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Abstract
The new European General Data Protection Regulation (GDPR) imposes enhanced requirements on
digital data collection. This article reports from a 2018 German nationwide population-based prob-
ability app study inwhich participantswere asked through aGDPRcompliant consent process to share
a series of digital trace data, including geolocation, accelerometer data, phone and textmessaging logs,
app usage, and access to their address books.With about 4,300 invitees and about 650 participants,we
demonstrate (1) people were just as willing to share such extensive digital trace data as they were in
studies with far more limited requests; (2) despite being provided more decision-related information,
participants hardly differentiated between the different data requests made; and (3) once participants
gave consent, they did not tend to revoke it. We also show (4) evidence for a widely-held belief that
explanations regarding data collection and data usage are often not read carefully, at least not within
the app itself, indicating the need for research and user experience improvement to adequately inform
and protect participants. We close with suggestions to the field for creating a seal of approval from
professional organizations to help the research community promote the safe use of data.
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Background

As smartphone adoption has exploded, fundamentally transforming our lives, social scientists have

been eager to make use of the treasure trove of data these smartphones provide. The passive

collection of behavioral data through digital devices not only provides the possibility to reduce

burden by reducing questions that would otherwise need to be asked in surveys but also opens

possibilities for entirely new measurements (Link et al., 2014).

New Forms of Measurement

Good examples of studies in which passive measurements via digital devices can enrich social

science data collection are those studies which traditionally used observations for data collection.

For example, in the landmark “Marienthal Study,” where Jahoda, Lazersfeld, and Zeisel (1971)

observed and recorded activities in an Austrian small town after a massive layoff, field workers were

deployed and measured the residents’ walking speed in key parts of town. Because such in-person

observations did not scale, such data collections have not taken off and instead surveys were used to

report on behavior (Warr, 1987). Today, activities can be measured passively through mobile

devices that can capture geolocation and have accelerometer sensors (for an overview, see Link

et al., 2014; for a use case example, see Sugie, 2018).1

In other examples, studies interested in the effects of long-term unemployment and labor

market (re-)integration ask respondents to report on their social network and the frequency of

interaction with members of their network (e.g., Atkinson, Liem, & Liem, 1986; Eisenberg &

Lazarsfeld, 1938; Kelvin & Jarret, 1985; Sprengers & Tazelaar, 1988). Unfortunately, methodo-

logical work has shown these questions suffer from interviewer- and respondent-induced mea-

surement error. In order to reduce the amount of follow-up questions (Tourangeau, Kreuter, &

Eckman, 2012), interviewers and respondents might be tempted to report smaller networks with

fewer interactions (empirical examples shown by Brüderl, Huyer-May, & Schmiedeberg, 2013;

Josten & Trappmann, 2016). Similarly, behavioral recall questions are at risk of measurement

error when frequent and not particularly distinct behaviors are asked for (e.g., Boase & Ling 2013;

Eckman et al., 2014).

It is therefore not surprising that the passive collection of social interaction is appealing.

Smartphones have become a common tool of daily life, fulfilling several uses, such as social

interaction, job search, dating, and entertainment (Rainie & Perrin, 2017), as smartphone adoption

increased to 46–80% in Western nations, with 77% in United States and 66% in Germany,

respectively (Poushter, 2017). Besides social interactions, social network size and activity are

of great interest. A research app capable of reading the address book and recording interactions

made with each member in the address book can shed light not only on interactions but also on

network size (Sugie, 2018).

While these use cases are compelling, they illustrate practical challenges during the “onboarding

process,” the step between participant recruitment and the continuing data collection after successful

installation of the research app. In the European context, there are explicit General Data Protection

Regulation (GDPR) requirements (see Online Appendix) that add to these challenges: collecting

explicit and recordable consent agreements and the persistent provision of data; all within a GDPR

regime that provides participants the opportunity to turn off data transmission.

Participation in Smartphone Studies

Not many studies exist that contain good assessments of how large the participation rate in smartphone

studies with passive data collection might be. Studies focusing on the hypothetical willingness to

534 Social Science Computer Review 38(5)



participate in a smartphone study indicate that the willingness to participate using an app that passively

collects data is lower than the willingness to use an app to actively engage with the researcher (e.g., via

short questionnaires, diaries, or pictures). For example, Couper, Antoun, and Mavletova (2017)

reviewed several studies asking respondents about their willingness to comply with special requests

using mobile devices, such as sharing Global Positioning System (GPS) location or taking photos at

the end of a survey, and found consent rates between 5% and 67%. Revilla, Toninelli, Ochoa, and

Loewe (2016) demonstrated that hypothetical willingness to engage in additional research-related

tasks on smartphones was in general quite low among members of seven nonprobability online panels

in Spanish- and Portuguese-speaking countries, but varied by task. In a follow-up study in Spain,

Revilla, Couper, and Ochoa (2019) found that only 20% of surveyed panel members reported being

willing to share GPS information on their smartphone and less than 18% would be willing to install an

app that tracks information about websites visited. Similarly, Wenz, Jäckle, and Couper (2017)

reported that willingness differs by hypothetical task in the Understanding Society Innovation Panel

(IP). Among IP panelists who used smartphones, 65% said they would be willing to take photos or scan

bar codes, 61% said they would use the built-in accelerometer to record physical movements, 39% said

they would share GPS location, and 28% said they would download a tracking app that collects

anonymous data about phone usage. The vignette study conducted by Keusch, Antoun, Couper,

Kreuter, and Struminskaya (2019) suggests higher willingness in university-sponsored studies com-

pared to studies conducted by government agencies or studies where participants are given control

over when they are sharing data with the researchers.

The Understanding Society IP later asked participants to download an app to take pictures of

receipts, of which 16.5% of their eligible panel members agreed and approximately 13% installed

the app and took at least one picture (Jäckle, Burton, Couper, & Lessof, 2017). The Longitudinal

Internet Studies for the Social Sciences (LISS) Mobile Mobility study in the Netherlands achieved a

19% participation rate among a random subsample of LISS panel members for a time use survey app

that passively collected information about geolocation and movements of users (Scherpenzeel,

2017). Given these moderate consent rates, the added requests for data sharing can cause consid-

erable concern. It is unknown at this point if multiple data collection request for a variety of sensitive

data would create even lower participation rates.

We first report on the IAB-SMART app study and its design, before detailing the measurements

and requested digital trace data in order to answer the following questions:

(1) to what extent people from the general population are willing to participate in extensive

digital trace data collection;

(2) do participants differentiate between the types of data they provide;

(3) will participants continuously provide data; and

(4) can we reasonably argue that the provision of data was fully informed.

Study Design

The author team developed the IAB-SMART app together with the telecommunications consult-

ing firm P3 insight GmbH (http://www.p3-group.com/en/about-us/executive-board/p3-insight-

gmbh/). The purpose of the app is to measure the effects of long-term unemployment on social

integration and social activity, as well as the inhibiting effects of reduced social networks and

activities in finding reentry into the labor market. To do so, the app needs extensive access to

sensor and activity data on the smartphone. Currently, the iOS operating system does not allow

such extensive access to third-party apps, and operating systems other than Android do not have

enough market penetration in Germany to justify the cost of developing the app for additional

systems. Therefore, a decision was made to focus on the Android operating system. Such focus on
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Android is common for smartphone studies, usually for similar cost reasons (Church, Ferreira,

Banovic, & Lyons, 2015).

Sample. Participants for the IAB-SMART app study were recruited from the panel study “Labour

Market and Social Security” (PASS). PASS is an annual household panel survey of the German

residential population aged 15 and up, with an oversample of welfare benefit recipients (Trapp-

mann, Beste, Bethmann, & Müller, 2013). PASS is conducted in a sequential mixed-mode design,

combining computer-aided personal and telephone interviews. The initial PASS sample consisted

of an address-based sample of the German general population and a welfare benefit recipients

sample from national registers. The latter is supplemented every year by a sample of new benefit

receipients (Trappmann, Müller, & Bethmann, 2013). Initial wave response rates have ranged

from 25% to 35% ([AAPOR RR1] American Association for Public Opinion Research, 2016).

Annual attrition rates range between 15% and 20% (compare the annual PASS methods and data

reports available at https://fdz.iab.de/de/FDZ_Individual_Data/PASS.aspx). In spite of the rela-

tively low response rates, several articles utilizing high-quality administrative data have shown

that nonresponse bias is rather small for a range of variables such as benefit receipt, employment

status, income, age, or disability (Kreuter, Müller, & Trappmann, 2010; Levenstein, 2010;

Sakshaug & Kreuter, 2012). Foreign nationals have found to be considerably underrepresented

(Kreuter et al., 2010), but weighting can adjust for this.

Due to the oversampling of welfare benefit recipients, respondents to PASS Wave 11 are, before

weights are applied, more likely to receive those benefits than the general population (30.0%
compared to 6.3%), but also more likely to be aged 55–64 (20.5% vs. 16.1%) and to live in eastern

Germany (26.7% vs. 19.7%). In spite of the oversampling of—on average lower educated—benefit

recipients, the distribution of educational degrees is very similar between PASS and the general

population, due to a compensating nonresponse effect.

All PASS respondents who reported having an Android smartphone in Wave 11 (fielded in 2017)

were eligible for the IAB-SMART study. Although smartphone owners are younger, more educated,

and more likely to live in larger communities than non-smartphone owners, little coverage bias in

substantial PASS variables exist due to smartphone ownership. This holds true even when limiting the

sample to Android smartphone owners only (Keusch, Bähr, Haas, Kreuter, & Trappmann, 2018a).

Invitation. In January 2018, a total of 4,293 postal invitations were sent to a random sample of PASS

participants who own an Android smartphone. In order to monitor return and gauge how many

invitations would need to be sent out to achieve a target of 500 participants, we sent invitations in

two separate installments. The first installment consisted of 1,074 invitations, the second of 3,219.

Adaptations to the mailings were made after the first installment. Participants were invited to join the

study for six months of data collection. The invitation package sent in both installments contained a

cover letter, information on data privacy, a description of the app functions, and an explanation

regarding the incentives. The cover letter explained the goals of the study and how to find the app in

the Google Play Store. It included a direct download link and a Quick Response code. The note had a

unique registration code for each participant. After 11 days, a reminder mailing was sent, including

an installation brochure, which walked users through the downloading and registration process step-

by-step. In the second installment, the installation brochure was added to the first mailing (see

Online Appendix Table A1 for a full list of documents).2

The information on data privacy covered all privacy issues associated with downloading and using

the app. A separate document detailed the description of functions responsible for the passive data

collection tomake them stand outmore (forwording, see Online Appendix Table D1). Additionally, we

provideda frequently askedquestionsmenuwhichwas linked towithin the app (www.iab.de/iab-smart).
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As explained in a separate document, participants received incentives in form of points for each

of the following activities: downloading the app, answering survey questions, and activating passive

data collection functions for 30 days at a time (within the 6-month long study). We varied the

incentive amounts, though none of the experimental conditions showed any notable difference

across those conditions (Haas, Kreuter, Keusch, Trappmann, & Bähr, 2018). In what follows we

will only present overall results.

Measurements. The IAB-SMART app collected data in two ways: (1) through short surveys pushed

by the app at predefined times (maximum 10 questions), and (2) through passive mobile measure-

ment using sensors on the smartphone. Eleven different survey modules were fielded throughout,

covering various job search activities, as well as smartphone usage and demographics, including a

request to link the app study data to administrative data available within the German labor market

agency. One module was triggered when participants spent more than 30 minutes in predefined

geofences corresponding to 400 local job centers where welfare benefit recipients meet with their

placement officers (only if consent was given for the geolocation to be tracked).

Passive measurements. Five sets of passive data collection packages were programmed into the IAB-

SMART app: (1) mobile phone network quality and location information, (2) interaction history, (3)

characteristics of the social network, (4) activity data, and (5) smartphone usage (see Online

Appendix Table C1).

(1) Mobile phone network quality and location information were collected every half hour

together with information on network providers and network technology, to examine ques-

tions regarding digital infrastructure and the labor market.

(2) Interaction history: This function collects participants’ incoming and outgoing call and text

message logs (i.e., time stamps, hashed numbers, not the content of text messages or phone

calls). Hashing of all phone numbers ensures privacy protection for any third party with

which the participant is interacting.3

(3) Characteristics of the social network: To analyze the composition of the smartphone own-

er’s social network, information is collected regarding gender and nationality of the phone-

book entries by matching the first name of each contact with information from the website

Genderize (https://api.genderize.io) and first and last names with information from the

website NamePrism (www.name-prism.com). In neither case were data transmitted to the

outside websites. Simply the ping results were saved and transmitted as classification

probabilities together with the hashed names.

(4) Activity data: This data package contains data from built-in sensors (accelerometer and

pedometer) and will be used to create measures of means of transportation (e.g., walking,

biking, in a motorized vehicle) and periods of activity.

(5) Smartphone usage: This data package contains information on apps installed on the parti-

cipant’s smartphone and the frequency of their usage (measured as beginning and end of an

app being in the front of the phone screen, when the phone is active). No information is

collected on what is done within the app.

Consent Process

For the IAB-SMART app study, we requested the informed consent within the onboarding process.

We refer to the onboarding process as the steps needed to completely install the app. This means not

only pressing install and accepting Google permissions but also setting all options in the correct user

specified way.
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There is a prespecified way any app is installed on an Android phone. Upon downloading the app,

a screen appears indicating all data the app will require access to. Those permissions must be granted

before an app can be installed. Exceptions are dynamic permissions, which were not used in this

study to ensure compatibility with most Android versions.

Figure 1 shows the permissions requested by the IAB-SMART app. Developers cannot modify

the standard Google permissions screen or modify the explanations given why those data need to be

accessed or how they are used. The inability to add explanations regarding the exact scope and

nature of the data collection led us to include a separate additional consent step. This decision was

made together with the Federal Employment Agency’s legal counsel, since they were concerned that

information provided in the invitation letter might (a) not be read and (b) leave no trace of the

intvitee seeing or reading the explanation. Through adding the extra consent step within the app, we

align with the GDPR’s demand for transparency (Art. 5 para. 1a and distinguishing of consent from

other matters Art. 7 para. 1). Furthermore, the default Google permissions is an all or nothing choice.

The individual either accepts all permissions and can participate or does not accept any permissions

and cannot participate.4 This approach contradicts GDPR recital 33: “Data subjects should have the

opportunity to give their consent only to areas of research or parts of research projects to the extent

allowed by the intended purpose.” With our second level of consent requests, individuals can decide

to which data collection or research project they are willing to contribute. Equally important,

participants can withdraw their consent at any time in the setting menu of the app, which aligns

with the GDPR requirement (GDPR Art. 7, para. 3). A final reason to not rely on the Google

permissions but on the two-step consent procedure is that Google permissions are packages that

would have allowed us to collect more data than needed. We explained this two-step procedure to

the participants in the installation guide.

Figure 1. IAB-SMART app—Google Play Store consent settings.
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The additional IAB-SMART app onboarding screens are displayed in Online Appendix Table B1

including a translation into English. Immediately after downloading the app from the Google Play

Store and opening the app for the first time, and prior to consenting to the individual IAB-SMART

app data packages, participants were asked to consent to the linking of their data with data from the

PASS survey. This step was mandatory for participation in the study.

After participants typed in their unique registration code, the app displayed the general privacy

note. The participants had already received a written version of the same text in the invitation letter.

Without the participants acceptance of the general privacy notice, we were not able to process any

data from the app. Only consenting participants were able to continue with the installation/onboard-

ing process. Participants also had to actively consent to the terms of service.

The next screen showed the consent requests for the five data packages: (a) network quality and

location information, (b) interaction history, (c) characteristics of the social network, (d) activity

data, and (e) smartphone usage. With a click on an individual function, a short description (37–112

words) unfolded to explain to subjects which data this function (if activated) enabled the app to

collect, as well as the general research purposes the data are used for (see Online Appendix Table D1

for the full description provided to the participants in the invitation letter and on the study’s website).

Having the explanations behind a foldout tab allowed us to fit all consent requests on one screen and

avoid scrolling. Also, participants could focus their reading on packages of particular interest to

them without filling their screen and losing orientation through up and down scrolling. An ideal

typical progression would be to open one description text at a time, record the decision to activate

this function (or not), close the description, and go on to the next function.

At the point of entry to the screen, all boxes indicating consent were empty. In order to provide

consent, the participants had to actively check a box so a check mark appears. For the fifth data

package (smartphone usage), after activating the function on the app screen, participants had to

move to the phone’s native menu and change settings to allow access—an additional hurdle that we

anticipated would have an effect on consent rates.

Because GDPR requires adding possibilities to reverse any prior data collection consent at any

time (Art. 7 para. 3 and Figure A1 in the Online Appendix), we provided a list of all functions and the

option to view their description within the app settings. Participants were able to deactivate or to

activate functions at any time during the data collection process.5 Installing the app first and being

able to explore its functionality might have a trust-increasing effect. Finally, we also collected

paradata within the app, such as time stamps associated with the opening and closing of certain

pages or features. These will contribute to our analysis of the consent request.

Results

To which Extent are People from the General Population Willing to Agree to an Extensive
Digital Trace Data Collection within a Research App?

A total of 652 of the 4,293 invited participants installed the IAB-SMART app,6 185 invitations were

undeliverable and 3 indicated no longer having a smartphone, resulting in a participation rate of

15.9%. Focusing first on the digital trace data collection activated during the onboarding screen, we

found 91% of all participants to immediately consent to at least one of the five passive data

collection packages. Of those not consenting immediately during the onboarding process, most took

advantage of the possibility to do so later within the app settings after the installation was completed.

The willingness to activate at least one of the data functions did not differ across most of the

major demographic groups (see Figure 2). The only slightly lower activation rates are visible among

first-generation immigrants compared to nonimmigrants and second-generation immigrants (Diff ¼
1.6, w2¼ 6.7, df¼ 3, p¼ .08) and those with only primary and lower secondary education compared
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to people with higher educational degrees (Diff ¼ 0.5, w2 ¼ 9.02, df ¼ 2, p ¼ .01), though these

effects are small.

More than two thirds of the participants (71%) gave consent to all five functions during the

installation process, about 13% consented only to four (mostly due to a reduced consent rate to the

smartphone usage package, which required participants to move to the native phone settings).

Looking at the time stamp paradata, we see that most participants gave consent to the packages

in the order they were displayed on the screen, with 86% agreeing first to network quality and

geolocation. The second package received the second highest “first consenters” with 7%.

Do Participants Differ in their Willingness to Participate in Different Digital Trace
Data Collections?

Overall, there is very little variation in the consent given to the different data collection requests.

Table 1 reports the decisions each participant made after installing the app with respect to their

participation in each individual digital trace data package. Activation rates are very similar for the

first four data package functions ranging between 85.9% and 86.8%. The function smartphone usage

is activated at a significantly (z value ¼ �4.14, p � .001) lower rate of 75.9% as it required

participants to move to the native phone settings.7

Do Participants Use their Ability to Revoke Consents after Previously Giving Them?

Most participants (554 of the 652; 85%) did not change their consent to provide data for a specific

data collection package. For each data package, over 88% of the decisions did not change through

the data collection.

Did Participants Open and Read the Explanations Provided within the App?

About 30% of the participants opened a function description before consenting to the collection of

one of the five data packages. The distribution is clearly bimodal with 18% opening all five

descriptions and 11% opening between one and four descriptions. Again, we see little difference

in opening the explanations across demographic groups, with the exception of age. Here, we see a

clear negative relationship between age groups and reading. Young participants between 15 and 20

Table 1. Consent Status of Participants by Data Package Function.

Function

Consent Status

Deactivated Activated Total

Mobile phone network quality and location information 86 566 652
13.2% 86.8% 100%

Interaction history 90 562 652
13.8% 86.2% 100%

Characteristics of the social network 92 560 652
14.1% 85.9% 100%

Activity data 86 566 652
13.2% 86.8% 100%

Smartphone usage 157 495 652
24.1% 75.9% 100%

Total 511 2,749 3,260
15.7% 84.3% 100%
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years of age lead with 48%, whereas of those age 60 and older only 16% opened the function

description (Figure 3).

All function descriptions were opened at roughly the same rate, meaning each was opened by about

20% of the participants. To measure the time spent reading the opened function description, we only

used those cases that opened and closed a function. For those who opened the description but then just

scrolled down on the app, we have no measurement indicating when the participants stopped reading.

The time spent reading varied between 15 s on average for the activity data and 21 s for the

smartphone usage data. As one would expect, there is quite a variation across participants in the

times they had the descriptions open. Accounting for the number of words in the descriptions,

we converted the reading times into words per minutes (wpm) and divided reading speeds into

above and below 1,000 wpm. We used a conservative approach to categorize reading faster than

1,000 wpm as reading that might be too fast to capture the content except for experienced speed

readers (for measures of reading speeds, see Trauzettel-Klosinski & Dietz, 2012). Table 2 shows that

most of the participants who opened a description spent enough time on it that we would consider

it reading. The exception to this is the first data package on network quality and location informa-

tion. It was overall opened more and read by a smaller fraction than to the others.

When opening the description later within the settings of the app rather than during the instal-

lation process, participants showed a much more uniform and overall lower reading speed (see Table

3). Having opened the function description lead to slightly higher consent rates (see Table 4), with

functions being active 86.5% of all times a description was opened (n¼ 748), and 83.7% of all times

functions were not opened (n ¼ 2,512).8

This overall pattern held across the different consent requests, though the differences between

consent after opening and consent without opening are too small to call them statistically significant.

Important for us is the fact that additional explanation did not discourage any participants in any

systematic way—if anything transparency seems to help.

Table 2. Proportion of Participants who Opened the Description of a Data Package Function During Instal-
lation, Mean Duration Descriptions Were Open, and Reading Speed in Words per Minute (wpm) of Descrip-
tions by Data Package Function.

Function

Description
Opened During

Installation

Total

Mean Duration
Description Open

in Seconds

Duration
(Categorized
by wpm)

TotalYes No
Opened No

Time
>1,000
wpm

�1,000
wpm

Mobile phone network
quality and location
information

158 494 652 18.9 (2.5) 88 29 41 158
24.2% 75.8% 100% 55.7% 18.4% 25.9% 100%

Interaction history 153 499 652 19.4 (2.8) 106 8 39 153
23.5% 76.5% 100% 69.3% 5.2% 25.7% 100%

Characteristics of the
social network

147 505 652 17.3 (2.5) 102 9 36 147
22.5% 77.5% 100% 69.4% 6.1% 24.5% 100%

Activity data 142 510 652 14.7 (2.1) 104 2 36 142
73.2% 1.4% 25.4% 100%21.8% 78.2% 100%

Smartphone usage 148 504 652 21.4 (7.4) 114 7 27 148
77.0% 4.7% 18.2% 100%22.7% 77.3% 100%

Total 748 2,512 3,260 18.4 (1.5) 514 55 179 748
22.9% 77.1% 100% 68.7% 7.4% 23.9% 100%

Note. Standard Errors in Parentheses.
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Discussion

In this study, we invited a random subset of a longitudinal probability-based panel with smartphones

to join an extensive digital trace data collection. Information on mobility, the level of activity, and

the mode of transportation have the potential to provide new insights into the everyday life of

employed and unemployed individuals and thus can further our understanding of hitherto unob-

served opportunity structures and inequalities on the labor market. Location-triggered surveys allow

targeted and timely collection of information, for example, of respondents’ experience of a visit to

their local job center. We measure the integration in social networks on and off the smartphone

through questionnaires and the collection of phone logs and text message logs. This information will

help to assess the role social networks play for labor market outcomes. By linking these smartphone

data to panel survey data of the participants and their administrative labor market records at the

Federal Employment Agency, the potential of these data is enhanced. It allows analyzing these new

Table 3. Proportion of Participants who Opened the Description of a Data Package Function in Setting Menu,
Mean Duration Descriptions Were Open, and Reading Speed in Words per Minute (wpm) of Descriptions by
Data Package Function.

Function

Description
Opened in
Settings

Total

Mean Duration
Description Open

in Seconds

Duration
(Categorized
by wpm)

TotalYes No
Opened No

Time
>1,000
wpm

�1,000
wpm

Mobile phone network
quality and location
information

65 587 652 23.5 (5.2) 30 18 17 65
10.0% 90.0% 100% 46.2% 27.7% 26.1% 100%

Interaction history 65 587 652 16.9 (2.7) 26 9 30 65
40.0% 13.8% 49.2% 100%10.0% 90.0% 100%

Characteristics of the
social network

63 589 652 17.0 (2.9) 26 8 29 63
9.7% 90.3% 100% 41.2% 12.7% 46.0% 100%

Activity data 69 583 652 13.6 (2.8) 29 14 26 69
10.6% 89.4% 100% 42.0% 20.3% 37.7% 100%

Smartphone usage 85 567 652 10.4 (2.5) 37 25 23 85
13.0% 87.0% 100% 43.5% 29.4% 27.1% 100%

Total 347 2,913 3,260 15.7 (1.4) 148 74 125 347
10.6% 89.4% 100% 49.7% 24.8% 41.9% 100%

Note. Standard Errors in Parentheses.

Table 4. Participants Decision to Consent to Passive Data Collection, That Is, to Activate a Data Package
Function by Participant Opened the Description At Least Once or Not.

Participant Opened Description at Least Once

Consent Status

TotalDeactivate Activate

No 410 2,102 2,512
16.3% 83.7% 100%

Yes 101 647 748
13.5% 86.5% 100%

Total 511 2,749 3,260
15.7% 84.3% 100%
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measures in conjunction with exact information on key labor market outcomes like unemployment

or wages before, during, and after the data collection. The requests for sharing all the necessary

passive trace data were quite extensive, including geolocation, accelerometer data, phone and text

messaging logs, app usage, and access to the address book.

To participate in the research, individuals used an Android smartphone app designed explicitly

for this study. Of those invited, 16% were willing to install the app, and, of those, more than 90%
agreed to at least some of the extensive smartphone data collection. While a 16% installation rate

seems rather low compared to the response rate of high-quality face-to-face surveys, particularly

given that only respondents of a long running panel survey who had previously indicated that they

own an Android smartphone had been invited, the installation rate we observed here is similar to

those observed in other studies, with similar designs, but less extensive requests (see, e.g., Jäckle

et al., 2017; Scherpenzeel, 2017). This is good news for social scientists interested in building

complex measurements formed out of a variety of data sources collectable on the smartphone.

Any nonresponse carries the risk of nonresponse bias. Here, the rich panel data that the sample is

based on allow for a detailed modeling and adjustment for a potentially selective participation

process. First, analyses indicate that while differences in installation rates between groups with

different income and education are in the expected direction, they are not as substantial as might

have been anticipated, typically between one and three percentage points (Keusch et., 2018b).

Another highlight from our research is the consistency with which participants gave permissions for

data collection over the course of the study. The GDPR requires the ability to revoke one’s permission

to provide data as easily as it was given. We implemented this requirement by having a setting within

the app that allowed participants, with one check mark, to activate and deactivate the data collection.

Participants used this option very sparingly. The vast majority did not change any settings after initial

installation. Furthermore, we provided participants with a large amount of control over which data they

wanted to share and which they did not. This control is also in line with the GDPR requirements. In our

study, participants rarely made use of the ability to differentiate their consent to the different data

packages. These findings are encouraging for all those who take ethically aligned design seriously (see

the Institute of Electrical and Electronics Engineers [IEEE] Global Initiative https://standards.ieee.org/

develop/indconn/ec/ead_brochure.pdf) but currently worry about the effect on participation.

It should be noted though that our study, as well as others, recruited participants from existing

panels. In our cases, this means PASS, and in other instances, this means LISS (Scherpenzeel, 2017)

or the Understanding Society IP (Jäckle et al., 2017). Thus, we draw from a population of coopera-

tive respondents who have previously agreed to provide data for research purposes, albeit in form of

surveys. It is therefore likely that the rates we report here are different in the general population.

However, there is no empirical evidence to date on multidimensional consent rates among a direct

sample (without the preceding surveys). While there have been studies investigating overall will-

ingness to participate in passive mobile data collections, those studies were all done through survey

questions, thus subsetting the population in similar ways (Jäckle et al., 2017; Keusch et al., 2019;

Revilla, Couper, & Ochoa, 2018; Wenz, Jäckle, & Couper, 2017). While our expectation is that the

willingness is higher among those already part of a panel survey, it is conceivable that some

members of the population are more willing to be part of a research study that only involves passive

measurements (and maybe very short surveys) than spending time to engage in a lengthy phone

interview or allowing someone to visit their home. Anecdotally, we received very positive feedback

from the PASS participants about the IAB-SMART app as a data collection mode.

GDPR and research ethics requirements, in general, put a strong emphasis on informed consent,

meaning participants need to be informed about the data collected and the purpose for which it is

collected. Being informed requires active engagement and effort on the side of the participants.

Thus, while we argued initially that passive measurements reduce burden, there is considerable

increased cognitive burden on the side of the participants in obtaining and processing the
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information. Dependent on the task at hand, people are reluctant to voluntarily spend too much

cognitive effort; instead, we tend to gravitate toward easy routes when making low-cost decisions

(Kahneman, 2011), in this case consent. Past research on informed consent has shown varying

consent rates as a function of when and how requests are presented (Kreuter, Sakshaug, & Tour-

angeau, 2016; Sakshaug, Wolter, & Kreuter, 2015) and raised concern that, in certain circumstances,

requiring explicit consent may reduce survey participation without adequately informing survey

respondents (Couper & Singer, 2013). In our study, we provided participants detailed information in

multiple places (invitation package, website, and within the app). Usability tests prior to launching

the study showed those explanations to be clear and understandable. Nevertheless, as expected, we

found only about one third of participants read the information provided to them within the app (but

we cannot measure reading of the paper material sent).

The more fundamental question of to what extent the notion of “informed” consent is achievable

has been raised previously in other contexts (e.g., Barocas & Nissenbaum, 2014). Kreuter, Sakshaug,

Schmucker, Couper, and Singer (2015) showcased higher nonconsent rates to data linkage between

survey and administrative data when respondents to a survey did not understand the content of the

linkage request. By trying to reduce survey data collection burden through passive measurements, we

might impose additional burden on participants to think through and process the request. Satisficing

will likely happen in the form of consenting without reading. It may be time to expand efforts like

those of the AAPOR Transparency Initiative (https://www.aapor.org/Transparency_Initiative.htm) to

include passive data collection, into the scope of the initiative. Furthermore, it may be necessary to join

forces with organizations such as the American Statistical Association and the IEEE to jointly create a

seal of approval for proper handling of individual digital trace data in a research context (similar to

security seals for online banking). We hope this article will contribute as a first step into this direction.
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Notes

1. Of course, none of these measures are perfect either or capture the full set of interactions, activities, and

behaviors. As argued in two reports by the U.S. National Academy of Sciences (2017a, 2017b), we too

expect to see value in combining data from different sources to improve the overall measurement.

2. The slight differences in the mailing of the installation brochure had technical reasons and were not intended

as an experiment. Given the smaller initial sample, power would not be sufficient to examine differences of

the brochure mailings in light of the other confounders.
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3. Hashing means taking a string (in our case the phone number) of any length and output a nonpersonal

random string of a fixed length. The hashing algorithm used here is a nonretraceable form of encryption.

4. Since Android 6.0, apps can use dynamic permissions that allow individuals to accept each permission

individually. However, not all smartphone owners have Android 6.0 or higher and we decided to unify the

installation process and use static permissions (see Figure 1) for all individuals because of methodological

and organizational reasons.

5. A probing question appeared when deactivating a function, asking how long the participant wishes to keep

the function de-activated (see Online Appendix Table E1).

6. All results are presented as of May 1, 2018. It is unlikely that more than a handful of participants will still

join the study. The results presented here are primarily focused on the onboarding and initial consent process

and are therefore not affected by the ongoing data collection.

7. Based on a test of proportion in Stata between the smartphone usage function (consent rate¼ 75.9%) and the

characteristics of the social network function (consent rate ¼ 85.9%).

8. The n here is a multiplication of the number of participants and the times they opened one of the five

functions.
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