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1. Introduction

Statistical matching techniques typically aim to achieve a complete data file from 
different sources that do not contain the same units. On the contrary, if samples are 
exactly matched using identifiers such as social security numbers or name and address, 
this is called record linkage. Traditionally, statistical matching is done on the basis of 
variables common to all files. Statistical twins, i.e., donor and recipient units that are 
similar according to their common variables, are usually found by means of nearest 
neighbor or hot deck procedures. The specific variables of a donor unit which are 
observed only in one file are added to the record of the recipient unit to finally create the 
matched sample. We like to note that in our sense statistical matching is not restricted to 
the case of merging different samples without overlap. Also one single file may contain 
some records with observations on more variables than others, then, these records can 
be matched with those containing less information based on the variables common to all 
units. 

In this paper we refer to the situation of data fusion which means there are groups of 
variables that are never jointly observed, say X and Y. In all other cases of statistical 
matching we assume that, at least, every pair of variables has been jointly observed in 
one or the other data set. The fusion of data sets with the aim of analyzing the 
unobserved relationship between X and Y and addressing quality of data fusion is done, 
e.g., by National Statistical Institutes such as Statistics Canada or the Italian National
Institute of Statistics, see, e.g., Liu and Kovacevic (1997) or D'Orazio et al. (2003). The
focus often is on analyzing consumers' expenditures and income, which are in detail
only available from different surveys. In the U.S., e.g., data fusion is used for
microsimulation modeling, where "what if" analyses of alternative policy options are
carried out using matched data sets, see Moriarity and Scheuren (2001, 2003).
Especially in Europe and among marketing research companies, data fusion has become
a powerful tool for media planning, see, e.g., Wendt (1986). Often surveys concerning
the purchasing behavior of individuals or households are matched to those containing
valuable information about print, radio and television consumption.

2. Data Fusion and its Identification Problem

2.1 Traditional Fusion Algorithms 

The general benefit of data fusion is the creation of one complete data source containing 
information about all variables. Without loss of generality, let the (X,Z) sample be the 
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recipient sample B of size nB and the (Y,Z) sample the donor sample A of size nA. The 
traditional matching procedures determine for every unit i, i = 1,…, nB, of the recipient 
sample with the observations (xi,zi) a value y from the observations of the donor sample. 
Thus, a composite data set ),~,( 111 zyx ,…, ),~,(

BBB nnn zyx with nB elements of the 

recipient sample is constructed. The main idea is to search for a statistical match, i.e., 
for a donor unit j with )},(),...,,{(),( 11 AA nnjj zyzyzy ∈  whose observed data values of 

the common variables zj are identical to those zi of the recipient unit i for i = 1,…,nB. 
Notice that iy~  is not the true y-value of the i-th recipient unit but the y-value of the 
matched statistical twin. In the following, all density functions (joint, marginal, or 
conditional) and their parameters produced by the fusion algorithm are marked by the 
symbol ~. Notice that Y~  is called fusion or imputed variable herein. 

 A typical matching algorithm chooses randomly among all possible statistical 
matches for each recipient unit i (i.e. among all (yj, zj) with zj = zi); we shall call this the 
ideal case thereafter. In reality, not every recipient allows for an exact match in the 
common variables; therefore some nearest neighbor rules are usually imposed. There are 
very sophisticated fusion techniques in practice; for an overview see Rässler (2002). 
 In order to judge the quality of any data fusion procedure, it is essential to study how 
the true (only partially known) distribution ),,( zyxf  and the fusion distribution 

),,(~ zyxf  are related. In the ideal case, it can be shown that the joint distributions of X 
and Z and of Y and Z are unaltered by the matching algorithm. The overall joint 
distribution satisfies 

)|(),(),,(~
|,,, zyfzxfzyxf ZYZXZYX ⋅= ; 

see Rässler (2002) for technical details. Obviously, the fusion distribution equals the 
true distribution if and only if ZYZXY ff |,| = , i.e., if Y and X are conditionally 
independent given Z. This implicit assumption of traditional algorithms was first 
pointed out by Sims (1972); see also Rodgers (1984) for an enlightening discussion.  

 Rässler and Fleischer (1998) show that in the ideal case, the fusion covariance 
between X and Y is given by 

)).|E(),|cov(E(),v(o~c ZYZXYX =

Because in general, 

))|E(),|cov(E())|,E(cov(),cov( ZYZXZYXYX +=

holds, the fusion covariance ),v(o~c YX  equals the true covariance, if and only if 
0))|,E(cov( =ZYX , i.e., if X and Y are on the average conditionally uncorrelated given 

Z. Notice that variables which are conditionally independent are also conditionally 
uncorrelated and, of course, on the average conditionally uncorrelated, but not vice 
versa in general. If f is multinormally distributed, however, these concepts coincide, 
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since in this case the conditional covariance )|,cov( zZYX =  is given by 

),cov()var(),cov(),cov( 1 YZZZXYX −− , which is independent of z. 

 With small sample sizes, the ideal case is seldom observed. However, simulation 
studies have shown that these derivations are even approximately valid, if nearest 
neighbour algorithms are applied (see Rässler 2002). 
 Summing it up: Traditional algorithms produce fusion data sets which reflect the true 
joint distribution only in the case of conditional independence of X and Y given Z. The 
true covariance structure is retained in the fused file only in the case of X and Y being on 
the average conditionally uncorrelated given Z. The question that naturally arises is: can 
we learn from the data, whether these assumptions are met?

2.2 The Identification Problem of Data Fusion 

2.2.1. Joint Distributions 

Data fusion initially is connected to an identification problem concerning the joint 
distribution and the association of the specific variables that are never jointly observed. 
For every pair of specific variables (Xi,Yj), the marginal joint cumulative distribution 
function ),(, yxF

ji YX  is bounded by the Fréchet-Hoeffding inequality, although it is 

usually not very informative: 

)}(),({min),(}0,1)()({max , yFxFyxFyFxF
jijiji YXYXYX ≤≤−+ .  (1) 

With common variables Z these bounds can be slightly improved, since the same 
inequalities are valid for the conditional distributions either (Ridder and Moffitt 2006): 

)}.|(),|(min{

)|,(}0,1)|()|({max

||

|,| |

zZyFzZxF
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Taking expectations over Z, we have 

( )
( ))}|(),|({minE

),(}0,1)|()|({maxE

||
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 (2) 

While 
iXF  and 

jYF  might be estimated with sufficient accuracy from the samples, this 

is probably not always true for the expectations in (2), especially in the case of 
continuous Z. Thus, in practice the unconditional bounds might be the more reliable 
choice, although the lower and upper bounds are usually quite far apart and therefore 
rather useless in reality. The lesson to be learned is, by means of the observed data we 
are not able to decide which joint distribution (given that it lies within the Fréchet-
Hoeffding bounds) could have generated the data.
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2.2.2 Correlation Structure 

Consider, for example, a univariate common variable Z determining another variable X 
which is only observed in one file. Suppose first that X and Z be linearly dependent, i.e., 
let the correlation 1=ZXρ , and thus X = a+bZ for some real-valued a and b ( 0≠b ). 
The correlation between this common variable Z and a variable Y in a second file may 
be 8.0=ZYρ . It is easy to see that the unconditional correlation of the two variables X 
and Y which are not jointly observed is determined by Z with 

8.0=== + ZYYbZaXY ρρρ . If the correlation between X and Z is less than one, say 0.9, 

we can easily calculate the possible range of the unconditional association between X 
and Y by means of the determinant of the covariance matrix which has to be positive 
semidefinite; i.e., the determinant of the covariance matrix cov(Z,Y,X) must be positive 
or at least zero, see, e.g., Cox and Wermuth (1996). 
 Given the above values and setting the variances to one without loss of generality, 
the covariance matrix of (Z,Y,X) is 
















=

1),cov(8.0
),cov(19.0

8.09.01
),,cov(

YX
YXXYZ

with 

45.0),cov(72.02),cov()),,det(cov( 2 −⋅+−= YXYXXYZ . 

Calculating the roots of det(cov(Z,Y,X)) = 0, we get the two solutions cov(X,Y) = 
0684.072.0 ± . Hence we find the correlation bounded between [0.4585, 0.9815]; i.e., 

every value of the unknown covariance cov(X,Y) greater than 0.4585 and less than 
0.9815 leads to a valid and thus feasible covariance structure for (Z,Y,X). By means of 
the observed data we are not able to decide which covariance matrix could have 
generated the data, provided that it is positive semidefinite. 
 Bearing these identification problems in mind, note that traditional data fusion 
algorithms make specific implicit assumptions (conditional independence or at least 
conditional uncorrelatedness on average) about the data. The need for alternative 
approaches that overcome these assumptions is obvious, although little research has 
been done in the literature so far. 
 Only few approaches, basically three different procedures, have been published to 
assess the effect of alternative assumptions about the inestimable correlation structure. 
One approach is due to Kadane (2001; reprinted from 1978), generalized by Moriarity 
and Scheuren (2001). The next approach dates back to Rubin and Thayer (1978), it is 
used to address data fusion explicitly by Rubin (1986), and generalizations are presented 
by Moriarity and Scheuren (2003). Both approaches use regression based procedures to 
produce synthetic data sets under various assumptions on this unknown association. 
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Finally, a full Bayesian regression approach using multiple imputations is first given by 
Rubin (1987, p. 188), and then generalized by Rässler (2002).

3. Calculation of Feasible Correlations 

To ease notation, we again set all variances equal to 1. Consider again the correlation 
matrix ),,cov(: XYZ=Σ  of all observed variables. Recall that Z is the vector of 
variables observed in both samples; Y and X are the vectors of variables which are only 
observed in sample A and B, respectively. The matrix Σ and its inverse can be 
partitioned corresponding to the partition of the complete data vector (Z,Y,X), to give 










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
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ΣΣΣ

ΣΣΣ

ΣΣΣ

=Σ

XXXYXZ
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
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XXXYXZ

YXYYYZ
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1

In the case of data fusion, YXΣ consists of the correlations between variables that are 
never jointly observed and may therefore not be directly estimated from the data. 
However, as we will discuss below, there is information in the data about their feasible 
values. 
 Correlation matrices have to be positive semidefinite; apart from the case of exact 
linear dependence they are positive definite. We will ignore this distinction and assume 
positive definiteness, since an exact linear relationship never occurs in sample data (or 
can be easily detected and removed). 
 All other submatrices of Σ apart from YXΣ  can be estimated from the two samples. 
Therefore, Σ is only partially determined; since we know that it has to be positive 
definite, Σ is called a partial positive definite matrix. Finding the set of feasible 
correlation matrices in this case is a special application of what is called matrix 
completion problems in matrix theory; we are interested in positive definite completions 
of Σ. 
 Due to the special structure of Σ, a positive definite completion of Σ always exists. 
Moreover, there is a unique positive definite completion, whose determinant is 
maximal, and this matrix is the unique one whose inverses has zeros in those positions 
corresponding to the unspecified entries in Σ, i.e. 0=ΣYX  (see Grone et al. 1984). 
Consider now the matrix *

|ZYXΣ of partial covariances of X and Y given Z, i.e. the 
covariance matrix of the residuals of linear least squares regression of every component 
of X and Y on all components of Z. (Notice that partial covariances and conditional 
covariances are different concepts. In case of multivariate normality these matrices 
coincide, whereas in general the two concepts produce different results.) 

*
|ZYXΣ can be easily derived from the simple correlation matrix as the Schur 

complement of ZZΣ in Σ (see e.g. Whittaker 1990, p.135): 
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 There is an interesting relationship between the partitioned inverse of Σ and the 
partial covariance matrix: The term 0=ΣYX  if and only if the partial correlations 
between X and Y given Z vanish, i.e. 0| =Σ ZYX  (Whittaker 1990, p. 144). Hence zero 

partial correlations given Z maximize the determinant of Σ among all feasible 
correlation matrices; the corresponding simple correlations being ZXYZYX ZZ

ΣΣΣ=Σ −1 .

Notice that in case of normality, this is the correlation matrix of the fused data set that 
traditional algorithms create. 
 Positive definiteness places restrictions on the feasible correlations between X and Y. 
In general it is a difficult task to describe the set of feasible values in closed form. 
Kadane (2001) and Moriarity and Scheuren (2001) provide formulae for univariate X 
and univariate Y with multivariate Z. For multivariate X or multivariate Y, no closed 
form yet exists in the literature. One way to numerically tackle this problem is via grid 
search over all possible completions of Σ and deciding for every value if the completion 
is positive definite; see Rässler (2002) for an example of this approach. 
 In the following, we show that even in case of either multivariate X or multivariate Y 
(though not both), one can derive the range of all feasible solutions analytically.  
 Let (without loss of generality) X be univariate, i.e. 1=ΣXX , so that ZXΣ  and YXΣ

are column vectors. Since all leading principal submatrices of Σ are fully specified and 
(by assumption of consistency) positive definite, the positive definiteness of Σ is 
equivalent to the determinant of Σ being positive, i.e. 0)det( >Σ . Partitioning Σ and 
using a standard argument on the determinant of a partitioned matrix leads to the 
following condition: 
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The inverse can be written in closed form: 
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After straightforward calculation (4) evolves into 

12 <ΣΣʹ+ΣΣʹ+ΣΣʹ ZXZXYXZXYXYX ABC .            (5) 

 From this inequality, the geometric shape of the set of feasible correlations can be 
determined. Since C is positive definite, the set of possible vectors YXΣ satisfying (5) is 
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the interior of an n-dimensional ellipsoid (n being the dimension of vector Y). 
Transforming (5) into the normal form of an ellipsoid in order to be able to calculate its 
centre and axes, we get  

1)(~)( 11 <Σʹ+Σ⋅⋅ʹΣʹ+Σ −−
ZXYXZXYX BCCBC

with CABBCC ZXZX
11 ))(1(:~ −− Σ−ʹΣʹ+= .

Thus, the centre of the ellipsoid is ZXBC Σʹ− −1 . Plugging in the formulae for B and C 
yields 

ZXZZYZZXBC ΣΣΣ=Σʹ− −− 11 ; 

from this it can be seen that the correlation vector providing zero partial correlation 
(which maximizes the determinant) is the centre of the ellipsoid.  
 Final calculations give ZXZZXZZXZX ABBC ΣΣΣ−=Σ−ʹΣʹ+ −− 11 1)(1 , from which C~

can be computed: 

1111 )()1(~ −−−− ΣΣΣ−Σ⋅ΣΣΣ−= ZYZZYZYYZXZZXZC . 

The semi-axes of the ellipsoid are in the direction of the eigenvectors of C~ (or C), the 
lengths of the semi-axes are given by iλ/1 , where iλ is the i-th eigenvalue of C~ (i = 
1,…, n). 
 The volume of the ellipsoid of feasible correlations (which is proportional to the 
product of the lengths of its semi-axes) might be considered as a new quality index for a 
data fusion process: the less volume the ellipsoid has, the greater is the explanatory 
power of the common variables and the less uncertainty remains for creating the fused 
data set.  
 In some cases, the marginal distributions might restrict the set of feasible correlation 
matrices even further. To see this, consider again the Fréchet-Hoeffding inequality (1). 
The upper and lower bounds are valid bivariate distributions, whose correlation 
coefficients are upper and lower bounds of possible correlations given the marginals 
(Tchen 1980). Thus, for every pair (Xi,Yj) of specific variables, this inequality might 
place an additional restriction to the feasible correlations (in case of normality every 
correlation can be achieved with any marginal distributions, therefore no further 
restriction can be imposed). 
 If there are lots of ordinal variables in the samples, it is appropriate not to consider 
Bravais-Pearson correlation coefficients but to use association measures based on ranks. 
Frequently Spearman's ρ or Kendall's τ are measures of interest, even in metric settings. 
Since correlation matrices based on these measures also have to be positive definite 
(note that they can be expressed as Bravais-Pearson correlations for recoded variables), 
the results of this section remain valid, if consideration is upon matrices of Spearman or 
Kendall correlations rather than upon Bravais-Pearson correlation coefficients.
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4. Summary and Outlook 

In this paper we derived bounds for the correlations between variables not jointly 
observed, provided that one of the vectors of specific variables is univariate, and suggest 
a new quality index of data fusion which is built upon these bounds. Using our results, 
multiply imputed datasets can be produced according to different admissible correlation 
structures between X and Y by using appropriate algorithms (e.g. NIBAS, see Rässler 
2002; notice that since data fusion can be viewed as a problem of missing data, multiple 
imputation procedures are applicable in general). Analyzing the different fused data sets 
can then reveal sensitivity to the different assumptions about the correlation structure 
between the variables that have never been jointly observed. 
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