
Schriften aus der Fakultät Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universität Bamberg43

A Simulation Framework for
Function as a Service

Johannes Manner

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

43

Contributions of the Faculty Information Systems
and Applied Computer Sciences of the
Otto-Friedrich-University Bamberg

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

Band 43

2024

Contributions of the Faculty Information Systems
and Applied Computer Sciences of the
Otto-Friedrich-University Bamberg

Johannes Manner

2024

A Simulation Framework for
Function as a Service

Dieses Werk ist als freie Onlineversion über das Forschungsinformationssytem (FIS;
fis.uni-bamberg.de/) der Universität Bamberg erreichbar. Das Werk – ausgenommen
Cover, Zitate und Abbildungen – steht unter der CC-Lizenz CC BY.

Lizenzvertrag: Creative Commons Namensnennung 4.0
https://creativecommons.org/licenses/by/4.0

Herstellung und Druck: Prime Rate, Budapest
Umschlaggestaltung: University of Bamberg Press

© University of Bamberg Press Bamberg, 2024
https://www.uni-bamberg.de/ubp/

ISSN: 1867-6197 (Print)				 eISSN: 2750-8560 (Online)
ISBN: 978-3-86309-978-7 (Print)			 eISBN: 978-3-86309-979-4 (Online)

URN: urn:nbn:de:bvb:473-irb-929135
DOI: https://doi.org/10.20378/irb-92913

Bibliographische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.dnb.de/ abrufbar.

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der
Otto-Friedrich-Universität Bamberg als Dissertation vorgelegen.
1. Gutachter: Prof. Dr. Guido Wirtz
2. Gutachter: Prof. Dr. Dr. h. c. Frank Leymann
Tag der mündlichen Prüfung: 21.12.2023

Words are like bees
–

some leave a sting and others create honey
-UNKNOWN-

Acknowledgments

Over the last six years at the university I had so many great and enriching moments with
a wide variety of people for which I am very grateful! Unfortunately, I cannot mention
all of them by name, so I would like to take this opportunity at the beginning to say a
big thank you to those who have walked a part of this interesting way with me.

I would particularly like to thank my supervisor Prof. Dr. Guido Wirtz for
providing me with the chance to grow with the challenges research- and teaching-
wise. Especially the undergraduate course programming complex systems (PKS),
where low level concurrency mechanism were taught, enhanced my way of think-
ing. Also special thanks to the other members of my dissertation committee, Prof.
Dr. Udo Krieger and Prof. Dr. Sven Overhage and their valuable feedback during
the colloquium. I would like to thank my external examiner Prof. Dr. Dr. h. c.
Frank Leymann. I got to know him as one of the main organizers of SummerSoC,
a summer school on service oriented computing in Crete, which I attended four
times. I heard a lot of inspiring talks and made good friends and met one of the
kindest people I ever met - Stavros, an exquisite chef and bartender. I will really
miss the raki nights .

It’s impossible to have a great workplace without amazing people. First and
foremost all current and former members of Distributed Systems Group (DSG),
Sebastian Böhm, Robin Lichtenthäler, Stefan Winzinger, Stefan Kolb, Andreas
Schönberger, Simon Harrer and Matthias Geiger. You were there anytime to
support me when I needed advice. I cannot think about a better place to work!
Without Cornelia Schecher’s help in administrative matters I would not be able
to write these lines but would still be filling out forms. I am also very grateful
that we share the same passion - beekeeping - and used spare time to share
knowledge with each other, talking about the weather and the tons of honey we
will harvest. Also I really enjoyed the non-sense talks on Conversational Fridays,
a joint work with the members of SWT research group, in particular Eugene Yip
who comes up with the funniest topics ever. The last two years, I was engaged in
committee work together with colleagues from other faculties, in particular Nicole
K. Konopka, Susann Sachse-Thürer and Johannes Zenk. Without you I probably
would have resigned to convince people to fight for more digital processes. My
résumé after two years: The mills grind slowly but they grind. A constant in these
six years journey was ZEUS, a small workshop on services aimed for supporting
young researchers and early PhD students. My appreciation goes to Oliver Kopp
who is still the driving force of this workshop and all the other steering and PC

i

members. The feedback, reviews and discussion were more valuable for my work
than the big conferences I attended.
The other side of my PhD position was teaching which I really loved! I had a

lot of students challenging me and vice versa. I am especially proud of the papers
we wrote together, in particular with Robin Hartauer, Benedikt Full, Tobias Heckel
andMartin Endreß. WithMartin I evenwrote two. Many thanks to him and Tobias
which also contributed to my research prototype. We had a lot of implementation
fun years ago during my first university project as a PhD student.
My particular appreciation goes to my proof-readers Leonie Fidler, Sebastian

Böhm and Robin Lichtenthäler. Without your help the text would not be half as
good! Thanks for your countless hours in reading paper drafts, looking at con-
currency code and finally reading the next 190 pages also on the behalf of all the
others who read this work!
Last but not least, I am grateful for my housing project at Brenni and all the flat

mates who have become friends. Finally, a lot of love to my parents and sister for
their ongoing support in all my efforts. I apologize for any inconvenience this may
have caused you .

ii

Kurzfassung

Serverless Computing wird als Wegbereiter für den Betrieb großer Anwendun-
gen gesehen. Obwohl Entwickler und Forscher diesen Begriff oft verwenden, ist
das Konzept, über das sie eigentlich sprechen möchten, als Function as a Service
(FaaS) bekannt. Bei diesem neuen Servicemodell schreiben FaaS Nutzer einzelne
Funktionen und stellen diese auf Cloud-Plattformen bereit. Der Cloud-Anbieter
kümmert sich um alle betrieblichen Belange - somit scheint es sich aus der Sicht
des Nutzers um serverloses Computing zu handeln.
Dennoch ist es bei den meisten kommerziellen FaaS-Plattformen notwendig,

einige Funktionskonfigurationen vorzunehmen, da sie die Ressourcenzuweisun-
gen, insbesondere für CPU und Hauptspeicher, beeinflussen. Vergleicht man we-
sentliche Cloud Computing Charakteristiken bei den Modellen Platform as a Ser-
vice und FaaS, so zeigt sich bei den beiden Dimensionen Elastizität und Granula-
rität der Serviceabrechnung eine Verbesserung. FaaS ist das erste Cloud Service-
modell, das Funktionen bei Bedarf innerhalb weniger Millisekunden skaliert. Auf-
grund unabhängiger Skalierung und starker Isolation durch virtualisierte Umge-
bungen können Funktionskonfigurationen als unabhängig von anderen Cloud-
Funktionen angesehen werden. Daher sind keine Noisy Neighbor Probleme zu
beobachten. FaaS-Plattformenmessen die Ausführungszeit inMillisekunden und
stellen sie Nutzern auf Grundlage der Funktionskonfiguration in Rechnung (Gra-
nularität der Serviceabrechnung). Dies führt zu neuen Leistungs- und Kostenab-
wägungen.
In dieser Arbeit wird ein Simulationsansatz vorgeschlagen, um diesen Trade-off

in einer frühen Entwicklungsphase zu untersuchen. Eine Alternative zu unserem
Simulationsansatz wäre die Funktionen mit verschiedenen Konfigurationen pro-
duktiv zu betreiben, die Ausführungsdaten von mehreren FaaS-Plattformen zu
analysieren und die Konfiguration anzupassen. Dies würde allerdings zu Mehr-
kosten und einem höheren Aufwand führen. Um eine realistische Simulation zu
ermöglichen, sollten die Entwicklungs- und Produktionsumgebung so ähnlich
wie möglich sein. Diese Ähnlichkeit wird auch als Dev-Prod-Parität bezeichnet.
Basierend auf einer neuen Methodik zum Vergleich verschiedener virtualisierter
Umgebungen, können Benutzer unseres Simulationsframeworks Funktionen auf
ihren Rechnern ausführen und die Laufzeiteigenschaften verschiedener Konfigu-
rationen auf verschiedenen Cloud-Plattformen untersuchen. Eine Visualisierung
der lokalen Simulationen hilft den Nutzern dabei, eine geeignete Funktionskon-
figuration zu wählen, um den erwähnten Trade-off den Anforderungen entspre-
chend bestmöglich aufzulösen.

iii

Abstract

Serverless Computing is seen as a game changer in operating large-scale applic-
ations. While practitioners and researches often use this term, the concept they
actually want to refer to is Function as a Service (FaaS). In this new service model,
a user deploys only single functions to cloud platforms where the cloud provider
deals with all operational concerns – this creates the notion of server-less comput-
ing for the user.
Nonetheless, a few configurations for the cloud function are necessary for most

commercial FaaS platforms as they influence the resource assignments like CPU
time and memory. Due to these options, there is still an abstracted perception of
servers for the FaaS user. The resource assignment and the different strategies
to scale resources for public cloud offerings and on-premise hosted open-source
platforms determine the runtime characteristics of cloud functions and are in the
focus of this work. Compared to cloud offerings like Platform as a Service, two out
of the five cloud computing characteristics improved. These two are rapid elasti-
city and measured service. FaaS is the first computational cloud model to scale
functions only on demand. Due to an independent scaling and a strong isolation
via virtualized environments, functions can be considered independent of other
cloud functions. Therefore, noisy neighbor problems do not occur. The second
characteristic, measured service, targets billing. FaaS platforms measure execu-
tion time on a millisecond basis and bill users accordingly based on the function
configuration. This leads to new performance and cost trade-offs.
Therefore, this thesis proposes a simulation approach to investigate this trade-

off in an early development phase. The alternative would be to deploy functions
with varying configurations, analyze the execution data from several FaaS plat-
forms and adjust the configuration. However, this alternative is time-consuming,
tedious and costly. To provide a proper simulation, the development and produc-
tion environment should be as similar as possible. This similarity is also known
as dev-prod parity. Based on a new methodology to compare different virtualized
environments, users of our simulation framework are able to execute functions
on their machines and investigate the runtime characteristics for different func-
tion configurations at several cloud platforms without running their functions on
the cloud platform at all. A visualization of the local simulations guide the user to
choose an appropriate function configuration to resolve the mentioned trade-off
dependent on their requirements.

v

Contents

List of Figures xiii

List of Tables xvi

List of Listings xvii

List of Abbreviations xix

I. Background and Problem Identification 1

1. Introduction 3
1.1. Context . 3
1.2. Contributions . 6
1.3. Research Questions . 10

1.3.1. Conceptualization . 10
1.3.2. Benchmarking FaaS Platforms 11
1.3.3. Achieving Dev-Prod Parity 12
1.3.4. Providing User Guidance 14
1.3.5. Guidance for Improving Cold Starts 14

1.4. Outline . 15

2. Theoretical and Technical Foundations 17
2.1. Virtualization . 17

2.1.1. Motivation . 17
2.1.2. Virtual Machine . 18
2.1.3. Container Technology . 22
2.1.4. Performance Considerations 24
2.1.5. Summary . 26

2.2. Benchmarking . 26
2.2.1. Definition . 26
2.2.2. Metrics . 27
2.2.3. Workload Pattern . 28
2.2.4. Quality Criteria for Experimental Benchmark Design 29
2.2.5. Distinction to Related Concepts 34
2.2.6. Summary . 35

vii

Contents

2.3. Simulation . 36
2.3.1. Definition . 36
2.3.2. Quality Criteria . 36
2.3.3. Distinction to Related Concepts 38
2.3.4. Summary . 38

II. Function as a Service 39

3. Conceptualization of Function as a Service 41
3.1. Differentiation of Serverless Computing and Function as a Service 41

3.1.1. Motivation . 41
3.1.2. Related Work . 43
3.1.3. First Definition Approaches 43
3.1.4. Related Technologies . 44
3.1.5. Search Trends at Google’s Search Engine 45
3.1.6. Structured Literature Review 48

3.1.6.1. Identified Characteristics 48
3.1.6.2. Search Process 49
3.1.6.3. Discussion . 51

3.1.7. Conclusion . 55
3.2. Differentiation to Established Cloud Service Models 55
3.3. FaaS Offerings over Time . 56
3.4. Resource Scaling Strategies . 60
3.5. Architecture of a FaaS Platform Worker Node 64
3.6. Summary . 65

III. A Benchmarking and Simulation Framework for Function as a Service 67

4. Benchmarking FaaS Platforms 69
4.1. Current Benchmarking Approaches and Tools 69
4.2. Checklist for Performing FaaS Benchmarks 80
4.3. SeMoDe Web Application . 82

4.3.1. Database Schema . 83
4.3.2. Package Diagram and Extension Points 86
4.3.3. Interaction Mechanisms 89

4.3.3.1. Web UI . 89
4.3.3.2. Command Line Interface 93
4.3.3.3. REST API . 93

4.4. Invoking Cloud Functions . 93
4.4.1. Cloud Function Implementation 94
4.4.2. Workload Specification within SeMoDe 95
4.4.3. Submitting Requests . 95

viii

Contents

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine 101
5.1. Motivation . 101
5.2. Fundamentals . 104
5.3. Related Work . 105
5.4. Problem Analysis . 106
5.5. Methodology . 108
5.6. Web UI and Implementation . 110
5.7. Evaluation . 110
5.8. Conclusion . 114

5.8.1. Discussion of the Results 114
5.8.2. Threats to Validity . 115
5.8.3. Future Work . 115

6. Simulating FaaS Platforms 117
6.1. Motivation . 117
6.2. Current Profiling and Simulation Approaches 119

6.2.1. Profiling Strategies . 119
6.2.2. Simulation Approaches and Tools 120

6.2.2.1. Cloud Simulation 120
6.2.2.2. FaaS Simulation 121

6.2.3. Experiment Calibration . 122
6.3. Simulating Cloud Functions at Public Cloud Provider Platforms . . 123

6.3.1. Achieving Dev-Prod Parity by Calibrations 124
6.3.1.1. Calibration Function 125
6.3.1.2. Calibration Mapping 126

6.3.2. Execute Cloud Functions Locally 128
6.3.3. Evaluation . 129

6.3.3.1. Experimental Setup 129
6.3.3.2. Calibration Step 129
6.3.3.3. Simulating Cloud Function Behavior 131
6.3.3.4. Predicting Cloud Function Execution Time 135

6.3.4. Summary of AchievingDev-Prod Parity and Local FaaS Sim-
ulations . 136

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms 137
6.4.1. Motivation . 137
6.4.2. Related Work . 139
6.4.3. Methodology . 140
6.4.4. Evaluation . 141

6.4.4.1. Experimental Setup 141
6.4.4.2. Calibration Step 141
6.4.4.3. Compare OpenFaaS and AWS Lambda Execution

Trends . 143

ix

Contents

6.4.4.4. Co-location of Functions: TheNoisyNeighbor Prob-
lem . 147

6.4.5. Summary of Implementing a QoS Layer for Open-Source
Platforms . 148

6.5. Discussion . 149
6.5.1. Discussion of the Simulation Approach 149
6.5.2. Threats to Validity . 151

6.6. Future Work . 152

7. Decision Support and Guidance for Function Configuration 155
7.1. Graphical User Guidance For Function Configuration Options . . . 155

7.1.1. Calibration . 155
7.1.2. Mapping . 157
7.1.3. Simulation . 158

7.2. Guidance for Improving Cold Starts 160
7.2.1. Motivation . 160
7.2.2. Hypotheses . 161
7.2.3. Related Work . 162
7.2.4. Experiments . 163

7.2.4.1. Selection of Experiment Dimensions 163
7.2.4.2. Experimental Setup 164

7.2.5. Results . 166
7.2.5.1. Hypotheses Independent Results 166
7.2.5.2. Hypotheses Dependent Results 170

7.2.6. Discussion . 172
7.2.6.1. Discussion of Results 172
7.2.6.2. Threats to Validity 173

7.2.7. Future Work . 174

IV. Outlook and Conclusion 175

8. Simulating Microservices Architecture - an Outlook 177
8.1. An Exemplary Use Case . 177
8.2. Early Results . 178
8.3. Discussion . 181
8.4. Future Work . 183

9. Conclusion 185
9.1. Competing Approaches . 185
9.2. Summary . 187

Bibliography 191

x

List of Figures

2.1. Hypervisors and their corresponding technology stack based on
the responsibility of resource allocation [1, 32, 223]. 19

2.2. Containers and their corresponding technology stack [25, 75]. . . . 22

3.1. Google Search Trends for the keywords Serverless, Kubernetes, Func-
tion as a Service andAWSLambda fromDecember 2014 until Decem-
ber 2022 as well as their relative interest to each other. 46

3.2. Structured Literature Review conducted on 11th of January 2023 for
differentiating Function as a Service (FaaS) and Serverless. 50

3.3. Classification of FaaS and Serverless and relation to other as a Ser-
vice offerings based on the user and provider control [130, 133, 274]. 56

3.4. Public cloud provider FaaS platform (orange boxes) and their open-
source counterparts (blue boxes) over time. 57

3.5. GitHub stars for open-source FaaS offerings over time. 59
3.6. A suggested architecture for a FaaS worker node. 65

4.1. Strucutred Literature Review conducted on 13th of March 2023 to
identify empirical FaaS research. 70

4.2. Overall system architecture of the research prototype SeMoDe. . . . 82
4.3. Database schema of SeMoDe with a focus on benchmark and cal-

ibration entities. 84
4.4. UML package diagram of SeMoDe. 87
4.5. Setup configuration Web UI of SeMoDe showing aspects of the im-

plemented user management. 90
4.6. Benchmark Web UI (I/II) to specify general information and AWS

specific settings. 91
4.7. Benchmark Web UI (II/II) plotting benchmark experiments and

providing pipeline commands. 92
4.8. OpenAPI Specification for exposed REST API. 94
4.9. User and platform perceived performance when executing a cloud

function. 97

5.1. Executed calibrations showed an inconsistent resource scaling on
two local Ubuntu servers. 102

5.2. SeMoDe web UI depicts a non-linear performance distribution for
an Intel i7-7700, model 158 in one of our experiments. 111

xi

List of Figures

5.3. Calibrating H90 in different settings by changing scaling governor
and turbo boost. 112

5.4. Calibrating H90 in different settings by changing the scaling driver. 113

6.1. Simulation process for achieving Dev-Prod parity, local simula-
tions and a prediction to the public cloud. 124

6.2. Calibration result of the performed LINPACK benchmarks on a
cloud provider platform and locally. 127

6.3. Running Fibonacci cloud functions locally and on AWS. 132
6.4. Running prime number cloud functions locally and on AWS. . . . 134
6.5. Trends in prediction provider execution time by local execution

time for Fibonacci cloud function. 135
6.6. Trends in prediction provider execution time by local execution

time for prime number cloud function. 136
6.7. Bare metal and OpenFaaS function performance of LINPACK ex-

ecuted on H90. 142
6.8. Single-threaded Fibonacci executions on two environments, H90

(on-premise) and AWS Lambda (cloud offering). The function is
implemented in JavaScript. 144

6.9. Multi-threaded prime number executions on two environments,
H90 (on-premise) and AWS Lambda (cloud offering). The function
is implemented in Java. 146

6.10. Execution of multiple parallel instances of a multi-threaded prime
number search implemented in Java with and without Kubernetes
resource limits. 148

7.1. Local and provider calibration graphs together with their linear re-
gression models. 156

7.2. Mapping step for preparing equivalent settings for local simulations.157
7.3. Local simulations to assess the runtime characteristics for a single-

threaded Fibonacci cloud function. 158
7.4. Local simulations to assess the runtime characteristics for a multi-

threaded prime number search cloud function. 159
7.5. Start time of the ith execution of the local benchmark invocation. . 165
7.6. Execution times of cold and warm invocations on client side, 2018

and 2023. 166
7.7. Execution times of cold and warm invocations on provider side,

2018 and 2023. 167
7.8. Mean execution time formemory settings 1024, 2048 and 3008MB

in 2018 and 2023 for recursive Fibonacci for the second request to
a cloud function instance. 169

8.1. Architecture of a typical microservices FaaS application. 177

xii

List of Figures

8.2. Simulation results for two cloud functions within a microservices
architecture executed onH90. Black dots correspond to the primary
y-axis and show the simulated execution time inmilliseconds. Magenta
indicates the price per average function invocation in US cent. . . . 179

8.3. Execution Results for two cloud functions within a microservices
architecture at AWS Lambda. Black dots correspond to the primary
y-axis and show the execution time onAWSLambda inmilliseconds.
Magenta indicates the price per average function invocation in US
cent. 180

8.4. Drill down of the GeneratePDF function from Figure 8.3 for the
memory configuration 4096 MB for warm executions. 181

xiii

List of Tables

1.1. Publications by type and year. 7

2.1. Performance experiments comparing BareMetal (BM), VirtualMa-
chine (VM), and Container Technology (CT). 24

3.1. Characteristics included in Cloud Native Computing Foundation
definitions for FaaS and Serverless as well as the essential charac-
teristics of cloud computing defined by NIST. 49

3.2. Summary of Structured Literature Review publications for term
definitions of Serverless (S) and FaaS (F). 51

3.3. Characteristics (c1-c8) and their occurrences in the Structured Lit-
erature Review papers. 52

3.4. Summary of resource scaling strategies and limits of selected pub-
lic cloud provider FaaS offerings. 60

3.5. Summary of resource scaling strategies and limits of ten open-
source FaaS offerings. 62

4.1. Secondary studieswithin the Structured Literature Review on bench-
marking and simulation approaches. 71

4.2. Primary studies within the Structured Literature Review on bench-
marking and simulation approaches whichwere included based on
the literature process but not directly related to public cloud pro-
vider experiments. 72

4.3. Primary studies within the Structured Literature Review on bench-
marking and simulation approaches which present data on public
cloud provider experiments. 76

4.4. Benchmark Mode and Benchmark Parameters to specify a custom
workload . 96

5.1. Specifications of the twomachines issued for the shown experiments.107
5.2. Linear regression models for data presented in Figure 5.1. 108
5.3. Linear regression models for data presented in Figure 5.3 113
5.4. Linear regression models for data presented in Figure 5.4 114

6.1. Comparison between monitoring and profiling approaches 119
6.2. Linear regression models for calibration data. The unit of inter-

cepts and slopes is GFLOPS. 130
6.3. Linear regression models for displayed graphs in Figure 6.7. 141

xv

List of Tables

6.4. Resource settings for the suggested QoS layer based on GFLOPS.
OpenFaaS configurations are determined by theCPU shares, whereas
AWS Lambda configurations are based on the configured memory. 143

7.1. Mean values in milliseconds for cold and warm executions on cli-
ent and platform side in 2018 and 2023. 168

7.2. Differences of cold and warm executions on the client side for hy-
pothesis H1 considering programming languages. 170

7.3. Spearman’s correlation coefficient ρ and linear regression model
for hypothesis H2 considering the deployment package size. 171

7.4. Spearman’s correlation coefficient ρ and linear regression model
for hypothesis H3 considering the memory setting in 2018 and 2023.171

xvi

List of Listings

4.1. Start SeMoDe as CLI application. 93
4.2. JSON response from a cloud function. 95
4.3. Centerpiece of the BenchmarkExecutor class. 98

5.1. Sample LINPACK execution on H90 for a CPU share of 1.0. 109

xvii

List of Abbreviations

ACPI Advanced Configuration and Power Interface

ACU Azure Compute Unit

API Application Programming Interface

AWS Amazon Web Services

BaaS Backend as a Service

CaaS Container as a Service

CFS Complete Fair Scheduler

cgroups control groups

CLI Command Line Interface

CMS Cambridge Monitor System

CNCF Cloud-Native Computing Foundation

CNY Chinese Yuan Renminbi

CP Control Program

CRI Container Runtime Interface

DSG Distributed Systems Group

DTO Data Transfer Object

EKS Elastic Kubernetes Service

FaaS Function as a Service

GFLOPS Giga FLoating Point Operations Per Second

GKE Google Kubernetes Engine

HPC High Performance Computing

HWP Hardware-Managed P-states

IaaS Infrastructure as a Service

IaC Infrastructure as Code

ICU International Telecommunication Union

JIT Just-in-Time

JPA Java Persistence API

JVM Java Virtual Machine

xix

List of Abbreviations

JWT JSON Web Token

K8s Kubernetes

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

libOS Library Operating System

LXC Linux Container

ML Machine Learning

NIST National (US) Institute of Standard and Technology

OAS OpenAPI Specification

OCI Open Container Initiative

OLTP Online Transaction Processing

ORM Object Relational Mapping

OS Operating System

PaaS Platform as a Service

PCI Peripheral Component Interconnect

QoS Quality of Service

REST Representational State Transfer

RTT Round Trip Time

SaaS Software as a Service

SLA Service Level Agreement

SLR Structured Literature Review

SPEC Standard Performance Evaluation Corporation

SUT System Under Test

TCO Total Cost of Ownership

TPC-C Transaction Processing Performance Council Benchmark C

UI User Interface

USB Universal Serial Bus

vCPU virtual CPU

VM Virtual Machine

VMM Virtual Machine Monitor

XaaS Everything as a Service

xx

Part I.

Background and Problem
Identification

1

1. Introduction

Parts of this chapter have been taken from [174, 180–182, 185].

Severless Computing is seen as a game changer in operating large-scale applica-
tions. For the first time, developers are able to fully focus on the implementation
of their apps rather than on configuring servers. However, when deploying a cloud
function to a commercial FaaS platform, a user has to specify some settings which
influence the scaling of resources and therefore the machine’s configuration. The
first chapter of this work states this configuration problem in Section 1.1 and pro-
poses a solution for it. A summary of the main contributions published while
working on the dissertation project is given in Section 1.2 followed by a detailed
agenda stating research questions and the research methodology. This introduc-
tion is concluded by an outline in Section 1.41.

1.1. Context

When cloud computing started to gain popularity, it promised many advantages
to developers. These advantages are essentially the cloud computing capabilities
defined by the National (US) Institute of Standard and Technology (NIST) [192]:
deliver computing resources elastically at scale, offer measured services where the
user pays per use, enable on demand self-service, pool resources and access ser-
vices via standardized network interfaces. Back in September 2011, NIST defined
three as a Service models, Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS) and Software as a Service (SaaS), to shape the cloud computing land-
scape and provide a common understanding of terms and characteristics. The
main differentiation made between the three models is based on the responsibil-
ity the user (or the provider) has:
IaaS is a model to “provision [...] fundamental computing resources where the

consumer is able to deploy and run arbitrary software” [192, p. 3]. An IaaS pro-
vider handles procurement of machines and provides basic compute, storage and
networking resources. The user is free to use this generic toolbox to run their
preferred Operating System (OS) or other custom libraries and tools.
PaaS is more restrictive in the sense that a consumer is able “to deploy onto the

cloud infrastructure consumer-created or acquired applications created using pro-
gramming languages, libraries, services, and tools supported by the provider” [192,

1All links in the thesis have been last accessed on 24th of July, 2023. Their status for preserving
the content when addressed for this thesis is archived at Zenodo [176].

3

1. Introduction

p. 2-3]. This loss in flexibility compared to IaaS comeswith pre-configured runtime
environments which allows consumers to focus on the core business capabilities
of their application rather than patching their systems.
SaaS is at the end of a spectrum. Here the consumers “use the provider’s ap-

plications running on a cloud infrastructure” [192, p. 2] out of the box with limited
application-specific configuration options. In this service model, all operational
work is handled by the cloud provider.
Since the initial classification of as a Service offerings by NIST is restricted to

these three service models and there was no update since their initial publication,
the Everything as a Service (XaaS) movement started [69]. As the name implies
this model is an umbrella term of new service models which e.g. transfer database
offerings to the cloud [146] or rethink and recombine established services. A lot
of new service models originated from this XaaS movement but all of them can be
primarily attributed to one of the three originally defined service models.
In late 2014, Amazon Web Services (AWS) introduced a new compute service

called AWS Lambda2 which attracted a lot of attention in industry and academia.
With Lambda, AWS implemented a platformwhere a user has the option to deploy
ephemeral and stateless cloud functions which run only upon request. Based on
their product ideas, FaaS was introduced as a new service model tightly related to
PaaS. The most important difference is the granularity: On PaaS platforms, self-
contained applications are being deployed, whereas on FaaS platforms, only single-
purposed, stateless cloud functions can be deployed. A furthermovement inmore
granular services from microservices to nanoservices is observable [3, 173, 256].
Due to this focus on a single functionality, some cloud computing characterist-
ics, especially rapid elasticity and measured service, have been improved to such an
extent that it is justifiable to speak of a new service model. FaaS is seen as the
next evolution in cloud computing by several researchers [41, 250, 275]. What’s
more, ten years after their initial “view on cloud computing” [5], researchers at
the Berkeley University published an update [113] in which they claim that Server-
less will dominate the cloud in future. As FaaS is the predominant reason for the
Serverless hype where a cloud computing user hands over all operational work
to the provider, many practitioners and researchers use the terms Serverless and
FaaS interchangeably even if technically they want to refer to FaaS. Since there is
no common terminology yet, the two terms Serverless and FaaS will be differen-
tiated in Section 3.1. As a short preview it can be said that we categorize FaaS as
a subset of Serverless technologies since it is not the only cloud service offering
which hides server configuration and management from the user. For example,
all SaaS offerings also hide them from the user. Therefore, in the following FaaS
is explicitly used to address the cloud function concept.
When looking at the cloud computing characteristics listed at the beginning, it

can be seen that rapid elasticity and measured service are the focus of FaaS. Due
to the stateless nature of cloud functions, a FaaS platform is conceptually capable

2https://aws.amazon.com/de/about-aws/whats-new/2014/11/13/introducing-aws-lambda/

4

https://aws.amazon.com/de/about-aws/whats-new/2014/11/13/introducing-aws-lambda/

1.1. Context

of starting a new instance for every single request and tearing it down right after
executing the function. Furthermore, the influence of one cloud function on a re-
lated function, like executing two functions in sequence, is reduced to aminimum
since the functions are decoupled by communicating only via events. Therefore,
functions can be scaled independently of each other. There is no noisy neighbor
problem at public cloud providers [17] and a solution to overcome this problem
in on-premise open-source FaaS systems is proposed in Section 6.4. Thus, a user
can optimize the cloud function configuration for each function in isolation de-
pendent on its specific requirements. During periods without user requests, there
is no bottom line of always running cloud function instances. This enables real
elasticity from zero to an arbitrary number of instances. In most of the current
cloud platforms and open source tools, the platform starts a function instance for
the first request and keeps the instance warm for a short time without billing the
user. This leads us to the second important improvement – the measured service
characteristic.
FaaS is the first compute service where the public cloud provider offers a pay-as-

you-go billing model. A user is only charged for the time their functions are actu-
ally running. AWS Lambda launched the first commerical offering with an already
fine-grained billingmodel of 100millisecond chunks in 2015 but announced to im-
prove their billing model to a millisecond basis in December 20203. This unique
billing scheme for public cloud providers raises new performance/cost trade-off
questions. This is in contrast to on-premise hosted open-source platforms, where
no metering and therefore no billing guidelines exist. The question of how to
price on-premise hosted solutions is still unanswered. To address this trade-off,
there are two important factors to consider. Firstly, the execution time of a cloud
function determines the price based on the millisecond billing scheme. Secondly,
the configuration of cloud function instances is used for scaling resources and
also defines the price per millisecond. For example, doubling the resource assign-
ment for a function results in doubling the price per millisecond but would also
halve the execution time in an ideal world. In such a scenario a user would be
charged equally for all configurations, as can be seen in Fig. 12 in the experiment
of FIGIELA and others [79]. Leaving the ideal world scenario of functions fully
utilizing the assigned resources, a user is facing the challenge to configure cloud
functions appropriately based on their requirements to meet latency constraints
without wasting resources and in the end money.
When comparing this configuration problem with applications deployed to a

PaaS environment, two aspects make it apparent why the configuration problem
and the implications for cloud functions are worth investigating. The first reason
is the time period during which a PaaS application is running. Virtual Machines
(VMs) are typical deployment targets in PaaS. Applications run for hours not mil-
liseconds, also during idle periods. The price per request is thus influenced by the

3https://aws.amazon.com/de/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-
savings/

5

https://aws.amazon.com/de/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
https://aws.amazon.com/de/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/

1. Introduction

utilization of the system. For cloud functions, instead, each request is executed
and billed independently without any instances being idle. The second aspect is
scaling. In PaaS scenarios one instance is always running to serve incoming re-
quests, independent of the workload. Further instances are deployed for example
when the CPU utilization of the first instance exceeds a certain threshold. There-
fore, a user chooses the configuration in such a way that the application instance
can handle predicted peak loads and configures the platform to scale further in-
stances if needed. Based on the elasticity property of FaaS there is no consideration
whether the function can handle peak loads. If a peak occurs, the FaaS platform
scales horizontally by creating new instances. The performance/cost trade-off is
solely based on the chosen programming language and the function configuration
determining the vertical resource assignment for every single cloud function in-
stance. Choosing the right configuration isn’t easy and guiding a user to find a
suitable one is the motivation of this thesis project.

1.2. Contributions

To provide the aforementioned user guidance for a proper cloud function config-
uration, three contributions were made to the scientific community:

(C1) New hypotheses, concepts andmethods to build a simulation framework for
cloud functions are proposed to predict the runtime behavior for different
configuration parameters during the development process. New insights on
how to calibrate different virtualized execution environments are gained by
calibration data which are used to calculate equivalent settings for the local
developer’s machine and cloud platforms.

(C2) The research prototype implements the proposed methods and evaluates
them within the already published papers. Furthermore, the tool is able to
simulate arbitrary cloud functions locally as long as they are packaged as
Open Container Initiative (OCI) compliant images and presents guidance
for cloud function configuration via its web User Interface (UI).

(C3) This work provides an understanding about the applied scaling strategies
for public cloud providers as well as on-premise open-source hosted FaaS
platforms. Many research papers doing empirical research did not consider
multi-threaded functions despite the capabilities of several cloud platforms
to assign resources of multiple cores to a single cloud function. This often
led to incomplete or wrong conclusions about the resource scaling strategies
of cloud providers. By analyzing these research papers and performing ex-
periments with multi-threaded cloud functions, we overcome misinterpret-
ations and guide users to consider multi-threaded code.

The main contribution of the dissertation project is to build a simulation frame-
work for FaaS (C1) to find the best function configuration for a cloud function

6

1.2. Contributions

deployed to a FaaS platform based on the user’s requirements. To reach this goal,
we propose a simulation to be run on the developer’s machine at an early stage
of the software development lifecylce, since deploying functions, executing them
and collecting data for analysis is time-consuming and introduces further efforts.
A precondition for ameaningful user guidance is parity of the local (dev) and cloud
environment (prod). This dev-prod parity is one of the Twelve-Factor app prin-
ciples4 to build SaaS applications. It does not necessarily mean that developers
have to buy the same hardware as used by the cloud provider in their computing
centers. Rather, it suggests that developers configure their system and functions
locally in a comparable way to the cloud. This calibration of the local developer’s
machine and the corresponding cloud platform is the main contribution of the
work in hand. The proposed calibration and the executed simulations were val-
idated via benchmarks on different FaaS platforms as well as local machines. In
the end, the implemented tool executes several simulations and gives guidance to
users on how to configure a cloud function based on the user constraints.
Individual aspects of this process have already been published. Table 1.1 sum-

marizes all papers submitted to peer-reviewed conferences and workshops. The
technical report [174] describes and explains the research prototype. The author of
this thesis is also the first author of all published papers except for the “Considera-
tions for Portability” [96] which originated from amaster thesis. The work in hand
is based on these already published papers, brings them into a consistent shape
and adds further insights. At the beginning of each section, references indicate
whether the respective section is based on already published work.

Table 1.1.: Publications by type and year.
Type Year Where

[175] Conference 2023 CLOUD
[180] Conference 2022 CLOUD
[96] Conference 2022 CLOSER
[174] Technical Report 2021 Bamberger Beiträge zur Wirtschaftsinformatik

und Angewandten Informatik
[185] Conference 2021 CLOUD
[181] Conference 2021 SOSE
[179] Summer School 2019 SummerSoC
[183] Journal 2019 SummerSoC
[173] Workshop 2019 ZEUS
[182] Workshop 2018 WoSC

The following enumeration is a detailed list of the relevant publications for this
thesis already presented in Table 1.1:

[175] J. Manner: “A Structured Literature Review Approach to Define Serverless
Computing and Function as a Service”, In Proceedings of the IEEE Interna-
tional Conference on Cloud Computing (CLOUD), 2023.

4https://12factor.net/dev-prod-parity

7

https://12factor.net/dev-prod-parity

1. Introduction

[180] J. Manner and G. Wirtz: “Resource Scaling Strategies for Open-Source FaaS
Platforms compared to Commercial CloudOfferings”, In Proceedings of the
IEEE International Conference on Cloud Computing (CLOUD), 2022.

[96] R. Hartauer, J. Manner and G. Wirtz: “Cloud Function Lifecycle Consid-
erations for Portability in Function as a Service”, In Proceedings of Inter-
national Conference on Cloud Computing and Service Science (CLOSER),
2022.

[174] J.Manner: “SeMoDe – Simulation and Benchmarking Pipeline for Func-
tion as a Service”, Bamberger Beiträge zur Wirtschaftsinformatik und An-
gewandten Informatik Nr. 105, University of Bamberg Press, November
2021.

[185] J. Manner, M. Endreß, S. Böhm and G. Wirtz: “Optimizing Cloud Function
Configuration via Local Simulations”, In Proceedings of the IEEE Interna-
tional Conference on Cloud Computing (CLOUD), 2021.

[181] J. Manner and G.Wirtz: “WhyMany Benchmarks Might Be Compromised”,
In Proceedings of the IEEE International Conference on Service-Oriented
System Engineering (SOSE), 2021.

[179] J. Manner and G. Wirtz: “Impact of Application Load in Function as a Ser-
vice”, In Proceedings of Symposium and Summer School On Service-Ori-
ented Computing (SummerSoC), 2019.

[183] J. Manner, S. Kolb and G. Wirtz: “Troubleshooting Serverless functions: a
combined monitoring and debugging approach”, In SICS Software-Inten-
sive Cyber-Physical Systems, 2019.

[173] J. Manner: “Towards Performance and Cost Simulation in Function as a
Service”, In Proceedings of Central European Workshop on Services and
their Composition (ZEUS), 2019.

[182] J. Manner, M. Endreß, T. Heckel and G. Wirtz: “Cold Start Influencing
Factors in Function as a Service”, In Proceedings of theWorkshop on Server-
less Computing (WoSC), 2018.

Apart from the vision paper [173], the portability consideration work [96] and
the term definitions [175], the methodological parts of all other papers were eval-
uated using the research prototype SeMoDe [174]. This research prototype forms
the second contribution (C2). The acronymwas coined at the beginning of the dis-
sertation project and stands for ServerlessMonitoring and Debugging. It was in-
spired by the first paper which was published in Software-Intensive Cyber-Physical
Systems Journal [183]. Based on the design of this research, a small benchmark-
ing component was needed for executing functions and analyzing the logs. This

8

1.2. Contributions

small component and the possibilities to make empirical research caught our at-
tention which resulted in the overall idea presented in 2019 as a vision paper at
ZEUS [173]. A detailed introduction of the capabilities of SeMoDe is presented in
Section 4.3. SeMoDe is freely available under a MIT license5 and implemented in
Java using SpringBoot and Docker containers for executing simulated functions
on a local machine. It is hosted on GitHub6 and deployed on the DSG cluster7.
Overcoming misinterpretation of multi-threaded code (C3) was motivated by

both, research and teaching. When reading details of some research papers, e.g.,
Fig. 2 in [154], Fig. 1. in [72], Sec. 6.2 in [48], Sec. 6 in [189], Tab. 3 in [17] or
Fig. 7 in [70], it was apparent that the authors of these papers did not mention nor
consider multi-threaded cloud functions. The authors wonder why they faced con-
stant execution times despite increased resources (vertical scaling). Since most
platforms provide only a configuration of memory and scale CPU and other re-
sources proportionally, it is not apparent without reading the details of the docu-
mentation at which level a cloud function gets assigned more than a single core.
The authors of the aforementioned papers tried to explain these phenomena with
short execution times inducing greater prediction errors, the rounding of execu-
tion times to 100 ms blocks (at AWS Lambda back in 2021), or could not find a
reason at all. None of these explanations are convincing when reading the pa-
pers and looking at the presented data. To the best of the author’s knowledge,
only a single publication [293] includes multi-threaded functions in their evalu-
ation but also made a misinterpretation due to the resource setting chosen. This
observation lead to the assumption that resource allocation (vertical scale-out) and
multi-threading on a function level are often neglected. Most experiments address
the rapid scalability property of FaaS platforms and only look at horizontal scale-
out [17, 119]. Additionally, researchers argue that cloud functions are often used
when implementing glue code [54, 110, 148], for example to integratemicroservices
with each other. A vertical scale-out is not in focus in such cases, but experiments
dealing with different cloud function configurations which ignore this aspect are
bound to infer incorrect interpretation and results.
Another motivation to address this aspect was lecturing an advanced under-

graduate course on concurrency programming in Java. Most undergraduate com-
puter science courses focus on sequential programming within a single thread
despite the fact that since IBM released their first multi-core processor8 20 years
ago, there have beenmany hardware achievements with regard to parallel comput-
ing. To close the gap between the single threaded undergraduate courses and great
textbooks like “Java Concurrency in Practice” [87] or “Effective Java” [26], we wrote
the “Lecture Notes: Concurrency Topics in Java” [178] to summarize insights of

5https://opensource.org/licenses/MIT
6https://github.com/johannes-manner/SeMoDe
7https://semode.pi.uni-bamberg.de/
8https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/

9

https://opensource.org/licenses/MIT
https://github.com/johannes-manner/SeMoDe
https://semode.pi.uni-bamberg.de/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/

1. Introduction

the challenges and pitfalls students encounter when learning to write concurrent
code and to guide them in their efforts.
During the dissertation project the author had the pleasure to work in various

roles within the scientific community. He served as a program committee chair
for the Central European Workshop on Services and their Composition (ZEUS)
and edited the proceedings from 2020-2022 [184, 186, 187]. The idea to connect
young researchers to allow them to discuss their visions for the dissertation pro-
jects is one of ZEUS’s success factors. The constructive atmosphere helped to de-
velop new ideas and to stay focused. Additionally, many papers were reviewed for
several conferences namely the Conference on Software Engineering and Know-
ledge Engineering (SEKE2019-2021), Conference on Utility and Cloud Comput-
ing (UCC2019-2021), Conference onOmni-layer Intelligent Systems (COINS2020-
2021), Conference on Cooperative Information Systems (COPIS2022) and Confer-
ence on Cloud Computing (CLOUD2022).

1.3. Research Questions

The following research questions are more specific about the contributions and
already outline themain part of the thesis. They are clustered in five sections: Con-
ceptualization, Benchmarking FaaS Platforms, Achieving Dev-Prod Parity, Provid-
ing User Guidance and Improving Cold Starts.

1.3.1. Conceptualization

As mentioned before there is still no widely accepted terminology for the new
service model FaaS due to the continuously evolving research area. This motivates
the first part of this thesis as well as the first research question:

Research Question 1.1:
Which characteristics define a FaaS offering?

In particular, the term FaaS is differentiated from Serverless Computing by giving
an overview of existing definitions and summarizing key characteristics of a FaaS
offering. We try to understand the evolution of terms based on search trends and
share best practices on how to be precise with regards to term usage while still
ensuring visibility. Since FaaS is perceived as a new cloud service model, the next
research questions addresses the relation to other as a Service models especially
the ones defined by NIST:

Research Question 1.2:
How is FaaS related to other servicemodels in the cloud computing landscape?

Furthermore, a market analysis is conducted to identify currently available pro-
viders and open-source solutions and their technical realization. Especially the

10

1.3. Research Questions

different virtualization options for building a FaaS platform like Unikernels, VMs,
or containers are discussed. In addition, an overview is provided on how different
platforms implement scaling strategies, in particular how they assign resources
to the deployed cloud functions. For open-source platforms, it is apparent that
Kubernetes (K8s) seems to be a common abstraction [12, 113, 180] to delegate
scaling and other operational tasks to.

1.3.2. Benchmarking FaaS Platforms

A quote fromW. EDWARDS DEMING (1900-1993), “without data, you’re just another
person with an opinion.”, sparked two research questions about how to bench-
mark FaaS platforms and what best practices of benchmark approaches and their
data generation could look like. First, it is necessary to understand the current
state of research by looking at benchmarking studies which were conducted dur-
ing the last years. Based on a Structured Literature Review (SLR), initially done
while writing a technical documentation of the research prototype [174] and up-
dated for this thesis, the following question is answered:

Research Question 2.1:
Which tools and experiments do currently exist for benchmarking FaaS plat-
forms?

What is evident when reading relevant research papers is that only a few ex-
periments specify all their settings or make source code and data publicly avail-
able. Nevertheless, documentation of all settings is essential to interpret the res-
ults explained in the papers and give other researchers the option to reproduce
research and therefore verify results. In an SLR conducted by KUHLENKAMP and
WERNER [137], they found that only three out of 26 FaaS benchmarking experi-
ments published until 2018 provided all the necessary information. Furthermore,
when looking at other research, like Fig. 4 in [167] where two different clusters of
measured execution times exist, phenomena are apparent but some data is miss-
ing to properly interpret the results. In the aforementioned case, the missing data
is the VM and machine configuration. Based on these observations, the following
research question wants to tackle this problem of incomplete data acquisition by
specifying a catalog of necessary data:

Research Question 2.2:
How should a FaaS experiment be documented and which items are necessary
for data evaluation?

Explanations are given on how relevant data is measured and stored persistently
with the help of the research prototype. SeMoDe’s system architecture as well as
the database model is aligned with insights about incomplete experiment docu-
mentation and aspects identified when answering research question 2.2.

11

1. Introduction

1.3.3. Achieving Dev-Prod Parity

After understanding the systems’ resource allocation via benchmarking, the main
concern of the work in hand is achieving dev-prod parity and simulating the execu-
tion behavior of cloud functions. This work and the presented data focus on sim-
ulating CPU intensive functions like LINPACK, recursive Fibonacci, and prime
number search as often done in empirical FaaS research, e.g. in [138, 182, 185,
213, 255, 271]. The main reasons for choosing these functions are a good un-
derstanding of their runtime characteristics, their wide-spread use, and therefore
comprehensible results and discussions.
One of the Twelve-Factor App guidelines recommends that development and

production environments should be “as similar as possible”4. The idea of this
dissertation project to simulate a cloud function during development in order to
make a prediction about the runtime behavior comes with a few challenges. The
machine performing the simulation should be equipped comparably with the de-
ployment target. While performing an experiment on one of the local machines
at the chair, a situation occurred where the scaling of resources was unpredictable
due to the CPU frequency scaling algorithms used. This leads to the following
question:

Research Question 3.1:
How can a consistent CPU scaling behavior across various processors and scal-
ing algorithms be achieved and visualized?

Experiments were performed to test the CPU scaling behavior under different
Linux kernel settings. We used the introduced benchmarking facilities to collect
data on a public FaaS platform and calibrated the local environment accordingly.
On the local machine, Docker containers are used to control assigned resources
using container quotas (cgroups). On the provider side, the computing perform-
ance depends on the selected resource setting. To perform the calibration, func-
tions which implement LINPACK [65, 66] - a widely used benchmark assessing
CPU performance - were executed. The results are measured in Giga FLoating
Point Operations Per Second (GFLOPS). When executing the calibration function
for different quotas or function settings, the GFLOPS value indicates the container
respectively cloud function’s performance. This data is used to compute linear re-
gression models for making the scaling of resources statistically and graphically
visible. After a consistent scaling of resources locally and for the respective FaaS
platform has been achieved, the next question arises:

Research Question 3.2:
How can two distinct virtualized execution environments be made compar-
able?

SPRUNT [258] emphasizes that processor implementations aremostly abstracted
by program characterization events, like floating point events. Since the calibration

12

1.3. Research Questions

already computesGFLOPS, this data is used to compute the linear regressionmod-
els to determine a mathematical function by equating the two regressions. At this
point, settings of the target FaaS platform can be selected and comparable resource
assignments for executing the local simulation can be determined. This leads to
the evaluation and the next research question:

Research Question 3.3:
Do resource configurations based on calibration lead to accurate predictions
on a provider-hosted FaaS platform in the cloud?

To evaluate the proposed methodology, functions were executed locally and in
the cloud with the computed settings from RQ 3.2 to compare the execution times
and compute trends. Asmentioned before, a lot of research papers do not consider
multi-threaded functions. Therefore, experiments were performed with several
single as well as multi-threaded functions. This is particularly interesting when
comparing the different CPU equivalents especially for configurations where a
setting exceeds the resource equivalent of more than one core. Besides fortunate
coincidence, the one CPU equivalent differs between the local environment and
the target platform. This should be kept in mind when interpreting the results.
Up until now, we only considered resource scaling in the cloud where a lot

of empirical research has already been conducted and documented by two SLRs
about benchmarking FaaS systems [174, 240]. These SLRs state that performance
benchmarking is rarely done for open-source offerings which results in unfair
comparisons to the cloud since Quality of Service (QoS) attributes and proper re-
source scaling algorithms are not in place for open-source platforms. Therefore,
the last research question in this chapter is concerned with this issue:

Research Question 3.4:
How can resource scaling strategies be applied to on-premise open-source
FaaS platforms in a manner that is equivalent to cloud strategies?

If the resource scaling strategy for on-premise open-source platforms is equival-
ent to those on a cloud FaaS platform, the introduced simulation approach can be
extended to open-source platforms as well. As a notable side effect, the limiting
of resources for the execution instance of a cloud function on an on-premise hos-
ted open-source FaaS platform can solve the noisy neighbor problem. As already
mentioned, this problem is not apparent in the cloud as research showed [17]. Fur-
thermore, different configurations of on-premise hosted cloud functions allow a
pricing per invocation as done by public cloud providers and provides a company
with the option to transform their IT department’s method of settlement from a
cost to a profit center.

13

1. Introduction

1.3.4. Providing User Guidance

Performance and cost are two conflicting goals a user should consider when con-
figuring a cloud function. As stated in the beginning, FaaS is the first service
model where a user pays for the compute time they consume without idling. After
presenting empirical data which shows that the simulation approach predicts ex-
ecution times reliably, a user guidance is offered by clarifying the following ques-
tion:

Research Question 4:
How can developers be supported in making reasonable decisions about their
cloud function configurations?

With the help of SeMoDe, execution data of the local simulations are presented
to the user graphically. Simulated data are displayed for different function con-
figurations and a user of the prototype can select a target configuration. Based
on this, an ideal cost function is displayed helping the user to assess whether the
function profits from an resource increase/decrease and how this is related to the
cost of the function execution. The UI additionally includes information about
single- respectively multi-core limits to raise awareness when a cloud function
configuration exceeds this limit.

1.3.5. Guidance for Improving Cold Starts

The hype about FaaS can be explained by the elastic scalability of functions per
request. One downside of this property is that it entails a lot of cold starts. Cold
starts happen when starting a function instance for the first time and introduce ad-
ditional latency for spinning up the execution environment. Due to performance
reasons, FaaS providers do not shut down the cloud function instances immedi-
ately. Subsequent executions use already existing containers to profit from a pro-
visioned execution environment. This is the reason why cold starts are one of the
most discussed performance aspects in empirical FaaS research, e.g. in [157, 182].
To mitigate the problem, there are some anti-patterns to avoid cold starts by artifi-
cially keeping the function instances warm. This is often done by pinging the end-
point on a regular basis [145, 273] to fake actual demand. To avoid suchmitigation
strategies, the last research question deals with influential factors and provides an
understanding of how the cold start overhead can be reduced:

Research Question 5:
Which factors influence the cold start behavior of a function besides the func-
tion configuration?

To answer this question a hypotheses based investigation was performed and
complementary insights from related work were added. It was evident during

14

1.4. Outline

data evaluation that the user perceived cold start times include additional over-
heads not included in the metering service of the FaaS platform. When comput-
ing the difference between a cold and a warm execution on the same container
instance, situations occurred where the reported cold start overhead as measured
by themetering service in the cloud was 7 times lower than the difference between
cold and warm execution on the client side [182]. Therefore, since the aim is to
guide users to configure their functions properly, implementation decisions of
developers are questioned in order to reduce the cold start period for the user.

1.4. Outline

The outline of this thesis is as follows: The most important foundations, namely
virtualization, benchmarking and simulation, are introduced in Section 2. These
foundations form the background of this work and conclude Part I.
Part II is devoted to Function as a Service. RQ1.1 and RQ1.2 are answered in

Section 3 where a conceptualization of FaaS and a distinction to established as a
Service models are provided. Commercial and open-source FaaS platforms as well
as their corresponding resource scaling strategies are listed followed by a typical
architecture of a FaaS worker node.
Themain contributions are addressed in Part III where RQ2-RQ5 are answered.

Current benchmarking approaches are discussed in Section 4 to answer RQ2.1.
This detailed discussion resulted in a checklist and documentation guidance for
FaaS experiments as raised by RQ2.2. To enforce the checklist and comply to a
reproducible experimental design, a custom benchmark research prototype is pro-
posed - SeMoDe. The architecture of the research prototype is discussed along the
insights from the SLR. During the experiments described in Section 5, the custom
scaling driver intel_pstate showed a non-linear scaling of resources. Thismotiv-
ated research on RQ3.1. The idea to equalize two virtual execution environments
provides an answer to RQ3.2 which is discussed in Section 6 where an evaluation
of the proposed methodology confirms that it leads to accurate predictions, which
was challenged by RQ3.3. For RQ3.4, the proposed methodology is applied to an
open-source platform to incorporate comparable research with public cloud offer-
ings. Section 7 contains the answer to RQ4 as it explains how SeMoDe can be used
to provide guidance for users to select a proper cloud function configuration. It
also addresses cold start influencing factors thereby answering RQ5.
Part IV concludes the thesis by discussing the most important competing ap-

proaches to the work in hand. Furthermore, the main contributions are summar-
ized and a vision on performance aware computing is proposed for future work.

15

2. Theoretical and Technical Foundations

Parts of this chapter have been taken from [185].

First of all there are some important foundations which need to be laid down.
Section 2.1 introduces the range of virtualization and container technology op-
tions. It provides a detailed overview of technology stacks and their benefits and
drawbacks.
In Section 2.2, benchmarking and related terms are defined and characteristics

for proper benchmarking are stated. Based on the discussion about benchmark-
ing, a discussion about simulation per se and its approaches follows in Section 2.3.

2.1. Virtualization

2.1.1. Motivation

”One server, one application“ [223, p.9] was the modus operandi of running applic-
ations and operating servers in the early days of computing. In the 1950s, sharing
of resources between processes or even users was not considered due to security
concerns, performance, portability and complexity issues [227]. Since then and
due to improvements in hardware as described by Moore’s Law, components on
an integrated circuit doubled every year [163]. Hence, servers have become more
powerful and therefore underutilized with serving only a single application.
In a first step, this underutilization problem was tackled by multiprocessing.

Thismeans that every process should be isolated and unaffected by other processes
of the same user on the samemachine. However, since technology evolved further,
even multiple processes of a single user did not fully utilize a machine. Therefore,
the idea of multiprocessing advanced even further to multi-user processing which
means that each user can run several processes while it seems as if they were the
only user on the system [227]. Consolidation and containment [223, 269] were the
driving forces for this development. Virtual Machines and containers help to realize
this facet of isolation in order to better utilize physical machines. These develop-
ments lead to the abstraction of hardware by implementing specialized software,
in particular hypervisors and container runtimes. In the VM case, several users of
the system are able to run their own OS for each VM, whereas containers enable
users to run their own virtualized OS in an isolated process of a shared host OS.
Both developments also lead to the possibility of migrating applications from one
physical machine to another [269].

17

2. Theoretical and Technical Foundations

This means that virtualization is the enabler of cloud computing. It creates flex-
ibility for the provider and user of cloud services as well as for operation engineers
hosting on-premise applications. Therefore, in the following sections, an introduc-
tion is given to the two most important virtualization techniques namely virtual
machines and unikernels. Furthermore, container technology is discussed as an
alternative to VMs. At the end of this section, performance experiments are ex-
amined which compare VM, container and bare metal performance. Application
virtualization like the Java Virtual Machine (JVM) will not be considered here.

2.1.2. Virtual Machine

Virtual Machines are ”a feature of a computer’s operating system that allows mul-
tiple other systems to be run on the same computer, each with its own operating
environment“9. Based on this definition, VMs are standalone, encapsulated sys-
tems abstracted from the physical machine via virtual components necessary to
run own OSs. Before introducing the building blocks of a VM solution, we offer
a little bit of history and a retrospective on early term usage.
In themid 1960s, IBM started to develop VMs. Back then, they named their host

OSCambridgeMonitor System (CMS) and the software for creating andmanaging
VMs Control Program (CP) [88, 227]. The first VM going by today’s standards was
called CP-40/CMS for an IBM System/360 (model 40) in the late 60s [227]. POPEK
and GOLDBERG formulated formal virtualization requirements which a Virtual Ma-
chine Monitor (VMM) nowadays referred to as hypervisor [239]10, or CP in IBM
terms, has to fulfill to create virtual machines as an “efficient, isolated duplicate of
the real machine” [221, p. 413]:

1. “Provides an environment for programs which is essentially identical with
the original machine”.
This requirement entails that an application is executable on a virtual ma-
chine despite it being designed for the physical machine without modifying
the source code. The only exception are system resources as for example
less memory is attached to a VM or some resources are temporarily unavail-
able since they are in use by another concurrently running VM [221]. Para-
virtualization [285] approaches where the guest OS has been adapted to a

9https://www.oxfordlearnersdictionaries.com/definition/english/virtual-machine
10There is no common terminology what characterizes and distinguishes a hypervisor from a
VMM in literature. In the early days, the term VMM was more common like in [88, 221].
Nowadays the term hypervisor is more often used. This observation is confirmed when search-
ing on dblp for the termHypervisor (548 entries on 23rd of September 2022) andVirtualMachine
Monitor (74 entries on 23rd of September). The two terms are most often used in recent literat-
ure as synonyms like in [1, 227, 239]. But there is also research like BUGNION and others [32]
which defines the VMMas a special part of the hypervisor controlling CPU andmemory virtual-
ization. Based on these insights, the work in hand also subsumes all virtualization components
necessary to run VMs under the term hypervisor.

18

https://www.oxfordlearnersdictionaries.com/definition/english/virtual-machine

2.1. Virtualization

hardware abstraction of the hypervisor like in Xen [19] are not considered as
hypervisors in their sense.

2. “Programs [...] show at worst only minor decreases in speed”.
POPEK and GOLDBERG explained in more detail that a substantial number of
instructions are directly executed on the processor without additional hyper-
visor interception. Therefore, simulators and emulators like QEMU [22]11

which translate or intercept commands from the virtual to the physical ma-
chine are no hypervisor in their sense due to performance downsides [32].

3. ”VMM is in complete control of system resources“.
The VM is unable to access system resources other than those assigned to it
and can only reclaim unused resources which were already assigned to the
VM [221]. VMs are isolated from each other based on disjunctively assigned
system resources.

Nowadays, hypervisors are categorized in three groups. Figure 2.1 shows them
and some implementations currently available. The classification is based on the
technology stack, the component in control of resources and how the interaction
with the hardware is organized.

Hardware
CPU, Memory, IO

Type-1 Hypervisor
like VMWare ESX, Microsoft

Hyper-V, Xen

Guest
OS

VM

Hardware
CPU, Memory, IO

Type-2 Hypervisor
like VMWare Workstation,
Oracle VirtualBox, QEMU

Host OS

Hardware
CPU, Memory, IO

Type-1*
Hypervisor

KVM

Host OS
Linux
Kernel

Type-2* Hypervisor
like QEMU, crosvm,

Firecracker

A
pp

A
pp

A
pp

Unikernel

Li
br

ar
y

O
S

A
pp

Guest
OS

VM

A
pp

A
pp

A
pp

Unikernel

Li
br

ar
y

O
S

A
pp

Guest
OS

VM

A
pp

A
pp

A
pp

Unikernel

Li
br

ar
y

O
S

A
pp

Figure 2.1.: Hypervisors and their corresponding technology stack based on the respons-
ibility of resource allocation [1, 32, 223].

As indicated by Figure 2.1, in a type-1 hypervisor scenario - also called bare
metal virtualization [239] - the hypervisor runs directly on top of the hardware.
Para-virtualization solutions, where the guest OS has to be adapted to the hyper-
visor interface, are included since they are also recognized as bare metal virtual-
ization [19]. Established software products in this category are VMWare ESX12,

11https://www.qemu.org/
12https://www.vmware.com/content/vmware/vmware-published-sites/us/products/esxi-and-
esx.html.html

19

https://www.qemu.org/
https://www.vmware.com/content/vmware/vmware-published-sites/us/products/esxi-and-esx.html.html
https://www.vmware.com/content/vmware/vmware-published-sites/us/products/esxi-and-esx.html.html

2. Theoretical and Technical Foundations

Microsoft’s Hyper-V13 and Xen14. A type-2 hypervisor, also called hosted virtual-
ization [239], uses some features from the host OS and handles the virtualization
functionality by hardware emulation. VMWare Workstation15, Oracle’s Virtual-
Box16 and QEMU are examples for type-2 hypervisors. A type-2 hypervisor there-
fore encapsulates virtualization logic and uses basic OS features from the host OS.
In contrast, a type-1 hypervisor re-implements OS features and therefore com-
bines basic resource allocation features, scheduling and the virtualization logic. A
recent performance investigation [61] showed that type-1 hypervisors aremore per-
formant which can be explained by direct interaction with the hardware without
an indirection using a host OS and the corresponding hardware emulation done
by the hypervisor.
Indicated by the project website17, Kernel-based Virtual Machine (KVM) [125]

has both notions of hypervisors and consists of a kernel component and a userspace
component. The focus of KVM is to extend the Linux OS to support the creation of
virtual machines. It has been integrated in the Linux kernel since version 2.6.20
as a kernel module. Every Linux OS now has built-in support for VM virtualiza-
tion [94]. This has two advantages: KVM solely focuses on virtualization features
and directly interacts with the hardware for handling virtual machines like type-
1 hypervisors despite reimplementing OS functionalities like schedulers. Since
KVM is not a standalone hypervisor, it is considered a type-1* hypervisor. The
second advantage is that it directly benefits from OS Linux kernel updates. The
userspace component was also developed within the KVM projects and is therefore
tightly integrated with the kernel component. The use of underlying OS and vir-
tualization features make it a type-2 hypervisor. Since QEMU version 1.317, the
KVMuserspace component was integrated in the emulator and extended QEMU’s
capabilities to become a virtualization solution on top of a Linux host OS. Due to
this coupling and the improved virtualization part, it is considered a type-2* hyper-
visor. Both subtypes (1* and 2*) form a unit. The combination of KVM/QEMU
has shown the best performance for CPU, disk, network and IO workloads in
the aforementioned experiment [61] when compared to VMWare ESX, XenServer,
VMWare Workstation and Oracle VirtualBox. Alternatives to QEMU as a type-2*
hypervisor are Google’s crosvm18 and its successor Firecracker [1]19 implemented
by AWS. Crosvm and Firecracker are called microVM hypervisors. Their design
goal is to provide strong isolation in multi-tenant environments and reduce the
performance overhead VMs typically introduce when booting a guest OS and emu-
lating several virtual devices like Universal Serial Bus (USB), Peripheral Compon-
ent Interconnect (PCI) etc. Firecracker claims that they can boot application code

13https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
14https://xenproject.org/
15https://www.vmware.com/products/workstation-pro.html
16https://www.virtualbox.org/
17https://www.linux-kvm.org/page/Main_Page
18https://chromium.googlesource.com/chromiumos/platform/crosvm/
19https://firecracker-microvm.github.io/

20

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.vmware.com/products/workstation-pro.html
https://www.virtualbox.org/
https://www.linux-kvm.org/page/Main_Page
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://firecracker-microvm.github.io/

2.1. Virtualization

within 125 ms [1] which was empirical confirmed in an experiment comparing
QEMU’s microVM20 with Firecracker [195]. The developers of AWS achieved this
by implementing a custom Linux kernel with less system calls, removing emula-
tion for several devices like USB and having pre-loaded execution environments
(microVMs).
As already implied when introducing microVMs, OSs booted inside a VM can

be full blown Linux, Windows orMacOS distributions with several running applic-
ations managed by the respective OSs, see Figure 2.1. Hypervisor studies revealed
that booting VMs can take seconds up to minutes in the worst case [204, 228]. For
scenarios where scalability and latency are critical requirements, such boot times
are not acceptable. There are two approaches documented in literature and suppor-
ted by industry to overcome this booting issue for hypervisor based virtualization:
unikernels and tailored OSs.
Unikernels are “specialized, sealed, single-purpose lib[rary]OS VMs that run dir-

ectly on the hypervisor” [164, p. 462]. This has several benefits for the compiled
unikernel. Firstly, only OS features needed by the application are included in
the final artifact during the build process. Secondly, since configuration para-
meters, hardware architecture etc. are known at compile time, the compiler can
optimize the unikernel [164]. And finally, the underlying hypervisor abstraction
isolates unikernels from other VMs or unikernels running on the same physical
machine, so no security mechanisms have to be implemented by the unikernel
itself. This enables direct execution of commands in user space, regardless of
whether the invoked functionality is implemented by the Library Operating Sys-
tem (libOS) or the application. A dedicated kernel space is not necessary which
makes context switches and system calls obsolete [126, 222]. In 2011, PORTER
and others [222] already predicted that cloud services will adopt unikernels due
to their performance advantages over VMs but generic VM services like AWS EC2
will still. Since 2018, Firecracker supports user-created unikernels build upon the
libOS OSv [1, 126]21. Running only a single functionality is perfect for the uniker-
nel approach, therefore, the developers of AWS Lambda and Firecracker decided
to support it as one option in their public cloud offering. But there is one draw-
back. A reconfiguration of the application is only possible when recompiling the
unikernel.
The second approach to deal with scalability and latency requirements are tai-

lored OSs. Such approaches omit features like USB support similar to the corres-
ponding hypervisor solutions which are not necessary for a compute offering in
the cloud where a developer has no option to use USB devices. In this regard, also
the number of syscalls can be reduced to a minimum as is the case of a recent
research prototype: Lupine Linux [142]. Opposed to unikernels, they can execute
a number of applications which comply to the tailored restrictions without recom-
pilation.

20https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
21https://osv.io/

21

https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
https://osv.io/

2. Theoretical and Technical Foundations

2.1.3. Container Technology

When talking about containers, most (non-IT) people probably think about con-
tainer ships. Therefore, the online dictionary definition of containers is not sur-
prising: “a largemetal or wooden box of a standard size in which goods are packed
so that they can easily be lifted onto a ship, train, etc. to be transported”22.
The question is now, how this definition is related to containers in computer

science. The main aspect here is standardization. With shipping containers, arbit-
rary goods can be transported on anymeans of transport while inside the container
packaging specific to the particular goods can be used. With OCI compliant con-
tainers, arbitrary applications can be run on any kind of system while inside the
container the specific libraries required by the application are included. Compared
to VMs, where each virtual instance has its own OS and is therefore self-contained
and independent, containers are dependent on the host as shown in Figure 2.2.

Hardware
CPU, Memory, IO

OCI compliant runtime
like runc

Host OS
Linux Kernel

Container

Binaries &
Libraries

App

Container

Binaries &
Libraries

App

CRI compliant runtime
like containerd

Client tools
like Docker, K8s

Figure 2.2.: Containers and their corresponding technology stack [25, 75].

Containers are not a virtualization technology since they have no ”own operating
environment“9 for each container, but are often considered as an alternative to
VMs due to their capabilities of isolating applications from each other. Several
different projects contributed to this isolation security- and performance-wise by
making them independent of each other [227]. In 2008, Linux Container (LXC)
was the first project for creating and running containers [25]. The most important
features are user namespaces, seccomp policies, kernel capabilities and control
groups (cgroups):

22https://www.oxfordlearnersdictionaries.com/definition/english/container

22

https://www.oxfordlearnersdictionaries.com/definition/english/container

2.1. Virtualization

namespaces are an abstraction used for isolating a number of processes
from others. For example the root directory (chroot functionality) can be
defined for each namespace. Each process assigned to this namespace can
only access this part of the file system. Namespaces are hierarchically struc-
tured and can contain child namespaces with further restrictions [262].

seccomp stands for secure computing. It introduces system call filtering by
limiting the process to assigned profile-based system calls. This reduces the
possible attack surface for other processes running on the same kernel [49].

capabilities enable an unprivileged user process to execute some superuser
functionality. Each process can be individually configured with a set of cap-
abilities like binding a socket to a port23.

cgroups limit the resource consumption of a process. The limits for CPU,
memory, IO and network bandwidth are necessary when operating multi-
tenant environments to prevent starvation of other processes running on
the same machine [262].

These basic Linux kernel features and other features like AppArmor24 or SE-
Linux25 are also used by other container management tools. One of these other
management tools is Docker. At the beginning, Docker used LXC for creating
images and executing containers but later extended LXC with two APIs for man-
aging kernel and application features [25, 193]. The production ready version was
released in June 201426 and revolutionized the way developers interact with con-
tainers. Docker uses the userspace components of an OS as a base for building im-
ages and a daemon process, the docker engine, for managing containers and other
resources like networking, IO and storage27. This centralized management of ba-
sic compute features by a single daemon process is a big difference compared to
the containermanagement of LXC and improves portability of containers between
different machines [200].
To improve the portability aspect across vendors of containerization software,

Docker and other leading companies founded the Open Container Initiative (OCI)
in 2015 under the umbrella of the Linux foundation. They published three spe-
cifications namely a runtime specification (runtime-spec), an image specification
(image-spec) and a distribution specification (distribution-spec)28. When talking
about OCI compliant images in this work, the compliance to the image-spec is
meant. It defines how an image is constructed out of a layered file system and
corresponding metadata. A corresponding project for building such compliant

23https://man7.org/linux/man-pages/man7/capabilities.7.html
24https://apparmor.net/
25http://selinuxproject.org/page/Main_Page
26https://docs.docker.com/engine/release-notes/prior-releases/#100-2014-06-09
27https://docs.docker.com/engine/
28https://opencontainers.org/about/overview/

23

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://apparmor.net/
http://selinuxproject.org/page/Main_Page
https://docs.docker.com/engine/release-notes/prior-releases/#100-2014-06-09
https://docs.docker.com/engine/
https://opencontainers.org/about/overview/

2. Theoretical and Technical Foundations

images is BuildKit29 which implements the OCI image-spec and is used by client
tools like Docker. For starting and running containers, runc is widely used [75].
It is a low level tool for ”spawning and running containers on Linux according to
the OCI specification“30 and uses the host kernel’s aforementioned features like
namespaces etc. to provide secure containers. runc is the reference implement-
ation of the OCI runtime-spec [75]. It was donated by Docker in 2015 to OCI.
Since runc is a low level tool, it is not recommended for end user usage30. There-
fore, another software layer was introduced to manage the lifecycle of containers.
Compliant tools like containerd31 implement features like network support, pulling
and pushing images to repositories for sharing themwith others and further man-
agement features. containerd is open source, a Cloud-Native Computing Founda-
tion (CNCF) graduated project and used by Docker per default. It delegates the
creation and execution of containers to runc. With the rise of the container orches-
tration tool K8s [33], a third important interface was proposed: Container Runtime
Interface (CRI). Container runtimes which implement this interface can be used
by K8s and changed without recompiling the whole system32. The CRI consists
of a gRPC API defining basic operations for sandbox and container operations
delegated to tools like containerd and transitively runc.

2.1.4. Performance Considerations

VMs and containers enable multi-tenant environments where different actors de-
ploy their software in a secure way via hypervisor and kernel features. These ad-
ditional layers introduce performance overheads which are important to keep in
mind for production use cases. This section examines different experiments to an-
swer the question to which extent the discussed technologies influence perform-
ance considering VMs, containers and bare metal deployments.

Table 2.1.: Performance experiments comparing Bare Metal (BM), Virtual Machine (VM),
and Container Technology (CT).

Deployment Option Investigated Resource
BM VM CT CPU MEM IO

Arif et al. [4] X X X X X
Debab & Hidouci [58] X X X X X
Espe et al.[75] X X X X
Kozhirbayev & Sinnott [134] X X X X X
Leitner and Cito [147] X X X X
Li et al.[151] X X X X X X
Morabito et al.[199] X X X X X X

29https://github.com/moby/buildkit
30https://github.com/opencontainers/runc
31https://github.com/containerd/containerd
32https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/

24

https://github.com/moby/buildkit
https://github.com/opencontainers/runc
https://github.com/containerd/containerd
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/

2.1. Virtualization

ARIF and others [4] compared bare metal and VM deployments based on CPU,
memory and IO metrics. They used two web applications with an additional on-
premise database for some experiments on identically constructed physical ma-
chines. Their results indicate that it isn’t possible to predict the performance of
VMs by applying a single scalar factor to the performance of bare metal machines.
They showed that the level of overhead introduced depends on the executed func-
tionality. The distribution of absolute values for the same metric is different on
each deployment target for each application. Normalizing the values and correlat-
ing the metrics uncovers some trends and makes a comparison between the phys-
ical and virtual deployment option possible. One example the authors mentioned
was the correlation of throughput to CPU utilization and IO operations. CPU and
memory performance showed only minor discrepancies when comparing correla-
tions between the physical and virtual environment whereas IOmetrics weremore
varied. A prediction for CPU and memory behavior is therefore only possible for
the same group of applications, e.g. CPU-bound functions, whereas IO operations
are hardly predictable due to the emulation introduced by hypervisors. These res-
ults are in line with research on public IaaS providers [147]. Within the same in-
stance category the performance metrics for memory and CPU only deviate negli-
gibly when deployed on the same hardware. IOmetrics, however, show up to 95%
deviation when using the standard deviation as ameasure to compare the different
compute resources. Other publications come to the same conclusions for compar-
ing bare metal with VM performance [151, 199]. MORABITO and others[199] for
example performed different tests for CPU, memory and IO on bare metal, KVM-
based VMs, two container runtimes and the unikernel OSv, also based on KVM.
Their focus was particularly on CPU benchmarks. For a noploop benchmark, they
showed that the unikernel solutionswas the fastest with 2.249ms, followed by bare
metal (2.391 ms), Docker as container runtime (2.393 ms) and KVM-based VMs
(2.397 ms). This means that the unikernel application is 6.6% faster compared
to the VM. For another CPU benchmark, LINPACK, OSv for example performed
worst compared to the other alternatives, but the relative difference between the
solutions was between 1% and 2%, which still allows to make good predictions.
While the findings were largely similar when comparing the containers to bare

metal performance regarding CPU and memory, there was a difference in the de-
cline in IO performance. In experiments [134, 151], IO throughput only decreases
up to 11% in relation to the bare metal deployment which is an improvement com-
pared to VM deployments. Multi-tenancy was not a concern of the mentioned
studies. Furthermore, there are studies comparing the different options for OCI
compliant runtimes like [58, 75]. Their focus is on comparing native container
engines with microVM approaches like kata containers33 and Firecracker. As can
be seen from these studies, there is no separation between container and VM solu-
tions in today’s research. It is rather a continuum dependent on the use case and
the security requirements.

33https://katacontainers.io/

25

https://katacontainers.io/

2. Theoretical and Technical Foundations

2.1.5. Summary

VMs and container technology provide developers with an abstraction from phys-
ical machines. These technologies are the basis for multi-tenant environments
on-premise and in the cloud. Based on their technology stacks, they offer differ-
ent kinds of isolation with each VMbeing self-contained and booting its own guest
OS. Containers, on the other hand, share the host and are therefore considered to
be more vulnerable to one container escaping from its sandbox and corrupting
other tenants running on the same host kernel.
We can conclude that performance of bare metal deployments are comparable

to VMor container solutions when looking at the distribution. Especially CPU and
memory metrics only show minor differences between the different deployment
targets. Isolation, security and performance are often discussed in VM and con-
tainer research. Since containers start up within milliseconds and VMs provide
better isolation, tools like Firecracker combine the strengths of both options and
offer developers to run their software containerized on top of microVMs. For a
deployment solution abstracting the specific hardware, VMs and containers are
standardized options which allow a configuration of resources depending only on
the requirements and independent of the hardware used.

2.2. Benchmarking

2.2.1. Definition

In the traditional word sense, a benchmark is ”amark on aworkbench used to com-
pare the lengths of pieces so as to determine whether one was longer or shorter
than desired“34. Another dictionary definition also focuses on a similar aspect in a
more abstract way as it describes benchmarks as ”something that can bemeasured
and used as a standard that other things can be compared with“35. When extract-
ing the key aspects out of these two generic definitions, a benchmark has three
aspects: an object under investigation, a measure to describe it and the possibility
to compare it with similar things.
In computer science, the process of benchmarking is about comparing Systems

Under Test (SUTs). The most important parts, which should be defined upfront,
are the measurement methodology and a reasoning why the experimental design is
as specified. The selection of suitablemetrics is important for the mentioned com-
parison as well as how these metrics are gathered. The last aspect is the workload
pattern and how the SUT is stressed [105, 132]. If the workload is kept constant
across experiments, differences in the results can be attributed to the SUTs only,
therefore enabling a fair comparison of the SUTs. These three aspects comprise
a benchmark in the computer science domain. As they influence each other, re-

34https://www.spec.org/spec/glossary/#benchmark
35https://www.oxfordlearnersdictionaries.com/definition/english/benchmark_1

26

https://www.spec.org/spec/glossary/#benchmark
https://www.oxfordlearnersdictionaries.com/definition/english/benchmark_1

2.2. Benchmarking

searchers have to be aware of the inter-dependencies between these three elements
in order for results to be scientifically usable.

2.2.2. Metrics

When designing a benchmark, the selection of meaningful metrics and their prop-
erties are important to improve the quality of the benchmark. BERMBACH and oth-
ers [23] interpret the IEEE standard 1061, Standard for a Software Quality Metrics
Methodology [243], with regard to cloud services. Their work is based on a prior
study by KANER and BOND [115] in which they propose a multidimensional ana-
lysis of “direct metrics” to combine and correlate them. They state that such an
analysis improves the expressiveness of conducted studies. According to the IEEE
1061 standard, a direct metric “does not depend upon a measure of any other at-
tribute” [243, p.2]. An example for this would be the total number of requests
made by a benchmark. Indirect or derived metrics are the combination of several
direct metrics. An example would be throughput which is the number of requests
per specific time period.
To validate and provide a basis for the interpretation of a series of metrics, the

standard mentioned above defines general validity criteria: Correlation, Tracking,
Monotonicity, Discriminative Power, Predictability and Reliablity. Correlation de-
mands that there should be a “strong linear association” [243] between the depend-
ent (D) and independent (I) metric. To show this association between metrics,
researchers often use linear regression models in their work [50, 180, 185, 298].
LILJA [153] even stated that linearity is one requirement for a usefulmetric to enable
“accurate and detailed comparisons”. But this requirement introduces a limitation
for the relation between two metrics. Others argue that there can be also a differ-
ent kind of correlation [23]. Tracking means that a change in I results in a change
inDwithin a reasonable time frame. A counter-example would be a case where the
change of I affectsD only after hours or days which makes a correlation of the two
metrics challenging. Consistency [115, 243] respectivelyMonotonicity [23] describes
the fact thatD should increasemonotonically when I increases. The standard [243]
as well as the interpretations [23, 115] only refer to monotonically increasing met-
rics, however, monotonically decreasing scenarios are also possible. The amount
of available disk space considering a benchmark with increasing disk writes over
time would be an example for this. The previous examples already followed the
discriminative power criterion which states that the metrics, D and I, should be
chosen in a way that several measures of the same metric can be clearly contras-
ted to each other. An example, which is not discriminative, is to group measures
of CPU utilization in categories like low, medium, high where two points categor-
ized as low are not further distinguishable. The next aspect Predictability is a step
ahead. Benchmarking is the process of observing and comparing similar SUTs
with each other. If we are able to predict D based on I since we gained knowledge
about the behavior by observing our SUT and using the historical data as input for

27

2. Theoretical and Technical Foundations

a prediction model, we are half way towards simulating a system. So Predictability
already builds a bridge from benchmarking to simulation which will be discussed
in the next section. The last criterion -Reliablity - summarizes the others: Ametric
is considered reliable when it confirms to these five criteria “for at least P% of the
application of the metric” [243, p.12]. The value of P can be specified based on the
use case and characteristic of the experiment.

2.2.3. Workload Pattern

The second integral part of a benchmark is the workload submitted to stress the
SUT. There is a trade-off between controlled experiments with artificially created
workloads and others which mimic real world use cases [23].
Artificial workloads have the advantage that an experimenter designs the work-

load in a way which allows to draw clear conclusions. For example, if the aim is
to test the scalability of a system, two approaches are conceivable: For the first
approach the benchmark could be constructed to send a number of concurrent re-
quests to a single instance of an application at t0 followed by a wait time until all re-
quests have been answered and the application is idle again. Then the next bunch
of requests can be sent at t1 to understand the capability to handle concurrent re-
quests, hot paths within the application and resource utilization on the selected
deployment target. When testing for example Java use cases, a second and third
bunch of requests is necessary to reach a steady state after all Just-in-Time (JIT)
optimizations are performed. In a second scalability approach the multi-tenancy
influence of several tenants deployed on the same system could be investigated by
sending a single or multiple requests to every tenant. In both scenarios, a base
case workload is needed where only a single request is sent at a time. This en-
ables a researcher to investigate how scalability respectively multi-tenancy change
the system behavior [80]. We conducted an experiment implementing the first
approach: We concurrently sent a single request to every tenant deployed on a
single-node open-source FaaS system and specified a sufficient wait time until the
system was idle again before sending the next requests [180].
Trace-based workloads, on the other hand, are more representative [80] as the

workload stems from real world examples like an anonymized data set from Twit-
ter [43] or from the parallel workload archive [77]. Since collecting such traces in
detail introduces overhead in production, these traces are rare and often only ag-
gregated values like the throughput are present. A re-engineering based on these
aggregated values is necessary to specify synthetic workloads based on real world
traces [64]. The benefit of having synthetic workloads is the possibility to easily
tune and scale them dependent on the SUT and the research questions [105].
Another classification of workloads is their arrival pattern. SCHROEDER and oth-

ers differentiate between open, closed and partly-open workloads [244]. In closed
workloads, the interaction between users and the SUT is as follows: A number of
users send requests, the SUT processes them and responds to the users. They pro-

28

2.2. Benchmarking

cess the response and send the next request to the SUT after some time. In such
a setup, the maximum amount of concurrent requests possible is determined by
the number of users within this closed system. It also means that the arrival pat-
tern of requests is known upfront. Such a design was chosen when performing
the aforementioned multi-tenancy experiment in order to draw clear conclusions
for the specific setup [180]. Open workload designs, on the other hand, have an
unpredictable number of users and therefore an a priory unknown amount of con-
currently executed requests. Especially for schedulers, load balancers and scaling
mechanisms are used for these kind of workloads. If the system is composed out
of several services, an experiment designer should be aware of the scaling cap-
abilities of the individual components. There might be situations in which one
component scales perfectly fine and the next one in the pipeline becomes a bottle-
neck. Such a design would reveal weak spots in the overall system design but also
renders some metrics, e.g. an end-to-end latency metric, useless.
The third category are partly-open workloads where new users arrive to request

the SUT and users who already interacted with the SUT leave the system or make
further requests. This workload category is the default for web and Online Trans-
action Processing (OLTP) applications [244]. A recent study about load generation
tools lists characteristics and future challenges [53]. The authors classified them
based on the three arrival patterns, closed, open and partly-open. Examples for
such tools are httpperf36 or JMeter37 to name the most prominent ones.

2.2.4. Quality Criteria for Experimental Benchmark Design

To assess different SUTs and make benchmarks comparable to each other, it is
important to have quality criteria inmind during the design phase, especially when
thinking about the benchmark methodology. Different criteria were defined in
literature [23, 80, 103, 279] and a selection is presented in the following. These
criteria also influence the selection of suitable metrics and workloads to support
the intended benchmark goals.

Relevant The most important criterion is the relevancy of the benchmark. At
design time, researchers and practitioners need to define and note the “intended
use of the benchmark” [279, p. 334] in order not to lose sight of the big picture. Two
questions are helpful when considering the relevancy of the benchmark. Firstly,
is there a target audience who is interested in studying the results of the bench-
mark? Secondly, are the results relevant for a longer period or outdated after the
next release of the SUT?
Based on the scenario and use case of the specific benchmark there could also

be situations where it is reasonable to conduct experiments for a small target
audience where the results are only valid for a single release cycle. One example

36https://linux.die.net/man/1/httperf
37https://jmeter.apache.org/

29

https://linux.die.net/man/1/httperf
https://jmeter.apache.org/

2. Theoretical and Technical Foundations

for such a scenario is to perform stress testing during development and give de-
velopers immediate feedback about the SUT.

Representative Another quality aspect which directly influences the target audi-
ence is whether the benchmark and its methodology are representative. This is the
case when SUTs are tested under reasonable conditions like the “use of hardware
in a manner that is similar to consumer environments” [103, p. 22]. The work-
load pattern is also crucial for a representative experiment. Tackling the scalability
property of a system cannot be done when using a single user workload with a
single request at a time. The insights gained from a benchmark can be further-
more representative for a set of similar problems, respectively algorithms, if the
SUT and its functionality is categorized like often done for CPU intensive work-
loads [23]. This is an important criterion when an experimenter wants to transfer
the insights gained from one problem domain to a similar one. One example
for such a scenario is the standard Transaction Processing Performance Council
Benchmark C (TPC-C) [267]. Written down as specification, TPC-C is a typical
OLTP use case for testing read and write performance of databases during trans-
actions. The measures and also the measurement methodology are specified by
the standard to guide users by their implementations. Therefore, the level of free-
dom in implementing the specification is limited and various alternatives for data-
bases are comparable based on this standard in the OLTP domain. Such stand-
ardization efforts path the way to consolidated experiments being relevant and
representative. The interested reader is also referred to the benchmarking efforts
of Standard Performance Evaluation Corporation (SPEC)38, another corporation
where researchers and industry experts work on the topic of standardized, widely
adopted benchmarks for different problem domains.

Repeatable The documentation of the measurement methodology and all neces-
sary configuration parameters enables other researchers to interpret the results
correctly. The most important information is the hardware used, the software
stack and its configuration, the workload generator and pattern etc. This precise
documentation is the foundation for repeatable experiments [279]. Literature stud-
ies reveal a huge discrepancy between this desired state and the reality of published
experiments. KUHLENKAMP and WERNER [137] performed an SLR in the FaaS do-
main and reported that only three out of 26 experiments were repeatable based
on the information provided. Another investigation by KALIBERA and JONES [114]
revealed that a ”majority“ out of 122 papers were not repeatable based on the in-
formation documented by the study authors. These studies are in linewith LORENA
BARBA’s keynote in which she talked about “12 Ways to Fool the Masses with Ir-
reproducible Results”39 in 2021 [15]. She makes points that go beyond the execu-

38https://www.spec.org/
39Keynote at IEEE International Parallel and Distributed Processing Symposium,
https://www.youtube.com/watch?v=R2-GuH-6VFU.

30

https://www.spec.org/
https://www.youtube.com/watch?v=R2-GuH-6VFU

2.2. Benchmarking

tion/repetition of an experiment and are focused on the processing of data and
the resulting publication. However, they should also already be considered dur-
ing design time in order to get the raw data in a processable format. BARBA’s first
aspect is that some researchers do not publish raw data of their experiments or
make it accessible only upon request. This statement is based on some surveys in
which researchers tried to gather raw data from already published research. One
study investigated 315 data projects with data being recoverable in only 26% of the
cases [51]. Another study, where the journal they looked at had a policy to submit
raw data together with the manuscript, revealed a slightly better return share of
44% out of 204 randomly selected studies [260]. Not publishing raw data has two
effects on the repeatability. Diagrams, figures and statistical evaluation within the
papers are used to extract raw data by other researchers. This procedure is cum-
bersome and error prone since oftentimes the scripts to generate these artifacts
aren’t published either, LORENA BARBA’s last point in the enumeration of fooling
the masses. Therefore, it is often unclear if for example outliers were included in
the plots, which correlation measure was used to compute the statistics etc. The
second aspect especially hampers the interpretation when redoing the experiment
on own hardware which typically diverges from the hardware used to perform the
original experiment. When conducting reproducibility studies, the concrete value
of specific metrics is not in focus but the same objective and conclusion from the
experiment [279]. Published raw data helps to assess the difference and enables re-
searchers to investigate whether these are introduced by a slightly different setup
or whether the original published data has some flaws limiting repeatability.

Fair The last statement about comparing the original published raw data and
the data gathered from a repetition of the experiments lead us to fairness, the
next quality criterion for good benchmarks. One aspect of fair comparisons is
to avoid specific optimizations of some tools where comparable alternatives have
no corresponding counterpart. A typical example for such specific optimization
is the implementation of special SQL statements in relational databases by the
database vendors. Furthermore, HUPPLER mentioned the tendency of designers
to over-optimize benchmarks for a target environment, like UNIX, which impli-
citly affects other environments negatively [103]. When performing a comparison
between a Java in-memory database and a relational database [81], we found un-
fair elements in the original evaluation conducted by the vendor of the in-memory
database. The execution time for several transactions weremeasured based on the
server processing time by wrapping controller methods with a timer. We found
three generalizable flaws. Firstly, fair benchmarks should be conducted by a neut-
ral consortium which is not directly associated with a SUT but has the expertise
to conduct the benchmark. Often this is not the case, when vendors publish data
to substantiate their marketing claims as they have a high interest showing the
strength of their tools by hiding drawbacks. Unbiased, objective organizations like
research institutions or councils can overcome this issue and provide fair compar-

31

2. Theoretical and Technical Foundations

isons between comparable alternatives. Secondly, in the aforementioned experi-
ment, the in-memory database is specialized in storing a Java object graph and is
therefore language dependent. Since Java uses JIT compilation and compiles often
executed methods at a later point in time, the first minutes of an experiment are
the warm-up phase in which these functions are executed by an interpreter. Data
generated in this phase should be discarded until reaching a steady state period,
when all compilations are finished [103]. Thirdly, the selection of metrics determ-
ines the fairness. A realistic scenario for an OLTP use case is the interaction of a
frontend application requesting data via a Representational State Transfer (REST)
Application Programming Interfaces (APIs) from a backend. In this case, the met-
ric which is important from a frontend perspective is the overall request-response
time including the network latency, unmarshalling of sent data, preprocessing by
middleware layers and finally processing of the request within a controllermethod.
Selecting only the server processing time to compare two alternatives like in the
initial in-memory database example, IO overhead of relational database queries
are predominant and distort competition [81].

Trustworthy In the age of “alternative facts”, trustworthiness is an important as-
pect, especially when publishing data and drawing conclusions. Two view points
can be distinguished, an outside and an inside perspective on the benchmark and
the SUT. Specifications or standards like the mentioned TPC-C benchmark are
published by unbiased organizations. They already provide some kind of outside
perspective due to their neutrality. Furthermore, they have been trained by people
who have the authority and the knowledge to assess if an implementation of a spe-
cification is compliant with the standard. These external auditors [103] and the
independent organizations improve the trustworthiness of benchmark designs.
Besides these two outside factors, inside factors are for example testing efforts, in-
put restrictions and cross-validation of metrics. Unit tests guarantee that the SUT
produces correct results under different circumstances, like using different com-
piler settings, runtime parameters etc. Other testing efforts like architectural tests
or penetration tests can reveal if the specification is implemented correctly at an
early stage in the benchmark design. Another aspect is the set of valid input para-
meters or the workload. Valid entries limit the number of possible configurations
which increases the validity of results. These aspects should be documented but
also asserted to prevent benchmarks being executed with invalid values [103, 279].
For example, the resource limitations when starting a SUT has an impact on the
execution behavior of the system. When considering a multi-threaded application,
the minimum of available cores should be greater than one. A chosen resource
limitation which is equivalent to less than a single core would prevent concur-
rent executions. The conclusions drawn from such misconfigured experiments
are often error-prone and not trustworthy. A last aspect is the cross-validation of
different metrics in the data post-processing phase of the benchmark when the ex-
periment has already been conducted. Metrics can be independent of each other

32

2.2. Benchmarking

or they can affect each other positively or negatively. These relations between met-
rics are oftentimes known upfront like the influence on system utilization when
increasing the number of requests and support benchmark designers to make res-
ults plausible.

Economical A benchmark should be “worth the investment” [103, p. 28]. HUP-
PLER stated that this criterion is often not considered during the initial benchmark
design since the technical consideration how to build the system, which workload
to use, howmany runs etc. define the boundaries. Nevertheless, being economical
is intuitive since the trade-off between financial investments and information gain
is already inherent in the criterion name. One example which is often considered
in literature [103, 279] is the monetary expenditure conducting the already men-
tioned TPC-C benchmark. TPC-C results are ordered by the maximum through-
put measured in transactions per minute for benchmark C - tpmC. At the time
of writing this thesis, the first entry in the list40 was submitted on 18th May, 2020
executed on Alibaba Cloud Elastic Compute Service Cluster41 with a maximum
of 707,351,007 tmpC. The total system cost was 2,814,509,552 Chinese Yuan Ren-
minbi (CNY)42. This benchmark shows the capabilities of a specific system but is
only reasonable for a limited number of companies in the market. Defining and
documenting the intended goals associated with the benchmark helps in creating
an environmental setup and choosing an appropriate workload which is afford-
able.

Usable The last aspect is how usable a benchmark is, which is the case if it can be
deployed and used on comparable systems without major modifications and if the
benchmark results are understandable. Portability in this dimensionmeans to use
generic features and avoid using special ones [23]. Examples are the many differ-
ent SQL dialects and specialized routines for interacting with relational databases
or the capabilities of one compute service of a cloud provider compared with an-
other. Besides the same provided functionality, interfaces are normally different
as shown in a portability study on the cloud function lifecycle [96]. Wemade some
suggestions on how to overcome the heterogeneity of interfaces and harmonize
them through wrappers making the benchmark also usable on other platforms
without code modification. Understandability is another aspect of usability. The
benchmark should be designed and documented in a way that an interested reader,
who is familiar with the domain under test, is able to understand the design ob-
jectives and can interpret the results [23].

40https://www.tpc.org/tpcc/results/tpcc_results5.asp
41https://www.tpc.org/1803
42Considering the exchange rate of the 29th of November 2022, this is equivalent with
379,601,373 €

33

https://www.tpc.org/tpcc/results/tpcc_results5.asp
https://www.tpc.org/1803

2. Theoretical and Technical Foundations

2.2.5. Distinction to Related Concepts

Benchmarking is one way to understand a SUT by treating it as a black box. It
is characterized by making experiments with different types of workloads, using
an appropriate measurement methodology and suitable metrics within a reason-
able period as discussed in the prior sections. Profiling, tracing and monitoring
are often used in conjunction with benchmarking, but the former two are more
intrusive and collect more information for individual requests to unravel the black
box and gain further insights. The latter, on the other hand, is a continuous pro-
cess to observe the black box and selected metrics but is not limited to a specific
experiment as benchmarking is.
Profiling is “the act of collecting useful information about [...] something so

that you can give a description of [...] it”43. In computer science, profiling is the
process of generating a profile of e.g. the resource consumption of an application.
Tracing describes the process of following a single request until the end to under-
stand the different control flows of an application and their impact on the overall
performance. And finally, monitoring is the process “to watch and check some-
thing over a period of time”44. In the following, we present a selection of studies
each of which has a focus on one of these three aspects but also includes elements
of the others.
The need for profiling [283] is argued based on applicationmanagement, resource

considerations and the cost aspect of a SUT. Application management of a SUT
means that the resources are configured properly to avoid performance degrada-
tion. Resource considerations should avoid an over-provisioning situation. And fi-
nally the cost perspective often balances the two prior aspects. Profilers for example
introduce a lot of overhead by instrumenting code and exposing more events but
improve the information gain [201]. This process should be considered when
benchmarking a SUT is not sufficient and further insights are needed. One pro-
filing approach for example uses additional information to generate test cases.
The authors filtered faulty executions a posteriori and supported developers by
troubleshooting their SUTs. The test cases served as a starting point for debug-
ging as well as enriched the test suite for the individual application [183]. CUOMO
and others [52] implemented some wrapper for often used components to derive
more runtime metrics, generate profiles and use them when executing their sim-
ulations. REN and others [229] presented the way how Google profiles their data
centers from an infrastructure point of view. They provide metrics for physical
machines onto which multiple tenants are deployed as well as enable application
profiling. Each Google cloud service includes a custom library which exposes pro-
filing information when requested.
Tracing approaches also introduce overhead since unique identifiers for every

trace are processed in every component of the distributed system to assemble

43https://www.oxfordlearnersdictionaries.com/definition/english/profiling
44https://www.oxfordlearnersdictionaries.com/definition/english/monitor_2

34

https://www.oxfordlearnersdictionaries.com/definition/english/profiling
https://www.oxfordlearnersdictionaries.com/definition/english/monitor_2

2.2. Benchmarking

the trace at a later point in time. With their instrumentation tool, MACE and oth-
ers [162] enabled a recording of distributed application topologies. They intro-
duced a happened-before join operator to allow the user to investigate traces across
component or application boundaries. Another tracing approach was used when
suggesting a way to construct integration test scenarios by modeling an applica-
tion as a graph [286] and using this graph to understand the data flow of it [288].
Also the public cloud providers offer tracing services to understand the different
paths within a complex application like AWS X-Ray45 inspired by ray tracing.
In contrast to intrusive approaches, non-intrusive approaches focus onmonitor-

ing to observe the current system state. Monitoring is a permanent process which
enables users to define thresholds for several metrics to get alerted when some-
thing unexpected happens. PI and others [218] used the container API as a source
to collect metrics for implementing a feedback control tool in a distributed envir-
onment. Docker as the de facto container standard also provides somemetrics via
its docker stats API46.

2.2.6. Summary

Benchmarking a SUT is the basis for collecting data about the runtime behavior
of an application under different circumstances. This process enables researchers
and practitioners to make informed decisions and test their hypotheses. It is an
integral part of this thesis since the collected test data builds the foundation for
simulation discussed in the next chapter.
When talking about the building blocks of a good benchmark - metrics, work-

loads and benchmark designs - documentation of all properties and influential
factors is a key aspect for high-quality experiments. Also publishing raw data,
scripts for post-processing and a release of the SUT belongs to the documentation
aspect. This additional effort is still not widely incentivised by scientific publishers
but appreciated by other researchers interested in details not included in papers
and one aspect of good scientific practice.
Besides the listed characteristics from literature, a good benchmark is further

characterised by its focus, namely that only a single dimension is subject of invest-
igation. When comparing two applications which, for example, provide the same
business functionality, but are implemented in different languages, the hardware
should be identical. Furthermore, contrasting goals exist when designing a bench-
mark like reducing the experiment duration to savemoney. This is reasonable, but
the documentation about decisions made for several dimensions is important for
comprehensible experiments.

45https://aws.amazon.com/xray/
46https://docs.docker.com/engine/reference/commandline/stats/

35

https://aws.amazon.com/xray/
https://docs.docker.com/engine/reference/commandline/stats/

2. Theoretical and Technical Foundations

2.3. Simulation

2.3.1. Definition

A simulation is “a situation in which a particular set of conditions is created artifi-
cially in order to study or experience something that could exist in reality”47. This
implies that the real world object, which should be simulated, is abstracted and the
focus is on the important conditions respectively features of the object a user is in-
terested in. Themain benefit of such an approach is that due to this abstraction an
engineer will get feedback quickly before manufacturing the product. Simulation
experiments can be conducted within minutes or hours giving a first impression
of the design and characteristics of the object under investigation. It is used in
many cases like training, analysis and decision support [135]. A main concern is
the accuracy of a simulation, in particular whether there is parity between the set
of conditions and the features of the real object.
In computer science, simulations can be divided into two groups: software sim-

ulation and hardware simulation. A designer of a hardware simulation experiment
builds a model of the real world object and uses this model for analysis in exper-
iments [144]. Such models are used to understand processor or system designs
in an early development phase without having to construct the products physic-
ally [249]. This branch of simulation approaches is out of scope of this work. On
the other hand, software simulations are used to understand the runtime beha-
vior of software deployed on different targets, for example on-premise compared
to cloud deployments [180, 185].

2.3.2. Quality Criteria

Besides the general software engineering quality criteria listed in literature, like
by BOEHM and others [27] or SOMMERVILLE [253], simulation systems have further
quality criteria and processes. BALCI [7] proposed a complete lifecycle of simula-
tion studies with several tasks. It starts from the real world problem via modeling
and experiments and ends with the result discussion. Over the years, he expan-
ded his considerations to include quality criteria, in particular verification and val-
idation considerations [8]. Others identified 29 quality factors by performing an
SLR about simulation modeling and its quality assessment [60]. ROBINSON con-
cluded based on his terminology forming that criteria in literature are differently
addressed, categorized and composited [234]. Based on these findings from literat-
ure, only two quality criteria - accuracy and credibility - are particularly distinctive
for a simulation approach and will be discussed in the following.

Accurate The definition of simulation already reveals the problem of accurate ex-
periments. The model which is built to simulate the real world object can only

47https://www.oxfordlearnersdictionaries.com/definition/english/simulation

36

https://www.oxfordlearnersdictionaries.com/definition/english/simulation

2.3. Simulation

ever be an approximation. Therefore, it is obvious that the level of detail with
which the model is created is a trade-off between modeling and runtime costs of
the simulation on the one hand and the accuracy of the simulation results on the
other hand [144]. A precise documentation of the design decisions is important
for a proper interpretation of the experiments. Descriptions of aspects which are
neglected as they currently aren’t relevant are just as important as those which
are included in the model. Additionally, to be accurate, a simulation experiment
has to document the validation process by e.g. specifying tests [7]. These self-
validation steps give other researchers the opportunity to work on the simulation
model and refine it while staying in the functional boundaries. Furthermore, these
steps make the experiment reproducible by others. Similar to benchmarking stud-
ies, repeatability based on the provided information is also a problem in simula-
tion research as PAWLIKOWSKI and others found that a “vast majority of simulation
experiments” is not repeatable [212, p. 137].
Other terms used for describing aspects of accuracy in literature are fidelity [60],

verification, testing [7] or validity [234]. All of these terms and their explanations
have in common that they deal with a precise mapping of the real world object to
the model.

Credible While for accuracy the focus is on a neutral and objective investigation,
the question whether a simulation is credible is more subjective. The focus of
simulations is to compare alternatives within an early development phase of a
product or software system and decide - based on limited information - which
approach is more favorable. Therefore, another target group besides software en-
gineers are decision makers who decide which option to choose on the basis of
simulation results [234]. Awareness for the assumptions needs to be communic-
ated in an early phase and repeated when presenting the results so that decision
makers perceive the simulation approach and therefore the simulation results as
trustworthy [144]. As for the first quality criterion, a proper documentation of the
assumptions made and the consensus of all stakeholders in the simulation pro-
cess improves the credibility of the solution - also for future simulations. To guide
decision makers, a proper visualization of the simulation results supports the as-
sessment of different alternatives [60]. Additionally, a discussion of a validation
process and a proper reasoning create trust [144]. So, credibility is a soft criterion
and due to its subjective nature not easily quantifiable but crucial for the success
of a simulation process and the conclusions drawn from it. Other terms used in
literature which address a similar notion are acceptability [7] or judgment of the
process quality [234].

37

2. Theoretical and Technical Foundations

2.3.3. Distinction to Related Concepts

The most closely related term to simulation is emulation48. In an industrial pub-
lication by STARNER and CHESSIN [259], there is no clear differentiation between
the two terms as the authors described emulation as a process based on the simu-
lation model to test different alternatives, which is seen in academic literature as
a simulation step [120]. The differentiation between both terms is important for
an understanding of the capabilities of an emulator compared to a simulator. Ac-
cording to the Oxford Learner’s Dictionary, emulation is “the act of a computer or
computer programworking in the same way as another computer or program and
performing the same tasks”49. An emulator is therefore capable of replacing parts
of the real world object or the whole one despite unchanged system functionality.
Simulation approaches can be a first step towards emulation solutions. Within

the simulation process, the real object is abstracted via models for analyzing and
studying the domain. Then an engineer is capable of building an emulator with
the core features based on the simulation model. This procedure saves time and
money by testing products before they are physically constructed [120, 191]. In
an experiment for Covid-19 simulation models, SÜRER and PLUMLEE used this ap-
proach. Their simulation model produced a lot of unusable results based on the
input parameters. These parameter constellations were filtered to shrink the res-
ult set before building an emulator based on these insights [263].

2.3.4. Summary

Due to its advantage of producing early feedback with reduced cost, simulation is
often used in engineering. Especially when having the two quality criteria - accur-
acy and credibility - in mind, experiments can support engineers and managers to
decide between several system designs or architectures. It is important to indicate
the level of accuracy needed for making a decision at the beginning of the project.
This makes the requirements to the simulation process clear, helps to create a
model with the desired quality and supports the analysis of the real world object
in an early development stage.

48This observation is confirmed when searching on dblp for the search string “simulation
emulation”, which resulted in 164 entries on 13th of December 2022, https://dblp.uni-
trier.de/search?q=simulation+emulation.

49https://www.oxfordlearnersdictionaries.com/definition/english/emulation

38

https://dblp.uni-trier.de/search?q=simulation+emulation
https://dblp.uni-trier.de/search?q=simulation+emulation
https://www.oxfordlearnersdictionaries.com/definition/english/emulation

Part II.

Function as a Service

39

3. Conceptualization of Function as a
Service

Parts of this chapter have been taken from [175, 180, 185].

In this chapter, RQ1.1 (Which characteristics define a FaaS offering?) and RQ1.2
(How is FaaS related to other service models in the cloud computing landscape?) are
supported.

Having a common understanding and precise use of terminology is an import-
ant foundation to embed a new technology in an already present technology stack.
Therefore, Section 3.1 defines Function as a Service and Serverless Computing based
on characteristics extracted from literature to differentiate the two terms which
are often used to describe similar concepts. FaaS is recognized as a new cloud
computing model. Therefore, in Section 3.2 it is embedded in a “as a Service”
classification based on the provider and user view on this new service model. The
following sections include a market overview of current public cloud providers as
well as open-source alternatives (Section 3.3) and strategies to assign resources to
cloud function instances (Section 3.4). The conceptualization is concluded with
a proposal for an architecture of a FaaS worker node in Section 3.5 and a short
summary.

3.1. Differentiation of Serverless Computing and Function as a
Service

3.1.1. Motivation

Serverless functions [9, 97, 108, 172, 264, 284], cloud functions [113, 203, 242, 257,
274], server-aware vs. server-less [9] and serverful computing [113] are terms to
describe and define a new computing model which abstracts servers. In addition
to this plethora of different terms, the interpretation of this new service model is
diverse. LEITNER and others [148] focus especially on the operation work a user has
to do. They argue that a developer does not have to do any form of operations work
anymore when using this new computingmodel. From this point of view, this new
paradigm enhances DevOps toNoOps [148]. Another interpretation is that “server-
less platforms can be considered an evolution of Platform as a Service”[42, p.47].

41

3. Conceptualization of Function as a Service

The “Serverless Predictions” [159] forecast a disaggregation of computing resources
for the next decade but don’t offer a proper terminology for this change. All of this
indicates whyHELLERSTEIN and others [98] state on their first page that “the notion
of serverless computing is vague enough to allow optimists to project any number
of possible broad interpretations on what it might mean”. When searching for
definitions and literature about this new cloud computing concept this ambiguity
is a real problem. For this reason, this part is dedicated to conceptualize FaaS and
Serverless Computing to avoid further confusion.
Since Serverless respectively FaaS are considered as a new cloud service model,

the NIST definition on cloud computing [192] is the first source for getting re-
liable information and check if FaaS is indeed a new cloud service model. All
“as a Service” offerings defined by NIST have a common central aspect which
is that a cloud provider offers as a Service for infrastructure (I), platforms (P)
and software (S). FaaS is no exception but it also provides a platform for execut-
ing arbitrary user defined functions (F)50. It also attracts a lot of attention in in-
dustry. Gartner predicts that 50% of global companies will use a FaaS service in
202551. It is also seen as the next big evolution in cloud computing in scientific
literature [112, 113, 233, 242]. Despite the overall agreement that this new cloud
computing model abstracts most operational tasks, the majority of publications
use the term Serverless Computing (or only Serverless) while addressing core con-
cepts and characteristics of FaaS. Most authors are aware that Serverless is an
oxymoron [113] andmisnomer [18, 73, 215, 289] but still use the term in their pub-
lications. Therefore, the following SLR based on the guidelines of KITCHENHAM
and CHARTERS [124] provides insights in a structured way to define both terms.
The contribution to the scientific community is two-fold. The provided SLR is
the first structured approach in literature, to the best of our knowledge, to define
Serverless Computing and FaaS and distinguish the two terms based on a set of
characteristics (RQ1.1). These characteristics can serve as a checklist for further
publications to help decide which term to use. Furthermore, they give guidance
if new services offered are either categorizable as FaaS or Serverless or none of
the two. Secondly, cloud service offerings provide different levels of abstraction
and control. As an outlook to this conceptualization perspective, we classify FaaS
from a provider and user control perspective in Section 3.2. This can point users
to decide which service offering to use based on their requirements and the level
of technological freedom they need. When discussing the SLR results, numbers
are presented to which extend authors use the term Serverless compared to FaaS.
Furthermore, search trends at Google’s search engine provide data and give hints
why authors choose a misnomer instead of being more precise in their wording.

50It is especially noteworthy that the biggest scientific cloud computing conference, IEEE CLOUD,
lists FaaS with the other three established service models in their call for papers as research
areas, https://conferences.computer.org/cloud/2023/cfp/.

51https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing

42

https://conferences.computer.org/cloud/2023/cfp/
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing

3.1. Differentiation of Serverless Computing and Function as a Service

3.1.2. Related Work

There are several other SLRs which are related to this chapter as they searched
literature in a reproducible way in order to better understand the following areas
of research concerning FaaS: The studies deal with benchmarking [137, 174], per-
formance evaluations [240] and tooling in the FaaS domain [294]. In another sys-
tematic investigations, TAIBI and others [264] examined 24 publications and found
32 patterns for building applications. EISMANN and others [73] looked at 89 applica-
tions to decide when to use serverless offerings whereas YUSSUPOV and others [296]
chose a different dimension and considered the given requirements to find a suit-
able FaaS platform. They investigated the ten most prominent platforms at that
time and compared them based on their characteristics. Despite the many dif-
ferent formulated questions and structured research approaches already available,
there is currently no structured approach to identify and discuss literature for a
conceptualization and definition of Serverless and FaaS.

3.1.3. First Definition Approaches

The first step of our criteria collection process is to look at existing definitions for
Serverless and FaaS. For this initial approximation of the terms, we look at the
glossary sections of the Cloud-Native Computing Foundation. CNCF was chosen
based on its vendor neutrality as well as the focus on cloud technologies. It is,
therefore, a valid source where interested researchers and practitioners may look
for a definition52. However, these definitions are not peer-reviewed nor discussed
within the scientific community and reflect the opinion of the corresponding au-
thors at CNCF. Nevertheless, they are recognized as a starting point in our discus-
sion to scientific sound definitions.

“Serverless is a cloud native development model that allows developers to
build and run applications without having to manage servers. There are still
servers in serverless, but they are abstracted away from app development. A
cloud provider handles the routine work of provisioning, maintaining, and
scaling the server infrastructure. Developers can simply package their code
in containers for deployment. Once deployed, serverless apps respond to
demand and automatically scale up and down as needed. Serverless offer-
ings from public cloud providers are usually metered on-demand through
an event-driven execution model. As a result, when a serverless function is
sitting idle, it doesn’t cost anything.”53

“Function as a Service (FaaS) is a type of serverless cloud computing service
that allows executing code in response to events without maintaining the

52The two definitions are archived on Zenodo in the bundle with all the other SLR informa-
tion [177].

53https://glossary.cncf.io/serverless/

43

https://glossary.cncf.io/serverless/

3. Conceptualization of Function as a Service

complex infrastructure typically associated with building and launching mi-
croservices applications. With FaaS, users manage only functions and data
while the cloud provider manages the application. This allows developers
to get the functions they need without paying for services when code isn’t
running.”54

Based on these definitions for Serverless and FaaS we can identify important
technological evolutions, which serve as input for an SLR: The authors of the
glossary at CNCF define FaaS as a subset of Serverless Computing. When we
compare the two definitions, we recognize that both are quite similar. However,
the characteristics of the Serverless CNCF definition are more abstract compared
to the Function as a Service definition as it focuses on the obligations of providers.
From a developer point of view, the focus is limited on services packaged as stand-
ardized units. When considering the benefits of VMs security-wise and contain-
ers performance-wise as explained in Section 2.1, users upload code and provider
package this code in OCI compliant images and run them within their cloud plat-
forms. These images could be a skeleton of self-contained functions but also arbit-
rary services like databases or queuing systems. Presented and discussed in the
next section, these related concepts , i.e. microservices, virtualization and contain-
ers, are important to consider for a proper conceptualization. They help to narrow
down the context of Serverless and FaaS and serve as another kind of input for our
SLR.

3.1.4. Related Technologies

It is also worthwhile to look at the technologies and concepts which are related to
FaaS in order to come up with a better definition. A first aspect is system archi-
tecture where microservices seem a natural fit for self-contained functions. A mi-
croservice implements and supports a dedicated business capability which is nor-
mally comprised of several functionalities coupled in a service [68, 202]. How big
or small microservices should be is an ongoing debate [245, 265]. However, when
services are designed to only provide a single functionality - as is the case with FaaS
- then the size should be even smaller. To differentiate between microservices and
these smaller services, WOLFF introduced the term nanoservice [290].
To build applications out of microservices and nanoservices, orchestration is a

central aspect which has to be considered to understand the scope of Serverless
approaches. When using orchestration tools, developers focus on declarative de-
scriptions of their application architecture. Such a declarative, Infrastructure as
Code (IaC) based approach abstracts servers from the developer and is considered
as Serverless [292]. Public cloud providers achieve orchestration and management
of their infrastructure and therefore a Serverless developer experience via a combin-
ation of IaC tools like AWS Cloud Formation55 and capabilities of their platforms
54https://glossary.cncf.io/function-as-a-service/
55https://aws.amazon.com/cloudformation/

44

https://glossary.cncf.io/function-as-a-service/
https://aws.amazon.com/cloudformation/

3.1. Differentiation of Serverless Computing and Function as a Service

like offering auto-scaling features at Google App Engine56. When hosting open-
source Serverless software like FaaS platforms, the job of a provider, which is often
an in-house IT department, is to provide a notion of abstract computing resources
for a developer. Due to the abstraction introduced with VMs and containers, the
bare metal management of servers can be abstracted from a developer in an on-
premise scenario but basic configuration options remain. Developers often have
to specify runtime requirements to operate their implemented services, in partic-
ular how much memory and how many logical cores are necessary to operate the
specific service. Proprietary solutions to provide a set of predefined VM configur-
ations which developers can select from are one possible option for the in-house
IT department but cumbersome to operate and error prone. VMs have stronger
isolation guarantees and a better isolation of multiple tenants on the same host.
However, to deploy and run nanoservices, the runtime characteristics where star-
tup duration can take seconds for a single VM are not appropriate. Hence, as
seen in Section 2.1.4, the runtime characteristics of container are more suitable
for deploying such services but come along with a weaker isolation of tenants.
With the rise of K8s, an open source container orchestrator preview-released in

2014 and officially released in 201557, containers have become the default level of
abstraction. Operation and management aspects are handled by the K8s orches-
trator which comply with the provider tasks in the CNCF Serverless definition, for
example by implementing a self-healing property of services or providing cluster
management features like adding new nodes. IaC features are provided by the
declarative K8s deployments and service configurations. Some authors are of the
opinion that the Serverlessmovement is tightly related to the rise of K8s [25, 31, 296].
Therefore, it is important to consider that K8s features might influence the exist-
ing definitions of Serverless. It also explains why K8s is used as one of the search
terms in a quantitative assessment of search trends in the next section.

3.1.5. Search Trends at Google’s Search Engine

To get an idea about the general usage of the terms Serverless and FaaS in articles,
blog posts and the internet in general, this paragraph examines different search
terms and their relevance over time as recorded by GoogleTrends [46]. It gives a
first hint on the frequently used terms at Google’s search engine and can be an
indication why some terms are used more often in literature compared to others.
The results for the Google Search Trends58 query for Serverless, Kubernetes, Func-
tion as a Service andAWS Lambda can be found in Figure 3.1. The terms Serverless
and Function as a Service were chosen to see their dissemination and understand
the term usage in the web in general. K8s is identified as an important tool for or-
chestration where the K8s orchestrator is an interface for the user which abstracts

56https://cloud.google.com/appengine/docs/standard
57https://kubernetes.io/blog/2018/07/20/the-history-of-kubernetes-the-community-behind-it/
58https://trends.google.com/trends/explore?date=2014-12-20%202022-12-20

45

https://cloud.google.com/appengine/docs/standard
https://kubernetes.io/blog/2018/07/20/the-history-of-kubernetes-the-community-behind-it/
https://trends.google.com/trends/explore?date=2014-12-20%202022-12-20

3. Conceptualization of Function as a Service

1 Dec 2014 1 Jul 2017 1 Feb 2020 1 Sept 2022

25

50

75

100

N
ot
e

N
ot
e

(a) Severless

1 Dec 2014 1 Jul 2017 1 Feb 2020 1 Sept 2022

25

50

75

100

N
ot
e

N
ot
e

(b) Kubernetes

1 Dec 2014 1 Jul 2017 1 Feb 2020 1 Sept 2022

25

50

75

100

N
ot
e

N
ot
e

(c) Function as a Service

1 Dec 2014 1 Jul 2017 1 Feb 2020 1 Sept 2022

25

50

75

100

N
ot
e

N
ot
e

(d) AWS Lambda

1 Jan 2015 1 Jan 2018 1 Jan 2021

25

50

75

100

N
ot
e

N
ot
e

(e) Kubernetes (green), AWS Lambda (yellow), Serverless (blue) and Function
as a Service (red)

Figure 3.1.: Google Search Trends for the keywords Serverless, Kubernetes, Function as a
Service and AWS Lambda from December 2014 until December 2022 as well
as their relative interest to each other.

a lot of operational aspects. And finally, AWS Lambda as the first commercial
FaaS platform created a milestone and also influenced the way practioners and re-
searchers see the Serverless and FaaS domain. The graphics from Figure 3.1 cover
the time span from December 2014 to December 2022. The vertical lines labeled
”Note” are only a reference that improvements to the data collection system were

46

3.1. Differentiation of Serverless Computing and Function as a Service

conducted in 2016 and 2022, respectively. This has no further impact on the inter-
pretation of the charts. All lines are normalized based on the maximum of search
interest for each search term individually as can be seen in subfigures (a)-(d). This
maximum has the value 100 and other values are direct proportional to this max-
imum. Subfigure (e) puts all search terms in relation to show their comparative
relevance.
In the previous section, we discussed the obligations of a computing platform

provider as indicated by the CNCF Serverless definition and identified K8s as an im-
portant tool for building Serverless applications. Therefore, we start our Google-
Trends analysis with a comparison of Serverless (subfigure (a)) and Kubernetes (sub-
figure (b)). It can be seen that both terms gain importance over time and their
search trends show a similar distribution. Both terms indicate a kind of opera-
tional abstraction. Furthermore, both terms are considered important within the
IaC and DevOps community [93, 252]. When comparing the relative frequency
of these terms used in queries in subfigure (e), Kubernetes as a search term was
used four times more often than Serverless. The reasons could be its practical
nature and the configurations problems developers experiencing when they im-
plement their applications. In addition, K8s is used by many companies as their
container orchestration platform which explains its relative importance compared
to Serverless.
As indicated by the CNCF definition, FaaS is seen as a subset of Serverless tech-

nologies, so the next term we want to consider is Function as a Service. In subfig-
ure (c), we see a curve with a wide amplitude without a clear upward or downward
trend. Based on this and the Serverless trend curve, a take-away could be that the
two terms are not considered together. Taking into account subfigure (e) as well,
the relative importance of Function as a Service compared with Serverless or even
K8s is negligible. So an interim conclusion here is, that interested users looking
for FaaS services and characteristics, use other search terms.
In 2014, the same year a preview version of K8s was released, the most im-

portant technological development of cloud service offerings with regards to FaaS
was made by AWS, when they announced a new service called Lambda59 at their
re:invent developer conference. It was first available to the public in April 201560.
In their release note, they described their new service with the following attrib-
utes: event-driven execution model, provide management of compute resources,
startup within milliseconds, billing per request as long as the function is run-
ning, auto-scaling on demand, metering in millisecond granularity59. Since AWS
Lambda was the first available public service in the market which is in line with
the CNCF definition of FaaS by being more concrete about the technical realiza-
tion and the features a user can expect, it is reasonable to look at the search term
trend forAWS Lambda in subfigure 3.1(d). The trend is comparable with the curve
of Serverless but starting earlier with the end of 2014 which is after the re:Invent

59https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
60https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

47

https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

3. Conceptualization of Function as a Service

presentation of Lambda in November. The relative importance in Figure 3.1(e)
between AWS Lambda and Serverless trends is striking. Since FaaS is seen as a
subset of Serverless based on CNCF definitions and AWS Lambda is a commercial
FaaS platform, both terms describe the same kind of technology. This could be
why the two terms are tightly related to each other in GoogleTrends.

3.1.6. Structured Literature Review

3.1.6.1. Identified Characteristics

For a structured scientific assessment of Serverless and FaaS, we need a solid
foundation for differentiating and defining the terms. We choose a characteristics
based approach, which means that we look at several terms, existing definitions
and established standards to extract distinctive features. The previous section dealt
with the general usage of terms in the web. Together with the definitions of the
CNCF and related technologies like microservice, K8s and AWS Lambda in mind,
we now have a set of relevant terms for a scientific, more structured assessment of
Serverless and FaaS. As already mentioned in the motivation, another important
source for general service model characteristics in the cloud is the NIST defini-
tion of cloud computing [192, p. 2]. They state five essential characteristics which
form a cloud computing model: On-demand self-service, broad network access,
resource pooling, rapid elasticity and measured service.
On-demand self-service means that a user of the service can “unilaterally” provi-

sion as many resources as they need and access them via standardized protocols
over a network. By doing so, a provider serves multiple clients on a shared fleet
of resources and pools its resources. This pooling leads to multi-tenancy scenarios
where providers have to offer isolated units on a single physical machine to ex-
ecute the code of each user separately. Deployment of services is fully managed
by the provider and a user can only make choices on a “higher level of abstrac-
tion” like a geographical region or datacenter. However, they cannot configure on
which VM, physical machine or rack an application should run. Rapid elasticity
describes scaling up and down on demand which can give the user the illusion
of infinite resources on the platform. And the last NIST characteristic describes
an implementation of a measured service which is often realized by metering the
user based on a pay-per-use strategy like hours for VMs or occupied memory for
storage services.
To embed the CNCF definitions in a larger context and relate the NIST char-

acteristics to it, in the following we will perform a SLR to find a solid body of
literature to define both terms. Table 3.1 presents the extracted characteristics of
the three definitions (”Serverless” and ”FaaS” from CNCF and ”Cloud Comput-
ing” from NIST) and shows their overlap in some of the characteristics. The two
NIST characteristics on-demand self-service and rapid elasticity were combined with
the scaling property of the Serverless CNCF definition. Broad network access was

48

3.1. Differentiation of Serverless Computing and Function as a Service

Table 3.1.: Characteristics included in CloudNative Computing Foundation definitions for
FaaS and Serverless as well as the essential characteristics of cloud computing
defined by NIST.
Characteristic Included In Definition

Serverless FaaS NIST

c1 Abstracted server management by a platform provider X X
c2 Self-contained services complying to a standard, e.g. OCI

compliant images
X

c3 Scaling, on-demand self-service, rapid elasticity X X
c4 On-demand metering, pay-as-you-go X X
c5 Event-driven execution model X X
c6 No idling cost X X
c7 Resource pooling, multi-tenancy X

not considered as a distinctive characteristic since all platforms are accessible via
standardized protocols like HTTP.

3.1.6.2. Search Process

SLRs make research reproducible which is a quality aimed for in all research ef-
forts within this dissertation project. Furthermore, an aim of this review is to find
other characteristics to define the term FaaS and differentiate it from Serverless.
One lesson learned from conducting SLRs is to justify the search strategy [30]. To
get a comprehensive set of literature about Serverless and FaaS, we use the fol-
lowing generic search string at Google Scholar61, ACM digital library62 and IEEE
Xplore63:

(Function as a Service OR FaaS OR Serverless) AND definition

The searchwas performed on 11th of January 2023. We adapted the search string
based on the respective interfaces of the three search engines. Furthermore, we
developed a review protocol to document the decisions made along the way64. K8s
was not included in the search string since the focus is on a differentiation between
FaaS and Serverless as well as to understand the term usage in the research com-
munity. Nevertheless, one question of the protocol approaches the importance of
K8s within the identified publications in order to give credit to its widespread use.
When approaching the first engine, Google Scholar, we got about 24,300 results

for our search combination, which can be explained based on the broad scope of
the terms as well as the relevancy of the topic. To get a manageable set of publica-
tions, we follow an approach also used in other SLRs [130, 264] to include the first
100 entries sorted by relevance. The same quantity problem is present at ACM

61https://scholar.google.de/
62https://dl.acm.org/search/advanced
63https://dl.acm.org/search/advanced
64The review protocol as well as the results after each step in the SLR process are available at
Zenodo [177].

49

https://scholar.google.de/
https://dl.acm.org/search/advanced
https://dl.acm.org/search/advanced

3. Conceptualization of Function as a Service

digital library when performing a full-text search as more than 4,000 results were
returned. In contrast to Google Scholar, the digital libraries of ACM and IEEE are
capable of searching in the abstract as well as in other parts of the publications.
Since the abstract of a paper is a short summary of the presented work which usu-
ally contains all relevant keywords, it was chosen as the search space for the first
part of the phrase to find articles focused on FaaS and Serverless. The term defin-
ition could be included anywhere in the document since limiting this term only
to the abstract would have resulted in merely 5 publications within ACM Digital
Library and 8 results from IEEE Xplore.

Initial Search

Google Scholar

100

ACM Digital
Library

148

IEEE Xplore

223 471

Filtering Skimming Snowballing

40 19 23

based on
characteristics

c1-c7 based on full text backward search

Figure 3.2.: Structured Literature Review conducted on 11th of January 2023 for differen-
tiating FaaS and Serverless.

Figure 3.2 shows the SLR process and indicates that 471 entries were gathered
from the three libraries. After filtering the entries based on the title with the charac-
teristics c1-c7 from Table 3.1 in mind, 40 publications were left for a more detailed
assessment based on their full texts. Skimming the papers was problematic since
a lot of publications mentioned characteristics in several sections. So, we read the
full texts of these papers and got a first set of relevant literature. The inclusion cri-
teria was the presence of solid parts or sections where the authors describe Server-
less or FaaS or both terms. Only a few papers had proper definition sections where
the terms are defined, e.g. [9, 42, 113, 131, 133, 152, 233, 246, 274, 291], but also
these papers name some of the characteristics in other sections as well. 21 papers
were excluded from the further process as they either had a different focus like
patterns [295] or were follow-up publications where the same authors published
several papers with the same point of view on the terms, e.g. VAN EYK and others
in 2017 [274] followed by two publications in 2018 [275] and 2019 [276]. Only the
first published papers of these authors were included. The last step was a back-
ward search to find other relevant papers. Eight further papers were identified;
four of them relevant based on the questionnaire. In the end of the SLR process,
we ended up with 23 publications as listed in Table 3.2.

50

3.1. Differentiation of Serverless Computing and Function as a Service

3.1.6.3. Discussion

Table 3.2.: Summary of Structured Literature Review publications for term definitions of
Serverless (S) and FaaS (F).

Paper Year Terms Used Differentiation/Usage Characteristics
S F

Gannon et al. [84] 2017 XX c1-c3,c5
Lynn et al. [161] 2017 XX X Used as synonyms. c1-c8
Baldini et al. [9] 2017 XX X FaaS one version of Serverless. Term

FaaS only used once.
c1-c6,c8

Roberts & Chapin [233] 2017 X X Serverless comprises BaaS & FaaS. c1-c6,c8
Van Eyk et al. [274] 2017 X XX Serverless comprises BaaS & FaaS as

well as parts of PaaS and SaaS.
c1,c3-c5,c7-c8

Wang et al. [282] 2018 XX X Used as synonyms. Term FaaS only
used once.

c1-c4,c6-c8

Castro et al. [42] 2019 XX X FaaS as the dominant use case of
Serverless. Used as synonyms.

c1-c6,c8

Jonas et al. [113] 2019 XX X Serverless comprises BaaS & FaaS. c1-c8
Jangda et al. [108] 2019 XX X Used as synonyms. c1,c3,c5-c6,c8
Leitner et al. [148] 2019 X XX FaaS “most prominent implementa-

tion” of Serverless.
c1-c8

Hellerstein et al. [98] 2019 X X FaaS “core of Serverless offerings”. c1,c3-c5,c7-c8
Wu et al. [291] 2020 XX X Used as synonyms. c1-c8
Koschel et al. [131] 2021 XX X Serverless comprises BaaS & FaaS. c1-c5,c7-c8
Denninnart & Salehi [59] 2021 XX X Serverless comprises BaaS & FaaS. c1-c8
Hassan et al. [97] 2021 XX X Serverless comprises BaaS & FaaS. c1-c8
Kounev et al. [133] 2021 XX X Serverless comprises BaaS & FaaS as

well as parts of PaaS and SaaS.
c1-c8

Schleier-Smith et al. [242] 2021 XX X Serverless comprises BaaS & FaaS. c1,c3-c6,c8
Marin et al. [188] 2022 XX X Serverless comprises BaaS & FaaS. c1-c5,c8
Ngo et al. [203] 2022 (X) XX Used Serverless only once as keyword. c1-c3,c5
Li et al. [152] 2022 XX X Serverless comprises BaaS & FaaS,

stuck to definition of JONAS et al. [113].
c1-c8

Shafiei et al. [246] 2022 XX X Serverless as a “generalization” of BaaS
& FaaS.

c1-c8

Wen et al. [284] 2022 XX X Serverless comprises BaaS & FaaS. c1-c5,c8
Mampage et al. [172] 2022 XX X Serverless comprises BaaS & FaaS. c1-c8

After reading the first papers, statelessness was another term which was often
used to describe Serverless respectively FaaS approaches. Therefore, it was in-
cluded in the literature review process as the eighth characteristic (c8). Table 3.2
lists the authors, publication year and the term usage for every paper. For the
term usage, XX indicates the predominantly used term (Serverless (S) or FaaS (F))
and X if the other term was also used. This term usage is especially important in
order to form a definition as it indicates whether the papers distinguish between
the two terms or if they use them as synonyms. There are only two papers of our
set which name only one of the two terms. GANNON and others [84] only used
the term Serverless in their paper where they discussed cloud-native applications
and see Serverless Computing as a natural fit for such applications. Due to the
year of the publication in 2017 and the focus on their paper, this term usage is
reasonable. NGO and others [203] on the other hand used Serverless only once as
a keyword. Their focus is on FaaS platforms and their scalability. A reason for
using still Serverless as a keyword could be that the authors are aware that other

51

3. Conceptualization of Function as a Service

researchers often use Serverless as a search term despite looking for publications
about FaaS. All other papers used both terms.

Table 3.3.: Characteristics (c1-c8) and their occurrences in the Structured Literature Re-
view papers.
Characteristic Included In Publications Percentage

c1 Abstracted server management by a plat-
form provider

[9, 42, 59, 84, 97, 98, 108, 113, 131,
133, 148, 152, 161, 172, 188, 203, 233,
242, 246, 274, 282, 284, 291]

100 %

c2 Self-contained services complying to a
standard, e.g. OCI compliant images.

[9, 42, 59, 84, 97, 113, 131, 133, 148,
152, 161, 172, 188, 203, 233, 246, 282,
284, 291]

83 %

c3 Scaling, on-demand self-service, rapid
elasticity

[9, 42, 59, 84, 97, 98, 108, 113, 131,
133, 148, 152, 161, 172, 188, 203, 233,
242, 246, 274, 282, 284, 291]

100 %

c4 On-demand metering, pay-as-you-go [9, 42, 59, 97, 98, 113, 131, 133, 148,
152, 161, 172, 188, 233, 242, 246, 274,
282, 284, 291]

87 %

c5 Event-driven execution model [9, 42, 59, 84, 97, 98, 108, 113, 131,
133, 148, 152, 161, 172, 188, 203, 233,
242, 246, 274, 284, 291]

96 %

c6 No idling cost [9, 42, 59, 97, 108, 113, 133, 148, 152,
161, 172, 233, 242, 246, 282, 291]

70 %

c7 Resource pooling, multi-tenancy [59, 97, 98, 113, 131, 133, 148, 152,
161, 172, 246, 274, 282, 291]

61 %

c8 Statelessness [9, 42, 59, 97, 98, 108, 113, 131, 133,
148, 152, 161, 172, 188, 233, 242, 246,
274, 282, 284, 291]

91 %

Table 3.3 shows the characteristics and the list of papers where these character-
istics were included, an inverted view on the information of Table 3.2. All charac-
teristics are included in the majority of the papers and abstracted server manage-
ment (c1) and scaling on-demand (c3) in particular are named in every included
paper. Also most of the other characteristics like self-contained artifacts (c2), pay-
as-you-go (c4), event-driven execution model (c5) and statelessness (c8) are used
to describe Serverless and FaaS in more than 83 % of the papers. The other two as-
pects are less common but nevertheless important for a conceptualization as well
as to stress platform design prerequisites. No idling cost (c6) is explicitly included
as a characteristic since FaaS platforms improved the pay-as-you-go dimension in
such a way that only the running instances are charged. This might explain why
only 70 % of the selected authors named this as a distinctive aspect. If the pro-
vider optimizes and keeps functions alive after a first invocation, the user is not
charged for this effort but profits from already provisioned instances without cold
start effects like starting a JVM or loading dependencies which results in general
in a shorter billing duration. The last characteristics in our list is resource pooling
respectively multi-tenancy (c7) which is an inherent characteristic in cloud com-
puting for achieving higher utilization for a fleet of servers. This aspect has per-
formance implications for building cloud platforms in general and FaaS platforms
in particular. See chapter 2.1 for a discussion about virtualization options.

52

3.1. Differentiation of Serverless Computing and Function as a Service

Before discussing the SLR and insights from the current view on Serverless and
FaaS offerings in detail, definitions are provided based on the introduced charac-
teristics and the structured review of literature in mind.

Definition 3.1 (Serverless Computing)
Serverless Computing is a generic computing approach where servers are abstrac-
ted from the user. All operational aspects like managing physical machines and
providing VMs are tasks of the service provider. A service provider is typically a
public cloud provider but also in-house IT departments can act as service providers
for their own development teams. They offer interfaces for service users like SDKs,
CLIs or OCI compliant runtimes where the focus is on code, configuration options
or deploying/uploading artifacts. All offerings are pay-per-use. Scaling and pro-
visioning of additional computing, storage or network resources happens without
user interference based on the demand of the deployed applications and ecosys-
tem services like data storage. A provider of a serverless platform pools resources
and serves multiple users on the same physical machine. Tenants are isolated via
virtualization approaches in particular VMs.

The above definition of Serverless Computing contains the characteristics c1-c4
and c7. Some authors use Serverless and FaaS as synonyms [42, 108, 161, 282, 291].
As indicated by the following definition of FaaS, we disagree with this view and
argue that some characteristics describing FaaS are unique to this service model
as well as some characteristics are too specific for a generic computing principle
like Serverless.

Definition 3.2 (Function as a Service)
Function as a Service (FaaS) is a compute servicemodel in line with other as a Ser-
vice offerings. The core of this concept are event-triggered, single-scoped functions,
i.e. cloud functions, which scale up and down on demand without user interac-
tion. This auto-scaling property is one of the unique characteristics of FaaS. Such
platforms conceptually start a single function instance for each request and tear
this instance down again after the function is executed. Therefore, cloud functions
are inherently stateless. Which means that platform providers are able to offer a
genuine pay-as-you-go billing model where users are only charged when the cloud
function is running as instances scaled to zero results in no idling costs. Other
comparable computing models like PaaS based offerings always have at least a
single instance running to serve requests.

We see c3, c5-c6 and c8 as unique aspects for defining FaaS. Scaling is already
included in the Serverless definition but a key aspect why so many practitioners
and researchers talk and write about FaaS and therefore stressed again. From a
conceptual point of view, a single function is started upon each request and teared
down afterwards which renders a FaaS offering stateless. This focus on stateless
cloud functions eases scalability and pay-as-you-go but comes along with an in-
creased number of services (nanoservice vs. microservice) as well as additional ef-

53

3. Conceptualization of Function as a Service

fort needed to get a FaaS offering in production. Storage, routing and messaging
are only a few examples of backend services needed to build FaaS applications.
These services are subsumed under the term Backend as a Service (BaaS) and of-
ten characterized Serverless since the service provider manages the servers (c1),
scales the resources on-demand (c3) and meters a user on demand for the used
capacity (c4), e.g. API requests, storage etc. Combined with the multi-tenancy (c7)
and self-containedness of these services (c2), all characteristics of our Serverless
definition are fulfilled. Since the number of BaaS offerings needed to get FaaS in
production is higher than e.g. in a PaaS scenario, some authors coin this stronger
kind of vendor lock-in as ecosystem lock-in [28, 96, 127].
Furthermore, when approaching this new area of computing from an applica-

tion point of view, it is not surprisingly that most of the authors [59, 97, 113, 131,
133, 152, 172, 188, 233, 242, 246, 274, 284] see Serverless as an umbrella term for
BaaS and FaaS as can be seen in Table 3.2. All papers from our SLR published in
2021 and 2022 except NGO and others [203] share this view on Serverless, BaaS and
FaaS whereas only three [113, 233, 274] out of twelve papers did so in the period
from 2017 to 2020. Another insight from the literature review is that most authors
write about FaaS in the sense of the presented definition but use the term Server-
less in their publications in themajority of occurrences [9, 59, 97, 98, 108, 152, 161,
172, 282, 284, 291]. WANG and others [282] for example used an ambiguous word-
ing as their GitHub repository is called “faas_measure” but the term Serverless is
most often used in the paper. This term usage is mirrored in the search trends
where users most often use Serverless in their query. Additionally, early authors
in 2017 most often used the term Serverless which resulted in a self-reinforcing
effect.
From the search trends presented in Section 3.1.5, two terms have beenmissing

from this discussion so far: K8s and AWS Lambda. K8s is included in nine of the
23 papers, so there is a relation between Serverless and FaaS on the one hand
and K8s on the other. But this relation is not as strong which is indicated by the
search term relevancy over time for the terms in Figure 3.1. K8s is seen as a
kind of orchestration layer [161] or used for achieving security aspects [97] but
most of these papers argue that K8s is used as a foundation for open source FaaS
platforms [233] and present data which open source platforms are using K8s [59,
152, 172]. Other research conducted which is not included in the selected papers
confirm this view on K8s and open source projects [149, 180, 197, 207, 276]. This
seems reasonable when looking at its features65 like auto scaling and declarative
deployments. To summarize, K8s is an important technology in the Serverless
domain, especially as a foundation of open source FaaS platforms.
The other search termwhich attracted a lot of attention with regard to Serverless

is AWS Lambda. It is included in all the selected papers from the SLR despite two
of them not naming AWS Lambda in their full texts [133, 188]. As a pioneering
platform in the FaaS domain also other studies revealed this important position.

65https://kubernetes.io/docs/concepts/overview/

54

https://kubernetes.io/docs/concepts/overview/

3.2. Differentiation to Established Cloud Service Models

A glimpse of this dominance in FaaS research is an SLR conducted by HASSAN
and others where 78 of their selected papers use AWS Lambda for experiments
(2nd place Apache OpenWhisk included in 23 papers) [97]. A more general study
showed that 86% of survey respondents had experience with the cloud provider
AWS in general (2nd place Azure reached 31%) [148]. To summarize, the unique
features of AWS Lambda released in 2015 contributed to the ongoing Serverless
hype. The tightly related curves in Figure 3.1 which are showing a high connection
of the terms and a growing relevance over time strengthen this statement. Since
most of the papers name this platform and also conduct research with it, AWS
Lambda influenced the point of view on Serverless and FaaS offerings.

3.1.7. Conclusion

Even though FaaS complies with the Serverless definition and can be seen as a
kind of Serverless Computing, a more precise use of terminology is needed in the
cloud computing research area to properly distinguish between both terms. The
presented SLR provides a foundation to this and also incorporates related terms
like nanoservices and associated technologies like IaC, K8s and AWS Lambda to
differentiate Serverless and FaaS. The usage of search terms indicates that users
usually do not use FaaS. Instead other search terms like Serverless and AWS
Lambda have higher relevance. The provided definitions for Serverless Comput-
ing and FaaS as well as the classification of BaaS in this section are a contribution
towards a more precise use of terminology. Based on the structured approach and
the gathered characteristics, RQ1.1 which characteristics define a FaaS offering can
now be seen as answered.

3.2. Differentiation to Established Cloud Service Models

As already acknowledged in the last section, FaaS and BaaS are two types of Server-
less offerings. The question which now arises is RQ1.2: How is FaaS related to
other service models in the cloud computing landscape? In 2016, Adrian Cockcroft, a
former vice president at AWS, wrote on Twitter: “If your PaaS can efficiently start
instances in 20 ms that run for half a second, then call it serverless.”66. We know
from the definitions provided that we would call it FaaS, but there are also PaaS of-
ferings like Google App Engine56 where a user does not have to care about servers
and their configurations. This results in a serverless experience based on the in-
troduced characteristics from Table 3.3. To answer RQ1.2 we look at the provided
data from the SLR again and discuss it from a provider and user point of view. We
look at the three established service models IaaS, PaaS and SaaS as well as on FaaS
and BaaS. Since cloud functions are often packaged as OCI compliant images, we
further incorporate Container as a Service (CaaS) in our discussion and present a

66https://twitter.com/adrianco/status/736553530689998848

55

https://twitter.com/adrianco/status/736553530689998848

3. Conceptualization of Function as a Service

spectrum of cloud service models as can be seen in Figure 3.3. Note that the axis
labels are different from low to high on the y-axis showing the provider control
over the software stack and from high to low on the x-axis for the user control.

User Control

P
ro

vi
de

r
C

on
tr

ol
lo

w

low

hi
gh

high

IaaS

CaaS

PaaS

FaaS

BaaS

SaaS

Figure 3.3.: Classification of FaaS and Serverless and relation to other as a Service offerings
based on the user and provider control [130, 133, 274].

Since a user of a CaaS offering has to care about updating and patching libraries
etc., it is seen from an infrastructure point of view to lie somewhere between IaaS
and PaaS. A service user has more freedom but also more obligations compared
to a PaaS offering [219]. In line with other authors from our SLR [133, 274] we
see Serverless as a set of technologies ranging from some PaaS offerings to SaaS
offerings where FaaS and BaaS are in between and fully considered Serverless. It
is service-dependent if a PaaS or SaaS offering is considered Serverless based on
the introduced characteristics and the definition. The classification of Figure 3.3
answers RQ1.2 and also provides our view on Serverless technologies.

3.3. FaaS Offerings over Time

We have already seen in the search trends in Section 3.1.5 that early products in
the market like AWS Lambda have an impact on how a new domain is formed.
Based on this aspect, we look at public cloud FaaS offerings (orange boxes) as well
as open-source alternatives (blue boxes) in Figure 3.4. It gives a first glance about
the number of platforms as well as their timely distribution. For a detailed in-
formation about the release date for public cloud offerings conduct Table 3.4. The
initial and latest commits for open-source FaaS platforms are listed in Table 3.5.
The platforms were identified based on literature [97, 172, 207, 294] and the

CNCF Serverless landscape67. The latter also includes other services we would
consider Serverless but are out of scope of our FaaS definition domain. Therefore
a selection was made based on the documentation and general information and
only as FaaS platforms identified services were considered in the following. The

67https://landscape.cncf.io/serverless

56

https://landscape.cncf.io/serverless

3.3. FaaS Offerings over Time

FaaS Platforms over Time

2014 2016 2018 2020 2022

AWS Lambda

Azure Functions

Google Function

IBM OpenWhisk

Alibaba Function Compute

Huawei Function-Graph

Iron Functions

Fn

Open Lambda

OpenWhisk

Fission

Kubeless

OpenFaaS

Nuclio

Knative

OpenFunction

Figure 3.4.: Public cloud provider FaaS platform (orange boxes) and their open-source
counterparts (blue boxes) over time.

public cloud providers included are in chronological order: AWS Lambda started
in April 2015, AzureFunctions68 inMarch 2016, IBMCloud Functions69 in Decem-
ber 2016 and Google CloudFunctions in March 201770. These four commercial of-
ferings are often considered in research papers as SLRs show [97, 174, 294]. There
are also other public offerings but they are seldom considered in research. For
these platforms the number of papers is small and authors of the papers are often
affiliated with the companies providing the service. FunctionGraph fromHuawei,
started in January 201971 was recognized twice in an SLR from YUSSUPOV and oth-
ers [294], where at least one author of the papers was affiliated with Huawei at the
time they published their papers [44, 281]. For Alibaba Cloud Function Compute,

68https://azure.microsoft.com/en-us/blog/introducing-azure-functions/
69Initial release was called Bluemix OpenWhisk. Bluemix was the former name of IBM‘s cloud
offering and OpenWhisk was chosen since IBM Cloud Functions are a provider managed de-
ployment of Apache OpenWhisk, https://rabbah.io/openwhisk.html.

70https://cloud.google.com/functions/docs/release-notes
71https://support.huaweicloud.com/intl/en-us/wtsnew-functiongraph/index.html

57

https://azure.microsoft.com/en-us/blog/introducing-azure-functions/
https://rabbah.io/openwhisk.html
https://cloud.google.com/functions/docs/release-notes#March_09_2017
https://support.huaweicloud.com/intl/en-us/wtsnew-functiongraph/index.html

3. Conceptualization of Function as a Service

started in April 201772 the situation is similar when looking for example at a pub-
lication of WANG and others [280]. The last included Asian FaaS platform Baidu
Cloud FunctionCompute73 was not considered in the following since the website
was not available in English at the time of writing.
The other platforms, illustrated as blue boxes in Figure 3.4, are open-source.

Their source code is available on GitHub74. Since there is no public release note
for most of these platforms, the initial commits are used as a starting point. In the
footnotes of the included platforms, hyperlinks lead to the repository and the ini-
tial commit for: IronFunctions 75, Fn76, OpenLambda77, OpenWhisk78, Fission79,
Kubeless80, OpenFaaS81, Nuclio82, Knative83 and OpenFunction84. Two aspects
attract attention when looking at the open-source platforms in Figure 3.4. Iron-
Functions, Fn and Kubeless are stale and not further developed based on their last
commits on GitHub. For Kubeless, the last feature specific commit based on the
commit message was made on 3rd of May 2021. VMWare decided in late 2021 that
they no longer actively develop and maintain Kubeless. The second obvious obser-
vation is about IronFunctions and Fn. Their initial commits were made on New
Year’s Eve 2012. Two projects started on the same day is not a coincident. Fn and
IronFunctions share the same initial commit since Fn is a fork of IronFunctions.
In the conceptualization in Section 3, AWS Lambda was attributed as the first

FaaS platformwhich attracted a lot of attention, but there are two open source plat-
forms with an earlier start also providing a FaaS offering. So the first thing is, to
ask about the attention these open-source projects had prior to the AWSLambda of-
fering to correct the prior statement about AWS Lambda if necessary. One kind of
attention in the open source community are GitHub stars, the developer pendant
to likes in social media. Figure 3.5 shows the distribution of GitHub stars over
time, collected with an open source tool called Star History85. Precise numbers
for the initial/last commit and the starts are included in Table 3.5. It shows that
Fn and IronFunctions had their first stars mid of 2016 respectively mid of 2017
which confirms that the tools prior to the AWS Lambda release had negligible
impact. Another hint for this statement is the initial README from the Iron-
Functions repository. The developers stated that IronFunctions started as a small

72https://www.alibabacloud.com/help/en/function-compute/latest/product-dynamic-2017
73https://intl.cloud.baidu.com/product/cfc.html
74Initial, last commit and the number of GitHub stars were updated on the 6th of March 2023.
75https://github.com/iron-io/functions
76https://github.com/fnproject/fn
77https://github.com/open-lambda/open-lambda
78https://github.com/apache/openwhisk
79https://github.com/fission/fission
80https://github.com/vmware-archive/kubeless
81https://github.com/openfaas/faas
82https://github.com/nuclio/nuclio
83https://github.com/knative/serving
84https://github.com/OpenFunction/OpenFunction
85https://github.com/star-history/star-history

58

https://www.alibabacloud.com/help/en/function-compute/latest/product-dynamic-2017
https://intl.cloud.baidu.com/product/cfc.html
https://github.com/iron-io/functions/commit/92623001b5f63a8ecee77525dc0b853f8ba5fe79
https://github.com/fnproject/fn/commit/92623001b5f63a8ecee77525dc0b853f8ba5fe79
https://github.com/open-lambda/open-lambda/commit/757e25978fc460a677f24bad0bc65a908a9f7f89
https://github.com/apache/openwhisk/commit/daeb509bbddd94b7df8ff48f4b96cf821c34dc72
https://github.com/fission/fission/commit/90c14cfa0808aa1d63ea55ad87bee0f651f45091
https://github.com/vmware-archive/kubeless/commit/31a5f5a6528426b7a296ebcf44bd3b642d24d8cd
https://github.com/openfaas/faas/commit/d94cfeb660705028b6c101412a03519a8164712d
https://github.com/nuclio/nuclio/commit/d2f43903dd5e249f768baa220871893fdb391b94
https://github.com/knative/serving/commit/7f5da0b7438f562ea4a45c7021a674e2f90a5ddf
https://github.com/OpenFunction/OpenFunction/commit/dfaf129fe89c59b82a48bd14a5ad7467a06e072e
https://github.com/star-history/star-history

3.3. FaaS Offerings over Time

prototype for implementing a reverse proxy and restarting failed workers as well
as implementing some auto-scaling features. There were no deployment support
at the beginning to build up a cluster of computing nodes but there was already
a notion of scaling to zero instances within their project. In August 2018, Iron-
Functions received its last commit. There is no hint at the GitHub repository if
the platform is still under development, but since there were no commits the last
years it is highly likely that the contributors stopped their efforts in enhancing this
platform. Fn, the fork of IronFunctions, is nowadays the core of Oracle’s FaaS of-
fering86. Oracle still offers its FaaS platform but the development at GitHub looks
stale since December 2019. If Oracle does some closed-source development effort
is not accessible.

0

5000

10000

15000

20000

2016 2018 2020 2022
Date

St
ar

s

Project

Fission

FN

IronFunctions

Knative

Kubeless

Nuclio

OpenFaaS

OpenFunction

OpenLambda

OpenWhisk

GitHub Stars for Open−Source FaaS Platforms over Time

Figure 3.5.: GitHub stars for open-source FaaS offerings over time.

From the GitHub star Figure 3.5 and the remarks, we can state that our concep-
tualization is still valid. Additionally noteworthy is the sharp increase of GitHub
stars for most of the platforms between end of 2016 until end of 2017, the same
period where also most of the public cloud provider offerings released their ser-
vices. This indicates that a lot of developers searched for open-source alternatives
and starred the respective platforms.

86https://www.oracle.com/cloud/cloud-native/functions/

59

https://www.oracle.com/cloud/cloud-native/functions/

3. Conceptualization of Function as a Service

3.4. Resource Scaling Strategies

To build a simulation framework for cloud functions, we need an understanding of
resource scaling strategies of different platforms and how they establish resource
configurations. Only platforms with a comprehensible strategy can be simulated.
From the documentation of the corresponding services, the current public cloud
provider offerings are the first set of platforms we have a closer look at. An over-
view of their scaling strategies, release date and resource boundaries are listed in
Table 3.4. Furthermore, one column indicates if the allocated instances can be
configured in a way to have more than a single core. Cloud function instances
allocated with a multi-core configuration are only fully utilized when deploying
multi-threaded source code. This is an important aspect for a simulation approach
and oftenmisinterpreted in research [17, 48, 70, 72, 154, 189] as emphasized by the
third contribution (c3) of this work. As already said in Section 3.1.5, AWS Lambda
was the first public cloud provider offering for cloud functions. Therefore their
scaling strategy set new standards which has to be considered when assessing the
other offerings.

Table 3.4.: Summary of resource scaling strategies and limits of selected public cloud pro-
vider FaaS offerings.

Provider Released Multi-
Threading

Scaling of Resources Boundaries

AWS Lambda 04/2015 CPU proportionally to
memory

128-10240 MB, up to
6 vCPUs

Google Cloud
Functions

03/2017 9 predefined configura-
tions

128 MB/0.0833 vCPU -
32,768 MB/8 vCPUs

Azure Func-
tions

03/2016 /

Allocated dependent on hosting plan, for consumption
plan only a single instance type (), premium plan selec-
tion of three instance types (One vCPU/3.5 GB RAM; Two
vCPU/7 GB RAM; Four vCPU/14 GB RAM) ()

IBM Cloud
Functions

12/2016 CPU not specified,
memory MB-wise

128-2048 MB

Alibaba Cloud
FunctionCom-
pute

04/2017 CPU and memory inde-
pendently. GPUs avail-
able.

0.05-16 vCPUs, 128-
32,768 MB

Huawei Cloud
Function-
Graph

01/2019 CPU scaling proportion-
ally to memory

128-4096 MB

In the following, we shortly describe the public cloud provider offerings in
chronological order based on their release dates. “[AWS] Lambda allocates CPU
power in proportion to the amount of memory configured”87. Research in 2021
confirms this statement [185]. Memory can be allocated MB-wise in the range
between 128 – 10240 MB with up to 6 vCPUs88. Google Cloud Functions offers 9

87https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
88https://aws.amazon.com/de/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-
memory-6-vcpu-cores-lambda-functions/

60

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://aws.amazon.com/de/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/de/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/

3.4. Resource Scaling Strategies

runtime configurations where memory and vCPUs are not linearly scaled89. The
minimal configuration is 128 MB/0.0833 vCPU and the maximal configuration is
32768 MB/8 vCPUs. Azure Functions offers several resource plans with different
possibilities90. The different hosting plan options determine the resource alloc-
ation and scaling of function instances under different load conditions. For the
consumption plan there is only a single instance type available where a single core
is assigned. Therefore, multi-threaded functions would not profit compared to
single-threaded functions with regards to execution time. For the premium plan,
three configurations are possible which can be selected based on roles in the Azure
portal. These types include a single core instance with 3.5 GB memory and two
multi-core settings with 2 virtual CPUs (vCPUs)/7 GB and 4 vCPUs/14 GB91. The
configuration of the functions is somewhat hidden in the documentation. Also
their scaling property is different compared to other public cloud offerings, i.e.
AWS Lambda, IBM Cloud Functions and Google Cloud Functions. Due to these
reasons, it is difficult to compare Azure Functions with other public cloud pro-
vider platforms [17]. IBM Cloud Functions hosts the open-source FaaS platform
Apache OpenWhisk for public cloud customers. Currently there is an option to
scale memory from 128 – 2048 MB92. There is no description in the documenta-
tion how CPU resources are scaled. When looking at the source code of Apache
OpenWhisk93, the documentation there states that CPU scaling can be enabled
and if so the resources are scaled linearly based on the memory setting. From
an experiment [176] we know that this scaling is not linear based on the memory
setting. It looks like that CPU shares are fixed when analyzing the execution time
of the CPU intensive functions. Furthermore, we were able to confirm based on
the implementation of a multi-threaded prime number search that the cloud func-
tion instances have more than one vCPU assigned independent of the memory
setting. In our experiment, instances with a low memory setting (256 MB) per-
formed better in this multi-threaded scenario compared to instances with a high
memory setting (2048 MB). As the only included public provider, Alibaba Cloud94

offers an independent scaling of memory and vCPU. For memory, the boundar-
ies are between 128 MB and 32,768 MB. vCPU shares can be selected in a range
from 0.05 to 16. Huawei Cloud FunctionGraph is the last offering in our list of
public cloud providers and also the youngest one. They follow the approach of
AWS Lambda and Google Cloud Functions and allocate vCPU resources based on
the selected memory setting. At their documentation, they provide a formula to

89https://cloud.google.com/functions/pricing
90https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
91https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-
plan?tabs=portal

92https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-limits
93https://github.com/apache/openwhisk/blob/.../WhiskPodBuilder.scala
94https://www.alibabacloud.com/help/en/function-compute/latest/instance-types-and-instance-
modes

61

https://cloud.google.com/functions/pricing
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-limits
https://github.com/apache/openwhisk/blob/59b67fe96f44e573f3348afed966a1cdaf80ddf2/core/invoker/src/main/scala/org/apache/openwhisk/core/containerpool/kubernetes/WhiskPodBuilder.scala
https://www.alibabacloud.com/help/en/function-compute/latest/instance-types-and-instance-modes
https://www.alibabacloud.com/help/en/function-compute/latest/instance-types-and-instance-modes

3. Conceptualization of Function as a Service

calculate the assigned vCPUs: memory/128 ∗ 0.1 vCPU + 0.2 vCPU 95. They al-
low for a range from 128 MB to 4096 MB memory for a cloud function instance
which would result, based on the presented formula, in 3.4 vCPUs for 4096 MB96.
When looking at the resource scaling strategies in Table 3.4 all platforms have

in common that they offer configurations where users have multiple cores for
their functions. Different to microservices or even applications which comprise
of several functionalities executed in parallel, the utilization of a cloud function
instance is fully dependent on the capability of the function to use these resources.
Therefore, multi-threading is one important dimension when doing public cloud
FaaS research and has to be considered for a simulation approach. Only a few
publications address this multi-threading aspect in literature, e.g. [180, 185, 293,
300].

Table 3.5.: Summary of resource scaling strategies and limits of ten open-source FaaS of-
ferings.

Platform First Com-
mit

Last Com-
mit

K8s De-
ployment

Memory Scaling CPU Scaling GitHub
Stars

Apache Open-
Whisk

19/02/2016 01/03/2023 128-2048 MB dependent on
memory scaling

5,955

Kubeless 16/11/2016 03/05/2021 N/A N/A 6,862
OpenFaaS 22/12/2016 28/01/2023 based on K8s lim-

its
based on K8s lim-
its

22,723

Fission 19/08/2016 28/02/2023 boundaries
(min/max)

boundaries
(min/max)

7,528

OpenLambda 02/02/2016 23/02/2023 N/A N/A 815
Nuclio 04/06/2017 02/03/2023 based on K8s lim-

its
based on K8s lim-
its

4,765

Knative 30/01/2018 02/03/2023 based on K8s lim-
its

based on K8s lim-
its

4,886

OpenFunction 05/12/2020 28/02/2023 N/A N/A 1,040
IronFunctions 31/12/2012 20/08/2018 N/A N/A 3,098
Fn 31/12/2012 19/12/2019 based on CLI run

parameter
N/A 5,350

The open-source FaaS landscape is a bit different. Since there is no provider
managing a service, the resource and transitively cost perspective is often not dis-
cussed for open-source platforms. Tomake informed decisions about the function
configurations and to be able to calculate Total Cost of Ownership (TCO) of a cloud
function hosted on premise, resource scaling strategies of open-source tools are
important. Furthermore, without such strategies and an assignment of computing
resources to cloud functions, there is no guarantee for the computing resources
available on the machine due to other tenants which leads to unpredictable per-
formance situations and Service Level Agreement (SLA) violations. The import-

95https://support.huaweicloud.com/intl/en-us/ae-ad-1-devg-functiongraph/-
functiongraph_02_0420.html

96https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/-
functiongraph_01_1828.html

62

https://support.huaweicloud.com/intl/en-us/ae-ad-1-devg-functiongraph/functiongraph_02_0420.html
https://support.huaweicloud.com/intl/en-us/ae-ad-1-devg-functiongraph/functiongraph_02_0420.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1828.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1828.html

3.4. Resource Scaling Strategies

ance of comparable resource scaling approaches for open-source FaaS platforms
compared to commercial cloud offerings is discussed in Section 6.4 in detail.
Table 3.5 summarizes information about the open-source platforms from the

prior section. For Apache OpenWhisk97 already mentioned as the public offering
of IBMCloud Functions, there is an option to scalememory from 128 – 2048MB98.
A CPU limit like for the memory setting is under development, but the pull re-
quest under review looks stale99. Therefore, the assignment of CPU resources to
a cloud function instance is dependent on the used infrastructure management
tool. OpenWhisk’s recommended local deployment option is K8s where scaling
of memory for functions is possible with an environment variable. The next open-
source platformKubeless is currently without amaintainer since VMware stopped
their support for the project. Since the documentation is no longer accessible, an
assessment of the memory and CPU scaling cannot be made. OpenFaaS offers
two deployment options. The single node deployment is offered via faasd where
resource limits are not available. The recommended deployment option is again
K8s where resource limits for memory and CPU can be set independently100. This
feature is based on K8s facilities to restrict resources within the deployment YAML
adapted by OpenFaaS. Another K8s based tools is Fission. Limits are assigned to
function environments101 where boundaries of minimum and maximum CPU or
memory can be specified via environment variables. OpenLambda [99] is a re-
search prototype based on Linux containers. It uses the cgroups capabilities of
Linux containers for min/max memory and CPU boundaries. It has no K8s sup-
port. Nuclio102 and Knative103 have the same resource assignment strategy. Both
tools point to the K8s reference on using resources104 and obviously rely on a K8s
deployment. Using resource restrictions for OpenFunction was not detectable. It
offers a Knative based deployment option which might allow to restrict resources
but that is only speculation and can not be checked based on the tool document-
ation. Due to it’s Knative deployment option, the checkbox for K8s deployment
is checked. IronFunctions uses docker containers for the function’s server and
API. Due to its focus on implementing a reverse proxy and autoscaling as already
mentioned, there is no information for a multi-node environment. Also they do
not offer a K8s deployment. Since Fn builds upon IronFunctions, the same holds
true for the tight docker integration as well as for the missing K8s support within
the project, but there is a Helm chart to deploy Fn on a K8s cluster. Another dif-

97https://openwhisk.apache.org
98https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-limits
99https://github.com/apache/openwhisk/pull/4648
100https://docs.openfaas.com/reference/yaml/#function-memorycpu-limits
101https://fission.io/docs/usage/function/executor/
102https://nuclio.io/docs/latest/reference/function-configuration/function-configuration-

reference/
103https://knative.dev/docs/serving/services/configure-requests-limits-services/
104https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

63

https://openwhisk.apache.org
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-limits
https://github.com/apache/openwhisk/pull/4648
https://docs.openfaas.com/reference/yaml/#function-memorycpu-limits
https://fission.io/docs/usage/function/executor/
https://nuclio.io/docs/latest/reference/function-configuration/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration/function-configuration-reference/
https://knative.dev/docs/serving/services/configure-requests-limits-services/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

3. Conceptualization of Function as a Service

ference to IronFunctions is the possibility to configure functions in a declarative
way via YAML files where memory configuration is one aspect105.
As can be seen from Table 3.5, most open-source platforms offer a K8s deploy-

ment option, where only OpenLambda, a research prototype, and IronFunctions,
started its developement in the pre K8s era, lack in this dimension. From the
remaining eight platforms, three have no information how resources for cloud
function instances are assigned based on their documentations, i.e. Kubeless,
OpenFunction, Fn. Another offering, Apache OpenWhisk, states that it scales
CPU based on the selected memory setting, but the pull request is unchanged for
years. The remaining four, which is half of this group use resource limits based
on container settings (Fission) or the K8s resource limits (OpenFaaS, Nuclio, Knat-
ive). Delegating these settings to the deployment capabilities of K8s passes the re-
sponsibility for resource allocation and utilization to the container orchestration
platform. This finding is in line with those of other researchers, e.g. [11, 31, 113].
They lead us to argue that K8s could be a higher layer of abstraction for implement-
ing open-source FaaS platforms and hosting cloud functions. It is another aspect
which fosters the statement that K8s is tightly related to the hype about Serverless
technologies.

3.5. Architecture of a FaaS Platform Worker Node

In Section 2.1, we already discussed the topic of virtualization with VMs and con-
tainers. We use the hypervisor design (see Figure 2.1middle) with KVMas Type-1*
hypervisor and a compatible Type-2* hypervisor as listed in the figure. Also the
other two options described in the virtualization paragraph could be used to ab-
stract the hardware. There are several other publicationwhich describe how a FaaS
platform is build from amore abstract level. These include all the important build-
ing blocks, i.e. a reverse proxy, a scheduler and worker nodes [118, 149, 188, 276].
We therefore focus on a more detailed architecture of a typical FaaS worker node
as shown in Figure 3.6.
Since we build a simulation framework, the SUT as well as our simulator should

have a similar tool stack as already mentioned in Section 1.2. We frame these com-
parable technology stacks as dev-prod parity4. This parity is important as ARIF
and others [4] showed. They compared physical and virtual environments and
came to the conclusion that a comparison is only possible when the systems run
on a comparable technology stack. We already know from the conceptualization
prior in this section that FaaS platforms are virtualized. Now there are two op-
tions to choose from: VMs and containers. For public FaaS platforms, there is
an additional requirement we have to consider. The NIST characteristics indicate
that there is a shared fleet of servers handling requests from several customers.
Therefore one requirement for our FaaS worker node architecture is isolation of

105https://github.com/fnproject/docs/blob/master/fn/develop/func-file.md

64

https://github.com/fnproject/docs/blob/master/fn/develop/func-file.md

3.6. Summary

Hardware
CPU, Memory, IO

Type-1*
Hypervisor

KVM

Host OS
Linux Kernel

Type-2* Hypervisor
like QEMU, crosvm, Firecracker

Guest OS
VM

Fu
nc

tio
n

Container
Runtime

Fu
nc

tio
n

Fu
nc

tio
n

Fu
nc

tio
n

Guest OS
VM

Fu
nc

tio
n

Container
Runtime

Fu
nc

tio
n

Fu
nc

tio
n

Fu
nc

tio
n

Figure 3.6.: A suggested architecture for a FaaS worker node.

workloads. In Figure 3.6 we achieve this isolation via VMs where every running
VM has exactly one assigned customers. Within this secure execution context, a
container runtime as another level of abstraction serves multiple functions of the
same customer. Therefore, the customer profits from fast boot-times of contain-
ers and a secure VM enclave in theory. Dependent on the platform, this design
has performance implications when VMs are not pre-provisioned. In such cases
performance can vary up to 15 times as shown by an experiment of LLYOD and
others [157]. For open-source platforms the default level of abstraction are con-
tainers. To the best of the author’s knowledge none of the discussed open-source
tools describe these two-face security design as presented in Figure 3.6. An ex-
planation could be the implicit assumption that open-source platforms are often
deployed on-premise and only used by a single customer which makes the first
level of isolation obsolete.

3.6. Summary

In this chapter, we discussed the origin of terms and how FaaS integrates into the
cloud computing service landscape. We furthermore listed different FaaS offer-
ings, discussed their resource scaling strategies and ended with a typical architec-
ture of a FaaS worker node.
Based on a proper understanding of the research domain and an overview of

available tools, we have chosen a public cloud provider service and an open-source
platform where we predominantly conducted experiments with in the course of
this dissertation project. As public cloud offering, AWS Lambda was selected due

65

3. Conceptualization of Function as a Service

to its dominant position by forming a new area of computing platforms, its mar-
ket leadership and the fact that it is the most often used platform in research pa-
pers [97]. For open source platforms, OpenFaaS is the clear leader with regards to
stars which also implies its maturity and a strong developer community. It is also
often used in scientific literature to perform experiments with an open-source plat-
form to improve the platform itself [12] or compare the capabilities of the platform
with other open-source platforms [11, 13, 149, 150, 197] or to the public cloud [180].
Before we go into the details of the experiments performedwith AWSLambda (Sec-
tions 6.3, 6.4 and 7.2) and OpenFaaS (Section 6.4), the next sections discuss some
of the foundations for a benchmarking and simulation framework for FaaS.

66

Part III.

A Benchmarking and Simulation
Framework for Function as a Service

67

4. Benchmarking FaaS Platforms

Parts of this chapter have been taken from [174, 182, 185].

In this chapter, RQ2.1 (Which tools and experiments do currently exist for bench-
marking FaaS platforms?) and RQ2.2 (How should a FaaS experiment be docu-
mented and which items are necessary for data evaluation?) are supported.

In Section 4.1, an SLR is performed to answer RQ2.1. During the work on the
SLR an included secondary study revealed a lack of reproducibility within the re-
search efforts in the FaaS domain. This motivated a more thorough investigation
concerning the aspects needed for a proper data evaluation to understand the tech-
nical realization of resource scaling strategies of FaaS platforms. One result is a
checklist for data generation to enable a fair evaluation of different FaaS platforms
in Section 4.2. Tooling is one approach to deal with reproducibility and guaran-
tee that requests are executed for several experiments in the same way. There-
fore, Section 4.3 gives insights how the research prototype SeMoDe enables other
researchers to conduct experiments in a reproducible and well documented way
and includes capabilities to present pre-processed data.

4.1. Current Benchmarking Approaches and Tools

Benchmarking FaaS platforms is directly motivated by the research goal of this dis-
sertation project. To achieve this goal of proposing a simulation framework, we
need an understanding of the different platforms, verify their documented scal-
ing strategies and harvest data as an input for our simulation system. EIVY [74,
p.9] claims that the ”real execution is the only valid test”. Therefore, we look at
already published work in the FaaS research domain with a focus on benchmark-
ing approaches and tools. These research efforts investigate special properties of
the platforms as well as ways to optimize the cloud functions runtime behavior.
By performing another SLR we approach this body of knowledge in a structured
way and answer the first research question of this chapter, which tools and exper-
iments do currently exist for benchmarking FaaS platforms? After defining a review
protocol [176], dblp computer science bibliography106 was picked as a literature
database since it includes work from journals and conference proceedings includ-
ing different publishers like ACM and IEEE.

106https://dblp.uni-trier.de/

69

https://dblp.uni-trier.de/

4. Benchmarking FaaS Platforms

Initial Search

Keywords

serverless
faas
cloud function
aws lambda
function as a service

1789

Filtering Skimming Snowballing

91 28 51

reading abstract
and

result/conclusion

backward search

Searching for

benchmark
simulation
experiment
tool
simulator155

18

555

227

960

3
24

14

17

39

Figure 4.1.: Strucutred Literature Review conducted on 13th of March 2023 to identify em-
pirical FaaS research.

Figure 4.1 shows the SLR process and number of collected papers in each step.
Since the advanced search at dblpwas disfunctional when combining several search
terms with an OR operator, the decision was made to conduct multiple searches
with the keywords presented in the initial search phase: serverless, faas, cloud func-
tion, aws lambda and function as a service. Conducting a single query for each of
these search terms is equivalent with a more advanced search having a single
search string where the search terms are concatenated with ORs. The usage of
generic, broad keywords was a conscious decision to get a broad set of literature
which is the basis for the further steps. The initial search phase when combining
the result sets of the five queries resulted in 1915 entries. To handle the literat-
ure, the bibliography manager JabRef107 was used. One feature of JabRef is to
remove duplicates within a literature database. After applying this feature to our
initial set of literature, we ended up with 1789 unique entries. Since this section
is about finding competing approaches to the work in hand, all publications men-
tioned in Table 1.1 were excluded. The remaining 1789 entries were then filtered
by the search feature of JabRef. Similarly to the search on dblp, the decision was
made to perform a single search for benchmark, simulation, experiment, tool and
simulator. The filtering keywords were chosen due to the focus on understanding
benchmark and simulation approaches in FaaS as well as looking at experiments
and tools. We consider benchmarking experiments in this section and discuss
simulation approaches in Section 6.2. Nevertheless, each simulation needs input
data in form of raw data from benchmarking experiments. When writing about
publications with a simulation focus in this section, an emphasis is put on the
data generation and therefore the benchmarking within these papers.
The filtering process was done on the title and other meta information like the

conference or journal name. After removing six duplicates, 91 papers were skim-
med in the next phase based on their abstract, result and conclusion section. For

107https://www.jabref.org/

70

https://www.jabref.org/

4.1. Current Benchmarking Approaches and Tools

most of them, it was sufficient to read the abstract to evaluate their relevance. To
remove doubts on ambiguous papers, the research questions and the results part
were read to make a well justified decision. After the skimming phase, 28 papers
were left which were read in detail while answering the questions of the review
protocol. Since the search was only done on dblp and the keywords were quite
generic for the initial search, an additional backward search was conducted for
every publication to identify further relevant research. The snowballing process
was performed for all 28 papers in the third step and also the papers which were
identified during snowballing. After finishing this recursive snowballing process,
51 papers were part of the final set. The following tables show the literature set
by categorizing them in secondary performance studies (Table 4.1), papers which
are not directly related to experiments on public cloud providers (Table 4.2) and
experiments which are important for the prototype design in Section 4.3 and the
improvement of empirical public cloud FaaS research (Table 4.3). The focus on
public cloud provider experiments has two reasons. The first reason is the num-
ber of publications conducted to understand the scaling strategies and resource
assignments of public cloud providers. The second aspect is that the body of know-
ledge for open-source FaaS platforms is limited. Only our work at IEEE CLOUD
2022 [180] where we put emphasis on resource assignments for open source plat-
forms and ZHANG and others [300] dealt with resource restrictions for open source
platforms.

Table 4.1.: Secondary studies within the Structured Literature Review on benchmarking
and simulation approaches.

Authors Year Title

Kuhlenkamp & Werner [137] 2018 Benchmarking FaaS Platforms: Call for Community Particip-
ation

Yussupov et al. [294] 2019 A Systematic Mapping Study on Engineering Function-as-a-
Service Platforms and Tools

Scheuner & Leitner [240] 2020 Function-as-a-Service performance evaluation: A multivocal
literature review

Table 4.1 includes secondary studies which address specific aspects within the
FaaS research domain. These secondary studies are not directly related to bench-
marking and simulation experiments since they are not publishing new data and
insights from practical experiments but they give guidance and an overview of rel-
evant literature for specific issues. YUSSUPOV and others [294] motivate the work
on a consistent benchmark and simulation framework due to their SLR being fo-
cused on different platforms and tools. Their work was one of the foundations of
the RADON [39] project. One goal of this EU horizon project is the development
of an IDE for serverless applications. Performance aspects are discussed in SCH-
EUNER’s and LEITNER’s work [240] where they included 112 sources from academic
and gray literature. Especially interesting is the design of different experiments
found in literature and their impacts on the data evaluation and therefore on the

71

4. Benchmarking FaaS Platforms

results. KUHLENKAMP and WERNER [137] motivated the community to participate
in the benchmarking process by revealing issues about the reproducibility of con-
ducted research. The authors stated in their third research question that only 3 out
of 26 experiments were reproducible based on the provided information included
in the experiment and data evaluation description. To overcome this problem of
partly-documented experiments, a checklist is proposed in the next section which
gives an answer to RQ2.2.

Table 4.2.: Primary studies within the Structured Literature Review on benchmarking and
simulation approaches which were included based on the literature process but
not directly related to public cloud provider experiments.

Authors Year Title

van Eyk et al. [277] 2020 Beyond Microbenchmarks: The SPEC-RG Vision for a Com-
prehensive Serverless Benchmark

Mohanty et al. [197] 2018 An Evaluation of Open Source Serverless Computing Frame-
works

Govind & González-Vélez [90] 2021 Benchmarking Serverless Workloads on Kubernetes
Lin et al. [156] 2021 BBServerless: A Bursty Traffic Benchmark for Serverless
Zhang et al. [300] 2021 An Experimental Analysis of Function Performance with Re-

source Allocation on Serverless Platform

Das et al. [56] 2018 EdgeBench: Benchmarking Edge Computing Platforms
Jeon et al. [109] 2019 A CloudSim-Extension for Simulating Distributed Functions-

as-a-Service

Bardsley et al. [18] 2018 Serverless Performance and Optimization Strategies
Gan et al. [83] 2019 An Open-Source Benchmark Suite for Microservices and

Their Hardware-Software Implications for Cloud & Edge Sys-
tems

Kritikos & Skrzypek [136] 2019 Simulation-as-a-Service with Serverless Computing
Malla & Christensen [169] 2019 HPC in the cloud: Performance comparison of function as a

service (FaaS) vs infrastructure as a service (IaaS)
Malawski et al. [168] 2020 Serverless execution of scientific workflows: Experiments

with HyperFlow, AWS Lambda and Google Cloud Functions
Sadaqat et al. [237] 2022 Benchmarking Serverless Computing: Performance and Us-

ability

de Carvalho & de Araújo [38] 2022 Orama: A Benchmark Framework for Function-as-a-Service
Hancock et al. [95] 2022 OrcBench: A Representative Serverless Benchmark
Palepu et al. [208] 2022 Benchmarking the Data Layer Across Serverless Platforms

McGrath and Brenner [190] 2017 Serverless Computing: Design, Implementation, and Per-
formance

Gias & Casale [85] 2020 COCOA: Cold Start Aware Capacity Planning for Function-as-
a-Service Platforms

Somu et al. [254] 2020 PanOpticon: A Comprehensive Benchmarking Tool for
Serverless Applications

Quaresma et al. [225] 2021 Validation of a simulationmodel for FaaS performance bench-
marking using predictive validation

Ustiugov et al. [270] 2021 Benchmarking, Analysis, and Optimization of Serverless
Function Snapshots

Table 4.2 contains the publications, which were classified as related to presented
empirical FaaS research in this work but not directly supporting efforts in build-
ing the benchmark and simulation framework. Nevertheless, the contributions of
these papers are important to stress the context and related research areas. The
papers were categorized and each cutting line separates one subset from another.

72

4.1. Current Benchmarking Approaches and Tools

The first bibliographic entry [277] is a vision paper about how a benchmark in
the FaaS area should look like with a focus on real world experiments to overcome
microbenchmarks. This vision paper was not further assessed since no raw per-
formance respectively function configuration data were provided.
The next set of papers performed experiments with open-source platforms. MO-

HANTY and others [197] evaluated the open source platforms Fission, Kubeless
and OpenFaaS. They focused on testing how concurrent users and the autoscal-
ing property, which is based on Kubernetes Horizontal Pod Autoscaler, influence
the number of running function instances. Another K8s related research was per-
formed by GOVIND and González-Vélez [90]. They tried to understand the paral-
lelism and scalability properties of OpenFaaS deployed on a multi-node master
K8s cluster. During their experiments, they recognized performance degradation
for a specific number of users when starting new instances. Since there is no
documented resource assignment, the default for OpenFaaS and K8s is to create
more functions than the system can handle under peak load as shown by one of
our experiments on OpenFaaS [180]. This multi-tenancy phenomena is discussed
in detail in Section 6.4. To put emphasis on the scaling of resources for open
source platforms, ZHANG and others [300] deployed OpenWhisk on a K8s cluster.
Especially the application of K8s limits to function instances is noteworthy since
they describe in their paper that multi-threaded functions indeed profit from a re-
source increase beyond a single core, whereas memory intensive, single-threaded
functions do not. A unique experiment design characteristic of their investigation
is that they consider memory and CPU in combination. Furthermore their data
is promising for a better understanding of resource allocation and assignment
strategies for open-source platforms based on K8s. A drawback is that the source
code is not open-source and therefore a detailed assessment of their function im-
plementation is not possible. The next experiment [156], as the name already
implies, puts emphasis on bursty benchmarks. The authors described four use
cases for testing their new benchmarking platform namely web application, big
data, streaming and machine learning use cases. They deal with an important
topic and argue comprehensibly why they put so much effort in an assessment of
bursty workloads. Nevertheless, in the course of their benchmark approach and
questions for a resource aware FaaS configuration, this paper does not state any
function configuration besides noting that they use the same K8s cluster config-
uration and the default configuration for all targeted platforms.
The same holds true for the edge computing frameworks, where the first work

used AWS Greengrass108 and Azure IoT Edge109 for latency measurements and
cost comparisons [56]. The second publication [109] implemented an extension for
CloudSim [36], a popular simulator for cloud offerings, with the aim to support a
distributed FaaS architecture comprised of cloud, fog and edge. This layering of an

108https://aws.amazon.com/greengrass/
109https://azure.microsoft.com/en-us/services/iot-edge/

73

https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/services/iot-edge/

4. Benchmarking FaaS Platforms

applicationwhere parts can be deployed in several of the aforementioned areas and
shifted within a distributed architecture is also known as osmotic computing [278].
Another subarea are use case implementations using FaaS platforms as execu-

tion environment for simulations [136], cloud functions as part of an e-commerce
system [18], buildingmicroservices architecture with predictable performance [83]
or checking the High Performance Computing (HPC) capabilities of cloud func-
tion offerings compared to IaaS [169] or against each other [168]. A last use case
paper was a survey to understand how well public FaaS platforms are understood
and can be used out of the box to implement applications [237].
The following three publications try to understand the effects of backend ser-

vices. Orama is a framework with six built-in use cases to understand the inter-
action with data storage solutions and API gateways, the most common integra-
tion scenario for FaaS [38]. Related to this research is the work of PALEPU and
others [208]. They tested the data transfer rates on different FaaS platforms for
different data storage solutions. The last work in this category is early work on Or-
cBench [95]. The focus here is to cluster execution traces from anMicrosoft Azure
dataset with 52,000 functions and 8.8 billion invocations and reengineer common
execution time and invocation pattern.
The last group of papers optimized some aspects of FaaS platforms or the man-

agement of cloud functions by providing a custom implementation or configur-
ation. These aspects are out of scope for implementing a benchmark and simu-
lation pipeline for assessing function performance and characteristics on public
FaaS platform offerings, but reveal interesting results by highlighting different
shortcomings in today’s FaaS offerings. QUARESMA and others [225] built a sim-
ulator to predict their prior introduced suppression of garbage collection during
function execution and compare this to invocations on public providers. Solving
the startup of unnecessary instances in over-provisioning scenarios is researched
by GIAS and CASALE [85]. They implemented a queuing based approach for on-
premise platforms which breaks the scaling on demand principle of FaaS. The
next work [190] implemented a prototype in .NET deployed on Azure’s cloud plat-
form, compared it to public offerings and showed some benefits especially for
throughput (executions per second). Another work [254] suggests a tool for de-
ploying function and other components to different providers. The function de-
ployment can also, as described in the paper, be done by using the serverless frame-
work110. Especially at early publications, the serverless framework was often used
also by other papers included in this SLR, like [6, 139, 167, 189]. Nevertheless,
the benefits over generic IaC tools like Terraform111 or provider specific ones like
AWS CloudFormation112 are not clear in the aforementioned papers. Noteworthy
in this last group of papers is the effort of USTIUGOV and others [270].

110https://www.serverless.com/
111https://www.terraform.io/
112https://aws.amazon.com/cloudformation/

74

https://www.serverless.com/
https://www.terraform.io/
https://aws.amazon.com/cloudformation/

4.1. Current Benchmarking Approaches and Tools

Their major research goal is to provide a serverless open source playground113 for
experimentation on various layers of the system stack like Firecracker hypervisor,
see Section 2.1.
When assessing the publications of Table 4.2, the finding of KUHLENKAMP and

WERNER [137] is not surprising that only a minority of experiments documented
all information to perform them again.
Table 4.3 includes competing approaches and presents data from public cloud

provider experiments. When checking the public FaaS platformswithin the experi-
ments, the ordering of platforms is similar to SCHEUNER and LEITNER [240] where
AWS Lambda is the most investigated platformed followed by Azure Functions,
Google Cloud Functions and lastly IBM OpenWhisk. Important for repeatable re-
search is to enable other researchers to reproduce the experiments. Only 18 out
of the 27 publications have open sourced their prototypes which renders already
one third not reproducible.
Different languages and their effects on execution time were investigated by

JACKSON and CLYNCH [107] for AWS Lambda and Azure Functions. What is miss-
ing in their paper is the memory setting for AWS Lambda, which has an influ-
ence on the execution time [185]. Another language comparison is done by KUNT-
SEVICH and others [141] tackling a locally hosted OpenWhisk installation. Due to
the nature of the paper being a demo, they only included first results on the exe-
cution time behavior for concurrent requests. There is no notion of K8s limits ap-
plied to functions. The data published byMARTINS and others [189] contains noise
in form of their evaluation based on the Round Trip Time (RTT). A comparison of
their RTT and the elapsed time measured on the provider platform would enrich
the data and cancel out some network delays, platform scheduling etc. Further-
more, the HelloWorld use cases in different languages are limited in their inter-
pretation since there are constellations where a function running in Java is faster
than a comparable JavaScript counterpart as shown in [182]. Hence, a selection of
the programming language and the function configuration should be use-case de-
pendent. One experiment in MARTIN’s work is commonly used in other research,
e.g. [138, 182, 185, 213, 255, 271], where a Fibonacci function was executed at dif-
ferent memory settings on different providers to understand the resource scaling
strategies. Therefore, this function was also used for experiments in latter parts of
this thesis. As argued before [185], microbenchmarking can unravel platformmys-
teries when designing experiments in a way that a single aspect is isolated. For
that reason, KIM and LEE [121, 123] published a benchmark suite comprised of
microbenchmarking and application level benchmarks. Their collection of differ-
ent function implementations can serve as foundation for experiments to discuss
common cloud functions and applications in research. Nevertheless, they argued
that microbenchmarking is important but not sufficient for the requirements real
world use cases present. Authors of other real world experiments like SeBS [48]
and BeFaaS [91] enforced that argument but are aware that real world use cases

113https://github.com/ease-lab/vhive

75

https://github.com/ease-lab/vhive

4. Benchmarking FaaS Platforms

Table 4.3.: Primary studies within the Structured Literature Review on benchmarking and
simulation approaches which present data on public cloud provider experi-
ments.

Authors Year Title

Back & Andrikopoulos [6] 2018 Using a Microbenchmark to Compare Function as a Service
Solutions

Figiela et al. [79] 2018 Performance evaluation of heterogeneous cloud functions
Jackson & Clynch [107] 2018 An Investigation of the Impact of Language Runtime on the

Performance and Cost of Serverless Functions
Kuntsevich et al. [141] 2018 Demo Abstract: A Distributed Analysis and Benchmarking

Framework for Apache OpenWhisk Serverless Platform
Lee et al. [145] 2018 Evaluation of Production Serverless Computing Environ-

ments
Lloyd et al. [157] 2018 Serverless Computing: An Investigation of Factors Influen-

cing Microservice Performance
Malawski et al. [167] 2018 Benchmarking Heterogeneous Cloud Functions
Pawlik et al. [211] 2018 Performance evaluation of parallel cloud functions
Wang et al. [282] 2018 Peeking Behind the Curtains of Serverless Platforms
Bortolini & Obelheiro [29] 2019 Investigating Performance and Cost in Function-as-a-Service

Platforms
Giménez-Alventosa et al. [86] 2019 A framework and a performance assessment for serverless

MapReduce on AWS Lambda
Kim & Lee [121] 2019 FunctionBench: A Suite of Workloads for Serverless Cloud

Function Service
Kim & Lee [122] 2019 Practical Cloud Workloads for Serverless FaaS
Pellegrini et al. [214] 2019 Function-as-a-Service Benchmarking Framework
Copik et al. [48] 2020 SeBS: A Serverless Benchmark Suite for Function-as-a-

Service Computing
Kuhlenkamp at al. [139] 2020 Benchmarking Elasticity of FaaS Platforms as a Foundation

for Objective-driven Design of Serverless Applications
Maissen et al. [166] 2020 FaaSdom: a benchmark suite for serverless computing
Martins et al. [189] 2020 Benchmarking Serverless Computing Platforms
Yu et al. [293] 2020 Characterizing serverless platforms with serverlessbench
Grambow et al. [91] 2021 BeFaaS: An Application-Centric Benchmarking Framework

for FaaS Platforms
Lin & Khazaei [154] 2021 Modeling and Optimization of Performance and Cost of

Serverless Applications
Pons and López [17] 2021 Benchmarking Parallelism in FaaS Platforms
Ristov et al.[231] 2022 Colder Than theWarmStart andWarmer Than the Cold Start!

Experience the Spawn Start in FaaS Providers
Scheuner et al. [241] 2022 TriggerBench: A Performance Benchmark for Serverless

Function Triggers

Akhtar et al. [2] 2020 COSE: Configuring Serverless Functions using Statistical
Learning

Eismann et al. [72] 2021 Sizeless: Predicting the Optimal Size of Serverless Functions
Mahmoudi & Khazaei [165] 2021 SimFaaS: A Performance Simulator for Serverless Comput-

ing Platforms

76

4.1. Current Benchmarking Approaches and Tools

are often not that precise in their conclusions due to noise in the collected data.
However, they share insights on the adaptation of the technology. SeBS [48] con-
cludes that IO bound functions in general do not profit from cloud the function
execution model due to the double billing problem [10]. They also included a cost
analysis and compared their real world examples to IaaS solutions. Despite be-
ing also real world conform by implementing a webshop and traffic light use case,
BeFaaS [91] has a different focus on federated workloads where their traffic light
application is comprised of a cloud and edge layer. The latter is implemented by us-
ing their tinyFaaS [217] system. Some information like the configurations for the
cloud functions is missing and, therefore, the comparison of different providers
is limited.
An important aspect in FaaS research as alreadymentioned is to understand the

resource scaling strategies of public FaaS providers for choosing the right configur-
ation dependent on the use case. Early work [6] already published data for different
memory settings and their cost implication, but did not relate nor statistically as-
sess the interrelation between performance and cost. AWS Lambda claims that it
“allocates CPU power in proportion to the amount of memory configured”114 and
bills the user on millisecond granularity where the price also increases linearly in
the same way CPU and other resources do. One study confirmed this statement
in an ideal world with CPU intensive functions [29] which corresponds to our find-
ings [185]. Resource scaling and runtime prediction is not that deterministic on
the other platforms, in particular at Google Cloud Functions and IBMOpenWhisk.
MAISSEN and others [166] documented different processors and cold start times
by executing the cloud functions in various regions. These cold start times come
from the fact that FaaS providers reuse cloud function instances within a provider
dependent period until the cloud function faces a shutdown. This optimization is
hidden from the FaaS customer. Also GIMÉNEZ-ALVENTOSA and others [86] invest-
igated differently equipped execution environments. Of particular interest is their
data analysis where they grouped the invocations of the functions by the executing
VM. In the resulting histogram, there were deviations of up to 30% in execution
time for the same functionality and configuration. Since theymissed to also record
the physical machine’s information, first of all the CPU specifications, the reason
for this huge deviation remains unanswered. When relating these measures with
other experiments [50, 206, 213], one explanation could be the different physical
machines used for deploying the VMs and executing the cloud functions. Such a
variation of different execution environments results in an unfair business model
where a provider bills a customer up to 30% more for the same service. But there
is also research where performance across availability regions is consistent [231].
Their interesting results reveal that AWS shows a consistent execution behavior
across three different regions where only a single CPU was used to execute the
functions. IBM Cloud Functions showed a scattered execution behavior with a
variety of CPUs used and onGoogle the cold starts were faster than the warm ones.

114https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html

77

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html

4. Benchmarking FaaS Platforms

These insights were one reason to include the VM identification and the hardware
specification of the executing machine in the checklist in Section 4.2 to support a
proper data evaluation. Since we already know that the physical host executing the
function determines the resource assignment and ultimately the execution time,
WANG and others work [282] is helpful as they found a way to uniquely identify
VMs when executing the cloud functions. Their approach differs from the VM
uptime approach suggested by LLOYD and others [157] and is collision free. Back
in 2018, they recognized performance drops when a lot of function request were
made concurrently, leading to a placement strategy where AWS Lambda executes
multiple cloud functions on the same VM. Therefore, performance isolation was
not guaranteed. Another concurrency study [145] was motivated to compare FaaS
to an IaaS VM offering. A data intensive application was used to show the fit of
FaaS for distributed computing where also other researchers see the benefits of
this computing model [112]. The aforementioned multi-tenancy problems were
not present in this publication. In 2020, BARCELONA-PONS and LÓPEZ [17] also
tackled the request parallelism in FaaS, however, they did not recognize a noisy
neighbor effect in their data. This finding is a hint that the AWS Lambda platform
improved in this property which is also supported by the AWS Security115 docu-
mentation where the software stack AWS Lambda is running on is depicted. This
stack is quite similar to the architecture proposed in Section 3.5 where VMs are ap-
plied for security reasons and containers for fast start-ups. They also discovered
in their work that the different scheduling strategies, how requests are distrib-
uted to instances, impact the fit of different platforms for application classes like
IO bound functions and Azure Functions. In Table 3 of their work, the python
function with 256 MB configured took 7.7 seconds whereas the 2048 MB function
took 1.1 seconds. The cloud function was only 7 times faster despite having 8
times more resources. We know from the AWS Lambda documentation, that an
increase of memory also scales CPU resources linearly where 1,769 MB is equival-
ent with one vCPU116. After this limit, only multi-threaded functions profit from
a resource increase. This effect of resource scaling is also overlooked in other pa-
pers included in the SLR, e.g. [154, 241]. LIN and KHAZAEI state in Section 4.1 of
their paper “when the allocated memory is greater than 1792 MB, the response
time remains almost the same” [154, p. 624], but they give no explanation for this
phenomena. Another work which discusses latency breakdowns based on tracing
information claims that cloud function configuration beyond a single CPU is “inef-
ficient for non-CPU-intensive load” [241, p. 7]. As already remarked, there are situ-
ations where cloud functions profit from a resource increase greater than a single
core but only if the function is implemented in a multi-threaded way. KUHLEN-
KAMP and others [139] were interested in another scaling aspect. They created five
workloads with different characteristics to understand the scaling, i.e. the creation

115https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-
overview-aws-lambda.html

116https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

78

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

4.1. Current Benchmarking Approaches and Tools

of new cloud function instances. To distinguish between the execution time, un-
derstanding the network overhead, request scheduling etc. at the platforms, they
used a multi step measurement methodology. They recorded the start and end
time on their experiment machine which corresponds to the RTT of another pub-
lication [189] and compared this value to the execution time on the platform. Since
they only executed a single function (prime number search) on a single memory
setting, their insights on how different cloud function configurations influence
the execution behavior of a function is limited, but related to understanding the
impact of the application workload on the number of instances [179]. A different
approach to assess routing properties and the number of instances is to implement
a proxy [214] to understand the inner workings of platforms.
Another set of publications [79, 167, 211] were done by a research group from

AGH University of Science and Technology in Poland. They raised questions
about the computational performance proportional to function size, the network
performance, overhead introduced by network and scheduling, reusage of applic-
ation instances and their recycling time as well as the heterogeneous hardware.
When they conducted their research on AWS Lambda back in 2017, the service
was limited to a single core and 1536 MBmemory, but they already found a linear
relationship as stated by the AWS Lambda documentation. For other providers,
they did not find that relation which is in line with other research [29]. In an
ideal world, for embarrassingly parallel computation, the service implementation
of AWS Lambda leads to a situation of constant cost when raising the memory
setting of the function as depicted in their cost calculation in Figure 12 of their
work [79]. Or to put it differently, a user gets the same portion of computing
power over time for the same price as also confirmed in our work [185]. Similar
to MAISSEN, they also found different CPU models executing the cloud function,
which could also explain the scatter plot in Figure 5 in [79] (respectively Figure 4
in [167]), where two performance ranges for LINPACK were visible. The last in-
cluded benchmarking paper in the SLR is another workbench, called Serverless-
Bench [293]. They included an experiment with a multi-threaded application com-
pared to parallel function instances. Since the memory configuration of the differ-
ent cloud functions included in the plots are missing, the results are only partly
interpretable. Their second implication is that splitting parallelizable parts of a
function into several concurrently executed functions is use case dependent. We
showed [185] that an efficient fork join implementation of a prime number search
can also benefit from multi-threading. Nevertheless, their focus on splitting func-
tions dependent on their resource needs, i.e. IO-bound function and CPU-bound
functions, is interesting for further investigation.
Most of the papers discussed so far are benchmarking papers. Since the aim

of this work is to build a simulation framework based on benchmarking data, we
explicitly included simulation and simulator as search terms. Only a few publica-
tions were identified with a strong focus on simulating a FaaS offering. They also
published data on how platforms react under different conditions which is a pre-

79

4. Benchmarking FaaS Platforms

requisite for building a simulation model based on the data. The three included
simulation papers are discussed in Section 6.2.2.2 in detail to keep the focus of
this section on benchmarking approaches.

To motivate the following checklist in Section 4.2 and the research prototype in
Section 4.3, a short summary of the presented SLR is given with the most import-
ant aspects for building a simulation framework.
Most of the papers included have some flaws in their data presentation. It is

often unclear which configuration parameters were chosen. Furthermore, a lot
of tools are not open-source limiting other researchers to investigate their bench-
mark and function implementation in detail. As observed by many researchers,
the hardware stack within the same public cloud provider is different which has
a direct effect on the execution time. Also multi-tenancy questions arise when
not knowing the VM where the functions are executed on. A last important as-
pect from current research is the QoS assessment. A lot of experiments when
using different memory settings focus on cost. When looking at a taxonomy for
Serverless Resource Management [172], also latency is besides cost and resource
efficiency an important goal. This motivates to investigate this tradeoff but also
to keep latency QoS considerations in mind where FaaS customers might be will-
ing to spent more money when latency drops, also when this does not fit the best
performance/cost tradeoff.

4.2. Checklist for Performing FaaS Benchmarks

In the previous section, different benchmarking approaches were compared to
arguewhich aspects are important for a reproducible and interpretable experiment
design. A thorough documentation of open source research tools is the enabler
for interpreting results and reproducing them [14] which motivates the following
checklist. Each item is attached to some references, where details about the data
extraction on the respective platform or the methodology is described in detail.
As stated when writing about the flaws of some experiments, this checklist tries to
help an experimenter to build amulti-dimensional data set for FaaS benchmarking
research:

• Physical Machine Configuration - Obviously the physical machine and its
performance influence measurements. A lot of experimenters do not in-
clude this information in their experiment description. The suggestion is
to document at least the CPU model, the model number and the OS [166,
167]. Also the experimenter machine’s performance could vary for differ-
ent utilization levels where components of your benchmarking process are
executed [185, 186]. A more detailed explanation of an inconsistent exper-
imenter machine performance and a possible solution to fix this issue are
presented in Section 5.

80

4.2. Checklist for Performing FaaS Benchmarks

• VM/Container Identification - In the FaaS research area, most of the plat-
forms are designed and make use of some virtualization layers, see Sec-
tion 3.5 where a typical FaaS worker node architecture is depicted. To enrich
benchmark data and enable an investigation of themulti-tenancy aspect, the
executing VMhas to be collected with runtimemetrics. Unique strategies to
identify the executing unit are important [282]. To identify the VM and CPU
model, we use the /proc/cpuinfo and /proc/stat data from the shared
file system of the Linux Host.

• Function Configuration - The function configuration is often omitted in pa-
pers as stated in the SLR. Since the resource scaling is determined by the
configuration, i.e. the memory setting which influences the resource scal-
ing as shown in Table 3.4, this information is vital for classifying the res-
ults [29, 185].

• Function Runtime - The programming language has a big influence on the
execution time of the function when thinking about compiled languages like
Java compared to interpreted languages like JavaScript [107, 141, 182, 189].
Also different runtime versions for the same programming language may
vary in performance [143].

• Data Measurement Procedure - For the interpretation of the data, the meas-
urement methodology is important to state in the experiment. As already
discussed, the RTT is one metric to specify end-to-end latency but also con-
tains noise due to routing and the platform middleware. We therefore pro-
pose a measurement methodology where each request submitted from an
experimenter machine gets a unique identifier assigned. This identifier is
further used within the payload of the request and attached to the execution
logs on the platform. This procedure allows to map the local end-to-end
RTT to the platform execution data where an assessment of network over-
head and platform middleware can be made [139, 182].

• Workload - One best practice approach is to describe the workload and pub-
lish it with the corresponding data. This gives a first hint on the instance
parallelism the FaaS platform has to handle [17, 139, 179].

• Cold/Warm Distinction - One of the major benefits of FaaS is scaling on de-
mand. Since this results in function instance creation and cold starts when
starting a container, it is important to state whether the functions faced a
cold start or whether the function instance was reused [157, 182].

• Multithreaded Implementation - Due to the per-request execution model
and the most fine-grained billing model on millisecond basis, the imple-
mentation of cloud functions directly influences the application/function
characteristics. This is different to e.g. PaaS where single functionality

81

4. Benchmarking FaaS Platforms

in the scope of a cloud function is hidden within a larger application/mi-
croservice. Therefore, the multithreading aspect when optimizing perform-
ance and costs of cloud functions is important to consider for FaaS experi-
ments when using multi-core configurations [185, 293, 300]. This is differ-
ent to long running applications in a PaaS area where multi-threaded imple-
mentations of pieces of functionality are suspended for code readability and
maintenance. Avoiding multi-threaded code is also addressed by static code
quality tools117.

4.3. SeMoDe Web Application

We have implemented a research prototype called SeMoDe118 to enforce the check-
list when performing experiments and to comply with reproducibility efforts when
conducting benchmarks. SeMoDe is a full stack app written in Java. PostgreSQL119
is used as relational database solution, Spring Boot120 as framework for the imple-
mentation of our application, Thymeleaf121 as a server side templating engine and
Open API Specification122 to describe the implemented REST API. Figure 4.2123

shows the different layers of the application. The prototype is also deployed at
our university cluster where some of the experiments mentioned in later parts are
available without user registration124.

Database

Business Logic

Thymeleaf REST API CLI

Figure 4.2.: Overall system architecture of the research prototype SeMoDe.

SeMoDe enforces the elements in the checklist but also supports developers to
provide a proper documentation of their benchmark experiments which was often
criticized when discussing the SLR papers. Based on a versioned setup configur-
ation and a history in the database, each metric is associated with a setup and
117https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html#multithreaded-correctness-

mt-correctness
118https://github.com/johannes-manner/SeMoDe
119https://www.postgresql.org/
120https://spring.io/projects/spring-boot
121https://www.thymeleaf.org/
122https://swagger.io/specification/
123Logos for Thymeleaf, OAS, Spring Boot, and PostgreSQL are from the corresponding tool sites.
124https://semode.pi.uni-bamberg.de

82

https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html#multithreaded-correctness-mt-correctness
https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html#multithreaded-correctness-mt-correctness
https://github.com/johannes-manner/SeMoDe
https://www.postgresql.org/
https://spring.io/projects/spring-boot
https://www.thymeleaf.org/
https://swagger.io/specification/
https://semode.pi.uni-bamberg.de

4.3. SeMoDe Web Application

corresponding version. As stated, deploying cloud functions can be done via cus-
tom tools like the serverless framework or generic IaC tools like Terraform. One
design decision of SeMoDe is to not rely on these tools and implement the de-
ployment and monitoring of the function in one comprehensive tool. This gives
the user the freedom to investigate special hypotheses and using the deployment
information for starting the benchmark and getting the logs from different pro-
viders. It also supports the measurement procedure where uniquely identifiable
requests are submitted and the logs of these executions are processed within the
application and stored with the platform execution data. Furthermore, the sim-
ulation experiments are also conducted with the help of this prototype where an
additional calibration step is explained in Section 5.
To understand the support SeMoDe provides, the database schema is introduced

in Section 4.3.1. The aim of building a simulation framework is reflected in the
database schema as well. Hence, benchmark related entities as well as simulation
related entities are included. Therefore, the database schema gives a first explan-
ation of important benchmark and simulation concepts. The package diagram
explained in Section 4.3.2 gives a rough overview of the architecture of the proto-
type and highlights extension points when integrating new FaaS platforms. Three
interaction mechanisms as shown in Figure 4.2 are described in Section 4.3.3.
These three possibilities to access the capabilities of the prototype are described
and their interaction is shown based on two common use cases when performing
experiments with SeMoDe. Since one focus of this work is to get a solid founda-
tion on benchmarking FaaS systems, special emphasis is put on the definition of
different workloads, its submission within the prototype and the collected metrics
during benchmarks in Section 4.4.

4.3.1. Database Schema

The database schema shown in Figure 4.3 visualizes all tables and their attributes.
Primary keys are the first attribute of every entity and layouted in bold. The italic
and bold-faced attributes are foreign keys. The cardinalities of the relationships
are directed as implemented in the Java Persistence API (JPA)mapping within the
entity classes in Java. They can be interpreted as follows:
A setup configuration is associated with exactly one user, whereas a user can have

0 to N setup configurations.
The central table of the presented domain model is setup configuration. It is as-

sociated with a single benchmark configuration and a calibration configuration. We
already know from Section 2.2 which elements comprise a benchmark. Within a
benchmark configuration a user has to specify the workload (benchmark mode and
benchmark parameters) and the function which should be deployed to the corres-
ponding platform (path to source). Since SeMoDe supports deployment to several
platforms, a user additionally specifies cloud provider or open-source tool depend-
ent configuration parameters for deployment. Furthermore, after benchmarking a

83

4. Benchmarking FaaS Platforms

calibration_config

- id
- api_key
- api_key_id
- aws_arn_lambda_role
- function_handler
- memory_sizes
- path_to_source
- region
- rest_api_id
- runtime
- target_url
- timeout
- usage_plan_id
- bucket_name
- number_ofawsexec ions
- calibration_docker_source_folder
- local_steps
- number_of_local_calibrations
- memory_sizes_calibration
- environment_variables_file
- function_docker_source_folder
- number_of_profiles
- setup_name
- version_number
- local_machine_config_identifier
- local_calibration_id
- provider_calibration_id
- running_machine_config_identifier
- deployed
- cpu_model_name
- machine_name
- model_nr
- operating_system
- aws_description
- base_url
- function_name
- number_of_calibrations
- increments
- docker_username
- username
- password
- file_transferurl
- gflops_sizes_calibration
- nocpus
- deployment_package_sizes

bigint
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)

integer
varchar(255)
varchar(255)

integer
varchar(255)

double
integer

varchar(255)
varchar(255)
varchar(255)

integer
varchar(255)

integer
varchar(255)

bigint
bigint

varchar(255)
boolean

varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)

integer
double

varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)

integer
varchar(255)

setup_config

- setup_name
- benchmark_config_id
- calibration_config_id
- owner_username

varchar(255)
bigint
bigint

varchar(255)

user_table

- username
- full_name
- mail
- password
- role

varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)

0..N

1 1

1

1

0..N

0..1

0..1

1

1

Figure 4.3.: Database schema of SeMoDe with a focus on benchmark and calibration en-
tities.

84

4.3. SeMoDe Web Application

benchmark_config

- id
- api_key
- api_key_id
- aws_arn_lambda_role
- function_handler
- memory_sizes
- path_to_source
- region
- rest_api_id
- runtime
- target_url
- timeout
- usage_plan_id
- benchmark_mode
- benchmark_parameters
- deployed
- end_time
- post_argument
- setup_name
- start_time
- version_number
- description
- version_visible
- aws_description
- open_faasbase_url
- open_faasresource_setting
- open_faasnumber_of_runs
- deployment_package_sizes

bigint
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)

integer
varchar(255)
varchar(255)
varchar(255)

boolean
timestamp

varchar(255)
varchar(255)
timestamp

integer
varchar(255)

boolean
varchar(255)
varchar(255)
varchar(255)

integer
varchar(255)

profile_record

- id
- duration_inms
- end_time
- function_name
- memory_size
- memory_used
- random_execution_number
- start_time
- calibration_config_id

bigint
bigint

timestamp
varchar(255)

bigint
bigint

varchar(255)
timestamp

bigint

calibration_event

- id
- cpu_or_memory_quota
- gflops
- platform
- run_number
- config_id
- execution_time_ins
- cpu_model_name
- machine_name
- model_nr
- operating_system
- nocpus

bigint
double
double
integer
integer
bigint
double

varchar(255)
varchar(255)
varchar(255)
varchar(255)

integer

localrestevent

- id
- end_time
- errorneous
- start_time
- benchmark_config_id
- provider_event_id

bigint
timestamp

boolean
timestamp

bigint
bigint

provider_event

- id
- container_id
- cpu_model
- cpu_model_name
- platform_id
- result
- vm_identification
- cold
- performance_data_id

bigint
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)

boolean
bigint

performance_data

- id
- billed_duration
- end_time
- function_name
- log_stream
- memory_size
- memory_used
- platform_id
- precise_duration
- start_time
- startup_duration
- benchmark_config_id

bigint
integer

timestamp
varchar(255)
varchar(255)

integer
integer

varchar(255)
double

timestamp
double
bigint

1

0..N

0..N

0..N
1

1

0..N

1

1

0..1

0..1

Figure 4.3.: Database schema of SeMoDe with a focus on benchmark and calibration en-
tities.

85

4. Benchmarking FaaS Platforms

platform, the logs are needed for a proper data evaluation where additional config-
uration parameters for the benchmark are stored to retrieve log data from the cor-
responding platform. All of this information is stored within a single benchmark
configuration. Only the latest version of a configuration is editable. If a change oc-
curs, the tool increments the version number which guarantees an unmodifiable
documentation of the history.
Another reference from the setup configuration relates to a so called calibration

configuration. The question now arises where are the simulation related classes
and why is one of the most dominant entities in the data schema called calibration
configuration. When looking at the dictionary again, to calibrate a tool means “to
check the measurement on an instrument against a standard instrument, and ad-
just the first instrument to keep it accurate”125. Since we know from Section 4.1
that different public cloud providers and open-source tools scale their resources in
different ways, this calibration is an approach to investigate the resource scaling
strategies of providers. In addition, calibration data enables developers to make
different systems comparable. This is the reason why the calibration configuration
has two self-references. One is named local calibration and the other is named
provider calibration. Both of them are needed to compare these two virtualized en-
vironments with each other, a more detailed explanation can be found in Section 6.
The profile record table contains the simulation data, where an arbitrary function
is executed based on calibration data. Conceptually, the CalibrationConfig has
some references to other objects in our implementation to encapsulate specific
aspects. For sake of simplicity, readability and speed of database retrieval of the
experiment configuration, the @Embedded JPA annotation is used to store the at-
tributes of these embedded classes in the same relational database table.
Both tables, calibration configuration and benchmark configuration, contain the

setup name which enables a bidirectional relationship. This is not implemented
in JPA but helps in optimizing retrieval operations for a single setup when using
native queries, e.g. getting all versions for a specific setup by only querying a single
table.

4.3.2. Package Diagram and Extension Points

This section explains the project structure and important files. It is a summary and
overview of how the research prototype is constructed. A few concepts and classes
which are important within later parts are already named but not discussed in de-
tail. The package diagram depicted in Figure 4.4 is explained from the perspective
to write connectors for new FaaS providers. Under src/main/resources Spring
Boot’s application.properties can be found where the settings for all proper-
ties, e.g. database connection, logging levels, custom environment variables etc.
can be changed. The subfolder templates within the resources folder contains
the Thymeleaf HTML templates and static content like CSS, images and Java-

125https://www.oxfordlearnersdictionaries.com/definition/american_english/calibrate

86

https://www.oxfordlearnersdictionaries.com/definition/american_english/calibrate

4.3. SeMoDe Web Application

Script code. The application code is located under src/main/java predefined by
a gradle convention.
Emphasis is put on classes which are especially important for the architecture

of the prototype. Design decisions and extension points are highlighted. The
main package de.uniba.dsg.serverless contains the classes for starting the
SpringBoot application. Since a Spring web application was implemented, a web
server, per default Tomcat, is started. To suppress the startup of the web server
and use our prototype as CLI tool as shown in the overall system architecture in
Figure 4.2, an ArgumentProcessor class is implemented which needs another
system property set at runtime. See the comment within the argument processor
class for further information on how to avoid starting the web server.

de.uniba.dsg.serverless

pipeline

users simulation.load cli

controller

model

service

repo

rest

util

benchmark

methods

model

provider

util

calibration

local

provider

model

mapping

profiling

Figure 4.4.: UML package diagram of SeMoDe.

All other classes are included in four packages simulation.load, users, cli
and pipeline. The first subpackage simulation.load contains the implement-
ation of a static simulation approach published in 2019 [179] which is similar to

87

4. Benchmarking FaaS Platforms

discussed work [165] in the SLR. When given an arbitrary load pattern and a sim-
ulation input (average execution time, cold start time and container warm period),
the tool computes the number of cold starts and running instances at a given point
in time. The users subpackage contains the model, controller and services for the
user management of the application. Furthermore, it contains a session-based se-
curity configuration. The REST API on the other hand, is secured on a request
basis where a user has to authenticate upfront and needs to request a JSON Web
Token (JWT). The cli package contains a UtitlityFactory class where a builder
pattern is implemented. Each CustomUtility has an attribute name which is one
Command Line Interface (CLI) parameter to specify which functionality should be
executed. This is also a mechanism to extend the prototype and enable developers
to test some functionality before integrating it into the pipeline aswell as to provide
standalone features.
The most important package is pipeline. It contains the business logic for the

benchmark and simulation framework. Before talking about these two packages,
a short description is made for other relevant subpackages. All JPA related inter-
faces are included in repo. SpringData JPA annotations are usedwhereHibernate
is the Object Relational Mapping (ORM) implementation. It generates the queries
at compile time based on a declarative, human readable approach where keywords
known from SQL are combined within interface method names like findByLast-
nameAndFirstname126. Where this naming scheme is insufficient for expressing
queries, we use native queries and interface based Data Transfer Object (DTO)
projection127. In our model package, all configuration related classes are included,
see Figure 4.3. The benchmark.model and calibration.model classes contain
specific business related model classes which are necessary for performing bench-
marks respectively calibrations. The packages controller and service contain
classes which are annotated with Spring stereotypes of the same name. The archi-
tectural decision is to have no direct access from a controller to a repository class,
so a controller class has only dependency injected service objects, but no repository
objects. Furthermore, the service classes do not contain any state since the only
source of truth is the database. Therefore, scaling and concurrency issues intro-
duced by the middleware do not occur in SeMoDe. The util package includes the
custom SeMoDeException as well as some static helper classes and Spring beans.
As already mentioned in the introduction to this section, we also expose a REST
API implemented in the rest package. This package also contains subpackages
for controllers, dtos, services and a security implementation via JWT.
The remaining two packages calibration and benchmark implement the center-

piece of SeMoDe. The prototype contains of a few generic interfaces which are ex-
tension points to enable the support for different FaaS platforms and establish a
generic interface to deal with their heterogeneity. Two of them are Benchmark-

126https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-
methods.query-creation

127https://www.baeldung.com/spring-data-jpa-projections#interface-based-projections

88

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.query-creation
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.query-creation
https://www.baeldung.com/spring-data-jpa-projections#interface-based-projections

4.3. SeMoDe Web Application

Methods and LogHandler in the benchmark package. The first is included in
the methods subpackage, where currently only AWS is supported. This inter-
face defines methods for deploying the functions to the platform, starting the
benchmark, fetching data from the corresponding logging service and undeploy-
ing cloud functions to keep classes like the BenchmarkExecutor vendor independ-
ent. The latter is included in provider package where currently AWSCloudWatch
is supported for investigating the logs and enable a vendor specific casting of the
log data to generic performance data entries, see the database layout for further in-
formation. The benchmarks for the only open-source supported platform Open-
FaaS is executed based on shell scripts.
The third extension point is the interface CalibrationMethods in calibra-

tion.provider. Thismechanism is similar to the benchmark extension at Bench-
markMethods. Here, AWSCalibration, LocalCalibration and OpenFaaSCali-
bration implement this interface to deploy, start and undeploy the calibration.
A local deployment is of course not necessary since we directly execute a Docker
container to get the calibration events. The other subpackages in pipeline deal
with different steps in the calibration and simulation pipeline. The statistical eval-
uation of the tool with linear regression models, computation of the coefficient
of determination (R2) and a mapping (MappingMaster) to compare different en-
vironments is included in mapping. Finally, profiling as the last subpackage
of calibration, includes the classes for the local execution and simulation of a
function based on the mapping information from the computed linear models.
After discussing extension points and configuration options from a developer

point of view, the next section introduces the interaction mechanisms as shown
by the system architecture of SeMoDe in Figure 4.2.

4.3.3. Interaction Mechanisms

4.3.3.1. Web UI

The web UI is designed to be the only possibility within SeMoDe to create new
setups and change existing ones. When starting a new experiment and after regis-
tration, a user has to create a new setup configuration. Users of the application are
categorized in two user groups: On the one side they can have the role USER lim-
iting their capabilities to their own experiments, whereas on the other hand users
with the role ADMIN can see and change the setup configuration of all users and
their related entities. These are the only roles currently defined in the prototype.
Figure 4.5 comments on the setup configuration overview page and shows the re-
strictions for ordinary users and capabilities for unauthenticated users which can
look at publicly available benchmark information for selected configurations.
Figures 4.6 and 4.7 show the screenshots for the setups/{setupName}/bench-

mark128 endpoint. The first screenshot contains all editable input fields to config-
128A curly bracket semantics is used in the style of specifying controller paths in Spring Web for

dynamically changing fields.

89

4. Benchmarking FaaS Platforms

Only visible
for admins

Publicly
visible

Only visible
for logged
in users

Column is
only visible
for admins

Figure 4.5.: Setup configuration Web UI of SeMoDe showing aspects of the implemented
user management.

ure the benchmark. Via the Versions dropdown, a user can see the configuration
of older versions. Technically, asynchronous requests via JavaScript (AJAX) are
made to an endpoint to get the benchmark configuration based on the selected
version. Only the latest version is editable for the input fields, in contrast to the
description and version visible fields, which are editable for every version. The
dropdown information is structured as follows:

“{version} - Platform events: {performance data entries} (database id)”
The number of performance data entries in the database indicates if a bench-

mark was executed based on this version and if the data was fetched from the
corresponding provider. The performance entries and especially the attributes
memory used and precise duration are later used for displaying the data graphically
as can be seen in Figure 4.7. The primary key of the benchmark configuration
is also displayed in parenthesis for an in-depth investigation and custom queries
when accessing the database as an administrator. A custom Description is the next
input field. This can be used to make notes about the configuration during the ex-
periment planning and execution, but also for publicly marked experiments when
the fieldVersion Visible is set. Then a non-authenticated user can see a subset of the
information presented here, more details about the publicly available benchmarks
can be found on our website124.
The following three fields are connected to each other. Different Benchmark-

ing Modes are implemented to support clean test beds as well as arbitrary load
patterns. Further details on the benchmarking modes implemented and the load
pattern generation can be found in Section 4.4. Since the prototype is currently
only capable of invoking REST endpoints, we added some Post Body Arguments in
JSON format as input for the cloud function. When a benchmark is executed, the

90

4.3. SeMoDe Web Application

experiment start and end time is set, displayed at Experiment Time and overwritten
with null values when the next version is created and stored in database.

Figure 4.6.: Benchmark Web UI (I/II) to specify general information and AWS specific
settings.

As mentioned before, currently only AWS and OpenFaaS are supported. There-
fore, in the next part of the website, the AWS specific function configuration is
set. The first fields are self-explanatory, where the Description/Function Name is
added to the overall description. This enables the user to describe the function in
this context. All other fields are similar to the fields at the AWS dashboard. There
you can also use the ZIP upload option. Deployment Internals are the next part and

91

4. Benchmarking FaaS Platforms

Figure 4.7.: Benchmark Web UI (II/II) plotting benchmark experiments and providing
pipeline commands.

completely filled and cleared by the tool, see Figure 4.7. This procedure enables a
check of specific parameters of the corresponding provider and allows for possible
intervention by the experimenter when some components malfunction. It is fur-
thermore needed to undeploy the deployed function at a later point in time. Via
the Update Configuration button, a user of the tool can store a new version of the
configuration. Whenever a version with associated performance data is selected,
a new set of data points is included in the diagram where the last version data
can also be removed via the Remove Dataset button. Also the actions Deploy, Un-

92

4.4. Invoking Cloud Functions

deploy and Execute Benchmark are disabled. Fetch Data from a provider’s logging
service like AWS CloudWatch is possible when an experimenter forgot to do so,
but already fetched data cannot be fetched again.

4.3.3.2. Command Line Interface

Since parts of the overall benchmarking and simulation pipeline take hours or
even days to complete, a CLI feature was implemented to run the application on
the correspondingmachines. The command in Listing 4.1 shows the invocation of
the java application. It is vital to set the property spring.main.web-application-
type to NONE here to suppress Spring’s default behavior to start a web server. The&
detaches the process from the console and via > out.txt the standard output is
written to the file out.txt. This enables an error handling and investigation of
details after the benchmark when running the prototype as a background process.

Listing 4.1: Start SeMoDe as CLI application.
1 $ java −jar −Dspring.main.web−application−type=NONE app.jar & > out.txt

4.3.3.3. REST API

As mentioned in Section 4.3.2, the basic security configuration is session based.
For the REST API, another security Configuration class (SecurityConfig.Api-
SecurityAdapter) is implemented to handle requests and use JWTs129. There-
fore, a custom filter class (JwtAuthenticationTokenFilter) was implemented
and registered in the pipe and filter security architecture of SpringBoot Secur-
ity. A user has to send an AuthenticationRequest to the endpoint /api/login
with the username and password. The tool generates a JWTTokenResponse with a
Bearer token. In the following, the user has to include this token in every request
as an authorization header. After some time (specified via the jwt.expiration
property), the token expires and the user has to resend an authentication request
to get a new token.
Figure 4.8 shows the Swagger UI displaying the OpenAPI Specification (OAS)

of our prototype. It highlights, indicated by the lock, the authorization needed as
described in the previous section. At the /swagger endpoint, the interested reader
can access OAS and the benchmark configurations which are publicly available via
the /benchmarks endpoint. The REST API is an additional option to access the
data and at an early stage.

4.4. Invoking Cloud Functions

The previous sections gave a first impression on the structure of the prototype
as well as on the capabilities of benchmarking, calibration, simulation and their

129https://datatracker.ietf.org/doc/html/rfc7519

93

https://datatracker.ietf.org/doc/html/rfc7519

4. Benchmarking FaaS Platforms

Figure 4.8.: OpenAPI Specification for exposed REST API.

configurations. To be able to make use of the prototype and to comply with its
interfaces, a few things are important for the configuration of a benchmark exper-
iment and its execution. Within the next Section 4.4.1, an introduction to the cloud
function response is given, in particular which data has to be harvested on the plat-
form to enable a proper data evaluation. An important aspect for multi-tenancy
is the number of parallel requests which is directly influenced by the workload
specification discussed in Section 4.4.2. Finally, the technical realization on sub-
mitting requests and discussing the measurement methodology in Section 4.4.3
concludes this chapter on benchmarking FaaS platforms.

4.4.1. Cloud Function Implementation

Each FaaS platform has a proprietary handler interface. A developer of a cloud
function has to comply with these interfaces. A contribution on how to harmonize
several interfaces is made in our work onCloud Function Lifecycle Considerations for
Portability in Function as a Service [96]. In the course of our prototype, we focused
on HTTP calls, the predominantly used trigger for cloud functions. There is no
additional constraints on the handler interface or the request structure made by

94

4.4. Invoking Cloud Functions

the prototype. We use standard HTTP POST requests to trigger the functions, but
the response from the cloud function has to match the ProviderEvent structure
to be parsed correctly by our implementation. This custom response includes all
fields of the provider_event table or ProviderEvent class except for the id field,
see the database schema in Section 4.3.1.

Listing 4.2: JSON response from a cloud function.

1 {
2 "cold": true ,
3 "result": "12",
4 "platformId": "4c609f17 -a2c3 -464b-b07e -075a20d40fdb",
5 "containerId": "b7a54352 -717b-4fec -8b85 -65f0e0f220e8",
6 "vmIdentification": "1680524966",
7 "cpuModel": "63",
8 "cpuModelName": "Intel(R) Xeon(R) Processor @ 2.50~GHz"
9 }

Listing 4.2 shows an exemplary response from a cloud function. We refer to the
discussed approaches in the SLR to differentiate VMs and containers on different
providers like [282] as well as using static attributes to see, if a new instance was
started (attribute cold is true) or if an already provisioned function is reused (cold is
false). Especially the CPU information is important to deal with the heterogeneity
of hardware at different regions of a FaaS provider as researchers have documented
performance variations in several experiments [50, 180, 206, 213].

4.4.2. Workload Specification within SeMoDe

As already shown in Figure 4.6, there is a dropdown for selecting the benchmark-
ing mode. The tool supports five benchmark modes. The first four modes are
artificially created to draw strong conclusions when conducting experiments, i.e.
understanding the start-up of function instances, the influence on cold starts on
the execution duration etc. The last option is for real world traces as described
in Table 4.4. For each mode, the mandatory attributes are described and can be
configured in the Benchmarking Parameters input field.
To have a generic data interface for submitting the workload, SeMoDe generates

a csv file for the first four modes via the LoadPatternGenerator class. This file is
then located in the folder setups/setupName/benchmark/loadPattern.csv and
overwritten when further benchmarks are executed based on the same configura-
tion.

4.4.3. Submitting Requests

So far, we discussed how to implement the SUT in Section 4.4.1 and to specify
the workload in the prior section. What ismissing as introduced in the benchmark
Section 2.2 are metrics for a proper comparison.

95

4. Benchmarking FaaS Platforms

Table 4.4.: Benchmark Mode and Benchmark Parameters to specify a custom workload
Benchmark Mode Description Benchmark Parameters

concurrent Invoking the function under test once in parallel by executing
a number of concurrent requests (NR).

NR: Number of requests.

sequentialInterval Sequentially triggering a function with a fixed time interval
(FT) between the starting point of the corresponding func-
tion invocations. The idea is to use only a single function in-
stance in the cloud and execute a number of requests on that
instance (N). This could lead to insights on JIT compilation
capabilities of the platform or other optimizationsmade. Also
unknown multi-tenancy aspects over time could be detected
as well as clean-up periods, for example when the cloud func-
tion instance is terminated due to a termination of the parent
VM. When choosing the parameters in a way that execution
time of the function is greater than the interval, a sequential
execution of the requests is not guaranteed. In such a case,
the platform typically instantiates further cloud functions to
serve the requests.

NR: Number of requests.
FT: Seconds between re-
quest start times.

sequentialConcurrent Combines the previous two invocations modes. The idea be-
hind this mode is to assess the multi-tenancy and scaling
properties of a FaaS platform. Based on the VM identifica-
tion, an experimenter sees which requests are executed on
the same VM respectively if the FaaS platforms create further
instances or schedules the requests in a queue. The tool starts
a number of requests (NEG) in parallel. After a specified time
delay (DbG), the tool starts another set of requests (NEG) as
often as specified by the experimenter (NoR). Here insights
are possible again on the reuse of cloud function instances or
if the FaaS provider deploys instances of the same customer
on the same VMs.

NEG:Number of execution
groups (parallel cloud func-
tion instances).
NoR: Number of requests
in each group (see sequen-
tialInterval mode).
DbG: Delay between start
of group g and start of
group g+1 in seconds.

sequentialChanging-
Interval

This mode starts a number of requests (NR) in varying inter-
vals between execution start times in a round robin fashion
(LD). The reason behind this setting is to investigate serial or
bursty patterns and their effects on FaaS platforms.

NR: Number of requests.
LD: List of delays.

arbitraryLoadPattern The function endpoints are triggered based on a csv file (FP).
The file contains only one column and for each row a double
value with a relative timestamp compared to the actual time
when the generation is started, e.g. 0,0 means now and 5,0
means now + 5 seconds. This value indicates when a specific
REST call, invoking the cloud function at the platform, should
be submitted.

FP: File path of the csv load
pattern file.

A typical and commonmeasure assessing applications from a customer point of
view is latency. To breakdown the latency in several parts, the start and end time on
the user side are logged as depicted in Figure 4.9. Shown as orange boxes, these
periods contain the transmission over the network, the scheduling on the FaaS
platform and finally the execution plus returning the response. Which aspects are
included in the metering service of the corresponding FaaS platform (blue box) is
provider dependent and may vary significantly between providers. To have both
measures, the user perceived latency and the provider’s execution time, an exper-
imenter can calculate the overhead which scheduling, network transmission etc.
introduces. For latency critical applications, network latency is still an important
aspect to consider.
When we start a request, we locally log the start and end time as well as a unique

identifier (UUID). Those pieces of information, together with the result of the plat-

96

4.4. Invoking Cloud Functions

Local REST

FaaS Platform time

Figure 4.9.: User and platform perceived performance when executing a cloud function.

form (returned HTTP body from the API invocation, see Section 4.4.1) are stored
in the tables localrestevent and provider_event. Whenwe fetch the data from
the metering respectively logging service of the corresponding provider, we ana-
lyze it and store the execution metrics in our performance_data table. Based on
the unique identifier platform_id in provider_event and performance_data,
the prototype is capable of matching the local REST event and the provider execu-
tion data from the specific log handler and associate the provider events with the
corresponding performance data. In cases where, for example, the API gateway
timeout is reached or unforeseen errors occur, no local rest events respectively
provider events exist which would limit the possibilities to investigate the client
perceived overhead. However, the data for investigating the platform performance
at the provider can be stored in either way. This is important to keep inmind when
analyzing experiments.
Since we are not using an established load generation and submission tool due

to this tight integration on response data and its inter-relation, the question arises
how to submit unknown workloads without concurrency limitations. Listing 4.3
contains the centerpiece of the benchmark invocation process. Since the prototype
generically implements the BenchmarkMethods interface, a list of deployed meth-
ods with their endpoints is passed to this function. For the submission of requests,
two executor services were used which handle the concurrent execution of tasks
via thread pools. The reason for these two executors in line 5 and 6 is, that we want
to schedule requests based on our generated load pattern (Benchmark Mode: ar-
bitraryLoadPattern). This is only possible with a ScheduledExecutorService130,
but this executor service is limited in the number of concurrent threads which
are determined by the factory method’s corePoolSize attribute. Since we do not
know the concurrency level a priori due to the arbitrary load pattern and function
execution times, the core pool size cannot be determined. Another problem of us-
ing the scheduled executor is, that there is no runtime error when the scheduled
requests exceed the core pool size. As given by the architecture of an executor
service where the task submitters and the threads are decoupled by a queue, the
requests are queued by the work queue of the thread pool and not executed at the
time specified by the load pattern. Since SeMoDe requests the cloud function in a
synchronous way, the executing thread blocks (IO wait).

130https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Sche-
duledExecutorService.html

97

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledExecutorService.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledExecutorService.html

4. Benchmarking FaaS Platforms

Listing 4.3: Centerpiece of the BenchmarkExecutor class.
1 public List<LocalRESTEvent> executeBenchmark(final List<BenchmarkMethods>

benchmarkMethodsFromConfig) {
2
3 final List<Double> timestamps = this.loadLoadPatternFromFile();
4
5 final ScheduledExecutorService executor = Executors.newScheduledThreadPool(N);
6 final ExecutorService delegator = Executors.newCachedThreadPool();
7
8 final List<Future<LocalRESTEvent>> responses = new CopyOnWriteArrayList<>();
9
10 long tmpTimestamp = 0;
11 // for each provider
12 for (BenchmarkMethods benchmarkMethods : benchmarkMethodsFromConfig) {
13 if (benchmarkMethods.isInitialized()) {
14 // for each function
15 for (String functionEndpoint : benchmarkMethods.getUrlEndpointsOnPlatform())

{
16 // for each timestamp
17 for (double timestamp : timestamps) {
18 tmpTimestamp = (long) (timestamp * 1000);
19 FunctionTrigger f = new FunctionTrigger(benchmarkMethods.getPlatform(),

benchmarkConfig.getPostArgument(), new URL(functionEndpoint));
20 FunctionTriggerWrapper fWrapper = new FunctionTriggerWrapper(delegator,

responses, f) ;
21 executor .schedule(fWrapper, tmpTimestamp, TimeUnit.MILLISECONDS);
22 }
23 }
24 }
25 }
26
27 // Shut down the first scheduled service . This means that all wrapper function
28 // trigger tasks are run and the function trigger tasks are submitted .
29 // Time to wait is the last timestamp from now on executing a function .
30 this .shutdownExecService(executor, tmpTimestamp + GATEWAY_TIMEOUT);
31 // Wait for the function trigger tasks to terminate
32 this .shutdownExecService(delegator, tmpTimestamp + FUNCTION_TIMEOUT);
33
34 // collecting the custom responses from the cloud platform
35 List<LocalRESTEvent> events = new ArrayList<>();
36 for (Future<LocalRESTEvent> futureEvent : responses) {
37 events .add(futureEvent. get ()) ;
38 }
39 return events ;
40 }

This is the reason why executor is only used for asynchronously starting re-
quests in a fire and forget manner. The synchronous execution is done by a
CachedThreadPool131 named delegator in the snippet which dynamically scales
the number of threads in its thread pool. In line 19, the function trigger, a callable
which synchronously executesHTTP requests, is created. This callable is wrapped
in a runnable in line 20, which also gets a reference to the delegator (the auto-
scaling executor service) as well as a reference to the thread-safe list where the

131https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Execu-
tors.html#newCachedThreadPool()

98

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Executors.html#newCachedThreadPool()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Executors.html#newCachedThreadPool()

4.4. Invoking Cloud Functions

Futures132, a handle to get the result of the computation later on, are collected.
In line 21, the executor schedules the wrapped function triggers. Dependent on
the start time of the scheduled callable, it executes a call to the delegator which
executes the FunctionTrigger. After submitting the last request, the scheduled
executor service terminates immediately in line 30. The call in line 32 blocks un-
til the last synchronous invocation returns. It waits the timeout period for the
cloud function to be sure that all functions can terminate correctly on the selected
platform within the specific provider function timeout. After the execution, the
futures and especially the results are added to the events list in line 37. In the
following they are stored in the database.
SeMoDe is dependent on the system resources and the number of threads a sys-

tem can handle. Another limiting factor is the amount of memory the system
provides for the number of concurrent functions which can be executed in paral-
lel. In this aspect, the implementation is similar to other load testing tools like
JMeter37 also implemented with Java. These limitations may be overcome by the
usage of Project Loom133 which is currently a preview released feature in Java 19.
Loom implements virtual threads which have a similar memory and CPU foot-
print like ordinary Java objects. Therefore, this tool is predestined for IO intensive
workloads like the one introduced in this section, waiting for the response of the
cloud provider and is capable of submitting millions of requests.

132https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Fu-
ture.html

133https://openjdk.org/projects/loom/

99

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://openjdk.org/projects/loom/

5. Calibration of a Consistent Resource
Scaling on a Developer’s Machine

Parts of this chapter have been taken from [174, 181].

In this chapter, RQ3.1 (How can a consistent CPU scaling behavior across various
processors and scaling algorithms be achieved and visualized?) is supported.

This section deals with an important aspect to make resource scaling on a ma-
chine visible. Based on the improvements in hardware, there are various require-
ments for specific situations which influence the performance and frequency scal-
ing of the CPU like heat limits, different power consumption under different load
conditions etc. For consistent experiments, an understanding of the used CPU
frequency algorithms is necessary to select the right one. Therefore after a motiva-
tion, we recap some important fundamentals for P-states and the CPU frequency
scaling options in the Linux kernel in Section 5.2. The next section discusses re-
lated work of benchmark characteristics and how P-states were addressed in other
research. Section 5.4 describes the motivation of our work in greater detail and
continues with the presentation of the problem. The next section proposes our
methodology to answer RQ3.1 followed by an evaluation in Section 5.7. The dis-
cussion of the results and limitations of the proposed calibration is presented in
Section 5.8. Finally, we conclude this section with ideas as well as next steps for
future work.

5.1. Motivation

As already discussed in Section 3, different public cloud providers have several
scaling strategies for the assignment of resources within the FaaS domain. When
looking at even more generic offerings from public providers, VM offerings like
Amazon EC2 or Azure Virtual Machine have several instance types with different
resource sets assigned to them. To select a proper configuration, developers are
for example guided on Azure with a rough performance estimation on an abstract
measure called the Azure Compute Unit (ACU)134. It enables a comparison of
different VM solutions based on their relative performance to their smallest VM
configuration.

134https://learn.microsoft.com/en-us/azure/virtual-machines/acu

101

https://learn.microsoft.com/en-us/azure/virtual-machines/acu

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

To the best of the author’s knowledge, there is no notion of such an abstract
computing measure for local environments introduced by a benchmark in the
presented SLR nor in another experiment in research. As remarked, most of the
experiments do not state the machine configuration at all. Therefore the question
arose during the research efforts how to perform experiments in a comparable
way on a local testbed being able to compare absolute values with the cloud offer-
ings. A prerequisite we identified is to find such an abstract measure to approach
the public cloud platform as well as the developer’s machine to make them com-
parable. The strategies for assigning resources like for AWS Lambda or Huawei
Cloud FunctionGraph are proportional to the memory setting. This introduces
another challenge since a single abstract measure is not sufficient to compare dif-
ferent deployment alternatives. Rather a function must be defined to show the
increase in computing power by increasing resources. Since most experiments
and algorithms assume linearity of this assignment which is the best understood
strategy [153], the same approach is chosen while building the simulation frame-
work locally on a developer’s machine.

0 1 2 3 4

0
20

40
60

80

Intel i7−2600, Model 42 (H60)
3.4 GHz − 3.8 GHz

Linux Kernel 5.4.0−65

CPU Quota

G
FL

O
PS

0 1 2 3 4

0
50

10
0

15
0

20
0

Intel i7−7700, Model 158 (H90)
3.6 GHz − 3.9 GHz

Linux Kernel 5.4.0−70

CPU Quota

G
FL

O
PS

Figure 5.1.: Executed calibrations showed an inconsistent resource scaling on two local
Ubuntu servers.

While conducting research and experimenting with different possibilities to
compare hardware stacks with each other, we faced some unpredictable and non
linear performance distributions on an Intel i7 processor shown in Figure 5.1. On

102

5.1. Motivation

the x-axis, the used CPU resources assigned to the executed function is shown on
our two quadcore machines. On the y-axis, an abstract compute measure, in par-
ticular Giga FLoating Point Operations Per Second (GFLOPS) is used to assess the
performance at several utilization points. The orange line is a linear regression
computed which is discussed in detail within the problem analysis Section 5.4.
One of our machines showed three performance ranges due to power saving as-
pects (right diagram in Figure 5.1) whereas the other, an older machine, showed
a consistent scaling of resources (left diagram).
There are many settings influencing each other and ultimately the performance

of the CPU making it hard to trace performance variations back to a single factor.
DELLs configuration of HPC servers [21, 129] or the SPEC bios settings descrip-
tions135 for their CPU benchmarks are examples for the plethora of configuration
options. Simply disabling all powersaving or performance boost options is not an
option since the default settings do not ensure a linear scaling. It is likely that also
other investigations face this non linear performance distribution on machines
used in their experiments without detecting it due to noise in the benchmarking
data. We therefore called the published work which is the basis of this chapter,
why many benchmarks might be compromised [181].
The problem of badly documented and therefore non-repeatable experiments

gets even worse, when a series of experiments does not state hypotheses upfront
and does not start with single, isolated experiments to confirm or reject these hy-
potheses before conducting load tests. Tools like JMeter allow to stress test a SUT,
which can lead to predictions on how the system will behave under heavy load.
CPU and other hardware resources are strained but often the implications of the
hardware used is neglected [23, 50, 206]. Since applications are running on differ-
ent hardware within the software lifecycle, e.g. there is a high likelihood that the
test setup is different from the production setup, a mismatch of the runtime beha-
vior and test results may appear. It is important to be aware of this fact when con-
figuring one system based on the measured QoS of another system. General pur-
pose processors, i. e., consumer processors, focus on optimizing the average-case
performance and run in energy efficient modes by employing runtime perform-
ance enhancements. However, these techniques are normally not documented
since they are Intellectual Property (IP) of the vendor. End users have limited con-
trol over them. Frequency scaling of the CPU is influenced by a lot of factors
specified in the Advanced Configuration and Power Interface (ACPI) specifica-
tion [268]. In particular, performance states (P-states), cooling requirements and
turbo boost options influence the frequency scaling, power consumption and heat
generation of the CPU. However, for load tests a linear scaling of resources is im-
portant for interpretable and fair results.
Therefore, we propose a simple function to calibrate hardware and understand

the scaling algorithms determining CPU performance in order to allow for fair
benchmarks. We calibrate the developer’s machine for several artificial utilization

135https://www.spec.org/cpu2017/flags/Intel-Platform-Settings-V1.1.html

103

https://www.spec.org/cpu2017/flags/Intel-Platform-Settings-V1.1.html

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

points. A running Docker environment is the only prerequisite. Our calibration
approach can serve as a standard for normalizing results of benchmark experi-
ments. This leads us to answer RQ3.1: How can a consistent CPU scaling behavior
across various processors and scaling algorithms be achieved and visualized? We limit
the discussion to Linux136 and Intel CPUs137 since they are the predominant tech-
nology used in the cloud.

5.2. Fundamentals

According to the ACPI specification138, Control States (C-states) and Performance
States (P-states) determine power consumption and frequency of the CPU. C-
states handle the working mode of the machine, e.g. active or suspended. Since
we assume an active one, C-states will not be considered in the following. P-states
determine the CPU frequency and therefore the computational power. They can
be changed by algorithms when demand changes. There are a few conflicting
goals which need to be addressed when changing the P-states [268]. On the one
hand, performance and on the other hand, power consumption, battery life, heat
generation and fan noise. The options listed in the following are the implementa-
tion in the Linux kernel, where the CPU Frequency scaling (CPUFreq) subsystem
consists of three components139:

• Scaling Governors - Each scaling governor implements an algorithm for re-
acting to changing computing demands and changes the CPU’s frequency
accordingly. Also mixed strategies where different scaling governors work
together are reasonable to achieve a good system performance under vari-
ous loads. Examples for governors are performance (highest frequency) or
powersave (lowest frequency).

• Scaling Drivers - ”Provide scaling governors with information on the avail-
able P-states (or P-state ranges in some cases) and access platform-specific
hardware interfaces to change CPU P-states as requested by scaling gov-
ernors.”140

• CPUFreq Core - Basic code infrastructure framework which the other two
components integrate with.

Since the scaling driver communicates with the hardware, vendor-specific op-
tions cannot be addressed by a generic implementation. Therefore, the integra-
136Market share Linux: https://www.rackspace.com/en-gb/blog/realising-the-value-of-cloud-

computing-with-linux
137Market share Intel: https://www.statista.com/statistics/1130315/worldwide-x86-intel-amd-

laptop-market-share/
138Especially Section 8 in the specification is of particular interest (pages 509ff. in [268])
139https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html
140https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html#cpu-performance-

scaling-in-linux

104

https://www.rackspace.com/en-gb/blog/realising-the-value-of-cloud-computing-with-linux
https://www.rackspace.com/en-gb/blog/realising-the-value-of-cloud-computing-with-linux
https://www.statista.com/statistics/1130315/worldwide-x86-intel-amd-laptop-market-share/
https://www.statista.com/statistics/1130315/worldwide-x86-intel-amd-laptop-market-share/
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html#cpu-performance-scaling-in-linux
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html#cpu-performance-scaling-in-linux

5.3. Related Work

tion of vendor-specific scaling drivers into the Linux kernel was introduced. Since
SandyBridge (second generation of Intel processors), intel_pstate is such a
scaling driver making it possible to also implement own scaling governors or over-
writing existing ones. This driver circumvents the generic implementations and
also adds new features where Hardware-Managed P-states (HWP) enable custom-
ized scaling algorithms to deal with specialties of each processor family andmodel.
WhenHWP is turned off, the generic scaling information specified in ACPI tables
are used.

5.3. Related Work

Since the scaling of CPU resources determines the CPU frequency and therefore
the speed, we cluster previous research by their use of intel_pstate if this config-
uration is explicitly mentioned. The Linux kernel has been supporting this scaling
driver since kernel version 3.9 got released in 2013 [89]. The kernel documenta-
tion describes141 how P-states are translated into frequencies which is dependent
on the specific processor model and family. Energy consumption grows propor-
tionally with the frequency, therefore also ACPI compliant low power solutions
are researched for the cloud [117].
Relatedworkwas identified based on two searches at google scholar andACMdi-

gital library on the 26th of April 2023. intel_pstate was used as keyword which
resulted in 14 entries at ACM digital library and 141 results on google scholar.
Compared to other technical or conceptual search terms, the quantity of public-
ations at the two search engines support the claim that this aspect is often neg-
lected when designing benchmarks. The result list at google scholar contained a
lot of presentations and also links to the Linux kernel documentation. As relev-
ant identified conference and journal publications are discussed in the following.
The papers have a relation to performance experiments and therefore named or in-
vestigated the CPU frequency scaling configurations. Papers which described that
they used the intel_pstate driver but not documented its configuration were no
further investigated, e.g. [210, 232]. The assumption is that these experiments use
the default configuration which is an active intel_pstate driver plus powersave
governor. The availability of hardware support is dependent on the processor, the
default if available is with active hardware support.
Overall, there are four configuration options for the scaling driver142. Option

one and two are to use intel_pstate scaling driver in active mode with (1) or
without (2) hardware support (no_hwp). The third option is to use it in passive

141https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#processor-support
142In the /etc/default/grub file, the GRUB_CMDLINE_LINUX_DEFAULT prop-

erty can be changed to a value explained in the kernel documentation
(https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#kernel-
command-line-options-for-intel-pstate). Via sudo update-grub, these changes can be
applied and the system can be rebooted.

105

https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#processor-support
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#kernel-command-line-options-for-intel-pstate
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#kernel-command-line-options-for-intel-pstate

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

mode (3), whereas the last option is to disable intel_pstate (4). Disabling it
results in the usage of the generic acpi-cpufreq scaling driver. Some vendor-
specific hardware properties, which can be read by the intel_pstate scaling
driver, cannot be used in this case. There are several reasons to do so. BECKER
and CHAKRABORTY [20] fixed the CPU performance of their system by disabling
this feature and also the turbo boost options. Reducing noise for a particular use
case was another reason to disable it [67]. Some researchers, e.g. [37], wanted to be
more flexible in changing the frequency by hand during their benchmarks. Since
some of the generic scaling governors are overwritten (by using the same name)
by intel_pstate and others are not usable, sometimes researchers [63, 82, 100,
140, 236] disabled it to use the generic ones. None of the aforementioned papers
specified one of the first three options (1-3) explicitly in their papers. Since the
default configuration is an active intel_pstate (for somemodels also with HWP
enabled) we assume that a lot of benchmarks use this configuration when doing
experiments on-premise.
There are also publications which deal explicitly with intel_pstate or describe

its usage. The first one uses the default configuration where the powersave scal-
ing governor is set to balance performance and energy consumption. KANG and
others [116] investigated this setting and compared it to their own CPU scaling
algorithms as well as to the standard governors implemented. They summar-
ized that it takes some time until the frequency changes when using the default
powersave govern for intel_pstatewhich does notmeet their use case on latency
critical network packet processing. Other researchers explicitly used the perfor-
mance governor to prevent frequency changes and therefore variations in CPU per-
formance [62, 92, 297]. VALTER and others [272] would have used the performance
governor as well but they used a remote hosted HPC cluster to execute their use
case without the chance to reconfigure it. Noteworthy is their remark that the
usage of intel_pstate with powersave is a potential source of error.

5.4. Problem Analysis

We already motivated the problem of a non-linear performance increase in Fig-
ure 5.1. In this Section, we discuss the problem in more detail and compute lin-
ear regression models to provide statistical data. H60 and H90 are Intel quad-core
machines. We installed Ubuntu 20.04.2 and Docker for executing calibration func-
tions. The machines’ specifications are listed in Table 5.1.
To get several performance points for various artificial load settings as shown

in Figure 5.1, we use the cpus143 Docker CLI option to limit the CPU usage by
containers. At each point in time, only a single container is running on the men-
tioned machines together with SeMoDe which collects the metrics. The impact of
our prototype on the CPUutilization is negligible. Wemeasured it using the Linux

143https://docs.docker.com/config/containers/resource_constraints/#cpu

106

https://docs.docker.com/config/containers/resource_constraints/#cpu

5.4. Problem Analysis

Table 5.1.: Specifications of the two machines issued for the shown experiments.
H60 H90

Processor i7-2600 i7-7700
Model 42 158
Base Frequency 3.40 GHz 3.60 GHz
Turbo Boost 3.80 GHz 3.90 GHz
Linux Kernel 5.4.0-65 5.4.0-70

sar command in three system states: when no function is running, the prototype
starts and the prototype idles. We did not see a noteworthy deviation to the clean
system state144.
As a calibration function, we executed LINPACK [65, 66] which solves linear

equations as a CPU intensive function packaged in a Docker container at runtime.
Each setting present in Figure 5.1 was executed 25 times by increasing the Docker
cpus option by 0.1. Both machines use intel_pstate in active mode as their
scaling driver and powersave as the scaling governor. HWP is enabled onH90 and
not available onH60. At each share of the CPU, e.g. 0.5 cpus, the assigned portion
of the CPU is nearly fully utilized due to the LINPACK characteristics. This is
important to keep in mind when interpreting the diagrams and the subsequent
results. In other words, we mimic artificial situations where a defined portion
of the system is under heavy load and look at the performance of our system. For
example when assigning 0.5 cpus on a systemwith four cores, the CPU utilization
is around 12.5%145.
The situation described here is contrived since in a normal load test, the impact

of the frequency scaling might be hidden within the noise of other influencing
factors. The CPU is normally not executed long enough at a given utilization to
see the phenomenon in the data. Therefore, it is necessary to create a testbed
where we can assess this influencing factor in isolation and make changes in the
configuration visible.
As mentioned before, for laptops or machines with cooling problems etc., the

choice of the scaling driver impacts the power consumption and heat generation.
Furthermore, even different models within the same generation of a processor
line have different impacts on the frequency scaling due to their specific hardware
support for HWP. Being aware of this scaling phenomenon makes it easier for
experimenters to choose a suitable scaling behavior for their benchmarks. This
enables a performance estimation under low, moderate and high load of a system
and does not jeopardize the results and, hence the conclusions drawn.

144Look at the following file which shows the utilization and changes when starting the prototype:
https://github.com/johannes-manner/SeMoDe/files/6336159/utilization.txt.

145Due to other processes running on the system, the utilization is a bit higher, but shared services
running in the background are negligible as can be seen for the prototype influence measured
via sar.

107

https://github.com/johannes-manner/SeMoDe/files/6336159/utilization.txt

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

Table 5.2.: Linear regression models for data presented in Figure 5.1.
H60 H90 - 1.a

p-value <2.2e-16 <2.2e-16
R² 0.9995 0.7351
Intercept -3.081 -50.340
Slope 23.400 56.357
Max GFLOPs 90.905 215.818

The orange lines in Figure 5.1 are based on linear regressions. Table 5.2 shows
the statistics to the figures for H60 and H90. The coefficient of determination
(R²) for H60 shows a near ideal relationship between the dependent GFLOPS and
the independent cpus variable. Therefore, the results of a benchmark on this
machine are comparable and fair since doubling the resources results in doub-
ling the GFLOPS. The intercept is negligible in this case and explainable due to
inherent computational overhead. Contrary, on H90, the relationship between
cpus and GFLOPS is good with R² being 0.7349, but it is obvious when looking at
Figure 5.1 (right) that three performance ranges are visible from [0, 0.5], [0.6, 2.8]
and [3.0, 4.0] with different slopes. When checking the available governors at H90,
powersave and performance are active. The kernel documentation states that the
”processor is permitted to take over performance scaling control”146 when exceed-
ing a threshold. When further looking at the different CPUs and their frequencies
at runtime via tools like turbostat147, we can see that the powersave scaling gov-
ernor is used for the second interval operating at minimum frequency and the
performance scaling governor is used for the first and third interval. Therefore,
a fair comparison of SUT deployed on H60 and H90 is questionable since H90
performs worse under moderate load than under peak load.
This observation and the statistical evaluation already emphasize the need for a

calibration of the CPU performance.

5.5. Methodology

We propose the following solution to RQ3.1. We use LINPACK benchmark as a
CPU intensive calibration function and report the metrics specified in Table 5.2
to the user of our research prototype’s CLI. Even though the case described in the
previous section is contrived, it gives us the option to isolate CPU performance
and to make changes in the configuration of intel_pstate visible. To be able to
restrict CPU resources to a single function, we use the Docker CLI cpus option.
This gives us the chance to artificially fix the CPU utilization at a given value and

146https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#turbo-p-states-
support

147https://www.linux.org/docs/man8/turbostat.html

108

https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#turbo-p-states-support
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#turbo-p-states-support
https://www.linux.org/docs/man8/turbostat.html

5.5. Methodology

understand the scaling of the CPU frequency and the performance by looking at
the computed GFLOPS.
LINPACK is especially suited to assess the performance of multi-core hardware

since it makes use of all available CPUs by being machine independent [65]. The
same holds true for load testing tools, where concurrent users of a system can be
simulated to stress the SUT. Other functions using the available resources in a
similar way are also possible for this proposed calibration step, but LINPACK is
well established in this domain. An excerpt of the LINPACK output is shown in
Listing 5.1. We run our Docker container with a CPU share of 1.0 cpus on H90
in this example.

Listing 5.1: Sample LINPACK execution on H90 for a CPU share of 1.0.
1
2 $ docker run −−cpus=1.0 jmnnr/linpack:v1
3 ...
4 Intel (R) Optimized LINPACK Benchmark data
5 Current date/time: Fri Apr 16 11:10:52 2021
6 ...
7
8 ============ Single Runs ============
9
10 Size LDA Align. Time(s) GFlops
11 1000 1000 4 0.005 144.8319
12 1000 1000 4 0.095 7.0746
13 ...
14 10000 25000 4 58.080 11.4819
15 10000 25000 4 58.289 11.4406
16
17 Performance Summary (GFlops)
18
19 Size LDA Align. Average Maximal
20 1000 1000 4 87.1978 144.8319
21 5000 18000 4 10.9034 10.9638
22 10000 25000 4 11.4612 11.4819
23
24 Residual checks PASSED
25
26 ...

The Single Runs and Performance Summary sections present the size of the mat-
rix which is used for the linear computation and the leading dimension of A (LDA)
which also determines the storage of arrays in memory. What is interesting in the
Single Runs section is the problem size of the linear equation system. Problem size
1,000 reached quite a high number of GFLOPS. At this point in time the frequency
scaling of the CPU is not stable and also the equations for this problem size are
executed within a few milliseconds which distorts the accuracy of the CPU per-
formance measurement in GFLOPS. In addition, the problem sizes are executed
repeatedly for more stable results as can be seen for the two runs of problem size
10,000. Therefore, we use the average GFLOPS of the experiment with the largest
problem size because the equations in this case run a sufficient period of time to
get a stable scaling under this portion of CPU utilization. For sake of simplicity

109

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

and to be comparable, we package the LINPACK function and push the image148

to Docker Hub, which is used by our prototype per default. We further parse the
results (Listing 5.1) of LINPACK to get GFLOPS.

5.6. Web UI and Implementation

Figure 5.2 shows part of the web UI for the setups/{setupName}/calibration
endpoint. The structure of the calibration webpage is similar to the benchmark
webpage described in Section 4.3.3.1. The Local Configuration part includes the
configuration for the local experiment machine and the upfront calibration of the
used hardware. The Local Steps property describes the resource increase for the
start of a Docker container, whose location is specified in the Docker Source Folder
property. If there is nothing specified, the default is used which is the aforemen-
tioned image at Docker Hub. This CPU resource limitation is done via the cpus
command line argument when starting a container. The Number of local calibra-
tions describes how often the calibration is executed on every Local Steps setting. A
graphical representation as well as a statistical summary of the selected calibration
can be seen at the bottom of the diagram. For consistency reasons, the plotted data
from Figure 5.1 is shown again here.
Since the calibration takes hours and days to execute, there is a CLI option to

start this process149. The tool includes two properties as described in the README
where a user of the tool can specify the number of runs for each CPU quota and
the steps in which the CPU quota is incremented. The default values are 1 run
(runs) with steps of 0.1 (steps). A single run is sufficient to get a confirmation
through the statistical output if the performance scaling is appropriate for using
the machine in further experiments or if a user has to check BIOS and other set-
tings again. This feature and the introduced web UI answer RQ3.1 on How can
a consistent CPU scaling behavior across various processors and scaling algorithms be
achieved and visualized.

5.7. Evaluation

We now have an answer to RQ3.1, but still a configuration at H90 which does not
comply with our prerequisite of a linear scaling of resources. In this evaluation
section, we look at the four cases introduced in related work to iteratively assess
different options and configure our machine accordingly. We solely focus on H90
since H60 shows an already acceptable CPU performance distribution under di-
verse load settings. For option one, we further investigate sub-cases to be more
precise in drawing conclusions on this specific machine and show the most im-
portant settings.

148https://hub.docker.com/repository/docker/jmnnr/linpack
149https://github.com/johannes-manner/SeMoDe#hardware-calibration-feature

110

https://hub.docker.com/repository/docker/jmnnr/linpack
https://github.com/johannes-manner/SeMoDe#hardware-calibration-feature

5.7. Evaluation

Figure 5.2.: SeMoDe web UI depicts a non-linear performance distribution for an Intel i7-
7700, model 158 in one of our experiments.

1. Scaling driver intel_pstate in active mode with HWP support.
a) Turbo boost on, powersave scaling governor.
b) Turbo boost off150, powersave scaling governor.
c) Turbo boost on, performance scaling governor.
d) Turbo boost off, performance scaling governor.

2. Scaling driver intel_pstate in active mode without HWP support, power-
save scaling governor151.

3. Scaling driver intel_cpufreq since intel_pstate is in passivemode. Scal-
ing governor is ondemand152.

150Change /sys/devices/system/cpu/intel_pstate/no_ turbo to ”1” disables the turbo
boost. ”0” indicates an enabled turbo boost.

151GRUB_CMDLINE_LINUX_DEFAULT="intel_pstate=no_hwp"
152GRUB_CMDLINE_LINUX_DEFAULT= "intel_pstate=passive"

111

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

4. Scaling driver is here acpi-cpufreq and governor ondemand.153.

For each setting (except for 1.a), we performed a single calibration run. In our
methodology we propose that by default we only need a single run to assess the
quality of a system. Especially the active HWP case is investigated further by chan-
ging the scaling governor to performance and enabling/disabling turbo boost. Op-
tions 2 to 4 are investigated in the default setting when updating grub, so turbo
boost is enabled in all of these cases. The input for LINPACK is constant for all
executions with three different matrix sizes (1,000, 5,000 and 10,000) as can be
seen in Listing 5.1. We use the average of the highest problem size (10,000) for
the statistical evaluation and the figures presented in the following.
The first configuration (1.a) was already shown in Figure 5.1 (right) and evalu-

ated in Table 5.2. The CPU is configured with active HWP and turbo boost154.

0 1 2 3 4

0
50

10
0

15
0

20
0

H90 − 1.b

CPU Quota

G
FL

O
PS

0 1 2 3 4

0
50

10
0

15
0

20
0

H90 − 1.c

CPU Quota

G
FL

O
PS

0 1 2 3 4

0
50

10
0

15
0

20
0

H90 − 1.d

CPU Quota

G
FL

O
PS

Figure 5.3.: Calibrating H90 in different settings by changing scaling governor and turbo
boost.

The other three sub-configurations under option 1 are investigated in Table 5.3
and Figure 5.3. In 1.b we turned off turbo boost, resulting in the same distribution
but the maximum achieved GFLOPS is around 10% lower, which is reasonable
when looking at the base clock rate of 3.6 GHz and 3.9 GHz in turbo boost mode.
The same observation can be made when comparing 1.c and 1.d with each other.
The distributions are equal except for the absolute value of GFLOPS.

153GRUB_CMDLINE_LINUX_DEFAULT= "intel_pstate=disable"
154https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-

boost-technology.html

112

https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

5.7. Evaluation

Table 5.3.: Linear regression models for data presented in Figure 5.3
H90 - 1.b H90 - 1.c H90 - 1.d

p-value 6.6e-16 <2.2e-16 <2.2e-16
R² 0.7406 0.9999 0.9999
Intercept -45.203 -1.820 -1.715
Slope 51.649 54.118 49.389
Max GFLOPS 197.101 215.939 196.908

The difference between 1.a/1.c and 1.b/1.d respectively is the scaling governor
used. We exchanged the powersave with the performance governor155. For the
performance governor, switching from one to the other algorithm does not hap-
pen since the CPU is operated at maximum frequency. Therefore, this config-
uration is a candidate for doing fair and repeatable benchmarks on H90. The
drawback here is, that the power consumption is also at its maximum resulting in
additional heat generation and power consumption.

0 1 2 3 4

0
50

10
0

15
0

20
0

H90 − 2

CPU Quota

G
FL

O
PS

0 1 2 3 4

0
50

10
0

15
0

20
0

H90 − 3

CPU Quota

G
FL

O
PS

0 1 2 3 4

0
50

10
0

15
0

20
0

H90 − 4

CPU Quota

G
FL

O
PS

Figure 5.4.: Calibrating H90 in different settings by changing the scaling driver.

Option 2 to 4 are graphically presented in Figure 5.4 and statistically in Table 5.4.
Compared to 1.a, the only difference of option 2 is an active intel_pstatewithout
HWP support. The HWP support has an impact on the scaling algorithm and en-
ables switching between powersave and performance governor as already seen
in Figure 5.1 (right), whereas the system configured without HWP only uses the
powersave governor which ”selects P-states proportional to the current CPUutiliz-

155sudo cpufreq-set --cpu n --governor performance where n is a processor

113

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

Table 5.4.: Linear regression models for data presented in Figure 5.4
H90 - 2 H90 - 3 H90 - 4

p-value <2.2e-16 <2.2e-16 <2.2e-16
R² 0.9953 0.9975 0.9976
Intercept -14.378 -7.169 -7.775
Slope 55.362 54.254 54.395
Max GFLOPS 215.835 215.880 215.740

ation”156 in this operationmode. This results in the undulations seen in Figure 5.4
(left).
Passivating intel_pstate (option 3) results in the usage of the intel_cpufreq

scaling driver and the ondemand scaling governor. As stated in the documentation,
the HWP support is also disabled. Compared to the second option, the perform-
ance behavior is quite similar, however, the governor uses the CPU load to determ-
ine the CPU frequency. Only 16 fixed P-states are provided by the generic ACPI
frequency table which explains the non-linear scaling behavior. Most researchers
disable intel_pstate and use the generic acpi-cpufreq scaling driver. Since
option 3 and 4 use the same governor and the information available in the ACPI
tables, their results are similar.

5.8. Conclusion

5.8.1. Discussion of the Results

The presented methodology enables a calibration of systems with respect to the
CPU performance. We use LINPACK as a machine independent benchmark to
assess the frequency scaling of the CPU and express the power via GFLOPS when
solving linear equations. The approach showed one solution to solve the initially
motivated situation, where an unpredictable scaling was present. We investig-
ated the most important influencing factors for Intel CPUs under Linux namely
the scaling driver and its corresponding governors. Due to vendor-specific im-
plementations, it is possible to make use of the vendor-specific knowledge about
the system components like intel_pstate showed. Nevertheless, in some con-
figurations, this leads to performance distributions which are questionable when
conducting fair and repeatable benchmarks for various load settings. The four op-
tions identified in related work cover only a small portion of the overall possible
system configuration when taking all possible settings into consideration. Why a
lot of researchers disabling intel_pstate to use the generic acpi-cpufreq scal-
ing driver is not discussed explicitly in their work and also not reasonable when
looking at the results of our evaluation. Therefore, it is important to conduct cal-
ibration experiments as ours upfront to find a good configuration for the machine

156https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#powersave

114

https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html#powersave

5.8. Conclusion

which performs the benchmark with the SUT. Only option 1 was examined in
detail by changing the scaling governor and testing the system with turbo boost
enabled and disabled but without other fine-tuning. A recommendation based on
our data is to use intel_pstate as scaling driver for Intel machines with HWP
support enabled and set the performance scaling governor.

5.8.2. Threats to Validity

Single Machine - We only looked in detail at a single Intel processor (i7-7700,
model 158) in this paragraph and assessed its specific configuration. For fur-
ther generations of Intel processors (second generation onwards) intel_pstate
is used as a scaling driver and we assume that the behavior shown here is also
present at some of these machines dependent on the model and processor line.
Single Vendor - We only looked at Intel processors, but we assume that our

methodology also works on other processors like AMDs.
Minimal Dimension - CPU performance was the only dimension we were inter-

ested for an initial calibration. To draw strong conclusions, we tried to reduce the
influence of all other factors to a minimum. We are aware that the CPU perform-
ance is also influenced by cooling requirements, network access, hard disk speed,
system bus, etc.
Sample Size - As mentioned in the evaluation, we only executed a single run for

each experimental setup since we also propose to do this when using our method-
ology in practice. We have seen in Figure 5.1 that especially the transition from
the second to the third performance interval is interesting since the effects of the
scaling algorithm switch can be seen in greater detail for the 25 executions. There
is a trade-off between execution time and accuracy of the results. However, in
Figure 5.3 (left) we have seen that also a single execution is enough to show a
non-linear scaling.
LINPACKConfiguration - The problem size, number of runs and the LDA of the

LINPACK benchmark can be specified as input. All calibration runs in this section
were executed with the same set of parameters, which could bias the results since
the LDA is also responsible for how the matrix A consisting the linear equations
is stored in RAM.

5.8.3. Future Work

The plan for future work in this area is threefold. Firstly, we want to look at other
factors related to the CPU and influencing the performance. First and foremost,
we want to look at memory influences by changing the LINPACK input paramet-
ers. Also system bus capabilities and other components play a vital role which
might require some specific calibration considerations to assess the quality of a
system. Furthermore, the cooling capabilities are important to keep inmind when
operating the systemwith the performance governor and in turbo boost mode. Fi-

115

5. Calibration of a Consistent Resource Scaling on a Developer’s Machine

nally, different Intel processors and other vendors are in focus of the next research
efforts.
Secondly, we configured our machine H90 at maximum frequency when using

the performance governor. Questions about the efficiency, in particular the used
energy related to the computing power, are important for an assessment how sus-
tainable such a configuration is for several workloads. This is one point of criticism
when using LINPACK and use a performance oriented configuration.
A last idea within this calibration process is to establish an abstract computing

measure tomake different experiment setups comparable and quantifiable. Azure
already did so by publishing abstract compute units which are boundaries at the
moment due to the heterogeneous hardware used for offering some of their com-
pute services. If research papers and public cloud providers would agree upon a
set of parameters published with their experiments and services, also an easier
assessment about the energy consumption and CO2 equivalents could be made
which supports companies to structure their sustainability strategies.

116

6. Simulating FaaS Platforms

Parts of this chapter have been taken from [174, 180, 181, 185].

In this chapter, RQ3.2 (How can two distinct virtualized execution environments
be made comparable?), RQ3.3 (Do resource configurations based on calibration
lead to accurate predictions on a provider-hosted FaaS platform in the cloud?) and
RQ3.4 (How can resource scaling strategies be applied to on-premise open-source
FaaS platforms in a manner that is equivalent to cloud strategies?) are supported.

Simulating FaaS platforms is the central section of this work. A motivation for
simulating cloud functions is stated in Section 6.1 by describing the situation and
problem of resource configurations at FaaS platforms. Also our solution is shortly
outlined. In Section 6.2 related work is discussed based on current profiling and
simulation approaches. Section 6.3 suggests the aforementioned simulation ap-
proach for a public cloud provider by answering RQ3.2 and RQ3.3. The simulated
data are compared to real executions in the cloud to provide an evaluation how
accurate the simulations are. Section 6.4 includes work on open-source FaaS plat-
forms where resource limits are applied in a way comparable to an on-premise
hosted open-source platform at a public cloud provider. These considerations are
prerequisites to enable fair comparisons of the capabilities of open-source and
public cloud provider offerings and answer RQ3.4. In Section 6.5, we discuss our
simulation approach and list threats to validity. Finally, we conclude with further
ideas for ongoing research in Section 6.6.

6.1. Motivation

Most of the available cloud function offerings force the user to choose a memory
or other resource setting and a timeout value. CPU is scaled based on the chosen
settings, as summarized in Table 3.4 for public cloud providers. At a first glance,
this seems like an easy task, but the tradeoff between performance and cost has
implications on the quality of service of a cloud function.
EIVY [74, p. 9] claims that the ”real execution is the only valid test” to figure out

the most suitable configuration. This is reasonable to provide an understanding
for absolute measures but is also time consuming and costly. The cloud function
must be deployed first, executed based on a load profile in the testing phase, ana-
lyzed and finally reconfigured. Therefore, in this section we present a local sim-

117

6. Simulating FaaS Platforms

ulation approach for cloud functions and support developers in choosing a suit-
able configuration for public cloud provider platforms and transfer this strategy
to open-source tools as well. This stated simulation process is the first and main
contribution of this work(C1). In our approach we do not state absolute values but
relate local and platform measures to each other and support developers in their
decisionmaking process. Themethodology we propose makes the cloud and local
environment comparable andmaps the local profiling data to a cloud platform and
simulates the execution behavior of cloud functions locally. This reduces time dur-
ing the development, enables developers to work with their familiar tools and lead
to runtime predictions of functions in the cloud in order to find suitable config-
uration options. It is especially helpful when implementing multi-threaded cloud
functions.
As already remarked, a cloud function has a single purpose compared to an ap-

plicationwith several functions executed in parallel. Therefore, in the case of cloud
functions, situations arise, where resources are assigned by the developer which
cannot be fully utilized based on the cloud function characteristics, particularly
for IO workloads or single-threaded functions. As a cloud function user, the pos-
sibilities to influence the runtime behavior are quite limited. Some authors state,
e.g. [113], that either the developer should receive more configuration options or
the optimal setting is automatically determined by the provider. There are offer-
ings, where providers dynamically link memory and CPU resources to the cloud
function container, but this further limits flexibility. There are occasions where a
user wants towaste computing power to speed up the execution for a better user ex-
perience. Selecting a resource setting for public cloud offerings is comprehensible
since the billing scheme depends on the resource setting. Double the resources
results in doubling the price per unit.
In open-source research, this is not necessarily the case. Causes are heterogen-

eous hardware, but especially function and application resource limits are seldom
applied and defaults are used157. Open-source tools are often compared to each
other and the public cloud based on their capabilities but deployed functions and
their runtime behavior are not comparable to the cloud per se. Making research
on on-premise hosted open-source platforms comparable to experiments on pub-
lic cloud providers is another dimension we consider for a holistic view on FaaS
platforms.
Answering our research questions helps to identify function characteristics and

their implications. We simulate the execution and directly focus on the cloud func-
tion runtime behavior itself in contrast to research where the FaaS platform serves
as an execution environment to simulate other systems [136] or where the FaaS
platform itself is the object under investigation [247]. Based on this assessment, a
developer can select a fitting resource setting to prioritize cost over performance
or vice versa depending on the business needs.

157This statement is an assumption based on the lack of documentation in most experiments.

118

6.2. Current Profiling and Simulation Approaches

6.2. Current Profiling and Simulation Approaches

6.2.1. Profiling Strategies

Profiling is the process of generating a profile of the resource consumption of
an application, a virtual or physical environment over time. The need for profil-
ing [283] also exists in the cloud function domain as the following three aspects at-
test: Management of cloud functionsmeans that the resources are configured prop-
erly to avoid function performance degradation. Resource considerations should
avoid an overprovisioning situation. And finally, the cost perspective in this pay
per usemodel balances the two prior aspects. There are two types of approaches to
profiling: Hardware profilers introduce less overhead by getting coarsely grained
data. In contrast, software profilers introduce a lot of overhead by instrument-
ing code resulting in fine grained information [201]. Which approach to choose
depends on the use case.

Table 6.1.: Comparison between monitoring and profiling approaches using different ab-
straction layers.
Abstraction Layer Approach

intrusive app layer Dynamically or statically instrument events in-
side an application. Altering source code ap-
proaches, e.g. [52, 162, 183, 229, 287].

non intrusive
virtual layer Periodically inspect the state of virtual resources

by using APIs, e.g. [40, 205, 218].
physical layer Periodically inspect the state of the system using

OS tools, e.g. [40, 229].

Table 6.1 is a selection of different profiling strategies. The ones which target
the application layer are intrusive approaches since custommetrics or information
can only be exposed on a source code level. Therefore, these approaches typically
introduce some overhead which has to be in balance with the information gain.
With their instrumentation tool, MACE and others [162] enabled a recording of dis-
tributed application topologies. They introduced a happened-before join operator
to allow the user to investigate traces across component or application boundar-
ies. Another intrusive approach used the additional information to generate test
cases a posteriori for faulty executions to support developers to resolve runtime
errors [183]. CUOMO and others [52] implemented some wrapper for often used
components to derive runtime metrics during benchmarks and use them when
executing their simulations. REN and others [229] introduced the way how Google
profiles their data centers from an infrastructure point of view but they also enable
application profiling by a commonly used library. They collect heap allocation, lock
contention, CPU time and other profiling metrics.
In contrast to intrusive approaches, non-intrusive profiling approaches focus on

themanagement perspective and observe the current system state. Container tech-
nology and hypervisor (VM) based systems are typically the starting point when

119

6. Simulating FaaS Platforms

profiling applications. PI and others [218] used the container API as a source to
collect metrics for implementing a feedback control tool in a distributed environ-
ment. Docker as the de facto container standard also supplies some metrics via
its docker stats API158. IBM published their framework to profile and monitor their
cloud infrastructure [205], too. They focus on the whole virtualization layer by
collecting the memory and persistent state of containers and VMs. CASALICCHIO
and PERCIBALLI [40] used this API to conduct an experiment where they compared
different metrics including CPU and memory on a native Linux environment and
Docker. Docker stats and cAdvisor159 were used as profiling sources in the con-
tainer area.
Their research as well considered the physical layer, where they used OS tools

like, e.g. the mpstat and iostat profilers of the native Linux kernel. As mentioned,
Google also uses whole-machine profiles on a hardware basis to investigate the dif-
ferent applications and how they consume the machine’s resources. In contrast to
the application metrics, this data is hidden from a cloud service user. They collect
CPU cycles, L1 and L2 cache misses, branch mispredictions and other hardware
metrics [229].

6.2.2. Simulation Approaches and Tools

6.2.2.1. Cloud Simulation

Simulation of the cloud gets more important as a special issue on simulation in
and of the cloud demonstrates [55]. Time and execution cost are the driving forces
to simulate the cloud infrastructure upfront to estimate the probably achievedQoS.
Themost notable cloud computing simulators [16] are GridSim [34], a tool for sim-
ulating grid environments, SCORE160 [78], a tool for data center simulation based
on Google’s Omega lightweight simulator, GreenCloud [128], a tool to investigate
the energy consumption in data centers, and CloudSim161. Other simulation tools
are listed in several secondary literature studies [76, 106, 226, 266].
CloudSim [36] is one of the first simulation environments for cloud computing

and startedwith a focus onVMbased simulation and federated clouds. This frame-
work especially tackled inter-network components and their delays. With the rise
of container technology, they extended their framework to simulate containers as
well [220]. Their focus is on containerized cloud computing environments, i.e.,
studying resource management of containers holistically by looking at container
scheduling, placement and their consolidation. Their research point of view is on
the provider and not on a single container.
To validate simulated results, complementary approaches like benchmarking

and monitoring a system emerged [52, 111]. JOHNG and others [111], for example,

158https://docs.docker.com/engine/reference/commandline/stats/
159https://github.com/google/cadvisor
160https://github.com/DamianUS/cluster-scheduler-simulator
161https://github.com/Cloudslab/cloudsim

120

https://docs.docker.com/engine/reference/commandline/stats/
https://github.com/google/cadvisor
https://github.com/DamianUS/cluster-scheduler-simulator
https://github.com/Cloudslab/cloudsim

6.2. Current Profiling and Simulation Approaches

developed an ontology basedmethodology where amapping function between the
different ontologies tries to compare the environments to achieve a closer relation
between development and production environments. Execution of benchmarks is
necessary for their approach to calibrate the simulation.

6.2.2.2. FaaS Simulation

FaaS simulation is a subarea of cloud simulation. Approaches present in liter-
ature can be divided into two categories: Firstly, the FaaS platforms are used as
simulation engines where other systems are deployed to and investigated, like
in [135, 136]. Secondly, some approaches simulate the FaaS platform itself and
cloud functions are only deployed to validate the simulation in the specific experi-
ments. However, there is a lack of such simulation systems [165].
In this section, we discuss current tools tackling this issue. The three simula-

tion papers [2, 72, 165] from the SLR in Section 4.1 are discussed here in detail
with a focus on their simulation approach as explained in the papers. Another pa-
per [109] we identified within our SLR process was classified as out of scope and
not included in our final SLR set. DFaaSCloud162 [109] introduced a simulation
framework for using functions in the continuum of core cloud and edge techno-
logies by extending CloudSim. The executed functions are not mentioned in their
research, which makes interpreting the results challenging.
An interesting approach and first ideas for a simulator focused on FaaS which

simulates the scheduling, initialization etc. of new instances was introduced by
MAHMOUDI and KHAZAEI [165]. They included a short evaluation of their ideas and
compared the results to platform data fromAWS Lambda. They especially focused
on scaling strategies, i.e. scale by request, a fixed concurrency threshold and met-
rics based scaling. Their research prototype SimFaaS163 predicts cold start prob-
ability, average response time, rejection of request similar to our prior work [179].
One shortcoming of their methodology is that they only evaluate a single function
at a single memory setting in their evaluation. Therefore, specific function charac-
teristics are not within the scope of their work. The configuration of the function
and its tuningwas out of scope as well. Another work uses a Bayesian optimization
model to find the best configuration for a cloud function [2]. They still need a few
executions of a function on a cloud platform until the model converges to find its
optima. While the authors discuss an important aspect of finding the best config-
uration, they solely focus on cost. They are not dealing with the trade-off between
execution time and cost and neglecting constraints on latency. Furthermore, they
did not consider configurations which increase a single CPU. From their Figure
1(c), the interested reader recognizes that the effects of scaling resources are not
completely approached. Based on the shown diagrams, the executed function is
single threaded. Therefore, it does not fully use the potential of the platform.

162https://github.com/etri/DFaaSCloud
163https://github.com/pacslab/simfaas/

121

https://github.com/etri/DFaaSCloud
https://github.com/pacslab/simfaas/

6. Simulating FaaS Platforms

An approach to predict the end-to-end latency for a collection of cloud func-
tions building an application has been presented by LIN and others [154]. They
proposed some profiling of the target cloud platform upfront to have some meas-
ure for the model and algorithms. Furthermore they made suggestions on how to
solve two optimization problems when searching for minimum cost or the best
performance.
HOROVITZ and others [101] built the self optimizingMachine Learning (ML) tool

FaaStest by predicting the workload of a function and scheduled functions on VMs
or on a cloud function platform. Since the workload is one of the determining
factors influencing performance [179] with respect to cold starts and parallelism
level on the platform, their research is important for simulating cloud function
platforms but does not include function characteristics. Another approach to sim-
ulate FaaS is FaaSSimulator[230]. In contrast to FaaStest, this tool aims to support
hybrid decisions by providing a spectrum between VM and FaaS solutions. Their
work did not include function characteristics nor a technical setup description.
From related FaaS simulation approaches, Sizeless164 [72] and SAAF165 [50] are

most closely related to our research. EISMANN and others [72] proposed an ap-
proach to predict the best configuration. Their strategy to find a suitable con-
figuration for a resource assignment only incorporates monitoring data where
most other approaches perform specific performance tests as an input for their
prediction models. They only rely on monitoring data for a single memory set-
ting. While their approach is promising and easy to use for already deployed func-
tions, the current state of the research prototype is limited to a single provider
(AWS Lambda) and a single programming language (Node.js). Furthermore, the
memory increase beyond 1769 MB is not discussed and, hence, neglecting multi-
threaded functions. CORDINGLY and others [50] focused on the multitenancy as-
pect, where various functions are executed on the same VMs. They also stressed
the fact that cloud providers use different hardware. Therefore, the prediction of
execution times is determined by the hardware which also directly influences the
price. Linear regression models based on the Linux CPU time were used to calcu-
late means andmean errors when profiling the functions. Concurrency was taken
into account on a workload level, but not on a function implementation level.
To summarize, none of the presented approaches include function characterist-

ics or concurrency when implementing a cloud function. We include these two
aspects as important points in the concept and evaluation of our work.

6.2.3. Experiment Calibration

Calibrating local test-beds to use them for simulations is an already known ap-
proach for IaaS offerings. ZAKARYA and others [298] extended CloudSim to enable
VM migration to save energy. Based on a small set of executions in the cloud,

164https://github.com/Sizeless
165https://github.com/wlloyduw/SAAF

122

https://github.com/Sizeless
https://github.com/wlloyduw/SAAF

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

they built linear regression models and were able to simulate their SUT with an
accuracy of 98.6%.
Researchers in the FaaS area have also applied some kind of calibration steps

in their research to compare measurements and draw conclusions. BACK and AN-
DRIKOPOULOS [6] compared their experiments on a local Apache OpenWhisk166

deployment using VirtualBox VMs to experiments on other commercial FaaS plat-
forms. JONAS and others implemented a prototype to run map primitives on top
of AWS Lambda [112]. They executed a matrix multiplication benchmark to meas-
ure the overall system performance in GFLOPS and also drew a histogram about
the GFLOPS performance per CPU core, which shows a distribution of the CPU
core performances. Different CPUs vary in their peak performance, e.g., 16 to
17 GFLOPS and 30 GFLOPS as shown in the above mentioned matrix multiplic-
ation case. This implies that different CPUs are used. In another research exper-
iment [282], this assumption was confirmed by finding five different CPU mod-
els on AWS. Also co-location of VMs, where the containers are running in, cause
multi-tenancy issues, which influence the runtime performance and explain slight
deviations of measured values. Both aspects are only partly considered in the re-
lated research. Therefore, questions about their impact on the runtime behavior
remain unresolved.
To conclude, there is research which enables a comparison of different environ-

ments but the used hardware and its influences were not discussed. Based on the
chosen experiment, a comparison was possible but environments were not made
comparable. This methodological gap in research is our motivation for RQ3.2
where we ask “How can two distinct virtualized execution environments be made com-
parable?”

6.3. Simulating Cloud Functions at Public Cloud Provider
Platforms

The insights from the previous sections result in a profiling and calibration strategy
to simulate cloud functions on a developer’s machine to select a proper resource
configuration. The presented process in Figure 6.1 summarizes the calibration,
simulation and forecasting approach. Equations and Figures used in the follow-
ing are added to the steps where they correspond to. This workflow is an essential
part towards performance and cost simulation in FaaS. Our research prototype
SeMoDe supports the overall process. Details are described in Section 7.1.
As already mentioned, the generated artifact at the end of the subprocess is

a graphical representation of various local simulation runs which serves as a de-
cision guidance to choose a suitable resource setting depending on the developer’s
needs. The following subsections explain the most important parts of this process

166https://openwhisk.apache.org/

123

https://openwhisk.apache.org/

6. Simulating FaaS Platforms

Execute
Calibration Step

on Provider
(Eq-6.2, Fig.6.2)

Execute
Calibration Step

Locally
(Eq-6.1, Fig.6.2)

Calibration
already executed?

Compute
Mapping
(Eq-6.3)

Execute Cloud
Function Locally
(Fig.6.3, Fig.6.4)

Analyze
Execution Data

(Eq-6.4)

Provide
Decision
Guidance

(Fig.7.3, 7.4)

No

Yes

Figure 6.1.: Simulation process for achieving Dev-Prod parity, local simulations and a pre-
diction to the public cloud.

in detail and give a concrete example, how to implement such a process for the
integration of developer machines and FaaS platforms.

6.3.1. Achieving Dev-Prod Parity by Calibrations

“Calibration of parameters in simulation models is necessary to develop sharp pre-
dictions with quantified uncertainty” [263, Abstract]. This is the motivation to
introduce a calibration step to compare the performance offered by cloud infra-
structure with the performance of a local machine. ARIF and others [4] already
stated that a scalar factor to compare different environments is not enough. On
our machines, we control the resources using container quotas (cgroups), and
on the provider side, computing performance depends on the selected resource
setting. As input for the calibration, users specify the granularity of the local calib-
ration experiment and a set of providers, which are in focus for deployment. The
calibration has to be executed on the platform provider once per resource setting.
If the results are up-to-date and not outdated, we proceed with the execution of our
functions locally as explained in the following section. If not, the calibration is di-
vided into two tasks, which can be executed in parallel, and a following mapping
step.
SODAN [251] compared different CPU architectures. Specific types of instruction

sets were under investigation to optimize algorithms, as presented in SPRUNT’s
work [258]. He describes often used program characterization events, for example
the floating point event, to assess the SUT. This research is important for improv-
ing CPU architectures and optimizing algorithms in the area of high perform-

124

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

ance computing, but of limited relevance in the FaaS area since most of the pro-
viders use commodity hardware in their data centers. SPRUNT emphasizes that
processor’s implementations are mostly abstracted by these program characteriza-
tions events. This allows an objective comparison of different hardware. On a con-
ceptual level, such a comparison is needed for a simulation of the performance
characteristics of a cloud function on the FaaS platform while executing it offline
on a developer’s machine. He stated that such a local simulation of the application
stack, including the OS and processor information results in less accurate predic-
tions for specialized algorithms and is ultimately not convincing. We overcome
this problem in our approach since we are conducting established andwell control-
lable experiments locally and on the specified FaaS platforms w.r.t. the mentioned
program characterization events. Furthermore, we do not explicitly focus on spe-
cialized algorithms. The average-case business functionality is our concern. In a
second step, we compute a function to equate the two application stacks and use
it for our simulation task and the local execution of the functions.

6.3.1.1. Calibration Function

We use LINPACK, first introduced in 1979 [65] and still extending [66], as a hard-
ware independent experiment on provider and user side. LINPACK is a package
to solve linear equations of different complexity in single or double precision arith-
metic. It is a de facto standard to compare CPU performance167. DONGARRA stated
that the LINPACK benchmark results not in a one-size-fits-all performance value,
but the problem domain of solving linear equations is very common for any type
of application. Therefore, the LINPACK results give a good hint about the CPU
peak performance. It is also included in various micro-benchmark experiments
and part of a workload suite for cloud function comparisons [121].
Most related to our calibration approach is work of MALAWSKI and others [167].

They also use the LINPACK benchmark to compare the performance of AWS
Lambda and Google Cloud Functions with different memory settings. Their res-
ults strengthen the hypothesis gained from previous work, that CPU resources
are scaled linearly with the resource setting. AWS Lambda shows consistent lin-
ear scaling in GFLOPS performance, but a high variation in the results. Two per-
formance ranges emerge when memory increases beyond 1024 MB. In previous
research in 2018 [182], we also found these different levels of performance using
a CPU intensive Fibonacci function to compare the different platform offerings
but did not investigate this phenomenon in more detail back then. The original
experiment and a follow-up investigation in 2023 are described in Section 7.2. LEE
and others [145] used matrix manipulation to obtain the CPU performance of a
Lambda function deployed on AWS. They submitted a workload and ascertained
doubled execution time in the concurrent mode compared to the sequential execu-
tion, which yields to the multi-tenancy assumptions, where one of their functions

167https://www.top500.org/

125

https://www.top500.org/

6. Simulating FaaS Platforms

acted as a noisy neighbor for another function. They also found similar absolute
values like MALAWSKI and others [167] with 19.63 GFLOPS for 1.5 MB memory
setting and approximately 40 GFLOPS for 3 MB configuration but the reasons
are unclear since some data is missing to interpret the technical infrastructure or
other aspects influencing the response time and performance. These performance
ranges and other literature read in the last years lead to the inclusion of the CPU
model and model name as well as the VM identification in our checklist in Sec-
tion 4.2 to draw strong conclusions on the results. This information is important
to relate the hardware used in the experiments with the cloud function execution.
Cloud providers may use various commodity hardware in different geographical
regions or even in a single data center but LINPACK as a machine independent
calibration function is a first step towards achieving dev-prod parity.

6.3.1.2. Calibration Mapping

For many FaaS providers, the resource setting directly determines the CPU re-
sources linked to the container where the cloud function is executed. This is un-
derstandable since a cloud provider aims for a high utilization of the machine
while providing a robust quality of service without interference for the functions
running on it. The output of our previous calibration is the input of this mapping
process. For the local machine and the FaaS cloud platform, we get two sets of
execution data. The local machine data includes the GFLOPS achieved in relation
to the CPU core shares. This is formalized in Equation 6.1:

f local(y) = m1 ∗ y + t1 (6.1)

where

f local(y), y ∈ {y | 0 < y ≤ c}

with c being the maximum number of physical cores.
The functions deployed on the cloud provider also compute GFLOPS based on

a cloud resource setting. This is formalized in Equation 6.2:

fprovider(x) = m2 ∗ x + t2 (6.2)

where

fprovider(x), x ∈ {x | x is a cloud resource setting}.

m1 and m2 are slopes which describe an increase in GFLOPS based on the
selected execution environment. The unit for m1 and m2 are GFLOPS/CPU and
GFLOPS/MB, respectively. t1 and t2 are intercepts with the y-axis. Their unit is
GFLOPS. Although the two values for y in CPUs and x inMBs have different units,
the outcome of the equations f(y) and f(x) are measured in GFLOPS, an abstract

126

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

0 1 2 3 4

0
20

40
60

80

Calibration on Developer Machine (H60)

CPU quota

G
FL

O
PS

0 1 2 3 4

0
50

10
0

15
0

20
0

Calibration on Developer Machine (H90)

CPU quota

G
FL

O
PS

0 2000 4000 6000 8000 10000

0
50

10
0

15
0

20
0

Calibration on AWS Lambda

Memory Setting in MB
G

FL
O

PS

Figure 6.2.: Calibration result of the performed LINPACKbenchmarks on a cloud provider
platform and locally.

computing value, which allows a direct comparison between the two execution
environments.
Figure 6.2 shows exemplary diagrams. To enable an OS independent calibra-

tion, a Docker image is prepared for the local execution of the LINPACK bench-
mark. To get GFLOPS of different CPU shares, we use the capabilities of Complete
Fair Scheduler (CFS) of the Linux kernel to limit CPU resources to the executing
Docker container. For a solid data basis, we execute the Docker image repeatedly
while incrementing the CPU share. In those cases in which the local calibration
shows a non-linear distribution, an additional investigation of the machine’s ker-
nel and BIOS settings is needed as described in detail in Section 5. In those cases
inwhich the local calibration shows a linear distribution, we use EQ 6.1 to calculate
the correct CPU share for the GFLOPS setting we want to consider. Furthermore,
we can compute a comparable memory setting for a FaaS provider by using the
same GFLOPS setting.

y = m2 ∗ x + t2 − t1
m1

(6.3)

Our resulting mapping function is presented in Equation 6.3 and computed on
the assumption that both machine settings should yield the same result, i.e.

f local(y) = fprovider(x).

127

6. Simulating FaaS Platforms

This equation answers RQ3.2, where we asked how two virtualized environments
can be made comparable and mapped to each other.
For an experimental setting in one of our experiments, we got the following

regression lines:

• f(y) = 54.28 GFLOPS
CPU ∗ y − 7.05 GFLOPS

• f(x) = 0.01965 GFLOPS
MB ∗ x− 1.995 GFLOPS

Assuming that we want to simulate our cloud function for 256 MB and 512 MB
memory on our local machine, we can compute the local CPU share using Equa-
tion 6.3:

y =
0.01965 GFLOPS

MB ∗ x + 5.055 GFLOPS

54.28 GFLOPS
CPU

This results in 0.186 cores for 256 MB and 0.278 cores for 512 MB. Doubling
the memory setting does not result in doubling the CPU resources for the local
container and vice versa. This sample data gives a first hint about the obvious fact
that the two regression lines have different positive slopes and a direct conversion
from one to the other through a scalar factor is not possible.

6.3.2. Execute Cloud Functions Locally

The next step in our subprocess is the local simulation of our function which we
want to deploy to the cloud. We overcome shortcomings KALIBERA and JONES[114]
identified in the evaluation of system research. They categorized experiment di-
mensions in influencing factors which are random, uncontrolled or controlled by
the experimenter. We specify only a set of memory settings in our example, e.g.
256 MB and 512 MB. Therefore, we have only a single influencing factor, which
is controlled within the experiment. Other factors like the CPU share are determ-
ined by the memory setting and therefore transitively controlled.
To adhere to the dev-prod parity principle, we suggest Docker as a container

platform to simulate our functions locally. Concrete execution times from local
machines are not directly interpretable but relevant when compared to values from
executions in the cloud [4]. To continue with our example, when simulating a
functionwith 256MB and 512MB, we assume for this example that the simulation
for 512 MB is 1.5 times faster than the simulation for 256 MB. In an ideal, CPU-
intensive world, the 512 MB variant should be twice as fast. Hence, the 256 MB
solution is more cost effective. If time is a critical factor, e.g. when a function is
handling user requests, the 512 MB solution might be preferable. These insights
can be drawn without deploying the function to a platform.
Ideally, a user of the simulation tool knows the best, worst and average case

for the input of their function as well as the load distribution. Currently a user of
our research prototype, explained inmore detail in Section 7.1, can specify a single
input for the function. Different workloads are not supported. The reason is that a

128

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

single input configuration, might it be the worst, best or average case, is sufficient
for a prediction of the performance for different resource configurations. The
load distribution is relevant for the share of cold starts when operating the cloud
function but not for our concept because the execution time of a single function
is not influenced by the load distribution when the FaaS platform is constructed
in a way that multiple tenants do not act as their noisy neighbors.

6.3.3. Evaluation

The methodological considerations gave an answer to RQ3.2, in particular EQ 6.3.
It enables a mapping between a local machine and a FaaS platform. The following
evaluation supports our methodology by answering RQ 3.3: “Does the chosen re-
source configurations based on the calibration lead to accurate predictions on a provider-
hosted FaaS platform in the cloud?”

6.3.3.1. Experimental Setup

In order to ensure repeatable experiments, we first state the tools andmachines we
used for our evaluation of the introduced calibration and prediction. As our local
experimenter machines we use the two Intel machines calibrated in Section 5: An
Intel(R) Core(TM) i7-2600 CPU@ 3.40 GHz, model 42 with 4 cores (named H60
in the following) and an Intel(R) Core(TM) i7-7700 CPU@ 3.60 GHz, model 158
with 4 cores (named H90 in the following). We installed Ubuntu 20.04.2 LTS and
Docker to execute the containers on both machines with the help of SeMoDe.
We limit the evaluation to AWS Lambda as target platform for our simulations

due to its dominance in the market and documentation of its resource scaling
behavior. When designing the functionality of SeMoDe in 2018, these were ma-
jor reasons to focus on AWS Lambda since the linear scaling of resources, see
Table 3.4, is predictable and a prerequisite to build repeatable benchmarks and
simulation models. All benchmarking requests on AWS presented in this evalu-
ation section were executed on an Intel(R) Xeon(R) Processor@ 2.50 GHz, model
63 and in the availability region eu-central-1. Therefore, we have no heterogen-
eity of CPU architectures in these experiments as discussed in other research
[50, 86, 206, 213, 299]. Nevertheless, in Section 6.4, there are also experiments
with various Xeon processors at AWS Lambda. Implications of different hardware
are discussed there.

6.3.3.2. Calibration Step

Based on the provider documentation and the linear increase on computing re-
sources, the assumption is that the computed GFLOPS grow proportionally to the
memory setting on provider side or the local CPU share respectively. Table 6.2
shows that the linear regression is statistically significant. Graphical representa-
tions of the local and AWS calibrations are shown in Figure 6.2.

129

6. Simulating FaaS Platforms

Table 6.2.: Linear regressionmodels for calibration data. The unit of intercepts and slopes
is GFLOPS.

Local (H60) Local (H90) AWS

p-value <2.2e-16 <2.2e-16 <2.2e-16
R² 0.9995 0.9978 0.9973
Intercept -3.081 -7.052 -1.995
Slope 23.400 54.284 0.020

The calibration step here follows the methodology already introduced in Sec-
tion 5. We created a container with the LINPACK source code and executed it by
increasing the CPU share in 0.1 steps. Since our machine has 4 cores, we made
40 measurements per run. After 25 runs, we computed a linear regression where
the coefficient of determination (R2) was 0.9995 (H60) and 0.9978 (H90). The in-
tercept of the regression line is not the origin. The intercept is negative, which
can be explained by the inherent overhead of all computations. We also computed
the regression with an intercept at 0, but this worsens R2 and the fit of the regres-
sion line to the datapoints between 0.3 and 3.6 CPUs. The AWS calibration was
executed 100 times for the memory settings 128, 256, 512, 768, 1024, 1280, 1536,
1769, 1770168, 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168,
7680, 8192, 8704, 9216, 9728, 10240. As for the local calibration we decided to
compute a Pearson regression where R2 was 0.9973. Still an acceptable Pearson
regression, but it is obvious when looking at Figure 6.2 that the values for specific
memory settings show a wider distribution. As mentioned in the conceptual part,
only valid provider values for the specific configuration variables are allowed. In
case of AWS the memory setting needs to be a natural number between 128 and
10240 MB as of the time of writing.
We showed a close correlation between memory/CPU shares and GFLOPS for

the corresponding environments. Due to the high correlation coefficients, we
eliminated the dependent variable GFLOPS and used Equation 6.3 to compute
the CPU share for specific memory settings. We are further able to predict the
cloud performance of a function when executing it on a local machine during the
development process. Comparing absolute values between the cloud and local
environment is limited due to the different hardware used, but the trends of the
execution time are relevant to enable the proposed simulations locally. Neverthe-
less, prediction of absolute values is possible. Therefore some execution data for
the function for a single memory setting is sufficient as Section 6.3.3.4 explains.

168AWS Lambda assigns a second vCPU to the function at 1770 MB so we selected 1769 MB
and 1770 MB as settings in order to determine whether this has an impact on the GFLOPS
(https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html).

130

https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

6.3.3.3. Simulating Cloud Function Behavior

In this part, we implemented two functions with different hypotheses. As a liter-
ature study showed [240], most publications in the FaaS area focus only on CPU-
intensive functions. We followed this approach.
For a first evaluation, we implemented a function to compute the Fibonacci

sequence. Hypothesis H1 is that this function will not profit from multi-core en-
vironments and show the same execution behavior for all settings which are equi-
valent to more than one CPU. The next hypothesisH2 is that multi-threaded func-
tions will profit proportionally from a resource increase when assigning memory
settings which exceed one CPU. We tackleH2 by implementing a multi-threaded
function to search prime numbers in a given range. The Fibonacci function was
executed for each memory setting 100 times, the prime number function 5 times.
For Fibonacci, we implemented our function in Node.js and used only a single

input value for all tests (n=40) since this eliminates the input as another variable
and strengthens the results for execution times and the proposed methodology.
The Fibonacci function is widely used as a CPU intensive function, e.g. [182, 271],
for microbenchmark experiments.
The vertical lines in Figures 6.2, 6.3 and 6.4 indicate the values where a CPU

core is fully utilized and another portion of the next core is added for further ex-
ecutions. In Figure 6.2 the top and middle diagrams show the number of CPUs
used by the LINPACK calibration on our local machines, where we are aware of
the cpus setting. The bottom diagram shows the AWS LINPACK execution where
we computed memory equivalents for fully utilized CPUs. These values were de-
rived from the documentation for the first CPU equivalent and interpolated for
CPU equivalents 2-6. For Figures 6.3 and 6.4, we computed the CPU-memory
equivalents via Equation 6.3 to have the same dimension on the x-axis to support
the interpretation of our results. On H60 for example, one CPU is fully utilized
by comparable memory values greater than 1135 MB (2505 MB for H90).
Obviously, the Fibonacci function we deployed does not profit from the multi-

core environment as can be seen in Figure 6.3. Especially the execution on H60
(middle of the figure) shows constant execution time after increasingmemory and
exceeding the first CPU-memory equivalent (vertical line at 1135MB). In this case
e.g. at 2048 MB, the function has access to 1.77 cores, but is only capable of fully
utilizing a single one since the function is implemented single-threaded. In a pro-
duction use case without overbooking and strict resource allocation policies, this
would result in wasting CPU resources and adding additional costs for getting the
same performance (execution time) compared to other configurations. This prob-
lem of overbooking resources without a clarification of the causes can be found in
other research (e.g., Fig. 2. in [154] or Fig. 1. in [72]). This observation confirms
H1.
JONAS and others argued that the FaaS programming model simplifies the de-

ployment and execution of “distributed computing for the 99%” [112, paper title]
but the fact that the ability to use multi-core environments for these functions

131

6. Simulating FaaS Platforms

0 500 1000 1500 2000

0
20

00
60

00
10

00
0

14
00

0

Computed Provider Memory Setting based on CPU share

M
illi

se
co

nd
s

Running Fibonacci computation locally (H90)

0 500 1000 1500 2000

0
20

00
60

00
10

00
0

Computed Provider Memory Setting based on CPU share

M
illi

se
co

nd
s

Running Fibonacci computation locally (H60)

0 500 1000 1500 2000

0
20

00
60

00
10

00
0

Memory Setting

M
illi

se
co

nd
s

Running Fibonacci on AWS

1135

1770

Figure 6.3.: Running Fibonacci cloud functions locally and on AWS.

determines the runtime behavior is often neglected. In addition, awareness of
multi-threaded functions ismissing. This is evenmore important when looking at
improvements in the resource allocation for cloud functions169. Providers in gen-
eral claim that doubling the resource allocation halves the execution time. This is
also the scaling process AWS Lambda advertises on its platform. Such a procedure

169AWS Lambda increased their memory and CPU capabilities in December 2020:
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-
memory-6-vcpu-cores-lambda-functions/

132

https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

is comprehensible and fair but only applicable to highly CPU-intensive functions,
implemented in amulti-threaded way without blocking calls to third party services.
This promise - doubling resources results in halving execution time - was used

for generating the blue respectively orange curve in Figure 6.3 and 6.4 dynamic-
ally for a memory setting of interest (a). Based on a grouping of execution times
by memory size, we can compute the average (arithmetic mean) execution time
(AVGa) for a memory setting a. To get a line assessing execution data visually,
memory settings of interest can be chosen (x) to compute specific points on the
curve.
Equation 6.4 shows the formula for computing the curves.

f(x) = AV Ga ∗ a
x

(6.4)

This gives us the chance to select a memory setting during development and
look at performance data to assess the function performance graphically. For an
optimization and estimation the curves help in interpreting the results.
As an example, we used 512 MB as our a for the plots in Figure 6.3 and 6.4.

Therefore, the average execution time (AVG512) is a point on the curve. All values
above the curve do not profit proportionally from scaling resources. This would
result in spending more resources on the task than necessary. As mentioned be-
fore, there might be situations, where doubling the memory setting and therefore
the cost is acceptable for a 1.5 decrease in execution time, but these decisions are
use case dependent. Vice versa, all executions under the curve profit dispropor-
tionately from the resource increase. This is only the case, when a situation as
mentioned happens, e.g. 1.5 decrease when doubling resources. Then the first
memory setting chosen would profit from a downscale. For CPU intensive func-
tions like the Fibonacci use case this is rarely the case, since the ideal case is halv-
ing the time by doubling the resources and our calibration function LINPACK is
optimized for such aCPUperformance use case. When looking again at Figure 6.3
(middle), we see this over-provisioning starting approximately at 1135 MB onH60
where the execution data is above the optimal curve. The reason therefore is the
resource assignment, more than one core, and not the function characteristic.
The second function was implemented in Java. It counts the number of prime

numbers within a given range [2, 500’000]. The range, as the input for the Fibon-
acci use case, is constant for all simulation executions. Each memory setting was
executed 5 times. We used the common fork join pool170 of the JVM to divide the
task equally on the assigned cores. Figure 6.4 shows the simulations on H60 and
H90 aswell as executions in the cloud. We can see that the highermemory settings
(e.g. 2048 or 3008 MB) are slightly above the orange curve (a=512 MB) which is
most likely due to scheduling effects etc. when coordinating various threads. The
CPU-memory equivalents on AWS are interpolated based on the range and num-

170https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ForkJoin-
Pool.html

133

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ForkJoinPool.html

6. Simulating FaaS Platforms

0 2000 4000 6000 8000 10000

Computed Provider Memory Setting based on CPU share

M
illi

se
co

nd
s

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

Running Prime Number Computation locally (H90)

0 1000 2000 3000 4000 5000

0
50

00
0

15
00

00
25

00
00

Computed Provider Memory Setting based on CPU share

M
illi

se
co

nd
s

Running Prime Number Computation locally (H60)

0 2000 4000 6000 8000 10000

0
10

00
00

20
00

00
30

00
00

Memory Setting

M
illi

se
co

nd
s

Run Prime Number Computation on AWS

Figure 6.4.: Running prime number cloud functions locally and on AWS.

ber of cores derived from the documentation. As for the Fibonacci use case, the
blue curves predict how the function will profit from increasing memory on the
provider platform. Also our second hypothesis (H2) is confirmed since the AWS
Lambda executions as well as the local simulations are closely to the blue respect-
ively orange curves. What is interesting in the simulation runs and also at AWS
Lambda is the slight performance degradation when reaching the next complete
CPU core, e.g. in the case of H90 when running the prime function with 2304,
5120 or 7936 MB. In this case, scheduling, especially busyness of the CPU and

134

6.3. Simulating Cloud Functions at Public Cloud Provider Platforms

other system processes consuming CPU time, might be responsible for this phe-
nomenon.

6.3.3.4. Predicting Cloud Function Execution Time

We discussed about CPU-memory setting equivalents a lot. So far, we suggested a
calibration step to compute CPU shares based on the memory setting by determ-
ining the GFLOPS locally and on AWS. Obviously, these CPU shares differ, so one
core on H60 is comparable to 1135 MB whereas H90 has a one core equivalent of
2505 MB on the local machines compared to 1770 MB on AWS.

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

Trends in Predicting Fibonacci Execution Time

Memory Setting

AWS : H60
AWS : H90

Figure 6.5.: Trends in prediction provider execution time by local execution time for Fibon-
acci cloud function.

As stated to predict the execution time on a FaaS platform based on simulation
data, a few benchmark values are necessary to compute a ratio. This ratio is the
reverse answer for RQ3.3 (Does the chosen resource configurations based on the cal-
ibration lead to accurate predictions on a provider-hosted FaaS platform in the cloud?).
In Figures 6.5 and 6.6, we computed ratios for AWS and the local machines for the
Fibonacci and prime number use case. Looking at the Fibonacci lines first, the ra-
tio is nearly constant at 1.1 (AWS/H60) until 1135MB. The other curve is different
for the execution data of AWS and H90 with a factor of 0.8 where an increase after
1770 MB is visible. These factors can be used to predict the execution time for
functions with a similar characteristic on the platform by using simulation data.
The reason for both increase and decrease is the multi-threading aspect. H60

reaches the oneCPU equivalent at 1135MB. After this, the execution time remains
stable for Fibonacci on H60. Since the one CPU equivalent on AWS is reached
at 1770 MB, the execution time on AWS decreases until this value and therefore
the ratio also decreases (enumerator decreases by constant denominator). After
1770 MB, both environments (H60 and AWS) have the same issue and the ratio is
constant again.

135

6. Simulating FaaS Platforms

For the red curve in Figure 6.5 (H90) there is a slight increase of the ratio visible
after 1770 MB. Functions running on H90 profit from the increase until 2505 MB
(the one CPU equivalent on H90), therefore the enumerator is constant, but the
denominator decreases resulting in an increase in the ratio. So for the prediction
of execution times from the local to the platform time the inclusion of both, the
multi-threading behavior as well as the CPU-memory equivalents, are important.

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

Trends in Predicting Prime Execution Time

Memory Setting

AWS : H60
AWS : H90

Figure 6.6.: Trends in prediction provider execution time by local execution time for prime
number cloud function.

Figure 6.6 shows the trends for the prime number cloud function. The ratio on
H90 is between 0.73 (7936 MB) and 1.08 (2560 MB). In the case of 2560 MB, AWS
already profits from a portion of the second CPU, whereas H90 only exceeded the
first CPU-equivalent. In the case of 7936MB, three full CPUs compute the results
locally, whereas AWS works with a portion of the fifth CPU based on our interpol-
ation. For H60 and AWS the ratios are between 1.32 and 1.79. The simulation was
only possible until 4707 MB (four CPU equivalent on H60 and therefore system
limit). As shown in Figure 6.4, at 2560 MB and 2816 MB the executions on AWS
Lambda were slower than the optimal values when looking at the optimal curve.
These higher values result in a higher ratio. The reasons for this performance
decrease can be manifold and will be discussed in further research.

6.3.4. Summary of Achieving Dev-Prod Parity and Local FaaS Simulations

To compare two execution environments with each other, a common measure
must be identified first. We chose program characterization events [258] in the form
of solving a standard problem and use the achieved performance measure, in our
case GFLOPS for the LINPACK execution, as a machine independent, common
measure. Based on these calibrated values, we map one machine stack to another.
Since a single scalar value is not sufficient for this mapping, we compute regres-

136

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms

sion lines and compare different execution environments based on equal GFLOPS
values. This is our answer for achieving dev-prod parity.
The local simulations are then based on this calibrations to compute equival-

ent settings given a deployment target memory size on the provider or an abstract
GFLOPS value on the user side. The evaluation showed that the simulated execu-
tion values are relatively comparable. For a prediction of execution time for a cloud
function candidate with similar requirements, e.g. CPU intensive functions, a few
execution data points for already deployed functions are necessary to compute the
quotients used for the prediction.

6.4. Resource Scaling Strategies for Open-Source FaaS
Platforms

In the previous section we investigated a method to compare a hardware stack on
developer sidewith public cloud platforms to simulate functions by comparable, in
the best case equivalent, resource settings. Another question which now arises is:
“How can resource scaling strategies be applied to on-premise open-source FaaS platforms
in a manner that is equivalent to cloud strategies?”.
To discuss this RQ3.4 in detail, the most famous open-source platform based

on GitHub stars was chosen as shown in Table 3.5. We reused some parts of the
calibration and simulation approach and applied them to cloud functions running
on an on-premise hosted single node OpenFaaS deployment. During experiment-
ation, another interesting aspect, namely multi-tenancy and its effects, occurred
which strengthens the importance of a resource aware assignment of computing
resources also for open-source platforms.

6.4.1. Motivation

Open-source software is gaining popularity in all areas of life. Especially the Covid-
19 pandemic showed efforts in collaboration via software tools and sharing data
under one of the several free licenses [209]. OpenStack171, a top-level open infra-
structure project, is the most prominent open source cloud platform [194]. Com-
panies often deploy it on-premise to meet data protection regulations and gain
flexibility in the usage and resource allocation to services. This on-premise deploy-
ment leads to a major decision for the method of settlement compared to public
cloud computing offerings. The IT department has to be structured either as a
cost center or profit center [47]. In the latter case, monitoring and metering are
important aspects to implement measured services, one of the five essential cloud
characteristics [192]. In the case of OpenStack, Ceilometer172 offers a metering
service which is the basis for accounting and billing. It monitors the physical and

171https://www.openstack.org/
172https://docs.openstack.org/ceilometer/latest/

137

https://www.openstack.org/
https://docs.openstack.org/ceilometer/latest/

6. Simulating FaaS Platforms

virtual resources [248]. This data can then be used to forecast behavior of services
in the future as well as to monitor QoS.
The International Telecommunication Union (ICU) defines QoS as a “set of

quality requirements [...] specified in a contract or measured and reported” [104,
p. 10]. Typical QoS requirements for software systems are for example through-
put, reliability or scalability. For FaaS, a recent study [170] has shown that es-
pecially latency, user cost and resource efficiency are considered in literature. A
QoS aspect related to resource efficiency is the distribution of execution times
which can vary considerably due to overbooking of physical machines or starva-
tion of requests. This can be avoided by suitable resource allocation strategies
which we want to focus on in this work. Empirical research on open source plat-
forms [11, 149, 197, 207] did not specify resource constraints in detail. If research
address this important aspect, the question is often to understand dynamic re-
source scheduling strategies for future workloads [102] rather than finding QoS
compliant resource settings for deployment of the cloud function on-premise.
Open-source offerings are often investigated by comparing their features to

commercial cloud offerings. However, performance benchmarking is rarely ex-
ecuted for open-source tools hosted on-premise nor is it possible to conduct fair
cost comparisons. To support developers with varying QoS goals for different
cloud functions, an allocation respectively scaling strategy for CPU and memory
resources needs to fulfill abstract performance measures to guarantee quality re-
quirements. Resource allocation is the most important aspect to determine the
execution time and the demand on the physical machine. For open-source plat-
forms, quality attributes are hard to standardize. These tools are deployed on on-
premise hardware which is heterogeneous compared to the mostly homogeneous
hardware in computing centers of cloud providers. It makes a difference if, for
example, an on-premise hosted platform is deployed on a server with an Intel
Xeon Gold processor or on a consumer machine with an Intel i7. Therefore, open
source tools cannot guarantee execution time ranges for functions nor abstract
performance measures like MIPS [171] or GFLOPS [185] for different function
settings in general. Every local on-premise production setup has its own charac-
teristics. Furthermore, private clusters are limited in their capability to run bursty
workloads because of the trade-off between utilization and cost efficiency. Also
the pricing of functions for on-premise hosted FaaS platforms is often neglected
due to the organization of the IT department. In research some experiments like
in DAS and others [57, p. 610] “assume cost of executing a function in the private
cloud to be zero”. However, without a pricing scheme for on-premise hosted plat-
forms, a fair monetary and performance comparison to public cloud offerings is
not possible. Especially the physical machines, where the cloud function has been
deployed to, have a major influence on quality attributes. Since open-source soft-
ware is unaware of the physical machines used and does not state how hardware
should be prepared or even calibrated, it cannot provide the user with information
about QoS attributes. These considerations lead to RQ3.4 to enable an informed

138

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms

decision about a resource-aware deployment of cloud functions on an on-premise
hosted open-source FaaS platform.
To answer our research question RQ3.4, we focus on measuring the execution

time and limit the consumed resources to implement a QoS compliant strategy
when keeping resource efficiency in mind. We further suggest a pricing scheme
dependent on the resource scaling strategy used.
In Section 6.4.2 we look at related work, especially at comparisons of on-premise

hosted tools and equivalent commercial cloud offerings. An understanding of re-
source scaling strategies for public cloud provider and open-source tools is im-
portant to assess the research papers and their contributions. These strategies are
listed in our conceptualization in Section 3, Figures 3.4 and 3.5. Secondly, we
assess published scaling strategies and experiments. Lastly, scientific improve-
ments in scaling resources are investigated. Section 6.4.3 describes our meth-
odology and answers RQ3.4 followed by our evaluation in Section 6.4.4, where
Subsection 6.4.4.4 presents data for the noisy neighbor problem. We end with a
discussion of our results and give first insights how a predictable scaling strategy
help to implement a profit center structured price model for open-source FaaS
platforms.

6.4.2. Related Work

Shared allocation of resources is one of the enablers of cloud offerings. While pro-
viders have their expertise in operations, cloud computing customers profit from
the pay-as-you-go billing model. Costs for hardware procurement, operations etc.
is shared between the users. When thinking about a comparison of self-hosted
and cloud services, one important aspect is security [198]. A mixed evaluation is
presented in MOLNAR’s and SCHECHTER’s work [198] in the early days of cloud
computing. Strong data protection and tenancy considerations favor on-premise
deployments whereas security investments are more affordable in the cloud due
to the allocation of costs. Another costs factor is hosting, investigated in LORENC
and WODA’s [160] work where the authors compare a web application hosting on
a proxmox VM on-premise cluster and Amazon EC2 as an IaaS solution. Accord-
ing to their evaluation, one in three applications profits from the cloud hosting,
whereas the others are more affordable in an on-premise deployment. Since they
didn’t use additional services at the cloud provider, e.g. databases, they state that
the overall costs assessment is use case dependent.
Migration studies like SÁEZ and others [238] or ROSATI and others [235] address

the question whether a migration towards the cloud is beneficial w.r.t. perform-
ance and cost aspects compared to an on-premise hosting. Another performance
comparison was recently done by EICKHOFF and others [71] where they compared
the latency requirement ofMinecraft like games deployed to AWS and Azure cloud
as well as on-premise. They found that different applications under different load
settings perform best in varying environments. No general statement can bemade

139

6. Simulating FaaS Platforms

to favor cloud over on-premise hosting or vice versa. They further state that a
fair comparison is often hard due to the many configuration options in the cloud
which are not documented in detail. The predominant reason for this is that cloud
providers do not want to share their secrets about the technical details of the infra-
structure. These black boxes on provider side render an assessment of individual
components of a cloud solution based on the used hardware impossible. Tools for
a smart comparison of these black boxes are needed [45].
Another problem is that a mapping of the on-premise settings to comparable

cloud offerings is hard to achieve which limits the validity of comparisons even
more. Additionally, a locally configured environment can be fine-tuned due to
the specific needs of an application whereas the cloud offers a fixed number of
predefined configurations like the VM types of AWS or Azure cloud.
Empirical research on open source platforms in the FaaS domain, e.g. [11, 149,

197, 207], did not specify resource constraints. The experiments focused on the
platform behavior when concurrent users request functions. Since we assume -
due to the lack of experiment documentation - that the default settings of the re-
spective platforms are used, a comparison of the included results is limited. Reas-
ons are different resource allocation strategies, contention handling when more
requests arrive than instances are up and running, latency and scheduling.
Overall we can summarize that there are comparisons of on-premise deploy-

ments and cloud services, but there is a lack of detailed performance comparisons
with similar environments based on abstract measures.

6.4.3. Methodology

Before we can adapt our proposed scaling strategy to an open source platform, we
have to select the public cloud provider’s FaaS offering for our comparison. When
selected, we need to understand its scaling algorithm of resources, where Table 3.4
provides guidance. The scaling of resources is unique for every public platform
which limits the portability of insights gained for adapting other platforms. The
next step in our methodology is to choose an on-premise FaaS offering. Since
most platforms support a K8s deployment as can be seen in Table 3.5, we install
the open-source platform on an on-premise hosted K8s cluster. Also a deployment
to amanaged K8s service like Google Kubernetes Engine (GKE) or Amazon Elastic
Kubernetes Service (EKS) is possible. The drawback of the latter is that we cannot
fine-tune the underlying hardware.
From our point of view, there are three important aspects for a clean experi-

ment. First, we have to use homogeneous hardware for the K8s cluster (in an ideal
case identically constructed machines). The next aspect is to check the configur-
ation of each machine like the BIOS or Linux Kernel configurations to guarantee
a stable performance with increasing resources. We introduced a way to calibrate
machines in Section 5. K8s can also be deployed on a single, calibrated node by

140

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms

installing a lightweight distribution where K3s173 shows the most consistent per-
formance across several lightweight distributions compared to K8s [35]. The last
step is to provide an additional QoS layer to the deployed on-premise platform
where a user can only select resource settings which are in relation to the selected
scaling strategy of the cloud provider. This QoS layer is our answer to RQ3.4.
A side note here is to consider the first CPU equivalent of the public offering

as well as of the on-premise hosting. Only multi-threaded functions profit from
a resource increase above this level of resources. When comparing only single-
threaded functions, the resource limits should be chosen beneath these limits for
both environments.
To verify that the resource scaling strategy of the self-hosted open source plat-

form is comparable to the cloud offering, we suggest to execute a demo function
on both environments. We propose a CPU intensive function to have evidence.
An assessment can be made if the results comply with the scaling strategy. The
goal of this experimental step is not to find exact matches in execution time but
rather to compare the trends.

6.4.4. Evaluation

6.4.4.1. Experimental Setup

For our experimental evaluation we chose AWS Lambda as public cloud provider
to compare our on-premise results. Its scaling of resources and the price calcu-
lation is consistent, comprehensible and the predominant reason for including it
in our experiment. We chose OpenFaaS as on-premise platform installed on K3s,
a lightweight K8s distribution. As an experiment machine we used an Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz, model 158 with 4 cores (named H90 in the
following, already used twice). Due to the single node deployment, we circumvent
the problem of heterogeneous hardware.

6.4.4.2. Calibration Step

We calibrated our machine following the calibration introduced in Section 5. Fig-
ure 6.7 shows the results graphically followed by Table 6.3 with the corresponding
statistics.

Table 6.3.: Linear regression models for displayed graphs in Figure 6.7.
Bare Metal K3s + OpenFaaS

p-value <2.2e-16 <2.2e-16
R2 0.9981 0.9982
Intercept -10.958 -10.473
Slope 54.920 54.708

173https://k3s.io/

141

https://k3s.io/

6. Simulating FaaS Platforms

0 1 2 3 4

0
50

10
0

15
0

20
0

LINPACK Calibration on H90

CPU quota

G
FL

O
PS

Bare Metal
K3s + OpenFaaS

Figure 6.7.: Bare metal and OpenFaaS function performance of LINPACK executed on
H90.

We first executed the functionality via Docker containers on bare metal without
any other software installed except for the Ubuntu server image. The blue regres-
sion line and the dots in Figure 6.7 show the LINPACK results in 0.1 cpus174 pre-
cision. The next step was the installation of K3s and OpenFaaS as documented175.
Then OpenFaaS functions were deployed with resource constraints comparable
to the Docker containers176. The result of these executions is plotted in orange
in Figure 6.7. The reason for the bare metal and OpenFaaS calibration was to de-
termine the overhead K3s and OpenFaaS introduce on the calibration results as
well as to find potential anomalies of OpenFaaS and its scaling behavior. As can
be seen from Table 6.3, there is no significant overhead which is in line with other
research [35] nor anomalies in the scaling behavior of resources.
Fromdata presented in Section 6.3we already know the resource scaling strategy

of AWS Lambda which is in relation with the documentation AWS provides. We
executed LINPACK in 2022 when performing the OpenFaaS research at different
memory settings to compare the used infrastructure with the experiments from
2021 when evaluated our simulation approach first. The predominant CPUmodel
at eu-central-1 availability region is still an Intel(R) Xeon(R) Processor@2.50GHz
model 63 for the x86_64 architecture and the results for LINPACK at AWS Lambda
revealed no changes which is reasonable since a public cloud provider does not
change its infrastructure that often due to cost and sustainability reasons.

174A Docker command line option to restrict CPU resources:
https://docs.docker.com/config/containers/resource_constraints/

175https://github.com/johannes-manner/SeMoDe/releases/tag/v1.2
176https://docs.openfaas.com/reference/yaml/#function-memorycpu-limits

142

https://docs.docker.com/config/containers/resource_constraints/
https://github.com/johannes-manner/SeMoDe/releases/tag/v1.2
https://docs.openfaas.com/reference/yaml/#function-memorycpu-limits

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms

As has beenmentioned before, the one CPU equivalent is important for categor-
izing functions in single- andmulti-threaded ones. From the AWS documentation
we know that the one CPU equivalent lies at 1769 MB memory, where we achieve
∼33 GFLOPS computing power. At our local OpenFaaS deployment, the perform-
ance at one CPU is about ∼44 GFLOPS. This abstract computing power metric
helps to compare the performance of different offerings.

6.4.4.3. Compare OpenFaaS and AWS Lambda Execution Trends

The next step before looking at the execution trends of the two selected platforms is
to add aQoS layer by suggesting resource settings based on themeasuredGFLOPS
during calibration. This additional layer resolves the problem of having no com-
parable resource settingswhen investigating different open-source FaaS platforms.
It furthermore allows to transfer the scaling strategy of a public cloud provider to
an on-premise hosting w.r.t. our QoS resource allocation.
To implement this QoS layer for the combination of AWS Lambda and Open-

FaaS in our experiments, we extended our research prototype SeMoDe. For the
evaluation in this work we specify our QoS layer with 70 settings ranging from 10
to 80 GFLOPS of abstract computing power for deploying our functions to AWS
Lambda and OpenFaaS. Parts of the configurations can be seen in Table 6.4. AWS
Lambda allows a continuous increase MB-wise. Locally, on H90, we can also im-
plement the same scaling strategy based on the calibration step. We can continu-
ously assign resources from 0 to the number of CPUs, in our case four. Based
on the measured GFLOPS values, we get comparable configurations for the AWS
Lambda memory settings as well as the resource limits for OpenFaaS.

Table 6.4.: Resource settings for the suggested QoS layer based on GFLOPS. OpenFaaS
configurations are determined by the CPU shares, whereas AWS Lambda con-
figurations are based on the configured memory.
GFLOPS OpenFaaS in CPUs AWS Lambda in MB

10 0.374 610
20 0.557 1119
30 0.740 1628
40 0.923 2137
50 1.105 2646
60 1.289 3155
70 1.471 3664
80 1.654 4173

With these indicated settings, we executed two functions on AWS Lambda as
well as on OpenFaaS. The first one is a single-threaded recursive Fibonacci func-
tion implemented in JavaScript. The second function searches for prime numbers
and is implemented in Java using a ForkJoin Pool to enable a concurrent execu-
tion on multiple CPUs. The same functions as in the previous section. For our
data evaluation, we excluded the first run on a function instance for each setting.

143

6. Simulating FaaS Platforms

This is especially necessary for a clean and fair comparison in the Java use case,
where additional resources are consumed by the JVM during start up and by the
JIT compiler.

10 20 30 40 50 60 70 80

0
10

00
30

00
50

00

(a) Fibonacci Executions on OpenFaaS (on−premise)
compared to AWS Lambda (cloud) based on an abstract

computing measure (LINPACK GFLOPS)

GFLOPS

Ex
ec

ut
io

n
Ti

m
e

OpenFaaS (K3s on H90)
AWS Lambda (Intel Xeon@2.50GHz)
AWS Lambda (Intel Xeon@3.00GHz)
1 CPU equivalent on AWS Lambda
1 CPU equivalent on OpenFaaS

10 20 30 40 50 60 70 80

0.
0

0.
5

1.
0

1.
5

2.
0

(b) Execution Trends indicated by Quotient

GFLOPS

O
pe

nF
aa

S/
AW

S
La

m
bd

a

Prediction boundary: 1.272 − 1.491

Figure 6.8.: Single-threaded Fibonacci executions on two environments, H90 (on-premise)
andAWSLambda (cloud offering). The function is implemented in JavaScript.

Figures 6.8 and 6.9 show the results of our Fibonacci respectively prime num-
ber executions. Locally, we executed the function five times and ten times on AWS
Lambda. As already stated in literature [50, 86, 206, 213, 299], AWS uses different
hardware for executing functions. By parsing the /proc/cpuinfo file, we extrac-
ted the CPU model name and the model version. In our experiments two Intel
Xeon configurations were present. Since our calibration on AWS Lambda was ex-

144

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms

clusively executed on 2.50 GHz machines, we excluded the 3.00 GHz executions
before computing the trends in the second diagram of each figure. Obviously, as
indicated by the executions at 42, 46 or 48 GFLOPS equivalent (the green dots in
Figure 6.8(a)), these executions are faster than the executions on 2.50 GHz ma-
chines. Including these values would distort the comparison since we do not have
calibration data for the 3.00 GHz machines yet. Each figure also includes an or-
ange vertical line at ∼33 GFLOPS indicating the one CPU equivalent on AWS
Lambda and another black vertical line at ∼44 GFLOPS indicating the one CPU
equivalent on OpenFaaS deployed on H90.
These two CPU equivalents are important for an interpretation of the execu-

tion trends when computing the quotients in Diagram 6.8(b). The quotients are
calculated by dividing the mean OpenFaaS execution time at a specific GFLOPS
setting by the mean AWS Lambda execution time of the same GFLOPS setting.
A trichotomy is present. The first segment until the first CPU equivalent on
AWS Lambda shows a slight quotient increase when computing a linear regres-
sion model (f(gflops) = 1.259 + 0.00688 ∗ gflops). We also included a predic-
tion boundary for this specific function and language by stating the minimum
(1.272 at 12 GFLOPS) and maximum (1.491 at 27 GFLOPS) quotient for this seg-
ment. Within the second segment, the computing power of OpenFaaS still in-
creases whereas the resources assigned at AWS Lambda exceed the one CPU equi-
valent. The additional resources at AWS Lambda cannot be used by the func-
tion resulting in a constant execution time for all GFLOPS settings greater than
33 GFLOPS for the 2.50 GHz configuration. The result is a continuous drop in the
quotients until the one CPU equivalent of OpenFaaS is reached at ∼44 GFLOPS
(linear regression of the second segment: g(gflops) = 2.448 − 0.0287 ∗ gflops).
Within the last segment the deployed functions at both platforms consume more
resources and therefore also the execution time of OpenFaaS executions remains
constant. This behavior is also apparent when looking at the linear regression
(h(gflops) = 1.143+ 7.21 ∗ 10-5 ∗ gflops). The trichotomy in this experiment em-
phasizes to think about the function characteristics as well as the implementation
details of the platform w.r.t. the selected scaling strategy and the resource limits
specified.
Figure 6.9 shows the execution points and trends of our multi-threaded prime

number search function implemented in Java. The first diagram, 6.9(a), shows
the execution time locally as well as on AWS Lambda. The comparable execu-
tion times are evident, which are also pointed out by the linear regression (inter-
cept at 1.037 with an negligible slope 8.7/106*gflops) within the legend of Dia-
gram 6.9(b). Compared to Figure 6.8(a), where the local executions are always
slower than comparable function instances on AWS Lambda, the programming
language and therefore the execution on the machine - interpreted vs. compiled
language - influences the distribution of absolute values in our setting with the spe-
cified hardware as previous research already showed [182]. The CPU equivalents
indicated by the vertical lines have no influence due to the multi-threaded nature

145

6. Simulating FaaS Platforms

10 20 30 40 50 60 70 80

0
10

00
20

00
30

00
40

00

(a) Prime Executions on OpenFaaS (on−premise)
compared to AWS Lambda (cloud) based on an abstract

computing measure (LINPACK GFLOPS)

GFLOPS

Ex
ec

ut
io

n
Ti

m
e

OpenFaaS (K3s on H90)
AWS Lambda (Intel Xeon@2.50GHz)
AWS Lambda (Intel Xeon@3.00GHz)
1 CPU equivalent on AWS Lambda
1 CPU equivalent on OpenFaaS

10 20 30 40 50 60 70 80

0.
0

0.
5

1.
0

1.
5

2.
0

(b) Execution Trends indicated by Quotient

GFLOPS

O
pe

nF
aa

S/
AW

S
La

m
bd

a

f(gflops) = 1.037 + 8.7/106 * gflops

Figure 6.9.: Multi-threaded prime number executions on two environments, H90 (on-
premise) and AWS Lambda (cloud offering). The function is implemented
in Java.

of the function implementation. Function instances on both environments can
make use of the assigned resources also when increasing the resources beyond
a single CPU. As already mentioned, this is indicated by the linear regression in
Diagram 6.9(b) where no trichotomy is evident.

146

6.4. Resource Scaling Strategies for Open-Source FaaS Platforms

6.4.4.4. Co-location of Functions: The Noisy Neighbor Problem

In FaaS research, the parallelism level of requests is often discussed due to the
promised scaling property of platforms. However, when we think about the scal-
ing of instances, we also have to keep in mind the pressure on resources of our
machines. The co-location of workloads on the same machines without a proper
separation leads to the possibility of performance losses also known as the noisy
neighbor problem. In some scenarios, this can lead to starvation and increased
response times. For public providers, these aspects have already been investigated
in detail [17] whereas comparable studies for open-source platforms are not avail-
able to the best of our knowledge. In the mentioned paper, BARCELONA-PONS and
GARCÍA-LÓPEZ [17] also state that there is no noisy neighbor problem present when
starting highly parallel workloads on AWS Lambda. Therefore, we did not rerun
a parallelism experiment on AWS Lambda. We rather focused on an experiment
on our local node with OpenFaaS deployed on top of it.
The results of the two experiments can be seen in Figure 6.10. The first dia-

gram 6.10(a) shows five concurrent users with the resource restrictions of our
QoS layer (black dots) compared to the already presented data from diagram 6.9(a)
where only one function at a time was running on the machine (orange dots). We
repeated the experiments of the five concurrent users 10 times for each setting. Es-
pecially noticeable are the dots at 74-80 GFLOPS indicating zero execution time.
At 74 GFLOPS, each function instance is configured with 1.544 CPUs. Since our
machine has 4 physical and 8 logical cores, K8s only schedules new pods when
resources are still available. After deploying four of the five pods, we reached that
machine limit. We know from the K8s documentation, that if the resource de-
mand is too high, the pods are in pending state for an indefinitely amount of time177.
From this experiment we can state that OpenFaaS using the K8s limits enforces a
resource aware scheduling of workloads to our machines. Due to the CPU intens-
ive nature of our prime number function, we faced an increase in latency of up to
54.9% at 1.453 CPUs (69 GFLOPS) compared to the single executions.
In a second experiment 6.10(b), we varied the concurrency level from 1 to 20

concurrent users. Again we made 10 runs at each concurrency level and did not
use the resource limits from OpenFaaS/K8s. We used the default behavior im-
plemented. In contrast to the behavior with resource limits enabled there is no
function which cannot be deployed. When looking at the pods specifications, we
see the qosClass attributes of the pods are BestEffort where no resource guarantees
are made at all. This is also the reason for the execution time of approximately
1270 ms for the first two concurrent users which is counter-intuitive compared
to the execution data of diagram 6.10(a) with guaranteed resources/fixed limits.
Furthermore, we see a continuous increase in median execution times starting at
1265 ms for a single user until 6702 ms at the concurrency level of 20 users.

177https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#specify-a-cpu-
request-that-is-too-big-for-your-nodes

147

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#specify-a-cpu-request-that-is-too-big-for-your-nodes
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#specify-a-cpu-request-that-is-too-big-for-your-nodes

6. Simulating FaaS Platforms

10 20 30 40 50 60 70 80

0
10

00
20

00
30

00

(a) Executing Mulit−threaded Prime Number Search
 for a Single and Concurrent Users

 with corresponding Resource Limits

GFLOPS

Ex
ec

ut
io

n
Ti

m
e

Executions for 5 Concurrent Users (repeated 10 times)
Execution for a Single User (repeated 5 times)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0
20

00
40

00
60

00

(b) Executing Mulit−threaded Prime Number Search
 with increasing Number of Concurrent Users
 without a Resource Limit for a single Function

Concurrent Users

Ex
ec

ut
io

n
Ti

m
e

Figure 6.10.: Execution of multiple parallel instances of a multi-threaded prime number
search implemented in Java with and without Kubernetes resource limits.

6.4.5. Summary of Implementing a QoS Layer for Open-Source Platforms

Most of the open-source FaaS platforms in our investigation use a K8s abstraction
for deployment. Therefore, a resource allocation compliant scaling of resources
is possible due to the K8s facilities. The resource limits are comparable to the
Docker limits and can be used during deployment to configure pods. From the
empirical open-source research we know that resource restrictions to functions
are not applied. To adapt the resource scaling of a public FaaS provider, we sug-
gest to execute a benchmark at the cloud provider as well as for the open-source

148

6.5. Discussion

platform. We executed LINPACK at different resource settings and used the com-
puted GFLOPS as an abstract measure to compare computing environments with
each other and provide an answer to RQ3.4. This abstract measure also solves
the problem of comparing heterogeneous setups with each other. We especially
emphasize the difference between single-threaded and multi-threaded functions
since FaaS and its enhanced billing and scaling model leads to situations where
a resource increase does not improve performance any more when assigning re-
sources equivalent to more than 1 CPU. Our scaling strategy and the usage of K8s
limits guarantee resources on the specific machine which provides a solution for
the noisy neighbor problem. Inference between the deployed pods is still present
which is a difference to the architecture of AWS Lambda, where each function is
performance- and security-wise isolated within a single VM115.
In the motivation, when stating the problem of fair comparisons between pub-

lic offerings and open-source alternatives, we cited an article where the authors
assumed the cost for on-premise hosted software to be zero. Since this is not the
case when looking at hardware procurement and operations, we were interested in
suggesting a way to fairly bill an on-premise user to implement a profit center like
organization in the IT department. AWS Lambda for example uses a linear pricing
model, where doubling the resources means also doubling the price for the same
amount of time. In an ideal, CPU intensive world, doubling the resources would
result in halving the executing time resulting in a constant price for different set-
tings as shown in FIGIELA and others, Figure 12 [79]. Since we adapt the same
resource scaling strategy in our experiment as AWS Lambda, we suggest to also
apply the same pricing scheme as the public cloud provider. The starting price
level is dependent on the organization and the overall cost for procurement and
operations.
A side aspect in our experiment were the differences in hardware used at AWS

Lambda. We have seen in Figure 6.8 that the functions executed on the 3.00 GHz
machines took 1198milliseconds (after the oneCPUequivalent) on average, where-
as the 2.50GHzmachines took 1400milliseconds. The former is therefore 14.43%
cheaper than the latter when looking at our Fibonacci executions. It is not predict-
able nor can a user influence which underlying hardware is used but the empirical
data from Section 6.4.4 reveal some oversimplified pricing behavior of the public
cloud provider.

6.5. Discussion

6.5.1. Discussion of the Simulation Approach

In this section, a simulation approach to find a suitable configuration for a cloud
function instance based on the requirements of the user was introduced. We over-
come the tedious and costly process of deploying the functions first to a FaaS plat-

149

6. Simulating FaaS Platforms

form, collecting execution data to understand the function characteristics and ad-
justing the cloud function configuration.
Different to other simulation research where the focus is often on the platform

and the number of instances which are running based on a predefined workload,
the proposed simulation approach deals with a single function in isolation. This
limited focus is justifiable due to the scale-on-demand and stateless property in
FaaS and platform implementations which fire-and-forget function instances on-
demand without noisy neighbor effects. Basis for our proposed simulation pro-
cess is a comparable execution environment as RQ3.2 indicates. Based on the
calibration and the assumption that two environments can be made comparable
based on an abstract computing measure, we computed linear regression models
on the FaaS provider as well as on our experiment machine. A comparison and
conversion from one resource setting to another is then possible when equalizing
the two linear regressions. The evaluation in Section 6.3.3 confirms RQ3.3 in the
sense that the resource configurations based on calibration lead to accurate predic-
tions on a provider-hosted FaaS platform in the cloud. As seen by the presented
data, the local predictions are relative to each other when comparing different re-
source settings. If a user of the simulation model wants to predict the execution
duration on a FaaS platform, a few data points from the corresponding FaaS plat-
form are still necessary to compute quotients. The trend curves in Section 6.3.3.4
show that it is possible to predict a range of ratios for best, worst and average
case of the expected execution times on the provider when running the function
locally. These ratios are different for the used programming language and local
setup. The research prototype SeMoDe supports developers in choosing a suitable
resource configuration. Details on the implementation and the UI are presented
in Section 7.1. When reading relatedwork and assessing the experiments included
in detail, it was apparent that a lot of researchers did not consider multi-threaded
functions and resource configurations which exceed a single CPU. When looking
at the included multi-threaded functions and the comparison to single-threaded
executions, it is important to consider this aspect and the performance gain when
using more than a single CPU equivalent on the provider side. This section also
wants to raise awareness that multi-core environments are differently treated in
FaaS compared to, for example, PaaS.
Focused on a single functionality, utilization is fully dependent on the function

implementation and not on the workload or other functions running within the
same application. This aspect is unique and forces developers to think about the
resource configurations which exceed a single CPU equivalent to fully utilize the
resources they configure for the cloud function.
Themethodology and evaluation provided is a first step to support developers to

choose a proper configuration. In Section 7.1, advancements with regard to cost
and multi-core environments are made in the web UI to provide all information
needed for an informed decision about the cloud function configuration.

150

6.5. Discussion

A last contribution of this section is the inclusion of on-premise hosted open-
source platforms into this schema for resource-aware configuration of cloud func-
tions. Based on the included related work in Section 6.4.2, there is no experiment
conducted with open-source FaaS platforms where configuration of the executing
instance, in particular a K8s pod, is comparable to public cloud offerings. A sug-
gested QoS layer for open source tools, in our case OpenFaaS deployed on a single
node K8s solution, enables the usage of resource limits and therefore dev-prod par-
ity and provides an answer to RQ3.4. It furthermore solves also the noisy neighbor
problem by limiting the number of deployed instances on a single node within the
K8s cluster.

6.5.2. Threats to Validity

Based on the experimental nature of this section, there are a few threats to validity
of the methodology and the results to consider. Some of the following aspects can
also be worked on in future work:

• Dev-Prod Parity - Themore similar the simulation environment is to the pro-
duction environment on a provider platform, the better comparable are the
results. In our approachwe use a virtualized environment, wherewe execute
all calibrations and simulations in Docker containers. AWS Lambda for ex-
ample uses an additional VM layer to separate VMs from different tenants
on the same physical host [1]. This does not lead to uncomparable environ-
ments but it should be kept in mind that the system stacks are different and
should be adjusted in future work.

The same holds for the deployment of the on-premise hosted open-source
platform OpenFaaS. Here, the usage of K3s as a tool for using K8s features
might influence the separation of cloud function instances where an over-
head was present when comparing the execution data of a single function
deployed to the multi-tenancy case.

• Limited Scope - Our evaluation was executed with a limited scope. We only
use CPU intensive functions to evaluate our approach which is quite com-
mon in system research in the FaaS area [240]. The benefit of this strategy
is better control over settings and functions which aids the interpretation
of the results. Therefore, we decided to stick to the CPU-bound functions
Fibonacci and prime number search.

Another aspect of minimal scope is our focus solely on a single cloud func-
tion in isolation. A typical usage of FaaS, for example, is storing state in
a database where requests and communication over the wire influence the
overall application flow.

151

6. Simulating FaaS Platforms

• Single Provider - Our evaluation is limited to a single provider in a single
region (eu-central-1). There are other publication (e.g. [50, 206]) which show
that different regions can make a difference - even for the same provider.

• Sample Size - As for each empirical evaluation the sample size is question-
able. Overall since a single calibration run onH60 took round about 6 hours,
we only conducted 25 of them, which is sufficient from our point of view
since the deviation of the results is minimal. For the evaluation section, es-
pecially the prime number run, an experiment with more datapoints or a
further statistical evaluation might disclose further insights.

• QoS Layer - Our methodology was prototypically tested for the combination
AWS Lambda and OpenFaaS. AWS Lambda implements its scaling of re-
sources linearly, which is not the case for other public cloud offerings like
Google Cloud Function where a predefined set of resource configurations
is available nor for the unpredictable scaling of Microsoft Azure. There-
fore, scaling strategies of other providers need to be reviewed to determine
whether they comply with their documentation before integrating them into
our methodology.

6.6. Future Work

The discussion and presentation of a simulation based approach where the exe-
cution on a developer’s machine reveals insights in the platform behavior of the
function is an important step within the development process and deployment of
cloud functions.
Dev-prod parity and the interaction mechanism with other services are espe-

cially interesting when using FaaS and influence the performance and the execu-
tion behavior. It is vital for cloud function use cases to interact with other services
on the corresponding platforms. One direction of future work is therefore to simu-
late an application consisting of several functions and BaaS services, in particular
gateways and databases, to demonstrate that the proposed simulation approach
also works for applications and that individual functions are independent from
each other performance-wise. A first proof of concept to simulate an application
consisting of several services is given in Section 8.
Suggesting resource scaling strategies for open-source FaaS platforms which

are comparable to commercial cloud offerings is a first step towards a fair com-
parison of open-source platforms with each other as well as with cloud platforms.
Performance and also cost comparisons are possible with our approach. In the
open-source FaaS area, the investigations of Section 6.4 raised three further ques-
tions. First we want to work on a pricing scheme for an on-premise hosted FaaS
platform and develop a self-updatable price model for FaaS offerings dependent
on abstract computing measures. Another aspect we want to work on empirically
is the fairness of billing. AWS Lambda for example states in the documentation

152

6.6. Future Work

that pricing is linear but due to different hardware used this is not the case. The
hardware executing our function has a major influence on the execution time and
consequently determines the price as can be seen by our experiments. Thirdly,
we want to assess other possibilities for a stricter performance isolation for open
source FaaS platforms. Based on our instance concurrency test, there is a need for
on-premise K8s installations to rethink performance isolation. The restriction by
limits is already a first and important step towards a more robust and predictable
resource allocation but does not provide the performance isolation like separated
micro VMs on AWS Lambda.

153

7. Decision Support and Guidance for
Function Configuration

Parts of this chapter have been taken from [174, 180, 182, 185].

In this chapter, RQ4 (How can developers be supported in making reasonable de-
cisions about their cloud function configurations?) and RQ5 (Which factors influ-
ence the cold start behavior of a function besides the function configuration?) will
be answered.

Our research prototype SeMoDe is the practical realization of the introduced cal-
ibration and simulation ideas. It supports developers to select proper configura-
tions for their functions via its web interface. Section 7.1 describes this web in-
terface and includes references to other sections in the thesis which explain the
shown functionality and link the paragraphs to their corresponding methodology
and evaluation. Aspects which influence the especially important start-up beha-
vior of cloud function instances are discussed in Section 7.2. The initial exper-
iments published in 2018 and their repetition in 2023 are included. These two
experiments showed the progression of FaaS.

7.1. Graphical User Guidance For Function Configuration
Options

This section describes the process of using SeMoDe’s web interface for exploring
function configuration options by a local simulation process. To do so, users have
to (1) calibrate their local development environment with the desired provider en-
vironment (see 7.1.1) by executing the provided calibration function locally and
in the cloud; (2) configure the mapping of calibration configurations from the
previous step and specify desired simulation scenarios (see 7.1.2); (3) perform
simulations locally and investigate the results to decide on a suitable function con-
figuration (see 7.1.3).

7.1.1. Calibration

The configuration of the local calibration is already shown in Section 5.6, Fig-
ure 5.2. Figures 7.1, 7.2 and 7.3 show further screenshots for the setups/{setup-
Name}/calibration endpoint. These diagrams are a useful tool for developers in

155

7. Decision Support and Guidance for Function Configuration

Figure 7.1.: Local and provider calibration graphs together with their linear regression
models.

different stages of the simulation experiments to support them to select a proper
resource configuration. A calibration of the corresponding public cloud provider -
in our case AWS Lambda - is supported by SeMoDe’s benchmark feature which was
already introduced and explained in detail in Section 4.3, Figures 4.6 and 4.7. In
the AWS configuration, the only change compared to the benchmark functionality
is the Bucket name, that is, where the output of the calibration function should be
stored. The mechanism here is different to the benchmarking example since the
APIGateway runs into a timeout and cannot get the response directly from the plat-
form. Additionally, the LogHandler for AWS does not parse the execution data of
the calibration function. Therefore, the result of the calibration on AWS Lambda
is fetched by SeMoDe from this bucket and analyzed via the LinpackParser class.
In Figure 7.1, a local and a provider calibration are rendered based on the exe-

cution data. The statistical evaluation based on a Pearson linear regression model
is also shown. It is used in the further process of mapping environments to each
other. Linpack is currently the only supported option to calibrate the hardware
stacks. Other calibration functions can be included by customizing the source
code directly respectively the image at DockerHub178.

178https://hub.docker.com/r/jmnnr/linpack

156

https://hub.docker.com/r/jmnnr/linpack

7.1. Graphical User Guidance For Function Configuration Options

7.1.2. Mapping

Figure 7.2.: Mapping step for preparing equivalent settings for local simulations.

The next section in the webpage includes a mapping step from the local calib-
ration (and therefore the local machine stack) to the provider calibration. Both
calibrations have to be executed to allow a mapping from one application stack to
the other based on Equation 6.3. It is initiated via the two dropdown fields which
allow a selection of different configurations to be mapped. This is especially in-
teresting when changing BIOS or kernel settings to influence the CPU frequency
scaling as discussed in detail in Section 5. The currently selected calibrations are
displayed in brackets and their data is used for generating the two diagrams from
Figure 7.1. The next input field is for public providers, in the depicted case AWS
Lambda, where the memory settings which should be simulated are entered in a
comma separated format. The tool then automatically computes the cpus value for
the local simulation. If simulations have already been executed or if a user of the
tool wants to achieve a specific abstract computing value, the reverse is also pos-
sible: A GFLOPS settings is specified by the user and the corresponding provider
memory setting is computed as shown in Figure 7.2. In the case shown, memory
equivalents for 10, 20 and 30 GFLOPS are required which - based on the mapping
information - would result in 610, 1119 and 1628 MB on AWS Lambda. The fields
grouped underMachine Configuration are for documentation purposes to describe
fair and repeatable benchmarks with as much information as possible. The Num-
ber of Cores field is used for computing the full CPU equivalents and displaying
them in the simulation diagrams. From the previous figure we already know that
30 GFLOPS at our local machine H60 exceeds the one CPU equivalent. Therefore,
only a multi-threaded function would correctly forecast the runtime behavior for
the mapped 30 GFLOPS/1628 MB.

157

7. Decision Support and Guidance for Function Configuration

7.1.3. Simulation

Figure 7.3.: Local simulations to assess the runtime characteristics for a single-threaded
Fibonacci cloud function.

Figure 7.3 shows the additional configuration parameters which are necessary
to start the local simulation. A user describes the folder where the source code
of the function under test is located. Environment variables are set by a local file
containing the variables to start the containers. In the example in the screenshot,
SeMoDe starts the function five times - configurable value - for every cpus value
based on the configured memory settings. These three input fields are the needed
configuration to start a local simulation run. A prerequisite is that the mapping is
configured beforehand. The ContainerExecutor class configures the containers
with the correct cpus quota and runs the simulation. As a result of the container
execution, the information is parsed, saved in files at /setups/{setupName}/-
calibration/profiles and stored as ProfileRecords in the database.
Via the dropdown menu Previous Profiles, a user can then select a profile and

can also see the version number of the calibration. Based on the machine con-
figuration from the previous figure, in particular the Number of Cores input field,
the orange vertical lines are drawn, indicating the full CPU equivalents. Figure 7.3
shows three result sets. The primary y-axis shows execution times inmilliseconds,
whereas the secondary y-axis predicts the cost of executing one request at AWS
Lambda based on the simulated execution time and the valid pricing for the AWS
region eu-central-1. The data in light green is the profile of the simulation values
with the calibration id 28203, version 41. It is based on the same data as themiddle
part of Figure 6.3 where we evaluated ourmethodology with the statistics program
R. The curve in dark green is based on Equation 6.4 and depicts the optimal per-

158

7.1. Graphical User Guidance For Function Configuration Options

formance/cost function based on AVGa, in this case the mean execution value for
2048 MB.
To recap, we take a linear cost and resource scalingmodel as a basis where doub-

ling resources results in a situation of halving the execution time. Since the cost
model scales equally, this would result in constant cost for arbitrary settings. As
already mentioned in Section 6.3.3.3, memory settings below the dark green line
would be slower and save money compared to a, whereas a memory setting above
the line would be faster but also more expensive. As shown in Figure 7.3, all other
settings would be cheaper. The magenta dots are the calculated price for the simu-
lated execution time for a single function when using the pricing scheme of AWS
Lambda. As can be seen, the price is constant until the one CPU equivalent on
H60 (blue vertical line) and then increases as shown in other research, e.g. [72].
We know from the discussion of the simulation approach that the function charac-
teristic would not profit from a resource increase beyond the first CPU equivalent
which would be 1769 MB at AWS Lambda.

Figure 7.4.: Local simulations to assess the runtime characteristics for a multi-threaded
prime number search cloud function.

A simulation for the multi-threaded prime number search in Figure 7.4 reveals
a different picture as resources are fully utilized. The color scheme is the same
as for the previous screenshot. It is especially noteworthy that the predicted cost
increases when the next CPU equivalent for the local machine setup - depicted by
the blue vertical lines - is reached. As already mentioned in Section 6.3 possible
reasons for this behavior could be scheduling overhead when the CPU becomes
busier.

159

7. Decision Support and Guidance for Function Configuration

Figures 7.3 and 7.4 are parts of SeMoDe’s web interface for implementing a sim-
ulation framework. The diagrams and the explanation provided here support de-
velopers during the development process to select a proper resource configuration
for their functions. This provides an answer for RQ4.

7.2. Guidance for Improving Cold Starts

7.2.1. Motivation

Scale-on demand, one of the FaaS characteristics discussed in the conceptualiza-
tion of this work in Table 3.3 comes with an inherent problem. The first execution
of a cloud function experiences a cold start since the container has to be started
prior to the execution which causes a slightly longer runtime. Due to performance
reasons, FaaS providers do not shut down a container immediately after its func-
tion is done running. Subsequent executions use spawned containers to profit
from the warm execution environments. Avoidance of idling and scaling on de-
mand are game changers compared to other cloud service models, but entail more
cold starts.
So far, cold starts are perceived as a system-level challenge [10, 161]. There

are several ideas on how to circumvent the cold start problem. One solution is
to ping the cloud function on a regular basis [145, 273]. Pinging keeps the func-
tion instance(s) warm so that subsequent requests can reuse these instances to
profit from an already provisioned execution environment. Unfortunately, this
ping hack179 is opposed to the scale to zero principle of FaaS. Another solution are
preconfigured function instances which public cloud providers offer with new re-
leases of their platforms. They are ready to serve requests immediately. However,
this also comes with additional cost and doesn’t fit with FaaS characteristics, i.e.
scale to zero and pay-per-use.
Therefore, we are motivated to research factors that limit the cold start overhead

and pose the following research question RQ5 (Which factors influence the cold start
behavior of a function besides the function configuration?). Based on this question,
we formulated influencing factors as hypotheses and used SeMoDe to execute cor-
responding benchmarks for each hypothesis. The experiments included in this
section were partly published in a paper in 2018, three years after the initial re-
lease of AWS Lambda. For detailed information about the original work, we refer
the interested reader to our paper [182]. The time difference between 2018 and
2023 as well as the lessons learned within these five years, like the checklist for
performing experiments in Section 4.2, motivated us to redo some of the experi-
ments and compare the two data sets with each other. Besides the results obtained,
the experiments show also the usefulness of the simulation approach proposed in
the work at hand.

179https://www.jeremydaly.com/15-key-takeaways-from-the-serverless-talk-at-aws-startup-day/

160

https://www.jeremydaly.com/15-key-takeaways-from-the-serverless-talk-at-aws-startup-day/

7.2. Guidance for Improving Cold Starts

The agenda for this section is as follows: Section 7.2.2 lists hypotheses about
cold start influencing factors followed by a discussion of other cold start investig-
ations in the FaaS domain. The aforementioned hypotheses are tested in exper-
iments in Section 7.2.4. The results are presented in the subsequent paragraph
and discussed in Section 7.2.6. Some ideas for future work conclude this section
as well as the current chapter.

7.2.2. Hypotheses

To facilitate an unbiased evaluation, hypotheses about the implications of different
parameters and decisionswere formulated prior to the experiment. FaaS users and
especially providers make decisions which may influence the cold start behavior
of the executed functions. These decisions include the programming language,
the deployment package size, the memory setting, number of dependencies, or
the workload, therefore influencing the number of instances running in parallel.
Prior executions and container shutdown intervals are also of relevance. This list
of influential factors is not complete but contains the most important factors:

H1: Programming Language
FaaS platforms offer a large variety of programming languages [161]. Java-
Script (JS) for example is supported by all major platforms since it is a per-
fect fit for small, stateless cloud functions. Also compiled languages like
Java and C# come into focus due to the engineering benefits for more com-
plex functions. Because of the environment overhead, our hypothesis is that
compiled programming languages impose a significantly higher cold start
overhead than interpreted languages like JS. For instance, the execution of a
cloud function written in Java needs a running Java Virtual Machine (JVM)
which must be set up prior to function execution.

H2: Deployment Package Size
We assume that the cold start overhead increases with the deployment pack-
age size. We want tomeasure the time, which is needed to copy the function
image of different sizes to the container, load the image into memory, un-
pack, and execute it.

H3: Memory/CPU Setting
Our hypothesis is that the cold start overhead decreases with increasing re-
sources because the container can be loaded and set up faster. We assume
that this behavior is observable for low memory settings where the CPU is
busy, but is negligible for high settings since the CPU is underutilized. This
limitation does not weaken the hypothesis because the lowmemory settings
starting at 128 MB are of particular interest since a low memory configura-
tion is often used to implement glue code. Memory and CPU are used in
combination since most of the mature platforms offer a linear scaling of
CPU power based on the memory setting.

161

7. Decision Support and Guidance for Function Configuration

H4: Number of Dependencies
Loading dependencies takes time when spinning up a cloud function. Our
hypothesis is that the amount and size of dependencies increases the cold
start overhead since they must be loaded prior to the first execution and can
be reused in subsequent ones. If we can confirm this hypothesis, a best
practice would be the division of required libraries in sublibraries so that
the needed subset of functionality is extracted in a new artifact.

H5: Concurrency Level
FaaS gets attention especially due to the scaling property of cloud functions.
We hypothesize that the concurrency level, i.e., the number of concurrent
requests and therefore started containers, neither influences the cold start
overhead nor the execution time of a single function. Functions are star-
ted independently of each other in a separate container for every concurrent
execution. If 1000 requests arrive simultaneously, we expect that 1000 con-
tainers are started by the middleware of the FaaS platform.

H6: Prior Executions
Avoidance of idling is a significant improvement of FaaS compared to PaaS.
Achieving this goal comes with the drawback that unused containers are
removed from running machines. Subsequent calls to the cloud function
require a new container. Hence, we assume that the cold start overhead is
independent of prior executions. This hypothesis is of particular interest for
the first execution of the cloud function after deployment.

H7: Container Shutdown
Providers might optimize their infrastructure by using learning algorithms
for identifying cloud functions which are used frequently. Due to cost ef-
fects and user satisfaction, we hypothesize that the duration after which a
container shuts down is dependent on the number of previous executions.
According to the FaaS paradigm, executions are independent of each other
and should not influence the lifespan of a container.

7.2.3. Related Work

An early work on cold starts for Java functions on AWS revealed that small de-
ployment packages take less time than bigger ones [224]. In their work, PURIPUN-
PINYO and SAMADZADEH only had two different package sizes which induced us
to look at this dimension in a more structured way resulting in the formulation
of H2. Scaling the number of concurrent functions has been the focus of other
experiments, however, they only noted the delays for the 99th percentile of four
public cloud providers without considering the resource configurations of the plat-
forms, in particular the memory setting [145, 196]. Another recent experiment
deployed Monte Carlo workflows to three major platforms where each function
was assigned 256 MB of memory [231]. They documented the memory setting

162

7.2. Guidance for Improving Cold Starts

chosen but did not discuss different languages or other resource settings. Several
function states from the first invocation on a provider’s platform, over the first
invocation on VM and container, to the warm execution were in focus of another
experiment [157]. Comparing these four states with each other, they measured up
to 15 times overhead when comparing the first invocation on the platform with a
warm cloud function instance.
The ping hack was also an inspiration for performing structured experiments.

LLOYD and others introduced keep-alive workloads to prevent the FaaS platform
from scaling instances down [158]. Another approach suggests a pool strategy [155]
where a number of instances are kept for serving a baseline of requests. An inher-
ent problem of all these cold start mitigation strategies [271] is the anticipation
of future workloads which are typically unknown for the FaaS provider. When
considering a chain of functions, the situation changes and a user can anticipate
which functions will be called in the future. The first function in the chain still
experiences a cold start but the other functions within the chain can be anticipated.
This is the basic idea of an approach implemented by BERMBACH and others [24]
to reduce the overall number of cold starts for the application.

7.2.4. Experiments

7.2.4.1. Selection of Experiment Dimensions

The experiments in this section evaluate three out of the seven hypotheses. Pro-
gramming Language, Deployment Package Size andMemory/CPU Setting are invest-
igated. These three hypotheses were already tested in 2018 and repeated in 2023.
The reasons for choosing these hypotheses are the ease of testing and the like-
lihood of getting stable and reproducible results. Back in 2018, it was the first
benchmark to focus only on cold starts. Therefore the aim was and still is to make
a clear experimental setup and reduce other parameters and external influences to
a minimum. Hypotheses with a concurrent notion (i.e. H5-H7) are omitted due
to the side effects which are introduced by concurrency in general. The data base
produced by our sequential benchmark has a minimum set of external influences
and could serve as a data base for follow-up experiments. Therefore, our bench-
mark is of special interest for real world applications which are only requested
once or twice per hour and thus benefit from the scaling to zero property.
We selected Java and JS as programming languages. An important reason for

this decision is, that Java is a compiled and JS an interpreted language. This
selection emphasizes the differences in programming languages for the evalu-
ation of the programming language hypothesis. Furthermore, Java and JS are
widely used in enterprises and the open source community180. Additionally, we
checked the influence of the assignment of resources with regards to the cold start
period. We chose the recursive version of Fibonacci as it has already been done

180https://octoverse.github.com/2022/top-programming-languages

163

https://octoverse.github.com/2022/top-programming-languages

7. Decision Support and Guidance for Function Configuration

in other experiments like in the evaluation of our simulation in Section 6.3.3.
Therefore, the algorithm is well suited for our benchmark assessing cold starts.
In 2018, we assumed that the hardware used in a data center is identical [145],
which would have improved predictability and low variance in function execution
time and guarantees stable results. However, since this is not the case as already
shown [50, 206, 213], one focus of the second execution of our benchmark is to
split the results by machine type. The low memory usage ensures that we can
benchmark the function with any of the memory settings provided by FaaS plat-
forms.
Finally, we select the memory and package sizes to test our hypotheses. An

initial package size is the size of a source package after the build phase. Initial Java
packages have approximately 1.5MB, JS ones are smaller than 1 KB. The following
package sizes, which differ from the initial ones, are artificially increased by adding
a file to the zip archive or increasing the JS file with a comment. Deployment
packages were initially sized 3.125 MB, 6.25 MB, 12.5 MB, 25 MB and 50 MB.
For AWS, 50 MB was the upper package size limit for functions at the time of the
experiment (June 2018) but has now increased to 75 MB (default in May 2023)181.
Due to some errors during the deployment of packages bigger than 40 MB, we
decided to use the aforementioned settings and reduce the last package size to
40 MB. The next step was to compute linear regressions to get a prediction for
other settings as well.
The memory setting was configured on AWS with 128 MB, 256 MB, 512 MB,

1024 MB, 2048 MB and 3008 MB. The memory setting linearly determines the
compute power of the container. Every combination of deployment package size,
memory, language, and provider resulted in a cloud function. Therefore, we de-
ployed 72 cloud functions on AWS.
Our experimental setup is designed to exclude side effects. Calculating the ex-

ecution overhead (cold – warm) as logged by the client isolates the perceived cold
start overhead. The average execution time of the function (recursive Fibonacci
calculation), network latency, and routing within the FaaS platform is assumed to
be equal for cold and warm executions and therefore irrelevant for the cold start
overhead value. The remaining duration results in an isolation of the additional
time consuming steps, which occur during a cold start.

7.2.4.2. Experimental Setup

Due to the specific focus on cold starts, the aim of the experimental setting is
to force a cold start closely followed by a warm start on the same container in-
stance. In our setup, a warm start is defined as the reuse of a container. Given
that there is only a single cold start per container, having a pair with a single cold
and a single warm execution guarantees a sound comparison because calculat-
ing the mean over several warm executions is avoided. Such mean calculations

181https://docs.aws.amazon.com/lambda/latest/dg/limits.html

164

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

7.2. Guidance for Improving Cold Starts

could have distorted our results because platforms can optimize the performance
of cloud functions after a certain amount of invocations, as we observed during our
initial experiments. Tests in 2018 have shown that containers on most platforms
were shut down after at most 20 minutes of idling, but there is no guarantee nor
documentation when a container is shut down.
A FaaS platform is a black box. The precise execution duration, which is used for

billing on the platform, includes the function execution and parts of the start up
process. Other parts of the initialization and start up of the container plus other
needed infrastructural components are not included. To measure these aspects,
we performed a REST-based interaction with the FaaS platform to also log the
start and end time on the client side as discussed in Section 4.4.
Logging the time stamps locally enables us to compare the local execution with

the platform duration. After storing the starting time stamp, a REST call is ex-
ecuted which sends the request over the network to the API gateway endpoint.
This endpoint creates a new event which triggers a container creation or reuse. Fi-
nally, the cloud function is executed and the middleware on the platform logs the
start and end time of the function execution as well as the precise duration, which
is the difference of both time stamps. The result of the computation is transferred
to the API gateway endpoint, wrapped in a response, and sent to the caller via the
network. The client REST call exits and the local end time stamp is logged on the
host machine of the FaaS user. The two local time stamps enable an assessment of
the perceived execution duration for the user and as a consequence the difference
between cold and warm starts from the user’s perspective.
To force pairs of cold and warm executions, we used the SeMoDe benchmarking

mode sequential with changing intervals in 2018. This mode triggers the provided
function with a delay between execution start times. Delays vary and are defined
in a provided array of delays d in a round robin fashion. The platform response
includes a container and platform identifier. These identifiers enable an unam-
biguous matching between the local REST data and the platform log data. The
start time of each execution is generalized in Figure 7.5.

start(i, d) =

0 if i = 0
start(i− 1, d) + d[i mod len(d)] if i ≥ 1

Figure 7.5.: Start time of the ith execution of the local benchmark invocation.

We set our array d to {1 minute, 29 minutes}. The start time is the time of
the local service which calls the API gateway. A representation of the resulting
execution sequence can be seen in Figure 4.9. Once again, it should be noted, that
the invocation of the cloud functions is sequential.
When performing the experiments in 2023, we decided to update the function

description at AWS Lambda after the cold/warm execution pair to force the plat-
form to start a new instance for the next call. The original experiments were ex-
ecuted between 6/25/2018 and 7/1/2018. The repetition of the experiments was

165

7. Decision Support and Guidance for Function Configuration

performed between 5/25/2023 and 5/31/2023. Each cloud function was invoked
550 times to get 275 pairs of cold and warm executions. If a cloud function re-
turned 500 as HTTP status code, which indicates a server error, or if another error
like anAPI gateway timeout occurred, we excluded the cold aswell as thewarmexe-
cution. Only pairwise valid data was processed and included in the results. In 2023
we collected the CPU model information. 99.3% of our JS functions and 99.1%
of the Java functions were executed on Intel(R) Xeon(R) Processor @ 2.50 GHz.
For clarity of the results, other entries executed on different CPU models were
removed from the results. An investigation of the execution data of the other ma-
chine, the already mentioned 3.0 GHz machine, was not meaningful due to the
few data points.
To summarize our setting, the resulting data matrix consists of six dimensions:

Programming Language, Deployment Package Size, Memory Setting, Specific In-
vocation Time, Local Duration, and Platform Duration.

7.2.5. Results

7.2.5.1. Hypotheses Independent Results

Before we confirm or reject the selected hypotheses, we gather general insights
from the data in this part. Figures 7.6 and 7.7 and Table 7.1 are based on the same
dimension selection. The deployment package size is initial, all valid pairs of each
cloud function are used to compute the figures and mean values. For AWS, if not
noted otherwise, the cloud function with 256 MBmemory is selected. In addition,
the repetition of the experiments revealed improvements in the platform and a
change in assigning resources.

Cold Warm

0
50

00
10

00
0

15
00

0

aws−java−2018 256 MB

Cold Warm

0
50

00
10

00
0

15
00

0

aws−java−2023 256 MB

Cold Warm

0
50

00
10

00
0

15
00

0

aws−js−2018 256 MB

Cold Warm

0
50

00
10

00
0

15
00

0

aws−js−2023 256 MB

Figure 7.6.: Execution times of cold and warm invocations on client side, 2018 and 2023.

166

7.2. Guidance for Improving Cold Starts

Cold Warm

0
50

00
10

00
0

15
00

0
aws−java−2018 256 MB

Cold Warm

0
50

00
10

00
0

15
00

0

aws−java−2023 256 MB

Cold Warm

0
50

00
10

00
0

15
00

0

aws−js−2018 256 MB

Cold Warm

0
50

00
10

00
0

15
00

0

aws−js−2023 256 MB

Figure 7.7.: Execution times of cold and warm invocations on provider side, 2018 and
2023.

Figure 7.6 shows boxplots of the function execution duration in milliseconds,
measured as the delta of the start and end time of REST calls on the client. The
bottom of the box is the 25th percentile and the top is the 75th percentile. The cen-
ter line of the box is the median equal to the 50th percentile. Upper whisker is the
75th percentile plus the box length multiplied by 1.5. Corresponding to this com-
putation, the lower whisker is the 25th percentile minus the box length multiplied
by 1.5. Values that are not between the two whiskers are outliers and depicted
as dots. This procedure was also chosen for the generation of Figure 7.7. The
values of these boxplots were fetched from the logging services of the respective
platforms.
As can be seen in the diagrams, the values for the cold executions compared to

corresponding warm ones are consistently higher on the client (Figure 7.6). These
values from the client can visually be related to the platform ones (Figure 7.7)
because the box plots in the two figures are based on exactly the same raw data
and also the y-axis dimension is the same for both figures and the box plots. Due
to this visual coherence, some outliers are no longer included in the figures. The
raw data, the box plots as printed here and the box plots including the outliers are
accessible online [176]182. Sometimes cold executions are faster than warm ones
which is especially evident in the AWS values in Figure 7.7, which show a huge
duration intersection of cold and warm executions. The warm and cold values for
AWS JS are even seemingly equal.
To get more insights about absolute values, Table 7.1 presents mean values in

millisecondsmeasured on client and platform side. The dimensions of the presen-
ted data are programming language, the location where the data is gathered and

182https://github.com/johannes-manner/SeMoDe/releases/tag/wosc4

167

https://github.com/johannes-manner/SeMoDe/releases/tag/wosc4

7. Decision Support and Guidance for Function Configuration

Year Language Client/Platform Cold σ Warm σ Difference

2018 Java Client 5961 875 4211 465 1750
2018 Java Platform 4329 450 4082 434 247
2018 JS Client 14320 1894 13676 1742 644
2018 JS Platform 13496 1782 13539 1738 -43

2023 Java Client 4187 403 3304 166 883
2023 Java Platform 3381 151 3230 166 151
2023 JS Client 10163 142 9834 110 329
2023 JS Platform 9743 84 9757 98 -14

Table 7.1.: Mean values in milliseconds for cold and warm executions on client and plat-
form side in 2018 and 2023.

initial deployment package size, which means that no artificial data is added to
the artifact. To assess the quality of service, the two experiment periods can be
compared with each other. They show the distribution of values and the standard
deviation σ for cold and warm execution periods.
Wemeasured an execution overhead for the cold start of 1,750ms (cold – warm)

on the client as opposed to 247 ms on the platform for Java. JS overheads were
smaller with 644 ms on client and even -43 ms on the platform in 2018.
We observed that some cold executions on the platform are faster than the warm

executions on the same container. This is the reason why the value for JS is neg-
ative in this case. For JS, 63 % of the cold executions were faster than the corres-
ponding warm ones. 16% of AWS cloud functions written in Java were executed
faster on the cold start compared to the warm execution on the same container.
These start and end times were logged on the platform. On the client side, a cold
execution is never faster than its corresponding warm execution, neither for JS
nor for Java.
Our conclusion for AWS is, that typical tasks during container start up etc. are

not included in the logged value on the platform. Our results strengthen this
assumption. Java needs a more resource intensive environment with an initializa-
tion of a JVM during the cold start, whereas JS uses only an interpreter to execute
the code. We assume that underutilization when executing the cold request, col-
location of various cloud functions on the same host, and other reasons influence
the performance as well.
There are a few points which are especially interesting when comparing the

2023 gathered data with themeasurements from 2018. The distribution of the data
is narrower as indicated by the standard deviations in Table 7.1, most prominent
for the JS executions. Also the overall execution time decreases by around 30%.
The most obvious reason would be a different approach of scaling and assigning
resources to the cloud function instances. This assumption can be confirmed
when looking at the provider execution times for different memory settings in
Figure 7.8. Here the trend of lower execution times as well as scaling strategies
is apparent. It is important to remember that the constant execution time for the
2023 lines for 2048 and 3008 MB is explainable by a single-threaded Fibonacci

168

7.2. Guidance for Improving Cold Starts

1000

2000

1000 1500 2000 2500 3000
MemorySize

M
ea

n
W

ar
m

 E
xe

cu
tio

n
in

 m
s

By Year and Language

2018−JS

2023−JS

2018−Java

2023−Java

Figure 7.8.: Mean execution time for memory settings 1024, 2048 and 3008 MB in 2018
and 2023 for recursive Fibonacci for the second request to a cloud function
instance.

implementation (one CPU equivalent 1769 MB). On the other hand, the strategy
of assigning resources in 2018 was different since there is a decrease between the
last twomemory settings. It is likely that more powerful machines have been used
in 2023 since AWS changes their servers typically every four years based on their
annual report to investors183.
Another general insight can be gathered from the overall execution time. The

same functionality, recursive Fibonacci, is compared for two different program-
ming languages. This could be seen as a small programming language bench-
mark on AWS Lambda. For a more thorough investigation of different program-
ming languages, the interested reader is referred to a study which compares 27
languages [216]. The choice of the right programming language can lead to better
response times and lower cost. Since FaaS has a cost model with a fine-granular
pay-as-you-go scheme, Java would be the better choice since it provides the same
result in a third of the time and therefore saves a considerable amount of money.
As already remarked in Section 3, billing on a millisecond basis makes a big dif-
ference to the other established cloud service models, especially IaaS and PaaS,
considering the very low execution time.
In order to evaluate our hypotheses, we need to know the total execution over-

head of cold starts. This is the reason why for all further analyses we only consider
the execution times logged on the client.

183https://d18rn0p25nwr6d.cloudfront.net/CIK-0001018724/f965e5c3-fded-45d3-bbdb-
f750f156dcc9.pdf

169

https://d18rn0p25nwr6d.cloudfront.net/CIK-0001018724/f965e5c3-fded-45d3-bbdb-f750f156dcc9.pdf
https://d18rn0p25nwr6d.cloudfront.net/CIK-0001018724/f965e5c3-fded-45d3-bbdb-f750f156dcc9.pdf

7. Decision Support and Guidance for Function Configuration

7.2.5.2. Hypotheses Dependent Results

To assess the hypotheses dependent results, we use mean values but more often
a correlation metric to make a clear statement as to which degree the measured
data is significant.
The correlation coefficient ρ ranges from negatively correlated (-1) to positively

correlated (+1). There are different interpretations considering the significance of
correlation. We stick to a widely used interpretation [301], where 0 indicates no
correlation, an absolute value of 0.2 weak, 0.5 moderate, 0.8 strong and 1.0 perfect
correlation. Additionally, we constructed a linear regressionmodel to calculate the
slope of the regression line plus the intersection point of the y-axis. This enables
us to formulate an equation to compute other configurations than the investigated
ones. Especially for the deployment hypothesis H2, this approach can forecast ar-
bitrary package sizes. The resulting linear models and the correlation coefficient ρ
are presented in Tables 7.3 and 7.4. The slope of the line is no indicator for correl-
ation, but states, how strongly y is influenced by an increasing or decreasing x.

H1: Hypothesis Programming Language Cold start overheads for different memory
settings for Java and JS functions are shown in Table 7.2. Cold start times for Java
cloud functions are between two to four times higher than those of respective JS
functions. Based on the input we used for executing the Fibonacci function (n=40),
the cloud functions implemented in Java are still faster than the JS counterparts
when looking at the overall execution times not solely on the overhead cold starts
introduce. For other input parameters, this might change. As for the standard
deviation, the cold start overhead also shows a narrower distribution especially
when looking at the JS overheads for the data in 2023. Here the data even shows
a constant overhead of around 320 milliseconds and indicates that the execution
environment does not stress the executing machine even with the lowest resource
configuration. As remarked, this could be a baseline for further experiments how
costly starting a new execution environment is from a client perspective. Based
on these ratios, the presented data supports the hypothesis H1, as we noticed that
the cold start time was significantly larger for each of the Java functions compared
to JS.

Memory in MB
Year Language 128 256 512 1024 2048 3008

2018 Java 1887 1649 1240 1119 1271 899
2018 JS 587 644 614 368 589 371

2023 Java 1070 883 816 761 696 627
2023 JS 315 329 310 321 327 317

Table 7.2.: Differences of cold and warm executions on the client side for hypothesis H1
considering programming languages.

170

7.2. Guidance for Improving Cold Starts

H2: Hypothesis Deployment Package Size The next hypothesis is that the deploy-
ment package size, in particular the size of the uploaded archive, influences the
cold start overhead. The assumption is that transmission from a bucket store to
the executing environment increases linearly with increasing package size. As a
reminder for interpreting the following data, the resources at AWS Lambda are
configured with 256 MB memory and the overhead on the client is calculated by
computing the difference between the cold and warm execution of the same cloud
function instance.

Year Language ρ Linear Model

2018 Java 0.29 1510 ms+ 9 ms/MB
2018 JS 0.37 613 ms+ 12 ms/MB

2023 Java -0.14 882 ms− 0.45 ms/MB
2023 JS 0.74 359 ms+ 13 ms/MB

Table 7.3.: Spearman’s correlation coefficient ρ and linear regressionmodel for hypothesis
H2 considering the deployment package size.

Table 7.3 shows the statistical evaluation for the deployment package size hypo-
thesis. The correlations in 2018 were weak, but present. This changed in 2023,
when we see for the Java use case that there is no correlation and a slightly negat-
ive slope. It indicates that the deployment package size in the form of artificially
adding a file to the zip which is not used by the function in the Java case does
not influence the startup of a cloud function instance. On the other side, the Java-
Script cloud functions experienced an overhead when starting new instances. The
correlation with a coefficient of 0.74 is strong and the intersect with 359 ms of the
linear model is similar to the mean overhead in Table 7.2 with 329 ms for 256 MB.
Therefore, we observe a mixed picture for this hypothesis and cannot provide a
conclusive answer.

H3: Hypothesis Memory Setting The hypothesisMemory Setting states that the cold
start overhead decreases with the size of memory. As for the last hypothesis, we
calculated the Spearman’s correlation coefficient ρ as well as the linear regression
model.

Year Language ρ LinearModel

2018 Java -0.59 1634 ms− 0.2491 ms/MB
2018 JS -0.20 606 ms− 0.0668 ms/MB

2023 Java -0.82 947 ms− 0.1185 ms/MB
2023 JS 0.16 319 ms+ 0.0007 ms/MB

Table 7.4.: Spearman’s correlation coefficient ρ and linear regressionmodel for hypothesis
H3 considering the memory setting in 2018 and 2023.

171

7. Decision Support and Guidance for Function Configuration

Our hypothesis holds partly true since the values for the correlation coefficient
ρ in Table 7.4 were in a mediate correlation range in 2018. The correlation coeffi-
cient ρ is negative due to the negative slope but the interpretation is the same as
for positive values as discussed above. For Java, we observed a higher correlation
and slope. We assume that this is caused by a costlier middleware layer. As Java
is a compiled language, the JVM needs to be set up to execute the code. The avail-
able CPU and memory influence how fast this can be done. JS is an interpreted
language and therefore the execution environment is different as the one for Java,
but more resources also had a positive effect on the cold start time in 2018. This
effect was not evident in 2023 for JavaScript cloud functions as can be seen from
themean values in Table 7.2. Therefore, the presented data support the hypothesis
H3 for Java functions, but not for JavaScript ones.

7.2.6. Discussion

7.2.6.1. Discussion of Results

Ourmotivation to take the cold starts of cloud functions into consideration was the
prevailing strategy in 2018 of using pings to pre-warm cloud function instances.
The experimental setup of our benchmark is a REST-based interaction via an API
gateway. As noted in the introduction, this ping hack is opposing the FaaS principle
of scaling to zero. Nowadays, platforms have the option to reserve capacity and
already configure a pool of warm cloud functions instances which comes along
with higher cost.
Our methodology to assess the cold start from a user point of view is inevitable,

because platforms report only a fraction of cold start overhead in their function
startup duration. Additionally, they may report different fractions of the provision-
ing and initialization. Especially for functions written in JS on AWS our results
were surprising. We measured that cold starts on the platform were faster than
the consecutive warm ones in some cases. This leads to the conclusion that AWS
only bills the users for their function executions without the time to set up servers,
virtual machines and containers.
The gap between compiled and interpreted languages with a ratio between 2 and

4 was higher than expected. Our explanation is that complex execution environ-
ments, like the JVM in case of the compiled language Java, overcharge the already
busy CPU at startup. This effect is smaller for higher memory settings but still
present. Especially the performance gain for compiled languages is worth men-
tioning. Cold start overhead of Java functions correlates with ρ = −0.59 in 2018
and even −0.82 in 2023. Only the deployment package size hypothesis shows a
mixed picture as the correlation is lower and varies between positive and negative
values within the same platform.
We measured the mean cold start overhead for different platforms, languages

andwithout artificially increased deployment package sizes. It ranges from320ms
for JavaScript to 1887ms for Java with the lowestmemory configuration for a clean

172

7.2. Guidance for Improving Cold Starts

deployment package. Based on this investigation, the ping hackmay not always be
necessary. Additionally, scaling also leads to cold starts and the ping hack there-
fore does not solve the problem at all. The ping hack only ensures that a fixed
amount of containers is available but does not pre-provision further containers to
anticipate future workloads. Our results, especially the comparison of cold and
warm executions on the client side, demonstrate that in some use cases there is
no need for this kind of hack. This applies particularly in situations where re-
sponse times of a few hundreds of milliseconds are reasonable. Because of this
wide range of cold start overheads, it is important to assess the impact on specific
applications. For applications requiring a fast response or involving user interac-
tions, even small cold start overheads might impose a problem. The three invest-
igated hypotheses already provide a few hints for designing cloud functions and
answer which factors influence the cold start behavior of a function besides the function
configuration (RQ5). Further investigations are needed in this area because cold
start is one of the main, inherent issues of FaaS.
We conclude this discussion with two thoughts on the repetition of the exper-

iments in 2023: First of all the hardware might have changed in the five years
after the initial experiments. Since our data collection process from 2018 did not
include themachine configuration, this is only speculation but suggested by the in-
vestors’ letter fromAWS. The experience within this time period showed that docu-
mentation is lacking in experiments - also in our early ones - and hardware hetero-
geneity influences the execution time and the overall quality of service. When ana-
lyzing data without this machine configuration dimension, conclusions might be
ambiguous. Secondly, the platforms change their inner implementation over time
as can be seen by the standard deviations in Table 7.1 and the distributions visu-
ally presented in Figures 7.6 and 7.7. A continuous benchmarking of platforms
is beneficial to understand the improvement as well as complain about service de-
gradation as discussed and proposed by FIGIELA and others [79]. In the current
scientific community, there is less reward for repeating experiments. Based on
the shown data and insights gained from repeating experiments, new workshop
respectively conference formats like the reproducibility track at the European Con-
ference on Information Retrieval184 could be of interest and motivate researchers
to engage in this research area. Such efforts will ultimately increase the quality of
experiments and their documentation.

7.2.6.2. Threats to Validity

Based on the characteristics HUPPLER [103] mentioned in his benchmarking pub-
lication, we tried to make the experiments presented here as robust, self-explana-
tory, and repeatable as possible. But there are some factors that could threaten the
validity of our data:

184https://ecir2023.org/calls/reproducibility.html?v=3.8

173

https://ecir2023.org/calls/reproducibility.html?v=3.8

7. Decision Support and Guidance for Function Configuration

• Platform Documentation Limitations - There is only limited information
available on how containers are initialized and cloud functions are executed.
With the documentation information only, the high variety of different ex-
ecution times of a cloud function is not fully explainable. Also, additional
services like the API gateway on AWS can influence the results.

• Available Metrics - The function execution time that is logged and used for
billing on the platforms provides only limited information. In AWS, the start
up duration of a container is partly included in the logged execution time.
This initialization of a container is crucial for the perceived cold starts.

• Sample Size - We tested our hypotheses with only 275 cold-warm pairs per
function. More data points would better substantiate the findings.

• Temporal Relevance - Due to the young and evolving FaaS paradigm, the
updates and changes in the platforms limit the relevance of our results to a
certain time frame. The repetition of the experiment in 2023 confirmed this
threat. The currently up to date data from these experiments will again be
outdated by the nextmajor release within the cloud provider’s infrastructure.

7.2.7. Future Work

We plan to do the same benchmark setting again for the tested hypotheses and
want to integrate additional FaaS platforms as listed in Tables 3.4 and 3.5. The next
benchmark will be executed for a longer time period to assess daily differences in
the execution time and cold start behavior. Testing further hypotheses, especially
the number of dependencies, which is important during the implementation of
cloud functions, is scheduled for future work.
Such a follow-up benchmark could serve as a data basis for a concurrency bench-

mark, which will be executed at the same time to get comparable data points. The
concurrency tests are quite important since one of the main use cases is the us-
age of cloud functions as a reactive component to decouple peak loads in a web
application scenario. Peak loads are the main cause for triggering a huge amount
of cold starts on the platform.
To understand the different FaaS use cases, further cloud function triggers need

to be investigated in respect to their cold start impact. Especially the event triggers
of databases are widely used, where, for example, a cloud function is triggered for
every inserted entry in a database.

174

Part IV.

Outlook and Conclusion

175

8. Simulating Microservices Architecture -
an Outlook

So far, the experiments in this work focused on single functions in isolation. Each
of these functions was CPU-intensive and invoked via an API gateway. This design
was chosen on purpose to ensure clean setups and repeatable experiments in order
to draw strong conclusions on the methodology and results. Since this is a simpli-
fication of the problem domain and only a small and limited fraction of FaaS use
cases, the motivation for this outlook is to use the proposed simulation approach
to test more than one function and build a more common use case for FaaS.
Therefore, we present a simulation of a typical FaaS microservices architecture

here. In Section 8.1, we describe the use case and corresponding functions and
present early results in Section 8.2 to discuss them in Section 8.3. Future work on
simulating a microservices architecture with our simulation approach concludes
this outlook.

8.1. An Exemplary Use Case

We know from the conceptualization in Section 3 that FaaS is an event driven com-
puting model. As already remarked, cloud functions are integrated with several
other backend services and tied to the ecosystem they are running in. WINZINGER
andWIRTZ [288] checked several FaaS projects at GitHub where most of the applic-
ations which use another service on the same FaaS platform use a storage solution
like DynamoDB.

Gate
way λ λ

DB

Figure 8.1.: Architecture of a typical microservices FaaS application.

Figure 8.1 shows a small microservices architecture followed by the most com-
mon integration scenario based on thementioned investigation. The first function
is triggered by an API Gateway over HTTP. It computes a random number, simu-

177

8. Simulating Microservices Architecture - an Outlook

lates a fixed blocking IO call by using the programming language’s sleep method
and stores an entry into a database with a URL of a picture. The second function
is triggered by an event which is spun up when new items are inserted in the
database. It generates a PDF based on the picture URL from the stored entry and
temporarily stores this PDF in a folder.
The chosen provider for the experiment is againAWSwith the three services API

Gateway, Lambda and DynamoDB which are necessary to construct the applica-
tion within the AWS cloud in the region eu-central-1. The triggers at AWS work
as explained in the more abstract description above. The API Gateway routes the
REST call to the corresponding FaaS middleware where a new function is started
or an existing instance is used for executing the request. For connecting to the
database, the corresponding provider SDK was used. The function then stores the
data in a DynamoDB table. The GeneratePDF function is then triggered based on
the DynamoDB event. It generates a PDFwith an image from a free image reposit-
ory like pixabay185. For the local simulation of the microservices architecture, our
research prototype SeMoDe needed an extension to allow the execution of several
functions in sequence. The gateway invocation as well as the DynamoDB event
are mocked within the main method of the corresponding function to guarantee
proper input values for execution. So locally, there is no trigger executing the
second function. To comply with the dev-prod parity principle raised in this work,
we used an official image for DynamoDB186 to start the database locally. Since we
assume that Lambda functions and DynamoDB instances are not collocated on
the same physical machine within the AWS cloud, we decided to also deploy the
local database container on another machine within our university cluster.
The experiments on AWS Lambda were executed on 06/13/2023. Five memory

settings were used for each function. To isolate DynamoDB triggers, we further-
more created five tables. Since the executions locally were done in sequence, there
was only a single DynamoDB instance.

8.2. Early Results

In the following, early results are presented for local simulations as well as bench-
mark data collected on AWS. A statistical evaluation is not presented here due to
the intended use of the simulation framework. A developer should be able to select
a proper function configuration based on the graphical representation of the sim-
ulation framework as discussed in Section 7.1. For high resolution of the figures
and a better resizing, they were generated with R, but the graphical representation
provided in the web UI of our prototype is the same.
Figure 8.2 shows the simulation data for both functions. We executed the func-

tions on H90 where the one CPU equivalent is comparable to 2505 MB which

185https://pixabay.com/
186https://hub.docker.com/r/amazon/dynamodb-local/

178

https://pixabay.com/
https://hub.docker.com/r/amazon/dynamodb-local/

8.2. Early Results

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Computed Provider Memory Setting based on CPU share

M
illi

se
co

nd
s

StoreItem Profile

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
Pr

ic
e

in
 U

S
C

en
t

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Computed Provider Memory Setting based on CPU share

M
illi

se
co

nd
s

GeneratePDF Profile

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
Pr

ic
e

in
 U

S
C

en
t

Figure 8.2.: Simulation results for two cloud functions within amicroservices architecture
executed on H90. Black dots correspond to the primary y-axis and show the
simulated execution time in milliseconds. Magenta indicates the price per
average function invocation in US cent.

is represented by the vertical dotted blue line. For the ideal cost-performance
curve in blue see Equation 6.4. The memory setting for computing this curve
is 1024 MB. For the first function, StoreItem, which computes a random number,
simulates an IO call to a third party service and stores the random number in the
database, the black dots indicate lower response times when increasing resources.
So for latency related use cases, developers of this cloud function could consider
a higher memory setting to satisfy latency requirements. If they do so, they have
to be aware that they will spend more money for the same functionality as the
rising price, the magenta dots, indicate. Assessing the predicted prices after the
one CPU equivalent, it is obvious that the function does not profit from a multi-
threaded execution environment. This can be seen from the slopes of the two
intervals from 1024-2048 MB and 3072-4096 MB. The simulation for the second
function, GeneratePDF, is different. The primary y-axis again shows the execu-
tion time and the secondary y-axis the simulated price per request. It can be seen
that the execution time drops when resources are increased and that this is also
the case for multi-core environments. The price lies in a narrow interval between
0.010-0.012 US Cents per invocation. Based on these simulations, a developer
could use any memory setting they like to deploy the function but should decide
on a higher memory setting to achieve a better performance.
To discuss the soundness of the simulation results, we deployed the same ap-

plication on AWS. The diagrams in Figure 8.3 contain the execution data for both
functions. We used the benchmark facility of SeMoDe again to deploy the func-
tions and trigger the first function StoreItem via HTTP. The benchmark mode was

179

8. Simulating Microservices Architecture - an Outlook

0 1000 2000 3000 4000

0
20

00
40

00
60

00
80

00

Memory Setting

M
illi

se
co

nd
s

StoreItem

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Pr
ic

e
in

 U
S

C
en

t

0 1000 2000 3000 4000

0
20

00
40

00
60

00
80

00

Memory Setting

M
illi

se
co

nd
s

StoreItem (1st invocation)

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Pr
ic

e
in

 U
S

C
en

t

0 1000 2000 3000 4000

0
50

0
10

00
15

00
20

00
25

00

Memory Setting

M
illi

se
co

nd
s

StoreItem (2nd−10th invocations)

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

Pr
ic

e
in

 U
S

C
en

t

0 1000 2000 3000 4000

0
20

00
40

00
60

00

Memory Setting

M
illi

se
co

nd
s

GeneratePDF

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
Pr

ic
e

in
 U

S
C

en
t

0 1000 2000 3000 4000

0
20

00
40

00
60

00

Memory Setting

M
illi

se
co

nd
s

GeneratePDF (1st invocation)

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Pr
ic

e
in

 U
S

C
en

t

0 1000 2000 3000 4000

0
20

0
40

0
60

0
80

0

Memory Setting

M
illi

se
co

nd
s

GeneratePDF (2nd−10th invocations)

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

Pr
ic

e
in

 U
S

C
en

t
Figure 8.3.: Execution Results for two cloud functions within a microservices architecture

at AWS Lambda. Black dots correspond to the primary y-axis and show the
execution time on AWS Lambda in milliseconds. Magenta indicates the price
per average function invocation in US cent.

set to sequentialInterval with two minutes between the requests. Every de-
ployed function was executed ten times. The matrix of diagrams in Figure 8.3 is
as follows: The first diagram in every row shows all ten requests of the corres-
ponding function whereas the other two diagrams are a subsets of the first. When
we analyzed the data, it was evident that the first invocation had a different execu-
tion behavior than the others. Therefore, only the first invocation is shown in the
middle column. The reason for this different execution behavior is that this first
invocation faced a cold start and all other invocations for every setting for both func-
tions reused an already existing cloud function instance on AWS Lambda. The last
diagram in every row shows these warm executions. For the StoreItem function,
the cold start execution behavior is comparable to our simulation. The execution
time drops but the function does not profit from resource increases normulti-core
environments in the same way as indicated by the price trend. When comparing

180

8.3. Discussion

the first invocation of the second function, similar trends as in our simulation are
present. Due to the single data point for every memory setting, these early results
need additional confirmation but it seems that the function would profit from a
resource increase also beyond the first CPU equivalent.
For the warm executions, the first conclusion of the simulation still holds: The

first function would not profit from a resource increase. However, the execution
data distribution is different. The trends show a dominant impact of the block-
ing IO call which was simulated with a sleep interval of two seconds. Loading
dependencies, establishing the connection to the database, as well as some of the
JIT compilation efforts were already performed during the first invocation. For the
second function the picture is similar. The function does profit from a resource
increase but shows amoderate price increase for higher settings which is not indic-
ated by the simulation. Here a more detailed investigation of the JIT compilation
might be beneficial in order to understand the effects on warm instances in this
specific case.

GeneratePDF (2nd−10th invocations), 4096 MB Configuration

2 4 6 8 10

0
50

10
0

15
0

20
0

Request Number

M
illi

se
co

nd
s

Figure 8.4.: Drill down of the GeneratePDF function from Figure 8.3 for the memory con-
figuration 4096 MB for warm executions.

Figure 8.4 shows the execution data of Figure 8.3 for the warm executions of
the second function with 4096 MB memory setting. The x-axis shows the request
number in chronological order. It can be seen that later invocations are faster than
previous ones until the 7th request. We assume that all hot spots are compiled and
the JIT efforts converges. For other memory settings, the distribution over time is
similar. Such optimizations, like for the Java cloud function in this example, can
also reduce the execution time and cost when the cloud function is called often
and the platform reuses instances.

8.3. Discussion

The idea of comparable execution environments to achieve dev-prod parity was
already raised a few times in this work. So far the focus has been to make the

181

8. Simulating Microservices Architecture - an Outlook

cloud function runtime and local deployment setups comparable and focus on
a single function in isolation. Since FaaS as an event driven computing model is
dependent on a plethora of other services like gateways, databases, notification sys-
tems etc., a test and in our case a simulation environment is necessary to be able
to perform local integration tests and apply our proposed simulation approach. To
achieve dev-prod parity for the complete microservice application, a local equival-
ent of every third party service is desirable. Since AWS for example has more than
200 services within its ecosystem187, there is no local equivalent nor OCI compli-
ant image available for every service. If there is no local option, the alternative
would be to use configured test instances at the cloud provider and access them
via standard protocols. However, the simulation results in these cases cloud be dis-
torted due to the round trip time when calls to database instances are performed.
In our case, we compared a local deployment within our university cluster, where
both functions and the database instance are running, to the AWS deployment in
a single region which is the fairest setup we can get.
A question that often arose in discussions of the simulation approach at con-

ferences and workshops was whether the sole focus on a single function in isol-
ation is representative for FaaS. From a use case perspective, this is not the case.
However, the data we presented in previous sections and especially in this brief
outlook show that executions of functions are independent of each other. There
are two reasons for this claim: The first aspect is the typical FaaS worker architec-
ture explained in Section 3.5 where every function instance is wrapped in a micro
VM sandbox. In the experiments in Section 7.2, there is no co-location of several
functions or function instances on a single VM. The same is true for StoreItem
functions which are deployed on unique VMs. Secondly, there is also no evidence
in the execution data that the second function is influenced by the triggered events
from Dynamo DB. This justifies the focus on a single function in prior sections of
this work and also the sequential execution of chained functions in our simulation
approach. A limitation of this outlook is our workload which triggers only a single
StoreItem function at a time which writes to the database. There is no notion of
parallel events generated by the database. If we would change the workload to have
several events at the same time triggering a function, databases might become a
bottleneck.
Another limitation of the current simulation framework is the focus on cold

starts only where the prediction of the function behavior is comprehensible but
warm executions are currently neglected. For the warm function invocations in
the included example, also the programming language and its specialties, in our
case Java with JIT compilation has to be assessed in detail. Due to different JIT
compiler and garbage collection algorithms, the results may differ.
The last aspect to discuss is the expected workload of the function which de-

termines the number of cold respectively warm starts. As elaborated in detail in
Section 7.2, different aspects like the programming language and the memory set-

187https://aws.amazon.com/what-is-aws

182

https://aws.amazon.com/what-is-aws

8.4. Future Work

ting influence the cold start time in general. When combining the insights from
this outlook with the cold start investigation, cloud functions with a predictable,
constant invocation pattern could benefit from execution environments which op-
timize the executed code as in the Java case with JIT compilation. For bursty work-
loads, another choice of programming language and a different resource config-
uration might be more appropriate.

8.4. Future Work

Further research is necessary in three aspects in order to improve the dev-prod
parity aspect for microservices architectures and the applicability of the proposed
simulation approach. Firstly, a study on test dummies respectively emulators for
third party services would support developers to choose proper local tools for in-
tegration testing. A feature comparison of these local tools should be included to
provide an understanding about the dev-prod parity property.
In its current form, the research prototype SeMoDe only simulates cold starts. As

seen in this outlook, the graphical representations give developers guidance and
are comparable with the execution data on AWS Lambda but the warm executions
are still missing. As remarked in the discussion, in some cases the invocation
workload of the function might be known and fine-tuning based on the program-
ming language used and the memory setting can lead to further performance and
cost improvements.
Finally and tightly related to the shown JIT influence on the execution behavior,

another potential improvement to be implemented in future work would be an in-
tegration of profiling support. Tools like FlameGraphs188 provide an understand-
ing of the resource consumption of a single invocation or a sequence of function
calls. These tools can also uncover unknown performance vulnerabilities within
the function implementation. It is obviously worth to look at code paths which
consume a lot of resources before refactoring the code and reduce the number of
lines of code. Since FaaS platforms implement a fine-granular pay-per-use model,
every optimization reduces cost.

188https://github.com/brendangregg/FlameGraph

183

https://github.com/brendangregg/FlameGraph

9. Conclusion

This section concludes the thesis and discusses the most important competing ap-
proaches in Section 9.1. Only those are listed which directly influenced the design
decisions made for experiments and the practical realization of the proposed sim-
ulation framework. Section 9.2 summarizes the main contributions of this thesis.
A vision is drawn for future work on how to make benchmark and simulation
approaches more comparable and reproducible.

9.1. Competing Approaches

The overall aim of the work in hand is to propose a simulation framework for
cloud functions which provides a prediction of the execution behavior on a cloud
platform during the development process of the cloud function. Based on a newly
introduced mechanism to achieve dev-prod parity, the simulation framework is
unique in its methodological approach of calibrating environments and making
them comparable. To the best of the author’s knowledge, there is no competing
approach which simulates the execution behavior locally under different resource
configurations to predict the execution behavior on a FaaS platform. Nevertheless,
there are competing approaches for benchmarking and simulations to unravel
FaaS platform mysteries. This section only includes the most relevant competing
approaches for benchmarking and simulation to stress similarities but also limita-
tions and differences. A more thorough discussion of related work was presented
in the SLRs and the corresponding related work sections in every chapter. Fur-
thermore, early ideas from related work on dev-prod parity are also included here
which are the foundations of the calibration step in this work.
There are a few important approaches found in the papers discussed in the SLR

for benchmarking in Table 4.3 which inspired our work. The identification and
documentation of executing hardware, like inGIMÉNEZ-ALVENTOSA and others [86],
is important for the data evaluation to prevent conclusions being influenced by
different hardware. Their data evaluation is particularly transparent since each
hardware configuration is depicted in a different color. Nevertheless, for some
of the evaluations in their paper, the link to the used hardware is also missing
which makes the interpretation fragile. Another important aspect for understand-
ing the deployment of cloud functions on public cloud providers is the VM iden-
tification [282]. WANG and others present a solution for all major public providers
in their work but missed to also gather the hardware information. Inspired by
these approaches, we overcame their problems of incomplete raw data by stating

185

9. Conclusion

a checklist in Section 4.2 which includes hardware and VM information. Our re-
search prototype SeMoDe is implemented to parse and collect the platform data
accordingly.
From a use case and applied function perspective, the research papers from

AGHUniversity of Science and Technology are most related to our benchmarking
efforts [79, 167, 211] and inspired the design decisions of SeMoDe. They used LIN-
PACK and a CPU intensive function to compare the different offerings of the four
public cloud providers AWS Lambda, Azure Functions, Google Cloud Functions
and IBM OpenWhisk. Their work was the predominant reason to focus on AWS
Lambda due to the consistent scaling of resources. They also inspired themeasure-
ment methodology of tying the local request-response to the platform execution
log data. However, their benchmarks were executed at a time when AWS Lambda
offered only configurations with a single core. As already remarked, resource im-
provements exceeding a single CPU are often misinterpreted as can be seen in
many publications [17, 48, 70, 72, 154, 189]. But there are also publications besides
our research papers [180, 185] which discuss multi-threaded functions for public
cloud providers [293] and another publication for open-source platforms [300]. YU
and others [293] omitted the cloud function configuration and concluded that in-
function parallelization aka multi-threading leads to an increase in execution time
compared to the single-threaded variant per se. We know from research included
in this work, that this is only the case for configurations less than a single full CPU
due to scheduling efforts when coordinating various threads. Therefore, this gen-
eral conclusion is wrong. ZHANG and others [300] stated in their abstract that “the
impact of resource allocation on function performance in serverless platform[s] is
still not clear”. When looking at their multi-threaded function experiments this
statement is surprising since functions with higher CPU settings profit propor-
tionally from the resource increase. This is always the case except for functions
which do not use more than a single CPU. These insights on resource configura-
tion and multi-threading motivated isolated experiments as well as incorporating
CPU equivalents in our simulation approach.
Considering FaaS simulation approaches, Sizeless [72] and SAAF [50] are most

closely related to our research. The approach in Sizeless requires an input data
set with function segments for different classes of problems deployed to the cloud
platform and executed for different memory settings. Given this data set, arbitrary
functions can then be analyzed and a prediction can be made if monitoring data
is available for a specific memory setting. The generation of this large data set
can be compared to the calibration introduced in this work. However, for Sizeless,
additional data is needed from the platform to predict the behavior of the function
and to select a proper resource configuration. This is a step which can be omitted
in our approach.
The Serverless ApplicationAnalytics Framework (SAAF) [50]measuresmachine

metrics like CpuSteals, pagefaults etc. to generate a detailed utilization profile for
the function and the corresponding executing hardware. Their motivation was

186

9.2. Summary

to incorporate hardware heterogeneity and effects of multi-tenancy at public pro-
viders to predict the execution behavior on different hardware for the same or an-
other public cloud provider. Their data evaluation is mainly based on a larger set
of experiments and linear regressions to compare the execution behavior of one
provider and its machine metrics to another. This allows predictions for similar
workloads on different hardware in the cloud which is a dimension we do not con-
sider in our simulation approach since a FaaS platform user has no influence on
which underlying machine a function is allocated. Nevertheless, their research on
analyzing the function and generating an utilization profile could complement our
efforts. Local simulations in the sense of understanding the execution behavior of
arbitrary functions was not part of their work.
In 2017, ARIF and others already stated that a single, scalar factor is not suffi-

cient to make different environments comparable to each other [4]. In their re-
search, they compared virtualized and bare-metal environments and gained sev-
eral findings for CPU and IO related metrics, concluding that they are not easily
comparable to each other. To achieve dev-prod parity in FaaS, a different approach
is necessary. The work on a combined benchmark and simulation approach [111]
inspired some aspects of this work. Their use case was on finding proper VM con-
figurations by extending CloudSim [36]. Their idea was to make experiments on a
public provider and map the results to another provider based onmonitoring data.
This can be seen as a first step to make different provider offerings comparable
to each other for the data points included in their benchmark. It is already an im-
provement to the scalar factor idea discussed in the previous paper. Their defined
mapping rules then result in an approximation solution for the simulations. But it
is only an approximation of the target setting since they only use monitoring data.
The restrictions on some target settings motivated us to collect calibration data
and compute linear regression models to calculate resource configurations for ar-
bitrary settings. Nevertheless, JOHNG and others [111] are still capable of running
simulations for different influential settings to find a proper VM configuration
based on their requirements. This approach is the most closely related one from
a conceptual point of view, but deals with applications, not solely functions, and
does still not provide proper configurations for arbitrary simulation settings.

9.2. Summary

The characteristics of FaaS are unique in two aspects compared to other as a Ser-
vice models. First of all, FaaS platforms offer a truly pay-as-you-go service. Only
the execution time of a cloud function instance in millisecond granularity is used
for billing a user. The other distinctive aspect is scaling on demand and especially
to zero. JONAS and others argue that FaaS platforms are one way to “Occupy the
Cloud: Distributed Computing for the 99%” [112], as they state in their paper’s
title. It sounds easy and promising, to only deploy source code to a FaaS platform
with the provider caring for the complete operations work, but there are two influ-

187

9. Conclusion

ential factors which still make this task challenging. Developers need to choose
a runtime like java17 or nodejs18.x to run their functions. When the same func-
tionality is implemented with a different language, the execution duration and
resource consumption will vary significantly [216]. The second hurdle is the al-
location of resources. In order to find the best configuration for a given set of
requirements, developers often deploy their functions with different resource set-
tings and analyze the data afterwards. This process is expensive and lengthy and
consumes additional time for the analysis and the subsequent settings update.
Furthermore, an often neglected aspect when implementing cloud functions

are multi-threaded functions. As could be seen in the course of this work, it is
however important to consider multi-threaded functions and their impact on per-
formance when allocatingmulti-core environments to the cloud function instance.
Putting all this together, the paper title of JONAS and others sounds promising to
easily implement and deploy auto-scalable functions but neglects a resource-aware
allocation of resources. Therefore, this thesis provides methods and tools to run a
cloud function in various resource settings on a developer’s machine to simulate
the expected behavior at FaaS platforms. To reach this aim, we worked on four
main contributions. These are summarized briefly in the following:
The first contribution is a conceptualization of FaaS and a disambiguation to

Serverless. When researchers, speakers, and practitioners referred to FaaS in early
publications, they often used Serverless as a synonym to describe event-driven,
stateless cloud functions which scale on demand and offer a fine-grainedmetering
of resources. This terminology usage has been adopted into language and led to a
self-reinforcing effect. To overcome this situation and provide proper definitions,
wemade a pull request on the CNCF glossary for both terms53,54 which is pending
as of the time of writing189. We hope that this contribution raises awareness within
the scientific community to use proper and precise terms. As a short summary
we agree with the majority of publications that FaaS is one form of Serverless
in a sense that the provider manages all operational tasks to provide the specific
service.
Building upon a proper terminology, the next contribution is a structured in-

vestigation of performance research in the FaaS domain. The goal of this SLR
was to understand related work in the benchmarking area and distill knowledge
for our work. It was evident after the SLR that the scientific community lacks
guidelines for documenting experiments which would allow a proper interpreta-
tion of results. This issue is confirmed by secondary studies which showed that
only three out of 26 experiments are reproducible [137], a majority of 122 papers
is not reproducible [114] or only 26% of 315 data projects published raw data [51].
Also other disciplines like digital medicine face this reproducibility crisis [261]. To
overcome this issue for the FaaS research domain, we formulated a checklist for
conducting FaaS benchmarks with a focus on documentation which is enforced
when using our research prototype SeMoDe. A current movement is trying to

189https://github.com/cncf/glossary/pull/2217

188

https://github.com/cncf/glossary/pull/2217

9.2. Summary

provide better access to documentation and research data by promoting the use
of ACM badges190 or encouraging authors to use platforms like Zenodo. Never-
theless, there is still too little reward in documenting experiments in detail and
uploading raw data. Another interesting finding during this SLR on FaaS bench-
marking was the assignment of multi-core environments to cloud functions and
the conclusions drawn in the papers. A lot of authors described an effect of con-
stant execution time for higher resource settings without clarification why this
happens [17, 48, 70, 72, 154, 189]. They missed the fact that higher configurations
exceed a single core. Only cloud functions implemented in a multi-threaded way
profit from a resource increase beyond a single core. An attempted explanation for
this blind spot in research may be the engineering and runtime characteristics of
cloud functions. As mentioned before, WOLFF introduced the term nanoservice in
his book onMicroservices [290] to distinguish a single-scoped cloud function from
a self-contained microservice. This already implies that there are various methods
running in parallel within a microservice. Assigning more computing resources
to a microservice, also beyond a single core, might be beneficial since these differ-
ent methods within the microservice are scheduled on the available cores and can
utilize increasing resources. The utilization profile from a microservice therefore
contains some noise which makes a drill-down to specific methods challenging.
Our third contribution is the methodological part of our simulation framework.

A prerequisite for our simulation experiments is tomake different execution envir-
onments comparable. This is in line with one of the Twelve-Factor app principles
i.e. dev-prod parity4. Based on an abstract computing factor, in our case GFLOPS
based on LINPACK, we suggested a new approach to artificially utilize a specific
portion of resources to understand the scaling of resources of the physical ma-
chine. In the course of this calibration work, we overcome situations where cus-
tom CPU frequency scaling algorithms, like intel_pstate, distort results. The
graphical representation of our research prototype supports developers to config-
ure their systems appropriately even if future hardware improvements produce
different kinds of cores on a single chip. Our proposed methodology produces
a regression models to compute arbitrary resource settings by equalizing regres-
sion models of two calibrated environments. We showed in experiments that this
approach can predict the execution time of similar functions on a public cloud
provider’s platform when some execution data from the target FaaS platform is
available. Our research in this regard contributes to a resource-aware allocation
of resources for public cloud provider platforms. Open source tools on the other
hand are often compared feature-wise but without performance awareness. Since
K8s is often used as a higher level of abstraction, we showed in another invest-
igation [180] that our methodology also works for K8s pods when resources are
restricted based on K8s limits.
The last contribution is of practical nature. SeMoDe assists users to make sens-

ible decisions about their cloud function configuration. Emphasis is put on the

190https://www.acm.org/publications/artifacts

189

https://www.acm.org/publications/artifacts

9. Conclusion

different CPU equivalents of the target platform and the local machine to over-
come the aforementioned misinterpretation of single respectively multi-threaded
functions. Furthermore, our trend curves add the cost dimension to the simu-
lated execution data and allow developers to understand the tradeoff between cost
and performance, i.e. execution time, when running the function locally. Further-
more, the research prototype is a tool to conduct scientific experiments and test
hypotheses like the ones included in this work which target cold start influencing
factors.
Besides future work ideas, which have already been raised in the corresponding

sections of the main part of this work, we want to propose another more generic
vision for the future of performance aware computing. Abstract computing meas-
ures like GFLOPS in our case and ACU for Microsoft Azure134 can be seen as Key
Performance Indicators (KPIs). They could support the comparability of perform-
ance research and enable researchers to distill knowledge out of several publica-
tions based on a common denominator. To provide a holistic, abstracted view of
an execution environment, also other factors like network and memory should be
considered in future research. Such an abstracted view on computing resources
based on KPIs could support efforts in green computing to make the consump-
tion of energy comparable as well which would ultimately allow the computation
of CO2 budgets for workloads.
To sum up, the thesis suggests a simulation framework for cloud functions.

Based on a newly introduced methodology to make different execution environ-
ments comparable, we are able to predict the runtime characteristics on a target
FaaS platform based on simulations with different resource assignments during
the development process. This process frees developers from the burden to deploy
their functions first, run it in production with best-effort configurations, analyze
the execution data and tweak the function and resource settings afterwards just to
start the same process again. We think that this methodology is also applicable to
other services and applications to generate profiles under different resource con-
figurations with the caveat of havingmore noise in the execution data. An example
for such a situation is the alreadymentionedmicroservice casewhere severalmeth-
ods are executed in parallel. Overall, the introduction of abstract computing meas-
ures, the compliance to documentation guidelines, and reproducibility efforts in
general make experiments and publications more comparable and robust to gain
information out of data.

190

Bibliography

[1] A. Agache, M. Brooker, A. Florescu, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization for
serverless applications,” in Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2020. (Cited on pages xi,
18, 19, 20, 21, and 151.)

[2] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: Configuring server-
less functions using statistical learning,” in Proceedings of the Conference on
Computer Communications (INFOCOM), 2020. (Cited on pages 76 and 121.)

[3] L. F. Albuquerque Jr, F. S. Ferraz, R. F. A. P. Oliveira, and S. M. L.
Galdino, “Function-as-a-Service X Platform-as-a-Service: Towards a Compar-
ative Study on FaaS and PaaS,” in Proceeding of the International Conference
on Software Engineering Advances (ICSEA), 2017. (Cited on page 4.)

[4] M. M. Arif, W. Shang, and E. Shihab, “Empirical study on the discrep-
ancy between performance testing results from virtual and physical environ-
ments,” Empirical Software Engineering, vol. 23, no. 3, pp. 1490–1518, 2017.
(Cited on pages 24, 25, 64, 124, 128, and 187.)

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Com-
puting,” Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010. (Cited
on page 4.)

[6] T. Back and V. Andrikopoulos, “Using a Microbenchmark to Compare
Function as a Service Solutions,” in Service-Oriented and Cloud Computing.
Springer International Publishing, 2018, pp. 146–160. (Cited on pages 74,
76, 77, and 123.)

[7] O. Balci, “Guidelines for successful simulation studies,” in Proceedings of the
Winter Simulation Conference (WSC), 1990. (Cited on pages 36 and 37.)

[8] ——, “Quality assessment, verification, and validation of modeling and
simulation applications,” in Proceedings of the Winter Simulation Conference
(WSC), 2004. (Cited on page 36.)

[9] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, “Serverless Comput-
ing: Current Trends and Open Problems,” in Research Advances in Cloud
Computing. Springer Singapore, 2017, pp. 1–20. (Cited on pages 41, 50, 51,
52, and 54.)

[10] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu, “The serverless trilemma: function composition

191

Bibliography

for serverless computing,” in Proceedings of the International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software - On-
ward! (ACM SIGPLAN), 2017. (Cited on pages 77 and 160.)

[11] D. Balla, M. Maliosz, and C. Simon, “Open source FaaS performance as-
pects,” in Proceedings of the International Conference on Telecommunications
and Signal Processing (TSP), 2020. (Cited on pages 64, 66, 138, and 140.)

[12] D. Balla, M. Maliosz, C. Simon, and D. Gehberger, “Tuning runtimes in
open source FaaS,” in Internet of Vehicles. Technologies and Services Toward
Smart Cities. Springer International Publishing, 2020, pp. 250–266. (Cited
on pages 11 and 66.)

[13] D. Balla, M. Maliosz, and C. Simon, “Estimating function completion time
distribution in open source FaaS,” in Proceedings of the International Confer-
ence on Cloud Networking (CloudNet), 2021. (Cited on page 66.)

[14] L. A. Barba, “Praxis of reproducible computational science,” Computing in
Science & Engineering, vol. 21, no. 1, pp. 73–78, 2019. (Cited on page 80.)

[15] ——, “12 ways to fool the masses with irreproducible results,” 2021. (Cited
on page 30.)

[16] E. Barbierato, M. Gribaudo, M. Iacono, and A. Jakóbik, “Exploiting Cloud-
Sim in a multiformalismmodeling approach for cloud based systems,” Sim-
ulation Modelling Practice and Theory, vol. 93, pp. 133–147, 2019. (Cited on
page 120.)

[17] D. Barcelona-Pons and P. García-López, “Benchmarking parallelism in faas
platforms,” Future Generation Computer Systems, vol. 124, pp. 268–284, 2021.
(Cited on pages 5, 9, 13, 60, 61, 76, 78, 81, 147, 186, and 189.)

[18] D. Bardsley, L. Ryan, and J. Howard, “Serverless Performance and Optimiza-
tion Strategies,” in Proceedings of the International Conference on Smart Cloud
(SmartCloud), 2018. (Cited on pages 42, 72, and 74.)

[19] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), 2003. (Cited
on page 19.)

[20] M. Becker and S. Chakraborty, “Measuring software performance on linux,”
arXiv e-Prints, vol. 1811.01412, 2018. (Cited on page 106.)

[21] J. Beckett, “Bios performance and power tuning guidelines for dell
poweredge 12th generation servers,” DELL, Tech. Rep., 2012. (Cited on
page 103.)

[22] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings
of the USENIX Annual Technical Conference (USENIX ATC), 2005. (Cited on
page 19.)

[23] D. Bermbach, E. Wittern, and S. Tai, Cloud Service Benchmarking. Springer
International Publishing, 2017. (Cited on pages 27, 28, 29, 30, 33, and 103.)

[24] D. Bermbach, A.-S. Karakaya, and S. Buchholz, “Using Application Know-
ledge to Reduce Cold Starts in FaaS Services,” in Proceedings of the

192

Bibliography

ACM/SIGAPP Symposium on Applied Computing (SAC), 2020. (Cited on
page 163.)

[25] D. Bernstein, “Containers and cloud: From LXC to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014. (Cited on pages xi, 22,
23, and 45.)

[26] J. Bloch, Effective Java. Addison Wesley, 2018. (Cited on page 9.)
[27] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of soft-

ware quality,” in Proceedings of the International Conference on Software Engin-
eering (ICSE), 1976. (Cited on page 36.)

[28] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Industry practices
and challenges for the evolvability assurance of microservices,” Empirical
Software Engineering, vol. 26, no. 5, 2021. (Cited on page 54.)

[29] D. Bortolini and R. R. Obelheiro, “Investigating performance and cost in
function-as-a-service platforms,” in Proceedings of Advances on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), 2019. (Cited on pages 76, 77,
79, and 81.)

[30] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Les-
sons from applying the systematic literature review process within the soft-
ware engineering domain,” Journal of Systems and Software, vol. 80, no. 4, pp.
571–583, 2007. (Cited on page 49.)

[31] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC), 2015. (Cited on pages 45
and 64.)

[32] E. Bugnion, J. Nieh, D. Tsafrir, and M. Martonosi, Hardware and Software
Support for Virtualization. Morgan & Claypool Publishers, 2017. (Cited on
pages xi, 18, and 19.)

[33] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” Communications of the ACM, vol. 59, no. 5, pp.
50–57, 2016. (Cited on page 24.)

[34] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and sim-
ulation of distributed resource management and scheduling for grid com-
puting,” Concurrency and Computation: Practice and Experience, vol. 14, no.
13-15, pp. 1175–1220, 2002. (Cited on page 120.)

[35] S. Böhm and G. Wirtz, “Profiling lightweight container platforms:microk8s
and k3s in comparison to kubernetes,” in Proceedings of the Central European
Workshop on Services and their Composition (ZEUS), 2021. (Cited on
pages 141 and 142.)

[36] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23–50, 2010. (Cited on pages 73,
120, and 187.)

193

Bibliography

[37] E. Calore, A. Gabbana, S. Schifano, and R. Tripiccione, “Software and DVFS
tuning for performance and energy-efficiency on intel KNL processors,”
Journal of Low Power Electronics and Applications, vol. 8, no. 2, p. 18, 2018.
(Cited on page 106.)

[38] L. Carvalho and A. Araujo, “Orama: A benchmark framework for function-
as-a-service,” in Proceedings of the International Conference on Cloud Comput-
ing and Services Science (CLOSER). SCITEPRESS - Science and Technology
Publications, 2022. (Cited on pages 72 and 74.)

[39] G. Casale, M. Artač, W.-J. van den Heuvel, A. van Hoorn, P. Jakovits, F. Ley-
mann, M. Long, V. Papanikolaou, D. Presenza, A. Russo, S. N. Srirama,
D. A. Tamburri, M. Wurster, and L. Zhu, “RADON: rational decomposition
and orchestration for serverless computing,” SICS Software-Intensive Cyber-
Physical Systems, vol. 35, no. 1-2, pp. 77–87, 2019. (Cited on page 71.)

[40] E. Casalicchio and V. Perciballi, “Measuring docker performance,” in Pro-
ceedings of the ACM/SPEC on International Conference on Performance Engin-
eering (ICPE), 2017. (Cited on pages 119 and 120.)

[41] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless Pro-
gramming (Function as a Service),” in Proceedings of the International Confer-
ence on Distributed Computing Systems (ICDCS), 2017. (Cited on page 4.)

[42] ——, “The rise of serverless computing,” Communications of the ACM,
vol. 62, no. 12, pp. 44–54, 2019. (Cited on pages 41, 50, 51, 52, and 53.)

[43] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi, “Measuring user
influence in twitter: The million follower fallacy,” in Proceedings of the Inter-
national AAAI Conference on Web and Social Media (ICWSM), 2010. (Cited
on page 28.)

[44] A. Chan, K.-T. A. Wang, and V. Kumar, “Balloonjvm: Dynamically resizable
heap for faas,” in Proceedings of the International Conference on Cloud Com-
puting, GRIDs, and Virtualization (CLOUD COMPUTING), 2019. (Cited
on page 57.)

[45] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart
CloudBench—a framework for evaluating cloud infrastructure perform-
ance,” Information Systems Frontiers, vol. 18, no. 3, pp. 413–428, 2015. (Cited
on page 140.)

[46] H. Choi and H. Varian, “Predicting the present with google trends,” Eco-
nomic record, vol. 88, pp. 2–9, 2012. (Cited on page 45.)

[47] V. Choudhary and J. Vithayathil, “The impact of cloud computing: Should
the IT department be organized as a cost center or a profit center?” Journal
of Management Information Systems, vol. 30, no. 2, pp. 67–100, 2013. (Cited
on page 137.)

[48] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler, “Sebs:
A serverless benchmark suite for function-as-a-service computing,” in Pro-
ceedings of the International Middleware Conference (MIDDLEWARE), 2021.
(Cited on pages 9, 60, 75, 76, 77, 186, and 189.)

194

Bibliography

[49] J. Corbet, “Seccomp and sandboxing,” Linux Weekly News, 2009, ht-
tps://lwn.net/Articles/332974/. (Cited on page 23.)

[50] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting performance and cost of
serverless computing functions with SAAF,” in Proceedings of the Intl Conf
on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive In-
telligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/Cy-
berSciTech), 2020. (Cited on pages 27, 77, 95, 103, 122, 129, 144, 152, 164,
and 186.)

[51] J. L. Couture, R. E. Blake, G. McDonald, and C. L. Ward, “A funder-imposed
data publication requirement seldom inspired data sharing,” PLOS ONE,
vol. 13, no. 7, p. e0199789, 2018. (Cited on pages 31 and 188.)

[52] A. Cuomo, M. Rak, and U. Villano, “Simulation-based performance eval-
uation of cloud applications,” in Intelligent Distributed Computing VI.
Springer Berlin Heidelberg, 2013, pp. 263–269. (Cited on pages 34, 119,
and 120.)

[53] M. Curiel and A. Pont, “Workload Generators forWeb-Based Systems: Char-
acteristics, Current Status, and Challenges,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 2, pp. 1526–1546, 2018. (Cited on page 29.)

[54] A. Dakkak, C. Li, S. G. de Gonzalo, J. Xiong, and W. mei Hwu, “TrIMS:
Transparent and isolated model sharing for low latency deep learning infer-
ence in function-as-a-service,” in Proceedings of the International Conference
on Cloud Computing (CLOUD), 2019. (Cited on page 9.)

[55] G.D’Angelo andR.D.Grande, “Guest editors’ introduction: Special issue on
simulation in (and of) the cloud,” Simulation Modelling Practice and Theory,
vol. 58, pp. 113–114, 2015. (Cited on page 120.)

[56] A. Das, S. Patterson, andM.Wittie, “EdgeBench: Benchmarking Edge Com-
puting Platforms,” in Proceedings of the Workshop on Serverless Computing
(WoSC), 2018. (Cited on pages 72 and 73.)

[57] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid cloud
scheduling for cost-efficient execution of serverless applications,” in Pro-
ceedings of the International Conference on Cloud Computing (CLOUD), 2020.
(Cited on page 138.)

[58] R. Debab and W. K. Hidouci, “Containers runtimes war: A comparat-
ive study,” in Proceedings of the Future Technologies Conference (FTC), 2021.
(Cited on pages 24 and 25.)

[59] C. Denninnart and M. A. Salehi, “Efficiency in the serverless cloud comput-
ing paradigm: A survey study,” arXiv e-Prints, vol. 2110.06508, 2021. (Cited
on pages 51, 52, and 54.)

[60] M. A. der Landwehr, M. Trott, and C. von Viebahn, “Computer simulation
as evaluation tool of information systems: Identifying quality factors of sim-
ulation modeling,” in Proceedings of the Conference on Business Informatics
(CBI), 2020. (Cited on pages 36 and 37.)

195

Bibliography

[61] C. Dhule and U. Shrawankar, “Impact analysis of hypervisors on the per-
formance of virtualized resources,” in Proceedings of Integrated Intelligence
Enable Networks and Computing (IIENC), 2021. (Cited on page 20.)

[62] G. Didier and C. Maurice, “Calibration done right: Noiseless flush + flush
attacks,” in Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer International Publishing, 2021, pp. 278–298. (Cited on page 106.)

[63] D. Didona, J. Pfefferle, N. Ioannou, B. Metzler, and A. Trivedi, “Understand-
ingmodern storage APIs,” inProceedings of the ACM International Conference
on Systems and Storage (SYSTOR), 2022. (Cited on page 106.)

[64] J. Domaschka, M. Leznik, D. Seybold, S. Eismann, J. Grohmann, and
S. Kounev, “Buzzy: Towards realistic DBMS benchmarking via tailored,
representative, synthetic workloads,” in Proceedings of the Companion of
the ACM/SPEC International Conference on Performance Engineering (ICPE),
2021. (Cited on page 28.)

[65] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK Users'
Guide. Society for Industrial and Applied Mathematics, 1979. (Cited on
pages 12, 107, 109, and 125.)

[66] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark: past,
present and future,” Concurrency and Computation: Practice and Experience,
vol. 15, no. 9, pp. 803–820, 2003. (Cited on pages 12, 107, and 125.)

[67] J. Dorn, J. Lacomis, W. Weimer, and S. Forrest, “Automatically exploring
tradeoffs between software output fidelity and energy costs,” IEEE Transac-
tions on Software Engineering, vol. 45, no. 3, pp. 219–236, 2019. (Cited on
page 106.)

[68] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Today, and Tomor-
row,” in Present and Ulterior Software Engineering. Springer International
Publishing, 2017, pp. 195–216. (Cited on page 44.)

[69] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, “Everything
as a service (XaaS) on the cloud: Origins, current and future trends,” in Pro-
ceedings of the International Conference on Cloud Computing (CLOUD), 2015.
(Cited on page 4.)

[70] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons,” in Proceedings of
the Symposium on Cloud Computing (SoCC), 2020. (Cited on pages 9, 60, 186,
and 189.)

[71] J. Eickhoff, J. Donkervliet, and A. Iosup, “Meterstick: Benchmarking per-
formance variability in cloud and self-hosted minecraft-like games extended
technical report,” arXiv e-Prints, vol. 2112.06963, 2021. (Cited on page 139.)

[72] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev,
“Sizeless,” in Proceedings of International Middleware Conference (MIDDLE-
WARE), 2021. (Cited on pages 9, 60, 76, 121, 122, 131, 159, 186, and 189.)

[73] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst,
C. L. Abad, and A. Iosup, “Serverless applications: Why, when, and how?”

196

Bibliography

IEEE Software, vol. 38, no. 1, pp. 32–39, 2021. (Cited on pages 42 and 43.)
[74] A. Eivy, “BeWary of the Economics of “Serverless” Cloud Computing,” IEEE

Cloud Computing, vol. 4, no. 2, pp. 6–12, 2017. (Cited on pages 69 and 117.)
[75] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, “Performance evaluation

of container runtimes,” in Proceedings of International Conference on Cloud
Computing and Services Science (CLOSER), 2020. (Cited on pages xi, 22, 24,
and 25.)

[76] F. Fakhfakh, H. H. Kacem, and A. H. Kacem, “Simulation tools for cloud
computing: A survey and comparative study,” in Proceedings of the Interna-
tional Conference on Computer and Information Science (ICIS), 2017. (Cited
on page 120.)

[77] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the paral-
lel workloads archive,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2967–2982, 2014. (Cited on page 28.)

[78] D. Fernández-Cerero, A. Fernández-Montes, A. Jakóbik, J. Kołodziej, and
M. Toro, “SCORE: Simulator for cloud optimization of resources and energy
consumption,” Simulation Modelling Practice and Theory, vol. 82, pp. 160–
173, 2018. (Cited on page 120.)

[79] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, “Performance
evaluation of heterogeneous cloud functions,”Concurrency andComputation:
Practice and Experience, p. e4792, 2018. (Cited on pages 5, 76, 79, 149, 173,
and 186.)

[80] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the Cloud: What It Should, Can, and Cannot Be,” in
Proceedings of the Technology Conference on Performance Evaluation and Bench-
marking (TPCTC), 2013. (Cited on pages 28 and 29.)

[81] B. Full, J. Manner, S. Böhm, and G. Wirtz, “MicroStream vs. JPA: An empir-
ical investigation,” in Service-Oriented Computing. Springer International
Publishing, 2022, pp. 99–118. (Cited on pages 31 and 32.)

[82] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “How low can you go?
a limbo dance for low-latency network functions,” Journal of Network and
Systems Management, vol. 31, no. 1, 2022. (Cited on page 106.)

[83] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen,
F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu,
J. Padilla, and C. Delimitrou, “An open-source benchmark suite for mi-
croservices and their hardware-software implications for cloud & edge sys-
tems,” in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019. (Cited
on pages 72 and 74.)

[84] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native applications,” IEEE
Cloud Computing, vol. 4, no. 5, pp. 16–21, 2017. (Cited on pages 51 and 52.)

197

Bibliography

[85] A. U. Gias, A. vanHoorn, L. Zhu, G. Casale, T. F. Düllmann, andM.Wurster,
“Performance engineering for microservices and serverless applications:
The RADON approach,” in Proceedings of the Companion of the ACM/SPEC
International Conference on Performance Engineering (ICPE), 2020. (Cited on
pages 72 and 74.)

[86] V. Giménez-Alventosa, G. Moltó, and M. Caballer, “A framework and a per-
formance assessment for serverless MapReduce on AWS Lambda,” Future
Generation Computer Systems, vol. 97, pp. 259–274, 2019. (Cited on pages 76,
77, 129, 144, and 185.)

[87] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, and D. Holmes, Java Concurrency
in Practice. Pearson Education (US), 2006. (Cited on page 9.)

[88] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 6,
pp. 34–45, 1974. (Cited on page 18.)

[89] C. Gough, I. Steiner, and W. Saunders, “Operating systems,” in Energy Effi-
cient Servers. Apress, 2015, pp. 173–207. (Cited on page 105.)

[90] H. Govind andH.GonzaleznVelez, “Benchmarking serverless workloads on
kubernetes,” in Proceedings of the International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), 2021. (Cited on pages 72 and 73.)

[91] M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao, and
D. Bermbach, “Befaas: An application-centric benchmarking framework for
faas platforms,” arXiv e-Prints, vol. 2102.12770, 2021. (Cited on pages 75, 76,
and 77.)

[92] S. Gravani, M. Hedayati, J. Criswell, and M. L. Scott, “Fast intra-kernel isola-
tion and security with IskiOS,” in Proceedings of the International Symposium
on Research in Attacks, Intrusions and Defenses (RAID), 2021. (Cited on
page 106.)

[93] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption, sup-
port, and challenges of infrastructure-as-code: Insights from industry,” in
Proceedings of the International Conference on Software Maintenance and Evol-
ution (ICSME), 2019. (Cited on page 47.)

[94] I. Habib, “Virtualization with kvm,” Linux Journal, vol. 2008, no. 166, 2008.
(Cited on page 20.)

[95] R. Hancock, S. Udayashankar, A. J. Mashtizadeh, and S. Al-Kiswany, “Or-
cbench: A representative serverless benchmark,” in Proceedings of the Inter-
national Conference on Cloud Computing (CLOUD), 2022. (Cited on pages 72
and 74.)

[96] R. Hartauer, J. Manner, and G. Wirtz, “Cloud function lifecycle considera-
tions for portability in function as a service,” in Proceedings of the Interna-
tional Conference on Cloud Computing and Services Science (CLOSER), 2022.
(Cited on pages 7, 8, 33, 54, and 94.)

[97] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on serverless com-
puting,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1–29, 2021. (Cited on
pages 41, 51, 52, 54, 55, 56, 57, and 66.)

198

Bibliography

[98] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti,
A. Tumanov, and C. Wu, “Serverless Computing: One Step Forward, Two
Steps Back,” in Proceedings of the Conference on Innovative Data Systems Re-
search (CIDR), 2019. (Cited on pages 42, 51, 52, and 54.)

[99] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Serverless Computation with open-
Lambda,” in Proceedings of the USENIX Conference on Hot Topics in Cloud
Computing (HOTCLOUD), 2016. (Cited on page 63.)

[100] M. Horikoshi, L. Meadows, T. Elken, P. Sivakumar, E. Mascarenhas, J. Er-
win, D. Durnov, A. Sannikov, T. Hanawa, and T. Boku, “Scaling collectives
on large clusters using intel(r) architecture processors and fabric,” in Pro-
ceedings of theWorkshops of HPCAsia (HPCASIA), 2018. (Cited on page 106.)

[101] S. Horovitz, R. Amos, O. Baruch, T. Cohen, T. Oyar, and A. Deri, “FaaSt-
est - machine learning based cost and performance FaaS optimization,” in
Economics of Grids, Clouds, Systems, and Services. Springer International
Publishing, 2019, pp. 171–186. (Cited on page 122.)

[102] M. HoseinyFarahabady, Y. C. Lee, A. Y. Zomaya, and Z. Tari, “A QoS-Aware
Resource Allocation Controller for Function as a Service (FaaS) Platform,” in
Service-Oriented Computing. Springer International Publishing, 2017, pp.
241–255. (Cited on page 138.)

[103] K. Huppler, “The Art of Building a Good Benchmark,” in Proceedings of
the Performance Evaluation and Benchmarking (TPCTC), 2009. (Cited on
pages 29, 30, 31, 32, 33, and 173.)

[104] ITU-T Rec. X.902, International TelecommunicationUnion (ITU) Std., 1995.
(Cited on page 138.)

[105] A. Iosup, R. Prodan, and D. Epema, “IaaS Cloud Benchmarking: Ap-
proaches, Challenges, and Experience,” in Proceedings of the Workshop on
Many-Task Computing on Grids and Supercomputers (MTAGS), 2012. (Cited
on pages 26 and 28.)

[106] A. Ismail, “Energy-driven cloud simulation: existing surveys, simulation
supports, impacts and challenges,” Cluster Computing, vol. 23, no. 4, pp.
3039–3055, 2020. (Cited on page 120.)

[107] D. Jackson and G. Clynch, “An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions,” in Pro-
ceedings of the Workshop on Serverless Computing (WoSC), 2018. (Cited on
pages 75, 76, and 81.)

[108] A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal foundations of
serverless computing,” Proceedings of the ACM on Programming Languages,
vol. 3, no. OOPSLA, pp. 1–26, 2019. (Cited on pages 41, 51, 52, 53, and 54.)

[109] H. Jeon, C. Cho, S. Shin, and S. Yoon, “A CloudSim-extension for simu-
lating distributed functions-as-a-service,” in Proceedings of the International
Conference on Parallel and Distributed Computing, Applications and Technolo-
gies (PDCAT), 2019. (Cited on pages 72, 73, and 121.)

199

Bibliography

[110] Z. Jin, Y. Zhu, J. Zhu, D. Yu, C. Li, R. Chen, I. E. Akkus, and Y. Xu, “Les-
sons learned from migrating complex stateful applications onto serverless
platforms,” in Proceedings of the ACM SIGOPS Asia-Pacific Workshop on Sys-
tems (APSYS), 2021. (Cited on page 9.)

[111] H. Johng, D. Kim, T. Hill, and L. Chung, “Estimating the Performance of
Cloud-Based Systems Using Benchmarking and Simulation in a Comple-
mentary Manner,” in Proceedings of the International Conference on Service-
Oriented Computing (ICSOC), C. Pahl, M. Vukovic, J. Yin, and Q. Yu, Eds.
Cham: Springer International Publishing, 2018, pp. 576–591. (Cited on
pages 120 and 187.)

[112] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the Cloud:
Distributed Computing for the 99%,” arXiv e-Prints, vol. 1702.04024, 2017.
(Cited on pages 42, 78, 123, 131, and 187.)

[113] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. A.
Popa, I. Stoica, and D. A. Patterson, “Cloud Programming Simplified: A
Berkeley View on Serverless Computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2019-3, 2019. (Cited on pages 4,
11, 41, 42, 50, 51, 52, 54, 64, and 118.)

[114] T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable time,” in
Proceedings of the International Symposium on Memory Management (ISMM),
2013. (Cited on pages 30, 128, and 188.)

[115] C. Kaner and W. P. Bond, “Software engineering metrics: What do they
measure and how do we know?” in Proceedings of the International Software
Metrics Symposium (METRICS), 2004. (Cited on page 27.)

[116] K.-D. Kang, G. Park, H. Kim, M. Alian, N. S. Kim, and D. Kim, “NMAP:
Power management based on network packet processing mode transition
for latency-critical workloads,” in Proceedings of the Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), 2021. (Cited on
page 106.)

[117] M. Karpowicz, E. Niewiadomska-Szynkiewicz, P. Arabas, and A. Sikora, “En-
ergy and power efficiency in cloud,” in Computer Communications and Net-
works. Springer International Publishing, 2016, pp. 97–127. (Cited on
page 105.)

[118] N. Kaviani, D. Kalinin, and M. Maximilien, “Towards serverless as com-
modity,” in Proceedings of the International Workshop on Serverless Computing
(WoSC), 2019. (Cited on page 64.)

[119] S. Kehrer, J. Scheffold, and W. Blochinger, “Serverless skeletons for elastic
parallel processing,” in Proceedings of the International Conference on Big Data
Intelligence and Computing (DATACOM), 2019. (Cited on page 9.)

[120] W. Kiess andM. Mauve, “A survey on real-world implementations of mobile
ad-hoc networks,” Ad Hoc Networks, vol. 5, no. 3, pp. 324–339, 2007. (Cited
on page 38.)

200

Bibliography

[121] J. Kim andK. Lee, “FunctionBench: A suite of workloads for serverless cloud
function service,” in Proceedings of the International Conference on Cloud Com-
puting (CLOUD), 2019. (Cited on pages 75, 76, and 125.)

[122] ——, “Practical cloud workloads for serverless FaaS,” in Proceedings of the
ACM Symposium on Cloud Computing (SoCC), 2019. (Cited on page 76.)

[123] J. Kim, J. Park, and K. Lee, “Network resource isolation in serverless cloud
function service,” in Proceedings of the International Workshops on Founda-
tions and Applications of Self* Systems (FAS*W), 2019. (Cited on page 75.)

[124] B. Kitchenham and S. Charters, “Guidelines for performing systematic liter-
ature reviews in software engineering,” Keele University, Keele,UK and Uni-
versity of Durham, UK, Tech. Rep. EBSE-2007-01, 2007. (Cited on page 42.)

[125] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the linux
virtual machine monitor,” in In Proceedings of the Linux Symposium, 2007.
(Cited on page 20.)

[126] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V. Zolotarov,
“Osv: Optimizing the operating system for virtual machines,” in Proceedings
of the USENIX Conference on USENIX Annual Technical Conference (USENIX
ATC), 2014. (Cited on page 21.)

[127] L. Klaver, T. van der Knaap, J. van der Geest, E. Harmsma, B. van der Waaij,
and P. Pileggi, “Towards independent run-time cloud monitoring,” in Pro-
ceedings of the Companion of the ACM/SPEC International Conference on Per-
formance Engineering (ICPE), 2021. (Cited on page 54.)

[128] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-level sim-
ulator of energy-aware cloud computing data centers,” The Journal of Super-
computing, vol. 62, no. 3, pp. 1263–1283, 2010. (Cited on page 120.)

[129] G. Kochhar and N. Dandapanthula, “Optimal bios settings for hpc with dell
poweredge 12th generation servers,” Dell Inc., Tech. Rep., 2012. (Cited on
page 103.)

[130] S. Kolb, On the Portability of Applications in Platform as a Service. Bamberg
University Press, 2019. (Cited on pages xi, 49, and 56.)

[131] A. Koschel, S. Klassen, K. Jdiya, M. Schaaf, and I. Astrova, “Cloud comput-
ing: Serverless,” in Proceedings of the International Conference on Information,
Intelligence, Systems & Applications (IISA), 2021. (Cited on pages 50, 51, 52,
and 54.)

[132] S. Kounev, K.-D. Lange, and J. von Kistowski, Systems Benchmarking.
Springer International Publishing, 2020. (Cited on page 26.)

[133] S. Kounev, C. Abad, I. T. Foster, N. Herbst, A. Iosup, S. Al-Kiswany, A. A.-E.
Hassan, B. Balis, A. Bauer, A. B. Bondi, K. Chard, R. L. Chard, R. Chatley,
A. A. Chien, A. J. J. Davis, J. Donkervliet, S. Eismann, E. Elmroth, N. Ferrier,
H.-A. Jacobsen, P. Jamshidi, G. Kousiouris, P. Leitner, P. G. Lopez, M. Mag-
gio, M. Malawski, B. Metzler, V. Muthusamy, A. V. Papadopoulos, P. Patros,
G. Pierre, O. F. Rana, R. P. Ricci, J. Scheuner, M. Sedaghat, M. Shahrad,
P. Shenoy, J. Spillner, D. Taibi, D. Thain, A. Trivedi, A. Uta, V. van Beek,

201

Bibliography

E. van Eyk, A. van Hoorn, S. Vasani, F. Wamser, G. Wirtz, and V. Yus-
supov, “Toward a Definition for Serverless Computing,” in Serverless Com-
puting (Dagstuhl Seminar 21201). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021, vol. 11, pp. 89–91. (Cited on pages xi, 50, 51, 52, 54,
and 56.)

[134] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of container-
based technologies for the cloud,” Future Generation Computer Systems,
vol. 68, pp. 175–182, 2017. (Cited on pages 24 and 25.)

[135] N. Kratzke and R. Siegfried, “Towards cloud-native simulations – les-
sons learned from the front-line of cloud computing,” The Journal of De-
fense Modeling and Simulation: Applications, Methodology, Technology, p.
154851291989532, 2020. (Cited on pages 36 and 121.)

[136] K. Kritikos and P. Skrzypek, “Simulation-as-a-Service with Serverless Com-
puting,” in Proceedings of the IEEE World Congress on Services (SERVICES),
2019. (Cited on pages 72, 74, 118, and 121.)

[137] J. Kuhlenkamp and S. Werner, “Benchmarking FaaS Platforms: Call for
Community Participation,” in Proceedings of the Workshop on Serverless Com-
puting (WoSC), 2018. (Cited on pages 11, 30, 43, 71, 72, 75, and 188.)

[138] J. Kuhlenkamp, S.Werner, M. C. Borges, K. E. Tal, and S. Tai, “An evaluation
of FaaS platforms as a foundation for serverless big data processing,” in Pro-
ceedings of IEEE/ACM International Conference on Utility and Cloud Comput-
ing (UCC), 2019. (Cited on pages 12 and 75.)

[139] J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, and D. Wenzel, “Bench-
marking elasticity of FaaS platforms as a foundation for objective-driven
design of serverless applications,” in Proceedings of the Annual ACM Sym-
posium on Applied Computing (SAC), 2020. (Cited on pages 74, 76, 78,
and 81.)

[140] M. Kumar, S. S. Sran, L. Kaur, and J. Singh, “Thermal aware learning
based CPU governor,” Concurrency and Computation: Practice and Experi-
ence, vol. 34, no. 11, 2022. (Cited on page 106.)

[141] A. Kuntsevich, P. Nasirifard, andH.-A. Jacobsen, “A distributed analysis and
benchmarking framework for apache OpenWhisk serverless platform,” in
Proceedings of the InternationalMiddleware Conference (MIDDLEWARE, 2018.
(Cited on pages 75, 76, and 81.)

[142] H.-C. Kuo, D. Williams, R. Koller, and S. Mohan, “A linux in unikernel
clothing,” in Proceedings of the European Conference on Computer Systems
(EUROSYS), 2020. (Cited on page 21.)

[143] J. Lambert, R. Monahan, and K. Casey, “Accidental choices—how jvm
choice and associated build tools affect interpreter performance,”Computers,
vol. 11, no. 6, p. 96, 2022. (Cited on page 81.)

[144] A. Law, Simulation Modeling and Analysis. MCGRAW HILL BOOK CO,
2014. (Cited on pages 36 and 37.)

202

Bibliography

[145] H. Lee, K. Satyam, and G. C. Fox, “Evaluation of Production Serverless
Computing Environments,” in Proceedings of the International Conference on
Cloud Computing (CLOUD), 2018. (Cited on pages 14, 76, 78, 125, 160, 162,
and 164.)

[146] W. Lehner and K.-U. Sattler, “Database as a service (DBaaS),” in Proceedings
of the International Conference on Data Engineering (ICDE), 2010. (Cited on
page 4.)

[147] P. Leitner and J. Cito, “Patterns in the Chaos—A Study of Performance Vari-
ation and Predictability in Public IaaS Clouds,”ACMTransactions on Internet
Technology, vol. 16, no. 3, pp. 1–23, 2016. (Cited on pages 24 and 25.)

[148] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method empir-
ical study of function-as-a-service software development in industrial prac-
tice,” Journal of Systems and Software, vol. 149, pp. 340–359, 2019. (Cited on
pages 9, 41, 51, 52, and 55.)

[149] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Understanding open
source serverless platforms,” in Proceedings of the International Workshop on
Serverless Computing (WoSC), 2019. (Cited on pages 54, 64, 66, 138, and 140.)

[150] ——, “Analyzing open-source serverless platforms: Characteristics and per-
formance,” arXiv e-Prints, vol. 2106.03601, 2021. (Cited on page 66.)

[151] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance overhead compar-
ison between hypervisor and container based virtualization,” arXiv e-Prints,
vol. 1708.01388, 2017. (Cited on pages 24 and 25.)

[152] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless com-
puting survey: A technical primer for design architecture,” ACM Comput.
Surv., vol. 54, no. 10s, p. 220, 2022. (Cited on pages 50, 51, 52, and 54.)

[153] D. J. Lilja, Measuring Computer Performance. Cambridge University Press,
2000. (Cited on pages 27 and 102.)

[154] C. Lin and H. Khazaei, “Modeling and optimization of performance and
cost of serverless applications,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 3, pp. 615–632, 2021. (Cited on pages 9, 60, 76, 78, 122,
131, 186, and 189.)

[155] P.-M. Lin and A. Glikson, “Mitigating Cold Starts in Serverless Platforms:
A Pool-Based Approach,” arXiv e-Prints, vol. 1903.12221v1, 2019. (Cited on
page 163.)

[156] Y. Lin, K. Ye, Y. Li, P. Lin, Y. Tang, and C. Xu, “BBServerless: A bursty traffic
benchmark for serverless,” in Proceedings of Cloud Computing, Held as Part
of the Services Conference Federation (SCF), 2021. (Cited on pages 72 and 73.)

[157] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less Computing: An Investigation of Factors Influencing Microservice Per-
formance,” in Proceedings of the International Conference on Cloud Engineering
(IC2E), 2018. (Cited on pages 14, 65, 76, 78, 81, and 163.)

[158] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving Applica-
tion Migration to Serverless Computing Platforms: Latency Mitigation with

203

Bibliography

Keep-Alive Workloads,” in Proceedings of the Workshop on Serverless Comput-
ing (WoSC), 2018. (Cited on page 163.)

[159] P. G. Lopez, A. Slominski, M. Behrendt, and B. Metzler, “Serverless predic-
tions: 2021-2030,” arXiv e-Prints, vol. 2104.03075, 2021. (Cited on page 42.)

[160] P. Lorenc and M. Woda, “IaaS vs. traditional hosting for web applications -
cost effectiveness analysis for a local market,” in Advances in Dependability
Engineering of Complex Systems. Springer International Publishing, 2017,
pp. 233–243. (Cited on page 139.)

[161] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A Preliminary Review of
Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms,”
in Proceedings of the International Conference on Cloud Computing Technology
and Science (CloudCom), 2017. (Cited on pages 51, 52, 53, 54, 160, and 161.)

[162] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing,” in Proceedings of the Sym-
posium on Operating Systems Principles (SOSP), 2015. (Cited on pages 35
and 119.)

[163] C. A. Mack, “Fifty years of moore's law,” IEEE Transactions on Semiconductor
Manufacturing, vol. 24, no. 2, pp. 202–207, 2011. (Cited on page 17.)

[164] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire,
S. Smith, S. Hand, and J. Crowcroft, “Unikernels,” ACM SIGARCH Com-
puter Architecture News, vol. 41, no. 1, pp. 461–472, 2013. (Cited on page 21.)

[165] N. Mahmoudi and H. Khazaei, “Simfaas: A performance simulator for
serverless computing platforms,” in Proceedings of the International Confer-
ence on Cloud Computing and Services Science (CLOSER), 2021. (Cited on
pages 76, 88, and 121.)

[166] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “Faasdom: A benchmark
suite for serverless computing,” in Proceedings of the International Conference
on Distributed and Event-based Systems (DEBS), 2020. (Cited on pages 76, 77,
and 80.)

[167] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking Heterogen-
eous Cloud Functions,” in Proceedings of the Parallel Processing Workshops
(EURO-PAR), 2017. (Cited on pages 11, 74, 76, 79, 80, 125, 126, and 186.)

[168] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless exe-
cution of scientific workflows: Experiments with HyperFlow, AWS lambda
and google cloud functions,” Future Generation Computer Systems, vol. 110,
pp. 502–514, 2020. (Cited on pages 72 and 74.)

[169] S. Malla and K. Christensen, “HPC in the cloud: Performance comparison
of function as a service (FaaS) vs infrastructure as a service (IaaS),” Internet
Technology Letters, vol. 3, no. 1, p. e137, 2019. (Cited on pages 72 and 74.)

[170] A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on resource
management in serverless computing environments: Taxonomy and future
directions,” arXiv e-Prints, vol. 2105.11592, 2021. (Cited on page 138.)

[171] ——, “Deadline-aware dynamic resource management in serverless com-
puting environments,” in Proceedings of the 21st International Symposium on

204

Bibliography

Cluster, Cloud and Internet Computing (CCGrid), 2021. (Cited on page 138.)
[172] ——, “A holistic view on resource management in serverless computing

environments: Taxonomy and future directions,” ACM Computing Surveys,
vol. 54, no. 11s, 2022. (Cited on pages 41, 51, 52, 54, 56, and 80.)

[173] J. Manner, “Towards Performance and Cost Simulation in Function as a Ser-
vice,” in Proceedings of the Central European Workshop on Services and their
Composition (ZEUS), 2019. (Cited on pages 4, 7, 8, and 9.)

[174] ——, “SeMoDe – simulation and benchmarking pipeline for function as a
service,” in Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik. Otto-Friedrich-University, 2021, no. 105. (Cited on pages 3, 7,
8, 11, 13, 43, 57, 69, 101, 117, and 155.)

[175] ——, “A structured literature review approach to defineserverless comput-
ing and function as a service,” in Proceedings of the International Conference
on Cloud Computing (CLOUD), 2023. (Cited on pages 7, 8, and 41.)

[176] ——, “A simulation framework for function as a service: Supporting mater-
ials,” 10.5281/zenodo.7447912, 2023. (Cited on pages 3, 61, 69, and 167.)

[177] ——, “Structured literature review for a conceptualization of function as a
service,” 10.5281/zenodo.7671234, 2023. (Cited on pages 43 and 49.)

[178] J. Manner and S. Böhm, “Lecture notes : Concurrency topics in java,” in
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik.
Otto-Friedrich-University, 2022, no. 106. (Cited on page 9.)

[179] J. Manner and G. Wirtz, “Impact of Application Load in Function as a Ser-
vice,” in Proceedings of the Symposium and Summer School On Service-Oriented
Computing (SUMMERSOC), 2019. (Cited on pages 7, 8, 79, 81, 87, 121,
and 122.)

[180] ——, “Resource scaling strategies for open-source faas platforms compared
to commercial cloud offerings,” in Proceedings of the International Conference
on Cloud Computing (CLOUD), 2022. (Cited on pages 3, 7, 8, 11, 27, 28, 29,
36, 41, 54, 62, 66, 71, 73, 95, 117, 155, 186, and 189.)

[181] ——, “Why many benchmarks might be compromised,” in Proceedings of
the International Conference on Service-Oriented System Engineering (SOSE),
2021. (Cited on pages 7, 8, 101, 103, and 117.)

[182] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold Start Influencing
Factors in Function as a Service,” in Proceedings of the Workshop on Serverless
Computing (WoSC), 2018. (Cited on pages 3, 7, 8, 12, 14, 15, 69, 75, 81, 125,
131, 145, 155, and 160.)

[183] J. Manner, S. Kolb, and G. Wirtz, “Troubleshooting serverless functions:
a combined monitoring and debugging approach,” SICS Software-Intensive
Cyber-Physical Systems, vol. 34, no. 2-3, pp. 99–104, 2019. (Cited on pages 7,
8, 34, and 119.)

[184] J. Manner, S. Haarmann, S. Kolb, and O. Kopp, Eds., ZEUS 2020 - European
Workshop on Services and their Composition. CEURWorkshop Proceedings,
2020. (Cited on page 10.)

205

Bibliography

[185] J. Manner, M. Endreß, S. Böhm, and G. Wirtz, “Optimizing cloud function
configuration via local simulations,” in Proceedings of the International Con-
ference on Cloud Computing (CLOUD), 2021. (Cited on pages 3, 7, 8, 12, 17,
27, 36, 41, 60, 62, 69, 75, 77, 79, 80, 81, 82, 117, 138, 155, and 186.)

[186] J. Manner, S. Haarmann, S. Kolb, N. Herzberg, and O. Kopp, Eds., ZEUS
2021 - European Workshop on Services and their Composition. CEUR Work-
shop Proceedings, 2021. (Cited on pages 10 and 80.)

[187] J. Manner, D. Lübke, S. Haarmann, S. Kolb, N. Herzberg, and O. Kopp, Eds.,
ZEUS 2022 - European Workshop on Services and their Composition. CEUR
Workshop Proceedings, 2022. (Cited on page 10.)

[188] E. Marin, D. Perino, and R. Di Pietro, “Serverless computing: a security per-
spective,” Journal of Cloud Computing, vol. 11, no. 1, pp. 1–12, 2022. (Cited
on pages 51, 52, 54, and 64.)

[189] H. Martins, F. Araujo, and P. R. da Cunha, “Benchmarking serverless com-
puting platforms,” Journal of Grid Computing, vol. 18, no. 4, pp. 691–709,
2020. (Cited on pages 9, 60, 74, 75, 76, 79, 81, 186, and 189.)

[190] G. McGrath and P. R. Brenner, “Serverless Computing: Design, Implement-
ation, and Performance,” in Proceedings of the International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW), 2017. (Cited on pages 72
and 74.)

[191] I. McGregor, “The relationship between simulation and emulation,” in Pro-
ceedings of theWinter Simulation Conference (WSC), 2002. (Cited on page 38.)

[192] P. Mell and T. Grance, “The NIST definition of cloud computing,” Na-
tional Institute of Standards and Technology, Gaithersburg, Tech. Rep., 2011.
(Cited on pages 3, 4, 42, 48, and 137.)

[193] D. Merkel, “Docker: Lightweight linux containers for consistent develop-
ment and deployment,” Linux Journal, vol. 2014, no. 239, 2014. (Cited on
page 23.)

[194] G. Merlino, D. Bruneo, S. Distefano, F. Longo, and A. Puliafito,
“Stack4things: Integrating IoT with OpenStack in a smart city context,” in
Proceedings of the International Conference on Smart Computing Workshops
(SMARTCOMP), 2014. (Cited on page 137.)

[195] P. Mieden and P. Partarrieu, “Performance analysis of kvm-based
microvmsorchestrated by firecracker and qemu,” 2019, Security and
Network Engineering, University of Amsterdam, The Netherlands. [Online].
Available: https://dreadl0ck.net/papers/Firebench.pdf (Cited on page 21.)

[196] A.Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov,
“Agile cold starts for scalable serverless,” in Proceedings of the Workshop on
Hot Topics in Cloud Computing (HOTCLOUD), 2019. (Cited on page 162.)

[197] S. K. Mohanty, G. Premsankar, and M. di Francesco, “An evaluation of open
source serverless computing frameworks,” in Proceedings of the International
Conference on Cloud Computing Technology and Science (CloudCom), 2018.
(Cited on pages 54, 66, 72, 73, 138, and 140.)

206

https://dreadl0ck.net/papers/Firebench.pdf

Bibliography

[198] D. A. Molnar and S. E. Schechter, “Self hosting vs. cloud hosting: Account-
ing for the security impact of hosting in the cloud,” in Proc. of WEIS, 2010.
(Cited on page 139.)

[199] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. Lightweight Vir-
tualization: A Performance Comparison,” in Proceedings of the International
Conference on Cloud Engineering (IC2E), 2015. (Cited on pages 24 and 25.)

[200] M. Moravcik, P. Segec, M. Kontsek, J. Uramova, and J. Papan, “Comparison
of LXC and docker technologies,” in Proceedings of the International Con-
ference on Emerging eLearning Technologies and Applications (ICETA), 2020.
(Cited on page 23.)

[201] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri, “Shadow pro-
filing: Hiding instrumentation costs with parallelism,” in Proceedings of the
International Symposium on Code Generation and Optimization (CGO), 2007.
(Cited on pages 34 and 119.)

[202] S. Newmann, Building Microservices. O’Reilly UK Ltd., 2016. (Cited on
page 44.)

[203] K. L. Ngo, J. Mukherjee, Z. M. Jiang, and M. Litoiu, “Evaluating the scalab-
ility and elasticity of function as a service platform,” in Proceedings of the
ACM/SPEC on International Conference on Performance Engineering (ICPE),
2022. (Cited on pages 41, 51, 52, and 54.)

[204] T. L. Nguyen andA. Lebre, “Virtualmachine boot timemodel,” inProceedings
of the Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP), 2017. (Cited on page 21.)

[205] F. A. Oliveira, S. Suneja, S. Nadgowda, P. Nagpurkar, and C. Isci, “A
cloud-native monitoring and analytics framework,” IBM Research Division
Thomas J. Watson Research Center, Tech. Rep. RC25669 (WAT1710-006),
2017. (Cited on pages 119 and 120.)

[206] J. O’Loughlin and L. Gillam, “Performance evaluation for cost-efficient pub-
lic infrastructure cloud use,” in Economics of Grids, Clouds, Systems, and Ser-
vices. Springer International Publishing, 2014, pp. 133–145. (Cited on
pages 77, 95, 103, 129, 144, 152, and 164.)

[207] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source server-
less computing frameworks support at the edge,” in Proceedings of the IEEE
World Congress on Services (SERVICES), 2019. (Cited on pages 54, 56, 138,
and 140.)

[208] S. C. Palepu, D. Chahal, M. Ramesh, and R. Singhal, “Benchmarking the
data layer across serverless platforms,” inProceedings of theWorkshop onHigh
Performance Serverless Computing (HiPS), 2022. (Cited on pages 72 and 74.)

[209] M. Papoutsoglou, G. M. Kapitsaki, D. German, and L. Angelis, “An analysis
of open source software licensing questions in stack exchange sites,” arXiv
e-Prints, vol. 2110.00361, 2021. (Cited on page 137.)

[210] M. Patrou, J. M. Baird, K. B. Kent, and M. Dawson, “Software evaluation
methodology of node.js parallelism under variabilities in scalable systems,”

207

Bibliography

in Proceedings of the Annual International Conference on Computer Science and
Software Engineering (CASCON), 2020. (Cited on page 105.)

[211] M. Pawlik, K. Figiela, and M. Malawski, “Performance evaluation of paral-
lel cloud functions,” in Proceedings of the International Conference on Parallel
Processing (ICPP), 2018. (Cited on pages 76, 79, and 186.)

[212] K. Pawlikowski, H.-D. Jeong, and J.-S. Lee, “On credibility of simulation
studies of telecommunication networks,” IEEE Communications Magazine,
vol. 40, no. 1, pp. 132–139, 2002. (Cited on page 37.)

[213] I. Pelle, J. Czentye, J. Doka, and B. Sonkoly, “Towards latency sensitive cloud
native applications: A performance study onAWS,” inProceedings of the Inter-
national Conference on Cloud Computing (CLOUD), 2019. (Cited on pages 12,
75, 77, 95, 129, 144, and 164.)

[214] R. Pellegrini, I. Ivkic, and M. Tauber, “Function-as-a-Service Benchmarking
Framework,” in Proceedings of the International Conference on Cloud Comput-
ing and Services Science (CLOSER), 2019. (Cited on pages 76 and 79.)

[215] N. Pemberton and J. Schleier-Smith, “The serverless data center: Hardware
disaggregation meets serverless computing,” in Proceedings of the Workshop
on Resource Disaggregation (WORDS), 2019. (Cited on page 42.)

[216] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and
J. Saraiva, “Energy efficiency across programming languages: how do en-
ergy, time, and memory relate?” in Proceedings of the ACM SIGPLAN Inter-
national Conference on Software Language Engineering (SLE), 2017. (Cited on
pages 169 and 188.)

[217] T. Pfandzelter and D. Bermbach, “tinyfaas: A lightweight faas platform for
edge environments,” in Proceedings of the IEEE International Conference on
Fog Computing (ICFC), 2020. (Cited on page 77.)

[218] A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems in light-
weight virtualized environments with logs and resourcemetrics,” in Proceed-
ings of the International Symposium on High-Performance Parallel and Distrib-
uted Computing (HPDC), 2018. (Cited on pages 35, 119, and 120.)

[219] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “A framework
and algorithm for energy efficient container consolidation in cloud data cen-
ters,” in Proceedings of the International Conference on Data Science and Data
Intensive Systems (DSS), 2015. (Cited on page 56.)

[220] ——, “ContainerCloudSim: An environment for modeling and simulation
of containers in cloud data centers,” Software: Practice and Experience, vol. 47,
no. 4, pp. 505–521, 2016. (Cited on page 120.)

[221] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Communications of the ACM, vol. 17, no. 7, pp.
412–421, 1974. (Cited on pages 18 and 19.)

[222] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt, “Re-
thinking the library OS from the top down,” ACM SIGPLANNotices, vol. 46,
no. 3, pp. 291–304, 2011. (Cited on page 21.)

208

Bibliography

[223] M. Portnoy, Virtualization Essentials. JohnWiley and Sons Inc, 2016. (Cited
on pages xi, 17, and 19.)

[224] H. Puripunpinyo and M. H. Samadzadeh, “Effect of optimizing Java deploy-
ment artifacts on AWS Lambda,” in Proceedings of the Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), 2017. (Cited on
page 162.)

[225] D. F. Quaresma, T. E. Pereira, and D. Fireman, “Validation of a simula-
tionmodel for faas performance benchmarking using predictive validation,”
arXiv e-Prints, vol. 2106.15555, 2021. (Cited on pages 72 and 74.)

[226] U. U. Rahman, K. Bilal, A. Erbad, O. Khalid, and S. U. Khan, “Nutshell—
simulation toolkit for modeling data center networks and cloud computing,”
IEEE Access, vol. 7, pp. 19 922–19 942, 2019. (Cited on page 120.)

[227] A. Randal, “The ideal versus the real,”ACMComputing Surveys, vol. 53, no. 1,
pp. 1–31, 2020. (Cited on pages 17, 18, and 22.)

[228] K. Razavi and T. Kielmann, “Scalable virtual machine deployment using
VM image caches,” in Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC), 2013. (Cited on
page 21.)

[229] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-wide pro-
filing: A continuous profiling infrastructure for data centers,” IEEE Micro,
vol. 30, no. 4, pp. 65–79, 2010. (Cited on pages 34, 119, and 120.)

[230] A. Reuter, T. Back, and V. Andrikopoulos, “Cost efficiency under mixed
serverless and serverful deployments,” in Proceedings of the Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA), 2020. (Cited
on page 122.)

[231] S. Ristov, C. Hollaus, and M. Hautz, “Colder than the warm start and
warmer than the cold start! experience the spawn start in faas providers,”
in Proceedings of the Workshop on Advanced tools, programming languages, and
PLatforms for Implementing and Evaluating algorithms for Distributed systems
(ApPLIED), 2022. (Cited on pages 76, 77, and 162.)

[232] D. Rivas, F. Guim, J. Polo, and D. Carrera, “Performance characterization
of video analytics workloads in heterogeneous edge infrastructures,” Con-
currency and Computation: Practice and Experience, vol. 35, no. 14, p. e6317,
2023. (Cited on page 105.)

[233] M. Roberts and J. Chapin,What Is Serverless? O’Reilly Media, 2017. (Cited
on pages 42, 50, 51, 52, and 54.)

[234] S. Robinson, “General concepts of quality for discrete-event simulation,”
European Journal of Operational Research, vol. 138, no. 1, pp. 103–117, 2002.
(Cited on pages 36 and 37.)

[235] P. Rosati, F. Fowley, C. Pahl, D. Taibi, and T. Lynn, “Right scaling for right
pricing: A case study on total cost of ownership measurement for cloud mi-
gration,” inCommunications in Computer and Information Science. Springer
International Publishing, 2019, pp. 190–214. (Cited on page 139.)

209

Bibliography

[236] A. Rumyantsev, P. Zueva, K. Kalinina, and A. Golovin, “Evaluating a single-
server queue with asynchronous speed scaling,” in Lecture Notes in Computer
Science. Springer International Publishing, 2018, pp. 157–172. (Cited on
page 106.)

[237] M. Sadaqat, M. Sánchez-Gordón, and R. C. Palacios, “Benchmarking server-
less computing: Performance and usability,” Journal of Information Techno-
logy Research, vol. 15, no. 1, pp. 1–17, 2022. (Cited on pages 72 and 74.)

[238] S. G. Sáez, V. Andrikopoulos, M. Hahn, D. Karastoyanova, F. Leymann,
M. Skouradaki, and K. Vukojevic-Haupt, “Performance and cost evaluation
for the migration of a scientific workflow infrastructure to the cloud,” in
Proceedings of the International Conference on Cloud Computing and Services
Science (CLOSER), 2015. (Cited on page 139.)

[239] K. A. Scarfone, M. P. Souppaya, and P. Hoffman, “Sp 800-125. guide to se-
curity for full virtualization technologies,” National Institute of Standards
& Technology (NIST), Gaithersburg, MD, USA, Tech. Rep., 2011. (Cited on
pages 18, 19, and 20.)

[240] J. Scheuner and P. Leitner, “Function-as-a-service performance evaluation:
A multivocal literature review,” Journal of Systems and Software, vol. 170, p.
110708, 2020. (Cited on pages 13, 43, 71, 75, 131, and 151.)

[241] J. Scheuner, S. Eismann, S. Talluri, E. van Eyk, C. Abad, P. Leitner, and
A. Iosup, “Let’s trace it: Fine-grained serverless benchmarking using syn-
chronous and asynchronous orchestrated applications,” arXiv e-Prints, vol.
2205.07696, 2022. (Cited on pages 76 and 78.)

[242] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yadwadkar,
R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson, “What server-
less computing is and should become,” Communications of the ACM, vol. 64,
no. 5, pp. 76–84, 2021. (Cited on pages 41, 42, 51, 52, and 54.)

[243] N. Schneidewind et al., “IEEE standard for a software quality metrics meth-
odology,” The Institute of Electrical and Electronics Engineers, Tech. Rep.
IEEE Std 1061™-1998 (R2009), 2009. (Cited on pages 27 and 28.)

[244] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Versus Closed:
A Cautionary Tale,” in Proceedings of the Symposium on Networked Systems
Design and Implementation (NSDI), 2006. (Cited on pages 28 and 29.)

[245] D. Shadija, M. Rezai, and R. Hill, “Microservices,” in Proceedings of the Inter-
national Conference on Utility and Cloud Computing (UCC), 2017. (Cited on
page 44.)

[246] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: a survey
of opportunities, challenges, and applications,” ACM Computing Surveys,
vol. 54, no. 11s, pp. 1–32, 2022. (Cited on pages 50, 51, 52, and 54.)

[247] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of
function-as-a-service computing,” in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019. (Cited on
page 118.)

210

Bibliography

[248] A. Sharma and M. O. Joshi, “Openstack ceilometer data analytics & predic-
tions,” in Proceedings of the International Conference on Cloud Computing in
Emerging Markets (CCEM), 2016. (Cited on page 138.)

[249] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. Pai, “Chal-
lenges in computer architecture evaluation,” Computer, vol. 36, no. 8, pp.
30–36, 2003. (Cited on page 36.)

[250] A. Slominski, V. Muthusamy, and V. Isahagian, “The Future of Computing
is Boring (and that is exciting!),” in Proceedings of the International Conference
on Cloud Engineering (IC2E), 2019. (Cited on page 4.)

[251] A. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh, “Par-
allelism via multithreaded and multicore CPUs,” Computer, vol. 43, no. 3,
pp. 24–32, 2010. (Cited on page 124.)

[252] D. Sokolowski, P. Weisenburger, and G. Salvaneschi, “Automating server-
less deployments for DevOps organizations,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE), 2021. (Cited on page 47.)

[253] I. Sommerville, Software Engineering. Pearson, 2015. (Cited on page 36.)
[254] N. Somu, N. Daw, U. Bellur, and P. Kulkarni, “PanOpticon: A comprehens-

ive benchmarking tool for serverless applications,” in Proceedings of the Inter-
national Conference on COMmunication Systems & NETworkS (COMSNETS),
2020. (Cited on pages 72 and 74.)

[255] J. Spillner, “Snafu: Function-as-a-Service (FaaS) Runtime Design and Imple-
mentation,” arXiv e-Prints, vol. 1703.07562, 2017. (Cited on pages 12 and 75.)

[256] ——, “Transformation of python applications into function-as-a-service de-
ployments,” arXiv e-Prints, vol. 1705.08169, 2017. (Cited on page 4.)

[257] ——, “Serverless computing and cloud function-based applications,” in Pro-
ceedings of the IEEE/ACM International Conference on Utility and Cloud Com-
puting (UCC), 2019. (Cited on page 41.)

[258] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE Micro,
vol. 22, no. 4, pp. 64–71, 2002. (Cited on pages 12, 124, and 136.)

[259] C. Starner and M. Chessin, “Using emulation to enhance simulation,” in
Proceedings of the Winter Simulation Conference (WSC), 2010. (Cited on
page 38.)

[260] V. Stodden, J. Seiler, and Z. Ma, “An empirical analysis of journal policy
effectiveness for computational reproducibility,” Proceedings of the National
Academy of Sciences, vol. 115, no. 11, pp. 2584–2589, 2018. (Cited on page 31.)

[261] A. Stupple, D. Singerman, and L. A. Celi, “The reproducibility crisis in the
age of digital medicine,” npj Digital Medicine, vol. 2, no. 1, 2019. (Cited on
page 188.)

[262] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, chal-
lenges, and the road ahead,” IEEE Access, vol. 7, pp. 52 976–52 996, 2019.
(Cited on page 23.)

211

Bibliography

[263] O. Sürer and M. Plumlee, “Calibration using emulation of filtered simula-
tion results,” in Proceedings of the Winter Simulation Conference (WSC), 2021.
(Cited on pages 38 and 124.)

[264] D. Taibi, N. E. Ioini, C. Pahl, and J. Niederkofler, “Patterns for serverless
functions (function-as-a-service): A multivocal literature review,” in Proceed-
ings of the International Conference on Cloud Computing and Services Science
(CLOSER), 2020. (Cited on pages 41, 43, and 49.)

[265] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.
(Cited on page 44.)

[266] W. Tian, M. Xu, A. Chen, G. Li, X. Wang, and Y. Chen, “Open-source sim-
ulators for cloud computing: Comparative study and challenging issues,”
Simulation Modelling Practice and Theory, vol. 58, pp. 239–254, 2015. (Cited
on page 120.)

[267] TPC BENCHMARKTMC, Transaction Processing Performance Council Std.,
Rev. 5.11, 2010. (Cited on page 30.)

[268] UEFI-Forum, “Acpi specification, version 6.3,” UEFI Forum, Inc., Tech.
Rep., 2019. (Cited on pages 103 and 104.)

[269] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F.Martins, A. Anderson, S. Ben-
nett, A. Kagi, F. Leung, and L. Smith, “Intel virtualization technology,” Com-
puter, vol. 38, no. 5, pp. 48–56, 2005. (Cited on page 17.)

[270] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Benchmarking,
analysis, and optimization of serverless function snapshots,” in Proceedings
of the International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2021. (Cited on pages 72 and 74.)

[271] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless comput-
ing: Current trends and mitigation strategies,” in Proceedings of the Interna-
tional Conference on Omni-layer Intelligent Systems (COINS), 2020. (Cited on
pages 12, 75, 131, and 163.)

[272] H. Valter, A. Karlsson, and M. Pericàs, “Energy-efficiency evaluation of
openmp loop transformations and runtime constructs,” arXiv e-Prints, vol.
2209.04317, 2022. (Cited on page 106.)

[273] E. van Eyk and A. Iosup, “Addressing Performance Challenges in Server-
less Computing,” in Proceedings of the ICT.OPEN, 2018. (Cited on pages 14
and 160.)

[274] E. van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC Cloud Group’s
Research Vision on FaaS and Serverless Architectures,” in Proceedings of the
International Workshop on Serverless Computing (WoSC), 2017. (Cited on
pages xi, 41, 50, 51, 52, 54, and 56.)

[275] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup, “Serverless
isMore: FromPaaS to Present Cloud Computing,” IEEE Internet Computing,
vol. 22, no. 5, pp. 8–17, 2018. (Cited on pages 4 and 50.)

[276] E. van Eyk, A. Iosup, J. Grohmann, S. Eismann, A. Bauer, L. Versluis,
L. Toader, N. Schmitt, N. Herbst, and C. L. Abad, “The SPEC-RG reference

212

Bibliography

architecture for FaaS: From microservices and containers to serverless plat-
forms,” IEEE Internet Computing, vol. 23, no. 6, pp. 7–18, 2019. (Cited on
pages 50, 54, and 64.)

[277] E. van Eyk, J. Scheuner, S. Eismann, C. L. Abad, and A. Iosup, “Beyond
Microbenchmarks: The SPEC-RG Vision for A Comprehensive Serverless
Benchmark,” in Proceedings of the Third Workshop on Hot Topics in Cloud
Computing Performance (HotCloudPerf), 2020. (Cited on pages 72 and 73.)

[278] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic comput-
ing: A new paradigm for edge/cloud integration,” IEEE Cloud Computing,
vol. 3, no. 6, pp. 76–83, 2016. (Cited on page 74.)

[279] J. von Kistowski, N. Herbst, D. Zoller, S. Kounev, and A. Hotho, “Modeling
and Extracting Load Intensity Profiles,” in Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2015. (Cited on pages 29, 30, 31, 32, and 33.)

[280] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, and Y. Cheng,
“Faasnet: Scalable and fast provisioning of custom serverless container
runtimes at alibaba cloud function compute,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), 2021. (Cited on page 58.)

[281] K.-T. A. Wang, R. Ho, and P. Wu, “Replayable execution optimized for page
sharing for a managed runtime environment,” in Proceedings of the Four-
teenth EuroSys Conference 2019. Association for Computing Machinery
(ACM), 2019. (Cited on page 57.)

[282] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the
Curtains of Serverless Platforms,” in Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ATC). USENIX Association, 2018, pp. 133–146.
(Cited on pages 51, 52, 53, 54, 76, 78, 81, 95, 123, and 185.)

[283] R. Weingärtner, G. B. Bräscher, and C. B. Westphall, “Cloud resource man-
agement: A survey on forecasting and profiling models,” Journal of Network
and Computer Applications, vol. 47, pp. 99–106, 2015. (Cited on pages 34
and 119.)

[284] J. Wen, Z. Chen, and X. Liu, “Software engineering for serverless com-
puting,” arXiv e-Prints, vol. 2207.13263, 2022. (Cited on pages 41, 51, 52,
and 54.)

[285] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali: Lightweight virtual ma-
chines for distributed andnetworked applications,” University of Washing-
ton, Tech. Rep. UW-CSE-02-02-01, 2002. (Cited on page 18.)

[286] S. Winzinger and G. Wirtz, “Model-based analysis of serverless applica-
tions,” in Proceedings of the International Workshop on Modelling in Software
Engineering (MiSE), 2019. (Cited on page 35.)

[287] ——, “Applicability of coverage criteria for serverless applications,” in Pro-
ceedings of the International Conference on Service Oriented Systems Engineering
(SOSE), 2020. (Cited on page 119.)

213

Bibliography

[288] ——, “Data flow testing of serverless functions,” in Proceedings of the Interna-
tional Conference on Cloud Computing and Services Science (CLOSER), 2021.
(Cited on pages 35 and 177.)

[289] ——, “Automatic test case generation for serverless applications,” in Pro-
ceedings of the International Conference on Service-Oriented System Engineering
(SOSE), 2022. (Cited on page 42.)

[290] E. Wolff,Microservices: Flexible Software Architecture. Addison-Wesley, 2016.
(Cited on pages 44 and 189.)

[291] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Transactional causal consist-
ency for serverless computing,” in Proceedings of the International Conference
on Management of Data (SIGMOD), 2020. (Cited on pages 50, 51, 52, 53,
and 54.)

[292] M. Wurster, U. Breitenbücher, K. Képes, F. Leymann, and V. Yussupov,
“Modeling and Automated Deployment of Serverless Applications using TO-
SCA,” in Proceedings of the International Conference on Service-Oriented Com-
puting and Applications (SOCA), 2018. (Cited on page 44.)

[293] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and H. Chen,
“Characterizing serverless platforms with serverlessbench,” in Proceedings of
the Symposium on Cloud Computing (SoCC), 2020. (Cited on pages 9, 62, 76,
79, 82, and 186.)

[294] V. Yussupov, U. Breitenbücher, F. Leymann, and M. Wurster, “A systematic
mapping study on engineering function-as-a-service platforms and tools,”
in Proceedings of the International Conference on Utility and Cloud Computing
(UCC), 2019. (Cited on pages 43, 56, 57, and 71.)

[295] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, and F. Leymann, “From
serverful to serverless: A spectrum of patterns for hosting application com-
ponents.” in Proceedings of the International Conference on Cloud Computing
and Services Science (CLOSER), 2021. (Cited on page 50.)

[296] V. Yussupov, J. Soldani, U. Breitenbücher, A. Brogi, and F. Leymann,
“FaaSten your decisions: A classification framework and technology review
of function-as-a-service platforms,” Journal of Systems and Software, vol. 175,
p. 110906, 2021. (Cited on pages 43 and 45.)

[297] F. V. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mossé, “In-
telligent colocation of HPC workloads,” Journal of Parallel and Distributed
Computing, vol. 151, pp. 125–137, 2021. (Cited on page 106.)

[298] M. Zakarya and L. Gillam, “Modelling resource heterogeneities in cloud sim-
ulations and quantifying their accuracy,” Simulation Modelling Practice and
Theory, vol. 94, pp. 43–65, 2019. (Cited on pages 27 and 122.)

[299] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video processing with serverless
computing,” in Proceedings of theWorkshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), 2019. (Cited on pages 129
and 144.)

214

Bibliography

[300] Y. Zhang, K. Ye, and C. Xu, “An experimental analysis of function perform-
ance with resource allocation on serverless platform,” in Proceedings of Cloud
Computing - CLOUD 2021 - 14th International Conference, Held as Part of
the Services Conference Federation, 2021. (Cited on pages 62, 71, 72, 73, 82,
and 186.)

[301] K. H. Zou, K. Tuncali, and S. G. Silverman, “Correlation and Simple Lin-
ear Regression,” Radiology, vol. 227, no. 3, pp. 617–628, 2003. (Cited on
page 170.)

215

ISBN: 978-3-86309-979-4

Serverless Computing is seen as a game changer in operating large-scale ap-
plications. While practitioners and researches often use this term, the concept
they actually want to refer to is Function as a Service (FaaS). In this new service
model, a user deploys only single functions to cloud platforms where the cloud
provider deals with all operational concerns – this creates the notion of server-
less computing for the user.

Nonetheless, a few configurations for the cloud function are necessary for
most commercial FaaS platforms as they influence the resource assignments
like CPU time and memory. Due to these options, there is still an abstracted per-
ception of servers for the FaaS user. The resource assignment and the different
strategies to scale resources for public cloud offerings and on-premise hosted
open-source platforms determine the runtime characteristics of cloud functions
and are in the focus of this work. Compared to cloud offerings like Platform as
a Service, two out of the five cloud computing characteristics improved. These
two are rapid elasticity and measured service. FaaS is the first computational
cloud model to scale functions only on demand. Due to an independent scaling
and a strong isolation via virtualized environments, functions can be considered
independent of other cloud functions. Therefore, noisy neighbor problems do
not occur. The second characteristic, measured service, targets billing. FaaS plat-
forms measure execution time on a millisecond basis and bill users accordingly
based on the function configuration. This leads to new performance and cost
trade-offs.

Therefore, this thesis proposes a simulation approach to investigate this
tradeoff in an early development phase. The alternative would be to deploy func-
tions with varying configurations, analyze the execution data from several FaaS
platforms and adjust the configuration. However, this alternative is time-consu-
ming, tedious and costly. To provide a proper simulation, the development and
production environment should be as similar as possible. This similarity is also
known as dev-prod parity. Based on a new methodology to compare different
virtualized environments, users of our simulation framework are able to execute
functions on their machines and investigate the runtime characteristics for dif-
ferent function configurations at several cloud platforms without running their
functions on the cloud platform at all. A visualization of the local simulations
guide the user to choose an appropriate function configuration to resolve the
mentioned trade-off dependent on their requirements.

	Title page
	Acknowledgements
	Kurzfassung
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Background and Problem Identification
	Introduction
	Context
	Contributions
	Research Questions
	Conceptualization
	Benchmarking FaaS Platforms
	Achieving Dev-Prod Parity
	Providing User Guidance
	Guidance for Improving Cold Starts

	Outline

	Theoretical and Technical Foundations
	Virtualization
	Motivation
	Virtual Machine
	Container Technology
	Performance Considerations
	Summary

	Benchmarking
	Definition
	Metrics
	Workload Pattern
	Quality Criteria for Experimental Benchmark Design
	Distinction to Related Concepts
	Summary

	Simulation
	Definition
	Quality Criteria
	Distinction to Related Concepts
	Summary

	Function as a Service
	Conceptualization of Function as a Service
	Differentiation of Serverless Computing and Function as a Service
	Motivation
	Related Work
	First Definition Approaches
	Related Technologies
	Search Trends at Google's Search Engine
	Structured Literature Review
	Identified Characteristics
	Search Process
	Discussion

	Conclusion

	Differentiation to Established Cloud Service Models
	FaaS Offerings over Time
	Resource Scaling Strategies
	Architecture of a FaaS Platform Worker Node
	Summary

	A Benchmarking and Simulation Framework for Function as a Service
	Benchmarking FaaS Platforms
	Current Benchmarking Approaches and Tools
	Checklist for Performing FaaS Benchmarks
	SeMoDe Web Application
	Database Schema
	Package Diagram and Extension Points
	Interaction Mechanisms
	Web UI
	Command Line Interface
	REST API

	Invoking Cloud Functions
	Cloud Function Implementation
	Workload Specification within SeMoDe
	Submitting Requests

	Calibration of a Consistent Resource Scaling on a Developer's Machine
	Motivation
	Fundamentals
	Related Work
	Problem Analysis
	Methodology
	Web UI and Implementation
	Evaluation
	Conclusion
	Discussion of the Results
	Threats to Validity
	Future Work

	Simulating FaaS Platforms
	Motivation
	Current Profiling and Simulation Approaches
	Profiling Strategies
	Simulation Approaches and Tools
	Cloud Simulation
	FaaS Simulation

	Experiment Calibration

	Simulating Cloud Functions at Public Cloud Provider Platforms
	Achieving Dev-Prod Parity by Calibrations
	Calibration Function
	Calibration Mapping

	Execute Cloud Functions Locally
	Evaluation
	Experimental Setup
	Calibration Step
	Simulating Cloud Function Behavior
	Predicting Cloud Function Execution Time

	Summary of Achieving Dev-Prod Parity and Local FaaS Simulations

	Resource Scaling Strategies for Open-Source FaaS Platforms
	Motivation
	Related Work
	Methodology
	Evaluation
	Experimental Setup
	Calibration Step
	Compare OpenFaaS and AWS Lambda Execution Trends
	Co-location of Functions: The Noisy Neighbor Problem

	Summary of Implementing a QoS Layer for Open-Source Platforms

	Discussion
	Discussion of the Simulation Approach
	Threats to Validity

	Future Work

	Decision Support and Guidance for Function Configuration
	Graphical User Guidance For Function Configuration Options
	Calibration
	Mapping
	Simulation

	Guidance for Improving Cold Starts
	Motivation
	Hypotheses
	Related Work
	Experiments
	Selection of Experiment Dimensions
	Experimental Setup

	Results
	Hypotheses Independent Results
	Hypotheses Dependent Results

	Discussion
	Discussion of Results
	Threats to Validity

	Future Work

	Outlook and Conclusion
	Simulating Microservices Architecture - an Outlook
	An Exemplary Use Case
	Early Results
	Discussion
	Future Work

	Conclusion
	Competing Approaches
	Summary

	Bibliography

