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Abstract. Many people believe that every fourth year is a leap year.
However, this rule is too general: year X is a leap year if X is divisible
by 4 except if X is divisible by 100 except if X is divisible by 400. We
call such a theory with alternating generalisation and specialisation a
step-wise narrowed theory. We present and evaluate an extension to the
ILP system Metagol which facilitates learning such theories. We enabled
Metagol to learn over-general theories by allowing a limited number of
false positives during learning. This variant is iteratively applied on a
learning task. For each iteration after the first, positive examples are
the false positives from the previous iteration and negative examples are
the true positives from the previous iteration. Iteration continues until
no more false positives are present. Then, the theories are combined to
a single step-wise narrowed theory. We evaluate the usefulness of our
approach in the leap year domain. We can show that our approach finds
solutions with fewer clauses, higher accuracy, and in shorter time.
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1 Introduction

Most people assume that every fourth year, that is every year divisible by four,
is a leap year. Though this is correct in most cases, on average 3% of years
identified as leap years by this rule are no leap years. The rule is slightly too
general when compared to the true leap year rule:

Every year that is exactly divisible by 4 is a leap year, except for years
that are exactly divisible by 100, but these centurial years are leap years
if they are exactly divisible by 400. [1, p. 599; emphasis by the authors]

The exact leap year rule follows a not uncommon structure: A holds if B holds
but not if C holds. Rules of this structure can be used to explain, for example
family relations: person X is Person Y’s half brother if X is male and both have
the same mother but not if they also have the same father (or vice versa). In
Quinlan’s famous Saturday example [2, EnjoySport in 3, also known as play-golf
or play-tennis] a Saturday is a positive day if the outlook is overcast or if there is
no wind unless the outlook is sunny. These examples are characterized using one
exception rule from a general rule. This schema can be applied cascadingly to
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constrain an exception rule by another exception rule. For example, a company
might have the policy that business trips must be made by train unless the trip
by air plane saves at least 30% travel time. However, the train must be used if
it is at least 25% cheaper.

There are several ILP systems which are able to learn rules similar to the
ones presented above. The classical system CIGOL [4, 5] induces rules in interac-
tive sessions. The user presents examples to the system which in turn generalizes
rules from theses. Then, the user must specify whether a presented rule is al-
ways correct. Exceptions are handled by adding a new auxiliary predicate to the
original rule which holds for all counterexamples. No rules can be learned for the
auxiliary predicate. ATRE [6, 7] is especially suited to learn (mutual) recursive
rules. The rules to be learned are organised in layers such that rules in higher
layers only depend on rules in lower layers. When adding a new rule would lead
to inconsistencies in lower layers involved predicates are renamed to new aux-
iliary predicates. XHAIL [8] combines abduction, deduction, and induction to
learn rules incorporating negation. Predicates which may be negated must be
explicitly named, as no auxiliary predicates can be invented.

Inventing auxiliary predicates, known as predicate invention [9], is a key
concept to the state-of-the-art ILP system Metagol. In recent years, Metagol
has been successfully applied in different domains such as learning grammar
rules [10], functional string transformations [11], and higher-order theories [12].
This use of predicate invention has been shown to be beneficial regarding theory
size, learning time, and predictive accuracy [13]. However, Metagol cannot use
negation in learned theories.1 We will extend Metagol to incorporate exceptions.

Our contributions. In this paper, we define the concept of step-wise narrowed
theories and introduce MetagolSN which can induce a subset of such theories.
In detail,

– we define step-wise narrowed theories,

– we relax Metagol’s prohibition to cover negative examples,

– we define MetagolSN by using this relaxed Metagol recursively, and

– we show that MetagolSN may yield smaller theories, in number of clauses,
may require less background knowledge, and may run faster than Metagol.

In the next section, we introduce the meta-inductive learning framework and
its realization in Metagol. Then, we will present our modifications and extensions
to meta-inductive learning and Metagol which allow learning step-wise narrowed
theories. MetagolSN will be evaluated in Section 4. We concluding the paper with
a short discussion and further ideas.

1 Of course, predicates with a “negative” semantic, like not father/2, can be supplied
in the background knowledge. Nevertheless, no syntactic negation can be induced.



2 Meta-interpretative Learning and Metagol

Metagol is the realization of the meta-interpretative learning (MIL) framework
in Prolog. In MIL a higher-order datalog program is learned from examples using
abduction. First, we introduce some logic notation.

2.1 Logic Notation

A variable is represented by a single upper case letter followed by a string of
letters and digits. A function or predicate symbol is a lower case letter followed
by a string of letters and digits. The arity of a function or predicate symbol is
the number of arguments it takes. A constant is a function symbol with arity
zero. The set of all constants is referred to as the constant signature and denoted
C. The set of all predicate symbols is denoted P.

Variables and constants are terms, and a function symbol immediately fol-
lowed by a bracketed n-tuple of terms is a term. An atom, or positive literal, is
a predicate symbol (of arity n) or a variable immediately followed by a brack-
eted n-tuple of terms. The negation of an atom ¬A is called negative literal. A
variable is higher-order if it can be substituted for by a predicate symbol.

A finite set of literals is called a clause. A clause represents the disjunction
of its literals. A clause is unit if and only if it contains exactly one literal. A
Horn clause is a clause which contains at most one positive literal which is then
called the head of the clause. The negative literals are collectively called the
body of the clause. If a Horn clause contains exactly one positive literal it is
called definite.

A clausal theory is a set of clauses and represents the conjunction of its
clauses. A clausal theory in which each clause is a definite Horn clause is called a
definite program. Literals, clauses, and clausal theories are well-formed formulas
(wffs) in which all variables are assumed to be universally quantified. Let E be
a wff and σ, τ be sets of variables. ∃σ E and ∀τ E are wffs. E is said to be
ground whenever it contains no variables. E is said to be datalog if it contains
no function symbols other than constants. A clausal theory which contains only
datalog Horn clauses is called a datalog program. The set of all ground atoms
constructable from P, C is called the datalog Herbrand base.

2.2 Meta-inductive Learning

In MIL a datalog program is abduced from examples where only clauses conform-
ing to one of the user-supplied templates, called meta-rules, may be abduced.
Every meta-rule is a uniquely named wff

∃σ∀τP (s1, . . . , sm)← Q1(t11, . . . , t
1
n1

), . . . , Qr(t
r
1, . . . , t

r
nr

)

where σ and τ are disjoint sets of variables, P,Q1, . . . , Qr ∈ σ ∪ τ ∪ P , and
s1, . . . , sm, t11, . . . , t

r
nr
∈ σ ∪ τ ∪ C [13, definition 1]. Table 1 shows some exam-

ple meta-rules. Muggleton et al. define the MIL learning setting as follows [13,
definition 2]:



metagol(Pos,Neg,Prog) :-

between(MinClauses,MaxClauses,ClauseLimit),

prove_all(Pos,[],Prog),

length(Prog,NProg),

NProg =< ClauseLimit,

prove_none(Neg,Prog).

prove_all([],Prog,Prog).

prove_all([Atom|Atoms],Prog1,Prog2) :-

prove_one(Atom,Prog1,Prog3),

prove_all(Atoms,Prog3,Prog2).

prove_one(Atom,Prog,Prog) :- call(Atom). % use background knowledge

prove_one(Atom,Prog1,Prog2) :- % use or create abduction

metarule(Name,MetaSub,(Atom :- Body)),

store(sub(Name,MetaSub),Prog1,Prog3),

prove_all(Body,Prog3,Prog2).

prove_none([],Prog).

prove_none([Atom|Atoms],Prog) :-

not(prove_one(Atom,Prog,Prog)),

prove_none(Atoms,Prog).

Fig. 1. Metagol in pseudo Prolog code. Pos are positive, Neg negative examples. Prog is
a program. Only the last argument of every predicates is an output argument. Clause
limit is modulated from MinClauses to MaxClauses, which can be set by the user.
metarule/3 gets a meta-rule with existentially quantified variables MetaSub from the
database, store/3 tests if this abduction is already known or adds it otherwise.

Given [a set of] meta-rules M , definite program background knowledge B
and ground positive and negative unit examples E+, E−, MIL returns
a higher-order datalog program hypothesis H if one exists such that
M,B,H |= E+ and M , B, H, E− is consistent.

2.3 Metagol

Metagol is a Prolog meta-interpreter which realizes a limited MIL setting. There
are different Metagol variants for special use cases or incorporating different
features, for example MetagolDF [11] for function induction or MetagolCF [10] for
learning context free grammars. We focus on the most recent version, MetagolAI
[12, 14]. If the version is clear from the context we omit the subscript. In the
following, we present Metagol’s features and restrictions relevant to this work.

Metagol is a two step approach. First, a candidate program is abduced by
successively proving all positive examples. The number of clauses in the candi-
date program is limited. Second, Metagol verifies that no negative examples can
be proven using this program. Prolog’s backtracking ensures that a solution is
found if it exists. If no solution can be found within the given clause limit, it is



step-by-step increased using an iterative deepening strategy. Thus, the smallest
program (in number of clauses) will be found first. Figure 1 shows the Metagol
algorithm in pseudo-code.

In the first step (prove all in Figure 1), each example is proven either

– using only background knowledge,
– using clauses from the already induced program, or
– by matching it against the head of one meta-rule, adding the resulting clause

to the program, and proving the meta-rule body recursively.

In the second step (prove none in Figure 1), Metagol verifies that no negative
example can be proven using only background knowledge and already abduced
clause, that is without changing the program.

Technically, background knowledge is provided by indicating eligible pred-
icate symbols and their arity. Clauses for these predicates, possibly including
predefined predicates, are provided in the Prolog database. Meta-rules with their
name and a list of variables to be existentially quantified are given as clauses
with an appropriate head in the Prolog database. Positive and negative exam-
ples are presented as lists of positive ground atoms. Metagol assumes that all
positive examples share the same predicate symbol and arity. However, this is
not strictly required.2

3 Step-wise Narrowed Theories

In the following, we present a modification to the MIL framework and Metagol
to deal with domains such as leap year. That is, we propose a framework for
learning over-general theories and their step-wise narrowing to characterize ex-
ceptions. First, we define step-wise narrowed theories (SNTs), then we present
an induction framework for such theories, and finally, an implementation as
MetagolSN .

Let Φ : P → P be a mapping between predicate symbols. Then, MΦ is a
mapping between atoms such that MΦ : p(t1, . . . , tn) 7→ Φ(p)(t1, . . . , tn).

Definition 1 (Step-wise Narrowed Theory). Every higher-order datalog
program is a step-wise narrowed theory (SNT). Let H be a higher-order datalog
program, Φ a mapping between predicate symbols and S a SNT. Then, 〈H,Φ, S〉
is also a SNT.

Definition 2 (SNT Depth). The depth of a SNT is the number of “unpacking”
steps required to access the innermost datalog program:

d(S) =

{
d(S′) + 1 if S = 〈H,Φ, S′〉
0 otherwise

.

2 Nevertheless, Metagol can only abduce clauses for the predicate symbol of the first
positive example and invented predicate symbols derived thereof.



Definition 3 (SNT Size). The size of a SNT is the number of clauses it con-
tains. If H has nH and S has nS clauses we say 〈H,Φ, S〉 has nH + nS clauses.
If SNT S1 has less clauses than SNT S2 we say that S1 is smaller than S2.

Given meta-rules M and some definite program background knowledge B
the SNT 〈H,Φ, S〉 models the positive ground literal A if A is modelled by H
but MΦ(A) is not modelled by H and S, that is

M,B, 〈H,Φ, S〉 |= A ≡ M,B,H |= A ∧ M,B,H, S 6|=MΦ(A).

3.1 Inducing Step-wise Narrowed Theories

Inducing a SNT from positive and negative examples is called a step-wise nar-
rowing learning (SNL) task or SNL setting.

Definition 4 (SNL setting). Given a set of meta-rules M , definite program
background knowledge B, and ground positive and negative unit examples E+,
E−, SNL returns a SNT S if one exists such that M,B, S |= E+ and M , B, S,
E− is consistent.

We propose a general solution to the SNL setting based on MIL. For this
purpose, we abolish the constraint that M , B, H, E− must be consistent. We
call this the relaxed MIL setting (rMIL).

Definition 5 (Relaxed MIL setting). Given a set of meta-rules M , definite
program background knowledge B, a non-negative integer l, and ground positive
and negative unit examples E+, E− relaxed MIL returns a higher-order datalog
program hypothesis H if one exists along with a partitioning of E− in true neg-
ative examples E−	 and false positive examples E−⊕ such that E−⊕ has at most l
elements, M,B,H |= E+, E−⊕ , and M , B, H, E−	 is consistent. We call l the
false positive limit.

Proposition 1 (rMIL decidable). The rMIL setting is decidable in the case
M , B, E+, E− are datalog and P, C are finite.

Proof. Follows from the fact that the Herbrand base is finite.

Our general solution realizes SNL by recursively applying rMIL. Given a set
of meta-rules M , definite program background knowledge B, and ground positive
and negative unit examples E+, E− we use rMIL to get a datalog program H
and false positives E−⊕ . If there are no false positives, H is a solution in the SNL
setting. Otherwise, we define Φ such that every predicate symbol used in E+ and
E− is mapped to a new predicate symbol. The solution is then 〈H,Φ, S〉 where
S is the solution to the SNL setting with background knowledge B ∪ H, the
mapped false positive examples as positive examples, and the negated mapped
positive examples as negative examples. A pseudo-code algorithm for the general
solution is provided in Algorithm 1.



Algorithm 1: Pseudo-code algorithm for the general solution to the SNL
setting. rMIL denotes the relaxed MIL setting.

Function SNL(M,B, l, E+, E−) is
Input: meta-rules M , background knowledge B, false positive limit l,

positive examples E+, and negative examples E−

Result: a SNT

H, E−	 , E−⊕ ← rMIL(M,B, l, E+, E−) ;

if E−⊕ = ∅ then
return H;

else
Let Φ map every predicate symbol from E+ ∪ E− to a new symbol;

E′+ ← {MΦ(A) | ¬A ∈ E−⊕};
E′ − ← {¬MΦ(A) | A ∈ E+};
return 〈H,Φ, SNL(M,B ∪H,E′+, E′ −)〉;

end

end

3.2 MetagolSN

Based on Cropper & Muggleton’s MetagolAI implementation3 we implemented
a Prolog realisation of SNL, MetagolSN .4 As first step, we relaxed Metagol to
conform to rMIL. The structure of relaxed Metagol is similar to Metagol. First,
a program is abduced from all positive examples as in Metagol. Then, false pos-
itives are collected by checking which negative examples can be proven without
adding clauses (see Figure 2). We did not change the presentation of meta-rules,
background knowledge, or examples.

As second step, we realize MetagolSN using relaxed Metagol. As mentioned
above, Metagol assumes that all positive examples share the same predicate sym-
bol and arity. We extend that assumption to all examples: MetagolSN assumes
that all examples share the same predicate symbol and arity. Thus, construct-
ing Φ degenerates to inventing one new predicate symbol. We prefix the original
predicate symbol with an underscore. Implementing the steps of the general SNL
solution is straight forward (cf. Figure 3):

1. We use rMIL to induce a program and collect false positives.

2. If there are no false positives, we return the induced program.

3. Otherwise, we rename predicates in false positives and positive examples,
add the program to the Prolog database, and recurse on the new examples.

3 We forked from commit 1524600225a65237de9578e46127049f6f95d1a4 in the GitHub
Metagol repository [14].

4 MetagolSN is available at https://github.com/michael-siebers/metagol/tree/

ilp2018.



metagol_relaxed(Pos,Neg,MaxClauses,Prog,FalsePos) :-

between(1,MaxClauses,ClauseLimit),

prove_all(Pos,[],Prog),

length(Prog,NProg),

NProg =< ClauseLimit,

prove_some(Neg,Prog,FalsePos).

prove_some([],Prog,[]).

prove_some([Atom|Atoms],Prog,[Atom|Proven]) :-

prove_some(Atoms,Prog,Proven),

prove_one(Atom,Prog,Prog).

prove_some([Atom|Atoms],Prog,Proven) :-

prove_some(Atoms,Prog,Proven),

not(prove_one(Atom,Prog,Prog)).

Fig. 2. Relaxed MIL in pseudo Prolog code. Pos are positive, Neg negative examples.
Prog is a program and and FalsePos are false positive examples. For prove some/3 the
last, for metagol relaxed/5 the last two arguments are output arguments. The maxi-
mally allowed number of clauses MaxClauses is a user-given parameter. For prove all
and prove one see Figure 1.

Parameters. For every rMIL run, the false positive limit is calculated as the
size of the negative examples times the parameter maximal false positive fraction,
rounded down. As rMIL may result in a program H such that there are no true
negatives, SNL is in general undecidable. For MetagolSN , we require that there
are strictly less false positives than negative examples, that is maximal false
positive fraction must be lower than 1. Then, the number of positive and negative
examples reduces at every second recursion step and MetagolSN is decidable.

To further guide the search, we impose an iterative deepening schema on the
size and the depth of the induced SNT. An upper limit for both may be set as
a parameter. The depth is deepened within the size of the SNT. That is, size n
with depth m+ 1 is explores before size n+ 1 with depth m. This assures that
MetagolSN finds the smallest theory.

SNT Flattening. As MetagolSN only induces theories for single predicate sym-
bol arity pairs, any induced SNT can easily be flattened into a single clausal the-
ory. If the induced SNT is a datalog program, thus a clausal theory, no flattening
is required. Otherwise, given any SNT 〈H,Φ, S〉 induced for predicate symbol p
and any atom A = p(t1, . . . , tn), let H ′ be a copy of H where not(MΦ(A)) is
appended to every clause with head A. Then the flattening of 〈H,Φ, S〉 is the
union of the flattening of S and H ′ (see Figure 4).

4 Evaluation

To evaluate the usefulness of our approach, we compared MetagolSN and MetagolAI
on the leap year domain. As introduced above, years must be separated in leap



metagol_sn(Pos,Neg,MaxClauses,SNT) :-

let P be the predicate symbol used in Pos,

between(1,MaxClauses,ClauseLimit),

metagol_relaxed(Pos,Neg,MaxClauses,Prog1,FalsePos),

if FalsePos=[]

SNT = Prog1

else

let PPrime be P prefixed with ’_’,

let PosNext be FalsePos with P renamed to PPrime,

let NegNext be Pos with P renamed to PPrime,

assert_prog(Prog1),

metagol_sn(PosNext,NegNext,MaxClauses - length of Prog1,Prog2),

SNT=snt(Prog1,PPrime,Prog2)

end if.

Fig. 3. MetagolSN in pseudo Prolog code. Pos are positive, Neg negative examples.
assert prog/1 adds its argument to the Prolog database and removes it on backtracking.
Maximal theory size MaxClauses is configurable by the user.

flatten_snt(P,snt(Prog1,PPrime,Prog2),Prog3) :-

flatten_snt(PPrime,Prog2,Prog4),

for each P(T1,...,TN) :- Body in Prog1

replace it with P(T1,...,TN) :- Body, not(PPrime(T1,...,TN)),

append(Prog1,Prog4,Prog3).

flatten_snt(P,Prog,Prog).

Fig. 4. Flattening of a SNT in pseudo Prolog code. P and PPrime are predicate sym-
bols, ProgN are programs. P is the predicate symbol Prog1 was induced for.

years and not leap years. That is, the target predicate leapyear(X) shall hold if
and only if X is a leap year. We defined two predicates describing numbers:

divisible/2 where divisible(X,Y) holds if and only if the integer Y divides the
integer X exactly and

not divisible/2 where not divisible(X,Y) holds if and only if X and Y are
integers and divisible(X,Y) does not hold.

Using these two predicates as background knowledge, two clauses suffice to solve
the leap year problem (Figure 5).

To explore the effect of narrowing, first, we focus on a single induction episode
on a very small set of examples. As a proof of concept we want to show that
extending Metagol with narrowing will result in smaller theories, which can be
induced in shorter time, with less background knowledge. Afterwards, we will
compare both systems on a larger dataset, reporting predictive accuracy and run
times.



Table 1. Meta-rules used during evaluation. Name, well-formed formula, existential
quantified variables σ, and universal quantified variables τ are shown.

name wff σ τ

Const P (A,B)← {P,B} {A}
And1 P (A)← Q(A), R(A) {P,Q,R} {A}
Chain P (A,B)← Q(A,C), R(C,B) {P,Q,R} {A,B,C}
Curry P (A)← Q(A,B) {P,Q,B} {A}

leapyear(X) ← divisible(X,4), not divisible(X,100).
leapyear(X) ← divisible(X,400).

Fig. 5. Clausal theory to classify leap years using background knowledge Bndiv.

4.1 Proof of Concept Evaluation

As small proof of concept, we tried to induce the leap year rule from a limited
number of examples using MetagolSN and MetagolAI . For positive examples,
we used the years 4, 20, and 400. Negative examples were the years 2, 100,
and 200. The positive examples were either sorted ascending (dataset poc-asc) or
descending (dataset poc-desc), negative examples were always sorted descending.

Meta-rules and Background Knowledge. We provided the meta-rules And1
and Curry (see Table 1) to both systems. We tested the systems with three sets
of background knowledge Bdiv, Bndiv, and Bmax. All three contain the predicate
divisible/2, while only Bndiv and Bmax contain not divisible/2. Both predicates
were provided as rules. Since the arguments of the predicates are integers, the set
of constants C is infinite and thus learning is neither in the MIL setting nor in the
SNL setting decidable. In order to have a decidable problem, we limit possible
constant choices to a finite number. For divisible(X,Y) and not divisible(X,Y) in
Bdiv and Bndiv, Y may be any natural number from 1 to X. In Bmax, Y may be
any natural number which exactly divides any positive or negative example. X
is naturally constraint by the example years. An overview of the defined variants
of background knowledge is given in Table 2.

Parameters. For MetagolSN we varied the maximal allowed false positive frac-
tion with possible values 0.34, 0.5, 0.67, and 0.75. Additionally, we limited the
SNT depth to 1, 2, or 3. For both systems learning was cut off after 30 minutes.

Results. Both MetagolAI and MetagolSN were able to learn the correct theory
(in some configurations) as shown in Figures 6 and 7. Main results for single
runs on the poc-asc dataset are given in Table 3 and on the pos-desc dataset in
Table 4. MetagolAI was not able to induce a theory using Bdiv, neither for the
poc-asc data set nor for poc-desc. However, this was to be expected as there is
no datalog solution to the learning task with this background knowledge.



Table 2. Background knowledge defined for leap year domain. divisible(X,Y) and
not divisible(X,Y) indicate whether these predicates are available in the background
knowledge.

Bdiv Bndiv Bmax

divisible(X,Y) X X X
not divisible(X,Y) X X X
Constraint on Y 1 ≤ Y ≤ X Y divides any example

leapyear(A) ← leapyear 1(A), leapyear 2(A).
leapyear(A) ← divisible(A,16).
leapyear 1(A) ← divisible(A,4).
leapyear 2(A) ← not divisible(A,25).

Fig. 6. Leap year theory induced by MetagolAI for poc-desc using Bmax.

Using Bndiv MetagolAI failed on poc-asc within short time (0.7 s). This is
due to the ordering of the examples and the imposed constraint on the numeric
constants. In poc-asc the number 4 is the first positive example. Since 25 and
400 are greater than 4, neither not divisible(X,25) nor divisible(X,400) can be
abduced from this example. Learning fails as no theory can be found which is
consistent with the negative examples. For descendent ordering this does not
hold. Either not divisible(X,25) and divisible(X,400) could be abduced from the
first example (400).

However, reordering the data set seems to increase the search space mas-
sively. This hypothesis is supported by the observations that MetagolAI timed
out on this data set and that MetagolSN timed out or took much longer to in-
duce a theory. Even in failed attempts to induce a theory, both MetagolAI and
MetagolSN took longer for poc-desc than poc-asc. We conclude that MetagolAI
and MetagolSN are susceptible to the ordering of examples.

Finally, Bmax allowed both Metagol systems to induce theories. There are no
differences in results between poc-asc and poc-desc. However, MetagolSN always
found a theory with 3 clauses whereas MetagolAI required 4 clauses. Regarding
learning time, differences between the systems are negligible.

To induce a theory MetagolSN required a SNT depth of two for Bdiv. And
a depth of one was sufficient for Bndiv and Bmax, but a depth of two produced
smaller theories in shorter time for Bndiv. Increasing the depth limit further did
not change performance. A maximal false positive fraction of 67%, or two of the
initial negative examples, was required for Bdiv and Bndiv. A higher value did not
improve performance further. For Bmax, a maximal false positive fraction of 34%,
or one of the initial negative examples, delivered good results. No improvement
with increasing value can be deduced.



leapyear(A) ← divisible(A,4), not( leapyear(A)).
leapyear(A) ← divisible(A,100), not( leapyear(A)).
leapyear(A) ← divisible(A,400).

Fig. 7. Leap year theory induced by MetagolSN for poc-asc using Bdiv. Maximal al-
lowed false positive fraction was 0.67, SNT depth was limited to 2.

Table 3. Results for single runs on poc-asc data set. Shown are the maximal allowed
false positive fraction (max. FP), the limit on the SNT depth (limit), the number of
clauses in the learned theory (#c) where – denotes a failed run, the SNT depth (d),
and the used time in seconds (t).

Bdiv Bndiv Bmax
max. FP limit #c d t #c d t #c d t

MetagolAI – – 0.4 – – 0.7 4 0 0.2

MetagolSN 0.34 1 – – 0.5 – – 1.0 3 1 0.0

0.50 1 – – 0.5 – – 1.0 3 1 0.0

0.67 1 – – 1.7 4 1 0.3 3 1 0.0
2 3 2 0.0 3 2 0.0 3 2 0.0

0.75 1 – – 1.7 4 1 0.3 3 1 0.0
2 3 2 0.0 3 2 0.0 3 2 0.0

4.2 Performance Evaluation

Based on the results of the proof of concept we conducted a larger experiment
to study the influence of SNL parameters on performance. Meta-rules are as for
the small data sets. To have a fair comparison for both systems, we choose to
use only Bmax in our experiments.

Examples. As examples we use all years from 1582, where leap years following
the current rule were introduction with the Gregorian calendar [1], to the current
year. Years were separated in leap years and not leap years using the rule from
Figure 5. For the experiments we randomly sampled 20%, 40%, 60%, 80%, or
100% of the positive and negative examples. MetagolAI and MetagolSN were
evaluated on the same samples.

Parameters. We varied the maximal allowed false positive fraction with possi-
ble values 0.05, 0.10, 0.25, 0.50, 0.75, and 0.95, and the depth limit with possible
values 1, 2, or 5. Every parameter combination and MetagolAI were evaluated 10
times, each time with a different sampling. Learning was cut off after 30 minutes.

Evaluation. We evaluated the systems on theory complexity (number of clauses
and SNT depth), learning time, and predictive accuracy. Therefore, we applied
the induced theories on the next thousand years (2019–3018).



Table 4. Results for single runs on poc-desc data set. Shown are the maximal allowed
false positive fraction (max. FP), the limit on the SNT depth (limit), the number of
clauses in the learned theory (#c) where – denotes a failed run, the SNT depth (d), and
the used time in seconds (t). † denotes that the run did not finish within 30 minutes.

Bdiv Bndiv Bmax
max. FP limit #c d t #c d t #c d t

MetagolAI – – 14.6 – – † 4 0 0.1

MetagolSN 0.34 1 – – 17.1 – – † 3 1 0.0

0.5 1 – – 17.3 – – † 3 1 0.0

0.67 1 – – 34.0 4 1 25.8 3 1 0.0
2 3 2 0.0 3 2 0.1 3 2 0.0

0.75 1 – – 33.7 4 1 25.8 3 1 0.0
2 3 2 0.0 3 2 0.1 3 2 0.0

Results. In general, accuracies are very high (greater than or equal to 97.6%)
for all sample sizes and all SNT depth limits (see Figure 8). However, MetagolAI
was not able to learn for sample sizes larger than 60% with the given time limit.
MetagolSN was able to learn for all sample sizes when allowing up to 25% false
positives and a SNT depth of two or five. For SNT depth one, MetagolSN was
able to learn from 80% of the data but not from 100% within the time limit.
When training on the complete data set succeeded, MetagolSN has an accuracy
of 100%. For both systems runtime increases with sample size (see Figure 9).
In general, MetagolAI has higher run times than MetagolSN . For both systems,
the number of time-outs increases with sample size. For MetagolSN time-outs
increase with maximal allowed false positive fraction.

5 Conclusion

We introduced the concept of step-wise narrowed theories to tackle domains
which can best be characterized by an over-general rule and cascading exceptions.
We could show that the ILP system Metagol which allows predicate invention
but cannot deal with negation can be extended to learn such theories. Evaluation
has been performed on the leap year domain. As a next step, we plan to compare
MetagolSN with other systems, like ATRE and XHAIL, on the leap year and
additional domains. For example, we want to investigate rule plus exception
concepts in the Michalski train domain [15]. Learning a rule such as, a train
is eastbound if it contains a rectangle in any carriage but not in the first one.
Furthermore, we expect to gain better performances for learning grammars for
facial expressions of pain than with a previously explored grammar induction
approach [16]. Relaxing the MIL framework allows learning of imperfect theories.
This could be exploited in an iterative deepening approach on the false positive
limit, producing a stream of improving theories, that is an anytime algorithm.



Fig. 8. Average accuracies (standard deviations are similar for all cases and approx-
imately 0.05) for different sample sizes given different SNT depth limits. Results for
depth limits 2 and 5 were identical and thus are show in a single line. MetagolSN was
run with 0.05 maximal allowed false positives.

Fig. 9. Average run times for different sample sizes given for different SNT depth
limits. Results for depth limits 2 and 5 were identical and thus are show in a single
line. MetagolSN was run with 0.05 maximal allowed false positives.
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