is further examined
in Section 5.3. To separate this error from the actual Action Unit
detection, the output of NISL2020 is scored in two different ways:
The results that are denoted with NISL2020 contain the scores for all
faces that were actually detected. For NISL2020, the frames where
MTCNN failed are excluded to ensure that a potential resulting
bias of the overall system is caused by the Action Unit detection
part, not the preprocessing. However, as the preprocessing is part
of the model, and the error in MTCNN would definitely result in an
overall error in a use-case scenario, the faces that are not detected
are included in the results called NISL2020 cp. For NISL2020 cp,
the missing frames were padded using the contrary of the ground
truth each. This fully takes the system failure into account and
increases the number of false predictions without unintentionally
adding correct values. In comparison, simply evaluating all AUs in
frames which have not been found by the face detector as nega-
tive annotations by the AU detection algorithm would increase its
performance since the majority of ground truth annotations in AU
datasets are negative.
NISL2020 performs best on ERIK and worst on UNBC. The datasets
BP4D, BP4D+, CK+, and GFT have a higher score than the macro
F1-score for the combined data (0.586). In comparison, the contrary-
padded predictions of NISL2020 cp show a decreased performance
for AffWild2, BP4D, BP4D+, and GFT, whereas the predictions for
ERIK and UNBC are not scored significantly worse. This aligns with
the ratio of recognized faces: AffWild2 (77,92%), BP4D (82,35%),
BP4D+ (92.1%), GFT (92,91%), ERIK (99.96%), CK+ (99.93%), and
UNBC (97.93%). Similarly, OpenFace predicts best for ERIK, and
significantly worse for AffWild2 and GFT.

5.2 OpenFace
OpenFace is evaluated on five Action Units (see e.g. Table 5) which
are selected because they are contained in both the ground truth of
the used datasets and the model’s annotation. The ethnicity-wise
comparison of OpenFace’s performance shows the highest relia-
bility for African-American subjects, with a slightly lower macro
F1-score for European-American subjects. This tendency remains
in AU-wise examination. The lowest-scored groups are Hispanics
and Others. These groups, however, contain only seven and one
subjects respectively, compared to 121 Euro-Americans. Therefore,
the result may not be abstractable. The gender-wise comparison
shows a difference of 0.05 for the macro F1-score, slightly in favor of
male subjects. This tendency is reflected in the AU-wise evaluation

as well, with the highest difference between male and female being
0.18 for AU 1, the inner brow raiser. The recognition of AU 12, the
lip corner puller, is slighlty more successful in females. The num-
ber of subjects and frames in both groups is comparably balanced.
Evaluating OpenFace on groups separated according to age results
in the following observations: Regarding the macro F1-score, the
subjects aged between 5-14 years are rated most successfully. It has
to be noted that nearly all of the subjects in this age category come
from the ERIK dataset, which has the highest dataset quality by a
large margin which can be seen in Table 4. The difference to the
two subsequent age groups is 0.021 and 0.016 respectively, followed
by a stronger decrease of the macro F1-score with increasing age.
This relation is not fully consistent for each single AU. However,
it needs to be denoted that the results are less reliable for the age
groups which have fewer frames in the testing data. Separating
the male subjects based on whether they are wearing a beard does
not yield any insightful results. All AUs except for AU 12, the lip
corner puller, are in the eye area, and the difference for AU 12 is
lower than the difference of the macro F1-scores and most of the
seemingly non-beard-related AUs. OpenFace’s macro F1-score and
the individual scores of AU 1, 2, 6, and 12 decrease for subjects
with glasses by an average of 0.1026, the score for AU 4 increases
slightly by 0.01. The decrease for AU 6, the cheek raiser, is 0.176.
As all of the AUs, except for AU 12, are in the upper face area, this
indicates that recognition can be hindered by glasses.

5.3 NISL2020
The ethnicity-wise evaluation in Table 6 shows no clear differ-
ences between the ethnicities of the NISL2020 output, with the
macro F1-scores differing by 0.099 at most. However, comparing
the clean NISL2020 and the contrary-padded NISL2020 cp version
shows that only 48,8% of African-American faces are detected, com-
pared to 95.11% for all other subjects. Consequently, the contrary-
padded predictions show a significant difference of 0.437 between
the macro F1-score of African-American and Asian subjects. The
result for African-American subjects being the lowest aligns with
the training data, where the African-American subjects are the
least represented (see Figure 4). Further dataset-wise examinations
indicate that a majority of undetected faces originated from BP4D,
a dataset with a dark-blue background and soft illumination. For
African-American females, only 19.98% of faces are detected, for
African-American males only 6.79%, compared to more than 98% for
all other ethnicities. Contrarily, within GFT, a dataset with a bright
background and better illumination, 85.8% of African-American
faces are detected, compared to 93.8% for Euro-Americans. This
leads to the assumption that the low contrast influences the per-
formance. However, contrast enhancing using CLAHE [39] did not
increase the ratio of detected faces sufficiently.
The gender-wise comparison in Table 7 shows that AU 4 is better
recognized in males, and AU 6 and 12 in females, which also results
in a higher macro F1-score for females. The better macro results
when evaluating on female subjects are in sync with the training
data, since there are more female subjects present (see Figure 4).
The contrary-padded output is excluded in this and the following
evaluations, because it does not contribute any additional insights.
Evaluating the models on groups separated according to their age
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Table 5: F1-scores for attribute-wise evaluation of OpenFace on its testing data (AffWild2-AU-T, AffWild2-AU-V, ERIK, and
GFT). For each attribute and Action Unit, the maximum and minimum F1-scores are bold.

Attribute Value Subjects Frames AU 1 AU 2 AU 4 AU 6 AU 12 Macro

Ethnicity

African-American 20 54,988 0.657 0.197 0.415 0.529 0.444 0.448
Asian 7 28,894 0.376 0.081 0.365 0.354 0.330 0.301
Euro-American 121 295,110 0.410 0.146 0.319 0.481 0.516 0.374
Hispanic 7 74,976 0.461 0.078 0.381 0.042 0.450 0.282
Other 1 1,800 0.102 0.042 0.316 0.341 0.463 0.253

Gender Female 73 214,916 0.367 0.136 0.319 0.421 0.508 0.350
Male 83 240,852 0.547 0.139 0.371 0.471 0.473 0.400

Age

5-14y 18 14,661 0.363 0.109 0.498 0.514 0.475 0.392
15-24y 96 263,906 0.387 0.186 0.287 0.470 0.524 0.371
25-34y 34 155,469 0.546 0.077 0.421 0.400 0.438 0.376
35-44y 4 8,836 0.470 0.000 0.304 0.448 0.323 0.309
45-54y 2 5,237 0.768 0.001 0.216 0.174 0.340 0.300
55-64y 1 414 0.048 0.000 0.000 0.000 0.656 0.141
65-74y 1 7,245 0.184 0.000 0.079 0.000 0.031 0.059

Beard No 57 164,292 0.532 0.153 0.335 0.428 0.481 0.386
Yes 26 76,560 0.571 0.113 0.436 0.550 0.455 0.425

Glasses No 136 350,115 0.478 0.164 0.340 0.485 0.503 0.394
Yes 20 105,653 0.389 0.053 0.350 0.309 0.450 0.310

Table 6: F1-scores for ethnicity-wise evaluation of NISL2020 and the contrary-padded output NISL2020 cp. For each Action
Unit, the minimum and maximum F1-scores are bold.

NISL2020 NISL2020 cp
Ethnicity Subj. Frames AU 4 AU 6 AU 12 Macro Frames AU 4 AU 6 AU 12 Macro

African-American 53 39,611 0.283 0.619 0.722 0.541 81,164 0.058 0.277 0.217 0.184
Asian 73 124,477 0.375 0.765 0.780 0.640 126,921 0.351 0.749 0.762 0.621
Euro-American 295 380,449 0.286 0.683 0.750 0.573 404,960 0.240 0.633 0.684 0.519
Hispanic 23 30,928 0.300 0.711 0.750 0.587 31,314 0.292 0.702 0.739 0.577
Other 1 1,506 0.661 0.354 0.875 0.630 1,800 0.303 0.256 0.450 0.336

shows a significantly better macro F1-score in ages ranging from
5-14 years, especially caused by a high individual score for AU 4,
the brow lowerer. As already mentioned in OpenFace’s results, this
needs to be interpreted with regard to the 5-14 years age group
consisting of children from the ERIK dataset mostly which has
the highest performance. The performance decreases with age;
the macro F1-score for 45-54 year old subjects is less than half
of the score for 25-34 year olds. On subjects above 74 years, the
performance is the worst. When remembering the training data
in Figure 5, most subjects were also in the range of 25-34 years.
However, it needs to be noted that the reliability of the results needs
to be judged with the different numbers of frames in the test set in
mind (nearly 100 times more frames in age range 15-24 years com-
pared to in 5-14 years). The scores for all male subjects regarding
beards do not show an obvious pattern, the macro F1-scores barely
differ. Separating the subjects based on whether they are wearing
glasses shows an interesting effect for the NISL2020 predictions.
Whereas the score for AU 12, the lip corner puller, decreases only

slightly, the F1-scores for AU 4 (brow lowerer) and 6 (cheek raiser),
both having effects around the eye area, decrease significantly by
0.218 and 0.133 respectively.

5.4 Categorical Emotions and Action Units
The dataset CK+ contains not only Action Unit ground truth infor-
mation, but also the categorical emotion annotation as described
in Section 2. It can therefore be used to compare NISL2020’s pre-
dictions and potential bias in Action Unit and emotion recognition.
Only the subset of CK+ that contains annotations for both facial
expression representations was used in order to ensure equal con-
ditions in the comparison. Furthermore, NISL2020’s CNN approach
is required when using NISL, because there are sequences in CK+
that are too short for the CNN-RNN.
Table 8 and Table 9 show the values for comparing the performance
gender-wise. Women’s emotions are scored slightly more reliably
than men’s, whereas the AU predictions are slightly more reliable
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Table 7: F1-scores for the attribute-wise evaluation of NISL2020 on its testing datasets (Affwild2-AU-V, BP4D, BP4D+, CK+,
ERIK, GFT, and UNBC). For each attribute and Action Unit, the maximum and minimum F1-scores are bold.

Attribute Values Subjects Frames AU 4 AU 6 AU 12 Macro

Gender Female 254 291,562 0.294 0.753 0.796 0.614
Male 91 1 285,409 0.312 0.632 0.696 0.547

Age

5-14y 13 2,699 0.801 0.670 0.698 0.723
15-24y 166 260,844 0.404 0.680 0.768 0.617
25-34y 219 246,622 0.301 0.736 0.763 0.600
35-44y 23 23,870 0.194 0.780 0.742 0.572
45-54y 9 16,717 0.116 0.437 0.335 0.296
55-64y 9 14,828 0.027 0.291 0.354 0.224
65-74y 5 8,608 0.117 0.515 0.440 0.357
75-84y 1 3,360 0.000 0.128 0.525 0.218

Beard No 142 210,783 0.318 0.628 0.700 0.549
Yes 49 74,734 0.298 0.646 0.687 0.544

Glasses No 428 549,831 0.309 0.703 0.759 0.590
Yes 18 27,140 0.091 0.570 0.705 0.455

for men than for women. Comparing the two emotion repre-
sentations ethnicity-wise yields slightly different tendencies for
both taxonomies. The macro F1-score for AUs is almost equal for
African-American, Asian, and Euro-American subjects, whereas the
predictions for Hispanic subjects are scored significantly lower (see
Table 11). The latter effect also persists in the emotion annotation,
but the first three ethnicities are rated differently, with emotions in
African-American subjects being recognized the most successfully
(see Table 10). The difference of the scores for African-American
and Hispanic subjects differs by less than a tenth in emotion clas-
sification and AU detection. Again, it needs to be noted that the
number of test frames differs by up to factor 35 between groups
and the overall number of samples is small in some groups, which
reduces reliability of the results in those groups.

6 DISCUSSION
The results in Section 5 can be used to judge if current affective
computing algorithms are prone to bias and provide a guideline for
such evaluations. The focus of this paper, however, is not on com-
paring the two models OpenFace and NISL2020. Those algorithms
have been trained on different training data and we have to test
them on different testing data in order to avoid testing on training
data. Table 4 shows clearly why comparisons of algorithms have to
be conducted on the same test dataset in order to be meaningful.
The most visible bias in both models regards age: The performance
for the age group 5-14 years is the highest and decreases with in-
creasing age. While the performance difference is relatively small
for the different cohorts within 5-34 years, it gets larger between the
older age categories. This relates back to the training data, where
we can see that throughout most analyzed datasets the age group
15-34 years is the best represented, with an overall mean age of
27.37 years (see Figure 1). Hence, training data is not sufficiently
provided for subjects exceeding this age category. We notice that
the youngest category (5-14 years) is not well represented in all
analyzed datasets either, but the two algorithms perform best for

these subjects. We hypothesize that the models show such a high
performance for the youngest category because these are mainly
subjects from the ERIK dataset, which has very high image and
annotation quality and contains children in the 5-14 years interval
exclusively. Older subjects are underrepresented in the analyzed
datasets, as well, and the two algorithms accordingly display the
worst Action Unit detection performance on these older categories.
Overall, wrinkles and the quality of images seem to have a big in-
fluence for Action Unit detection. Regarding ethnicity, OpenFace
performs best on African-Americans, while NISL2020 performs best
on Asians. This is surprising because our annotated data clearly
shows that European-American appearance is overly represented
in all benchmark datasets. A gender bias can be found in both
models, where OpenFace recognizes Action Units in male subjects
better and NISL2020 in female subjects. This is in line with the NISL
training dataset having more females than males. Unfortunately,
we cannot test this hypothesis for OpenFace because its training
data is not known exactly. Looking at Action Unit occlusion, for
example by glasses, we can see a worse performance on these spe-
cific Action Units in both models. For example Action Unit 6, the
cheek raiser effecting the eye, is detected worse by both models
when the subjects wear glasses.
We also did a preliminary evaluation on bias in categorical emotion
annotation compared to Action Unit annotation according to FACS
by evaluating the multi-task NISL2020 model on the CK+ dataset.
It can be noted that the overall performance is worse for detect-
ing emotions than for detecting Action Units, but bias is visible
concerning both gender and ethnicity. We can see that the bias for
each taxonomy is different, for example Action Units are better
detected in male subjects and emotions in female subjects. However,
a consistent difference in bias susceptibility was not found between
the annotation styles for the data and algorithms in question.
A possible influence in our bias evaluation is the correlation of
the metadata categories, for example that most subjects younger
than 22 years are female (see Fig. 2). This statistical relation can
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Table 8: Evaluation in F1-score of NISL2020’s emotion classification per gender on CK+ dataset. Themaximum results are bold.

Gender Subjects Frames Anger Disgust Fear Happiness Sadness Surprise Macro

Female 81 3,933 0.292 0.345 0.147 0.803 0.333 0.722 0.440
Male 37 1,936 0.113 0.335 0.173 0.824 0.187 0.743 0.396

Table 9: Evaluation in F1-score of NISL2020’s Action Unit detection per gender on CK+ dataset. Themaximum results are bold.

Gender Subjects Frames AU 1 AU 2 AU 4 AU 6 AU 12 AU 15 AU 20 AU 25 Macro

Female 81 3,933 0.695 0.509 0.708 0.601 0.748 0.310 0.161 0.779 0.564
Male 37 1,936 0.738 0.656 0.747 0.538 0.785 0.360 0.225 0.812 0.608

Table 10: F1-scores for NISL2020’s emotion classification per ethnicity on CK+ dataset. The minimum and maximum results
are bold.

Ethnicity Subjects Frames Anger Disgust Fear Happiness Sadness Surprise Macro

African-American 14 774 0.616 0.242 0.093 0.848 0.509 0.504 0.469
Asian 5 224 0.424 0.481 0.000 0.935 0.222 0.588 0.442
Euro-American 94 4,738 0.099 0.346 0.190 0.798 0.244 0.758 0.406
Hispanic 5 133 0.000 0.576 0.000 0.828 0.000 0.852 0.376

Table 11: F1-scores of NISL2020’s Action Unit detection per ethnicity on CK+ dataset. The minimum andmaximum results are
bold.

Ethnicity Subj. Frames AU 1 AU 2 AU 4 AU 6 AU 12 AU 15 AU 20 AU 25 Macro

African-American 14 774 0.691 0.494 0.799 0.396 0.685 0.486 0.279 0.722 0.569
Asian 5 224 0.632 0.069 0.810 0.713 0.914 0.571 0.000 0.871 0.573
Euro-American 94 4,738 0.719 0.592 0.693 0.593 0.756 0.246 0.155 0.798 0.569
Hispanic 5 133 0.658 0.431 0.545 0.649 0.833 0.000 0.000 0.731 0.481

influence the results since a more successful detection of Action
Units in female subjects could potentially imply more reliable pre-
dictions for young subjects. We could not detect such an effect, but
the existence cannot be ruled out.
Lastly, we want to emphasize the importance of being aware of the
use case of a model throughout its entire life-cycle. Bias itself is
not necessarily a problem as long as the model is used in a suit-
able environment: Using a model which detects facial expressions
well in middle-aged subjects in an environment with children is
not advisable. At the same time it would be perfectly suited when
working with university students. However, training data usually
does not favor edge cases and finding correctly biased models for
these groups may proof to be difficult. Either way, for the purpose
of these decisions information on performance depending on dif-
ferent use-case scenarios needs to be available. Therefore, in order
to enable informed decisions on model applications, we want to
encourage researchers and industry to test algorithms for bias and
report their results.

7 CONCLUSION
With cameras getting smaller and cheaper and machine learning
improving constantly, facial affective computing on larger scales is
becoming a possibility in many application fields. This raises the
question how fair these algorithms and how biased their underlying
datasets are.
In this paper, we first annotated and investigated the distributions
of age, gender, ethnicity, glasses, and beards for prominent Action
Unit datasets regarding bias. (Research Question 1:) We found
that while those distributions differ with regard to the dataset in
question, there is a significant bias towards age with a strong fo-
cus of most datasets on young adults. Furthermore, there is a very
strong bias regarding ethnicity with most of the subjects having a
Euro-American appearance. There is a small bias in gender with
varying direction depending on the dataset, combining all datasets
shows a slight bias towards female subjects.
Afterwards, we evaluated two state-of-the-art algorithms for their
performance in the different meta-groups. (Research Question 2:)
There were biases towards varying directions for gender and eth-
nicity, which is reasonable given that the algorithms were trained
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on different datasets. The strongest bias is in age, where both algo-
rithms had problems with elderly people. Occlusions from glasses
proved to be a problem for some Action Units close to the eyes,
beards surprisingly did not have a significant effect.
In the last part we compared the objective AU coding style with the
subjective categorical emotion coding style in regards to suscepti-
bility to bias. (Research Question 3:) While the performance of
the model for Action Unit detection showed a considerably higher
performance than for categorical emotion detection, the difference
in bias susceptibility is comparable on the dataset and algorithm in
question.
These findings lead to the following conclusions: First of all, since
bias susceptibility is a problem for facial affective computing al-
gorithms and the consequences of such bias could be severe in
critical areas, future affective computing datasets should contain
meta-information on the subjects. If possible, they should also con-
tain sufficient subjects of each group in at least age, gender, and
ethnicity to facilitate the development of fair algorithms. In a sec-
ond step, this allows researchers to test their affective computing
algorithms for fairness and to develop new algorithms, which are
less sensible to bias in their training data. In fact, this is what we
want to inspire with this paper. In the last steps towards application,
industry integrating affective computing research in their products
should actively be alerted to fairness issues by research partners,
and the resulting products should contain information about their
reliable areas of operation regarding bias.
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Figure 6: Age distribution of each dataset. Please note that the y-scales differ due to the varying number of frames per dataset
(see Table 1).
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