
Schriften aus der Fakultät Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universität Bamberg29

Peter Wullinger

Supporting Format Migration
with Ontology Model Comparison

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

29

Contributions of the Faculty Information Systems
and Applied Computer Sciences of the
Otto-Friedrich-University Bamberg

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

Band 29

2018

Contributions of the Faculty Information Systems
and Applied Computer Sciences of the
Otto-Friedrich-University Bamberg

Peter Wullinger

2018

Supporting Format Migration
with Ontology Model Comparison

Dieses Werk ist als freie Onlineversion über den Hochschulschriften-Server (OPUS; http://
www.opus-bayern.de/uni-bamberg/) der Universitätsbibliothek Bamberg erreichbar. Kopi-
en und Ausdrucke dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt
werden.

Herstellung und Druck: docupoint, Magdeburg
Umschlaggestaltung: University of Bamberg Press, Larissa Günther
Umschlagbild: © Peter Wullinger

© University of Bamberg Press Bamberg, 2018
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-86309-577-2 (Druckausgabe)
eISBN: 978-3-86309-578-9 (Online-Ausgabe)
URN: urn:nbn:de:bvb:473-opus4-517018
DOI: http://dx.doi.org/10.20378/irbo-51701

Bibliographische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliographie; detaillierte bibliographische Informationen sind im
Internet über http://dnb.d-nb.de/ abrufbar.

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik
der Otto-Friedrich-Universität Bamberg als Dissertation vorgelegen.
1. Gutachter: Prof. Dr. Christoph Schlieder
2. Gutachter: Prof. Dr. Ute Schmid
Tag der mündlichen Prüfung: 22.05.2017

Contents

In this thesis, certain (mathematical) notation will be used to represent data struc-

tures and operations. An overview can be found in appendix A.1.

Contents i

1. Introduction 1

1.1. Built Heritage Digital Maps . 3

1.2. Mapping a Map: Low Effort Migration 5

1.3. Research Questions and Methodology 13

1.4. Structure of this Thesis . 16

2. Digital Preservation 19

2.1. Information Representation . 19

2.2. Intelligibility . 21

2.3. Format Ageing . 25

2.4. Structure and Operation of a Digital Archive 26

2.5. Approaches to the Preservation of Digital Documents 29

2.5.1. Intelligibility Management 29

2.5.2. Bitstream Preservation . 29

2.5.3. Monitoring Contextual Intelligibility 30

CONTENTS

2.5.4. Intelligibility Monitoring 31

2.5.5. Emulation . 32

2.5.6. Migration . 34

2.6. Significant Properties and Semantic Features 35

3. Format Conversion and Ontology Matching 41

3.1. Ontologies . 41

3.1.1. Related Work . 42

3.1.2. Ontology Elements . 43

3.1.3. Three Views on Ontologies 45

3.1.4. The Ontology . 56

3.2. Ontology Alignment . 57

3.2.1. Bridging Ontologies . 59

3.2.2. Ontology Matching . 63

3.2.3. Measuring Alignment Quality 65

3.2.4. Current Developments and Challenges in Ontology Align-

ment . 67

3.3. Document Ontologies . 74

4. Automated Reasoning in LillyTab 79

4.1. Knowledge Representation Logics 79

4.1.1. Automated Inference and Reasoning 80

4.1.2. Description Logics . 83

4.1.3. Expressive Description Logics 90

4.1.4. Description Logic Knowledge Bases 93

ii

CONTENTS

4.2. Automated Reasoning in Description Logics 95

4.2.1. Basics of Tableaux Reasoning 96

4.2.2. Reasoner Optimizations . 105

4.3. LillyTab . 110

4.3.1. Rationale . 112

4.3.2. Tableau Rules . 113

4.3.3. Tableau Data Structures . 117

4.3.4. Reasoner Implementation 119

5. Completion Graph Based Mapping 121

5.1. Completion Graphs and Queries 121

5.1.1. Mapping Conjunctive Queries to Completion Graphs . . . 122

5.1.2. Extracting Queries from Completion Graphs 124

5.1.3. Handling Negation . 129

5.1.4. Handling Universal Quantifiers 130

5.1.5. Handling TBox-axioms . 132

5.1.6. Handling Existential Non-Determinism 134

5.1.7. Benefits of Completion Graph Representation 139

5.2. A Mapping Tableau . 139

5.2.1. Extracting the Conjunctive Query 143

5.2.2. Query Complexity . 155

5.3. Tuple Generating Dependencies 155

5.3.1. Source-to-Target Property 159

iii

CONTENTS

6. Mapping Refinement 163

6.1. Refinement Process . 166

6.1.1. Model-Based Refinement 168

6.1.2. Refinement Strategy . 169

6.1.3. Matcher Mode . 171

6.2. Refinement Rules . 172

6.2.1. Semantic Refinement Rules 175

6.2.2. Subclass Refinement . 176

6.2.3. Role Successor Refinement 177

6.2.4. Refinement Performance 178

6.3. Interactive Alignment . 184

7. Comparing DL Completion Graphs 189

7.1. Requirements Analysis . 190

7.1.1. Element Level Similarity 190

7.1.2. Maximum Information Transfer and Alignment Length . . 192

7.1.3. Avoiding Unjustified Elements 193

7.1.4. Phrase Extraction . 194

7.1.5. Axiom Filtering . 200

7.1.6. EGD Path . 202

7.1.7. Logical Derivates . 207

7.2. Similarity Measures for Completion Graphs 207

7.2.1. Baseline Similarities . 207

7.2.2. Governing Term Cosine Similarity 211

7.2.3. Clustered Cosine Similarity 211

iv

CONTENTS

7.2.4. Dependency Cluster Similarity 213

8. Evaluation and Conclusion 221

8.1. Comparing Mapping Rules . 221

8.2. Evaluation Design . 223

8.3. Evaluation Results . 227

8.3.1. Interactive Refinement . 227

8.3.2. Effects of Lexical Extractor Parameters 228

8.3.3. Effects of Axiom Set Similarity 229

8.3.4. Effects of Axiom Collection 229

8.3.5. Comparison Of Completion Graph Similarity Measures . . 229

8.4. Discussion . 231

8.4.1. Interactive Refinement . 231

8.4.2. Automatic Refinement . 232

8.5. Summary . 236

8.6. Future Work . 238

A. Appendix 243

A.1. Note on Notation . 243

A.2. Proofs . 247

A.3. Raw Evaluation Results . 254

List of Definitions 261

List of Theorems 265

List of Figures 267

v

CONTENTS

List of Tables 271

List of Algorithms 273

Index 275

Bibliography 285

vi

SECTION 1.0

Introduction

Long term preservation of digital documents is a challenge that is faced by in-

stitutions worldwide. Technologies make use of redundant storage and integrity

verification to preserve the original raw bitstream of digital documents unaltered.

However, while traditional, printed physical documents can be interpreted by do-

main experts (albeit with some difficulty) even after decades, the same is not true

for digital documents. Preserving only the raw bitstream of a digital document

does not make it possible to extract the information contained in the document.

Applications supporting the document format may no longer run on then-current

hardware, new software may use different document formats for various reasons,

and documentation on the archived document format may be incomplete or no

longer available; in short: being able to read successfully the bits and bytes stored

inside an archive does not necessarily mean we are able to extract meaningful

information from an archived document.

This problem, addressed in this thesis, is also known as format ageing. A document

is subject to format ageing if the representation of the document itself is still in-

tact, but its contents cannot be read, because the encoding of the document is no

longer known. The problem exists for traditional documents (mostly with texts in

ancient languages, e.g. Linear A [Bes72]), but it is digital documents where for-

mat ageing is of particular significance, as it happens not at the pace of thousands

of years, but within decades. While digital archiving strategies and technology are

able to preserve a digital document’s exact representation (the bitstream of the doc-

ument), future applications (or hardware) may not be able to interpret the stored

document, essentially rendering the document useless.

1. Introduction

One way of solving the format ageing problem is to transform existing documents

into more modern document formats whenever the existing document format is

threatened to become unreadable. This method requires careful monitoring of

available hardware and application software in correlation with an archive’s con-

tent.

Lowering the effort required to extract a document from a digital archive that is

stored in a different format than supported by future applications is the primary

focus of this thesis. Finding a viable approach to format ageing problem in do-

mains where only low effort migration projects are possible is a major challenge

and more research is needed. This thesis opts for a twofold approach, where part

of the work is done at the time of submission of a document into the archive and

part of the work is performed in the future when extracting existing documents

from the archive and integrating them again into the workflow.

The developed solution utilizes ontological representation of information and tech-

niques from ontology matching to reduce the effort required during the retrieval

(dissemination) of a digital document from an archive.

• When documents are stored into the archive, the dataset of the document

is converted into an ontological representation format with a well defined

ontology schema that is also archived alongside the documents.

• In the future, applications must either be able to work with arbitrary onto-

logical models (and thus support archived ontologies directly), or they must

at least support an ontological representation of their internal data model.

In the latter case, archived documents need to be converted into the ontol-

ogy schema supported by future applications, requiring some technique for

ontology alignment.

Built heritage digital documentation serves as the real world anchor of the devel-

oped techniques. Built heritage digital maps are at the same time natural candi-

dates for the ontology-based archiving technique as well as provide a particularly

challenging scenario for the long termpreservation of domain specific documents.

2

1.1. Built Heritage Digital Maps

1.1 Built Heritage Digital Maps

Keeping a modern building in working order is a challenging task. While it may

seem static, a building is subject to slow but continual changes and constantmain-

tenance is required. The challenges are even more diverse when the building of

interest is several centuries old. Not only are such buildings often in everyday

use and must be kept usable, but also the identity of the historic building must

be preserved. Ensuring the continued preservation of such historic buildings and

monuments requires not only modern technology but also the ability to work with

documents and techniques that are often centuries old.

A crucial part in this process is played by documentation. Planning of preserva-

tion measures requires detailed knowledge of a preservation site. Not only must

the basic layout of a site be documented, but also the specific findings, materials,

and techniques originally used. In addition to that, damages must be carefully

recorded so that proper planning of suitable preservation measures can be per-

formed. And when they are finally undertaken, the measures themselves have

to be documented, because even subtle changes to a building may have conse-

quences unforeseen at the time of execution that show up but decades afterwards.

Most of the data collection and recording task remains manual work. While tech-

nological advances have made automatic data collection (e.g. environmental mon-

itoring, monitoring of structural shifts) possible in some cases, assessment of

many phenomena is still feasible only by visual inspection and note-taking. Tradi-

tionally, such visual inspection was –and often still is– carried out by using a paper

plan of the site of interest and coloured crayon. Different colours and/or hatch pat-

terns on such a hand-drawn map indicate different phenomena. The meaning of

each colour is documented either directly in a legend on the paper plan or in an

accompanying data sheet.

The traditional, “analogue” methods are more and more being supplemented or

replaced by computer based digital mapping. The software used for this process

is quite varied. Sometimes, only simple drawing or CAD programs are used to

essentially re-create a digital version of analogue crayon-sketches as shown in

3

1. Introduction

Figure 1.1. Part of a Built Heritage Digital Map for St. Stephan’s Cathedral, Vienna

An outline of the building’s exterior features is used as a background map.
Findings and measurements are draw in different colors and hatch patterns on

top. Large numbers on the left indicate height from the ground.

e.g. fig. 1.1. The visual aspect is very important in the domain and is the focus of

many special purposemapping tools. Some tools, however, recognize the need for

structural data acquisition and support more sophisticated data collection. These

tools allow to associate additional, structured datasets with each geometric object.

The map documents produced by the respective tools are complex digital docu-

ments. Contained within a map document are both a spatial database –often in

the form of a proprietary CAD document– as well as a structured dataset –often

in the form of a relational database or ontological knowledge base. This com-

plexity together with the particular properties and requirements of the domain of

built heritage makes preserving these documents both an interesting task and a

demanding challenge.

1. The active lifespan, i.e. the time a document is of direct importance to ev-

eryday tasks, is higher for built heritage digital maps than for many other

domain documents. While some of the maps may see everyday use, others

become only important after a long time of dormancy. For example, plans

made shortly after the Second World War may have to be consulted again

only now, because the respective part of the building is about to be renovated

4

1.2. Mapping a Map: Low Effort Migration

or was unexpectedly damaged. On the same line, analogue plans from the

early 20th century can become an important source of information for cur-

rent preservation measures.

2. The exceptionally long timespans of map documents cause a slightly para-

doxical situation. While documentation standards in built heritage do not

change as fast as in other domains, even the most well defined document

format can be expected to fall out of date within the usage period of the re-

spective document. Given the additional fact that some documents may lie

dormant in an archive for decades, format migration seems to be almost al-

ways a necessary process when an “old” digital document is retrieved from

the archive.

3. Add to this the fact that every larger preservation site usually has its own

documentation standards that have often evolved over centuries and are very

closely adapted to the ingrained workflows of local preservation scientists and

workers. This in turn has lead to the fact that the data values for the recorded

phenomena on the digitalmap (the data schema) are slightly different for each

historic site even when the buildings are of the same type. We are therefore

not only faced with the task of migrating a single data model, but at least one

for each large preservation site and/or institution.

1.2 Mapping a Map: Low Effort Migration

In the (not so far) future, the preservation scientist in charge of the digital archive

needs to retrieve some digital maps from the archive. These were created twenty

years ago and are now needed to aid in the planning of a new, large, and expensive

preservation measure.

She is able to retrieve the documents from the archive successfully, but when she

fires up the current mapping application of the institution, she is forced to realize,

that the map documents from the archive cannot be opened.

5

1. Introduction

Figure 1.2. Structure of an Archived Digital Map in Built Heritage

annotation data

map

geometry

Because of proper archiving techniques, the individual components of the map

have been packaged into a well-known container format. Looking at the individual

parts in the container, the preservation scientist notices that the geometry format is

still readable and that the structured data and the data schema have been packaged

in a well known ontology representation format (figure 1.2).

The new mapping application has an import facility for the geometry format and

also for reading data in an ontological document format. The ontological schema,

however, differs from the schema of the archived document and the mapping

application does not support the old format directly. Fortunately, the ontology

schema for the new format is available.

Initial Alignment Our preservation scientist opens both schemas in a standard

ontology editor. At a first glance, she sees quite a few similarities and consequently

comes to the conclusion, that a translation from the historic format to the new

ontology format should be possible. What she wants is amapping from the source

ontology into the target ontology. Because she knows that ontology alignment is a

well-covered research area, she believes that an ontology matcher can be useful.

After the matcher has analyzed both the source and the target ontology, it returns

a list of 1:1 correspondences between elements of both ontologies. A partial list

of these correspondences can be found in table 1.1. Here, 𝖲𝖺𝗇𝖽𝗌𝗍𝗈𝗇𝖾 (in the his-

6

1.2. Mapping a Map: Low Effort Migration

Table 1.1. Simple Correspondences for the Example Ontologies
𝖲𝖺𝗇𝖽𝖲𝗍𝗈𝗇𝖾 ⊂ 𝖠𝗌𝗁𝗅𝖺𝗋
𝖫𝗂𝗆𝖾𝖲𝗍𝗈𝗇𝖾 ⊂ 𝖠𝗌𝗁𝗅𝖺𝗋

𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖲𝗍𝗈𝗇𝖾𝖱𝖾𝗉𝗅𝖺𝖼𝖾𝗆𝖾𝗇𝗍 ≡ 𝖲𝗍𝗈𝗇𝖾𝖱𝖾𝗉𝗅𝖺𝖼𝖾𝗆𝖾𝗇𝗍

𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀 ≡ 𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀
⋮

toric source ontology) is mapped to 𝖠𝗌𝗁𝗅𝖺𝗋 in the modern, target schema as is
𝖫𝗂𝗆𝖾𝖲𝗍𝗈𝗇𝖾. The subset (⊂) relation indicates that 𝖠𝗌𝗁𝗅𝖺𝗋 is the more general type
in both bases.

Additionally,

𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖲𝗍𝗈𝗇𝖾𝖱𝖾𝗉𝗅𝖺𝖼𝖾𝗆𝖾𝗇𝗍 and 𝖲𝗍𝗈𝗇𝖾𝖱𝖾𝗉𝗅𝖺𝖼𝖾𝗆𝖾𝗇𝗍

are deemed equivalent, as are

𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀 and𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀.

After some manual corrections and improvements, however, the preservation sci-

entist is forced to realize that the obtained set of mappings is still incomplete.

While all primitive correspondences have been established correctly, the mapping

does neither cover all available information in the source ontology nor does itmake

it possible to create any complex structures in the target ontology. For example,

the 𝖲𝖺𝗇𝖽𝖲𝗍𝗈𝗇𝖾𝑠¹ and 𝖫𝗂𝗆𝖾𝖲𝗍𝗈𝗇𝖾𝑠 mappings loose all stone type information.

The preservation scientist realizes that this is a limitation of the ontology matcher,

because it does not support complex alignments, but only 1:1 correspondences

between ontological elements.

Refinement Because the information from the source documents are desper-

ately needed, the preservation scientist decides to manually derive more expres-

sive mappings. It seems natural for her to use the existing correspondences as a

starting point, because the initial alignment is not incorrect, only incomplete.

¹Concepts from the old/source ontology will be indicated with an 𝑠 index. Concepts in the
new/target ontology will use a 𝑡 index.

7

1. Introduction

Table 1.2. Abbreviations for Concepts and Roles in the Initial Example
MGF Measure – Grout Filling
uM usesMaterial

Me Measure br/Br brick
Ma Material pl/Pl plaster
GF Grout Filling sl/SL slate
FM Filling Material le/Le lead

She decides to start with the𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑠 concept and writes down the
initial correspondence for this concept in first order logic (FOL, [Bar77]):

∀?𝑥 . (𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑠(?𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
source side

⇒ 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑡(?𝑥)⏟⏟⏟⏟⏟⏟⏟
target side

)

Her goal is now to refine this initial mapping by adding predicates to both the

source and the target terms of the mapping. This makes both sides more dis-

tinctive, potentially transferring more information from the source to the target

ontology.

The scientist, however, knows that just guessing additional query predicates would

not be helpful. Both ontologies are fairly complex and random guessing would

neither be efficient nor effective. Instead, she decides that it must be somehow

possible to use information from the initial alignments together with the logical

axioms of both ontologies to guide her search for refinements of the initial map-

pings.

Luckily, her ontology viewer has support for automated reasoning and allows her

not only to show classifications (i.e. relationships between named concepts), but

also any additional axioms that hold for individuals of a specific concept.

8

1.2. Mapping a Map: Low Effort Migration

The reasoner tells her that 𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑠 (𝖬𝖦𝖥𝑠²) implies a restriction

on the values of the 𝗎𝗌𝖾𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅𝑠 (𝗎𝖬𝑠) attribute. Our preservation scientist tries

to find out more about the possible set of values and creates an instance of the

𝖬𝖦𝖥𝑠 concept and attaches a 𝗎𝖬𝑠 attribute with an unspecified value to it:

𝑥 𝑦
𝗎𝖬𝗌

𝖬𝖦𝖥𝗌

The reasoner, however, only tells her that this construct is consistent and does not

give her a list of possible values for 𝗎𝖬𝑠. As a consequence, she is forced to look up

the relevant information inside the axiom set of the source ontology. Fortunately,

the ontology does not use a complex set of axioms, but instead the values are listed

as a simple enumeration (a dataOneOf restriction). She finds that only the values

𝗉𝗅𝖺𝗌𝗍𝖾𝗋
𝑠
, 𝖻𝗋𝗂𝖼𝗄𝑠, 𝗅𝖾𝖺𝖽𝑠, and 𝗈𝗍𝗁𝖾𝗋𝑠 are allowed as values of the 𝗎𝖬𝑠 attribute when

attached to a𝖬𝖦𝖥𝑠 instance.

Observing that these seem to be the possible material types for a grout filling, she

adds appropriate terms to her initial query, generating a new set of more refined

query terms that need to be considered individually:

𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝖻𝗋𝗂𝖼𝗄𝑠)
𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝗅𝖾𝖺𝖽𝑠)
𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝗉𝗅𝖺𝗌𝗍𝖾𝗋𝑠)
𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝗈𝗍𝗁𝖾𝗋𝑠)

²The abbreviations from table 1.2 will be used whenever appropriate

9

1. Introduction

She is quite satisfied with the results, because these queries now allow her to dis-

tinguish the individual filling types in the source ontology. However, she would

have liked more support from her ontology editor and the underlying reasoner.

The different values for 𝗎𝖬𝑠 could have been suggested by the system, automati-

cally.

Still motivated, the preservation scientist continues to search for more possible

refinements, but is unable to find any hints for predicates that she could add to

further refine her set of source queries. She also looks at the existing, historic

documents and finds that no further attributes are recorded for 𝖬𝖦𝖥𝑠 in any of

the existing documents and that the queries she has obtained so far seem to cover

all relevant information recorded for𝖬𝖦𝖥𝑠 in existing source documents.

She thus turns her attention to the target ontology. Now, that the source side of

her mapping seems to be finished, she needs to find corresponding structures in

the target ontology to represent the information extracted by her source queries.

Once again, she starts with the initial concept 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑡 (𝖦𝖥𝑡) and tries to find

any information that is logically implied by the initial concept. Again, she there-

fore creates an instance of the initial concept and performs a reasoner run, which

obtains her the following:

𝑥

𝖦𝖥𝗍,𝖬𝖾𝗍

𝖦𝖥𝑡 is thus a subconcept of𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝑡 (𝖬𝖾𝑡), which re-assures her of the correctness
of the initial correspondence, because the pair (𝖦𝖥𝑡,𝖬𝖾𝑡) fits lexically with the
source concept𝖬𝖦𝖥𝑠.

Thus encouraged, the preservation scientist also observes that 𝖦𝖥𝑡 implies again

a restriction on some property, this time 𝗎𝗌𝖾𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅𝑡 (𝗎𝖬𝑡). She assumes that

–because of it having the same name– the property is used to represent the same

information in the source as well as the target ontology. She then continues with

10

1.2. Mapping a Map: Low Effort Migration

Figure 1.3. Source Ontology Fragment –𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑠
Measure-GroutFilling

𝗎𝗌𝖾𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅 {𝗉𝗅𝖺𝗌𝗍𝖾𝗋, 𝖻𝗋𝗂𝖼𝗄, 𝗅𝖾𝖺𝖽, 𝗈𝗍𝗁𝖾𝗋}

the same method that already worked for the source ontology: introducing an

unspecified 𝗎𝖬𝑡 successor and looking at the implied (i.e. derived by the reasoner)

classification. This time, the reasoner returns more information:

𝑥 𝑦

𝖦𝖥𝗍,𝖬𝖾𝗍 𝖥𝖬𝗍

𝗎𝖬𝗍

The other end of the 𝗎𝖬𝑡 relation needs to be of the type 𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅𝑡 (𝖥𝖬𝑡).

After this, however, our preservation scientist is stuck. It is obvious to her, that the

individual values of 𝗎𝖬𝑠 (in the source ontology) must be mapped onto instances

of 𝖥𝖬𝑡 (in the target ontology). How to do so, however, is not yet clear to her. 𝖥𝖬𝑡
does not imply any restrictions on attributes or relations. No immediate hints

within the ontology schema present themselves for further refinement.

A little bit frustrated, the preservation scientist does a search for “Plaster” (one of

the source filling material types) in the target ontology. Her search is successful

and returns a single concept 𝖯𝗅𝖺𝗌𝗍𝖾𝗋𝑡. Even better, the 𝖯𝗅𝖺𝗌𝗍𝖾𝗋𝑡 concept is asserted
to be a subclass of 𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅𝑡. A closer look at the target ontology reveals
that there are four direct subconcepts of 𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅𝑡: 𝖡𝗋𝗂𝖼𝗄𝑡, 𝖯𝗅𝖺𝗌𝗍𝖾𝗋𝑡, 𝖫𝖾𝖺𝖽𝑡,
and 𝖲𝗅𝖺𝗍𝖾𝑡. With this information, our preservation scientist is able to draw an
overview diagrams of the respective models of the two mapping domains. These

are shown in figures 1.3 and 1.4.

It is easy to see, that the modern ontology model is significantly more elaborate,

but the depicted fragments have similar information content. Using the infor-

mation obtained during her manual refinement steps, it is now possible for our

preservation scientist to formulate a set of terms that represent the different re-

finement steps she has performed in the target schema:

11

1. Introduction

Figure 1.4. Target Ontology Fragment – 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑡
Measure

GroutFilling

usesMaterial FillingMaterial

Material

SlatePlaster Brick Lead

disjoint disjoint disjoint

𝖦𝖥𝑡(?𝑥)
∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦)
∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖡𝗋𝗂𝖼𝗄𝑡(?𝑦)
∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖫𝖾𝖺𝖽𝑡(?𝑦)
∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖯𝗅𝖺𝗌𝗍𝖾𝗋𝑡(?𝑦)
∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖲𝗅𝖺𝗍𝖾𝑡(?𝑦)

Because she does not need a bidirectional mapping, she knows that she does not

have to generate a mapping for every target term. Instead, she needs a mapping

for every source term, including the initial correspondence.

It is not hard for her to find the correspondences for the 𝖻𝗋𝗂𝖼𝗄𝑠, 𝗅𝖾𝖺𝖽𝑠, and 𝗉𝗅𝖺𝗌𝗍𝖾𝗋𝑠
terms. The representation of the source term with the 𝗈𝗍𝗁𝖾𝗋𝑠 literal, however,
is a problem. The 𝗈𝗍𝗁𝖾𝗋𝑠 literal has no direct correspondence at the target side.
In the source ontology, 𝗈𝗍𝗁𝖾𝗋𝑠 is a filler for non-existing information rather than

12

1.3. Research Questions and Methodology

a concrete material type. If viewed in this way, an occurrence of 𝗈𝗍𝗁𝖾𝗋𝑠 can be
interpreted as a non-specified filling material. The same interpretation could have

been achieved by simply omitting the property value.

The preservation scientist therefore establishes the following, final refined map-

ping:

∀ ?𝑥. 𝖬𝖦𝖥𝑠(?𝑥) ↦ 𝖦𝖥𝑡(?𝑥)
∀ ?𝑥. 𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝖻𝗋𝗂𝖼𝗄𝑠) ↦ ∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖡𝗋𝗂𝖼𝗄(?𝑦)
∀ ?𝑥. 𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝗅𝖾𝖺𝖽𝑠) ↦ ∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖫𝖾𝖺𝖽(?𝑦)
∀ ?𝑥. 𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝗉𝗅𝖺𝗌𝗍𝖾𝗋𝑠) ↦ ∃ ?𝑦 . 𝖦𝖥𝑡(?𝑥), 𝗎𝖬𝑡(?𝑥, ?𝑦), 𝖯𝗅𝖺𝗌𝗍𝖾𝗋(?𝑦)
∀ ?𝑥. 𝖬𝖦𝖥𝑠(?𝑥), 𝗎𝖬𝑠(?𝑥, 𝗈𝗍𝗁𝖾𝗋𝑠) ↦ 𝖦𝖥𝑡(?𝑥)

1.3 Research Questions and Methodology

The introductory example has shown a low scale format migration project. Low

scale migrations projects should be expected to be quite common in specialized

domains: The ontological scope of the migration is limited to a few, specialized

documents and only limited effort can be put into the preservation process.

Assuming the ontological representation is possible with relative ease, this still

makes it necessary to perform format migration at various points in the lifecycle

of an archived document:

1. during the preparation of documents before submission into the archive,

2. during the maintenance of the archive, as well as

3. during the retrieval (dissemination) of archived documents in the future.

In addition to these challenges, some domains (like built heritage) even impose

the requirement that archived documents must not only be intelligible (i.e. via

emulation of old hard- and software), but need to be integrated into current work-

flows, i.e. they must be made usable with future applications.

13

1. Introduction

I have already noted that the intended solution discussed in this thesis is a twofold

approach.

• Documents are converted into an ontological representation at the time of

archive submission.

• Future applications are assumed to have support ontological representation

of datasets, but possibly with a different ontological schema. Mapping of

stored document formats into the future schema is done at extraction time.

The example (and this thesis) focusses on the scenario, when format migration

is required despite the use of ontological representation systems. This is the case

when some future application supports only its own, intrinsic ontological schema.

If so, the documents making use of the historic ontology must be aligned with the

future schema.

This necessity of alignment is also the reason for the choice of an ontological rep-

resentation. Ontology matching is an important and widely covered research area

and consequently, the format migration process can make use of existing technol-

ogy for ontology matching.

Because of the specialized scenario, existing techniques do not offer sufficient

support to simplify or even automate the matching (and alignment) process. The

particularities of the scenario form the principal research questions for this thesis:

Derivation of Complex Alignments Simple alignments are correspondences be-

tween individual ontological elements. These match a concept description in one

ontology with a concept description in another ontology, an attribute with an at-

tribute, and a relation with another relation. In the example, simple alignments

were used as the starting point. However, simple alignments are insufficient to

express the complex mapping rules needed to establish the final, richer alignment

from the example.

Current matcher technology is mostly limited to only simple alignments. One

goal of this thesis is therefore to research and develop methods to derive complex cor-

respondences between ontologies.

14

1.3. Research Questions and Methodology

Schema Level Alignments with Instance Hinting Themappings generated should

be as generic as possible. This thesis therefore opts for a schema level approach

to matching, because introducing instances of existing documents can make the

alignment generalize poorly to other document instances.

However, because the set of existing historic documents can be assumed to be

fixed, as no more documents in the “archived format” are generated at the point

of map dissemination, the ability to use hints from existing documents to improve

the refinement process is also discussed.

Mapping Refinement Ontology matching is already a broadly covered research

area. It is therefore expedient to use existing technologies and algorithms asmuch

as possible also for complex alignments. In the work laid out in this thesis, this

is done by refinement. To derive a complex alignment between two ontologies,

the output of an existing ontology matcher is used as a foundation. These initial

mappings are successively improved by refining them intomore complexmapping.

In this thesis, refinement will be developed both as an assistancemethod for inter-

active mapping, suggesting individual refinement steps, as well as an automated

alignment system that outputs a set of suggested mapping rules.

Use of Ontology Semantics Modern ontology matchers make use of automated

reasoning to support the mapping task. This makes it possible for matches to

avoid inconsistency and incoherence as well as to improve mappings by calculat-

ing the logical consequences of already established partial mappings.

Reasoner support can also be put to use for refinement. In this thesis, methods

are developed to

1. aid in the representation of complex mapping rules and provide means to

determine a compact representation of a complex mapping rule;

2. ensure consistency of generated complex mappings;

3. expand value and class enumerations, when the enumeration is implied by ex-

isting axioms in the ontology;

15

1. Introduction

4. support the refinement process to ensure that refined mapping rules are seman-

tically related to the initial refinements.

While it is possible to implement (1) and (2) using standard reasoning services

(subsumption, satisfiability, and consistency testing, see section 4.1.1), (3) and (4)

require special purpose reasoning. Such services will also be developed in this

thesis.

1.4 Structure of this Thesis

This thesis is divided into eight chapters. Chapter 1 introduces the problem do-

main, states the principal research questions and gives an overview of the rest of

the thesis.

Chapter 2 introduces the concept of digital long term preservation and digital

archives. It addresses the challenges that modern, digital documents present with

regard to long term preservation and describes the most prominent of the existing

solution approaches. It also contains a treatment of semantic ageing as a problem

of format ageing and intelligibility.

Chapter 3 describes ontologies as modern, formal knowledge representation sys-

tems. The text goes on to (section 3.2.2) introduce ontology alignment as amethod

to resolve semantic heterogeneity between related ontologies and discusses the

relevance of ontological methods for format transformation.

Chapter 4 first introduces description logics, a well-known set of formal languages

for knowledge representation. It then introduces the “LillyTab” reasoner that was

developed as part of the thesis to facilitate a new approach to model based refine-

ment for ontology alignment.

Chapters 5 and 6 form the core of this thesis. In chapter 5, the results of LillyTab’s

reasoning process are used to establish a framework for themodel based represen-

tation of complex ontology mappings between ontologies. In chapter 6, a set of

simple rules is established to open up a search space to obtain complex mappings

between two ontologies, implementing a suggestion system for refinement rules

that can be used for interactive refinement of ontology mappings.

16

1.4. Structure of this Thesis

Chapter 7 develops methods to compare DL completions graphs and uses these

methods to implement automatic matching. A set of similarity measures is devel-

oped, starting from a simple bag-of-words approach and then on to step-by-step

enhancement of the similarity calculation with semantic information from both

reasoning and the refinement process.

Finally, chapter 8 establishes the evaluation scenario and demonstrates feasibil-

ity of the complex ontology alignment method developed in this thesis. The de-

veloped method is evaluated using a real world built heritage ontology and the

benefits of the semantic integration via tableau reasoning are demonstrated em-

pirically. The chapter ends with a discussion on the benefits and limitations of

the proposed method and gives an outlook on future development and remaining

challenges.

17

SECTION 2.0

Digital Preservation

This chapter introduces the concept of representation heterogeneity and its ef-

fect on the long term preservation of digital documents in terms of format age-

ing.

The tasks, architecture, and workflows of a digital archive are described together

with current approaches for the long term preservation of digital heritage.

The chapter concludes with an introduction of the concept of semantic preser-

vation as opposed to pure preservation of raw bitstreams.

2.1 Information Representation

Representation of information is an important concept for humans. Not only do

we need spoken or written language to communicate with each other, but we also

need to represent information for ourselves: for example, if you read a long scien-

tific text, extracting the information and visualizing it is an important method for

learning and understanding.

Unfortunately (or fortunately, depending on the point of view), representation of

information is not uniform. Consider for example the following question:

What is the connection between the words “eins”, “one”, “uno”, “un”, and “en”?

Some of the commonalities are:

• All of thesewords arewritten in the samewriting system, namely ourmodern

variation of the old Roman alphabet.

• All of these words consist of one or two syllables.

2. Digital Preservation

• All of these words have between two and four letters.

• All of these words contain the single letter “n” somewhere in their spelling.

While these similarities between the different words do obviously exist and are

proper, they are only superficial. It is intuitively clear, that we are still missing

something with regard to the “real” relationship between the presented words,

namely the abstract concept behind all the different representations. The above

words are simply the formulation of the numeral “1” in different languages (Ger-

man, English, Italian, French andDanish, respectively). All of the words represent

the same abstract concept, but their representation is still different.

What we see here is formally called semantic heterogeneity [Ken89]. The semantic

content of the listed textual representations is roughly the same (slightly different

interpretations in different languages aside), but the representations are different.

To further elaborate on the problem, let us ask another question:

What is the relationship of the word “M𝑜𝜈𝛼́𝛿𝛼” to the above words?

Obviously, M𝑜𝜈𝛼́𝛿𝛼 consists of six letters, does not contain the letter “n”, but
rather is not written using the Latin alphabet at all. Still, “M𝑜𝜈𝛼́𝛿𝛼” is simply
the Greek number literal for the number “1” written in the Greek alphabet and

thus refers to the same fundamental concept. Here, in addition to using a dif-

ferent language, the underlying alphabet has changed, too. While a reader who

knows only the Latin alphabet but none of the languages is able to at least recog-

nize the different letters in the first set of words, she would be completely at a loss

when trying to interpret the Greek word.

To enable knowledge sharing, all participants need to a agree on a common repre-

sentation. As an example at the lowest level, all communication partners need to

use the same set of symbols and the interpretation of the symbols must be clear to

all of them. Would this text be written in Linear A³[Bes72], it would be very hard

to find a reader (and an author, too).

³Linear A is an ancient written language from Crete that dates back to at least 1900 BCE and has
not been fully deciphered yet.

20

2.2. Intelligibility

That means, that even the present text makes a number of silent assumptions:

any interested reader is probably able to decipher the Roman letters. If this is the

original text, the reader is also able to read Computer Modern Roman, this being

the font used in the initial print layout. A reader is also required to have proficiency

in the English language.

At many points within this book, the reader is also assumed to have acquired a

significant proficiency in the specialized symbols used to represent mathematical

formulæ (although some of them are explained in the appendix).

On top of this, in order to read this book and obtain the information encoded

within, the reader must also fulfil additional, higher level requirements. For ex-

ample, a reader should have fundamental knowledge in computer science in and

mathematics beyond the ability to interpret the raw symbols.

2.2 Intelligibility

The property of some representation of information to be available in (or to be

convertible to) a format that is accessible to an interpreter (whether human or ma-

chine) is called the intelligibility [TYK12] of the information. As can be deduced

from the observations in the previous section, intelligibility is a principle that is

highly specific to both the information to represent and to the interpreter. A Ger-

man version of this text is useless to a reader (interpreter) that understands only

English. The various formulæ, mathematical definitions and derivations later in

this text are most likely useless to a reader without mathematical training.

The interpretation process can, however, go wrong also inmore subtle ways: print-

ing this text on green paper with red ink possibly makes it unreadable to persons

with protanopia⁴. If the interpretation process at some point in time uses the

wrong character set, some or all of the symbols in this text maybe misinterpreted

and displayed incorrectly.

⁴Protanopia is amedical condition inwhich the retina has defective ormissing detection cones for
long (reddish colour) wavelengths. Thismakes it hard for the affected individuals to distinguish
blue and green as well as red and green colour differences.

21

2. Digital Preservation

When using digital documents, the interpretation process is very often automated.

For example, while writing this thesis, the computer automatically translates my

keystrokes into a binary representation. That binary keystroke is then sent to the

character set module and translated into another binary representation so that it

represents a particular character. This digital character is sent to the display device

manager that looks up that particular character in the character table of a font to

get a glyph. And that glyph is displayed to me on screen. Hence, while typing this

text, the computer automatically handles more than four different representations

of the same piece of information before it is presented back to me in a format that

I can digest with my human senses.

Following the nomenclature of Tzitzikas et al. [TYK12], the individual components

of the interpretation process are calledmodules. If amodule needs anothermodule

to function (e.g. a printer is needed to get a printed version of a document and the

printer itself needs printer paper) this is called a dependency.

Tzitzikas et al. also provide a semi-formal framework to model the interpretation

process for digital documents using DataLog [CGT89]. In this framework, the

process of interpretation is represented as an 𝑛-ary predicate called a Task. To
determine if a task can be performed, a DataLog query is performed to determine

if the task predicate is satisfiable.

We will use typical Prolog-based syntax for DataLog statements. Consequences

will be written to the left of the arrow (⇐), while antecedents will be to the right of
the arrow. Individual predicates will be separated by “,” (indicating conjunction),

and statements will be terminated by a trailing dot “.”. For example to read this

thesis in the print-ready binary form on some reader device, we could define the

task “𝖣𝗂𝗌𝗉𝗅𝖺𝗒𝖺𝖻𝗅𝖾” as

𝖣𝗂𝗌𝗉𝗅𝖺𝗒𝖺𝖻𝗅𝖾 (𝐷𝑜𝑐,𝑅𝑒𝑎𝑑𝑒𝑟) .

22

2.2. Intelligibility

indicating the operation to display the document 𝐷𝑜𝑐 on a reader 𝑅𝑒𝑎𝑑𝑒𝑟. The
paper goes on to define a rule-based framework to validate if an interpretation

operation is possible by defining (DataLog) rules that represent the interpretation

process. For example, to read this document in the Portable Document Format

(PDF, [PDF08]), an interpretation rule might look as follows:

𝖣𝗂𝗌𝗉𝗅𝖺𝗒𝖺𝖻𝗅𝖾 (𝐷𝑜𝑐,𝑅𝑒𝑎𝑑𝑒𝑟) ⇐ 𝖯𝖽𝖿(𝐷𝑜𝑐), 𝖯𝖽𝖿𝖱𝖾𝖺𝖽𝖾𝗋(𝑅𝑒𝑎𝑑𝑒𝑟).

This indicates that to read 𝐷𝑜𝑐 using a PDF reader, we need both 𝐷𝑜𝑐 to be in
the appointed format and we also need the reading device to be a 𝖯𝖽𝖿𝖱𝖾𝖺𝖽𝖾𝗋. Of
course, the situation is usually more complex than this. For example, this docu-

ment was not originally encoded in PDF. Rather, in its original form, it is actually

a text file with markup that has been converted to PDF using a suitable conversion

tool. If we try to represent the fact that we also accept formats of this document

that can be converted to PDF format using an available tool, we might get some-

thing like the following set of rules:

𝖣𝗂𝗌𝗉𝗅𝖺𝗒𝖺𝖻𝗅𝖾 (𝐷𝑜𝑐,𝑅𝑒𝑎𝑑𝑒𝑟) ⇐ 𝖯𝖽𝖿(𝑃𝑑𝑓𝐷𝑜𝑐),
𝖢𝗈𝗇𝗏𝖾𝗋𝗍(𝐷𝑜𝑐, 𝑃𝑑𝑓𝐷𝑜𝑐)
𝖯𝖽𝖿𝖱𝖾𝖺𝖽𝖾𝗋(𝑅𝑒𝑎𝑑𝑒𝑟).

𝖢𝗈𝗇𝗏𝖾𝗋𝗍(𝑆𝑟𝑐, 𝐶𝑜𝑛𝑣, 𝑇 𝑔𝑡) ⇐ 𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖾𝗋(𝐶𝑜𝑛𝑣),
𝖢𝖺𝗇𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖥𝗋𝗈𝗆(𝑆𝑟𝑐, 𝐶𝑜𝑛𝑣),
𝖢𝖺𝗇𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖳𝗈(𝑇𝑔𝑡, 𝐶𝑜𝑛𝑣).

The potential complexity of representation rules does not stop here, however. It

is, for example, possible to take into account the fact that the PDF version of this

thesis is generated using the LATEX document processor. To generate to PDF ver-

sion, we need a LATEX processor that supports all the additional packages included

in this document:

23

2. Digital Preservation

𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖾𝗋(𝑥𝑒𝑙𝑎𝑡𝑒𝑥).
𝖲𝗎𝗉𝗉𝗈𝗋𝗍𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝑥𝑒𝑙𝑎𝑡𝑒𝑥, 𝑘𝑜𝑚𝑎𝑠𝑐𝑟𝑖𝑝𝑡).

𝖢𝖺𝗇𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖥𝗋𝗈𝗆(𝑆𝑟𝑐, 𝑥𝑒𝑙𝑎𝑡𝑒𝑥) ⇐ 𝖫𝖺𝖳𝖾𝖷(𝑆𝑟𝑐),
𝗇𝗈𝗍(𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑆𝑟𝑐)).

𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑆𝑟𝑐). ⇐ 𝗇𝗈𝗍(𝖭𝖾𝖾𝖽𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝑆𝑟𝑐, 𝑃𝑎𝑐𝑘𝑎𝑔𝑒)).
𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑆𝑟𝑐). ⇐ 𝖫𝖺𝖳𝖾𝖷(𝑆𝑟𝑐),

𝖭𝖾𝖾𝖽𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝑆𝑟𝑐, 𝑃𝑎𝑐𝑘𝑎𝑔𝑒),
𝗇𝗈𝗍(𝖲𝗎𝗉𝗉𝗈𝗋𝗍𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑃𝑎𝑐𝑘𝑎𝑔𝑒)).

This ruleset, however, already has a serious drawback. Since DataLog makes the

closed world assumption, 𝗇𝗈𝗍(𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾) is always true for LATEX docu-
ments without an explicitly declared package list. Thus missing metadata for a

document yields a false sense of security, because with the above ruleset a doc-

ument would be reported to be 𝖣𝗂𝗌𝗉𝗅𝖺𝗒𝖺𝖻𝗅𝖾, while in reality it is simply missing
necessary metadata. Dropping the first 𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾 rule term is, however,
not an option, as there are valid LATEX documents that do not include a package.

It is possible to work around this issue by introducing rules that require docu-

ments to explicitly state that all their package dependencies have been declared.

This, however, makes the ruleset even more unwieldy:

24

2.3. Format Ageing

𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖾𝗋(𝑥𝑒𝑙𝑎𝑡𝑒𝑥).
𝖲𝗎𝗉𝗉𝗈𝗋𝗍𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝑥𝑒𝑙𝑎𝑡𝑒𝑥, 𝑘𝑜𝑚𝑎𝑠𝑐𝑟𝑖𝑝𝑡).

𝖢𝖺𝗇𝖢𝗈𝗇𝗏𝖾𝗋𝗍𝖥𝗋𝗈𝗆(𝑆𝑟𝑐, 𝑥𝑒𝑙𝑎𝑡𝑒𝑥) ⇐ 𝖫𝖺𝖳𝖾𝖷(𝑆𝑟𝑐),
𝖧𝖺𝗌𝖠𝗅𝗅𝖯𝖺𝖼𝗄𝖺𝗀𝖾𝗌𝖣𝖾𝖼𝗅𝖺𝗋𝖾𝖽(𝑆𝑟𝑐),
𝗇𝗈𝗍(𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑆𝑟𝑐)).

𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑆𝑟𝑐). ⇐ 𝗇𝗈𝗍(𝖭𝖾𝖾𝖽𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝑆𝑟𝑐, 𝑃𝑎𝑐𝑘𝑎𝑔𝑒)).
𝖧𝖺𝗌𝖬𝗂𝗌𝗌𝗂𝗇𝗀𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑆𝑟𝑐). ⇐ 𝖫𝖺𝖳𝖾𝖷(𝑆𝑟𝑐),

𝖭𝖾𝖾𝖽𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝑆𝑟𝑐, 𝑃𝑎𝑐𝑘𝑎𝑔𝑒),
𝗇𝗈𝗍(𝖲𝗎𝗉𝗉𝗈𝗋𝗍𝗌𝖯𝖺𝖼𝗄𝖺𝗀𝖾(𝐶𝑜𝑛𝑣, 𝑃𝑎𝑐𝑘𝑎𝑔𝑒)).

Note that the above is by no means a complete description of all the dependencies

of this particular transformation process. It does not take into account that specific

version ranges of the LATEX processor maybe required and it also ignores package

versions. LATEX documents also often heavily depend on other external resources

like fonts and the software has an elaboratemechanism of locating these resources

[BW97]. Modelling such a complex environment is next to impossible and in the

all or nothing interpretation of intelligibility, even a single failing module makes a

document unreadable. Fully modelling all dependencies of a complex document

is a non-trivial effort and care must be taken, to not include rules that yield false

conclusions because of missing information.

2.3 Format Ageing

Maintaining readability of digital documents exhibits an interesting duality. On

the one hand, it is possible to preserve unmodified copies of digital documents

far into the future. Technologies make use of redundant storage and integrity

verification to preserve the original raw bitstream of digital documents unaltered.

25

2. Digital Preservation

For the purposes of archiving, the bitstream can be viewed as a static, immutable

object and –with some effort– the bit pattern of a document can even be adequately

described to allow re-interpretation.

On the other hand, preserving only the raw bit stream of a digital document does

not make it possible to extract the information contained in the document. Op-

erating systems, application software, suitable input and output devices are all

required to make a document readable. In Tzitzikas’ model from the previous

section, this is represented by not only the documents themselves having depen-

dencies, but also by the interpretation modules being dependent on other (sub-

)modules, too.

For example,

• the only application that an archived document was originally created with

may no longer run on future hardware or operating systems,

• new software may use different document formats for various reasons,

• documentation on the archived document format may be incomplete or no

longer available.

In short: being able to read successfully the bits and bytes stored inside an archive

does not necessarily mean we are able to extract meaningful information from an

archived document.

Long term preservation remains an open issue with digital documents (see e. g.

[Sta05, TB07b, HA07]), because interpretation of documents in undocumented

formats cannot be guaranteed.

2.4 Structure and Operation of a Digital Archive

To enable archives to successfully preserve digital documents far into the future, all

the concerns that are specific to archiving digital documents have to be identified

and suitable solutions have to be provided.

26

2.4. Structure and Operation of a Digital Archive

Figure 2.1. OAIS Archive Management Overview

In 2003, the Consultative Committee on Space Data Systems⁵ published a first

recommendation (“pink book” [fS03]) for a reference model for reliable digital

archives, their workflows and requirements. The name of this reference model is

Open Archival Information System (OAIS). An updated version (“magenta book”

[Con12]) was published in 2012.

OAIS specifies a model for the operation of an archive. At the highest level, OAIS

describes five different functional identities (see fig. 2.1) that are involved when a

document makes its way into (and back out of) an archive.

Ingest is responsible for accepting data in the form of a submission information

package (SIP) from a document producer for storage inside the archive. This

process is known as ingest. During the ingestion process, quality assurance

of the submitted package is performed and –if successful– an archival infor-

mation package (AIP) is generated.

This generation process is one of the most important tasks for the archive.

OAIS requires that an AIP provides a “concise way of referring to a set of infor-

mation that has, in principle, all the qualities needed for permanent, or indefinite,

⁵http://www.ccsds.org/

27

http://www.ccsds.org/

2. Digital Preservation

Long Term Preservation [...]”[Con12, p. 4-36]. Or more casually, the AIP is sup-

posed to contain or refer to all information to keep an archived document ac-

cessible and intelligible. Added to the AIP is also management information,

such as access rights, provenance information, retrieval meta data (termed

“finding aids” by the standard), and so on.

Archival Storage is responsible for keeping the bitstream of an AIP available on

permanent storage. It also performs many of the tasks of bitstream preser-

vation as outlined later in section 2.5.2.

Data Management handles archive database functions such as indexing and han-

dling database queries.

Administration provides the overall management of the archive, including nego-

tiation of submissions with producers, auditing, configuration management

for hard- and software as well as monitoring and other typical management

operations of an IT system.

Access is the customer facing part of the archive, providing document search and

retrieval as well as access control. Documents from the archive are delivered

in the form of a dissemination information package (DIP), which may be

derived from one or more AIPs. Note that the OAIS standard allows for the

retrieval of excerpts or locally generated statistical data, for example when

privacy or copyright concerns do not allow exposing the original document(s).

Preservation Planning “…provides the services and functions for monitoring the envi-

ronment of the OAIS, providing recommendations and preservation plans to en-

sure that the information stored in the OAIS remains accessible to, and under-

standable by, the Designated Community over the Long Term, even if the original

computing environment becomes obsolete …”[Con12, p. 4-2].

Intelligibility management is thus a primary concept of preservation plan-

ning. It is the responsibility of preservation planning to correlate the con-

tents of the archive with the current technological environment to make sure

that all stored documents remain readable.

28

2.5. Approaches to the Preservation of Digital Documents

2.5 Approaches to the Preservation of Digital Documents

2.5.1. Intelligibility Management

A significant problem for the reliable archiving of digital documents is that archived

documents are slowly drifting into a state of unreadability. On the bitstream and

hardware side this is caused by a process called silent corruption [Ros10].

The problem already exists today. With Terabytes and even Petabytes of storage,

the likelyhood of a single bit flip in a large data set has become a real problem

for storage-heavy applications. Single bit flips often go undetected. A single flip

might change a single character in a large document (effectively introducing a

typographical error) or cause the colour of a single image pixel to be slightly off.

It might also cause a numeric value to change by large magnitudes or make some

–especially when compressed– data completely unreadable. Off-the-shelf storage

systems have only quite recently been upgraded to detect (and sometimes correct)

such bit flips for production storage systems.

2.5.2. Bitstream Preservation

Themethods used in a digital archive to protect the original bitstream from change

are much the same as in production storage systems: duplication, checksum-

based error correction and periodic scrubbing.

Duplication simply refers to the fact that more than one copy of a document is

kept. In general, two copies are sufficient to detect an error in a document provided

that both documents are compared during dissemination. However, when only

the documents are available, at least a third copy must be kept to correct an error

that appears in a single document. More copies make the process more reliable,

a fact that is mentioned in the moniker of one of the early projects that made use

of peer-to-peer networking between different archiving sites to enable duplication

of archived content: “Lot’s of copies keep stuff save” (LOCKSS, [MRG+05]).

29

2. Digital Preservation

Checksumming refers to the practice of creating a binary digest of a document,

the checksum. The technique is already used in many network protocols to de-

tect transmission errors. Because the checksum is evaluated over the bitstream of

a message, the checksum also changes when the bitstream is modified. But in-

stead of keeping a full copy for verification, the checksum is usually much smaller.

Message digest algorithms developed in the field of cryptography offer even more

desirable features: They are meant to be collision resistant, which means that it is

hard to find two documents that produce the same checksum. Given a document

and its original checksum function, it is possible to determine if a document has

been tampered with by checking if the document still hashes to the same digest

value. This makes it possible to check the integrity of a document with only a

single copy.

Scrubbing Because of silent corruption, it is all but mandatory to perform the

consistency check for an archived document frequently. The message digest can

only detect a defective document, it cannot repair any damage (this is only possible

using forward error correction). Scrubbing is a periodic operation that validates

the checksums for all documents. Any damaged document is restored from a

copy. As such, damaged documents can be restored before all copies go bad.

2.5.3. Monitoring Contextual Intelligibility

Preserving the bitstream of a digital document is, however, not enough. As de-

scribed in section 2.2, dissemination of a complex digital document typically re-

quires a large set of technical dependencies. If information is stored on special me-

dia, hardware must be available to extract data from those media. If specialized

software is needed to interpret a document format, the same software or a suitable

substitute must be available.

It is important that the dependencies are not only recorded completely at archiv-

ing time, but also that the availability of dependencies is closely monitored as time

passes. Information technology is a fast moving field and both hardware and soft-

30

2.5. Approaches to the Preservation of Digital Documents

ware become obsolete quickly. This affects the archive, because a document stored

in a format that cannot be read with software that runs on existing hardware is ef-

fectively lost.

A digital archive is not an isolated entity, but it is dependent on its environment.

Special purpose development is possible only in rare cases, most of the time hard-

and software to run an archive’s infrastructure must be bought on the public mar-

ket if only for budgetary reasons. The IT market, however, is fast changing and as

such archive management must react to this changing environment.

2.5.4. Intelligibility Monitoring

In particular, it is important for the archive management to monitor the intelligi-

bility of its documents. It must track the availability of both hard- and software.

However, the situation is more problematic for software than for hardware, be-

cause the software ecosystem has significantly faster change cycles. Many large

and well-established software vendors release a new version of their software every

year and provide support only for a few (e.g. 2 years) previous versions. Support

for document formats is usually longer than that (10-15 years) in the sense that

newer versions of a software can read old document formats, but even this larger

timespan is far from the goal of indefinite preservation a digital archive strives to

achieve.

The situation in the software world is also more complex, because there is more

variation. A well-known document format might be supported by many different

implementations. Hence the archivemanagement needs to keep track of different

software types for each archived document format.

This need for constant monitoring of the durability of document formats is dis-

cussed by Stanescu et al. [Sta05]. The paper develops different criteria for evalu-

ating archiving formats. To store and maintain the results of such an evaluation,

Abrams [Abr05] has proposed a global format registry to document which software

packages support which document format towhat extent. The PRONOM technical

31

2. Digital Preservation

registry⁶ provides information about both software (including vendor information

and supported file formats) as well as information about file formats themselves,

including priority and ancestor/successor information. The global digital format

registry (GDFR) failed to produce usable software, but the idea was later inherited

by the UDFR project, which has created a “semantic registry for digital preservation”

using semantic web technology, mostly using PRONOM data.

Unfortunately, the effort of maintaining a format registry has proven to be prob-

lematic. Some entries in PRONOM, for example, have not been updated for years,

despite clear changes happening in the affected areas. Lawrence et al. already

noted that full documentation for file formats, especially for formats of special-

ized commercial software, is hard to obtain. In addition, this information is also

often closely safeguarded by the respective companies.

McGath [McG13] suggests using linked open data and crowd sourcing to update

and maintain format registries.

2.5.5. Emulation

Identifying that a document is at risk to become unintelligible is only the first

step in the direction of a solution. What if a particular piece of software becomes

unavailable, i.e. because the operating system is no longer available for current

hardware?

One strategy, proposed by e.g. van der Hoeven [vdHVW05] is emulation. Consider

figure 2.2, which shows dependencies between four different modules m1, m2,
m3, and m4. An arrow between two modules indicates that a module is required
by anothermodule. Requirement is transitive, thusm1 requires all modules in the
graph and vice versa, all modules depend on the (dark grey) m4. If m4 becomes
unavailable, all other (other) modules stop working.

⁶http://www.nationalarchives.gov.uk/PRONOM/

32

http://www.nationalarchives.gov.uk/PRONOM/

2.5. Approaches to the Preservation of Digital Documents

Figure 2.2. Module Dependencies

m1

m2 m3

m4

The general strategy of emulation is to replace a failed module (e.g. m4) by a
substitute, to emulate the interfaces m4 provides to other modules. For exam-
ple, theWINE ⁷ software package makes it possible to execute many applications

that where developed for the Win32 platform on Unix-like platforms. In this case

WINE itself is an emulator for the Win32 module.

In later research, van der Hoeven [vdHvDvdM05] even goes one step further and

proposes to implement emulation already at ingestion time. In the described sce-

nario, the archive only accepts formats that can be interpreted by awell-documented

virtual machine, the Universal Virtual Computer (UVC).

The architecture is such that for every document format in the archive, a decoder

is needed. This decoder needs to be implemented to run on the (virtual) UVC.

To simplify this task, the virtual computer specification also provides a virtual dis-

play and interaction component termed a logical data viewer (LDV). Communication

between the decoder (running on the UVC) and the LDV is performed using a

specialized data format, the logical data schema (LDS), which –once again– is fully

documented.

The effects of this architecture are twofold: ingest costs per data format increase,

because for every supported document format, a specialized decoder is needed.

Getting sufficient information about a data format is often far from trivial (see sec-

tion 2.5.4). Also, the effort to write a suitable decoder program for a complex data

format is not to be neglected.

⁷http://www.winehq.org/

33

http://www.winehq.org/

2. Digital Preservation

Figure 2.3. Interpretation with the Universal Virtual Computer

data

decoder viewer

UVC

real hardware

LDS

Dissemination and maintenance costs decrease because only the UVC and LDV

components need to be supported on the current generation of hardware. The

decoder is an UVP program and is stored (and referenced from the AIP of asso-

ciated documents) inside the archive. Since the stored byte stream of the decoder

is a runnable UVC program, it only needs to be extracted and fed to the (future)

UVC implementation together with the document.

An implementation of the UVC virtual machine itself and an LDV exists and has

been tested in practice using decoders for JPEG, TIFF and GIF formatted images.

Partial decoders have also been written for Excel, Lotus 1-2-3 and PDF [LvD05].

None of the decoders expose interactive features of the supported document for-

mats.

2.5.6. Migration

Emulation tries to interpret the originally archived bitstream in its original form.

In terms of themodule concept, emulation leaves the original document untouched,

but affects the dependencies of the document. Another approach suggested by

Lorie [Lor00, Lor01] focuses on the original document, instead. The approach rec-

ognizes that the semantic content of a document can be represented in multiple

different encodings (see also section 2.1) and that the encoding is often replace-

able. Hence if a document format is at risk of becoming unreadable, it is possible

to re-encode an archived document into a different, more current format while

preserving the contained information.

34

2.6. Significant Properties and Semantic Features

Unfortunately, the complexity of modern document formats usually means that

format conversions do not fully preserve the original information. Any complex

migration is lossy in terms of document semantics. The effect can be easily ob-

served with current software. For example, most office processing software sup-

ports import and export in multiple formats. And while the textual content of a

document is usually preserved, more complex formatting options often are not. A

common occurrence is for embedded graphics to move their position on the page

or become distorted (fig. 2.4). In terms of archiving, any transformation that does

not re-generate the original user-faced representation of the document is consid-

ered lossy.

Detecting and measuring semantic loss to a document after a migration is not

trivial and limited research is available in the area. Triebsees et al. [TB07a] pro-

vide a constraint-based model to measure the preservation of semantic content.

In their model, documents or sets of document fragments (for complex digital

documents) are represented as graphs. The preservation of semantic content is

verified by context-specific invariance checks. They apply their approach mainly

to maintain link consistency for HTML documents, but an implementation for

verifying the semantic integrity for OpenOffice documents has also been tested

successfully. Unfortunately, the approach does not reduce the burden of having

to formulate the consistency constraints, which –again– is a non-trivial task for

complex document formats.

In addition, the approach requires a sufficiently formal representation of both the

source and the target document.

2.6 Significant Properties and Semantic Features

The area of semantic preservation is clearly deservingmore attention and significant

research has been conducted on how to define the semantic content of a document.

35

2. Digital Preservation

Figure 2.4. Distorted Graphics after Import into Different Presentation Software

Phase III
Phase II

Prototyp
Auswertung

Workshop

Phase III

One of the defining characteristics of complex digital documents is that they are

composite documents. This means that every complex document has multiple

parts, each with its own unique representation format. For example, built heritage

digital maps consist of a geometry document, a document with structured data,

and –potentially– often attached documents such as images.

Decomposition of a complex document does not stop there, however. As noted

by Hedstrom and Lee [HL02], an even more elaborate decomposition is possible,

down to individual, atomic properties, e.g. the colour of a graphical object or the

font name of a paragraph. This notion of atomic properties whose appearance

inside a digital document can be recorded and identified is important with regard

to both dissemination of an unmodified document as well as to format migration.

Dissemination of a digital document can be expressed as an operation with the

document. The operation can be as simple as producing a sensory reproduction

of the document called an “affordance” [VL04], but the notion also extends tomore

complex operations like compiling a software application from source code. Hed-

strom and Lee limit their interpretation to that of the affordance, but we can as-

sume that this expressed limitation is merely incidental. In general, we can as-

sume that dissemination is performed to facilitate any kind of processing of the

archived content, irrespective of the distinction if the processing is performed for

human perception or further machine processing.

36

2.6. Significant Properties and Semantic Features

Hedstromand Lee further argue that an affordance (or any operation on an archived

document) is successful, if the operation reproduces certain properties of the doc-

ument. For example, if a font specification is missing from an archived text docu-

ment, a visually identical representation of the text document may not be possible.

If a property is required for the success of certain operation, this property is called

significant. It is important to note that significance is context specific. In the above

example, the font is only a requirement, if we need to reproduce the exact same

visual representation. If only the textual content of the document needs to be

re-produced, the original font is not a significant property as the text itself can be

reproduced (potentially in a different font) without knowledge of the font property.

This viewpoint is very much in line with Tzitzikas et al.’s module concept. Any

operation (which includes viewing) performed with a document is an affordance

of that particular document. The parts of the document that are needed to be

understood for the operation to succeed can be encoded as dependencies of an

“affordance module”. The main difference is, that Tzitzikas’ model is strongly

operational and thus more directly useful.

Providing a suitable definition of a significant property document is open to de-

bate. Hedstrom and Lee give examples of low level properties like basic data unit,

byte-level encoding, data type, but also extend their notion to logical data schemata.

This notion, of a document property, essentially excludes migration since migra-

tion eventually always changes some low level properties of the original document

format.

A more elaborate discussion on this topic is given by Yeo [Yeo10]. He makes

the important observation that there are both concrete and more abstract prop-

erties of a document. For example, there are properties that are content related

(e.g. “paragraph 2 contains »A« as first word”) and properties that are representa-

tion related, such as “The second paragraph has colour (1.0, 1.0, 0.0) in the sRGB
colourmodel”. Yeo further argues that content related properties are seen by some

as more valuable and that –for many scenarios– reproducing the content related

properties is most important.

37

2. Digital Preservation

The concept of significant properties provides a useful modelling tool: It could

be argued that an accurate sensory reproduction for some documents might be

less important when the document is intended to be part of a future workflow.

Instead, here the document’s semantics must be reproduced in a way to make

the transformed document useable to future software. The compositionality of

a (complex) digital document carries over to the semantic space. A document

contains atomic “pieces of information” that –combined together– make up the

information content of the document itself. Each such semantic information piece

comprises a semantic feature (definition 2.1).

Definition 2.1 Semantic Feature
A semantic feature of a document is an atomic fragment of information indepen-
dent of its encoding.

The notion of the semantic feature is particularly interesting with regard to for-

mat migration. Two documents that represent the same semantic features can

for many purposes be considered equal at least with regard to their contextual in-

terpretation. If it is possible to identify and extract such atomic semantic features

within a document, migrating digital documents becomes a relatively simple, four

step process:

1. Identify semantic features in an archived document and select desired fea-

tures for extraction.

2. Extract the desired semantic features from the archived archived document.

3. Identify the proper encoding of the selected semantic feature in the target

document schema.

4. Encode the extracted semantic features into a target document.

In this mode of operation, the abstract model space then contains all semantic fea-

tures can be seen as a bridge model between documents with similar semantic con-

tent. The drawback of this modelling is, unfortunately, that defining the semantic

feature space is not possible in general. However, the concept of an intermediate,

38

2.6. Significant Properties and Semantic Features

higher level modelling space for documents provides a useful tool to model for-

matmigration. Indeed, the concept has been used as amodelling tool for ontology

alignments (e.g. [HJK+07]).

In this thesis an attempt is made for a search-based approach to determine se-

mantic features. Starting from an initial feature, we iteratively try to add more

semantic features to obtain a refinement of the initial feature, that represents more

information. This is facilitated using heuristic search, where each search step is

meant to represent the introduction of a new semantic feature. By performing this

search for both a source and a target document schema (modelled as ontologies),

it is possible to search for matching semantic features in both schemas and obtain

a set of semantic correspondences between both document schemas.

39

SECTION 3.0

Format Conversion and Ontology Matching

In the first part of the chapter (section 3.1), we introduce ontologies as a gen-

eral framework for the representation of information. The chapter provides the

definition of formal ontologies as well as a formalization of the basic notions

common to most current ontological representation systems.

The second part of the chapter (section 3.2.2) gives an overview of the topic of on-

tology matching. The chapter ends with a description of some of the remaining

research challenges in ontology alignment and a survey of the state of research

in addressing these challenges (section 3.2.4).

3.1 Ontologies

Starting in the late 1950s, researchers have tried to lift the problem of knowledge

representation onto a higher level of abstraction. Inspired by the human mind,

where information seems to be stored as an interlinked network of concepts and

typed relationships, semantic networks [Ric56] were developed. At this level, in-

formation representation becomes freed from more mundane tasks like the rep-

resentation of individual data items (e.g. a floating point number). The idea was

to enable the (automated) manipulation of knowledge at this higher level without

having to consider deeper representation issues.

Formal logic has found its way into knowledge representation in the 1980s. The

newly created formal systems made it possible to create frameworks for the exact

representation of information. The main benefit of these systems is the ability

to derive sound proofs of new propositions from existing background knowledge

3. Format Conversion and Ontology Matching

using logical reasoning. In many cases, the reasoning process can be automated,

giving rise to intelligent knowledge stores capable of answering questions that

have been deduced from stored data without the need for explicitly formulating

each “known” statement explicitly.

Due to the complexity of the task, however, formal systems are always limited to a

specific domain of expertise and even there the stored knowledge is often incom-

plete. Consequently, most knowledge bases are designed to achieve a particular

goal, i.e., they represent abstractions of a particular part of a mental model. The

term ontology has been adopted to refer both to the abstract mental theory as well

as to its machine-readable representation⁸. An ontology is deemed “an artifact that

is designed for a purpose, which is to enable the modeling of knowledge about some do-

main, real or imagined” [Gru08]. Ontologies are thus a formal, but restricted and

goal-oriented method to represent knowledge only for a certain area of expertise.

3.1.1. Related Work

It is possible to represent knowledge either implicitly or explicitly. Implicit knowl-

edge representation is mainly used for reasons of efficiency and when an explicit

formulation is hard to obtain. For example in machine learning, the parameters

to describe the minimally separating hyperplane of support vector machines (see

e.g. [CST00]) or the signal path weights for neural networks (see e.g. [Mit97]) are

an example of implicit knowledge representation.

Explicit knowledge representation is used whenever possible, since it enables the

manipulation of the represented information outside the context of individual al-

gorithms. The prevailing notion of an ontology extends to any explicit knowledge

representation method. The first type of such description methods were based on

the frame and slot metaphor as outlined byMinsky [Min74]. Formal semantics for

this framework is given by Brachman [BL84] in first order logic. Kifer and Lausen

⁸This choice of name is not entirely in agreement with the classical, philosophical notion of
ontology: in philosophy, ontology describes the area of study that is concerned with being or
existence. It is possible to view a (philosophical) ontology as a theory of the nature of existence.
In computer science, the emphasis is more focused on the modelling aspect.

42

3.1. Ontologies

[KL89, KLW95] formalize “F-Logic”, a language that aspires to integrate object ori-

ented modelling with relational data storage. F-Logic is still being developed and

extended [Kif05, Wei08] and is suggested to serve as the foundation of the Web

Service Modelling Language (WSML, [dBFK+05]), a W3C member submission.

All explicit and formal knowledge representation mechanisms have their founda-

tions in formal mathematical logics, with first order logic being the most com-

mon base language. Most often, FOL is either extended or the language is re-

stricted to a subset. For example, CycL [LGW88] extends FOL with equality and

non-monotonic reasoning. Description logics [BSW02] (see also section 4.1) on

the other hand are created through careful bottom-up extension of decidable frag-

ments of FOL.

Multiple formalizations of the concept of an ”ontology” exist. An overview may

be found in [Sow00] and partially in [RNC+95]. Our definition is loosely based on

the work of Cimiano [Cim06], but I felt free to diverge from that initial definition

where convenient. Many other description methods for ontologies focus on the

language aspect of the ontology and specify semantics and syntax with regard to

a logical language [KS02, FMK+08]. I however, in accordance with [SEH+03], be-

lieve that the basic structural properties of an ontology play the same crucial role

as their formal, logical semantics.

3.1.2. Ontology Elements

Computer scientists discovered early, that knowledge is fundamentally about the

classification of individual objects as well as about the properties and relationships

between those objects. This perception of the world follows a philosophical tradi-

tion that dates back at least to Aristotle’s metaphysics, where the author describes

objects using axiomatic descriptions. In artificial intelligence, even early simple

systems like Minsky’s ”frames” group objects into concepts (frames) and allow the

definition of attributes and relations (slots). The three basic elements can be found

in some form or another in every knowledge representation framework. The prin-

ciple representation formalism for linked data RDF [LS+99] also supports exactly

43

3. Format Conversion and Ontology Matching

the three elements individuals, relations and classes. Most logic-based knowledge

representation systems share the same three basic elements with similar seman-

tics.

Instances Instances are the representation of the actual objects of interest, the raw

data. An instancemay simply be a name for an actual object likemy father’s car

or the number 2, but the notion of an instance also extends to the codifica-
tion of associations like These keys belong to my father’s car, that serve to link

together other instances.

In some cases, a distinction is made between individuals and data values.

Concepts Concepts are used to group together similar objects. For example,

my father’s car and my brother’s car are both instances of the concept 𝖢𝖺𝗋,
while my bicycle is not. Yet all three of the mentioned objects would be in-

stances of the concept 𝖵𝖾𝗁𝗂𝖼𝗅𝖾. What is visible here, is, that concepts form a

hierarchy: every instance of 𝖢𝖺𝗋 is also naturally an instance of 𝖵𝖾𝗁𝗂𝖼𝗅𝖾, i.e.
𝖢𝖺𝗋 is a subconcept of 𝖵𝖾𝗁𝗂𝖼𝗅𝖾. The resulting hierarchy is called a taxonomy.
The term class is often used as a synonym for concept, since concepts provide

a classification of instances into subsets. Within this work, we do not make a

distinction between the two terms.

Relations Being able to describe objects is already expedient, butmaybe evenmore

important is, how objects are interrelated andwhat these interrelationsmean.

For example, it is obvious, that every lock should have at least one associ-

ated key, because the lock would be otherwise unusable. We can capture this

fact by creating a relation 𝖺𝗌𝗌𝗈𝖼𝗂𝖺𝗍𝖾𝖽𝖪𝖾𝗒, that defines exactly the key-lock-
association. Now, the assertion These are the keys to my father’s car becomes a

relation instance that associates a key object withmy father’s car.

Many knowledge representation formalisms also allow a restricted arrange-

ment of relations into a hierarchy. For example 𝖺𝗌𝗌𝗈𝖼𝗂𝖺𝗍𝖾𝖽𝖢𝖺𝗋𝖪𝖾𝗒 would be a
subrelation of 𝖺𝗌𝗌𝗈𝖼𝗂𝖺𝗍𝖾𝖽𝖪𝖾𝗒 such that every instance of 𝖺𝗌𝗌𝗈𝖼𝗂𝖺𝗍𝖾𝖽𝖢𝖺𝗋𝖪𝖾𝗒 is
also an instance of 𝖺𝗌𝗌𝗈𝖼𝗂𝖺𝗍𝖾𝖽𝖪𝖾𝗒.

44

3.1. Ontologies

Definition 3.1 Ontology Elements
The basic elements of a formal ontology 𝑂 are three, possibly infinite, mutually
disjoint sets

• ℐ, the set of instances,

• 𝒞, the set of classes, and

• ℛ, the set of relations.

The set of all instances, classes and relations in an ontology 𝑂 are called the ele-
ments of 𝑂, denoted by ℰ.
In addition to the three basic elements, two additional elements are sometimes
mentioned in the literature: The set of attributes 𝒜 and the set of attribute types
𝒯. The attributes 𝒜 are a special relation from individuals ℐ to types 𝒯.
𝒞 and ℛ are usually enumerable, while 𝒥 is sometimes uncountable (e.g. when 𝒯
is folded into ℐ and includes the real numbers).
Attribute values take the form of the extension of types 𝖾𝗑𝗍𝖾𝗇𝗌𝗂𝗈𝗇(𝑡), 𝑡 ∈ 𝒯. The
values in 𝖾𝗑𝗍𝖾𝗇𝗌𝗂𝗈𝗇(𝑡) are also called literals.
This distinction is not always made and 𝒜 is then included in ℛ and the attribute
values are included in ℐ.

3.1.3. Three Views on Ontologies

The principle of interlinked and labelled individuals forming a semantic network

or “ontology graph” is the fundamental principle that underlies almost all formal

ontological models. However, it is possible to take different points of view with re-

gard to the underlying structure. A different viewpoint does not necessarily mean

that the formalism in use is actually a different one, but that the emphasis is on

different parts of a particular formalism. I identify three different points of view

on formal ontologies, each with its advantages and disadvantages. Each of the

viewpoints also forms its own associated research area that has its main focus on

the particular viewpoint.

1. The linked-data view or semantic network view focusses primarily on the struc-

tural components of the ontologies. This view is common in the big data

community, because datasets encountered there are often highly heteroge-

45

3. Format Conversion and Ontology Matching

neous and unstructured with very little axiomatization. Consequently, the

implicit semantics of the interlinks between objects play the most important

role.

2. The most common view presented by ontology editors is the “class centric”

or frame-based view. This view is inspired by Minsky’s [Min74] frame idea:

a frame is a collection of attributes and links to other objects. As such, the

frame represents the basic data structures of object orientation, where a class

is a collection of attributes and relations to other objects. The frame-based

view is useful when designing descriptive ontologies, because concepts are

usually modelled after real-world objects.

3. Finally, the logics-based or language-based view describes an ontology as a set of

axioms in a logical language 𝐿. This has the benefit that the axioms usually
have a formal interpretation, which in turn enables automatic reasoning. The

formal semantics of almost all modern ontology representation systems are

defined bymapping the ontological structures provided by the representation

system to axioms in a logical language.

Each view has its specific advantages and disadvantages. The graph based view is

sometimes favored because of its interlinking structure and therefore focusses on

the links between objects. The frame-based view puts the frame in the center and

therefore emphasises the taxonomical structure (and inheritance/subsumption).

The language based view, however, is themost semantically expressive one. When

the ontologicalmodel ismapped directly on top of a formal logical language, the se-

mantic properties of the logical language can be used to perform reasoning within

the ontology formalism.

Linked-data View

Graph-centered representation networks like semantic networks [Sow91] focus on

the structural components of an ontology: the interrelationship between the ele-

ments. The linked-data view is often preferred because of its flexibility and sim-

plicity. The Resource Description Framework [LS+99] has been established as the

46

3.1. Ontologies

de-facto standard for the representation of linked data. In RDF, every piece of

information is represented as a directed triple such that every RDF ontology is a

labelled graph.

In general, the linked-data view for an ontology can be formalized as an ontology

knowledge base. The knowledge base is a graph structure that represents individu-

als and the connections between individuals (definition 3.2).

As mentioned, a knowledge base is the description of the actual instances within

an ontology. It is known frommathematical logic, that the actual objects described

by the symbols of a logical language are called the extensions, of those symbols. The

extensional part for ontologies structures is provided by a knowledge base.

An ontology knowledge base is similar to the RDF graph representation, however

it does not allow for re-ification. When an ontology is observed from a linked-

data point of view, the formal semantics of the underlying framework (if any) are

usually neglected and the focus is on the connections between data (big data and

linked data).

Knowledge bases form a partial order a “lattice of knowledge bases”, the extension

lattice.

Theorem 3.1 Knowledge Base Lattice
≤ext is a partial order.

Frame-based View

The frame-based view moves away from the pure connectedness of the graph

structure and instead puts a stronger focus on an individual frame. A frame is

a (usually named) collection of slots. A slot is either an attribute or a relation

schema. Slots can be viewed as the columns of a relational database table or as the

fields of a class in an object oriented language.

47

3. Format Conversion and Ontology Matching

Definition 3.2 Knowledge Base
Given a set of ontology elements 𝒞, ℛ, ℐ, 𝒜, 𝒯, a knowledge base

𝐾𝐵 ≡def (ℐ, 𝜄𝒞, 𝜄ℛ, 𝜄𝒜)

consists of

• A set ℐ of instance identifiers, the universe of interpretation.

• A relation 𝜄𝒞 ⊆ 𝒞× ℐ called concept instantiation.

𝜄𝒞 assigns a set of instance identifiers to each concept 𝐶 ∈ 𝒞. 𝜄𝒞 may thus be
written as a function 𝜄𝒞 ∶ 𝒞 ↦ 𝔓 (ℐ).

• A relation 𝜄ℛ ⊆ ℛ× ℐ+ called relation instantiation.

𝜄ℛ assigns to each relation a set of tuples, the instances of this relation. 𝜄ℛ
may thus be written as a function 𝜄ℛ ∶ ℛ ↦ 𝔓(ℐ+).

• A function 𝜄𝒜 ∶ 𝒜 ↦ ℐ × ⋃
𝑡∈𝒯

𝖾𝗑𝗍𝖾𝗇𝗌𝗂𝗈𝗇(𝑡) called attribute instantiation.

𝒜 and 𝒯 are often omitted. In this case, 𝒜 is assumed to be part of ℛ and the
extensions of the types from 𝒯 are assumed to be part of ℐ.
When the type of the argument is clear from the context, we use only 𝜄 instead of
𝜄𝒞, 𝜄ℛ or 𝜄𝒜.

Definition 3.3 Knowledge Base Extension

• Given a knowledge base 𝐾𝐵 = (ℐ, 𝜄𝒞, 𝜄ℛ, 𝜄𝒜), and a knowledge base
𝐾𝐵′ = (ℐ′, 𝜄′𝒞, 𝜄′ℛ, 𝜄′𝒜) is a knowledge base extension of 𝐾𝐵, iff ℐ′ ⊇ ℐ,
𝜄𝒞 ⊆ 𝜄′𝒞, 𝜄ℛ ⊆ 𝜄′ℛ, and 𝜄𝒜 ⊆ 𝜄′𝒜,

• We write 𝐾𝐵 ≤ext 𝐾𝐵′ iff 𝐾𝐵′ is an extension of 𝐾𝐵.

48

3.1. Ontologies

Instances of a frame need to fill the values of the slots. In the original paper,

Minsky [Min74] describes frames as information windows that put a mask on top

of the raw data. Thismask works like a form, where only certain fields can be filled

in. The frame-based point of view can be formalized using the formal concept of

an ontology frame (definition 3.4).

Definition 3.4 Ontology Frame
An ontology frame 𝒪ℱ is an algebraic structure

𝒪ℱ ≡def (𝒞,≤𝒞, ℛ,≤ℛ, 𝜎ℛ,𝒜, 𝜎𝒜, 𝒯)

consisting of

• five disjoint sets 𝒞,ℛ, ℐ,𝒜, and𝒯. 𝒞 is a set of concept identifiers. ℛ is a set
of relation identifiers, 𝒜 is a set of attribute identifiers, 𝒯 is a set of attribute
types. The elements of 𝒞,ℛ and𝒜, 𝒯 are called the elements of the ontology
frame 𝒪ℱ.

• ≤𝒞 ⊆ 𝒞×𝒞 is a partial order between concepts called concept hierarchy. ≤𝒞
arranges the set of concepts into a semi-upper lattice.

• ≤ℛ ⊆ ℛ×ℛ is a partial order between relations. ≤ℛ is reflexive and transitive,
and called relation hierarchy.

• 𝜎ℛ ∶ ℛ ↦ 𝐶+, called the relation signature of 𝒪. The number |𝜎ℛ(𝑟)| of
concepts referenced from a relation signature is called the arity of 𝑟 ∈ ℛ.

• A set 𝒯 of datatypes such as strings, numbers, etc.

• 𝜎𝒜 ∶ 𝒜 ↦ 𝐶 × 𝒯 is called attribute signature and assigns every attribute a
type from 𝒯 and associates it with a concept from 𝒞.
Attributes are also called datatype properties

When it is clear from the context, only 𝜎 is used instead of 𝜎ℛ or 𝜎𝒜.
Again,𝒜 and𝒯 are often omitted. Once more, if omitted,𝒜 is assumed to be part
of ℛ and the extensions of the types from 𝒯 are assumed to be part of ℐ.

The ontology frame as presented here is an extension of the original concept as

defined byMinsky [Min74]. Its definition is largely based on the ontological frame-

work developed at the Institute of Applied Informatics und Formal Description Meth-

49

3. Format Conversion and Ontology Matching

ods (AIFB) at the University of Karlsruhe [SEH+03], where it is defined as a full

ontology. However, ontology frameworks usually go beyond an ontology frame

and thus a different name is chosen, here.

The ontology frame allows some important observations and definitions that will

provide useful for the later discussion.

• Both relations ≤𝒞 and ≤ℛ are partial orders fulfilling the usual conditions:

∀𝑥 . 𝑥 ≤ 𝑥 (reflexive) (3.1)

∀𝑥, 𝑦 . 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 → 𝑥 = 𝑦 (antisymmetric) (3.2)

∀𝑥, 𝑦, 𝑧 . 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 (transitive) (3.3)

with 𝑥, 𝑦, 𝑧 variables from 𝒞 or ℛ, respectively.

• ≤𝒞 additionally fulfills the conditions to form 𝒞 into a semi-upper lattice:

∀𝑥 . 𝑥 ≤𝒞 ⊤ (top element)(3.4)

∀𝑥, 𝑦 . ∃ 𝑧 .
⎛⎜⎜⎜⎜
⎝

𝑥 ≤𝒞 𝑧 ∧ 𝑦 ≤𝒞 𝑧

∧ ∀𝑤 .(𝑥 ≤𝒞 𝑤 ∧ 𝑦 ≤𝒞 𝑤
→ 𝑧 ≤𝒞 𝑤

)
⎞⎟⎟⎟⎟
⎠

(supremum) (3.5)

• ≤ℛ is a partial order over ℛ. ≤ℛ is only defined for relations of the same

arity, i.e. 𝑟1 ≤ℛ 𝑟2 implies |𝜎(𝑟1)| = |𝜎(𝑟2)|. 𝑟1 ≤ℛ 𝑟2 orders the various
components of the relations into a partial order separately. 𝑟1 ≤ℛ 𝑟2 thus
implies 𝜋𝑖(𝑟1) ≤𝒞 𝜋𝑖(𝑟2) for each 0 ≤ 𝑖 < |𝜎(𝑟1)|, where by 𝜋𝑖(𝑟1), we
designate the 𝑖th component of the tuple 𝑟𝑖.

It is often convenient to reference to the set of all direct and transitive ancestors or

successors of concepts and relations within their respective lattices. The notation

for these sets has been adopted from a similar notation in [HM00].

50

3.1. Ontologies

Definition 3.5 Sub- and Superclass Set
Given an ontology frame

𝒪ℱ ≡def (𝒞,≤𝒞, ℛ,≤ℛ, 𝜎ℛ,𝒜, 𝜎𝒜, 𝒯)

and a class 𝐶 ∈ 𝒞, the set 𝐶↓≡def {𝐶′ ∈ 𝒞|𝐶′ ≤ 𝐶} is the subclass set (𝐶 down)
of 𝐶.
The set 𝐶↑≡def {𝐶′ ∈ 𝒞|𝐶 ≤ 𝐶′} is the superclass set (𝐶 up) of 𝐶.

Definition 3.6 Sub- and Superproperty Set
Given an ontology frame

𝒪ℱ ≡def (𝒞,≤𝒞, ℛ,≤ℛ, 𝜎ℛ,𝒜, 𝜎𝒜, 𝒯)

and a relation 𝑟 ∈ ℛ, the set 𝑟 ↓≡def {𝑟′ ∈ ℛ|𝑟′ ≤ 𝑟} is the subproperty set (𝑟
down) of 𝑟.
The set 𝑟↑≡def {𝑟′ ∈ ℛ|𝑟 ≤ 𝑟′} is the superproperty set (𝑟 up) of 𝑟.

An attribute can only be attached to single concept range and the set of possible

values (i.e. the datatype of the attribute) is also fixed by the ontology frame. If

𝑎 ∈ 𝒜 is an attribute, it may be written as a tuple (𝐷,𝑅) ∈ 𝒜, where 𝐷, the
domain of the attribute is the concept, the attribute is attached to and 𝑅, the range
is the datatype, i.e. the set of possible values for the attribute.

Definition 3.7 Domain and Value Range
For an attribute 𝑎 = (𝐷, 𝑡) ∈ 𝒜, we call 𝐷 = 𝜋1(𝑎) the domain and 𝖾𝗑𝗍𝖾𝗇𝗌𝗂𝗈𝗇(𝑡),
with 𝑡 = 𝜋2(𝑎) ∈ 𝒯 the value range of 𝑎.

In many ontologies, binary relations are the most common form. If only binary

relations are allowed, i.e. 𝜎ℛ ⊆ 𝒞 × 𝒞, the expressive power of an ontological
structure is not reduced. Any 𝑛-ary relation can be decomposed into a set of binary
relations and it always possible to reconstruct the original 𝑛-ary relation (see e.g.
[JS91, Par02]). Because binary relations are the most common and often the only

relations allowed in many concrete knowledge representation systems, they are

given a separate name.

51

3. Format Conversion and Ontology Matching

Definition 3.8 Role
Given an ontological frame 𝒪ℱ and a relation 𝑟, we call 𝑟 a role, iff |𝜎(𝑟)| = 2.
𝑟 is also called an object property.

A role has a natural sense of direction. It is possible to write a role 𝑟 as a pair
(𝐷,𝑅) ∈ 𝒞×𝒞, where the role reaches from𝐷 to𝑅. In this case, only individuals
that are instances of𝐷 are allowed at the start of the role arrow and only individuals
that are instances of𝑅 are allowed at the end a role arrow. Similar to attributes,𝐷
and 𝑅 are called the domain and range of 𝑟:

Definition 3.9 Domain and Range
For a role 𝑟 = (𝐷,𝑅) ∈ ℛ, we call 𝐷 = 𝜋1(𝑟) the domain of 𝑟 and 𝑅 = 𝜋2(𝑟) the
range of 𝑟.

Because the frame-focussed view allows it to view an ontology from the point of

a particular concept’s instance (“my attributes”, “my relationships to other in-

stances”), it is the approach taken on by many ontology data editors by creating

one data entry dialog per concept. Additionally, the frame-based view has a direct

representation in object oriented programming (classes, fields, and references)

and database modelling (tables, attributes, foreign keys).

The frame-focussed view, however, yields no provision to specify more complex

rules and restrictions beyond inheritance, role domains and ranges.

Language-based view

The last restriction from the previous section is lifted in the language-based view.

In the language based view, the constraining axioms and assertions are described

in a logical language. Then again, the semantics of the logical language are defined

using either first order logic (FOL) or in some higher order logic itself. Thismakes

it possible to perform automated consistency checking when a deduction system

for the underlying logical language is available.

52

3.1. Ontologies

All modern formal knowledge representation frameworks map their ontological

structures into a logical language and thus define their formal semantics in terms

of the logical language. In addition to providing a formal interpretation, logical

languages often also provide the ability to formulate much more complex con-

straints beyond what is available in other frameworks.

The linked-data view is essentially an unconstrained graph of concept assertions

and links between individuals. The ontology frame provides the limited ability to

constrain the domain and ranges of roles and attributes. While the constraints

provided by the frame are often sufficient to describe the knowledge structure of a

particular domain, complex interdependencies cannot be expressed in the frame

structure alone. This gap is filled by the language-based view, where axioms in

the logical language can be used to express general constraints that hold within

an ontology.

The logical split between global axioms that specify global constraints that hold for

any individual in the ontology and assertions that are made about discrete individ-

uals is very oftenmade explicit. An ontology in a logical language is often specified

as the union of two disjoint axiom sets: the set of terminological axioms (𝖳𝖡𝗈𝗑)
and the set of assertional axioms (𝖠𝖡𝗈𝗑).

ABox Assertional knowledge in the 𝖠𝖡𝗈𝗑 encodes the information that is con-
sidered part of the knowledge base of an ontology (see definition 3.2). An 𝖠𝖡𝗈𝗑
contains information about concrete individuals and concrete relations in the form

of concept assertions and property assertions.

concept assertion A concept assertion assigns an individual𝑥 to a concept𝐶. Con-
cept assertions are usually written as 𝐶(𝑥) or (𝑥 ∶ 𝐶).

property assertions A property assertion defines a connection between an individ-

ual 𝑥 and an individual (for roles) or literal (for attributes). Concept assertions
are usually written as 𝑟(𝑥, 𝑦), asserting an 𝑟-link between 𝑥 and 𝑦.

53

3. Format Conversion and Ontology Matching

TBox While assertions in the 𝖠𝖡𝗈𝗑 refer to discrete individuals, terminological
assertions in the 𝖳𝖡𝗈𝗑 are valid for all individuals in the ontology. In many less
expressive logics, 𝖳𝖡𝗈𝗑 axioms are unable to refer to discrete individuals at all.

The axioms in the 𝖳𝖡𝗈𝗑 restrict the set of “allowed” (consistent) knowledge bases.
Knowledge bases that “fit” (are consistent with) a 𝖳𝖡𝗈𝗑 must adhere to certain
restrictions that are imposed by the interpretation of the 𝖳𝖡𝗈𝗑 axioms. For exam-
ple, restrictions like the domain and range constraints in the frame-based view are

usually encoded as 𝖳𝖡𝗈𝗑 axioms.

Typically, the axioms inside the 𝖳𝖡𝗈𝗑 are formulated in a logical language 𝐿.
Within the language, a (possible infinite) set of axioms can be expressed. The

set of all of these axioms form the signature Σ𝐿 of the language (definition 3.10).

Since 𝐿 must refer to the elements of the ontology, 𝐿 is specific to the element
sets ℐ, 𝒞, ℛ of the underlying ontology. It is thus formally necessary to refer to

𝐿(ℐ, 𝒞,ℛ) or even 𝐿(ℐ,ℛ, 𝒞,𝒜,𝒯)

As usual, we will omit the parameters when the type of 𝐿 is clear from the context.

Definition 3.10 Language Signature
Given a language 𝐿, the signature Σ𝐿 of the language is the set of all sentences
that can be formulated in 𝐿.
If 𝐿 is a logical language Σ𝐿 is the set of all possible axioms from 𝐿.

When no concrete language for a𝖳𝖡𝗈𝗑 is given, we express𝖳𝖡𝗈𝗑-formulæ in first
order logic, e.g. (∀ 𝑥 .𝐶(𝑥) ⇒ 𝐷(𝑥)) ∈ 𝖳𝖡𝗈𝗑.

But even without resolving to a concrete axiom language and interpretation, it is

possible to define the𝖳𝖡𝗈𝗑 as a constraint system over the set of concept, relation,
and attribute instantiations.

When a knowledge base is not a subset of an OCS, it contains a contradiction (ac-

cording to the semantics defined by the OCS itself). AnOCS is an abstract method

to define the set of consistent knowledge bases. The set of consistent knowledge

bases is defined by explicit enumeration.

54

3.1. Ontologies

Definition 3.11 Ontology Constraint System
An ontology constraint system 𝑂𝐶𝑆 is a set

𝑂𝐶𝑆 ⊆ 𝔓 (𝒞 × ℐ ×ℛ× ℐ+ ×𝒜×𝒯)
where the constituents are defined in the same way as for ontological frames (see
definition 3.4) and knowledge bases (see definition 3.2):

• ℐ is a set of instance identifiers.

• 𝒞 is a set of concept identifiers.

• ℛ is a set of relation identifiers.

• 𝒜 is a set of attribute identifiers.

• 𝒯 is a set of types, with 𝖾𝗑𝗍𝖾𝗇𝗌𝗂𝗈𝗇(𝑡), 𝑡 ∈ 𝒯 representing possible attribute
values. Attribute values are often also called literals.

Definition 3.12 Consistent Knowledge Base for an Ontology Constraint System
A knowledge base 𝐾𝐵 = (ℐ, 𝜄𝒞, 𝜄ℛ, 𝜄𝒜) is consistent with regard to an ontology
constraint system𝑂𝐶𝑆 iff there is an extension𝐾𝐵′ = (ℐ′, 𝜄′𝒞, 𝜄′ℛ, 𝜄′𝒜) of𝐾𝐵, that

1. that has non-empty interpretations for all elements, i.e. ∀𝐶 ∈ 𝒞 . 𝜄′𝒞(𝐶) ≠ ∅,
∀𝑟 ∈ ℛ . 𝜄′ℛ(𝑟) ≠ ∅, and ∀𝑎 ∈ 𝒜 . 𝜄′𝒜(𝑎) ≠ ∅.

2. 𝜄𝒞 × 𝜄ℛ × 𝜄𝒜 ∈ 𝑂𝐶𝑆

We write 𝑂𝐶𝑆 ⊧ 𝐾𝐵 if 𝐾𝐵 is consistent with 𝑂𝐶𝑆.

55

3. Format Conversion and Ontology Matching

This definition allows for partial knowledge bases, where only a subset of relevant

information is available. Note, that our definition of consistency is compatible

with both the closed and open world assumption [Rei87].

3.1.4. The Ontology

The preferred viewpoint for an ontology depends on the respective scenario. “Big

data” applications tend to focus on the linked data view. Ontology editors often

show a frame-based view of an ontology to reduce information overload at the side

of the user. Most reasoning systems have a hybrid approach between the language

based and the linked data view (e.g. tableau reasoning for description logics, see

section 4.2).

Most ontology formalisms define a mapping between the different viewpoints.

For example, both versions of the Web Ontology Language [MvH04, MPSH08]

have a direct mapping into the Resource Description Framework (RDF, [LS+99]).

The OWL/XML representation of OWL2 [PPSM09], however, focusses more on a

frame-based view and partially supports higher level axioms. It is possible to find

such correspondences for most ontology representation frameworks and thus the

three views on ontologies presented above are indeed only views and not represen-

tation formalisms in their on right. Consequently, a definition of an ontology itself

is possible without resolving to a particular viewpoint, but instead by combining

all viewpoints:

Definition 3.13 Ontology
An ontology 𝑂 is a structure

𝑂 ≡def (𝑂𝐶𝑆,𝐾𝐵)

consisting of

• an ontology constraint system𝑂𝐶𝑆 (described by a set of 𝖳𝖡𝗈𝗑 axioms), and

• a knowledge base 𝐾𝐵 (described by a set of 𝖠𝖡𝗈𝗑 assertions).

56

3.2. Ontology Alignment

In this thesis the terms “knowledge base” and 𝖠𝖡𝗈𝗑 will be used interchangeably.
Most of the time, the term 𝖳𝖡𝗈𝗑 will be used instead of the –slightly unwieldy–
“ontology constraint system”.

With the definition of an ontology established, it is also possible to define the con-

sistency (definition 3.14) and inferability (definition 3.15) of an axiom with regard

to/from an ontology. For both semantic relations we commonly use shortcut no-

tation. For example, if 𝑂 is an ontology with language 𝐿𝑂, 𝛽 is an axiom over a

language 𝐿𝛽, and 𝜙 is an axiom from 𝐿𝑂 ∪𝐿𝛽, we write 𝑂∪ 𝛽 ⊧ 𝜓. Formally, this
requires extending the ontology with 𝛽 similar to what is done in definition 3.14
and then checking if 𝜙 is inferable from the extended ontology.

Definition 3.14 Consistent Axiom
Given an ontology 𝑂 = (𝖳𝖡𝗈𝗑,𝐾𝐵) over an ontology language 𝐿, and the knowl-
edge base 𝐾𝐵𝜙 = (ℐ𝜙, 𝜄𝒞𝜙

, 𝜄ℛ𝜙
) with

• sets of ontology elements 𝒞, ℛ, ℐ, and 𝒜,

• a formula 𝜙 ∈ Σ𝐿

• 𝐾𝐵𝜙 = (ℐ𝜙, 𝜄𝒞𝜙
, 𝜄ℛ𝜙

, 𝜄𝒜𝜙
),

• 𝑥, a fresh individual such that ℐ𝜙 = ℐ ∪ {𝑥} so that 𝐾𝐵𝜙 is an extension of
𝐾𝐵 with that individual,

• 𝐶𝜙, a fresh concept and 𝒞𝜙 = 𝒞 ∪ {𝐶𝜙} so that, again, 𝐾𝐵𝜙 is an extension
of 𝐾𝐵 with that concept,

• ℛ𝜙 = ℛ, 𝒜𝜙 = 𝒜, and

• 𝖳𝖡𝗈𝗑𝜙 = 𝖳𝖡𝗈𝗑 ∪ {(𝐶𝜙 ⇒ 𝜙)}, so that 𝖳𝖡𝗈𝗑𝜙 is an extension of 𝖳𝖡𝗈𝗑,

𝜙 is consistent with regard to 𝑂, iff 𝐾𝐵𝜙 is consistent with regard to 𝖳𝖡𝗈𝗑𝜙.

3.2 Ontology Alignment

As already noted in section 2.1, any encoding of information faces the problem of

semantic heterogeneity. Similar pieces of information can be encoded in a variety

of different ways. The problem also persists with ontological modelling. It is a

common scenario for different domain experts to independently design ontology

57

3. Format Conversion and Ontology Matching

Definition 3.15 Inferable Axiom
Given an ontology 𝑂 = (𝖳𝖡𝗈𝗑,𝐾𝐵) over an ontology language 𝐿, and the knowl-
edge base 𝐾𝐵¬𝜙 = (ℐ¬𝜙, 𝜄𝒞¬𝜙, 𝜄ℛ¬𝜙)

• sets of ontology elements 𝒞, ℛ, ℐ, and 𝒜,

• a formula 𝜙 ∈ Σ𝐿

• 𝐾𝐵¬𝜙 = (ℐ¬𝜙, 𝜄𝒞¬𝜙
, 𝜄ℛ¬𝜙

, 𝜄𝒜¬𝜙
),

• 𝑥, a fresh individual and ℐ¬𝜙 = ℐ∪ {𝑥} so that 𝐾𝐵¬𝜙 is an extension of 𝐾𝐵
with that individual,

• 𝐶¬𝜙, a fresh concept and 𝒞¬𝜙 = 𝒞∪{𝐶¬𝜙} so that, again,𝐾𝐵¬𝜙 is an exten-
sion of 𝐾𝐵 with that concept,

• ℛ¬𝜙 = ℛ, 𝒜¬𝜙 = 𝒜, and

• 𝖳𝖡𝗈𝗑¬𝜙 = 𝖳𝖡𝗈𝗑 ∪ {(𝐶𝜙 ⇒ ¬𝜙)}, so that 𝖳𝖡𝗈𝗑¬𝜙 is an extension of 𝖳𝖡𝗈𝗑.

𝜙 is inferable from 𝑂, iff 𝐾𝐵¬𝜙 is inconsistent with regard to 𝖳𝖡𝗈𝗑¬𝜙.
We write 𝑂 ⊧ 𝜙 or even𝐾𝐵 ⊧ 𝜙 when the remainder of 𝑂 is clear from the context.

schemas for similar problem domains and then for the resulting models to differ

substantially. This in turn originated a research discipline that concerns itself with

overcoming semantic heterogeneity between ontologies: ontology alignment.

In the literature, the term itself is used in an overloaded fashion. In particular,

ontology alignmentmay refer to at least three related, but distinct concepts:

• In a high level context, ontology alignment is the research area that concerns

itself with overcoming semantic heterogeneity between ontologies. This is

the most abstract use of the term.

• In a more specific usage, ontology alignment refers to the process of determin-

ing correspondences between two or more ontologies. Because of the possibility

of confusion, this process will be referred to as the ontology alignment process

or ontology matching within this thesis.

• Finally, the alignment process produces a result in the form of correspon-

dences between ontologies. This result itself is also called an alignment.

This chapter will touch all three different interpretations.

58

3.2. Ontology Alignment

3.2.1. Bridging Ontologies

The basic idea of ontology alignment is similar to the concept of semantic fea-

tures as described in section 2.6: similar (semantic) fragments of information

can have different encodings. In ontological terms, a knowledge base fragment

𝐾𝐵1,𝑖 ⊆ 𝐾𝐵1 from one ontology 𝑂1 = (𝑂𝐶𝑆1,𝐾𝐵1) can represent the same
information as another knowledge base fragment 𝐾𝐵2,𝑗 ⊆ 𝐾𝐵2 from another

ontology 𝑂2 = (𝑂𝐶𝑆2,𝐾𝐵2). The goal of an ontology alignment system is to de-

tect and express such correspondences so that matching ontology fragments can

be exchanged from 𝑂1 to 𝑂2 and vice versa.

Euzenat and Shvaiko [Euz07] give a basic model of the operation of an ontology

alignment system. The model shown in fig. 3.1 extends their model. A matching

system takes as input one or more ontologies (with possibly empty knowledge

bases) and produces a set of alignment elements. An alignment element selects a

source knowledge base fragment 𝐾𝐵𝑠,𝑖, consistent with some ontology 𝑂𝑠 and

transforms it into a target knowledge base fragment𝐾𝐵𝑡,𝑖, consistent with some

ontology 𝑂𝑡.

Most matchers work pairwise, that is, the matcher accepts a pair (𝑂𝑠, 𝑂𝑡) of on-
tologies and produces a set of alignment elements that transfer instances from

𝐾𝐵𝑠 to𝐾𝐵𝑡.

In principle, it is possible for an alignment element to be imperative. In this

case, the matcher might be a code generator producing imperative code in a pro-

gramming language. Most matchers, however, produce declarative alignment el-

ements. Such a declarative alignment element is defined by Euzenat [Euz04] in

terms of a correspondence (definition 3.16)

Correspondences can have various levels of complexity. One possible categoriza-

tion is given by Euzenat [Euz04]:

Level 0 Both entities 𝑒 and 𝑒′ need to be atomic elements (concepts, roles, individ-
uals) of the respective ontologies and the degree of confidence 𝑛 is a floating
point value from the interval [0; 1]

59

3. Format Conversion and Ontology Matching

Figure 3.1. Alignment Generation

𝑂1 … 𝑂𝑛

Matcher

Alignment
Element 1

…

Alignment
Element
m

𝐾𝐵𝑠,1

𝐾𝐵𝑠,𝑚

𝐾𝐵𝑡,1

𝐾𝐵𝑡,𝑚

Definition 3.16 Alignment Correspondence
An alignment correspondence is a 4-tuple (𝑒, 𝑒′, 𝑅, 𝑛), with

• 𝑒, an entity or cell, specifying the first endpoint of the correspondence.

• 𝑒′, another entity or cell, specifying the second endpoint of the correspon-
dence.

• 𝑅, a relation that holds between 𝑒 and 𝑒′, asserted by this correspondence.

• 𝑛, the degree of confidence or strength of the correspondence between 𝑒 and
𝑒′.
The maximum confidence is ⊤ and the minimum confidence is ⊥.

Definition 3.17 Alignment
An alignment 𝔸 is a collection of alignment correspondences {𝑐0,… , 𝑐𝑛}.

60

3.2. Ontology Alignment

A level 0 alignment with both 𝑅 = ” = ” and 𝑛 = ⊤ is called a simple align-
ment 3.18.

Level 1 Entities 𝑒 and 𝑒′ are lists of elements.

Level 2 In themost expressive form of alignments, correspondences take the form

of formulæ in some alignment language 𝐿𝑏.

If 𝐿𝑠 is the language of ontology𝑂𝑠 and 𝐿𝑡 is the language ontology𝑂𝑡, level

2 correspondences are directional and can be expressed as clauses of the form

𝛽 ≡def ∀𝑋 .(𝜙(𝑋) → ∃𝑌 . 𝜓(𝑋 ∪ 𝑌))

where𝜙 ∈ Σ(𝐿𝑠)∪Σ(𝐿𝑏) and𝜓 ∈ Σ(𝐿𝑡)∪Σ(𝐿𝑏). 𝜙 is thus a formula over the
source ontology, potentially enhanced with additional language constructs

from the bridging language 𝐿𝑏 and 𝜓 is a formula over the target ontology,
again with additional constructs from 𝐿𝑏. Both 𝜙 and 𝜓 contain variables
from 𝑋 or 𝑋 ∪ 𝑌 , respectively.

Informally, the left side of 𝛽 is interpreted over the source ontology 𝑂𝑠 and

the right side is interpreted over the target ontology 𝑂𝑡, while 𝛽 creates a
semantic relation between both ontologies.

𝛽 is also known as a bridge rule (definition 3.19)

Definition 3.18 Simple Alignment
An alignment 𝔸 (definition 3.17) is called simple iff for all alignment elements
𝑐 ∈ 𝐴, 𝑐 = (𝑒, 𝑒′, 𝑅, 𝑛)

• 𝑐 is a level 0 element, i.e. 𝑒 and 𝑒′ are atomic elements of their respective
ontologies,

• 𝑅 = ” = ”, and

• 𝑛 = ⊤.

The advantage of using declarative correspondences is that their semantics can be

defined formally. In addition, level 0 and level 1 correspondences are independent

of the respective ontology language.

61

3. Format Conversion and Ontology Matching

Definition 3.19 Bridge Rule
Given two ontologies 𝑂𝑠 with language 𝐿𝑠 and 𝑂𝑡 with language 𝐿𝑡 a formula

𝛽 ≡def ∀𝑋 .(𝜙(𝑋) → ∃𝑌 . 𝜓(𝑋 ∪ 𝑌))

is called a bridge rule iff

• 𝜙 ∈ Σ(𝐿𝑠) ∪ Σ(𝐿𝑏).
𝜙 is a formula over the source ontology combined with the bridge language
𝐿𝑏 as a function of free variables 𝑋.

• 𝜓 ∈ Σ(𝐿𝑡) ∪ Σ(𝐿𝑏)
𝜓 is a formula over the target ontology combined with the bridge language 𝐿𝑏
as a function of variables𝑋∪𝑌 . The variables in 𝑌 are also called generating.

Care must be taken when evaluating level 2 alignments. Because arbitrary for-

mulæ are supported, the (internal) semantics of both of the source ontology or

the target ontology might change when a bridge rule is introduced. Introducing

a bridge rule can potentially invalidate existing information. More formally, some

knowledge base 𝐾𝐵𝑠 (𝐾𝐵𝑡) that is consistent with 𝑂𝐶𝑆𝑠 (𝑂𝐶𝑆𝑡) might become

inconsistent when a bridge rule 𝛽 is added. This behavior is undesirable from a

bridge rule, as it should only transfer information from one ontology to the other.

Mapping rules that do not affect the semantics of the ontology constraint systems

they link are called conservative bridge rules.

Definition 3.20 Conservative Bridge Rule
A bridge rule (definition 3.19) 𝛽 is called a conservative bridge rule iff for the on-
tologies 𝑂𝑠 and 𝑂𝑡 bridged by 𝛽,

∀𝜙 .𝑂𝑠 ∪ 𝑂𝑡 ⊧ 𝜙 ⇔ 𝑂𝑠 ∪ 𝑂𝑡 ∪ 𝛽 ⊧ 𝜙
for all axioms 𝜙 ∈ Σ𝐿𝑠

∪ Σ𝐿𝑡
.

62

3.2. Ontology Alignment

3.2.2. Ontology Matching

While bridge rules can be formulated manually, this is a very tedious and error

prone endeavour and tool support is all but mandatory. Automating or providing

support in creating bridge rules is the job of an ontology matching system. The

task of such a matcher is relatively easy to describe: take as input one or more

ontologies and produce alignments between these ontologies.

The simple description is in contrast to the actual complexity of the task, which

has been compared to the complexity of automated language translation. The com-

parison seems warranted, turning ontology matching into an AI-complete [GS08]

problem domain.

Ontology matching is both a well-covered but also evolving research area. In fact,

Otero-Cerdeira et al. [OCRMGR15] note “The amount of research papers published

nowadays related to ontology matching is remarkable and we believe that reflects the

growing interest of the research community. However, for new practitioners that ap-

proach the field, this amount of information might seem overwhelming.” [OCRMGR15,

p. 1]. In their survey paper the quoted authors list as many as 60 different matcher

systems that have been developed since 2003. Existing systems take a variety of

approaches to the matching task. Euzenat and Shvaiko [Euz07] provide a two-axis

classification system (fig. 3.2), distinguishing matchers based on

• how systems process and interpret input data and

• which type of processing or interpretation systems use internally.

The result is a classification system with nine different concrete categories, where

many systems fall into one or more of the supplied categories because they com-

bine multiple techniques.

The result is a –slightly chaotic– zoo of matching systems. In addition to this, ta-

ble 3.1 also shows that the quality of generated alignments depends on the struc-

ture of the underlying ontology. This means that not every matching system is

suited to every alignment task. For example, trying to obtain simple alignments

63

3. Format Conversion and Ontology Matching

Figure 3.2. Ontology Matching System Classification (figure from [Euz07])

Table 3.1. Simple Matching Results for the “Dom Bamberg” Ontology and Its
Evolved Successor

matcher # prec. % rec. % f %
1. vector-based multi-words 49 55.1 26.7 36.0
2. lexical synonyms 39 59.7 22.8 32.9
3. parametric string 53 54.7 28.7 37.7
4. similarity flooding 19 9.1 1.0 1.8
5. AnchorFlood 47 42.6 19.8 27.0
6. AROMA 40 67.6 24.8 36.2
7. Blooms 12 41.7 5.0 8.8

to map the ontology of the Bamberg Cathedral to a newer version shows that

matching precision fluctuates between 9.1% and 67.6% depending on the em-

ployed matcher (table 3.1).

Determining a-priori if a matcher is suitable for a particular matching task is usu-

ally only possible superficially. Structural matchers show their potential, when

two ontologies are structurally similar but are in two different languages. Lexical

matchers are good when used in a narrow domain with a well-defined nomencla-

64

3.2. Ontology Alignment

ture (such as built heritage). Some matchers try to overcome these problems by

combiningmultiplematching techniques (e.g. COMA [DR02], COMA++[ADMR05],

YAM++[NB12]).

3.2.3. Measuring Alignment Quality

Nonetheless, evaluation of a matching system is typically performed empirically.

This requires (oftenmanually) creating a reference alignment 𝔸ref and comparing

the alignment produced by the ontology matcher(s) against this reference align-

ment.

This comparison typically done using standard precision (def. 3.21) and recall (def. 3.22)

measurements.

Definition 3.21 Alignment Precision
Let 𝔸 be an alignment and 𝔸ref a reference alignment. Then

𝖯𝗋𝖾𝖼(𝔸, 𝔸ref) ≡def
|(𝔸 ∩ 𝔸ref)|

|𝔸|
is the precision of 𝔸 relative to 𝔸ref .

Definition 3.22 Alignment Recall
Let 𝔸 be an alignment and 𝔸ref a reference alignment. Then

𝖱𝖾𝖼(𝔸, 𝔸ref) ≡def
|(𝔸 ∩ 𝔸ref)|

|𝔸ref |
is the recall of 𝔸 relative to 𝔸ref

These basic scores are often combined into a single value, the accuracy, typically

in the form of the 𝐹1-score or 𝑓 -measure.

Definition 3.23 Alignment 𝑓 -score
Let 𝔸 be an alignment and 𝔸ref a reference alignment. Then

𝖥(𝔸, 𝔸ref) ≡def 2 × 𝖯𝗋𝖾𝖼(𝔸, 𝔸ref) × 𝖱𝖾𝖼(𝔸, 𝔸ref)
𝖯𝗋𝖾𝖼(𝔸, 𝔸ref) + 𝖱𝖾𝖼(𝔸, 𝔸ref)

is the 𝑓 -score or accurancy of 𝔸 relative to 𝔸ref .

65

3. Format Conversion and Ontology Matching

All of these simple measurements, however, are unsatisfactory when the seman-

tics of ontologicalmodels are considered. Euzenat and Valtchev [EV03] established

in 2003 that the “classical” evaluation measures of precision and recall are of lim-

ited usefulness to measure the quality of an ontology alignment. Ehrig and Eu-

zenat [EE05] later continue to venture in the same direction. A suitable measure-

ment for the quality of an ontology alignment needs some notion of the degree of

correctness, i.e. it should take into the account the distance between derived align-

ment correspondences and the reference alignment.

Semantic Precision and Recall Ehrig and Euzenat [EE05] propose a “relaxed” ver-

sion of precision and recall that takes into account the different degrees of mis-

match between alignments. Their version of such a measurement is presented in

a later paper [Euz07] in terms of an ideal semantic precision and recall based on

model theoretic observations.

Definition 3.24 𝛼-Consequence
Given two ontologies 𝑂1, 𝑂2, and an alignment 𝔸
(expressed as a set of correspondences 𝑎 = (𝑒, 𝑒′, 𝑟) , 𝑎 ∈ 𝔸), a correspondence
𝛿 is an 𝛼-correspondence of (𝑂1, 𝑂2, 𝔸), iff all models of 𝛿 also satisfy any of the
correspondences 𝑎 ∈ 𝐴.
The set of all 𝛼-correspondences of an alignment 𝔸 for ontologies 𝑂1, 𝑂2 is called
Cn(𝑂1, 𝑂2, 𝔸) or short Cn(𝔸) if 𝑂1 and 𝑂2 are clear from the context.

Consequently, the ideal precision and recall values of an alignment𝔸with regard to
a reference alignment 𝔸ref and two ontologies 𝑂1, 𝑂2 are given by definition 3.25

and 3.26.

Definition 3.25 Ideal Alignment Precision
Let 𝔸 be an alignment and 𝔸ref a reference alignment. Then

𝖯𝗋𝖾𝖼
ideal

(𝔸, 𝔸ref) ≡def
|(𝖢𝗇(𝔸) ∩ 𝖢𝗇(𝔸ref))|

|𝖢𝗇(𝔸)|
is the ideal precision of 𝔸 relative to 𝔸ref .

66

3.2. Ontology Alignment

Definition 3.26 Ideal Alignment Recall
Let 𝔸 be an alignment and 𝔸ref a reference alignment. Then

𝖱𝖾𝖼
ideal

(𝔸, 𝔸) ≡def
|(𝖢𝗇(𝔸) ∩ 𝖢𝗇(𝔸ref))|

|𝖢𝗇(𝔸ref)|
is the ideal recall of 𝔸 relative to 𝔸ref .

These measurements are semantically ideal, because they consider the actual se-

mantic extension of the alignments, not their particular representation. Unfortu-

nately, they also have amajor drawback for practical use: they cannot be calculated

in an efficient manner. When 𝔸ref is a level 2 alignment, calculating 𝖯𝗋𝖾𝖼ideal is
most likely undecidable as there are infinitely many possible alignments.

These results seem discouraging, but they still serve to highlight an important

point: semantics play a major role not only in the derivation of an alignment, but

also in the evaluation of its correctness. Traditional measurements only give a

superficial view of the quality of an alignment and careful evaluation is necessary

to gain more insight on why a matcher might seem to perform poorly.

3.2.4. Current Developments and Challenges in Ontology Alignment

We have seen in the previous section (section 3.2.2), that a significant amount of

research has been carried out to develop techniques for ontology matching. Re-

sults from the OAEI evaluation campaigns (e.g. [EMS+11]) also show that current

matcher technology is well developed. Results of automated matching are not

perfect, but results are more than sufficient to provide assistance during manual

alignment between two ontologies.

On the infrastructure side, a standard method of representing alignments has

been established in 2004 [Euz04]. The “Semantic Evaluation at a Large Scale”

(SEALS) platform [WGCN12] provides a repository of test datasets and storage of

evaluation results. In addition, SEALS defines a standard “bridge interface” in the

Java programming language to be implemented by ontology matchers to support

automatic evaluation.

67

3. Format Conversion and Ontology Matching

Table 3.2. Number of Reference Alignments for the OAEI “conference” Dataset.
cmt-confOf 16 conference-confOf 15
cmt-conference 15 conference-edas 17
cmt-edas 13 conference-ekaw 25
cmt-ekaw 11 conference-iasted 14
cmt-iasted 4 conference-sigkdd 15
cmt-sigkdd 12 edas-ekaw 23
confOf-edas 19 edas-iasted 19
confOf-ekaw 20 edas-sigkdd 15
confOf-iasted 9 ekaw-iasted 10
confOf-sigkdd 7 ekaw-sigkdd 11
iasted-sigkdd 15
Extracted from downloaded dataset, retrieved 2013-04-03

http://oaei.ontologymatching.org/2012/conference/index.html

However, ontology alignment is still a very active research area with many open

challenges. This section gives an overview over current developments in ontology

alignment and also gives pointers to unexplored areas in the domain. (as described

by e.g. [SPM08, SE08, SJ13])

Large Datasets and Matcher Scalability

Evaluation of ontology matchers is largely done empirically. Creating reference

datasets is a time-consuming task and hence existing reference alignments are of-

ten rather small. For example, the number of reference alignments for the “con-

ference” dataset of theOAEI are listed in table 3.2, containing amaximumnumber

of at most 25 (conference-ekaw) alignments.

Concerns have therefore been expressed

1. on the scalability of matcher technology to large datasets, and

2. on how to obtain pre-matched large datasets with minimal human effort for

evaluation.

68

http://oaei.ontologymatching.org/2012/conference/index.html

3.2. Ontology Alignment

Recent research has placed a focus on the scalability of matcher technology. Ap-

proaches range from partitioning of ontologies into independently matchable sets

(e.g. Falcon-AO [JHCQ05], LogMap [JRGZH12]) and re-use of already established

alignments to the integration of upper-level ontologies to speed up the matching

process (e.g. GOMMA [HGKR12]).

As an answer to the growing concerns of the applicability of existingmatcher tech-

nology to large and real-world datasets, the benchmark sets for theOAEI campaign

have been extended to also contain larger reference alignments. In particular,

the “Large BioMed track” was established for OAEI 2011.5 [MSZT+12]. These

alignment tracks compose large biomedical ontologies with 78, 989, and 66, 7224
classes, respectively. The reference alignment contains 2, 989 (simple) correspon-
dences.

Results from the second 2011⁹ (OAEI 2011.5 [MSZT+12]) and the 2012 evalua-

tion campaign have shown that many –then current matching– systems were un-

able to handle such large matching tasks. Many newer matching systems, like

LogMap [JRGZH12] and GOMMA [HGKR12], however, have shown that scalable

matching even of large ontologies need not necessarily also yield a decrease in

matching accuracy.

Use of Semantic Information

Many early matching systems took a very limited view on ontologies. Descended

from graph and (relational) schema matching, the internal semantics of the onto-

logical models were often ignored or only incorporated in the form of additional

graph connections without really honoring their formal semantics. These match-

ing systems have focussed on the linked-data and frame-based views on ontolo-

gies, neglecting the language based view.

In the recent years, more and more matching systems make use of the expressed

formal semantics of the ontologies. Semantic information is used in two different

contexts:

⁹There were two evaluation campaigns in 2011.

69

3. Format Conversion and Ontology Matching

• to guide the matching process, and

• to verify alignment consistency and coherence.

Semantic Information To Guide the Matcher Some more modern matching sys-

tems are able to use semantic information to guide thematching process itself. For

example, an iterative matcher could use consequences from already established

correspondences in earlier steps to improve accuracy of correspondences derived

in later steps. CODI [NNS11] uses topological similarity [Res99] to improve simi-

larity computation in the concept hierarchy. LogMap [JRGZH12] extends the basic

topological tree with information about disjoint classes.

Alignment Consistency and Coherence Transferring information from one on-

tology to the other does not guarantee the consistency of the information in the

target ontology, automatically. As a simple example, a direct data property cor-

respondence only copies data values from 𝑂𝑠 to 𝑂𝑡. But if the constraint system

𝑂𝐶𝑆𝑡 of𝑂𝑡 disallows certain values for the mapped data property that are allowed

in the source ontology 𝑂𝑠, the mapped knowledge base will be inconsistent.

The situation is more complex, when there are multiple correspondences, whose

consequences potentially interact. For example, when a matcher derives the cor-

respondences 𝛽1 = (𝐴,𝐵,=, 1.0) and 𝛽2 = (𝐴,𝐶,=, 1.0) and the target 𝑂𝐶𝑆𝑡
contains the assertion that𝐵 ≢ 𝐶, only one of the correspondences can be correct,
because they contradict each other when applied together.

Inconsistency and incoherency can be grouped into different categories, depend-

ing on which type of interaction is causing the logical contradictions and when the

problem occurs.

The first possible distinction is, if an inconsistency is always generated when con-

sidering one or a set of correspondences. Some of the logical contradictions ap-

pear independently of the knowledge bases mapped and some only appear when

combined with a particular source knowledge base. Typically, only logical contra-

70

3.2. Ontology Alignment

dictions that appear at the terminological level are considered, because it is almost

always possible to purpose-construct knowledge bases that cause inconsistencies

between alignment correspondences.

The simplest case is, when a correspondence is completely nonsensical in itself.

This includes alignments that map a concept to ⊥ or –in the case of bidirectional
alignments– establish a relationship between two concepts already asserted to be

disjoint.

Definition 3.27 Inconsistent Correspondence
A bridge rule 𝛽 between two TBoxes 𝖳𝖡𝗈𝗑1, 𝖳𝖡𝗈𝗑2 is inconsistent iff

𝖳𝖡𝗈𝗑1 ∪ 𝖳𝖡𝗈𝗑2 ∪ {𝛽} ⊧ ⊥
for all knowledge bases 𝐾𝐵1 and 𝐾𝐵2 such that 𝖳𝖡𝗈𝗑1 ∪ 𝐾𝐵1 ⊧ ⊤ and
𝖳𝖡𝗈𝗑2 ∪𝐾𝐵2 ⊧ ⊤.
A correspondence (𝑒1, 𝑒2, 𝑟, 𝑐) is inconsistent with regard to source and target
knowledge bases 𝐾𝐵1 and 𝐾𝐵2, respectively, iff

𝖳𝖡𝗈𝗑1 ∪𝐾𝐵1 ∪ 𝖳𝖡𝗈𝗑2 ∪𝐾𝐵2 ⊧ ⊤
but

𝖳𝖡𝗈𝗑1 ∪𝐾𝐵1 ∪ 𝖳𝖡𝗈𝗑2 ∪𝐾𝐵2 ∪ {𝛽} ⊧ ⊥.

Correspondence-level inconsistencies such as in definition 3.27 are usually quite

rare. For two ontologies that do not share any concept or role references, it is

not even possible to generate an inconsistent mapping that does not map directly

to ⊥. Many ontology matching systems, however, can generate sets of matching
rules that cannot be applied together. A set of correspondences that contain inter-

actions between rules that create inconsistencies when applied together is called

incoherent.

Research in the direction of avoiding or repairing consistency and coherence prob-

lems has begun only quite recently. Systems that implement approaches to the

consistency and coherence problem can be grouped into two different categories:

71

3. Format Conversion and Ontology Matching

Definition 3.28 Incoherent Alignment
An alignment 𝔸 with bridge rules 𝛽0, 𝛽1,… is incoherent with regard to a pair of
TBoxes 𝖳𝖡𝗈𝗑1, 𝖳𝖡𝗈𝗑2 iff

𝖳𝖡𝗈𝗑1 ∪ 𝖳𝖡𝗈𝗑2 ∪ {𝛽0, 𝛽1,…} ⊧ ⊥
for all knowledge bases 𝐾𝐵1 and 𝐾𝐵2 such that 𝖳𝖡𝗈𝗑1 ∪ 𝐾𝐵1 ⊧ ⊤ and
𝖳𝖡𝗈𝗑2 ∪𝐾𝐵2 ⊧ ⊤.
The alignment 𝔸 is incoherent with regard to knowledge bases 𝐾𝐵1 and 𝐾𝐵2, iff

𝖳𝖡𝗈𝗑1 ∪𝐾𝐵1 ∪ 𝖳𝖡𝗈𝗑2 ∪𝐾𝐵2 ⊧ ⊤
but

𝖳𝖡𝗈𝗑1 ∪𝐾𝐵1 ∪ 𝖳𝖡𝗈𝗑2 ∪𝐾𝐵2 ∪ {𝛽0, 𝛽1,…} ⊧ ⊥.

those that implement consistency/coherence checking as a post-processing step

after generation of alignments and systems that integrate the consistency check-

ing procedure into the matching process.

A relatively simple post-processing “alignment repair” system has been demon-

strated by Haase and Stojanovic [HS05a] in the context of ontology evolution. In

their approach, they modify the ontologies themselves to find the largest ontol-

ogy that is still consistent after new axioms were added to the ontology. A similar

approach was proposed for ontology matching itself by Meilicke, Stuckenschmidt

and Tamilin [MST07]. Their system considers alignments as bridge rules from

distributed description logics [ST05]. The smallest set of conflicting bridge rules

is searched and the correspondence 𝑒1, 𝑒2, 𝑟, 𝑐 with the smallest confidence value
𝑐 is repeatedly removed until consistency is regained. The system has been fur-

ther developed into the ALCOMO [Mei11] system for repairing inconsistent on-

tology alignments. ASMOV [JMSK09] also implements a similar repair procedure

by removing the mapping rule with the lowest confidence value when an incon-

sistency is detected. Two very successful (according to the OAEI campaign results

[AGE+12]) matchers, CODI [NNS11] and LogMap [JRG11] implement elimination

of inconsistent correspondences as part of the matching process.

72

3.2. Ontology Alignment

Matcher Selection, Combination, and Parameter Tuning

Matcher Selection As noted in section 3.2.3, matcher performance is dependent

on the nature of the involved ontologies. A lexical matcher without some form

of multi-lingual thesaurus has trouble when two ontologies are formulated in dif-

ferent languages. A purely structural matcher has a hard time matching two on-

tologies with different layouts even if the terminology between both ontologies is

re-used. Matchers that utilize external resources (e.g. using web search) are often

unsuited for highly focussed ontologies.

Matcher Combination Progress has been made with regard to high-level combi-

nation of matcher results (COMA [DR02], COMA++[ADMR05]). Recents results

from current ontology matchers show that purpose-designedmethods to combine

selected matching methods can yield improved results (e.g. YAM++[NB12]).

Parameter Tuning Another important aspect of optimizing the alignment process

affects matchers that can be parameterized. Choosing a suitable set of parameters

for amatcher usually requires in-depth knowledge of thematching system. Again,

parameters suited for one alignment task can be unsuited for another alignment

task. There is only limited initial research (e.g. [RP11]) available on automated

parameter tuning for ontology matchers.

User Involvement

Regardless of the achievements of fully automated alignment systems, every gen-

erated aligment requires at least some corrective activity by the user. Interactive

user interfaces to visualize correspondences and to repair generated alignments

are typically quite limited. Those that exist (e.g. COMA++[ADMR05], Snoggle

[RDB+08], AgreementMaker [CAS09], YAM++ [NB12]) usually provide a left-to-

right view with the correspondences visualized as arrows between ontology ele-

ments. Support for interactive, iterative generation of alignments has only ap-

peared quite recently (e.g. [NB12]).

73

3. Format Conversion and Ontology Matching

Explaining With regard to consistency checking of formal knowledge models,

large steps have been made by the research community with regard to generat-

ing explanations for inconsistencies. Explanations provide the ontology designer

with a way to locate the possible mistakes in the ontology design.

Similar functionality would also be desirable for ontology alignment. Somematch-

ing systems base their decisions on prior information. For example, they use up-

per ontologies, generalize from existing alignments or incorporate user decisions

into the matching process. Such systems greatly benefit from a method to show

the effects of existing pieces of information.

Complex Alignments

Last but not least, there is the topic of generating complex alignments. With the

exception of a few approaches (e.g. [RMŠZS09, Sch09, vZSS09, RVMŠZ10]), com-

plex alignments are largely neglected by the research community. Research focus

currently remains on matcher scalability and use of semantic information.

With regard to complex alignments, significant formalization work has been per-

formed by Scharffe [Sch09] classifying a large amount of possible transformation

patterns for ontology matching. As a practical result, a “pattern server” [vZSS09]

has been implemented, that returns possible transformation patterns for an input

ontology. At around the same time, linguistic analysis [RMŠZS09] has been suc-

cessfully implemented for deriving certain complex alignments. Research in this

direction, however, seems to have pattered out, with no new alignment systems

supporting complex correspondences published since.

3.3 Document Ontologies

The ontology itself is a highly general knowledge representation framework with

a wide range of application domains. Not every technique for ontology matching

is suited for every type of ontology. For example, the OAEI evaluation datasets are

divided into different challenges andmany ontologymatchers excel only in certain

parts of the competition.

74

3.3. Document Ontologies

The literature contains little information on the suitability of matchers for certain

ontology types. Most matchers only document the limitations of the types of on-

tologies they are able to process, but this restriction is usually at a syntactic level

(e.g. if the matcher cannot handle transitive roles). Usually such restrictions are

only mentioned in passing and the focus is on the description of the matcher al-

gorithm and its evaluation. Suitability evaluations are mostly empirical, hence we

mostly have information about particular cases where matcher𝑚1 is better suited

to match ontology 𝑂1 with ontology 𝑂2 than matcher 𝑚2. A systematic descrip-

tion of matcher suitability is missing from the literature, a fact probably owned to

the complexity of the task in general.

In practice, this means that suitability of a matching system for a particular class

of ontologies needs to be evaluated empirically. But even if pre-aligned reference

datasets are available, the transferability of the evaluation results into a broader

range of ontologies from a single domain seems dubious. There simply exists –as

of this writing– no system to classify the suitability of a particular set of ontological

models with regard to a particular type of matcher.

This section attempts an analysis of the type of “document ontologies” that are the

primary target of the techniques developed in this thesis. The restrictions de-

scribed here are intended to be fromamodelling perspective, providing an overview

over the overall structure of the expected ontologies. Syntactical restrictions of the

individual algorithms (e.g. no qualified number restrictions) are discussed at a

later point. I document the assumptions made about “matchable” ontologies and

also list the known problems that the present work is not attempting to solve.

Our first observation is that the elements (concepts and roles) of document ontolo-

gies can be separated into two different categories: primary and secondary. The

main difference between both is that instances of primary elements are largely

independent and –usually– can exist by themselves within a knowledge base. In-

stances of secondary objects, on the other hand, can only exist when linked (tran-

sitively) to at least one primary element.

75

3. Format Conversion and Ontology Matching

Figure 3.3. Structure of a Document Ontology

Digitalmaps described earlier are a prime example: the spatial entities form the set

of the primary elements, while any “attached” information is provided mainly by

secondary elements. As such, in the most simple case, every document ontology

is a forest of linked individuals with the root nodes of the forest being instances

of primary objects with no shared elements between (primary) trees.

In practice, however, such a strict design would be both too redundant and re-

strictive. For example, a separate “𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅” class would be needed for every pri-
mary tree that has amaterial-like concept. Such a design –while common for some

ontologies– looses the explicit semantic link between the different material types

(i.e. all of them being materials). Instead, secondary elements will be most likely

re-used between primary trees. The simple design is also too restrictive, because

it disallows links between trees, thus severely limiting the representative power

of the ontology. Instead, we can expect links to be present between the different

trees, resulting in ontology schemas following the pattern as presented in fig. 3.3.

It is important to note that the resulting meta-structure is not restrictive. In a

degenerate case, all concepts are primary. Connections are then also only between

primary elements, which makes all connections also primary elements. The built

heritage documentation ontologies on the other hand, have an almost pure forest

structure. Most of the ontologies do not feature any links between primary trees.

76

3.3. Document Ontologies

And even though this is about to change when the potential of linked semantic

data are being put to use in evolved ontologies, the forest structure is still very

prominent.

It is possible to sketch an ontology alignment process that makes use of such a

tree structure:

1. Obtain correspondences for the primary elements.

2. For each matched pair of primary elements (in different ontologies), unfold

the primary tree. This results in a set of ontology fragments (partially with

individuals). Find alignments between primary trees.

3. For each link between an pair of primary trees that is not a link between root

nodes, find a suitable matching link and attachment points between the pair

of aligned primary trees.

The approach tries to balance the problemof relative semantics of elements against

computational feasibility of matching. The more context specific the interpreta-

tion of an element is, the more work is required from amatcher. Simple matchers

usually have no (pure element-level matchers) or a limited view of the “surround-

ings” of an element. Their performance is best when the ontology consists of

mostly primary elements. Making use of the tree structure, the primary trees

become matchable elements by themselves without having to resolve to a full

document-to-document match.

Step 1 can be solved by existing “simple” ontology matchers. This thesis will focus

on expansion and tree-to-tree matching, making use of semantic techniques to

expand and align primary trees. It is assumed that step 3 can be handled using

appropriate post-processing methods.

77

SECTION 4.0

Automated Reasoning in LillyTab

This chapter introduces knowledge representation logics and –in particular– de-

scription logics (DLs) as the semantic foundation of many ontology modeling

frameworks (section 4.1). Semantics and algorithms for reasoning in descrip-

tion logics are described in section 4.2.

The second part of the chapter introduces description logic tableau reasoning as

a sound and complete reasoningmethod for description logic knowledge bases.

The final part introduces the DL reasoner “LillyTab” that was implemented as

part of this thesis, outlines its architectural details and gives rationale for its

implementation.

4.1 Knowledge Representation Logics

In section 3.1 the ontology has been introduced as a general model for knowledge

representation based on the three basic elements: individuals, concepts (as sets of

individuals), and relations (links between individuals). The basic model, however,

has limited support for automated derivation of new knowledge from existing as-

sertions. For example, if we wanted to model a university’s employees and classify

project staff, we would like to specify the constraint (in FOL):

∀𝑥, 𝑦 . 𝖲𝗍𝖺𝖿𝖿(𝑥) ∧ 𝗐𝗈𝗋𝗄𝗌𝖮𝗇(𝑥, 𝑦) ∧ 𝖯𝗋𝗈𝗃𝖾𝖼𝗍(𝑦) ⇒ 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿(𝑥) (4.1)

This is not supported by the basic ontological model we have considered so far.

While the ontology frame (definition 3.4) allows construction of a subsumption hi-

erarchy of named concepts, the above example can only be modelled by explicitly

4. Automated Reasoning in LillyTab

asserting an employee to belong to 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿. If we want to model the infer-
ence in equation (4.1) ontologically, a formal system of inference is needed. This

brings the focus back to the third view on ontologies, the language-based view (sec-

tion 3.1.3), because formal systems of inference are almost exclusively specified

as logical languages.

Such a logical language must not only be able to handle the assertions that we

make about individuals (for example, in equation (4.1), that some employee is on

staff), but it must also be able tomodel the constraints and inferences that we want

to impose upon our ontological model (again like the constraint in equation (4.1)).

And it also must support the desired automatic inference.

4.1.1. Automated Inference and Reasoning

Beyond the basic descriptive capabilities, the first requirement to formulate to a

formal knowledge system is therefore, what kind of inferences it needs to perform,

i.e. which services should be offered by the deduction system. Over time, a small

set of standard reasoning serviceshas emerged, which are expected from anymodern

knowledge representation system, if it offers automated reasoning:

satisfiability The check for satisfiability is performed to determine if there are no

contradictions within a knowledge base definition. For example, if we repeat

the constraint from equation (4.1) and (incorrectly) add the assertion, that

𝖲𝗍𝖺𝖿𝖿 does not work on projects (i.e. that 𝖲𝗍𝖺𝖿𝖿 and 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 are disjoint),
𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 will be unsatisfiable.

∀𝑥 . ∃ 𝑦 . 𝖲𝗍𝖺𝖿𝖿(𝑥) ∧ 𝗐𝗈𝗋𝗄𝗌𝖮𝗇(𝑥, 𝑦) ∧ 𝖯𝗋𝗈𝗃𝖾𝖼𝗍(𝑦) ⇒ 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿(𝑥)
∀𝑥, 𝑦 . 𝖲𝗍𝖺𝖿𝖿 ∧ 𝗐𝗈𝗋𝗄𝗌𝖮𝗇(𝑥, 𝑦) ⇒ ¬𝖯𝗋𝗈𝗃𝖾𝖼𝗍(𝑦)

Having defined a concept that can never be satisfied does not really make

sense, so this is not allowed in most knowledge modelling frameworks.

80

4.1. Knowledge Representation Logics

subsumption Subsumption is the test if one set of individuals (defined by a set

of constraints) is contained within another set. For example, if we wanted to

know, if all 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 can(!) only work on 𝖯𝗋𝗈𝗃𝖾𝖼𝗍s, we need to perform a

subsumption test.

In logical languages, that support the negation of arbitrary concepts, sub-

sumption can be reduced to satisfiability. Instead of testing if 𝖲𝗎𝖻 ⊆ 𝖲𝗎𝗉, we
can test, if 𝖲𝗎𝖻 ∩ ¬𝖲𝗎𝗉 is satisfiable.

consistency Consistency checking (or instance testing) is performed on a knowl-

edge base to verify that the asserted information in the knowledge base is

consistent with the formulated constraints. A knowledge base is consistent,

if its interpretation function 𝜄 fits with the constraints our logical language
imposes upon the contained assertions.

For example, if we assert both that someone is not a member of 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿
(¬𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿(𝑥)) and at the same time demand, that he does indeed work
on a project (𝗐𝗈𝗋𝗄𝗌𝖮𝗇(𝑥, 𝑦) ∧ 𝖯𝗋𝗈𝗃𝖾𝖼𝗍(𝑦)), we know that this is inconsistent
with our definition of 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 in equation (4.1). Consistency checking
determines such inconsistencies.

coherence An ontology is incoherent, if all of its concept descriptions are forced

to be empty, i.e. there cannot be an instance of any of the concepts in the

ontology. Note that this does not mean that empty concepts are not accept-

able in general. For example 𝐴 = ∅ does not make an ontology incoherent
by itself; individual empty classes are allowed. However, when all declared

concepts in an ontology are empty, the ontology is incoherent

Algorithms to check for coherence and consistency are closely related but not

fully equivalent.

classification The named concepts in an ontology usually form a terminological

structure, the subsumption hierachy. This hierarchical structure is, however,

usually not made fully explicit. Classification involves making the hierarchi-

cal structure explicit, i.e. finding all sub- and super-classes of named con-

cepts.

81

4. Automated Reasoning in LillyTab

Classification can always be reduced to repeated subsumption testing.

There was an early enthusiasm in artificial intelligence about new “intelligent”

systems that could perform logical deductions automatically. A very real problem

with such systems was more or less ignored by the first systems of knowledge

representation: automated reasoning in very expressive logics like FOL or even

higher order logics [Lei94] is not only computationally intractable (NP-complete

and worse), but FOL itself is already semi-undecidable. A reasoning system that

implements reasoning for FOL always suffers from the very real risk, that a consis-

tency (or satisfiability, or subsumption) checking algorithm runs into an endless

loop and never terminates.

Using a logical language where the termination of a reasoning task is not guar-

anteed, is clearly a highly undesirable situation for any knowledge representation

system. Using a less expressive, but decidable logical language, however, may not

be sufficient to model the knowledge structure of a particular problem domain.

This trade-off between expressiveness and tractability constitutes a fundamental

challenge of knowledge representation until today. The challenge became even

more pronounced, when it was realized, that the relationship between decidabil-

ity and expressiveness of representation was a lot more subtle than expected. For

example, Brachman and Levesque note

“We illustrate how great care needs to be taken in the design of a represen-

tational facility, even when our intuitions about the language tell us that it

is a simple one. As it turns out, even an apparently modest representation

language can prove intractable” [BL84, p. 1].

Consequently, finding decidable fragments of FOL has become a challenge for the

logics research community that continues until today (see e.g. [HSG04]). In this

quest for expressive decidability, one class of logical languages has received partic-

ular attention: the class of terminological representation systems, a term which

is nowadays used synonymously with the class of logical languages that form the

core of these systems: description logics.

82

4.1. Knowledge Representation Logics

4.1.2. Description Logics

The distinguishing feature of description logics [BHP08] is the fact that they repre-

sent special purpose languages explicitly designed to build terminological represen-

tation systems. All description logics contain functionality to combine individuals

into a named set (a concept) and to define relationships between these individu-

als (roles). That is, all description logics contain exactly those facilities necessary

to build ontologies, namely (primitive) concepts, roles, and individuals (see sec-

tion 3.1.2).

This is already true for the first general terminological representation language

that has seen widespread publicity. KL-ONE [BS85] is fundamentally about the

grouping and classification of objects (according to their properties) into sets of

objects called concepts and it also supports links between individual objects.

KL-ONE also introduced the important distinction between primitive and defined

concepts. Primitive concepts are sets of individuals that are accumulated under a

common name (the concept) but for which no further definition is required/given

for the target domain. Consequently, objects belonging to primitive concepts need

to be asserted to do so explicitly.

Defined concepts, on the other hand, are (and in KL-ONE must be) formulated

purely as restrictions on the properties of individuals. The individuals belonging

to a defined concept are resolved by automatic deduction on the knowledge base.

For example, KL-ONE can represent the 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 concept as follows¹⁰.

𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 ∶=
𝐀𝐍𝐃 𝖲𝗍𝖺𝖿𝖿 (𝐒𝐎𝐌𝐄 𝗐𝗈𝗋𝗄𝗌𝖮𝗇 𝖯𝗋𝗈𝗃𝖾𝖼𝗍)

(4.2)

¹⁰The syntax used here is that of frame logic (ℱℒ, see figure 4.1a), because no formal syntax for
KL-ONE is given in the initial system description. ℱℒ appears shortly afterwards in a paper
by the same authors [LB87]

83

4. Automated Reasoning in LillyTab

Figure 4.1. Syntax of Frame Logic

𝐶 ∶∶=𝑎𝑡𝑜𝑚
|(AND 𝐶 …𝐶)
|(ALL 𝑟 𝐶)
|(SOME 𝑟)

𝑟 ∶∶=𝑎𝑡𝑜𝑚

(a)ℱℒ−

𝐶 ∶∶=𝑎𝑡𝑜𝑚
|(AND 𝐶 …𝐶)
|(ALL 𝑟 𝐶)
|(SOME 𝑟)

𝑟 ∶∶=𝑎𝑡𝑜𝑚
|(RESTR 𝑟 𝐶)
(b)ℱℒ

Because 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 is defined here in terms of its properties, it is a defined con-
cept. KL-ONE’s inference system was able to automatically classify individuals as

𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 by considering their properties. In this case, any individual belonging
to 𝖯𝗋𝗈𝗃𝖾𝖼𝗍𝖲𝗍𝖺𝖿𝖿 needs also to belong to 𝖲𝗍𝖺𝖿𝖿 and need be linked with an 𝗐𝗈𝗋𝗄𝗌𝖮𝗇
role to at least one (𝐒𝐎𝐌𝐄) object that was classified as a 𝖯𝗋𝗈𝗃𝖾𝖼𝗍.

It is this automated deduction system that was the novel part of KL-ONE, but that

is also its primary drawback. KL-ONE suffered from the same problem that also

plagues knowledge representation with full first order logic. Automated reasoning

within such expressive systems is often undecidable (e.g. subsumption in KL-

ONE is undecidable [SS88]), severely limiting their usefulness. Even more on the

problematic side, it is not immediately discernible, which syntax “features” can

be enabled for a logical language without any problems and which features (and

interaction of features) cause (NP-)hardness or even undecidability. For example,

in [BL84], the authors note that subsumption in even the frame language ℱℒ
(figure 4.1a) is NP-complete, while nearly the same language ℱℒ− (figure 4.1b),

which is ℱℒ without the role restriction constructor, features polynomial time

subsumption testing.

Based on these initial findings, diverse research has taken place to develop logical

languages that provide both the necessary expressiveness but were still candidates

for tractable automated reasoning. This research, however, held fast to the princi-

84

4.1. Knowledge Representation Logics

Figure 4.2. Syntax of the Description Logic𝒜ℒ
The logic𝒜ℒ is defined by the language 𝐿𝒜ℒ(ℐ, 𝒞,ℛ), which is the small-
est set (i.e. with least fixed point semantics) that can be constructed from
the following grammar from the starting symbol 𝑆 using
the atomic concept constructors

𝑆 ∶∶= ⊤

𝑆 ∶∶= ⊥

𝑆 ∶∶= 𝐶, for all atomic concepts 𝐶 ∈ 𝒞

and the non-atomic concept constructors

𝑆 ∶∶= 𝑆 ⊓ 𝑆

𝑆 ∶∶= ¬𝐶, for all atomic concepts 𝐶 ∈ 𝒞

𝑆 ∶∶= ∀ 𝑟 . 𝑆 for all 𝑟 ∈ ℛ

𝑆 ∶∶= ∃ 𝑟 .⊤ for all 𝑟 ∈ ℛ

whereℛ is a set of of role names, and 𝒞 is a set of named class identifiers.

ples that are already the building blocks of KL-ONE. The result of this research are

the modern description logics, which are at the core of most state of the art ontology

formalisms.

There is a large variety of logical languages that are called description logics today.

These can be traced to three “ancestor” logics: attribute logic (𝒜ℒ), the already
mentioned frame logic (ℱℒ) and ℰℒ. All of these description logics are defined
syntactically, i.e. by the constructs allowed in the syntax of valid formulæ. For

example, the syntax of𝒜ℒ given in figure 4.2.

It can be seen, that –apart from the use of mathematical operators instead of tex-

tual symbols– this syntax is very similar to that of KL-ONE. Equation (4.3) shows

the prototypical definition of a 𝖡𝗂𝗈𝗅𝗈𝗀𝗂𝖼𝖺𝗅𝖥𝖺𝗍𝗁𝖾𝗋-concept in𝒜ℒ:

85

4. Automated Reasoning in LillyTab

𝖡𝗂𝗈𝗅𝗈𝗀𝗂𝖼𝖺𝗅𝖥𝖺𝗍𝗁𝖾𝗋 ∶= (𝖬𝖺𝗅𝖾 ⊓ ∃ 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 .⊤) (4.3)

∀𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 . 𝖯𝖾𝗋𝗌𝗈𝗇 (4.4)

A𝖡𝗂𝗈𝗅𝗈𝗀𝗂𝖼𝖺𝗅𝖥𝖺𝗍𝗁𝖾𝗋 is both (intersection⊓) amale (i.e. belongs to the concept𝖬𝖺𝗅𝖾)
and is connected to at least one individual by an 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 relation, i.e. a father is
a male that is the ancestor of someone. Note, that the concept definition operator

(∶=) is not part of the logical language.

It is however noticeable, that𝒜ℒ does not support the complex existential restric-
tion from KL-ONE. It is not possible to write ∃ 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 . 𝖯𝖾𝗋𝗌𝗈𝗇, because this
is not supported in 𝒜ℒ’s syntax. Equation (4.4) shows a supporting axiom and

asserts globally, that the 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 can only point to objects of type 𝖯𝖾𝗋𝗌𝗈𝗇. The
same definitions are also possible in ℱℒ as negation was not required and only

the overlapping syntax elements of𝒜ℒ andℱℒ are used. ℰℒ is an even simpler
logic allowing only concept intersection (𝐶 ⊓ 𝐷) and qualified existential restric-
tions (∃ 𝑟 . 𝐶, with 𝐶 an arbitrary ℰℒ-concept).

It can be seen that the syntax of these basic description logics is very similar to

that of first order logic. An important difference between description logics and

and full first order logic is, however, that formulæ do not express truth values, but

rather that any formula is itself a concept description. True in𝒜ℒ is denoted by the
all encompassing concept ⊤ and false is denoted by the empty concept ⊥ ≡def ¬⊤.
In equation (4.5), above, (𝖬𝖺𝗅𝖾 ⊓ ∃ 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 . 𝖯𝖾𝗋𝗌𝗈𝗇) is the set of all individuals
that are both𝖬𝖺𝗅𝖾 and have at least one 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 successor in the set of 𝖯𝖾𝗋𝗌𝗈𝗇s.
Furthermore,𝒜ℒ is a variable-less logic. The arguments to the ∃- and ∀-quantors
are not variables but role names. And finally, 𝒜ℒ does not support functions or

𝑛-ary predicates. The expression of connections between individuals is restricted
to (binary) roles.

While the basic logics are often sufficient to describe many real world scenarios

(for example, the SNOMED RT [SCC+97] ontology uses only ℰℒ++ an extension

of ℰℒ), their expressiveness is, nonetheless, somewhat unsatisfactory and incom-

86

4.1. Knowledge Representation Logics

plete. For example, if we wanted to create a 𝖥𝖺𝗍𝗁𝖾𝗋-concept that does include
biological and legal fathers, we cannot re-use the (potentially) existing concepts

𝖡𝗂𝗈𝗅𝗈𝗀𝗂𝖼𝖺𝗅𝖥𝖺𝗍𝗁𝖾𝗋 and 𝖫𝖾𝗀𝖺𝗅𝖥𝖺𝗍𝗁𝖾𝗋:

𝖥𝖺𝗍𝗁𝖾𝗋 ∶= 𝖬𝖺𝗅𝖾 ⊓ ((∃ 𝖺𝗇𝖼𝖾𝗌𝗍𝗈𝗋𝖮𝖿 .⊤) ⊔ (∃ 𝗅𝖾𝗀𝖺𝗅𝖥𝖺𝗍𝗁𝖾𝗋𝖮𝖿 .⊤)) (4.5)

Concept union (and non-atomic negation) aremissing fromall the basic languages,

which leaves all the logics somewhat one-sided, as not every concept description

also has a negative counterpart. This problem was first remedied by Schmidt-

Schauß and Smolka, who gave syntax, semantics, and complexity results for an

extended version of attribute logic, dubbed attribute logic with complements (𝒜ℒ𝒞,
[SSS91]). 𝒜ℒ𝒞 (figure 4.3) forms the basic logic underlying all modern descrip-
tion logics as it is the first that is closed under concept negation.

Definition 4.1 Formal Semantics for𝒜ℒ𝒞
Given a set of named concepts 𝒞, a set of roles ℛ, and a set of individuals ℐ, the
interpretation of a formula 𝜙 ∈ Σ𝐿𝒜ℒ𝒞

is defined via an interpretation function
𝜄 ≡def 𝜄ℐ ∪ 𝜄ℛ ∪ 𝜄𝒞 with

• 𝜄({𝑎}) = 𝜄ℐ({𝑎}) = 𝑎 for all 𝑎 ∈ ℐ

• 𝜄(𝐶) = 𝜄𝒞(𝐶) ⊆ ℐ

• 𝜄(𝑟) = 𝜄ℛ(𝑟) ⊆ ℐ × ℐ

such that for each subformula it holds recursively

• 𝜄(𝐶 ⊓ 𝐷) = 𝜄(𝐶) ∩ 𝜄(𝐷)

• 𝜄(𝐶 ⊔ 𝐷) = 𝜄(𝐶) ∪ 𝜄(𝐷)

• 𝜄(¬𝐶) = ℐ − 𝜄(𝐶)

• 𝜄(∀ 𝑟 . 𝐶) = {𝑥 ∈ ℐ|∀ 𝑦 ∈ ℐ . (𝑥, 𝑦) ∈ 𝜄(𝑟) ⇒ 𝑦 ∈ 𝜄(𝐶)}

• 𝜄(∃ 𝑟 . 𝐶) = {𝑥 ∈ ℐ|∃ 𝑦 ∈ ℐ . (𝑥, 𝑦) ∈ 𝜄(𝑟) ∧ 𝑦 ∈ 𝜄(𝐶)}

87

4. Automated Reasoning in LillyTab

Table 4.1. Interpretation-Preservation Transformations in𝒜ℒ𝒞

¬¬𝐶 ≡ 𝐶 𝐴 ⇒ 𝐵 ≡ ¬𝐴 ⊔ 𝐵
𝐴 ⊔ 𝐵 ≡ ¬ (¬𝐴 ⊓ ¬𝐵) 𝐴 ⊓ 𝐵 ≡ ¬ (¬𝐴 ⊔ ¬𝐵)
∀ 𝑟 .𝐴 ≡ ¬∃ 𝑟 . ¬𝐴 ∃ 𝑟 .𝐴 ≡ ¬∀𝑟 . ¬𝐴
(𝐴 ⊔ 𝐵) ⊓ 𝐶 ≡ (𝐴 ⊓ 𝐶) ⊔ (𝐵 ⊓ 𝐶) (𝐴 ⊓ 𝐵) ⊔ 𝐶 ≡ (𝐴 ⊔ 𝐶) ⊓ (𝐵 ⊔ 𝐶)
(𝐴 ≡ 𝐵) ≡ (𝐴 ⇒ 𝐵) ⊓ (𝐵 ⇒ 𝐴)

Formal semantics for𝒜ℒ𝒞 are shown in definition 4.1. Within𝒜ℒ𝒞, the negation
of every concept description is also a valid concept description in the same logic.

Consequently, concept union is well defined by the negation of intersection. 𝒜ℒ𝒞
also enables the “usual” syntactic transformations known from propositional and

first order logic (table 4.1).

Because the logic is closed under negation, 𝒜ℒ𝒞 formulæ can be converted into
negation normal form (NNF).

Definition 4.2 Negation Normal Form
A formula 𝜓 is in negation normal form iff for any negation ¬𝐴 that appears in 𝜓,
𝐴 is an atomic concept, i.e. 𝐴 ∈ 𝒞.

Most reasoners support rewriting a formulae into negation normal form or require

that the input formulæ already are in negation normal form. Formulæ in NNF

contain fewer logical axiom types and the individual axioms are less complex than

what is permitted by the language in general. Making use of NNF thus simplifies

reasoning algorithms considerably. Rewriting a formula to NNF is easily possible

using the transformations from table 4.1.

Reasoning in 𝒜ℒ𝒞 is decidable. Satisfiability testing and concept subsumption
are, however, PSPACE-complete [SSS91]. 𝒜ℒ𝒞 is therefore not a logical language
that seems suitable for ontologymodelling tasks, since reasoning effort still seems

to grow exponentially with ontology size (at least with known algorithms and if

𝑃 ≠ 𝑁𝑃). Fortunately, the worst case of exponential complexity seems to be quite
rare for “typical” ontological models. Most ontologies rarely see (as noted above,

the SNOMED RT ontology uses only [SCC+97] ℰℒ++) the constructs that cause

88

4.1. Knowledge Representation Logics

Figure 4.3. Syntax of the Description Logic𝒜ℒ𝒞
The logic 𝒜ℒ𝒞 is defined by the language 𝐿𝒜ℒ𝒞(ℐ, 𝒞,ℛ), which is the
smallest set (i.e. with least fixed point semantics) that can be constructed
from the following grammar from the starting symbol 𝑆 using
the atomic concept constructors

𝑆 ∶∶= ⊤

𝑆 ∶∶= ⊥

𝑆 ∶∶= 𝐶, for all atomic concepts 𝐶 ∈ 𝒞

and the non-atomic concept constructors

𝑆 ∶∶= 𝑆 ⊓ 𝑆

𝑆 ∶∶= 𝑆 ⊔ 𝑆

𝑆 ∶∶= ¬𝑆

𝑆 ∶∶= ∀ 𝑟 . 𝑆 for all 𝑟 ∈ ℛ

𝑆 ∶∶= ∃ 𝑟 . 𝑆 for all 𝑟 ∈ ℛ

whereℛ is a set of of role names, and 𝒞 is a set of named class identifiers.

89

4. Automated Reasoning in LillyTab

combinatorial explosion. As a result, it was possible to construct special purpose

reasoning systems, that –despite of their worst case exponential running times–

perform quite well in practice.

4.1.3. Expressive Description Logics

The encouraging results in dealing with theoretically intractable algorithms that

nonetheless could be modified to yield satisfying results for all practical matters

has lead to the development of many different extensions to the basic description

logic 𝒜ℒ𝒞. As a result, there is currently a “zoo” of description logic languages
based on the original𝒜ℒ𝒞. These various languages have been categorized into a
(semi-)formal naming system based on syntactic features available in the respec-

tive logic. This categorization systems makes mostly use of single letters or short

expressions. An overview is also given in [KSH12].

𝒮𝒮𝒮 is𝒜ℒ𝒞 with support for transitive roles.

In 𝒮 it is possible to flag any role as transitive. For each triple of individuals
𝑎, 𝑏, 𝑐, this means that if 𝑎 is connected to 𝑏 and 𝑏 is connected to 𝑐, there is
also a mandatory (inferred) connection from 𝑎 to 𝑐. Formally,

𝗍𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗏𝖾(𝑟) ≡def ∀𝑥, 𝑦, 𝑧 . (𝑟(𝑥, 𝑦) ∧ 𝑟(𝑦, 𝑧)) ⇒ 𝑟(𝑥, 𝑧) (4.6)

Transitivity can be enabled on a role-by-role basis. Reasoning in 𝒮 is also
PSPACE-complete [BHP08].

ℐℐℐ inverse properties. This allows for formulating the constraint that one property
is always the inverse of another. Formally,

𝗂𝗇𝗏𝖾𝗋𝗌𝖾(𝑟, 𝑝) ≡def ∀𝑥, 𝑦 . (𝑟(𝑥, 𝑦) ⇔ 𝑝(𝑦, 𝑥)) (4.7)

𝒰𝒰𝒰 indicates support for concept union

This is included in𝒜ℒ𝒞, but can be used as an extension symbol for ℰℒ and
ℱℒ.

90

4.1. Knowledge Representation Logics

ℰℰℰ indicates support for full existential qualification.

This is also included in𝒜ℒ𝒞 andℰℒ, but can be used as an extension symbol
forℱℒ. Note that𝒜ℒ𝒞 and𝒜ℒ𝒰ℰ are equivalent, but the shorter abbreva-
tion is much more common.

ℱℱℱ indicates support for functional roles, i.e. roles where each individual can have

at most one successor linked by the same functional role.

𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟) ≡def ∀𝑥, 𝑦, 𝑧 . 𝑟(𝑥, 𝑦) ∧ 𝑟(𝑥, 𝑧) ⇒ 𝑦 = 𝑧 (4.8)

ℋℋℋ indicates support for role hierarchies. Formally

𝑟 ⊑ 𝑝 ≡def ∀𝑥, 𝑦 . 𝑟(𝑥, 𝑦) ⇒ 𝑝(𝑥, 𝑦) (4.9)

Reasoning in 𝒮ℋ is EXPTIME-hard (hardness results from [Sch91], upper

bound for the extension 𝒮ℋℐ𝒬 proven in [Tob01]).

ℛℛℛ indicates limited complex role inclusion, reflexive and irreflexive roles and role

disjointness. The above mentioned ℰℒ++ is ℰℒℛ𝒪.

𝗋𝖾𝖿𝗅𝖾𝗑𝗂𝗏𝖾(𝑟) ≡def ∀𝑥.𝑟(𝑥, 𝑥) (4.10)

𝗂𝗋𝗋𝖾𝖿𝗅𝖾𝗑𝗂𝗏𝖾(𝑟) ≡def ∀𝑥.¬𝑟(𝑥, 𝑥) (4.11)

𝖽𝗂𝗌𝗃𝗈𝗂𝗇𝗍(𝑟, 𝑝) ≡def ∀𝑥, 𝑦 . 𝑟(𝑥, 𝑦) ⇒ ¬𝑟(𝑦, 𝑥) (4.12)

𝑟1 ∘ 𝑟2 ⊑ 𝑟3 ≡def ∀𝑥, 𝑦, 𝑧 . 𝑟1(𝑥, 𝑦) ∧ 𝑟2(𝑦, 𝑧) ⇒ 𝑟3(𝑥, 𝑧) (4.13)

Property chain inclusions (e.g. 𝑟1 ∘ 𝑟2 ⊑ 𝑟3) must be cycle free.

For OWL2, ℛ also indicates support for asymmetric roles and negative role

assertions.

𝖺𝗌𝗒𝗆𝗆𝖾𝗍𝗋𝗂𝖼(𝑟) ≡def ∀𝑥, 𝑦 . 𝑟(𝑥, 𝑦) ⇒ ¬𝑟(𝑦, 𝑥) (4.14)

91

4. Automated Reasoning in LillyTab

A negative role assertion ¬𝑟(𝑥, 𝑦) states that 𝑦 is not an 𝑟-successor of 𝑥.

𝒩𝒩𝒩 indicates support for unqualified number restrictions. This allows to limit the

number of role-successors of a particular individual above and below a fixed

number.

≤𝑛 𝑟 . ⊤ ≡def {𝑥|#{𝑦|𝑟(𝑥, 𝑦) ∈ 𝐸} ≤ 𝑛} (4.15)

≥𝑛 𝑟 . ⊤ ≡def {𝑥|#{𝑦|𝑟(𝑥, 𝑦) ∈ 𝐸} ≥ 𝑛} (4.16)

Same complexity as 𝒮ℋ.

𝒬𝒬𝒬 indicates support for qualified number restrictions. Qualified number restric-

tions allow arbitrary concept names (and not only⊤) at the end of the number
restriction. Includes𝒩.

≤𝑛 𝑟 . 𝐴 ≡def {𝑥|#{𝑦|𝑟(𝑥, 𝑦) ∈ 𝐸 ∧ 𝑦 ∈ 𝐴} ≤ 𝑛} (4.17)

≥𝑛 𝑟 . 𝐴 ≡def {𝑥|#{𝑦|𝑟(𝑥, 𝑦) ∈ 𝐸 ∧ 𝑦 ∈ 𝐴} ≥ 𝑛} (4.18)

Allowing this for transitive roles risks undecidability [HST00a]. If only simple

roles are allowed, reasoning is EXPTIME-complete.

The web ontology language OWL [MvH04] is based on 𝒮ℋ𝒪ℐ𝒩(𝐃), its sub-
set OWL-Lite is 𝒮ℋℐℱ(𝐃). OWL 1.1 is 𝒮ℋ𝒪ℐ𝒬(𝐃)

𝒪𝒪𝒪 support for nominals. Nominals are special concepts descriptors of the form

{𝑎} with 𝑎 ∈ ℐ, interpreted as singleton concept. {𝑎} is closed and has
only a single member 𝑎. This makes it possible to create concepts that are
enumerations of individuals. The nominal concept appeared first in KL-ONE,

where it was named nexus.

The second version of the web ontology language OWL2 [MPSH08] is based

on 𝒮ℛ𝒪ℐ𝒬(𝐃).

92

4.1. Knowledge Representation Logics

(𝐃)(𝐃)(𝐃) Support for datatypes. This both enables flagging of certain properties as
datatype properties and the use of data type ranges. One can think of data type

ranges as pre-defined concepts that contain only the individuals (then called

literals), that are instances of the specified data type range.

The exact kind of datatype support implied by (𝐃) is not necessarily fixed
and has changed over time. OWL1 [MvH04] has support for XML Schema

datatypes [MB04]. OWL2 adds support for compound datatypes that can also

assert restrictions across multiple property values. (𝐃) therefore only indi-
cates any kind of datatype support.

Other syntactic additions include the self-restriction, that contains all individuals
that are reflexively connected to themselves

𝗌𝖾𝗅𝖿(𝑟) ≡def {𝑥|𝑟(𝑥, 𝑥)} (4.19)

4.1.4. Description Logic Knowledge Bases

Knowledge bases in description logics are defined via logical axioms. The rele-

vant axioms are usually split into distinct sets along the same lines as outlined in

section 3.1. A description logics ontology consists of a 𝖳𝖡𝗈𝗑, an 𝖱𝖡𝗈𝗑, and an
𝖠𝖡𝗈𝗑.

The 𝖠𝖡𝗈𝗑 contains only two kinds of assertions: class assertions and property
assertions. Class assertions are of the type 𝐶(𝑎) and assert that the individual 𝑎
belongs to the concept 𝐶. 𝐶 usually is a named concept, it may however be a

complex concept description. The second type of ABox assertions are property

assertions. These are of the form 𝑟(𝑎, 𝑏) and indicate that there is an 𝑟-link from
𝑎 to 𝑏.

While the 𝖠𝖡𝗈𝗑makes assertions about single individuals or pairs of individuals,
global axioms are stored in the 𝖳𝖡𝗈𝗑 of the ontology.

93

4. Automated Reasoning in LillyTab

Definition 4.3 Description Logic ABox
A description logic 𝖠𝖡𝗈𝗑 is a finite set of axioms of the form

• 𝐶(𝑎) with 𝐶 ∈ Σ𝐿 and 𝑎 ∈ ℐ an individual identifier.

𝐶(𝑎) asserts that the individual 𝑎 belongs to the concept 𝐶.

• 𝑟(𝑎, 𝑏) with 𝑟 ∈ ℛ and 𝑎, 𝑏 ∈ ℐ individual identifiers.

𝑟(𝑎, 𝑏) asserts that there is an 𝑟-connection from 𝑎 to 𝑏.

Definition 4.4 Description Logic TBox
A description logic 𝖳𝖡𝗈𝗑 is a finite set of axioms 𝖳𝖡𝗈𝗑 ⊂ Σ𝐿.
The axioms in 𝖳𝖡𝗈𝗑 hold globally for all individuals in a description logic ontology.
(𝐿 is the language of the respective description logic in use and Σ𝐿 its signature.)

Assertions about the constraints imposed on properties (or roles) within the on-

tology are not considered part of an ontology’s 𝖳𝖡𝗈𝗑, but part of an additional set
called the 𝖱𝖡𝗈𝗑 of the ontology. The 𝖱𝖡𝗈𝗑 contains information about role hier-
archy (𝑟1 ⊑ 𝑟2), role disjointness (𝖽𝗂𝗌𝗃𝗈𝗂𝗇𝗍(𝑟, 𝑝)), transitivity (𝗍𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗏𝖾(𝑟)), and so
on.

Definition 4.5 Description Logic RBox
A description logic 𝖱𝖡𝗈𝗑 is a finite set of axioms specifying the relationship of roles
within a description logic ontology. Let 𝑟1, 𝑟2, 𝑟3 ∈ ℛ be roles, 𝖱𝖡𝗈𝗑 axioms are
then of the form

• 𝑟1 ⊑ 𝑟2 asserts that 𝑟1 is a subrole of 𝑟2,

• 𝗍𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗏𝖾(𝑟) asserts role transitiveness,

• 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟) asserts a functional role,

• 𝗂𝗇𝗏𝖾𝗋𝗌𝖾_𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟) asserts an inverse functional role.,

• 𝗋𝖾𝖿𝗅𝖾𝗑𝗂𝗏𝖾(𝑟) asserts a reflexive role,

• 𝖽𝗂𝗌𝗃𝗈𝗂𝗇𝗍(𝑟, 𝑝) asserts role disjointness, and

• 𝑟1 ∘ 𝑟2 ⊑ ¬𝑟3

94

4.2. Automated Reasoning in Description Logics

Aswith general ontologies (definition 3.6), description logic knowledge bases have

a concept of closure and inference for role connections. 𝑟 ↓ and 𝑟 ↑ gain more
expressed semantics:

Definition 4.6 DL Sub- and Superrole Closure
The relation 𝑟↓≡def {𝑠|∀ 𝑥, 𝑦 . 𝑠(𝑥, 𝑦) ⇒ 𝑟(𝑥, 𝑦)} is called the subrole closure of 𝑟.
The relation 𝑟↑≡def {𝑠|∀ 𝑥, 𝑦 . 𝑟(𝑥, 𝑦) ⇒ 𝑠(𝑥, 𝑦)} is called the superrole closure of
𝑟.

4.2 Automated Reasoning in Description Logics

The most important benefit of using description logics as the formal foundation

of ontology modelling languages is of course the ability to perform the reasoning

tasks as outlined in section 4.1.1. Reasoning in expressive DLs is usually per-

formed as testing for satisfiability. As noted in section 4.1.1, subsumption testing

can be reduced to satisfiability, if the underlying logic supports negation of arbi-

trary concepts. This is beneficial, because the same set of algorithms can be used

for both reasoning tasks.

Two principal methods for satisfiability testing for DLs are in common use: reso-

lution and model construction.

resolution Satisfiability testing via resolution works by transforming DL knowl-

edge bases into a non-recursive logic program, preserving satisfiability [HV05,

Mot06]. Satisfiability testing is then performed using known algorithms for

deductive query answering (DataLog).

Resolution based calculi have some interesting properties especially with re-

gard to large knowledge bases, because results from the theory on deductive

databases can be re-used.

model construction By far the more common method for satisfiability testing for

DL ontologies is based on the construction of representative pseudo models.

A DL knowledge base is transformed into an initial DL pseudo-model and

completion rules are iteratively applied to transform the initial model into a

more refined one.

95

4. Automated Reasoning in LillyTab

The principal decision procedure is also known as the “method of the ana-

lytic tableaux” (whereas tableau is singular and tableaux is plural). Tableau

methods have been first developed for propositional logics and are available

for many other formal logics [Smu95].

4.2.1. Basics of Tableaux Reasoning

Tableaux reasoning is by far the more common reasoning method. Most known

DL reasoning systems (e.g. RACER [HM01], Pellet [SP04], Fact++ [TH06], Her-

mit [SMH08], TrOWL [TP10], ELK [KKS11]) are based on tableaux calculi and

tableaux reasoners are usually the only ones that have support for the most ex-

pressive description logics.

The feature set of typical tableau reasoners, however, is somewhat varied¹¹. Many

“simple” reasoners support only less expressive logics (but are often very fast

within their limited domain). Additionally, some reasoners only support pure

𝖳𝖡𝗈𝗑 reasoning and cannot deal with 𝖠𝖡𝗈𝗑-assertions within their knowledge
bases. Since existing documents will always contain 𝖠𝖡𝗈𝗑-assertions in their doc-
uments, we need a reasoner that supports reasoning with ABoxes.

Completion Graphs

A logical tableau consists of both a data structure (usually a graph) as well as a set

of rules that modify the data structure. In the literature the term “tableau” is often

used interchangeably for both the data structure as well as for the whole operation

including the rule application.

Tableaux for description logics usually operate on a completion graph. A comple-

tion graph is a pseudo-model and thus a direct representation of a description logic

knowledge base. The vertices of the completion graph represent individuals and

the edges represent role connections between these individuals. The vertices are

¹¹A list of DL reasoners and their capabilities is maintained at http://www.cs.man.ac.uk/~sattler/
reasoners.html (last retrieved 2013-04-11 17:25 MEST).

96

http://www.cs.man.ac.uk/~sattler/reasoners.html
http://www.cs.man.ac.uk/~sattler/reasoners.html

4.2. Automated Reasoning in Description Logics

labelled with concepts and the edges are labelled with role names. A formal tuple-

based definition of the completion graph structure is given in definition 4.7. The

notation used here is similar to that used in the 𝒮ℋ𝒪𝒬-tableau [HS01], but uses
an explicit set 𝐸 for role assertions (instead of overloadingℒ for both concept and
role assertion).

Definition 4.7 DL Completion Graph
A DL completion graph over a logical language 𝐿(ℐ, 𝒞,ℛ) (with signature
Σ𝐿(ℐ,𝒞,ℛ)) is a 3-tuple 𝐺 ≡def (𝑉 ,𝐸,ℒ) with

𝑉𝑉𝑉 a set of individuals 𝑉 ⊂ 𝑁 forming the vertices of a graph.

𝑁 is a totally ordered, countable, infinite set of node identifiers.

𝐸𝐸𝐸 a set of edges labelled with role names from ℛ, 𝐸 ⊆ ℛ× 𝑉 × 𝑉 .

We write 𝑟(𝑥, 𝑦) ∈ 𝐸, if (𝑟, 𝑥, 𝑦) ∈ 𝐸.

ℒℒℒ a set of concept labels. ℒ ⊆ 𝑉 × Σ𝐿(ℐ,𝒞,ℛ).

We write (𝑥 ∶ 𝐶) ∈ ℒ if (𝑥, 𝐶) ∈ ℒ and ℒ[𝑥] ≡def {𝐶| (𝑥 ∶ 𝐶) ∈ ℒ}.

I will use the letter 𝐺 to reference completion graphs. If more than one graph is

present, graphs will be identified by index numbers in arabic numerals: 𝐺0, 𝐺1,

… . An emboldened letter 𝔾 will be used for sets of completion graphs, potentially
with an index 𝔾𝑠, 𝔾𝑡, … if there are multiple such sets, e.g. when considering

mappings between source (s) and target (t) ontologies.

Since the completion graph is a representation of a DL knowledge base, a similar

notion of consistency (definition 3.12) exists. It is possible to determine (often via

a suitable algorithm) if a completion graph is consistent or inconsistent.

Definition 4.8 Consistency of a Completion Graph
Let𝔾 be the set of completion graphs over a description logic languageΣ𝐿DL

. There
exists a function

𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍 ∶ 𝔾 ↦ {⊤,⊥}
such that 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍(𝐺) = ⊤ iff 𝐺 is a model.
If 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍(𝐺), 𝐺 is called clash free.
If ¬𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍(𝐺), 𝐺 is said to contain a clash.

97

4. Automated Reasoning in LillyTab

Sincemany of the algorithms in this thesis work by extending a completion graph,

it is convenient to provide some shortcut definitions for often used idioms:

Inferability Inferability (definition 4.9) is the notion that some concept can be log-

ically inferred from information contained inside the completion graph.

We write

𝐺 ⊧ (𝑥 ∶ 𝐶)

to assert that 𝐶 is inferable in 𝐺 at 𝑥. The semantics are probably best ex-
plained by contradiction: Inserting¬𝐶 intoℒ[𝑥]wouldmake𝐺 inconsistent.

Definition 4.9 Concept Inferability in a Completion Graph
Let 𝐺 = (𝑉 ,𝐸,ℒ) be a completion graph, 𝑥 ∈ 𝑉 a node inside 𝐺, and 𝐶 ∈ Σ𝐿DL
(with Σ𝐿DL

the concept language for ℒ).
𝐶 is inferable from 𝐺 at 𝑥, iff 𝐺′ = (𝑉 ∪ {𝑥} ,𝐸,ℒ ∪ {¬𝐶}) is inconsistent
𝐺 ⊧ (𝑥 ∶ 𝐶) is a shortcut for 𝐶 is inferable from 𝐺 at 𝑥.

Capacity The capacity (definition 4.10) of a completion graph is the set of concepts

that can be added to a completion graph node withoutmaking it inconsistent.

There is a duality between the inferability and the capacity. If (𝑥 ∶ 𝐶) is in
the capacity of 𝐺, then

𝐺 ⊭ (𝑥 ∶ ¬𝐶)

Inserting a term from the capacity of 𝐺 into 𝐺 does not cause inconsistency.

Definition 4.10 Capacity of a Completion Graph
Let 𝐺 = (𝑉 ,𝐸,ℒ) be a completion graph, 𝑥 ∈ 𝑉 a node inside 𝐺, and Σ𝐿DL

the
concept language for ℒ.
The capacity of 𝐺 at 𝑥 is the set

{𝐶 ∈ Σ𝐿DL
| 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍((𝑉 ∪ {𝑥} ,𝐸,ℒ ∪ {(𝑥 ∶ 𝐶)}))}

98

4.2. Automated Reasoning in Description Logics

Semantic Extension Lattice The capacity forms the set of all consistent completion

graphs into a partial order. This is the same partial order implied by the

monotonicity of reasoning of the underlying description logic. Consequently,

completion graphs can be put into a partial order of inferability.

A completion graph𝐺2 is a semantic extension of another completion graph

𝐺1 (written as 𝐺1 ≤ext 𝐺2) if all statements that can be derived in 𝐺1 also

hold in 𝐺2 (but not necessarily the other way round).

Definition 4.11 Completion Graph Extension
Let 𝐺1 = (𝑉1, 𝐸1, ℒ1) and 𝐺2 = (𝑉2, 𝐸2, ℒ2) be completion graphs, and ≤ext be
a 𝔾 × 𝔾 ↦ {⊤,⊥}-relation such that

𝐺1 ≤ext 𝐺2 ⇔ ∀𝐶 ∈ Σ𝐿DL
, 𝑥 ∈ (𝑉1 ∪ 𝑉2) . (𝐺1 ⊧ (𝑥 ∶ 𝐶)) ⇒ (𝐺2 ⊧ (𝑥 ∶ 𝐶))

If 𝐺1 ≤ext 𝐺2, 𝐺2 is called a semantic extension or simply extension of 𝐺1.

Tableau Saturation

The abstract tableau process starts of with set a 𝔾𝐵 of completion graphs to check

for satisfiability. The individual graphs 𝐺𝑏 ∈ 𝔾𝐵 are called branches and 𝔾𝐵 is

sometimes called the branch queue.

When checking the satisfiability of a single concept 𝐶, 𝔾𝐵 is usually a singleton

set consting of the completion graph 𝐺0 = (𝑉0, 𝐸0, ℒ0) with 𝑉0 = {𝑥}, 𝐸0 = ∅,
ℒ0 = {(𝑥 ∶ 𝐶)}. If the tableau method finds at least one saturated graph by start-
ing from 𝐺0, we have found a model for 𝐶, hence 𝐶 is satisfiable.

The rules of the tableau are applied to all of the graphs in 𝔾𝐵, usually in order,

but some reasoners also implement parallelization. Most of the time, the tableau

modifies a completion graph in the branch queue in place. That is, it picks a

completion graph from the branch queue, applies one or more transformations to

the graph and then puts it back.

There are two exceptions to this rule:

99

4. Automated Reasoning in LillyTab

Figure 4.4. Example Tableau Completion

𝑥

∃𝐫 .𝐂 ⊓ ∀𝐫 .¬𝐂
(a)

𝑥

∃𝑟 .𝐶⊓∀𝑟 .¬𝐶,
∃ 𝐫 .𝐂,
∀𝑟 .¬𝐶
(b)

𝑥 𝑦𝑟

…, ∃ 𝑟 .𝐶,
∀𝐫 .¬𝐂 𝐶

(c)

𝑥 𝑦𝑟

…, ∃ 𝑟 .𝐶,
∀𝑟 .¬𝐶 𝐂,¬𝐂

(d)

1. When an inconsistency is found inside a completion graph, the respective

graph is discarded and removed from the queue.

2. The tableau rules indicate that it is necessary to pursue two or more differ-

ent paths. In this case, one or more copies (clones) of the current comple-

tion graph are made and modified independently. This process is known as

branching. During branching, the size of the branch queue grows.

There are also two different termination conditions for the tableau process

1. When the tableau encounters a consistent completion graph and is unable to

apply any more rules. In that case, the completion graph is called saturated.

Reaching saturation indicates that the reasoning process has found a model

of the initial graph, meaning that the initial graph is consistent. In that case,

reasoning terminates with a successful result.

2. When every completion graph on the branch queue turns out to be inconsis-

tent, the branch queue will eventually turn up empty.

In this case, the initial completion graph was inconsistent and reasoning ter-

minates unsuccessfully.

100

4.2. Automated Reasoning in Description Logics

For example, consider the 𝒜ℒ𝒞 concept description ∃ 𝑟 . 𝐶 ⊓ ∀ 𝑟 . ¬𝐶. It should
be easy to see that this concept is not satisfiable, as the qualified concepts of the

∃ and ∀ terms are contradictory. To test for satisfiability of this concept descrip-
tion, a tableau reasoner creates an initial completion graph 𝐺0 = (𝑉0, 𝐸0, ℒ0)
with a single individual labelled with the starting concept: 𝑉0 = {𝑥}, 𝐸0 = ∅,
ℒ0 = {(𝑥 ∶ ∃ 𝑟 . 𝐶 ⊓ ∀ 𝑟 . ¬𝐶)} (figure 4.4a). Initially, the tableau evaluates the
conjunction at 𝑥 and splits it following the usual semantics of concept intersec-
tion: (∃ 𝑟 . 𝐶 ⊓ ∀ 𝑟 . ¬𝐶 ⇒ (∃ 𝑟 . 𝐶 ∧ ∀ 𝑟 . ¬𝐶)) (figure 4.4b). The initial tableau
rule has now transformed the initial conjunction into two smaller terms. This

process is now repeated (with different transformation rules) with all remaining

complex concepts.

The term ∃ 𝑟 . 𝐶 ∈ ℒ0[𝑥] demands that 𝑥 has some arbitrary successor that is
tagged with 𝐶. Since 𝑥 does not already have such a successor, the tableau invents
a new individual 𝑦 and connects it to 𝑥, adding 𝐶 to ℒ0[𝑦] (figure 4.4c).

𝑦 is (initially) an anonymous node (definition 4.12), because it does not have a name
in the shape of a nominal associated with it.

Definition 4.12 Anonymous Node in a Completion Graph
Let 𝐺 = (𝑉 ,𝐸,ℒ) be a completion graph over a description logic with nominals.
A node 𝑥 ∈ 𝐸 is called anonymous iff ∄𝑎 . {𝑎} ∈ ℒ[𝑥]. Otherwise it is called a
named node.
Thus, a node is anonymous, if it does not have an associated nominal.

After the creation of 𝑦 and the addition of (𝑦 ∶ 𝐶), we find that 𝐶 is an atomic

concept and no further transformation is possible. The remaining untransformed

concept is ∀𝑟 . ¬𝐶 ∈ ℒ0[𝑥]. This demands that every 𝑟-successor of 𝑥 is tagged
with ¬𝐶. Since 𝑥 has one 𝑟-successor (namely 𝑦), ¬𝐶 is propagated over the 𝑟-
connection to 𝑦, leading to the final state of the completion graph depicted in
figure 4.4d. In this final version, every complex concept has been transformed

into one or more simple concepts. Most importantly, the contradiction embedded

in the initial concept is readily apparent in the final completion graph. 𝑦 needs to
satisfy both 𝐶 and ¬𝐶, which is impossible. It is said ℒ[𝑦] contains a clash.

101

4. Automated Reasoning in LillyTab

This simple example shows the basic operation of a logical tableau. In line with

the observations at the start of section 4.1.1, an increase in expressiveness of the

underlying logic, however, is usually combined with an disproportionally larger

increase in tableau complexity. Modern description logics hover very close to the

boundary of undecidability (e.g. [HKS06]). Tableaux for expressive description

logics are very complex and need to employ heuristic expansion and other opti-

mizations to be used in practice.

TBox and ABox Reasoning

Tableau algorithms can be separated into two categories: pure 𝖳𝖡𝗈𝗑 reasoners
can only check the satisfiability of a concept with regard to an empty 𝖠𝖡𝗈𝗑. This
means, that 𝖳𝖡𝗈𝗑 reasoners always start with a completion graph that has only a
single node 𝑥0 with ℒ[𝑥0] = {𝐶} and 𝐶 the concept to test for satisfiability. For

𝖳𝖡𝗈𝗑 reasoners (and if the description logic does not support nominals), the com-
pletion graph is also often a tree. When an arbitrary number of initial individuals

(i.e. an 𝖠𝖡𝗈𝗑) is present, the nodes can be arbitrarily connected, forming a forest
structure with multiple root nodes.

A common path is that –for a new logic– the 𝖳𝖡𝗈𝗑 tableaux are constructed first,
as they are easier to handle. The corresponding𝖠𝖡𝗈𝗑 tableau is often an extension
of the 𝖳𝖡𝗈𝗑 tableau. For example, the 𝖠𝖡𝗈𝗑 tableau for 𝒮ℋℐ𝒬 [HST00a] is based
on the corresponding 𝖳𝖡𝗈𝗑 tableau [HST00b] with some extensions. For descrip-
tion logics with support for nominals (the 𝒪 family) the separation between 𝖳𝖡𝗈𝗑
and 𝖠𝖡𝗈𝗑 reasoning is lost. Because nominals can be used to introduce arbitrary
individuals (i.e. new roots in the completion forest), the nominal-aware tableau

always has to consider the potential degeneration of the completion tree into a

forest [Baa03b].

Blocking

There is, however, one problemwith complex logics such as 𝒮ℋ𝒪ℱ(𝐃). If ∃ is al-
lowed in the 𝖳𝖡𝗈𝗑, a straightforward tableau can run into problems. Consider for
example a different completion graph 𝐺0 = (𝑉0, 𝐸0, ℒ0) with 𝑉0 = {𝑥}, 𝐸0 = ∅,

102

4.2. Automated Reasoning in Description Logics

ℒ0 = {(𝑥 ∶ ∃ 𝑟 .⊤)} and a 𝖳𝖡𝗈𝗑 = {∃ 𝑟 .⊤}. Processing 𝑥, the tableau reasoner
will determine that 𝑥 needs an 𝑟 successor, but has none. The tableau will now
simply generate a new, anonymous (definition 4.12) 𝑟-successor, which we will
call 𝑦. The resulting completion graph is

𝐺0 = (𝑉0, 𝐸0 ℒ0)
({𝑥, 𝑦} , {𝑟(𝑥, 𝑦)} , {(𝑥 ∶ ∃ 𝑟 .⊤) , (𝑦 ∶ ∃ 𝑟 .⊤)})

As we can see, the 𝖳𝖡𝗈𝗑 axiom gets added to ℒ0[𝑦] automatically: (𝑦 ∶ ∃ 𝑟 .⊤).
Now, however, while 𝑥 has the 𝑟-successor demanded by the existential qualifica-
tion, another successor is now demanded for 𝑦. If the tableau now also generates
this additional successor 𝑧, the problem re-appears for 𝑧 and the tableau would
need to generate new successors ad infinitum.

Figure 4.5a illustrates the problem. After 𝑦, wewould need to generate a 𝑧 and after
𝑧, an infinite number of nodes would have to follow which is clearly not feasible.
There are, however, other solutions to the problem. Figure 4.5b shows a saturated

completion graph that is a model for the 𝖳𝖡𝗈𝗑-expression (∃ 𝑟 .⊤). After gener-
ating 𝑦, it is possible to simply loop back to 𝑥. Since 𝑥 in the example has at least
the same associated concepts as 𝑦 (i.e. ℒ[𝑥] ⊇ ℒ[𝑦]), we gain a saturated comple-
tion graph that does not clash. Since we are dealing with satisfiability checking,

no further processing is necessary. Satisfiability is achieved when we find at least

one saturated completion graph for the input concepts.

It is necessary to note, however, using the smallest cycle is only one possible so-

lution (least fixed point) and that other completion graphs that satisfy the input

conditions exist. As noted in [Baa03a], a cycle of any length (including infinite

length) represents a model for the input concept. In general, the interpretation

can be a least fixed point using the smallest possible cycle, it can be greatest fixed

point and therefore infinite or it can use an arbitrary length cycle in between (se-

mantic interpretation [Neb91]).

Tableau reasoners usually deal with infinite expansion by a mechanism called

blocking. If a node is blocked further application of tableau rules (including the

∃-rule) is prevented. The condition for when a node is blocked, however, depends

103

4. Automated Reasoning in LillyTab

Figure 4.5. Blocking in Expressive DLs

𝑥 𝑦

∃ 𝑟 .⊤ ∃ 𝑟 .⊤

𝑟 𝑟

(a) Repeated Expansion due to ∃ in 𝖳𝖡𝗈𝗑

𝑥 𝑦

∃ 𝑟 .⊤ ∃ 𝑟 .⊤

𝑟

(b) Example of implicit
least-fixed-point cycle due to
blocking in expressive DLs

on the logical language used and also on a particular blocking algorithm. Usually,

blocking is established as a blocking relation between another node (the blocker)

and the blocked node. For description logics without inverse roles subset blocking

[HST00a] is sufficient. If inverse roles are supported, equality blocking [HST00a]

must be employed.

Extensions to the logic 𝒮ℋℐℱ need double blocking because of the interaction be-

tween inverse and transitive roles. Use of nominals requires dynamic blocking,

where a blocked node can be unblocked as reasoning progresses. Blocking condi-

tions also sometimes need to be different between pure𝖳𝖡𝗈𝗑 reasoners and𝖠𝖡𝗈𝗑
reasoners.

Usually, blocking requires a total order on the nodes and a node can only be

blocked by a blocker node that is smaller that the blocked individual. Nominal

nodes cannot be blocked and blocking also requires that there are no nominal

nodes between the blocked node and its blocker ancestor. These facts are –unfortunately–

rarely stated explicitly in the literature.

Besides this, [HST00a] contains an in-depth treatment on the subject of blocking

and DL reasoning in general.

104

4.2. Automated Reasoning in Description Logics

4.2.2. Reasoner Optimizations

Because worst case performance of any reasoning algorithm with expressive de-

scription logics is in EXPTIME, increasing the performance of tableau reasoners

for the “typical” ontology is subject to ongoing research. Many interesting and

effective techniques have been developed to speed up reasoning performance. An

overview of optimization algorithms for DL tableaux can be found in [BHN+94,

HST99, Hor97, THPS07].

Causes for slow performance

A single completion graph usually grows only polynomially with the size of the

input concept, but ⊔-branching (or-branching) can result in a combinatorial ex-
plosion of the search space (= number of completion graphs). The main reason

for this are a form of typical 𝖳𝖡𝗈𝗑 concepts named general concept inclusions. A
general concept inclusion (GCI) is a 𝖳𝖡𝗈𝗑 axiom of the form 𝐶 ⊑ 𝐷, where both
𝐶 and 𝐷 are non-atomic concepts. The logical language usually does not directly

support such inclusion axioms (see e.g. figure 4.3), but transforms a GCI into a

disjunction (𝐶 ⊑ 𝐷) ≡ (¬𝐶 ⊔𝐷). Because the 𝖳𝖡𝗈𝗑-GCI will be inserted into
ℒ[𝑥] for every node 𝑥, even a small number of such general concept inclusions
will cause a large number of invocations of the ⊔-rule and thus a large number of
completion graph branches that need to be traversed individually. GCI-branching

is the most significant performance problem that is faced by all tableau reasoners.

A number of techniques have been developed to reduce the number of GCIs.

Domain and Range

Many of the GCIs in a typical ontology stem from domain assertions for proper-

ties. A domain assertion is of the form ∃ 𝑟 .⊤ ⊑ 𝐶, which imposes a restric-
tion on the individuals that can appear at the left side (starting point) of role con-

nections. A typical domain model will contain many of such global axiom in its

𝖳𝖡𝗈𝗑. A performance improvement for role domains (and ranges) is proposed in
[TH04]. Instead of axiomatizing domain and range restrictions using existing DL

105

4. Automated Reasoning in LillyTab

Table 4.2. Tableau Rules for Absorbed Range and Domains
𝑑𝑜𝑚𝑎𝑖𝑛-rule if 1. 𝑥 is not blocked

2. ∃ 𝑦 ∈ 𝑉 , 𝑟 ∈ ℛ . 𝑟(𝑥, 𝑦) ∈ 𝐸
then for all roles 𝑟 ∈ {𝑟|∃ 𝑦 ∈ 𝐸, 𝑞 ∈ 𝑟↓ . 𝑞(𝑥, 𝑦) ∈ 𝐸}

ℒ𝑘 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝖣𝗈𝗆𝖺𝗂𝗇(𝑟))}

𝑟𝑎𝑛𝑔𝑒-rule if 1. 𝑥 is not blocked
2. ∃𝑤 ∈ 𝑉 , 𝑟 ∈ ℛ . 𝑟(𝑤, 𝑦) ∈ 𝐸

then for all roles 𝑟 ∈ {𝑟|∃𝑤 ∈ 𝑉 , 𝑞 ∈ 𝑞↓ . 𝑞(𝑤, 𝑥) ∈ 𝐸}
ℒ𝑘 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝖱𝖺𝗇𝗀𝖾(𝑟))}

axioms, the Web Ontology Language provides facilities to explicitly assert the do-

main (∃ 𝑟 .⊤ ⊑ 𝐷) and ranges (∀𝑟 .𝑅) of roles. All domain and range assertions
are collected and two functions are provided such that𝖣𝗈𝗆𝖺𝗂𝗇(𝑟) ∶ ℛ ↦ Σ𝐿(ℐ,𝒞,ℛ)
is a function returning the domain concepts for a role 𝑟 and that𝖱𝖺𝗇𝗀𝖾(𝑟) ∶ ℛ ↦ Σ𝐿(ℐ,𝒞,ℛ)
is a function returning the range concepts (or datatype ranges) for a role 𝑟. The
tableau is then augmented with two additional rules (table 4.2) that assign the

domain concepts to any node that has an outgoing role successor and the range

concepts to any node that has an incoming role with an associated range.

Lazy Unfolding and Absorption

Another performance improvement is based on the realization that awell-designed

ontology will contain only few GCIs 𝐶 ⊑ 𝐷 where𝐷 is a complex concept. Trans-

forming this concept would lead to two branched models containing ¬𝐶 and 𝐷,
respectively (branched from ¬𝐶 ⊔ 𝐷). Branching is now always necessary, how-
ever. For certain, common types of GCIs, branching can be avoided altogether by

making use of lazy unfolding.

We say that a concept definition𝐴 ⊑ 𝐷 directly uses a concept𝐷 if𝐷 appears at the
right side of the inclusion axiom. A definition uses a concept𝐶 if𝐶 is directly used
or if any of the used concepts use 𝐶 [BHN+94]. This defines the “uses” relation

as the transitive closure as the direct uses relation (definition 4.13).

106

4.2. Automated Reasoning in Description Logics

Definition 4.13 Concept Use
Given a DL 𝖳𝖡𝗈𝗑, the definition of𝐴 directly uses a concept𝐷 iff there is an axiom
(𝐴 ⊑ 𝜙) ∈ 𝖳𝖡𝗈𝗑 such that 𝐷 is referenced in 𝜙.
The concept definition of 𝐴 uses another concept 𝐷 if 𝐴 directly or or transitively
uses 𝐷.

The uses relation can be cyclic, that is 𝐴 can use 𝐴 in its own definition. For

many concept definitions, however, this is not the case. Such “simple” concept

definitions are called definitorial.

Definition 4.14 Definitorial Concept Inclusion
An DL axiom 𝐴 ⊑ 𝐵 is called definitorial iff 𝐴 ∈ 𝒞 is a primitive, named concept
and the definition of 𝐴 does not use 𝐴.

Definitorial general concept inclusions need not be added to the axiom set of every

node inside the completion graphs. Instead, it is possible to add them lazily only

whenever there is suitable evidence that the addition is required. This technique

is known as lazy unfolding.

The operating principle of lazy unfolding is simple. 𝖳𝖡𝗈𝗑-terms of the form
𝐴 ⊑ 𝐷 are initially ignored, if 𝐴 is a primitive concept. However, if 𝐴 is added to
a node, the list of concept inclusions is searched and𝐷 is added if𝐴 ⊑ 𝐷 is found
within the 𝖳𝖡𝗈𝗑. Instead of transforming the implication into negation normal

107

4. Automated Reasoning in LillyTab

form, it is kept as is and the consequent (𝐷) of the implication is added to a term
set if its precondition (𝐴) is already met. Lazy unfolding is only sound when 𝐴 is
definitorial.

Procedure 4.1: unfold(G, TBox)

1 Input: 𝐺 = (𝑉 ,𝐸,ℒ) a completion graph

𝖳𝖡𝗈𝗑 ⊆ 𝐿(ℐ, 𝒞,ℛ) a set of 𝖳𝖡𝗈𝗑 terms
begin

2 foreach 𝑥 ∈ 𝐸 do
3 if (𝐴 ⊑ 𝐵) ∈ 𝖳𝖡𝗈𝗑 𝐴 ∈ ℒ[𝑥] and A is definitorial then
4 ℒ[𝑥] ← ℒ[𝑥] ∪ {𝐵};

end

end

end

With lazy unfolding, branching for a majority of concept definitions (which are

commonly acyclic) can be avoided altogether. Lazy unfolding is a very powerful

technique and is universally used. It is usually combined with suitable absorp-

tion rules. In this context, absorption refers to the fact that some axioms can be

removed (i.e. absorbed) from the 𝖳𝖡𝗈𝗑 if they are candidates for lazy unfolding.

For example, an absorption algorithm can pick up all definitorial axioms from

the 𝖳𝖡𝗈𝗑 [HT00]. It can also perform simplifications on 𝖳𝖡𝗈𝗑 axioms to enable
their absorption. The axiom ¬𝐶0 ⊔ 𝐶1 ⊔ 𝐶2 … can be rewritten to the definitorial

axiom. 𝐶0 ⊑ (𝐶1 ⊔ 𝐶2 …) if 𝐶0 is primitive. Similar rewrites are possible for

(𝐶0 ⊔ 𝐶1) ⊑ 𝐶2. Tsarkov et al. give a variety of absorption techniques used in the

FacT++ Reasoner [TH04].

Boolean Constraint Propagation

Other reasoning optimisation techniques try to influence the ⊔-branching oper-
ations directly. One possibility is to use heuristic sorting to order the branching

operations, i.e. to perform branching on some ⊔-terms before others. A very sim-
ple but effective technique is boolean constraint propagation (BCP). Consider a node

𝑥 with

108

4.2. Automated Reasoning in Description Logics

ℒ[𝑥] ={𝐴0 ⊔ 𝐴1 ⊔ 𝐶𝑘, 𝐵0 ⊔ 𝐵1 ⊔ 𝐶𝑘+1,
𝐶1 ⊔ 𝐶2 …⊔ 𝐶𝑛, ¬𝐶1,… , ¬𝐶𝑘−1, ¬𝐶𝑘+1,… , ¬𝐶𝑛}

A naive implementation would first branch on𝐴0⊔𝐴1⊔𝐶𝑘, then on𝐵0⊔𝐵1⊔𝐶𝑘
and finally on 𝐶1 ⊔𝐶2 …⊔𝐶𝑛. For the last branch, all but the single instantiation

𝐶𝑘 is inconsistent. This instantiation, however, also invalidates the preconditions

for all the other branches, so that we could have avoided branching altogether. BCP

tries to find the union concept with the least number of yet unresolved concepts

and branch this one first. The implementation of BCP for description logics has

been described e.g. in [Hor97].

Semantic Branching

When branching cannot be avoided, techniques can be applied that try to keep the

number of branch points low. A completion graph𝐺 is discarded from the branch
queue 𝔾, when it is determined, that 𝐺 is inconsistent (contains a clash). It is

therefore highly desirable to find inconsistencies early. One technique involves a

modification of the ⊔-rule. Instead of two successor graphs, three graphs are cre-
ated as successors to a union branch. The concept union {𝐴 ⊔ 𝐵} is not replaced
by instances of {𝐴}, {𝐵}, but rather by three independent instances of {¬𝐴,𝐵},
{𝐴,¬𝐵}, {𝐴,𝐵}. This modification is known as semantic branching [Hor97].

Semantic branching works best when combined with BCP. Its effectiveness, how-

ever, is problem dependent and reasoning performance may actually degrade for

certain ontologies.

Dependency Directed Backtracking

Another technique involves pruning branches from the branch tree after a clash

has been found. Consider for example a node 𝑥 with

109

4. Automated Reasoning in LillyTab

Figure 4.6. Tableau Thrashing without Dependency Directed Backtracking

𝐶0 𝐷0

𝐶1 𝐷1 𝐶1 𝐷1

⋮ ⋮ ⋮ ⋮
∃ 𝑟 . 𝐶, ∀ 𝑟 . ¬𝐶

∠
∃ 𝑟 .𝐶, ∀ 𝑟 . ¬𝐶

∠
∃ 𝑟 .𝐶, ∀ 𝑟 . ¬𝐶

∠
∃ 𝑟 .𝐶, ∀ 𝑟 . ¬𝐶

∠

A naive tableau implementation has to saturate 2𝑛 tableau branches before it detects that the input

concept is not satisfiable

ℒ[𝑥] = {𝐶0 ⊔𝐷0,… ,𝐶𝑛 ⊔𝐷𝑛, ∃𝑟 .𝐶 ⊔ 𝐷,∀ 𝑟 . ¬𝐶}

A naive algorithm might branch on the various disjoints (causing 2𝑛 branches)
only to find out that the initial concept cannot be satisfied regardless of the branch

chosen for all of the unions (figure 4.6). Dependency directed backtracking records

the clashing concepts and jumps back to a branching point before the clashing

concepts where introduced, effectively pruning the other branches between clash

detection and the introduction of the culprit term. In the example, the algorithm

would report an inconsistency after the first clash is found, because the clashing

terms already exist in the input concept.

Dependency directed backtracking is even more effective for well-designed on-

tologies with many GCIs, because well-designed ontologies make use of concept

disjointness [RDH+04] whenever appropriate.

4.3 LillyTab

As part this thesis, a special purpose tableau reasoner “LillyTab” has been imple-

mented. LillyTab’s tableau is based on the well known tableau for 𝒮ℋ𝒪ℐ𝒬(𝐃)
[HS05b], but is limited to the subset 𝒮ℋ𝒪ℱ(𝐃): Support for number restrictions
is missing in LillyTab, since these are not needed to handle the existing built her-

itage document ontologies. The results from this thesis, however, do generalize

110

4.3. LillyTab

Figure 4.7. Dependency directed backtracking

⋮

⋮

𝐶0 𝐷0

⋮ 𝐶1 𝐷1

∃ 𝑟 . 𝐶, ∀ 𝑟 . ¬𝐶
∠

backtrack

Dependency directed backtracking records the clashing concepts and jumps back to a branching

point before the clashing concepts where introduced, effectively pruning the other branches

between clash detection and the introduction of the culprit terms

to description logics with number restrictions. Generalization to logics with in-

verse roles are deemed possible, but no attempt is made in this thesis. Formal

semantics for 𝒮ℋ𝒪ℱ(𝐃) are given in definition 4.15.

LillyTab’s tableau makes no mention of attributes (𝒜) and data values (𝒯, see def-
inition 3.1). It is common for tableau introductions to ignore datatype reasoning

as not to add unnecessary complexity to the tableau description. This practice will

be repeated for the description of the LillyTab tableau.

Data values are represented as individuals and datatypes are implemented as con-

crete domains [BS03]. Reasoning with concrete domains can be reduced to node-

local consistency checking withoutmodification of the DL tableau ([Lut03, LM05]).

For every data type or data range, a unique concept𝐷 is introduced. 𝐷 contains ex-
actly those individuals that are part of the data range. For example𝐷ℕ ≡def {1, 2,…}
is the set of positive integer values. The reasoner does not need to represent data

type sets implicitly. Instead, only two methods need to be provided per data type:

• A method to test if a particular individual 𝑎 ∈ 𝐷.

• A method to test if two individuals 𝑎 ∈ 𝐷 and 𝑏 ∈ 𝐷 do are equivalent with

respect to 𝐷, i.e. if {𝑎, 𝑏} does not create a clash.

111

4. Automated Reasoning in LillyTab

Definition 4.15 Formal Semantics for 𝒮ℋ𝒪ℱ(𝐃)
Given a set of named concepts 𝒞, a set of roles ℛ, and a set of individuals ℐ, the
interpretation of a formula 𝜙 ∈ Σ𝐿𝒮ℋ𝒪ℱ(𝐃)

is defined via an interpretation function
𝜄 ≡def 𝜄ℐ ∪ 𝜄ℛ ∪ 𝜄𝒞 with

• 𝜄({𝑎}) = 𝜄ℐ({𝑎}) = 𝑎 for all 𝑎 ∈ ℐ

• 𝜄(𝐶) = 𝜄𝒞(𝐶) ⊆ ℐ

• 𝜄(𝑟) = 𝜄ℛ(𝑟) ⊆ ℐ × ℐ

such that for each subformula it holds recursively

• 𝜄(𝐶 ⊓ 𝐷) = 𝜄(𝐶) ∩ 𝜄(𝐷)

• 𝜄(𝐶 ⊔ 𝐷) = 𝜄(𝐶) ∪ 𝜄(𝐷)

• 𝜄(¬𝐶) = ℐ − 𝜄(𝐶)

• 𝜄(∀ 𝑟 . 𝐶) = {𝑥 ∈ ℐ|∀ 𝑦 ∈ ℐ . (𝑥, 𝑦) ∈ 𝜄(𝑟) ⇒ 𝑦 ∈ 𝜄(𝐶)}

• 𝜄(∃ 𝑟 . 𝐶) = {𝑥 ∈ ℐ|∃ 𝑦 ∈ ℐ . (𝑥, 𝑦) ∈ 𝜄(𝑟) ∧ 𝑦 ∈ 𝜄(𝐶)}

together with the 𝖱𝖡𝗈𝗑 constraints 𝗍𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗏𝖾(𝑟), 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟), and 𝑟 ⊑ 𝑞.

4.3.1. Rationale

Implementing a DL reasoner is a complex and cumbersome process. Implement-

ing a DL reasoner as part of a research effort should therefore be considered very

carefully. At the time when LillyTab’s implementation was started, several off-the-

shelf reasoners like Racer, Pellet, and Fact++ were already available. However,

none of those and also none of the current reasoning systems are built to be ex-

tensible. Most reasoners use a highly optimized internal representation of com-

pletion graphs. This optimized representation makes it is hard to easily follow the

path of an axiom as it is transformed by the reasoner.

Also, reasoners only rarely provide the ability to selectively enable/disable certain

optimizations.

112

4.3. LillyTab

LillyTab provides these features. And while it may not be as fast as the more op-

timized reasoning systems and it also does not cover more complex features of

modern DLs, it has already been proven as an adaptable reasoning system, that is

easy to get familiar with and extend.

4.3.2. Tableau Rules

With the basic notions of the tableau established, we can proceed to the description

of the actual tableau implementation. LillyTab’s tableau is an implementation of

the 𝒮ℋ𝒪ℐ𝒬(𝐃) tableau from [HS05b], but with those features removed that are

not in 𝒮ℋ𝒪ℱ(𝐃).

A single macro operation 𝗆𝖾𝗋𝗀𝖾 is defined (function 4.2). 𝗆𝖾𝗋𝗀𝖾 combines two in-
dividuals from a completion graph into a single individual, preserving all connec-

tions and associated concepts. A similar𝗆𝖾𝗋𝗀𝖾 operation is described in [HS05b].
The version presented here is semantically equivalent, but operates on slightly

different data structures.

Function 4.2:merge(G, t, s)

Input: 𝐺 = (𝑉 ,𝐸,ℒ) a DL completion graph
𝑠 ∈ 𝐸 the source node of the merge
𝑡 ∈ 𝐸 the target node of the merge

Output: 𝐺𝑚 = (𝑉𝑚, 𝐸𝑚, ℒ𝑚)
begin

1 if 𝑡 is anonymous and 𝑠 is not anonymous then
2 𝐺𝑚 ← 𝗆𝖾𝗋𝗀𝖾(𝐺, 𝑡, 𝑠);

else
3 𝑉𝑚 ← 𝑉 − {𝑠};
4 𝐸𝑚 ← (𝐸 − {𝑟(𝑥, 𝑦)|𝑥 = 𝑠 ∨ 𝑦 = 𝑠})

∪ {𝑟(𝑥, 𝑡)|𝑟(𝑥, 𝑠) ∈ 𝐸}
∪{𝑟(𝑡, 𝑦)|𝑟(𝑠, 𝑦) ∈ 𝐸};

5 ℒ𝑚 ←(ℒ− {(𝑠 ∶ 𝐶) | (𝑠 ∶ 𝐶) ∈ ℒ})
∪ {(𝑡 ∶ 𝐶) |𝐶 ∈ ℒ[𝑠]};

6 𝐺𝑚 ←(𝑉𝑚, 𝐸𝑚, ℒ𝑚);
end

7 return 𝐺𝑚;
end

113

4. Automated Reasoning in LillyTab

As a short form, a sequence of merges will be written using a syntax similar to

variable substitution (appendix A.1):

𝐺 [𝑡 ← 𝑠] = 𝗆𝖾𝗋𝗀𝖾(𝐺, 𝑡, 𝑠)
𝐺 [𝑡 ← 𝑠, 𝑥 ← 𝑦] = 𝐺 [𝑡 ← 𝑠] [𝑥 ← 𝑦]

= 𝗆𝖾𝗋𝗀𝖾(𝗆𝖾𝗋𝗀𝖾(𝐺, 𝑡, 𝑠), 𝑦, 𝑥)

The tableau rules for LillyTab are shown in tables 4.3 and 4.4. The ⊓-, ⊔-, and
∀-rules are called non-generating rules, as they do not create new nodes or modify
the graph beside adding concepts to individual nodes. The ∃-rule is called a gen-
erating rule. The 𝑜- andℱ-rule are called merge rules, since they invoke the 𝗆𝖾𝗋𝗀𝖾
operation. Most of the completion rules typically pick up a complex concept from

the completion graph and transform it into one or more simpler concepts or add a

node and/or links to the completion graph. Consequently, the completion graph

usually gets larger during tableau completion, but there are two rules (𝑜-rule, ℱ-
rule) that shrink the completion graph by merging two nodes. Special attention

needs to be applied to these rules as they could potentially cause non-termination.

LillyTab assumes that all concepts in ℒ are automatically transformed to NNF.

LillyTab applies rules in a certain order. This application order is mandated by the

original tableau [HS05b]. Rule application is performed for every non-saturated

and non-clashing graph, as long as 𝔾 still contains non-saturated graphs (clashing
graphs are automatically removed).

LillyTab’s tableau does not implement some of the rules from the initial tableau,

because the full expressiveness of 𝒮ℋ𝒪𝒬 is not required. It is important to make
sure that the removed rules do not affect the properties (correctness, soundness,

termination) of the tableauwith regard to the reduced language subset𝒮ℋ𝒪ℱ(𝐃).

Theorem 4.1 Soundness, Completeness, and Termination of the LillyTab Tableau
for 𝒮ℋ𝒪ℱ(𝐃)
The rules in tables 4.3 and 4.4 are a sound, complete, and terminating tableau

decision procedure for 𝒮ℋ𝒪ℱ(𝐃)

114

4.3. LillyTab

Table 4.3. Tableau Rules for the LillyTab Reasoner, part 1
Given a set 𝔾 of DL completion graphs 𝔾 = {𝐺1,… ,𝐺𝑚}, for each graph 𝐺𝑘 ∈ 𝔾
and each node 𝑥 ∈ 𝐺𝑘, repeat the following rules until no rule is applicable any
more:

⊓⊓⊓-rule if 1. 𝑥 is not blocked
2. ∃𝐶,𝐷 . (𝑥 ∶ 𝐶 ⊓ 𝐷) ∈ ℒ𝑘
3. not {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)} ⊆ ℒ𝑘

then update ℒ𝑘 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)}

⊔⊔⊔-rule if 1. 𝑥 is not blocked
2. ∃𝐶,𝐷 . (𝑥 ∶ 𝐶 ⊔ 𝐷) ∈ ℒ𝑘
3. {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)} ∩ ℒ𝑘 = ∅

then Create two fresh successor graphs
𝐺𝑘+1 ← 𝐺𝑘, 𝐺𝑘+2 ← 𝐺𝑘,
ℒ𝑘+1 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝐶)}, ℒ𝑘+2 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝐷)},

𝔾 ← (𝔾 −𝐺𝑘) ∪ {𝐺𝑘+1, 𝐺𝑘+2}.

∀∀∀-rule if 1. 𝑥 is not blocked
2. ∃ 𝑟, 𝐶 . (𝑥 ∶ ∀ 𝑟 . 𝐶) ∈ ℒ𝑘

then for all 𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ with 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘
set ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)}

∀+∀+∀+-rule if 1. 𝑥 is not blocked
2. 𝗍𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗏𝖾(𝑟)
3. ∃ 𝑟, 𝐶 . (𝑥 ∶ ∀ 𝑟 . 𝐶) ∈ ℒ𝑘

then for all 𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ with 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘
set ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ ∀ 𝑟 . 𝐶)}.

∃∃∃-rule if 1. 𝑥 is not blocked
2. (𝑥 ∶ ∃ 𝑟 . 𝐶) ∈ ℒ𝑘
3. ∄𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ . 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘 ∧ (𝑦 ∶ 𝐶) ∈ ℒ𝑘

then if 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟) and ∃ 𝑦 . 𝑟(𝑥, 𝑦) ∈ 𝐸𝑘, then set
ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)}.

else obtain a fresh, anonymous individual 𝑦 ∈ 𝑁 and
set 𝑉𝑘 ← 𝑉𝑘 ∪ {𝑦}, 𝐸𝑘 ← 𝐸𝑘 ∪ {𝑟(𝑥, 𝑦)}, and
ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)}

115

4. Automated Reasoning in LillyTab

Table 4.4. Tableau Rules for the LillyTab Reasoner, part 2
Given a set 𝔾 of DL completion graphs 𝔾 = {𝐺1,… ,𝐺𝑚}, for each graph𝐺𝑘 ∈ 𝔾
and each node 𝑥 ∈ 𝐺𝑘, repeat the following rules until no rule is applicable any
more:

ℱℱℱ-rule if 1. 𝑥 is not blocked
2. 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟)
3. ∃ 𝑦, 𝑧 . {𝑟(𝑥, 𝑦), 𝑟(𝑥, 𝑧)} ⊆ 𝐸𝑘 ∧ 𝑦 ≠ 𝑧

then 𝐺𝑘 ← 𝗆𝖾𝗋𝗀𝖾 (𝐺𝑘, 𝑧, 𝑦)

𝑜𝑜𝑜-rule if 1. 𝑥 is not blocked
2. ∃ 𝑎 ∈ ℐ . {𝑎} ∈ ℒ𝑘[𝑥]

then 𝐺𝑘 ← 𝗆𝖾𝗋𝗀𝖾 (𝐺𝑘, 𝑎, 𝑥)

Definition 4.16 Priority of Rule Application

1. 𝑜- andℱ-merge are executed immediately when their preconditions are satis-
fied.

2. All possible ⊓, ⊔, ∀ rules are performed until none of these rules remains
applicable.

3. If an ∃-rule is applicable, only a single application of ∃ is performed.

This process is repeated until no more rules have their preconditions met or until
a clash is detected.

116

4.3. LillyTab

Theorem 4.1 is proven in appendix A.2.

LillyTab checks the completion graph for inconsistencies after each cycle of rule

application. Consistency checking for concrete domains (datatypes) in LillyTab

is provided by the introduction of unique concepts 𝐷0, 𝐷1,… for each datatype

range. If (𝑥 ∶ 𝐷𝑖) ∈ ℒ, then the node 𝑥 is assumed to have datatype 𝐷𝑖. Each

data range concept has a fixed (usually infinite) interpretation domain 𝜄𝒟(𝐷𝑖).
A named node is verified to be within the interpretation domain of each of its

annotated data ranges. Beyond this, the consistency conditions are the same as for

𝒮ℋ𝒪𝒬with those removed that can never be violated by a 𝒮ℋ𝒪ℱ(𝐷) completion
graph:

Definition 4.17 Consistency Checks for 𝒮ℋ𝒪ℱ(𝐷)
Given a (saturated) completion graph 𝐺 = (𝑉 ,𝐸,ℒ) over the language
𝐿(𝒮ℋ𝒪ℱ(𝐃),ℐ,𝒞,ℛ), a node 𝑥 ∈ 𝐸 is said to contain a clash, iff

1. for some concept 𝐶 ∈ Σ𝐿 {𝐶, ¬𝐶} ⊆ ℒ[𝑥], or

2. 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟) ∧ ∃𝑦, 𝑧{𝑟(𝑥, 𝑦), 𝑟(𝑥, 𝑧)} ⊆ 𝐸, or

3. 𝑥 is annotated with data ranges {𝐷𝑖, 𝐷𝑗} ⊆ ℒ[𝑥] and 𝜄𝒟(𝐷𝑖) ∩ 𝜄𝒟(𝐷𝑗) = ∅,
i.e. the intersection of the two data ranges is empty, or

4. {𝑎} ∈ ℒ[𝑥] ∧ 𝐷 ∈ ℒ[𝑥] ∧ 𝑎 ∉ 𝜄𝒟(𝐷) for some individual 𝑎 and some data
range 𝐷, i.e. one of the individuals of a node is not part of one of the data
ranges declared for that node, or

5. if {{𝑎}, {𝑏}} ⊆ ℒ[𝑥] ∧ 𝐷 ∈ ℒ[𝑥], 𝑎 and 𝑏 are incompatible with regard to 𝐷,
i.e. they represent conflicting values with regard to 𝐷.

If at least one node 𝑥 ∈ 𝐸 contains a clash, the completion graph is said to be
inconsistent.

4.3.3. Tableau Data Structures

The basic data structures in LillyTab are a set 𝔾 of completion graphs and the
𝖳𝖡𝗈𝗑. The 𝖳𝖡𝗈𝗑 is simply a set of global axioms that are valid for every node
inside a completion graph. When a fresh node 𝑥 is created inside a completion
graph, it is therefore assumed thatℒ[𝑥] ⊇ 𝖳𝖡𝗈𝗑. This is different from the initial

117

4. Automated Reasoning in LillyTab

𝒮ℋ𝒪𝒬 tableau. In the 𝒮ℋ𝒪𝒬-tableau the 𝖳𝖡𝗈𝗑 is represented by restrictions
on a universal rule 𝒰. 𝒰 is assumed to connect every individual node with every
other individual node. Consequently, asserting ∀𝒰 .𝐶 for some individual 𝑥 in
the completion graph automatically propagates 𝐶 to every graph node (including
𝑥, since 𝒰 is reflexive). LillyTab uses a direct 𝖳𝖡𝗈𝗑 for efficiency reasons. There
is no semantic difference to the 𝒰-approach found –for example– in the 𝒮ℋ𝒪𝒬
and RACE [HM01] tableaux.

The basic operation of LillyTab is similar to that of other tableau reasoners. The

tableau starts with an initial set of completion graphs 𝔾 and a set of tableau rules.
The tableau rules transform the initial graphs such that satisfiability is maintained

and eventually a point is reached, where

1. either no more rules can be applied to any graph, including the case when𝐺
is empty, or

2. a consistent graph is found where no more rules can be applied to the graph.

The state where no more rule application is possible, is called saturated. Rule

application to a graph also stops, when a clash is detected in a graph. Graphs that

contain a clash are automatically removed from 𝔾.

LillyTab is different from other reasoners, as it can be switched into a mode where

finding a saturated graph does not terminate reasoning. In this mode, rather than

returning the first saturated graph, LillyTab continues until all possibilities have

been explored. The refinement process detailed in the later parts of this thesis

makes heavy use of this unique feature.

Definition 4.18 Saturated Completion Graph
A DL completion graph 𝐺 is called saturated wrt. to a particular tableau, if none of
the tableau’s transformation rules can be applied to the graph.

118

4.3. LillyTab

4.3.4. Reasoner Implementation

Blocking Implementation

Since LillyTab only supports the logic 𝒮ℋ𝒪ℱ(𝐃), it is sufficient to apply only sub-
set blocking ([HST99], definition 4.19). Blocking in LillyTab is dynamic. Because

LillyTab contains support for nominals (but not for inverse roles), the axiom set

of a blocker may be modified again during tableau operation. Since this may in-

validate the block (i.e. a new concept might be introduced), any modification of

the axiom set of the blocker node requires a re-evaluation of the block. LillyTab ex-

plicitly keeps track of the blocker-blockee relationship and re-evaluates a blocking

condition when either the blocker or the blocked node are modified.

The tableau rules (see section 4.3.2, below) never modify a blocked node directly.

Consequently, the need for re-checking a blocked node rarely occurs, making

blocking state caching very effective.

Definition 4.19 Subset Blocking
Let 𝐺 = (𝑉 ,𝐸,ℒ) be a completion graph.

• 𝑦 is an predecessor of 𝑥 iff ∃ 𝑟 . 𝑟(𝑦, 𝑥) ∈ 𝐸.

• 𝑧 is an ancestor of 𝑥 iff it is in the transitive predecessor-closure of 𝑥.

• 𝑤 is an anonymous node iff ∄𝑎 . {𝑎} ∈ ℒ[𝑤]

Some node 𝑥 is subset blocked, if there is some 𝑏 ∈ 𝑉 , such that

1. 𝑏 is an anonymous node.

2. 𝑏 is an ancestor of 𝑥

3. ℒ[𝑥] ⊆ ℒ[𝑏]

𝑏 is then called a blocker of 𝑥.

Implemented Optimizations

LillyTab implements a number of optimizations to speed up the reasoning process.

In particular:

119

4. Automated Reasoning in LillyTab

Domain and Range Absorption LillyTab implements role domain and range ab-

sorption in line with the modified tableau from [TH04] (table 4.2).

Concept Absorption LillyTab implements concept absorption and applies several

simplification rewrites on input 𝖳𝖡𝗈𝗑es to improve reasoner performance.

Semantic Branching LillyTab can optionally perform semantic branching but does

not by default.

Dependency Directed Backtracking LillyTab implements dependency directed back-

tracking.

Lazy Saving LillyTab implements lazy saving as copy-on-write on the concept and

role list data structures.

120

SECTION 5.0

Completion Graph Based Mapping

In this chapter, a correspondence between conjunctive queries and DL com-

pletion graphs is established. This creates a framework for using completion

graphs as a representation method for directional mappings between ontolo-

gies.

5.1 Completion Graphs and Queries

While simple mappings can be expressed as a quadruple (𝑒𝑠, 𝑒𝑡, 𝑟, 𝑛) (see sec-
tion 3.2), complex ontology matching requires the ability to both express queries

on the source ontology as well as to formulate generating expressions for creating

individuals and literals in the target ontology.

One interesting property of DL completion graphs is, that it is possible to view

them both as a pseudo-model as well as a generation and classification scheme for

𝖠𝖡𝗈𝗑 individuals: anonymous nodes in the completion graph represent any indi-
vidual that fits the constraints in the node’s associated axiom set. Named nodes

(those labelled with a nominal {𝑎}) represent exactly the named individual. The
same is true on the generating side, with the difference, that anonymous nodes

on the target side represent either any existing individual meeting the desired con-

straints or a fresh node (𝑥) that needs to be generated.

Consider the completion graph

𝐺0 = (𝑉0, 𝐸0, ℒ0)
= ({𝑥, 𝑦} {𝑟(𝑥, 𝑦)} , {(𝑥 ∶ 𝐴) , (𝑦 ∶ {𝑏}) , (𝑦 ∶ 𝐵)})

(5.1)

5. Completion Graph Based Mapping

Turning to the interpretation of this graph (using definition 4.15), we find that

1. (𝑦 ∶ {𝑏}) ∈ ℒ0 pins 𝑦 to be equivalent to the individual 𝑏.

2. (𝑥 ∶ 𝐴) ∈ ℒ0 demands𝑥 to be in the interpretation 𝜄(𝐴) of𝐴 and (𝑦 ∶ 𝐵) ∈ ℒ0
requires that 𝑦 is in the interpretation of 𝐵. Together with (1), this means,
that 𝐵(𝑏) and 𝑦 = {𝑏}. 𝑥 can be selected arbitrarily, while 𝑦 is pinned to {𝑏}.

3. (𝑟(𝑥, 𝑦)) requires an 𝑟-connection between 𝑥 and 𝑦.

If we replace the names of anonymous nodes with variable names (?𝑥) and use
the nominal reference in place of 𝑦, we can directly formulate the interpretation
of 𝐺0 in first order logic

𝐴(?𝑥) ∧ 𝑟(?𝑥, 𝑏) ∧ 𝐵(𝑏) (5.2)

where ?𝑥 is a free variable, so this formula can also be seen as a query that returns
?𝑥. If this query is performed on a DL knowledge base, it returns exactly those
individuals (in ?𝑥) that can be placed into the position of 𝑥 in the completion
graph and satisfy the constraints established by the graph.

This simple example shows, that completion graphs can indeed be viewed as tem-

plates to express queries on DL knowledge bases. This makes it possible to con-

sider complex ontology mapping (involving queries on knowledge bases) in terms

of completion graphs and vice versa.

5.1.1. Mapping Conjunctive Queries to Completion Graphs

If we allowed for first order formulæ in mapping rules, this would raise the prob-

lem of decidability. What is needed is –oncemore– a decidable subset of first order

logic that is nonetheless sufficiently expressive.

Queries like those presented in equation (5.2) follow a structure that is very well

known from relational databases. Queries of this form are called conjunctive queries

[Var82]. It is already known that conjunctive queries and DL concept descriptions

122

5.1. Completion Graphs and Queries

have a strong relationship. For example, it is possible to map conjunctive queries

with a single free variable to 𝒜ℒ𝒩 concept descriptions as long as the query is a

tree query [GR02].

Definition 5.1 Conjunctive Query
Let 𝑋 be a set of variables and 𝑋𝑓 ⊆ 𝑋, 𝑍𝑖 ⊆ (𝑋𝑓 ∪ ℐ), … be distinct sets of
variables and/or individuals and 𝑃𝑖 be 𝑛-ary boolean predicates
A conjunctive query 𝑄 is an expression of the form

𝑄 ∶ ∃𝑋𝑒 .⋀
𝑖
𝑃𝑖 (𝑍𝑖)

The variables 𝑋𝑓 ≡ 𝑋 −𝑋𝑒 are called the free variables or query result of the query,
while 𝑋𝑒 are the bound variables of the query.
𝑃0 (𝑍0) ∧ 𝑃1 (𝑍1)… is also written as 𝑃0 (𝑍0) , 𝑃1 (𝑍1) ,…

A first observation in this context is, that every conjunctive query has one or more

associated completion graphs that are semantically equivalent to the query. This

means that it is possible to convert any conjunctive query𝑄 into a DL completion
graph that covers exactly those individuals that are also covered by the query. To

facilitate the conversion, we first define a mapping function 𝜎𝑞 that transforms

variables from𝑄 into anonymous nodes in𝐺𝑞 and individual references in𝑄 into
appropriately named nodes in 𝐺𝑞. This mapping is trivially possible as we can

simple re-use variable and individual names:

The mapping is only possible if 𝐺𝑞 has exactly as many nominal references as

there are individual references in 𝑄 and the same for variables. For simplicity,

we assume that the unique name assumption holds and that consequently 𝐺𝑞 only

contains nodes associated with at most one nominal. The unique name assump-

tion simplifies the presentation of all subsequent algorithms. If the unique name

assumption does not hold, all subsequent references to 𝜎−1
𝑞 (𝑥) are implicitly as-

sumed to iterate over all nominal references of a particular node 𝑥.

Having obtained a mapping between the variables in a query and the anonymous

nodes in a completion graph, it is possible to construct a completion graph𝐺𝑞 that

has the same interpretation of the query𝑄. Given the description logic 𝐿(ℐ, 𝒞,ℛ)

123

5. Completion Graph Based Mapping

Definition 5.2 Query Node Mapping
Given a description logic language 𝐿𝐷𝐿 and a conjunctive query

𝑄 = ∃𝑋𝑒 .⋀
𝑖
𝑃𝑖 (𝑍𝑖)

with 𝑃𝑖 ∈ (𝒞 ∪ ℛ), and a completion graph 𝐺𝑞 = (𝐸𝑞, 𝑉𝑞, ℒ𝑞)
A function 𝜎𝑞 ∶ 𝑋 ↦ 𝐸 is a query node mapping, iff

1. ∀?𝑥 ∈ ⋃
𝑖
𝑍𝑖 . ∃1𝑥 ∈ 𝑉𝑞 . 𝜎𝑞(?𝑥) = 𝑥 ∧ {𝑎|{𝑎} ∈ ℒ𝑞[𝑥]} = ∅,

2. ∀𝑎 ∈ ⋃
𝑖
𝑍𝑖 . ∃1𝑥{𝑎} ∈ 𝑉𝑞 . 𝜎𝑞(𝑎) = 𝑥{𝑎} ∧ {𝑎} ∈ ℒ𝑞[𝑥{𝑎}], and

3. 𝜎𝑞 is bijective.

The inverse of 𝜎𝑞 is named 𝜎−1
𝑞 .

and a conjunctive query 𝑄 = ∃𝑋𝑒 . ⋀
𝑖
𝑃𝑖 (𝑋𝑖) with 𝑃𝑖 ∈ (𝒞 ∪ ℛ), the corre-

sponding completion graph 𝐺𝑞 = (𝐸𝑞, 𝑉𝑞, ℒ𝑞) is constructed by the algorithm
presented in function 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖦𝗋𝖺𝗉𝗁 5.1.

This completion graph has the property that any individual that matches the con-

junctive query also satisfies the completion graph.

Theorem 5.1 Correctness of Completion Graph Generation from Conjunctive
Query
A completion graph 𝐺𝑞 constructed from a query 𝑄 using function 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖦𝗋𝖺𝗉𝗁
(function 5.1) has in its interpretation the same knowledge base subsets that are

matched by 𝑄.

5.1.2. Extracting Queries from Completion Graphs

While converting a conjunctive query into a completion graph is straightforward,

the inverse direction is not as simple. It is not possible to convert any comple-

tion graph into a conjunctive query with the same interpretation. Indeed, the

expressiveness of DL completion graphs is strictly higher than that of conjunctive

queries.

124

5.1. Completion Graphs and Queries

Procedure 5.1: generateGraph(𝑄)
Input: 𝑄: a conjunctive query
Output: 𝐺𝑞 = (𝑉𝑞, 𝐸𝑞, ℒ𝑞): a completion graph with the same interpretation

as 𝑄
begin

/* Construct a query node mapping 𝜎𝑞 from 𝑄 to 𝐺𝑞 and fill
𝐺𝑞 with the nodes from 𝜎𝑞. */

1 ℒ𝑞 ← ∅;
2 𝐸𝑞 ← ∅;
3 𝑉𝑞 ← {𝑥|𝑥 = 𝜎𝑞(𝑋𝑖) for all 𝑋𝑖 ∈ 𝑋};
4 foreach 𝑎 ∈ (𝑋 ∩ ℐ) and 𝑎 appears in 𝑄 do
5 ℒ𝑞[𝜎𝑞(𝑎)] ← ℒ𝑞[𝜎𝑞(𝑎)] ∪ {{𝑎}};

end
6 foreach 𝑟(𝑋0, 𝑋1) ∈ 𝑄 do
7 𝐸𝑞 ← 𝐸𝑞 ∪ {𝑟(𝜎𝑞(𝑋0), 𝜎𝑞(𝑋1))};

end
8 return (𝑉𝑞, 𝐸𝑞, ℒ𝑞);
end

The description of function 5.1might suggest, that conversion of completion graphs

to conjunctive queries is only possible if the completion graph contains only ref-

erences to named concepts. This is true, if the conversion process is performed

purely based on syntax alone.

When looking at the underlying semantics, however, the situation changes: two

different syntactic representations may be semantically equivalent. This means,

that the interpretation of a completion graph typically is not unique to that par-

ticular completion graph. Thus, if we cannot convert a completion graph into a

conjunctive query directly (because it contains complex concept descriptions), we

might be able to find another, semantically equivalent completion graph where

the conversion is feasible.

125

5. Completion Graph Based Mapping

Figure 5.1. Alternative Representations for Completion Graphs

𝑥

𝐀, ∃ 𝐫 .𝐁
(a)𝐺∃,1

𝑥

𝐀

𝑦

𝐁

𝐫

(b)𝐺∃,2

𝑥

𝐀, ∃ 𝑟 .𝐵

𝑦

𝐁

𝐫

(c)𝐺𝑠∃,1

Consider the completion graph 𝐺∃,1 in equation (5.3). Because of the ∃-axiom, a
direct conversion is not possible, as we have no immediate way of representing

the ∃-restriction in a conjunctive query term.

𝐺∃,1 = (𝑉∃, 𝐸∃, ℒ∃) = ({𝑥} , ∅, {(𝑥 ∶ 𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐵)}) (5.3)

If we, however, consider instead the completion graph 𝐺∃,2, the situation is dif-

ferent.

𝐺∃,2 = ({𝑥, 𝑦} , {𝑟(𝑥, 𝑦)} , {(𝑥 ∶ 𝐴) , (𝑦 ∶ 𝐵)}) (5.4)

𝐺∃,2 does not contain any complex axiom and can be mapped using a direct map-

ping, resulting in the conjunctive query 𝑄∃.

𝑄∃ = 𝐴(?𝑥), 𝑟(?𝑥, ?𝑦),𝐵(?𝑥) (5.5)

When we look at the interpretation of 𝐺∃,1 and 𝐺∃,2, we can immediately see that

both graphs share the same interpretation. (𝑥 ∶ ∃ 𝑟 .𝐵) in equation (5.3) is covered
by the existence of the explicit successor 𝑦 with its associated concept (𝑦 ∶ 𝐵) in
equation (5.4). 𝐺∃,1 and 𝐺∃,2 are therefore semantically equivalent. Consequently,

it is irrelevant if we use 𝐺∃,1 or 𝐺∃,2 as conversion source since both graphs are

equivalent in their interpretation.

126

5.1. Completion Graphs and Queries

Figure 5.2. ⊓-Propagation for Tableau Completion

𝑥

𝐀 ⊓𝐁
(a)𝐺∃,1

𝑥

𝐀,𝐁,
𝐴⊓𝐵
(b)𝐺∃,2

Another interesting observation can be made, if we consider the saturated form

(i.e. after tableau completion) of 𝐺∃,1:

𝐺𝑠∃,1 = ({𝑥, 𝑦} , {𝑟(𝑥, 𝑦)} , {(𝑥 ∶ 𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐵) , (𝑦 ∶ 𝐵)}) (5.6)

𝐺𝑠∃,1 is almost equivalent to 𝐺∃,2 with the difference that the initial (𝑥 ∶ ∃ 𝑟 .𝐵)-
axiom is still present in 𝐺𝑠∃,1 but is missing in 𝐺∃,2. All three graphs, however,

share the same interpretation, i.e. 𝐺∃,1, 𝐺𝑠∃,1 and 𝐺∃,2 (figure 5.1) are all seman-

tically equivalent.

A similar argument can be made for ⊓-axioms. Given the completion graph

𝐺⊓ = ({𝑥} , ∅, {(𝑥 ∶ 𝐴 ⊓ 𝐵)}) (5.7)

its saturated equivalent is

𝐺𝑠⊓ = ({𝑥} , ∅, {(𝑥 ∶ 𝐴 ⊓ 𝐵) , (𝑥 ∶ 𝐴) , (𝑥 ∶ 𝐵)}) (5.8)

Once again, we can consider only the atomic axioms in the saturated completion

graph 𝐺𝑠⊓ to obtain the proper conjunctive query 𝑄⊓ = 𝐴(?𝑥),𝐵(?𝑥). A similar
argument can be made for ⊔-axioms. Here, however, we get two separate comple-
tion graphs (when not using semantic branching) and consequently two different

query terms:

𝐺⊔ = ({𝑥} , ∅, {(𝑥 ∶ 𝐴 ⊔ 𝐵)}) (5.9)

127

5. Completion Graph Based Mapping

𝐺𝑠⊔,1 = ({𝑥} , ∅, {(𝑥 ∶ 𝐴 ⊔ 𝐵) , (𝑥 ∶ 𝐴)}) , 𝑄⊔,1 = 𝐴(?𝑥)
𝐺𝑠⊔,2 = ({𝑥} , ∅, {(𝑥 ∶ 𝐴 ⊔ 𝐵) , (𝑥 ∶ 𝐵)}) , 𝑄⊔,2 = 𝐵(?𝑥)

(5.10)

The basic algorithm for converting completion graphs into conjunctive queries

can be sketched as follows:

1. Given a completion graph, use a tableau reasoner to transform the graph into

its saturated form(s). We need to expand all saturated forms.

2. Ignore all complex concept assertions and only consider atomic concept and

role assertions (links) and generate appropriate query terms using a suitable

query node mapping.

The simple procedure is, unfortunately, not always sufficient. It is easy to con-

struct counter-examples that show that there still remain completion graphs that

cannot be properly mapped into a conjunctive query even in their saturated ver-

sions. These graphs can be identified by the axioms that are contained in their

axiom set ℒ:

¬¬¬-axioms Because conjunctive queries can only express positive predicates, ¬-
axioms in the completion graph represent a problem. This, however, applies

only to negations with a odd negation nesting.

∀∀∀-axioms Because conjunctive queries can only express existential qualification,

∀-axioms in the completion graph represent a problem. However, not all
∀-axioms are problematic.

TBox axioms During tableau reasoning, information from the 𝖳𝖡𝗈𝗑 is integrated
into the saturated graph. A non-empty 𝖳𝖡𝗈𝗑 causes additional axioms to be
added to the completion graph. Not all of these axioms need to be consid-

ered during query extraction. Which axioms are important and which are

not needs to be determined.

128

5.1. Completion Graphs and Queries

RBox axioms Not only 𝖳𝖡𝗈𝗑-axioms, but also a non-empty 𝖱𝖡𝗈𝗑 causes differ-
ences in the interpretation of a DL completion graph. Role hierarchies ad-

ditionally can cause tableau completion to become non-deterministic. This

non-determinism can also result in different queries being generated for the

same initial completion graph, which has to be avoided.

These problems will be presented and analysed in detail in the following sections.

Section 5.2 then presents a modified tableau that incorporates important changes

to enable extraction of conjunctive queries from saturated DL completion graphs.

5.1.3. Handling Negation

Since conjunctive queries only support the specification of positive predicates,

negation in DL completion graphs is a problem. If a completion graph contains

negations in front of a primitive predicate (i.e. ¬𝐴, where 𝐴 ∈ 𝒞), this prevents
the conversion of the completion graph into a conjunctive query.

However, not all negations are problematic. If the number of nested negations

is even for any nesting path in an axioms, the negation is unproblematic, as it

will be cancelled out. This can easily be checked by transforming the axioms into

negation normal form (definition 4.2). Negated axioms are only problematic for

conversion, when their negation normal form (NNF) contains negations before

primitive concepts.

In practice, unhandled negations in the final, saturated completion graph domostly

appear as consequents of already handled axioms and can thus be safely ignored.

129

5. Completion Graph Based Mapping

Figure 5.3. ∀-Handling in Conjunctive Query Generation and Mismatching
Knowledge Base

𝑥

𝐴, ∃ 𝑟 .𝐵,
∀𝑟 .𝐶
(a)𝐺∀∃

𝑥

𝐴, ∃ 𝑟 .𝐵,
∀𝑟 .𝐶

𝑦

𝐵, 𝐶

𝑟

(b)𝐺𝑠∀∃

𝑎

𝐴

𝑏

𝐵, 𝐶

𝑐

¬𝐶

𝑟

𝑟

(c)𝐾𝐵¬∀∃

𝑄𝑠∀∃ = 𝐴(?𝑥), 𝑟(?𝑥, ?𝑦),𝐵(?𝑦), 𝐶(?𝑦)

5.1.4. Handling Universal Quantifiers

∀-axioms are problematic, because conjunctive queries do not have a concept of
universal quantification. For example, when we add a ∀-restriction to the previ-
ously described 𝐺∃,1 (equation (5.3)), we obtain

𝐺∀∃ = (𝑉∀∃, 𝐸∀∃, ℒ∀∃)
= ({𝑥} , ∅, {(𝑥 ∶ 𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐵) , (𝑥 ∶ ∀ 𝑟 . 𝐶)}) (5.11)

The saturated version of this graph is

𝐺𝑠∀∃ = (𝑉𝑠∀∃, 𝐸𝑠∀∃, ℒ𝑠∀∃)

= ({𝑥, 𝑦} , {𝑟(𝑥, 𝑦)} , { (𝑥 ∶ 𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐵) , (𝑥 ∶ ∀ 𝑟 . 𝐶) ,
(𝑦 ∶ 𝐵) , (𝑦 ∶ 𝐶)

})

(5.12)

130

5.1. Completion Graphs and Queries

If we apply the strategy of dropping all complex axioms from the completion graph

and only converting all simple axioms, we get the query

𝑄𝑠∀∃ = 𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐵(?𝑦), 𝐶(?𝑦) (5.13)

While this looks fine, there is a significant difference in the interpretation of 𝑄∀∃
compared to the interpretation of𝐺∀∃. In particular,𝑄∀∃ matches 𝑎 in the knowl-
edge base (figure 5.3)

𝐾𝐵¬∀∃ = {𝐴(𝑎), 𝑟(𝑎, 𝑏), 𝑟(𝑎, 𝑐), 𝐵(𝑏), 𝐶(𝑏), ¬𝐶(𝑐)} (5.14)

𝐾𝐵¬∀∃ is, however, not a model for the initial completion graph. 𝑎 clearly has
an 𝑟-successor 𝑐 with ¬𝐶(𝑐), which contradicts (𝑥 ∶ ∀ 𝑟 . 𝐶) in the original graph.
Thus, while it seems fine to drop the ∃-restriction, dropping the ∀-restriction can
potentially lead to an insufficient query that is more permissive than the original

completion graph.

Fortunately, the problem seems to appear rarely in practice. Most ∀-axioms are
results from𝖳𝖡𝗈𝗑 expansion and thus logically dependent on some other (atomic)
axiom. Also, ∀ axioms are only problematic for non-functional roles.

If the problem still appears, it is possible to introduce a workaround: for every

axiom of the form ∀𝑟 .𝐷 that is required to represent a completion graph (a gov-

erning term, the concept will be formalized in section 5.2), it is possible to introduce

a fresh, previously unused concept𝐶 together with a𝖳𝖡𝗈𝗑-axiom𝐶 ⊑ ∀𝑟 .𝐷 and
replace all other references to∀𝑟 .𝐷with𝐶. 𝐶 will now be used instead of∀𝑟 .𝐷,
enabling the conversion while preserving semantics.

131

5. Completion Graph Based Mapping

5.1.5. Handling TBox-axioms

The workaround from the previous section shows, that not every ∀-axiom pre-

vents the proper conversion of a completion graph into a conjunctive query term.

Consider the graph

𝐺𝖳∀∃ = (𝑉𝖳∀∃, 𝐸𝖳∀∃, ℒ𝖳∀∃)
= ({𝑥} , ∅, {(𝑥 ∶ 𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐵)})

(5.15)

together with the 𝖳𝖡𝗈𝗑

𝖳𝖡𝗈𝗑𝖳∀∃ = {𝐴 ⊑ ∀𝑟 .𝐶} (5.16)

The saturated version of𝐺𝖳∀∃ is equivalent to𝐺𝑠∀∃ (equation (5.12)) and the corre-

sponding query is also the same. The query againmatches𝐾𝐵¬∀∃ (equation (5.14)),

but now the situation is different. When combined with 𝖳𝖡𝗈𝗑𝖳∀∃, the knowledge
base𝐾𝐵¬∀∃ is not consistent in itself, because𝐴(𝑎) demands that also (∀ 𝑟 . 𝐶)(𝑎)
(lazily unfolded from𝖳𝖡𝗈𝗑𝖳∀∃). This then leads to an inconsistency for 𝑐. Concept
axioms that are unfolded from the 𝖳𝖡𝗈𝗑 as a result of an already existing axiom
need not be considered when forming the conjunctive query.

Not every 𝖳𝖡𝗈𝗑 axiom can be so easily ignored. We have already seen in sec-

tion 4.2.1, that existential qualifiers in the𝖳𝖡𝗈𝗑 cause blocking and that the blocked
node is a placeholder for an infinite model or a cycle of unknown size. Blocked

nodes are troublesome for query generation. Consider the completion graph (see

also figure 5.4a)

𝐺𝖳∃ = (𝑉𝖳∃, 𝐸𝖳∃, ℒ𝖳∃)
= ({𝑥} , ∅, {(𝑥 ∶ 𝐴)})

(5.17)

together with the 𝖳𝖡𝗈𝗑

𝖳𝖡𝗈𝗑𝖳∃ = {𝐴 ⊑ ∃ 𝑟 .𝐴} . (5.18)

132

5.1. Completion Graphs and Queries

Tableau expansion of 𝐺𝖳∃ will cause lazy unfolding of ∃ 𝑟 .𝐴 unto 𝑥. This creates
a fresh 𝑟-successor 𝑦 which is then blocked from further expansion (figure 5.4b).

Following the algorithm outlined above, the converted query would be

𝑄𝖳∃,2 = 𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐴(?𝑦) (5.19)

However, 𝑄𝖳∃,1 is neither the smallest nor the largest query that has the same

interpretation as 𝐺𝖳∃. The smallest possible query is actually

𝑄𝖳∃,1 = 𝐴(?𝑥) (5.20)

Because designating a node with 𝐴 already (via lazy unfolding of ∃ 𝑟 .𝐴 from

𝖳𝖡𝗈𝗑𝖳∃) starts the infinite chain of 𝑟-successors. To visualize this, look at fig-
ures 5.4c, 5.4d, and 5.4e. All the knowledge bases displayed here are models of the

initial completion graph (and its corresponding) query. However, no single query

can match the full extent of all possible models of a blocked completion graph.

While both 𝑄𝖳∃,1 and 𝑄𝖳∃,2 match all knowledge bases, their coverage is differ-

ent. 𝑄𝖳∃,2 covers the whole of 𝐾𝐵𝑠𝖳∃,1 including the reflexive property. It also

matches both individuals in 𝐾𝐵𝑠𝖳∃,2, but not the backwards reference (𝑟(𝑏, 𝑎)).
To fully cover𝐾𝐵𝑠𝖳∃,2, we need to formulate the query

𝑄𝖳∃,4 = 𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐴(?𝑦), 𝑟(?𝑦, ?𝑧), 𝐴(?𝑧), 𝑟(?𝑧, ?𝑤),𝐴(?𝑤) (5.21)

It is not possible to formulate a conjunctive query that covers all possible knowl-

edge bases that are correct interpretations of the initial model graph 𝐺𝖳∃. Full

coverage of blocked models would require recursive queries or finite automata

(see [BHP08]).

133

5. Completion Graph Based Mapping

Figure 5.4. Blocked Completion Graphs and Corresponding Knowledge Bases

𝑥

𝐴
(a)𝐺𝖳∃

𝑥

𝐴, ∃ 𝑟 .𝐴

𝑦

𝐴, ∃ 𝑟 .𝐴

blocked𝑟 𝑟

(b)𝐺𝑠𝖳∃

𝑎

𝐴

𝑟

(c)𝐾𝐵𝑠𝖳∃,1

𝑎

𝐴

𝑏

𝐴

𝑟

𝑟

(d)𝐾𝐵𝑠𝖳∃,2

𝑎

𝐴

𝑏

𝐴

𝑐

𝐴

𝑟 𝑟

𝑟

(e)𝐾𝐵𝑠𝖳∃,2

Two principle strategies are available for dealing with blocked nodes: 1. fail con-

version when a blocked node is encountered or 2. select a suitable size for the

blocking cycle and go with an appropriate query. One approach is to follow the

minimal description length principle [Ris78] and generate the smallest possible

query that still describes the model.

As with negations, the problem rarely exhibits itself in practice.

5.1.6. Handling Existential Non-Determinism

A final problem can be observed, when we consider the ∃-rule. Existing litera-
ture seems to make no note of this, but the existential expansion is actually non-

deterministic.

Consider the completion graph

𝐺2∃ = (𝑉⊑∃, 𝐸⊆∃, ℒ⊆∃)
= ({𝑥} , ∅, {(𝑥 ∶ ∃ 𝑟 .𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐴 ⊓ 𝐵)})

(5.22)

134

5.1. Completion Graphs and Queries

Figure 5.5. Non-determinism during Tableau Expansion with Concept Subsump-
tion

𝑥

∃𝑟 .𝐴,
∃ 𝑟 .𝐴 ⊓𝐵

𝑦

𝐴⊓𝐵,𝐴,𝐵
𝑟

(a)𝐺𝑠2∃,1

𝑥

∃𝑟 .𝐴,
∃ 𝑟 .𝐴 ⊓𝐵

𝑦

𝐴

𝑧

𝐴⊓𝐴,𝐴,𝐵

𝑟

𝑟

(b)𝐺𝑠2∃,2

In this scenario, the ∃-rule can be applied either first to (𝑥 ∶ ∃ 𝑟 .𝐴) or to (𝑥 ∶ ∃ 𝑟 .𝐴 ⊓ 𝐵),
because the order of rule application is not important to check satisfiability. How-

ever, the order of application results in two different completion graphs (see also

figure 5.5) If (∃ 𝑟 .𝐴 ⊓ 𝐵) is expanded first, we get

𝐺𝑠2∃,1 = (𝑉2∃,1, 𝐸2∃,1, ℒ2∃,1)

= ({𝑥, 𝑦} , {𝑟(𝑥, 𝑦)} , { (𝑥 ∶ ∃ 𝑟 .𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐴 ⊓ 𝐵) ,
(𝑦 ∶ 𝐴 ⊓ 𝐵) , (𝑦 ∶ 𝐴) , (𝑦 ∶ 𝐵)

})

(5.23)

with a single 𝑟-successor 𝑦. However, if (∃ 𝑟 .𝐴) is expanded first, we get two
𝑟-successors 𝑦 and 𝑧:

𝐺𝑠2∃,2 = (𝑉2∃,2, 𝐸2∃,2, ℒ2∃,2)

= ({𝑥, 𝑦, 𝑧} , {𝑟(𝑥, 𝑦), 𝑟(𝑥, 𝑧)} ,
⎧{
⎨{⎩

(𝑥 ∶ ∃ 𝑟 .𝐴) , (𝑥 ∶ ∃ 𝑟 .𝐴 ⊓ 𝐵) ,
(𝑦 ∶ 𝐴 ⊓ 𝐵) , (𝑦 ∶ 𝐴) , (𝑦 ∶ 𝐵) ,
(𝑧 ∶ 𝐴)

⎫}
⎬}⎭
)

(5.24)

135

5. Completion Graph Based Mapping

Because 𝐴⊓𝐵 subsumes 𝐴, expanding the former first causes the preconditions
for (𝑥 ∶ ∃ 𝑟 .𝐴) to become invalidated so (𝑥 ∶ ∃ 𝑟 .𝐴) never gets expanded. Since
𝐺𝑠2∃,1 and 𝐺𝑠2∃,2 also have different representations as conjunctive queries, this

situation is clearly not desirable.

It is possible to solve the problem by demanding that existential restrictions that

refer to a subconcept (namely ∃ 𝑟 .𝐴) are expanded before existential restrictions
that refer to superconcepts (e.g. ∃ 𝑟 .𝐴 ⊓ 𝐵). Since the relationship between the
subconcept and its superconcept may not be as easily discernible as in the exam-

ple, the test would require a recursive reasoner invocation whenever an existential

restriction is considered. This is not feasible performance-wise and another solu-

tion is highly desirable.

The same kind of non-determinism can also be provoked, if role hierarchies are

present within the 𝖱𝖡𝗈𝗑. In the completion graph

𝐺⊑∃ = (𝑉⊑∃, 𝐸⊑∃, ℒ⊑∃)
= ({𝑥} , ∅, {(𝑥 ∶ ∃ 𝑟 .𝐴) , (𝑥 ∶ ∃ 𝑞 .𝐴)}) (5.25)

together with the 𝖱𝖡𝗈𝗑

𝖱𝖡𝗈𝗑⊑∃ = {𝑞 ⊑ 𝑟} (5.26)

tableau completion is once again non-deterministic. Depending on whether the ∃
rule first picks (𝑥 ∶ ∃ 𝑟 .𝐴) or (𝑥 ∶ ∃ 𝑞 .𝐴), we get two different saturated graphs.

If (𝑥 ∶ ∃ 𝑞 .𝐴) is expanded first, we obtain

𝐺𝑠⊑∃,𝑞 = (𝑉𝑠⊑∃,𝑞, 𝐸𝑠⊑∃,𝑞 ℒ𝑠⊑∃,𝑞)
= ({𝑥, 𝑦} , {𝑞(𝑥, 𝑦)} , {(𝑥 ∶ ∃ 𝑟 .𝐴) , (𝑥 ∶ ∃ 𝑞 .𝐴) , (𝑦 ∶ 𝐴)}) (5.27)

136

5.1. Completion Graphs and Queries

Figure 5.6. Non-determinism during Tableau Expansion with Role Inheritance

𝑥

∃𝑟 .𝐴,
∃ 𝑞 .𝐴

𝑦

𝐴
𝑞, (𝑟)

(a)𝐺𝑠⊑∃,𝑞

𝑥

∃𝑟 .𝐴,
∃ 𝑞 .𝐴

𝑦

𝐴

𝑧

𝐴

𝑟

𝑞

(b)𝐺𝑠⊑∃,𝑟

Because 𝑞 ∈ 𝑟 ↓ from 𝖱𝖡𝗈𝗑⊑∃, this prevents generation of a second node for

(𝑥 ∶ ∃ 𝑞 .𝐴). However, when (𝑥 ∶ ∃ 𝑟 .𝐴) is expanded first, we get

𝐺𝑠⊑∃,𝑟 = (𝑉⊑∃,𝑟, 𝐸⊑∃,𝑟, ℒ⊑∃,𝑟)

= ({𝑥, 𝑦, 𝑧} , {𝑟(𝑥, 𝑦), 𝑞(𝑥, 𝑧)} , { (𝑥 ∶ ∃ 𝑟 .𝐴) , (𝑥 ∶ ∃ 𝑞 .𝐴) ,
(𝑦 ∶ 𝐴) , (𝑧 ∶ 𝐴)

})

(5.28)

For 𝐺𝑠⊑∃,𝑟, the concept description (𝑥 ∶ ∃ 𝑞 .𝐴) is expanded first. Because having
an 𝑟-successor does not imply a 𝑞-successor, expansion of (𝑥 ∶ ∃ 𝑟 .𝐴) is performed
afterwards, generating a new successor 𝑧.

The corresponding queries are

𝑄⊑∃,𝑞 = ⊤(?𝑥), 𝑞(?𝑥, ?𝑦), 𝐴(?𝑥) (5.29)

𝑄⊑∃,𝑟 = ⊤(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐴(?𝑥), 𝑞(?𝑥, ?𝑧), 𝐴(?𝑧) (5.30)

137

5. Completion Graph Based Mapping

Figure 5.7. 𝐾𝐵2⊑∃: Query Coverage over Knowledge Bases

𝑎

𝑏

𝐴,𝐵

𝑐

𝐴,𝐵

𝑞

𝑞

A closer look shows us that the interpretations of both queries are indeed the same.

This has to be the case since otherwise the ∃-rule from the tableau would be faulty
as it would change interpretations. However, 𝑄⊑∃,𝑟 clearly differs from 𝑄⊑∃,𝑞 not

only syntactically. To illustrate this, consider the knowledge base (figure 5.7)

𝐾𝐵2⊑∃ = {⊤(𝑎), 𝑞(𝑎, 𝑏), 𝑞(𝑎, 𝑐), 𝐴(𝑏),𝐵(𝑏), 𝐴(𝑐),𝐵(𝑐)} (5.31)

With𝑄⊑∃,𝑞, we need to assign either {𝑎, 𝑏} or {𝑎, 𝑐} to the query variables {?𝑥, ?𝑦}.
If𝑄⊑∃,𝑟 is chosen, instead, it is possible to cover both alternatives and an additional

third one (with an additional symmetric). For the variables {?𝑥, ?𝑦, ?𝑧} the assign-
ments {𝑎, 𝑏, 𝑏}, {𝑎, 𝑐, 𝑐}, and {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑏} are all possible and are also proper
interpretations of the initial completion graph.

The implemented solution is to this change the precondition of the ∃-rule in Lil-
lyTab’s tableau (tables 4.3 and 4.4). Instead of demanding that a suitable successor

with the qualified concept does not exist, the precondition is changed so that the ∃-
rule can be invoked only once for each existential restriction term. This gives pref-

erence to larger (e.g. figure 5.5b and 5.6b) completion graphs, however it makes

the ∃-rule deterministic without resolving to an expensive recursive reasoner in-
vocation. The modified rule is easily implemented via the existing dependency

tracking mechanism.

138

5.2. A Mapping Tableau

5.1.7. Benefits of Completion Graph Representation

In this chapter, a relationship between conjunctive queries and description logic

completion graphs has been established. The mapping DL tableau allows for gen-

eration of conjunctive queries frommany completion graphs as well as generation

of completion graphs from all conjunctive queries.

The benefit of this duality is the fact that DL completion graph make exactly that

information explicit that is only contained implicitly within a conjunctive query.

Referring back to our example from section 1.2, we can identify some advantages:

1. In the source ontology (figure 1.3), the tableau will yield four distinct models

for the different values (𝗉𝗅𝖺𝗌𝗍𝖾𝗋, 𝖻𝗋𝗂𝖼𝗄, 𝗅𝖾𝖺𝖽, 𝗈𝗍𝗁𝖾𝗋) that are allowed to appear
for the 𝗎𝗌𝖾𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅 data property. We can use this as an indicator that distinct
rules are required to map all cases.

2. In the target ontology, (figure 1.4), the fact that𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀 is ameasurement
becomes apparent because of the concept inheritance. Since we perform a

full reasoning run, we capture all logical consequences. Existing ontology

matchers heuristically capture only a few constraints, e.g. direct subclass re-

lations.

3. In the target ontology, the fact that 𝖿𝗂𝗅𝗅𝖾𝖽𝖶𝗂𝗍𝗁 is a subproperty of 𝗎𝗌𝖾𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅
will be readily apparent from the tableau. This gives us exactly the important

piece of information to align 𝖿𝗂𝗅𝗅𝖾𝖽𝖶𝗂𝗍𝗁 with 𝗎𝗌𝖾𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅.

4. When (manually) introducing one of the subconcepts 𝖯𝗅𝖺𝗌𝗍𝖾𝗋, 𝖲𝗅𝖺𝗍𝖾, 𝖡𝗋𝗂𝖼𝗄 or
𝖫𝖾𝖺𝖽, we immediately gain the disjointness assertions.

5.2 A Mapping Tableau

While the basic tableau algorithm is already suitable to transform many comple-

tion graphs into a “mappable” saturated form, we have seen that it is insuffi-

cient in some cases and may even generate non-deterministic results with non-

empty 𝖱𝖡𝗈𝗑es. To facilitate extraction of conjunctive queries from DL completion
graphs, a modified tableau is therefore required.

139

5. Completion Graph Based Mapping

The newmapping tableau operates on a modified completion graph structure, that

is augmented with three additional sets 𝜅, the governing terms, 𝖣𝖾𝗉 the dependency
map and𝖬𝖾𝗋 the merge map.

In 𝜅𝜅𝜅 we keep track of those axioms that are important to the representation of
the whole graph. Any representation created for the completion graph can

start with the governing terms. Colloquially, the governing terms (together

with some related axioms) contain all the information needed to represent a

completion graph.

𝖣𝖾𝗉𝖣𝖾𝗉𝖣𝖾𝗉 keeps track of the reasoning process by recording the dependencies between
concept axioms inserted into the completion graph.

For example, when {𝐴 ⊓ 𝐵} is unfolded to {𝐴 ⊓ 𝐵,𝐴,𝐵}, we keep track of
the fact that 𝐴 and 𝐵 were generated from 𝐴 ⊓ 𝐵 in the dependency map.

𝖬𝖾𝗋𝖬𝖾𝗋𝖬𝖾𝗋 keeps track of node merges performed during tableau operation.

Because there is no room for confusion, as the augmented graph simply extends

the basic completion graph with a additional sets, the same letters𝐺 and 𝔾 will be
used to represent augmented completion graphs.

Because of the new sets 𝜅, 𝖣𝖾𝗉 and 𝖬𝖾𝗋, a new 𝗆𝖾𝗋𝗀𝖾-function is also required.
The same translation that is required for ℒ –rewriting all terms that refer to the

source to refer to the target node of the merge– needs to be performed for 𝜅 and
𝖣𝖾𝗉. 𝖺𝗎𝗀𝗆𝖾𝗋𝗀𝖾 (function 5.2) performs the respective merge adoptions for 𝜅,𝖣𝖾𝗉,
and𝖬𝖾𝗋.

Tables 5.1 and 5.2 show the formal definition of themodified tableau. Consistency

checking conditions are the same as with the original tableau. In comparison to

the original tableau (tables 4.3 and 4.4), most of the rules have been modified only

slightly. Tableau completion is started with 𝜅 initialized to ℒ. 𝖣𝖾𝗉 and 𝖬𝖾𝗋 are
initially empty.

⊓⊓⊓ and ⊔⊔⊔ The ⊓- and ⊔-rules are extended to propagate the governing term to their
sub-axioms and are otherwise unchanged. The ⊔-rule unconditionally cre-
ates new governing terms in the branches (𝐺𝑘+1, 𝐺𝑘+2) because the intro-

duced axioms are needed to differentiate the individual branches.

140

5.2. A Mapping Tableau

Definition 5.3 Augmented DL Completion Graph
An augmented DL completion graph over a logical language 𝐿 (with signature Σ𝐿)
is a 6-tuple 𝐺 ≡def (𝑉 ,𝐸,ℒ, 𝜅,𝐷,𝑀) with

𝑉𝑉𝑉 a set of nodes 𝑉 ⊂ 𝑁 forming the vertices of a graph, with 𝑁 a totally ordered,
countable, infinite set of node identifiers.

𝐸𝐸𝐸 a set of edges labelled with role names from ℛ, 𝐸 ⊆ ℛ× 𝑉 × 𝑉 .

We write 𝑟(𝑥, 𝑦) ∈ 𝐸, if (𝑟, 𝑥, 𝑦) ∈ 𝐸.

ℒℒℒ a set of concept labels, ℒ ⊆ 𝑉 × Σ𝐿.

We write (𝑥 ∶ 𝐶) ∈ ℒ if (𝑥, 𝐶) ∈ ℒ and ℒ[𝑥] ≡def {𝐶| (𝑥 ∶ 𝐶) ∈ ℒ}.

𝜅𝜅𝜅 a set of concept labels. 𝜅 ⊆ ℒ
Once again, we write (𝑥 ∶ 𝐶) ∈ 𝜅 if (𝑥, 𝐶) ∈ 𝜅 and
𝜅[𝑥] ≡def {𝐶| (𝑥 ∶ 𝐶) ∈ 𝜅}.
If (𝑥 ∶ 𝐶) ∈ 𝜅, we call (𝑥 ∶ 𝐶) a governing term.

𝖣𝖾𝗉𝖣𝖾𝗉𝖣𝖾𝗉 the dependency map. 𝐷 ⊆ ℒ×ℒ.

We write (𝑥 ∶ 𝐴 → 𝑦 ∶ 𝐵) ∈ 𝖣𝖾𝗉 if (𝑥,𝐴, 𝑦,𝐵) ∈ 𝖣𝖾𝗉. (𝑥 ∶ 𝐴 → 𝑦 ∶ 𝐵) ∈ 𝖣𝖾𝗉
indicates that the concept 𝐵 at the node 𝑦 was introduced as a logical conse-
quence of the concept 𝐴 at the node 𝑥.

𝖬𝖾𝗋𝖬𝖾𝗋𝖬𝖾𝗋 the merge map. 𝖬𝖾𝗋 ⊆ 𝑁 ×𝑁 .

If (𝑥, 𝑦) ∈ 𝖬𝖾𝗋, 𝑥 was merged into 𝑦.

141

5. Completion Graph Based Mapping

Function 5.2: augmerge(G, t, s)

Input: 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝐷,𝑀) an augmented DL completion graph
𝑡 ∈ 𝐸 the target node of the merge
𝑠 ∈ 𝐸 the source node of the merge

Output: 𝐺𝑚 = (𝑉𝑚, 𝐸𝑚, ℒ𝑚, 𝜅𝑚, 𝖣𝖾𝗉𝑚,𝖬𝖾𝗋𝑚)
begin

1 if 𝑡 is anonymous and 𝑠 is not anonymous then
2 𝐺𝑚 ← 𝖺𝗎𝗀𝗆𝖾𝗋𝗀𝖾(𝐺, 𝑠, 𝑡);

else
3 𝑉𝑚 ← 𝑉 − {𝑠};

/* Merge successor and predecessor links */
4 𝐸𝑚 ← (𝐸 − {𝑟(𝑥, 𝑦)|𝑥 = 𝑠 ∨ 𝑦 = 𝑠})

∪ {𝑟(𝑥, 𝑡)|𝑟(𝑥, 𝑠) ∈ 𝐸}
∪{𝑟(𝑡, 𝑦)|𝑟(𝑠, 𝑦) ∈ 𝐸};

/* Merge node axiom sets to target */
5 ℒ𝑚 ← (ℒ− {(𝑠 ∶ 𝐶) | (𝑠 ∶ 𝐶) ∈ ℒ})

∪ {(𝑡 ∶ 𝐶) | (𝑠 ∶ 𝐶) ∈ ℒ};
/* Merge governing terms to target */

6 𝜅𝑚 ← (𝜅 − {(𝑠 ∶ 𝐶) | (𝑠 ∶ 𝐶) ∈ 𝜅})
∪ {(𝑡 ∶ 𝐶) |𝐶 ∈ 𝜅[𝑠]};

/* Merge source dependency entries to target */
7 𝖣𝖾𝗉𝑚 ←(𝖣𝖾𝗉 − {(𝑥 ∶ 𝐶) |𝑥 = 𝑠 ∨ 𝑥 = 𝑡})

∪ {(𝑡 ∶ 𝐶 → 𝑦 ∶ 𝐷) |𝑦 ≠ 𝑠 ∧ (𝑠 ∶ 𝐶 → 𝑦 ∶ 𝐷) ∈ 𝖣𝖾𝗉}
∪ {(𝑥 ∶ 𝐶 → 𝑡 ∶ 𝐷) |𝑥 ≠ 𝑠 ∧ (𝑥 ∶ 𝐶 → 𝑠 ∶ 𝐷) ∈ 𝖣𝖾𝗉}
∪ {(𝑡 ∶ 𝐶 → 𝑡 ∶ 𝐷) | (𝑠 ∶ 𝐶 → 𝑠 ∶ 𝐷) ∈ 𝖣𝖾𝗉};

/* Record merge operation */
8 𝖬𝖾𝗋𝑚 ←𝖬𝖾𝗋 ∪ {(𝑠, 𝑡)};
9 𝐺𝑚 ← (𝑉𝑚, 𝐸𝑚, ℒ𝑚, 𝜅𝑚, 𝖣𝖾𝗉𝑚,𝖬𝖾𝗋𝑚);

end
10 return 𝐺𝑚;
end

142

5.2. A Mapping Tableau

∀∀∀ The ∀-rule propagates governing terms into successors only if the supplied role
is functional and a successor already exists. Otherwise the ∀-axiom is kept

as a governing term, unmodified.

∃∃∃ The ∃-rule is modified so that each existential quantification axiom is expanded
exactly once.

This automatically implies termination of the algorithm, because the termi-

nation proof for blocking presented in [Tob01, p. 105] is still valid. There is

only a finite number of ∃-axioms inside the completion graph and its 𝖳𝖡𝗈𝗑
and no tableau operation removes axioms from an axiom set. Consequently,

all ∃-axioms in a node will be expanded exactly once.

Soundness is guaranteed, because themodified rule always createsmore suc-

cessors than the original tableau. The number of ∃-invocations is strictly
higher than that of the original tableau.

ℱℱℱ and 𝑜𝑜𝑜 The ℱ and 𝑜 rules have not been modified from their initial version.

Tracking of governing terms 𝜅 for both rules is performed by the modified
𝖺𝗎𝗀𝗆𝖾𝗋𝗀𝖾 function

5.2.1. Extracting the Conjunctive Query

The tableau starts with an initial completion graph

𝐺0 = (𝑉0, 𝐸0, ℒ0, 𝜅0, 𝖣𝖾𝗉0,𝖬𝖾𝗋0)

After tableau completion, we get a set of saturated completion graphs 𝔾𝑠. For sim-

plicity, we assume that there is only a single saturated completion graph𝐺𝑠 ∈ 𝔾𝑠.

If there aremultiple completion graphs, the algorithm needs to be applied to every

single saturated graph.

143

5. Completion Graph Based Mapping

Table 5.1. Tableau Rules for the Mapping Tableau, part 1
Given a set 𝔾 = {𝐺1,… ,𝐺𝑚} of augmented DL completion graphs, for each
graph 𝐺𝑘 ∈ 𝔾 and each node 𝑥 ∈ 𝐺𝑘, repeat the following rules until no rule is
applicable any more:

⊓⊓⊓-rule if 1. 𝑥 is not blocked
2. ∃𝐶,𝐷 . (𝑥 ∶ 𝐶 ⊓ 𝐷) ∈ ℒ𝑘
3. not {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)} ⊆ ℒ𝑘

then update ℒ𝑘 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)},
update𝖣𝖾𝗉𝑘 ← 𝖣𝖾𝗉𝑘∪{(𝑥 ∶ 𝐶 ⊓ 𝐷 → 𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐶 ⊓ 𝐷 → 𝑥 ∶ 𝐷)}.
if (𝑥 ∶ 𝐶 ⊓ 𝐷) ∈ 𝜅𝑘,
then update 𝜅𝑘 ← (𝜅𝑘 − {(𝑥 ∶ 𝐶 ⊓ 𝐷)})

𝜅𝑘 ← 𝜅𝑘 {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)}.

⊔⊔⊔-rule if 1. 𝑥 is not blocked
2. ∃𝐶,𝐷 . (𝑥 ∶ 𝐶 ⊔ 𝐷) ∈ ℒ𝑘,
3. {(𝑥 ∶ 𝐶) , (𝑥 ∶ 𝐷)} ∩ ℒ𝑘 = ∅,

then create two fresh successor graphs 𝐺𝑘+1, 𝐺𝑘+2 and set
𝐺𝑘+1 ← 𝐺𝑘 𝐺𝑘+2 ← 𝐺𝑘

ℒ𝑘+1 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝐶)} ℒ𝑘+2 ← ℒ𝑘 ∪ {(𝑥 ∶ 𝐷)}

𝜅𝑘+1 ← (𝜅𝑘 − {(𝑥 ∶ 𝐶 ⊔ 𝐷)}) 𝜅𝑘+2 ← (𝜅𝑘 − {(𝑥 ∶ 𝐶 ⊔ 𝐷)})
𝜅𝑘+1 ← (𝜅𝑘 ∪ {(𝑥 ∶ 𝐶)}) 𝜅𝑘+2 ← (𝜅𝑘 ∪ {(𝑥 ∶ 𝐷)})

𝔾 ← (𝔾 −𝐺𝑘) ∪ {𝐺𝑘+1, 𝐺𝑘+2}.

∀∀∀-rule if 1. 𝑥 is not blocked,
2. ∃ 𝑟, 𝐶 . (𝑥 ∶ ∀ 𝑟 . 𝐶) ∈ ℒ𝑘,

then for all 𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ with 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘
update ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)},
update 𝖣𝖾𝗉𝑘 ← 𝖣𝖾𝗉𝑘 ∪ {(𝑥 ∶ ∀ 𝑟 . 𝐶 → 𝑦 ∶ 𝐶)},
if 1. 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟),

2. (𝑥 ∶ ∀ 𝑟 . 𝐶) ∈ 𝜅𝑘,
3. ∃ 𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ . 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘,

then 𝜅𝑘 ← (𝜅𝑘 − {(𝑥 ∶ ∀ 𝑟 . 𝐶)}) ∪ {(𝑦 ∶ 𝐶)}.

∀+∀+∀+-rule if 1. 𝑥 is not blocked,
2. 𝗍𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗏𝖾(𝑟),
3. ∃ 𝑟, 𝐶 . (𝑥 ∶ ∀ 𝑟 . 𝐶) ∈ ℒ𝑘,

then for all 𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ with 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘
update ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ ∀ 𝑟 . 𝐶)},
update 𝖣𝖾𝗉𝑘 ← 𝖣𝖾𝗉𝑘 ∪ {(𝑥 ∶ ∀ 𝑟 . 𝐶 → ∀𝑟 .𝐶)}.

144

5.2. A Mapping Tableau

Table 5.2. Tableau Rules for the Mapping Tableau, part 2
Continued from table 5.1.
Given a set 𝔾 = {𝐺1,… ,𝐺𝑚} of augmented DL completion graphs, for each
graph 𝐺𝑘 ∈ 𝔾 and each node 𝑥 ∈ 𝐺𝑘, repeat the following rules until no rule is
applicable any more:

∃∃∃-rule if 1. 𝑥 is not blocked,
2. (𝑥 ∶ ∃ 𝑟 . 𝐶) ∈ ℒ𝑘,
3. ∄𝑦 ∈ 𝑉𝑘 . 𝑟(𝑥, 𝑦) ∈ 𝐸𝑘 ∧ (𝑥 ∶ ∃ 𝑟 . 𝐶 → 𝑦 ∶ 𝐶) ∈ 𝖣𝖾𝗉,

then if 1. 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟),
2. ∃ 𝑦 ∈ 𝑉𝑘, 𝑞 ∈ 𝑟↓ . 𝑞(𝑥, 𝑦) ∈ 𝐸𝑘,

then set ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)},
else obtain a fresh, anonymous node 𝑦 ∈ 𝑁 ,

set 𝑉𝑘 ← 𝑉𝑘 ∪ {𝑦},
𝐸𝑘 ← 𝐸𝑘 ∪ {𝑟(𝑥, 𝑦)}, and
ℒ𝑘 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)}

update 𝖣𝖾𝗉𝑘 ← 𝖣𝖾𝗉𝑘 ∪ {(𝑥 ∶ ∃ 𝑟 . 𝐶 → 𝑦 ∶ 𝐶)}.
if (𝑥 ∶ ∃ 𝑟 . 𝐶) ∈ 𝜅𝑘,
then update 𝜅𝑘 ← (𝜅𝑘 − {(𝑥 ∶ ∃ 𝑟 . 𝐶)}) ∪ {(𝑦 ∶ 𝐶)}.

ℱℱℱ-rule if 1. 𝑥 is not blocked,
2. 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟),
3. ∃ 𝑦, 𝑧 . {𝑟(𝑥, 𝑦), 𝑟(𝑥, 𝑧)} ⊆ 𝐸𝑘,

then 𝐺𝑘 ← 𝖺𝗎𝗀𝗆𝖾𝗋𝗀𝖾 (𝐺𝑘, 𝑧, 𝑦).

𝑜𝑜𝑜-rule if 1. 𝑥 is not blocked,
2. ∃ 𝑎 ∈ ℐ . {𝑎} ∈ ℒ𝑘[𝑥],

then 𝐺𝑘 ← 𝖺𝗎𝗀𝗆𝖾𝗋𝗀𝖾 (𝐺𝑘, 𝑥, 𝑎).

145

5. Completion Graph Based Mapping

If the governing term set 𝜅 of a saturated tableau graph generated using the map-
ping tableau contains only references to atomic concepts, it can be converted using

a relatively simple algorithm. Fundamental to the algorithm is the fact that a node

in the saturated graph is either 1. a core node, that was already part of the initial

graph 𝐺0, 2. was generated by some ∃-axiom.

Definition 5.4 Generating Existential Dependency
Given an augmented completion graph𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋), a dependency
map entry of the form

∃ 𝑦 . (𝑥 ∶ ∃ 𝑟 . 𝐶 → 𝑦 ∶ 𝐶) ∈ 𝖣𝖾𝗉 ∧ 𝑟(𝑥, 𝑦) ∈ 𝐸
is called a generating existential dependency.
The dependency indicates that the node 𝑦 was generated by the application of the
∃-rule from 𝑥.

Consequently, each node in the saturated completion graph is either a core node

or there is a sequence of ∃-expansions that lead back to a core node. There are
some particularities when core nodes are merged with other nodes, but the basic

principle remains valid even then. The extraction algorithm can make use of the

fact that every generated node can be traced back to a node that already existed in

the initial graph. With this information, it is already possible to sketch the basic

transformation algorithm:

1. For each node 𝑥 that also appears in the initial graph 𝐺0

• if ℒ𝑥 contains a governing term, i.e. 𝜅[𝑥] ≠ ∅, represent 𝑥 using the
governing terms,

• otherwise represent 𝑥 as ⊤(?𝑥) (using an appropriate query node map-
ping 𝜎).

2. Represent all role links already present in the initial graph 𝐺0.

3. Pick one of the nodes from the saturated graph 𝐺𝑠 that contains at least one

governing term. This includes nodes that where already present in the initial

graph.

4. Follow all paths across existential generations ((𝑥 ∶ ∃ 𝑟 . 𝐶 → 𝑦 ∶ 𝐶) ∈ 𝖣𝖾𝗉𝑠)
until the path reaches a node already covered.

146

5.2. A Mapping Tableau

5. Represent all nodes on the path and all connections on the path in the query.

Roles are represented as binary predicates 𝑟(?𝑥, ?𝑦) and nodes are repre-
sented using their governing terms or using ⊤(?𝑦).

6. Repeat until all governing terms have been consumed.

It is best to show the principal operation by a representative example. Assume

that we want to convert the concept axiom

({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎}) (5.32)

into a conjunctive query. The initial completion graph for this concept description

is (see also figure 5.8a):

𝐺0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉0 = {𝑥} ,
𝐸0 = ∅,
ℒ0 = {(𝑥 ∶ ({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎}))} ,
𝜅0 = {(𝑥 ∶ ({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎}))} ,
𝖣𝖾𝗉0 = ∅,
𝖬𝖾𝗋0 = ∅

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that we use a slightly different notation here than in section 5.1, mixing the

equality sign into the definition of the graph elements. While not formally correct,

this change makes for improved reading for the six-tuple of the augmented graph.

147

5. Completion Graph Based Mapping

Figure 5.8. Query Extraction using the Mapping Tableau

𝑥

{𝑎}⊓∃ 𝑟 . ∃ 𝑟 . {𝑎}
(a)𝐺0

𝑎
{𝑎}, ∃ 𝑟 . ∃ 𝑟 . {𝑎},
({𝑎}⊓∃ 𝑟 . ∃ 𝑟 . {𝑎})

(b)𝐺1

𝑎
{𝑎}, ∃ 𝑟 . ∃ 𝑟 . {𝑎},

({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎})

𝑦

∃ 𝑟 . {𝑎}
𝑟

(c)𝐺2

𝑎
{𝑎}, ∃ 𝑟 . {𝑎},

({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎})

𝑦

∃ 𝑟 . {𝑎}
𝑟

𝑟

(d)𝐺3

After processing of the⊓-rule, the graph𝐺1 (figure 5.8b) is produced by the tableau:

𝐺1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉1 = {𝑎} ,
𝐸1 = ∅,
ℒ1 = {(𝑎 ∶ {𝑎}) , (𝑎 ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎}) , (𝑎 ∶ {𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎})} ,
𝜅1 = {(𝑎 ∶ {𝑎}) , (𝑎 ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎})} ,

𝖣𝖾𝗉1 = { (𝑎 ∶ ({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎}) → 𝑎 ∶ {𝑎}) ,
(𝑎 ∶ ({𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎}) → 𝑎 ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎})

}

𝖬𝖾𝗋1 = {(𝑥, 𝑎)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑥 has been merged as a consequence of the 𝑜-rule and is now represented by the
distinct individual 𝑎. Note, that the governing term set has changed and the gov-

erning terms are now the expanded sub-axioms ({𝑎}) and (∃ 𝑟 . ∃ 𝑟 . {𝑎})). The
dependency map 𝖣𝖾𝗉 contains a record of the performed transformations: the
initial concept is recorded as the parent of both sub-axioms. Since entries in the

dependencymap𝖣𝖾𝗉 and the concept axiom setℒ are rather large, representation
of 𝖣𝖾𝗉 and ℒ will be limited to the relevant axioms to reduce visual clutter.

In the next step, the tableau evaluates the axiom (𝑎 ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎}) and we obtain
𝐺2 (fig. 5.8c):

148

5.2. A Mapping Tableau

𝐺2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉2 = {𝑎, 𝑦} ,
𝐸2 = {𝑟(𝑎, 𝑦)} ,
ℒ2 = {… , (𝑦 ∶ ∃ 𝑟 . {𝑎})} ,
𝜅2 = {({𝑎} ∶ {𝑎}) , (𝑦 ∶ ∃ 𝑟 . {𝑎})} ,
𝖣𝖾𝗉2 = {… , ({𝑎} ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎} → 𝑦 ∶ ∃ 𝑟 . {𝑎})} ,
𝖬𝖾𝗋2 = {(𝑥, 𝑎)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

When 𝑦 is generated, the governing term ({𝑎} ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎}) is removed from 𝑎
(previously 𝑥) and (𝑦 ∶ ∃ 𝑟 . {𝑎}) is added to 𝜅. The governing term is thus simpli-

fied and moves from 𝑎 to 𝑦.

As a final tableau step, the axiom (𝑦 ∶ ∃ 𝑟 . {𝑎}) is expanded. This results in an
𝑟-successor 𝑧 of 𝑦 which is automatically merged with 𝑎 because of the nominal
reference {𝑎}. The resulting graph is (see also figure 5.8d):

𝐺3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉3 = {𝑎, 𝑦} ,
𝐸3 = {𝑟(𝑎, 𝑦), 𝑟(𝑦, 𝑎)} ,
ℒ3 = ℒ2,
𝜅3 = {({𝑎} ∶ {𝑎})} ,
𝖣𝖾𝗉3 = {… , (𝑦 ∶ ∃ 𝑟 . {𝑎} → 𝑎 ∶ {𝑎})} ,
𝖬𝖾𝗋3 = {(𝑥, 𝑎)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In 𝐺3 no tableau rules are applicable and there are no clashes, so 𝐺3 is saturated

(i.e. 𝐺3 = 𝐺𝑠1. The governing term set 𝜅3 contains only a single, atomic concept

axiom which indicates that it is indeed possible to convert 𝐺3 into a conjunctive

query.

149

5. Completion Graph Based Mapping

The next step in the conversion algorithm is the representation of the all those

nodes that were already present in the initial graph. Because the initial node 𝑥
was merged into the named node 𝑎, the set of nodes that are remaining from the

initial graph is empty as 𝑥 is not present any more. It is, however, clear that 𝑎
must be represented in the query.

To solve this issue, it is possible to make use of the merge map. Tracking is pro-

vided by function𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉 (function 5.3) that takes as input a graph node identi-
fier 𝑥 and returns the equivalent of 𝑥 after node merging. If 𝑥 was never merged,
𝑥 is returned unmodified.

Function 5.3:mergeMap(G, x)

1 Input: 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋) an augmented completion graph
𝑥 ∈ 𝐸 a node in 𝐺

2 Result: 𝑥𝑚: the merge-mapped node corresponding to 𝑥 or 𝑥, if 𝑥 was never
merged.

begin
3 if ∃ 𝑦 . (𝑥, 𝑦) ∈ 𝖬𝖾𝗋 then
4 𝑥𝑚 ← 𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉(𝑦);

else
5 𝑥𝑚 ← 𝑥;

end
6 return 𝑥𝑚;
end

The core mapping algorithm only represents those nodes that are returned by the

function𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉. For example, for 𝐺3, 𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉(𝐺3, 𝑥) returns 𝑎. Represen-
tation of 𝑎 is performed by a second function 𝗋𝖾𝗉𝗋 (function 5.4).

𝗋𝖾𝗉𝗋 creates a representation of a node 𝑥 in a graph 𝐺𝑠 paying respect to the gov-

erning terms of 𝑥. If 𝜅𝑠[𝑥] is empty, 𝑥’s representation is simply⊤(?𝑥). Otherwise
𝑥 is represented using its governing terms: for each 𝐴 ∈ 𝜅𝑠[𝑥], 𝑥 is represented
as 𝐴(?𝑥). 𝗋𝖾𝗉𝗋 needs as input a query node mapping (see definition 5.2); for the
example, we use 𝜎𝑞 = {𝑎 ↦ 𝑎, 𝑦 ↦ ?𝑦}. Because nominals are already handled
by the query node mapping, governing terms referencing a nominal axiom can be

safely ignored. In the example, 𝗋𝖾𝗉𝗋 represents 𝑎 as ⊤(𝑎).

150

5.2. A Mapping Tableau

Function 5.4: repr(G, x, 𝜎𝑞)

Input: 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋) an augmented DL completion graph
𝑥 the node to represent
𝜎𝑞 a query node mapping for 𝐺

Result: 𝑄: A set of query axioms representing 𝑥 in 𝐺.
initialise:;

1 𝑄 ← ∅;
begin

2 if 𝜅[𝑥] ≠ ∅ then
3 foreach (𝑥 ∶ 𝐶) ∈ 𝜅[𝑥] ∧ 𝐶 ≠ {𝑎} do
4 𝑄 ← 𝑄∪ {𝐶(𝜎−1

𝑞 [𝑥])};
end

else
5 𝑄 ← 𝑄∪ {⊤(𝜎−1

𝑞 [𝑥])};
end

6 return 𝑄;
end

Conversion of the completion graph𝐺3 into a conjunctive query proceeds as sketched:

• 𝑎 is mapped from 𝑥 in the graph and 𝜅3[𝑥] = {(𝑥 ∶ {𝑎})}. Because {𝑎} is a
nominal reference, it is already represented by the query node mapping and

not processed further.

We represent 𝑥 (from the original graph 𝐺0) as ⊤(𝑎).

• Since there is only one core node and this core node has no role that refers

to itself, no core roles are represented.

• However, 𝑎 has a generating existential dependency (𝑦 ∶ ∃ 𝑟 . {𝑎} → 𝑎 ∶ 𝑎),
which must be followed. The generating dependency points to 𝑦.

As a consequence, 𝑟(𝑎, ?𝑦) is added to the conjunctive query.

• 𝑦 does not appear in the initial graph and also has no governing terms, i.e.
𝜅3[𝑦] = ∅. 𝑦 is therefore represented using ⊤(?𝑦).

𝑦 has a single generating existential dependency

({𝑎} ∶ ∃ 𝑟 . ∃ 𝑟 . {𝑎} → ∃ 𝑟 . {𝑎} ∶ ∃ 𝑟 . {𝑎}).

151

5. Completion Graph Based Mapping

The generating dependency points back to 𝑎. Since 𝑥 is present in the initial
graph, no further tracking of ∃-expansion is required.

As a consequence of the generating dependency, 𝑟(?𝑦, 𝑎) is added to the con-
junctive query.

• The resulting query is ⊤(𝑎), 𝑟(𝑎, ?𝑦), 𝑟(?𝑦, 𝑎),⊤(?𝑦).

And this is indeed in line with the interpretation of the initial concept de-

scription {𝑎} ⊓ ∃ 𝑟 . ∃ 𝑟 . {𝑎}

The example has shown how nodes from saturated completion graphs are repre-

sented within conjunctive query terms. It has also been shown how tracking of

generating existential dependencies can be used to generate a proper representa-

tion of many completion graphs as a conjunctive query.

The algorithm itself is split into two parts: the generation of the query terms for the

core graph 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖢𝗈𝗋𝖾𝖰𝗎𝖾𝗋𝗒 (function 5.5) and the resolution of the existential
generating dependencies for all graph nodes with governing terms in function

𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖰𝗎𝖾𝗋𝗒 (function 5.6).

Within 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖢𝗈𝗋𝖾𝖰𝗎𝖾𝗋𝗒 𝑋0 represents the merged set of nodes from 𝐺0 still

present in 𝐺𝑠. If some 𝑥0 ∈ 𝑋0 was merged into another node, we track this

merge (using, 𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉, function 5.3). The loop in line 3 inserts the representa-
tions of core nodes into the result query𝑄. The loop in line 5 creates all role links
required to represent the initial graph. The condition in line 6 is an optimization

so that only the smallest roles for any link are represented. Role axioms where we

have a subrole link between the same source and target node are not created.

Returned from 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖢𝗈𝗋𝖾𝖰𝗎𝖾𝗋𝗒 is a set of query terms that map the nodes that
where already present in the initial graph. After generating the core query using

the already defined 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖢𝗈𝗋𝖾𝖰𝗎𝖾𝗋𝗒 (function 5.5), the remaining nodes that
have at least one governing term are considered.

152

5.2. A Mapping Tableau

Function 5.5: generateCoreQuery(𝐺0, 𝐺𝑠, 𝜎𝑞)

Input: 𝐺0 = (𝑉0, 𝐸0, ℒ0, 𝜅0, 𝖣𝖾𝗉0,𝖬𝖾𝗋𝑠) An augmented DL completion
graph

𝐺𝑠 = (𝑉𝑠, 𝐸𝑠, ℒ𝑠, 𝜅𝑠, 𝖣𝖾𝗉𝑠,𝖬𝖾𝗋𝑠) The saturated, augmented DL
completion graph generated
from 𝐺0 using the mapping
tableau

𝜎𝑞 a query node mapping for all
nodes in 𝐺𝑠

Result: 𝑄: A conjunctive query
initialize:;

1 𝑄 ← ∅;
begin

2 𝑋0 ← {𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉(𝐺𝑠, 𝑥)|𝑥 ∈ 𝑉0};
3 foreach 𝑥0 ∈ 𝑋0 do
4 𝑄 ← 𝑄∪ repr(𝐺0, 𝑥, 𝜎𝑞);

end
5 foreach 𝑟(𝑥, 𝑦) ∈ 𝐸 do
6 if {𝑥, 𝑦} ⊆ 𝑋0 ∧ (∄𝑞 . 𝑞 ≠ 𝑟 ∧ 𝑞 ∈ 𝑟↓ ∧𝑞(𝑥, 𝑦) ∈ 𝐸) then
7 𝑄 ← 𝑄∪ {𝑟(𝜎−1

𝑞 [𝑥], 𝜎−1
𝑞 [𝑦])};

end
end

8 return Q ;
end

153

5. Completion Graph Based Mapping

To represent non-core axioms, 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖰𝗎𝖾𝗋𝗒 (function 5.6) continues processing.
In 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖰𝗎𝖾𝗋𝗒, the set 𝑌 is the open list, containing those nodes that still need
to be processed. 𝑌 is initialized to the set of those nodes, that have at least one gov-
erning term (line 4). The algorithm picks a node 𝑦 ∈ 𝑌 and adds its representation
to the query (line 10).

The algorithm builds a list of generating nodes (i.e. those that have an existential

axiom that is expanded into 𝑦 and adds role links from the generating node 𝑧 to 𝑦
(line 12). Because 𝒮ℋ𝒪ℱ has the tree model property and𝐺𝑠 is therefore a forest

with the root nodes in the core nodes 𝑋0, 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖰𝗎𝖾𝗋𝗒 always terminates.

Function 5.6: generateQuery(𝐺0, 𝐺𝑠)

Input: 𝐺0 = (𝑉0, 𝐸0, ℒ0, 𝜅0, 𝖣𝖾𝗉0) an augmented completion graph
𝐺𝑠 = (𝑉𝑠, 𝐸𝑠, ℒ𝑠, 𝜅𝑠, 𝖣𝖾𝗉𝑠) one of the saturated, augmented

completion graphs for 𝐺0 generated
using the mapping tableau

Result: 𝑄: A conjunctive query
initialize:;

1 𝜎𝑞 ← a query node mapping for 𝐺𝑠;
2 𝑄 ←generateCoreQuery (𝐺0, 𝐺𝑆, 𝜎𝑞);
3 𝑋0 ← {𝗆𝖾𝗋𝗀𝖾𝖬𝖺𝗉(𝐺𝑠, 𝑥)|𝑥 ∈ 𝑉0};
4 𝑌 ← {𝑦 ∈ 𝑉𝑠|𝜅𝑠[𝑦] ≠ ∅};
5 𝑍 ← 𝑉𝑠 −𝑋0;
begin

6 while 𝑌 ≠ ∅ do
7 pick a node 𝑦 from 𝑌 ;
8 𝑌 ← 𝑌 − {𝑦};
9 𝑍 ← 𝑍 − {𝑦};
10 𝑄 ← 𝑄∪ repr(𝐺𝑠, 𝑦, 𝜎𝑞);
11 foreach 𝑧 ∈ {𝑧 ∈ 𝑉 | (𝑧 ∶ ∃ 𝑟 . 𝐶 → 𝑦 ∶ 𝐶) ∈ 𝖬𝖾𝗋𝑠} do
12 𝑄 ← 𝑄∪ 𝑟(𝜎−1

𝑞 (𝑧), 𝜎−1
𝑞 (𝑦));

13 if 𝑧 ∉ 𝑍 then
14 𝑌 ← 𝑌 ∪ {𝑧};

end
end

end
end

154

5.3. Tuple Generating Dependencies

5.2.2. Query Complexity

Execution of a mapping requires both efficient querying of the source knowledge

base and efficient creation of the target graph. At the condition side, evaluating

general conjunctive queries is known to be NP-complete [CM77], query output

(i.e. finding all consistent assignments to the free variables) for acyclic queries

is LOGCFL-complete [GLS01]. Research on answering conjunctive queries over

description logic knowledge bases is still ongoing, but decidable algorithms have

been found for many expressive description logics ([Sch96, OCE08, CDGL+13]).

The upper bound for answering conjunctive queries over all sublogics of𝒮ℋ𝒪ℱ is

in CoNP [OCE08]. Even though these are discouraging complexity results, queries

generated for mappings are usually small and we assume that query answering

over the source ontology is not a problem.

5.3 Tuple Generating Dependencies

Given the results from the previous section, it seems natural to extend the cor-

respondence between model graphs and conjunctive queries also to mappings.

When we look back to section 1.2 (the initial example), we can observe that the

mapping there was obtained by specifying a partial ontology graph at both the

source and the target side. The implicit assumption there was, that one instanti-

ation of the target structure would be generated for each individual that matches

the source model. This type of translation rule is commonly used for relational

databases, where we can call it a view or –formally– a tuple generating dependency

[Fag09].

Tuple generating dependencies capture the intended meaning of a directed map-

ping. The condition part of a tuple generating dependency is executed as a query on

a source knowledge base. The entailment part is invoked for each result returned

by the source query and generates the desired structures in the target ontology.

In the literature, the terms tuple generating dependency and rule are often used

interchangeably.

155

5. Completion Graph Based Mapping

Definition 5.5 Tuple Generating Dependency
Let ℐ be a set of individuals, 𝒱 a set of variables, 𝑋𝑓 ⊆ 𝒱, 𝑌 ⊆ 𝒱, 𝑍 ⊆ 𝑋𝑓 ∪ 𝑌 be
sets of variables, and𝑃𝑖 and𝑄𝑗 be atomic predicates over individuals and variables.
A tuple generating dependency (tgd) is an expression of the form

tgd∶ ∀𝑋𝑓 . 𝜙(𝑋𝑓) ↦ ∃𝑌 . 𝜓(𝑍)
= ∀𝑋𝑓 . ⋀

𝑖
𝑃𝑖 (𝑋𝑖)⏟⏟⏟⏟⏟
condition

↦ ∃𝑌 .⋀
𝑗
𝑄𝑗 (𝑍𝑗)

⏟⏟⏟⏟⏟
entailment

with 𝑋𝑖 ⊆ 𝑋𝑓 ∪ ℐ and 𝑍𝑗 ⊆ 𝑍 ∪ ℐ for every 𝑖 and 𝑗.
The subterm 𝜙 = ⋀𝑖 𝑃𝑖 (𝑋𝑖) is called the condition, body, or source side. The sub-
term 𝜓 = ⋀𝑗 (𝑍𝑗) is called the entailment, head or target side of the dependency.
Because 𝑋𝑓 and 𝑌 are clear from 𝜙 and 𝜓, the tuple generating dependency is
usually written in short form 𝜙 ↦ 𝜓.

Of most interest for this work is the fact that most tuple generating dependencies

can be expressed as a pair of DL completion graphs. This means, that instead of

writing a query

∀𝑋 .𝑄𝑠(𝑋) ↦ ∃𝑍 .𝑄𝑡(𝑋 ∪ 𝑍) (5.33)

it is instead possible to give two completion graphs 𝐺𝑠 and 𝐺𝑡, which represent

𝑄𝑠 and𝑄𝑡, respectively. 𝐺𝑠 is interpreted as a query of the source knowledge base.

The anonymous nodes in𝐺𝑠 are treated as free variables of the query. If𝐺𝑠 and𝐺𝑡
share nodes, each set of individuals that match these common nodes is replaced

into a separate instance of the target graph.

Definition 5.6Mapped Node
Given a mapping rule 𝛽 = (𝐺𝑠, 𝐺𝑡), expressed as a pair of completion graphs
(𝐺𝑠, 𝐺𝑡), 𝑥 is a mapped node, if both 𝑥 ∈ 𝑉𝑠 and 𝑥 ∈ 𝑉𝑡 and 𝑥 is also anonymous
in both 𝐺𝑠 and 𝐺𝑡.

156

5.3. Tuple Generating Dependencies

The application of such a mapping loops over all sets of input individuals and

creates appropriate structures on the target side as indicated by 𝐺𝑡. For example,

given the completion graph pair 𝐺𝑠 and 𝐺𝑡 (see also figure 5.9)

𝐺𝑠 =
⎛⎜⎜⎜⎜
⎝

𝑉𝑠 = {𝑥, 𝑦}
𝐸𝑠 = {𝑟(𝑥, 𝑦)}
ℒ𝑠 = {(𝑥 ∶ 𝐴) , (𝑦 ∶ 𝐵)}

⎞⎟⎟⎟⎟
⎠

(5.34)

𝐺𝑡 =
⎛⎜⎜⎜⎜
⎝

𝑉𝑡 = {𝑥, 𝑦, 𝑧}
𝐸𝑡 = {𝑞(𝑥, 𝑧), 𝑝(𝑧, 𝑦)}
ℒ𝑡 = {(𝑥 ∶ 𝐶) , (𝑧 ∶ 𝐷) , (𝑦 ∶ 𝐸)}

⎞⎟⎟⎟⎟
⎠

(5.35)

and the source knowledge base 𝐾𝐵𝑠 (left side of figure 5.10), the individuals 𝑎
and 𝑏 are matched by 𝑥 in 𝐺𝑠 and 𝑐 and 𝑑 are matched by 𝑦 in 𝐺𝑠 with the link

matched by the asserted link between the respective individuals.

𝐾𝐵𝑠 = {𝐴(𝑎), 𝑟(𝑎, 𝑏), 𝐵(𝑏), 𝐴(𝑐), 𝑟(𝑐, 𝑑), 𝐵(𝑑)} (5.36)

Consequently, two result instances are returned from matching 𝐺𝑠 against𝐾𝐵𝑠:

𝑥 ← 𝑎, 𝑦 ← 𝑏
𝑥 ← 𝑐, 𝑦 ← 𝑑

(5.37)

For each of these results, an instance of𝐺𝑡 is created in the target knowledge base

𝐾𝐵𝑡. 𝑥 and 𝑦 in 𝐺𝑡 are replaced by the variable assignments obtained from the

source graph. Because 𝐺𝑡 also holds an additional, anonymous individual 𝑧, we
generate fresh individuals for each instance of 𝐺𝑡, too. The process is depicted in

figure 5.10.

Function 𝗉𝗋𝗂𝗆𝗂𝗍𝗂𝗏𝖾𝖠𝗉𝗉𝗅𝗒𝖳𝖦𝖣 (function 5.7) gives a simple algorithm for the exe-

cution of completion graph based mappings. The primitive algorithm, however,

makes a few assumptions that need to be resolved before applying it as an algo-

rithm for the execution of a completion graph based alignment.

157

5. Completion Graph Based Mapping

Function 5.7: primitiveApplyTGD((𝜙, 𝜓), 𝑂𝑠, 𝑂𝑡)

1 Input: (𝜙, 𝜓) = 𝜙 ↦ 𝜓 a tuple generating dependency
𝑂𝑠 a source ontology
𝑂𝑡 a target ontology

2 Output: 𝑂𝑡
3 𝑅 ← the query results obtained from executing 𝜙 over 𝑂𝑠.
/* Each 𝜎 ∈ 𝑅 is then a set of variable assignments of each of

the variables 𝑋𝑓 in 𝜙. */
foreach 𝜎 ∈ 𝑅 do

4 Calculate 𝜓[𝜎] by applying the assignments from 𝑅 to 𝜓.
5 define a mapping function𝑚𝜓[𝜎] such that

𝑚𝜓[𝜎](𝑥) =
⎧{
⎨{⎩

𝑎 𝑥 = 𝑎 ∈ ℐ
𝑦 𝑥 = ?𝑦 ∈ 𝑌 with 𝑦 a unique, unused individual name
for each variable ?𝑦.

6 foreach 𝐶(𝑥) ∈ 𝜓[𝜎] with 𝑥 ∈ ℐ ∪ 𝑌 do
7 𝑂𝑡 ← 𝑂𝑡 ∪ {𝐶(𝑚𝜓[𝜎](𝑥))};

end
8 foreach 𝑟(𝑥, 𝑦) ∈ 𝜓[𝜎] with 𝑥, 𝑦 ∈ (ℐ ∪ 𝑌) do
9 𝑂𝑡 ← 𝑂𝑡 ∪ {𝑟(𝑚𝜓[𝜎](𝑥),𝑚𝜓[𝜎](𝑦))};

end
10 return 𝑂𝑡;
end

158

5.3. Tuple Generating Dependencies

Figure 5.9. Example Mapping as Model Graphs

𝑥 𝑦

𝐴 𝐵
𝑟

(a)𝐺𝑠

𝑥 𝑧 𝑦

𝐶 𝐷 𝐸
𝑞 𝑝

(b)𝐺𝑡

Figure 5.10. Knowledge Bases as Source and Target in Mapping

𝐾𝐵𝑠

𝑎 𝑏

𝐴 𝐵

𝑐 𝑑

𝐴 𝐵

𝑟

𝑟

𝐾𝐵𝑠

𝑎 𝑧0 𝑏

𝐶 𝐷 𝐸

𝑐 𝑧1 𝑑

𝐶 𝐷 𝐸

𝑞 𝑝

𝑞 𝑝

Dashed gray lines () indicate nodes transferred from𝐾𝐵𝑠 to𝐾𝐵𝑡. 𝑧0 and 𝑧2
are fresh individuals, previously unused.

source-to-target property The procedure assumes that a single cycle of query exe-

cution is sufficient to generate all query results. This means, that we assume

that the source schema is completely separate from the target schema and

–consequently– the execution of query heads does not influence the source

ontology.

consistency and coherence Possible conflicts generated due to invocation of mul-

tiple rules are not handled. Rule coherence (section 3.2.4) is not guaranteed.

5.3.1. Source-to-Target Property

A conjunctive query has the source-to-target property, if the source schema and the

target schema are disjoint. Intuitively, thismeans that assertions generated during

query execution of the head statements do not interfere with the satisfiability of

the body conditions.

159

5. Completion Graph Based Mapping

The source-to-target property has practical significance. Reasoning in𝒮ℋ𝒪ℐ𝒩(𝐃)
extended with tuple generating dependencies is undecidable [MSS05]. Rule lan-

guages that can be embedded into an expressive DL ontology are therefore limited

to the set of DL-safe rules. DL-safe rules is the name used by the semantic web

community for what is known in relational database research as the set of full tgds.

A tgd (definition 5.5) is “full”, if 𝑌 = ∅, that is when the rule cannot generate new
individuals but only add to existing individuals.

Full tgds avoid a problem of recursive expansion that we have already seen in a

similar way in section 4.2.1. Given the tgd

∀?𝑥 .𝐴(?𝑥) ⇒ ∃?𝑦 . 𝑟(?𝑥, ?𝑦), 𝐴(?𝑦) (5.38)

we can see that such a rule potentially creates individuals matching its own pre-

condition. Consequently, another rule execution cycle is needed, because more

individuals may now match the condition of the rule. There are many knowledge

bases that can be generated from the above rule, and once again infinite expansion

may only be prevented by suitable blocking. In fact, the tgd in equation (5.38) is

equivalent to the 𝖳𝖡𝗈𝗑 axiom 𝐴 ⊑ ∃ 𝑟 .𝐴. Unfortunately, in the mapping sce-
nario, not being able to generate new individuals in the target ontology, makes

full tgds unsuitable as a mapping framework.

To solve this problem, it seems appropriate to have a look at the ontologies the

mapping process is expected to handle in the case of document ontologies. If

source (𝑂𝑠) and target ontology (𝑂𝑡) do not share a common signature, i.e. if

𝒞𝑠 ∩ 𝒞𝑡 = {⊤,⊥} and ℛ𝑠 ∩ℛ𝑡 = ∅ the simple algorithm is applicable. However,

if 𝑂𝑠 (i.e. Σ𝐿𝑠
) and 𝑂𝑡 (Σ𝐿𝑡

) share a set of common axioms, the situation is more

difficult. When both ontologies share at least a common concept or role (or inherit

a common role or concept from a common upper ontology) adding new axioms in

one (source or target) ontology can change the meaning of concepts in the other

ontology or in the upper ontology. This is clearly not a desirable situation.

If our source and our target ontology have common elements, we want to make

sure that assertions in the target ontology do not affect the validity of concepts

in the source ontology. The notion of not being able to change the meaning of

160

5.3. Tuple Generating Dependencies

existing assertions by extending the existing ontology is captured by the formal

definition of a conservative extension. If we start with an ontology 𝑂 (the upper

ontology), adding another ontology 𝑂ext, the union 𝑂 ∪ 𝑂ext of both ontologies

should not change the meaning of the elements from 𝑂.

Definition 5.7 Deductive Conservative Extension
Given two ontologies 𝑂, and 𝑂ext (over language 𝐿)
𝑂ext is called a deductive conservative extension [LWW07] of 𝑂
iff ∀𝜙 ∈ Σ𝐿 . 𝑂 ⊧ 𝜙 ⇔ 𝑂ext ⊧ 𝜙.

The problem of conservative extensions has caught previous interest in the re-

search for automated modularizations of ontologies. Determining, if an exten-

sion 𝑂ext is a conservative extension of another ontology 𝑂 is, unfortunately,

2EXPTIME-complete already in𝒜ℒ𝒞𝒬ℐ [LWW07]. However, Grau et al [GHKS08]
provide both a sufficient semantic and a sufficient syntactic condition to test for

conservative extensions. The semantic condition involves concept checking using

a DL reasoner. The syntactic condition is only defined over the syntax of concepts

allowed in the 𝖳𝖡𝗈𝗑 and 𝖱𝖡𝗈𝗑 of the combined ontology. The original paper also
contains a statistics of locality testing for existing ontologies and has found that

only 11 of 400 tested ontologies violate the locality condition.

It seems therefore safe to assume that assertions made in the target ontology do

not influence the source ontology. Consequently, because (in a rule 𝜙 ↦ 𝜓) all
conditions in 𝜙 are defined over the source ontology and all entailments in 𝜙 are
defined over the target ontology, a single cycle of rule execution is sufficient and

additionally, the union of source ontology and the mapping ruleset remains de-

cidable.

Chapter Summary

In this chapter, we have described a mapping between conjunctive queries and DL

completion graphs. We have developed algorithms to convert one into the other

and vice versa. Since the conversion is not always possible, we have highlighted

the problem areas and provided solutions for many of the mapping problems.

161

5. Completion Graph Based Mapping

We now have a technique to represent bridge rules (definition 3.19) in the form of

tuple generating dependencies (definition 5.5) as pairs of DL completion graphs.

That is, we can now write 𝛽 = (𝐺𝑠, 𝐺𝑡) for many types of completion graphs. We
have modified an existing description logic tableau to provide necessary informa-

tion to aid in the conversion in both directions, i.e. from 𝛽 to (𝐺𝑠, 𝐺𝑡) and vice
versa. To further establish the usefulness of the approach, we have confirmed that

execution complexity of model based mapping does not seem to be a problem in

practice.

162

SECTION 6.0

Mapping Refinement

The last chapter has introduced a method to represent bridge rules (in the form

of tuple generating dependencies) as pairs of DL completion graphs.

In this chapter, we extend on those results to establish the concept of mapping

refinement. Refinement is a rule-based, iterative process to derive complex align-

ments starting from simple correspondences.

We go on to describemodel based refinement as a concrete variant of mapping re-

finement, using completion graphs as the primary representation mechanism.

On top of this model based approach, semantic refinement rules are developed,

yielding a concrete implementation of model based refinement.

Having developed a framework for the representation of complex mappings be-

tween ontologies, in the second step we return to the initial scenario. In the for-

mat translation use case, we have a set of simple correspondences 𝔸. This simple
alignment has been obtained by leveraging existing matcher technology and has

already been reviewed. It also seems safe to assume, that the alignment is cor-

rect. We assume that the correspondences in the alignment are directional and

thus have the source-to-target property (see also section 5.3.1). Simple, directional,

source-to-target properties can be formulated as tuple generating dependencies.

The corresponding dependencies are then of the form

∀?𝑥 .𝐶𝑠,𝑖(?𝑥) ↦ 𝐶𝑡,𝑖(?𝑥)

6. Mapping Refinement

However, it is known, that the initial alignment is not complete and it misses some

of the information that can be transferred from the source to the target ontology.

This is only possible using complex mapping rules that do not only evaluate a sin-

gle concept or role, but can evaluate (and generate) multiple, interlinked ontology

elements.

In this scenario, it seems natural (as shown in section 1.2) to start of with the

initial alignment and iteratively refine the already discovered correspondences into

more complex alignment rules. A demonstration of the process has already been

given in the introductory example in section 1.2. The example has also shown,

that manual derivation of complex mappings from less complex mappings is a

cumbersome and error-prone task, so that at least some kind of automation is

highly desirable.

The problem at hand is similar to that of inductive logic programming (ILP) [Mug91].

In inductive logic programming, one is presented with a set of input examples and

a set of predicates. The goal for an inductive logic learning system is then to find

the best set of predicates (and variable allocations), such that the input examples

are classified with the best possible precision. Stuckenschmidt et al [SPM08] have

proposed to adapt ILP to the task of complex ontology matching.

However, the matching task differs from the ILP problem in some regards:

Refinement is not classification learning Traditional ILP attempts to learn a clas-

sification, i.e. a formula that classifies the input examples. It starts from a simple

formula and iteratively adds new clauses to refine the classification. The quality of

the new formula is checked in each step using the training examples.

For ontology matching, training examples need to be in the form of pre-matched

instances, i.e. individuals that are asserted to belong to both the source and target

ontology. ILP does not offer direct support to calculate these training examples. If

no training examples are available –like in the example scenario from section 1.2–

ILP cannot be applied.

164

Source and target of a correspondence are linked Traditional ILP learns a formula

as a classification. While it is natural to look at ILP to learn both sides of amapping

rule as formulæ, the interaction between both sides causes a significant increase

in complexity. Both sides cannot be learned independently and the refinement

process must be controlled on both sides simultaneously.

Quality evaluation is different Traditional ILP assumes a high quality evaluation

function (namely verifying against the training examples). If training examples

are not available, only the similarity between both sides of a mapping can be used

as an indicator. Designing a suitable similarity measure has been the focus for

research in ontology matching for quite some years for simple alignments alone.

Introducing similarity between complex mapping rules can be expected to be an

order of magnitude more complex.

DAG-shaped hypothesis lattice Many primitive ILP systems assume that adding

a predicate makes a formula more restrictive. However, this syntactic notion of

refinement is only true when there is no background knowledge. In the face of a

full ontology with formal semantics, the assumption no longer holds. A similar

problem appears with regard to confluence. Given a two sequences of refinement

actions Ρ = (𝜌0,… , 𝜌𝑘) and Ρ′ = (𝜌′0,… , 𝜌′𝑚) that are sequentially applied to the
same initial state 𝑠, let the results of performing these steps be ̂𝑠 = 𝜌0∘…∘𝜌𝑘(𝑠) and
̂𝑠′ = 𝜌′0 ∘ … ∘ 𝜌′𝑚(𝑠), respectively. ̂𝑠 and ̂𝑠′ need not share any syntactic features,
but (when incorporating background knowledge) they still may be semantically

equivalent, i.e. ̂𝑠 ≡ ̂𝑠′, semantically. This result is possible, even if Ρ and Ρ′ do

not share any individual actions. Because of the formal semantics, the information

fragment introduced by the refinement needs to be combined with the involved

ontologies’ 𝖳𝖡𝗈𝗑es. Background knowledge thus needs to be considered when
designing a refinement process for complex ontology alignment.

165

6. Mapping Refinement

None of these concerns invalidate the basic principle of ILP, however. It still seems

reasonable to start with an initial (simple) alignment as these are obtainable from

existing matchers. By looking at the initial correspondences together with the

associated ontologies, it is possible to determine refinement actions to iteratively

augment the initial mappings

Applying the refinement approach tomappings expressed as DL completion graphs

is particularly promising, as DL completion graphs form a natural, mostly syntac-

tic refinement hierarchy that can be exploited for mapping.

Refinement as Extraction of Semantic Features At a high level, the refinement

process can be described as an enrichment. Each refinement step adds another

piece of information to an existing completion graph

This “piece of semantic information” concept has been mentioned before in sec-

tion 2.6 and it seems obvious to make the connection: The intended semantics of

a refinement step is that each step adds another semantic feature to the comple-

tion graph. This leaves room for domain-specific refinement rules and even sets

of refinement patterns similar to the mapping patterns described in [Sch09].

6.1 Refinement Process

Starting from an initial correspondence, it is possible to define the abstract refine-

ment process as a frameworkwithwell-defined inputs and outputs. This refinement

process takes as input

𝑂𝑠𝑂𝑠𝑂𝑠,𝑂𝑡𝑂𝑡𝑂𝑡 two ontologies the source (𝑂𝑠) and target (𝑂𝑡) ontology of an alignment.

𝑆ref𝑆ref𝑆ref a set of refinement states. These come in two variants, namely 𝑆ref,𝑠 ⊂ 𝑆ref
for the source ontology and 𝑆ref,𝑡 ⊂ 𝑆ref for the target ontology.

There are two sets of refinement states, 𝑆ref,𝑠 and 𝑆ref,𝑡 withmembers 𝑠ref,𝑠,𝑖
and members 𝑠ref,𝑡,𝑗, respectively. These identifiers will be shortened to, 𝑆𝑠
(𝑆𝑡) and 𝑠𝑠,𝑖 (𝑠𝑡,𝑗) when there seems to be no chance of confusion.

𝔸𝔸𝔸 an initial, simple alignment. As noted, this will be obtained using an existing
(simple) matcher.

166

6.1. Refinement Process

𝗌𝗂𝗆𝑆𝗌𝗂𝗆𝑆𝗌𝗂𝗆𝑆 a similarity between refinement states 𝑆ref .

𝗍𝖾𝗋𝗆𝗍𝖾𝗋𝗆𝗍𝖾𝗋𝗆 a relation, with 𝗍𝖾𝗋𝗆 ⊆ 𝑆ref × Σ𝐿conjunctive
correlating refinement states 𝑆ref

with conjunctive terms.

Σ𝐿conjunctive
is the language of individual conjunctive terms, e.g. 𝑃𝑖(𝑋𝑖) ∈ Σ𝐿conjunctive

.

ΡΡΡ a (possibly infinite) set of refinement rules Ρ ≡def {𝜌|𝜌 ↦ 𝑆ref ×𝔓(𝑆ref)}
Each refinement rule 𝜌maps a state to zero or more successor states.

If 𝜌(𝑠ref) ≠ ∅ for some 𝑠ref ∈ 𝑆ref , 𝜌 is said to be applicable in 𝑠ref .

𝗋𝖾𝖿𝑠𝗋𝖾𝖿𝑠𝗋𝖾𝖿𝑠, 𝗋𝖾𝖿𝑡𝗋𝖾𝖿𝑡𝗋𝖾𝖿𝑡 Two conjunctive reference term functions

𝗋𝖾𝖿𝑠 ∶ 𝕖𝑠 ↦ Σ𝐿+
conjunctive

𝗋𝖾𝖿𝑡 ∶ 𝕖𝑡 ↦ Σ𝐿+
conjunctive

with 𝕖𝑠 (𝕖𝑡) a subset of the source (target) elements referenced from 𝔸:

𝕖𝑠 ⊆ {𝑒𝑠| (𝑒𝑠, 𝑒𝑡, 𝑛) ∈ 𝔸}

𝕖𝑡 ⊆ {𝑒𝑡| (𝑒𝑠, 𝑒𝑡, 𝑛) ∈ 𝔸}

Σ𝐿+
conjunctive

is the language of conjunctive terms, i.e. intersections of con-

junctive clauses, e.g. 𝑃𝑖(𝑋𝑖) ∧ 𝑃𝑗(𝑋𝑗) ∈ Σ𝐿+
conjunctive

.

𝗋𝖾𝖿𝑠 and 𝗋𝖾𝖿𝑡 map elements from the source and target alignments to refer-

ence terms. These reference terms correspond to the user-supplied queries

that should be answered by the refinement process. More details will be given

in section 6.1.3.

Both 𝗋𝖾𝖿𝑠 and 𝗋𝖾𝖿𝑡 are optional. Typically, only one of them is supplied.

In the initial step, the abstract refinement process picks a correspondence 𝐴 ∈ 𝔸.
From 𝐴 it generates two initial states 𝑠𝑠,0 and 𝑠𝑡,0 representing the initial, simple
alignment (not the reference terms).

167

6. Mapping Refinement

The refinement process then searches for applicable rules 𝜌𝑠 (𝜌𝑡) from Ρ. If a rule
is applicable in 𝑠𝑠,𝑖 (𝑠𝑡,𝑗), one or more successors are generated by evaluating 𝜌(𝑠𝑠,𝑖)
(𝜌(𝑠𝑡,𝑗)) for each state until a termination condition (see section 6.1.3) is reached
or until there are nomore applicable refinement rules. The result of this process is

two sets of refinement graphs (definition 6.1), 𝔾ref,𝑠 and 𝔾ref,𝑡, one for the source

and one for the target side of the alignment.

A refinement graph is a directed, acyclic graph with refinement states as vertices

and refinement rules as edges pointing to refined successor states. Inmany cases,

refinement graphswill have the tree property, but logical derivatesmake it possible

for the tree to degenerate into a DAG.

Definition 6.1 Refinement Graph
Let 𝑆ref be a set of refinement states and Ρ be a set of refinement rules. A refine-
ment graph 𝔾ref is a labelled graph 𝔾ref ≡def (𝑆ref , 𝐸ref , ℒref) with

• vertices 𝑠ref ∈ 𝑆ref and

• edges 𝐸ref ⊆ 𝑆ref
2

• edge labels ℒref ∶ 𝐸ref ↦ Ρ, assigning some 𝜌 ∈ Ρ for each edge.

and the property that every edge must be the result of a refinement rule application:

∀𝑠𝑥 ∈ 𝑆ref . {𝑠𝑦| (𝑠𝑥, 𝑠𝑦) ∈ 𝐸ref} ⊆ ⋃
𝜌∈Ρ

𝜌(𝑠𝑥)

6.1.1. Model-Based Refinement

With the results from chapter 5, we can instantiate the abstract refinement process

into a concrete version:

• States are represented by completion graphs, i.e. 𝑠ref = 𝐺ref for some com-

pletion graph 𝐺ref .

• 𝗍𝖾𝗋𝗆 is implemented by the conjunctive query 𝗋𝖾𝗉𝗋 function (function 5.4).
𝗋𝖾𝗉𝗋 turns a completion graph into a conjunctive term as required.

168

6.1. Refinement Process

• 𝗌𝗂𝗆𝑆 becomes 𝗌𝗂𝗆𝐺 ∶ 𝔾 ↦ ℝ, a similarity function between DL completion
graphs.

• Refinement rules Ρ introduce new terms into a completion graph.

Figure 6.1 shows two model based-refinement trees for the introductory example

(section 1.2). As we can see, the initial mapping is represented in the root nodes

of both trees. Both root graphs contain a single node marked with the concepts

in the initial 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀 correspondence. Introducing the term
(𝑥 ∶ ∃ 𝗎𝖬 .⊤) on the source side and running the reasoner results in multiple
successor graphs. A similar process can be seen at the target side. Here, however

two refinement steps have been performed.

6.1.2. Refinement Strategy

Looking back at the original scenario (section 1.2), we can state that the goal of

migration is to extract certain information from a historic (source) ontology. Un-

der the assumption that the user is familiar with the current (target) ontology, it

seems reasonable for her to provide queries to be answered on the target ontology.

It is only the results of these queries that need to be mapped.

These user-supplied queries are represented by 𝗋𝖾𝖿𝑠 (𝗋𝖾𝖿𝑡), respectively. For some
input correspondence 𝑐 ∈ 𝔸, we get a set of reference terms that we want a refined
alignment for.

For the refinement process, 𝗋𝖾𝖿𝑠 (𝗋𝖾𝖿𝑡) serves two purposes:

termination critierion When a state 𝑠ref is generated during refinement with

𝗍𝖾𝗋𝗆(𝑠ref,𝑖) ∈ 𝗍𝖾𝗋𝗆𝑠(𝑒), then no more successors need to be generated for
𝑠ref,𝑖.

Because we have already reached the point where the user’s query is repre-

sented, no more refinement is necessary.

169

6. Mapping Refinement

Figure 6.1. Example Refinement Graph Fragment

𝑥

𝐺𝐹

𝐺𝑠,0

𝑥

𝐺𝐹

𝑦

{𝑏𝑟𝑖𝑐𝑘}
𝑢𝑀

𝐺𝑠,2

𝑦

{𝑝𝑙𝑎𝑠𝑡𝑒𝑟}

𝑥

𝐺𝐹
𝑢𝑀

(𝑥 ∶ ∃ 𝑢𝑀 .⊤)

𝐺𝑠,1

𝑥

𝐺𝐹

𝑦

{𝑙𝑒𝑎𝑑}
𝑢𝑀

𝐺𝑠,3

𝑥

𝐺𝐹

𝑦

{𝑜𝑡ℎ𝑒𝑟}
𝑢𝑀

𝐺𝑠,4

(a) Source

𝑥

𝐺𝐹

𝐺𝑡,0

𝑥

𝐺𝐹

𝑦

𝐹𝑀
𝑓𝑊

(𝑥 ∶ ∃ 𝑓𝑊 .⊤)

𝐺𝑡,1

𝑥

𝐺𝐹

𝑦

𝐹𝑀,𝑃
𝑓𝑊

(𝑦 ∶ 𝑃)

𝐺𝑡,3

𝑦

𝐹𝑀,𝑆

𝑥

𝐺𝐹
𝑓𝑊

(𝑦 ∶ 𝑆)

𝐺𝑡,2

𝑥

𝐺𝐹

𝑦

𝐹𝑀,𝐵
𝑓𝑊

(𝑦 ∶ 𝐵)

𝐺𝑡,4

𝑥

𝐺𝐹

𝑦

𝐹𝑀,𝐿
𝑓𝑊

(𝑦 ∶ 𝐿)

𝐺𝑡,5
(b) Target

Shortened labels are taken from table 1.2.

170

6.1. Refinement Process

state selection If 𝗋𝖾𝖿𝑠 (𝗋𝖾𝖿𝑡) is specified, it also influences the selection of refine-
ment states that are considered for a mapping. Because we (only) want to

answer a users’ query, we do not need a full-out mapping for every node in-

side the refinement graph.

6.1.3. Matcher Mode

Once both refinement graphs 𝔾ref,𝑠 and 𝔾ref,𝑡 and have been generated, we need

to derive correspondences between states. Because states represent conjunctive

terms, the result of the mapping is then a set of tuple generating dependencies,

which represent our desired, refined, complex mapping. The correspondence be-

tween pairs of completion graphs and tgds has been developed in chapter 5.

In general, there are 𝑂(𝑛𝑚) possible mappings between 𝑛 source and 𝑚 target

states, forming a complete bipartite graph. Because no information is gained

when allmappings are produced, our goal is now to retain only those edges/mappings

from the complete bipartite graph that are relevant for the alignment. An initial

selection is provided by the refinement strategy or matcher mode.

A straightforward approach seems to be to consider the direction of the intended

mapping: source elements aremapped to target elements. In this case, we need to

find the most suitable (according to 𝗌𝗂𝗆𝐺) mapping for each of the source nodes.

In general, it is possible to identify two different scenarios

known source In the first scenario, a fixed set of source refinements is to bematched

against an unspecified set of target refinements. For example, when the tar-

get schema is relatively new and the user is more familiar with the previous

data schema. It is then reasonable to expect the user to manually select parts

of the source ontology that he wants to be transferred into the target ontology.

For example, in figure 6.1, selecting only the leaf nodes of the source tree

simplifies matching, because a single source graph is matched against the

target graphs and selection takes place only on the target side.

171

6. Mapping Refinement

With known source matchings, the matching algorithm should transfer as

much information as possible from the source to the target graph, but needs

to take care not to “invent information” in the target graph. If a semantic

feature of a source graphs cannot be properly mapped into a similar feature

in a target graph, the feature should rather be ignored.

In most scenarios, known source should be the default matching scenario, as

it tries to transfer as much information as possible from the source to the

target ontology. Known source shall also the chosen matcher mode when

𝗋𝖾𝖿𝑠 is specified, because in this case, we match against known source terms.

known target In the preservation scenario, one can usually expect the reverse sit-

uation. The user extracting data from the archive is familiar with the target

schema and can specify the parts of the target ontology that he wants to be

extracted. In this case, the matcher must determine the parts of the source

refinement graph that contains as much information as possible to “fill” the

target graph.

In this case, the matching algorithm must select source graphs that contain

as many of the semantic features of a single target graph. Once again, if a

semantic feature of a source graph cannot be properly mapped into a similar

feature in a target graph, the feature should rather be ignored.

Known target shall be the chosenmatchermode, when 𝗋𝖾𝖿𝑡 is specified. When
neither 𝗋𝖾𝖿𝑡 nor 𝗋𝖾𝖿𝑠 are present, known target should be avoided as it will po-
tentially generate many duplicate mappings for the same source element.

6.2 Refinement Rules

The final pieces of the refinement process are the definition of refinement rules

Ρ and the discovery of a suitable similarity function 𝗌𝗂𝗆𝐺. Implementing 𝗌𝗂𝗆𝐺
will be discussed on its own in chapter 7. In this section, we will describe possible

refinement rules.

172

6.2. Refinement Rules

When using a naive approach, defining refinement rules is rather simple: Any op-

eration that adds to one of the sets, either 𝑉 , 𝐸, orℒ of a completion graph either
maintains the current interpretation or causes a narrowing of the interpretation

of a completion graph. This is formalized in theorem 6.1.

Theorem 6.1 Completion Graph Refinement
Given two consistent completion graphs 𝐺𝑟 = (𝑉𝑟, 𝐸𝑟, ℒ𝑟) and 𝐺 = (𝑉 ,𝐸,ℒ)
with 𝑉𝑟 ⊆ 𝑉 , 𝐸𝑟 ⊆ 𝐸, ℒ𝑟 ⊆ ℒ, then 𝐺𝑟 ≤ext 𝐺 (see definition 4.11).

Theorem 6.1 is rather simplistic, it however shows that it is –again– simpler to

operate on completion graphs than on abstract mapping rules. Starting from the

most general graph𝐺0 = (∅, ∅, ∅) it is possible to iteratively generate any comple-
tion graph by using only three simple refinement rules:

add node Create a fresh node 𝑧 ∈ 𝑁 and set 𝑉 ← 𝑉 ∪ {𝑧}.

add link Pick a role 𝑟 ∈ ℛ and two 𝑥, 𝑦 ∈ 𝑉 , and set𝐸 ← 𝐸∪{𝑟(𝑥, 𝑦)}.

add concept Pick a node 𝑥 and a concept 𝐶 ∈ Σ𝐿 and set

ℒ ← ℒ∪ {(𝑥 ∶ 𝐶)}.

The result of each refinement operation is another completion graph with a “nar-

rower” interpretation than all its ancestors, i.e. the refined graph 𝐺′ is an exten-

sion of 𝐺: 𝐺 ≤ext 𝐺′ (see definition 4.11).

Figure 6.2 shows an exemplary refinement graph starting from an initial graph

𝐺0 = ({𝑥} , ∅, {(𝑥 ∶ 𝐴)})

Each completion graph is connected to at least one ancestor graph by the refine-

ment rule that generated the graph. This creates a graph of (completion) graphs,

the refinement graph. In the refinement graph, nodes are represented by (refined)

completion graphs and the directed edges are the refinements that have been ap-

plied to generate a graph from its respective ancestor.

173

6. Mapping Refinement

Figure 6.2. Refinement Graph

𝑥

𝐴

𝑥

𝐴

𝑦

𝑦

𝑥

𝐴,𝐵

(𝑥 ∶ 𝐵)

𝑥

𝐴

𝑦𝑟

𝑟(𝑥, 𝑦)

𝑦

𝐶

𝑥

𝐴

(𝑦 ∶ 𝐶)

𝑥

𝐴, 𝐵

𝑦

(𝑥 ∶ 𝐵) 𝑦

The DAG simplifies into a tree if a suitable partial order of application is
imposed on the refinement rules. In the depicted graph, one of the paths
((𝑥 ∶ 𝐵) , 𝑦) , (𝑦, (𝑥 ∶ 𝐵)) in the right side of the figure is superfluous.

A natural extension to the primitive approach is to follow every application of a re-

finement rule by a run of the mapping tableau. In this case, refinements that lead

to inconsistencies can be eliminated automatically. Because the tableau may gen-

erate multiple graphs from each refined graph (via ⊔-branching), each graph node
may now have multiple successors that are tagged with the same refinement rule.

Additionally, because the tableau will usually insert additional, inferred concepts,

the results of refinement rule applications is no longer orthogonal.

It is –unfortunately– not practical to implement this simple approach directly. A

number of problems prevent the naive approach and mandate further refinement

of the basic algorithm:

Search Strategy The three simple refinement rules are impractical: with most on-

tologies, the size of the generated refinement graph is not limited. When

the ontology (and almost all ontologies do) allows for an infinite number of

174

6.2. Refinement Rules

individuals, the refinement graph also grows indefinitely. For practical use,

the size of the refinement graph must be limited to manageable size. This

problem will be addressed in the next section (section 6.2.1).

Semantic Refinement The second problem concerns the “semantic content” of the

completion graphs generated by refinement. When starting with an initial

completion graph, a goal of refinement is to introduce concepts and links

that are actual “semantic refinements” of the initial mapping. This means,

that the refined completion graph should not only be a logical specialization

(in the form of a sub-interpretation) of the initial graph, but that the content

of the refined graphs are also semantically subordinate to the initial graph.

Because the refinement rules as presented so far operate almost completely

agnostic of the existing completion graph, this property can easily be lost.

The situation can significantly be improved by modifying the refinement

rules to be guided by the existing axioms in the completion graph and its

associated 𝖳𝖡𝗈𝗑. Refinement rules that implement this feature will be de-
veloped in the next section (section 6.2.1).

6.2.1. Semantic Refinement Rules

The observations in the last section lead to the conclusion that a set of “smarter”

refinement rules, that are based on an evaluation of the existing model graph and

its 𝖳𝖡𝗈𝗑 is needed. These refinement rules should also be “limited” in the sense
that they do not generate infinitely large completion graphs that have little in com-

mon with the starting point of the refinement.

Scharffe [Sch09] defines an extensive set of correspondence patterns. The thesis

lists multiple patterns for class, property, and attribute (i.e. data property) corre-

spondences. Scharffe’s list is detailed and often describes very high level trans-

formations. For example, the “Class Correspondence by Path attribute Value”

[Sch09, p. 184, sic] pattern can be represented –in the refinement framework–

as a sequence of new node/add link operations followed by the introduction of

the attribute value reference in the last node on the generated path. Some other

175

6. Mapping Refinement

correspondence patterns are useful, but very hard to detect automatically. For ex-

ample, the “Property Partition by Value Pattern” [Sch09, p. 228] splits a property

into multiple properties based on an arbitrary condition on its values.

For example, in built heritage, an ordinal classification of damage severities (e.g.

very good, good, ok, bad, very bad) is used in some ontologies, while other on-

tologies give the damage assessment as a quantified measurement (e.g. damage

area in mm). While there is work to derive even such mappings between enu-

merated and continuous scalar ranges (e.g. [Doa02]), such refinements are often

domain specific and it is only possible to obtain them automatically in rare cases.

Nonetheless, complex transformations can still be added as additional refinement

rules. This makes it possible to adapt the refinement process to domain specific

requirements.

It is, however, still possible to cover a significant portion of Scharffe’s correspon-

dence patterns using two simple refinement rules. Both rules have preconditions

that ensure, they are only applied when there is sufficient evidence already present

in the existing completion graph.

The two refinement rules have been tested empirically. The manual mappings

used for evaluation (section 8) have been generated using a purpose-designed

mapping tool. The mapping tool (figure 6.3) allows to apply refinement rules

for each node manually. Mapping generation for all concepts in the evaluation

ontology (Bamberg Cathedral) were generated with only the use of the manual

mapping tool that was developed as part of this thesis to facilitate the evaluation

of the refinement approach.

6.2.2. Subclass Refinement

The first rule captures the scenario, when the directed refinement is a subclass of

some (or more) existing concepts in the completion graph. This –for example–

captures Scharffe’s “Class by Attribute Value” and similar correspondence pat-

terns (with appropriate refinement at the opposite side of a mapping). A concrete

example of the pattern has already been discussed: the stone type subclasses in

figure 1.4 can be generated using the subclass refinement rule.

176

6.2. Refinement Rules

Figure 6.3. Manual Mapping Tool: Mapping for Grouting

Mappings are generated interactively by selecting from a list of applicable
refinement rules for each node. The mapping is applied automatically and the

resulting refined graph(s) is/are displayed.

The rule generator is presented in function 𝗌𝗎𝖻𝖢𝗅𝖺𝗌𝗌𝖱𝖾𝖿𝗂𝗇𝖾𝗆𝖾𝗇𝗍, (function 6.1).
For the subclass refinement rule, the 𝖳𝖡𝗈𝗑 is scanned for possible candidates
that could be inserted into the axiom set of an existing node. Candidates are only

considered, if there is evidence that the subclassing is applicable here. The sub-

sumption test in line 3 is performed using LillyTab (chapter 4). Effectively, the test

checks if the second part of a GCI (i.e. 𝐷 in 𝐶 ⊑ 𝐷, see section 4.2.2) is entailed
by the axiom set ℒ[𝑥] of a node 𝑥. If this is the case, it is treated as evidence that
𝐶 is a refinement candidate for the current node.

6.2.3. Role Successor Refinement

The second refinement rule combines the “add node” and “add link” operations

from the initial, primitive ruleset. Combining “add node” and “add link” makes

sure that the resulting completion graph is connected. Once again, the precondi-

tions ensure that the rule only fires if there is evidence that the inspected node

𝑥 might have a role successor. In this case, a role successor is tentatively added
to a node, if the axiom set of the node is in the role’s domain (line 4 in func-

tion 𝗋𝗈𝗅𝖾𝖲𝗎𝖼𝖼𝖱𝖾𝖿𝗂𝗇𝖾𝗆𝖾𝗇𝗍 (function 6.2)). A role successor is also added, if the ax-
iom set of a node contains a ∀-restriction, but no applicable successor is present

177

6. Mapping Refinement

Function 6.1: subClassRefinement(𝐺, 𝖳𝖡𝗈𝗑, 𝑥)
Input: 𝐺 = (𝑉 ,𝐸,ℒ) a DL completion graph

𝖳𝖡𝗈𝗑 the TBox for 𝐺
𝑥 ∈ 𝑉 , a node in 𝐺

Output: 𝑅: a set of refinement rules
begin

1 𝑅 ← ∅;
/* Scan TBox for candidates */

2 foreach (𝐶 ⊑ 𝐷) ∈ 𝖳𝖡𝗈𝗑 do
/* Check for evidence for subclass introduction */

3 if 𝐺 ⊧ (𝑥 ∶ 𝐷) then
/* Add candidate axiom */

4 𝑅 ← 𝑅 ∪ {(𝑥 ∶ 𝐶)};
end

end
5 return R;
end

(line 6). Role successor refinements are executed simply by insertion of a suitable

∃-restriction. After inserting the new axiom, the next tableau completion step will
eventually generate a suitable successor.

To prevent indefinite expansion, role successors are limited to a single successor.

This is never a problem for functional roles, which make up the prevalent role

type in the built heritage ontologies. If more than a single successor is necessary,

a suitable limitation of the number of successorsmust be imposed by othermeans.

As an optimization, when 𝗋𝖾𝖿𝑠 (𝗋𝖾𝖿𝑡) is specified, only roles that appear in 𝗋𝖾𝖿𝑠 (𝗋𝖾𝖿𝑡)
are considered as candidates.

6.2.4. Refinement Performance

The primitive refinement process even with only subclass (section 6.2.2) and role

successor (section 6.2.3) rules is too slow to be used in practice. Testing the precon-

ditions for the refinements requires several reasoner calls per test. For example,

an evaluation run on a moderately sized ontology (35 declared classes, 83 data
properties) creates more than 135 ∗ 106 branches (i.e. completion graph copies)

178

6.2. Refinement Rules

Function 6.2: roleSuccRefinement(𝐺, 𝖳𝖡𝗈𝗑, 𝑥)
Input: 𝐺 = (𝑉 ,𝐸,ℒ) a DL completion graph

𝖳𝖡𝗈𝗑 the TBox for 𝐺
𝑥 ∈ 𝑉 a node in 𝐺

Output: 𝑅: a set of refinement rules
begin

1 𝑅 ← ∅;
/* Scan through candidate roles */

2 foreach 𝑟 ∈ ℛ do
3 𝖣𝗈𝗆𝖺𝗂𝗇(𝑟) ← the intersection of concepts explicitly asserted to be in the

domain of 𝑟;
/* check if the role's domain is implied by the node's

axiom set */
4 if 𝐺 ⊧ (𝑥 ∶ 𝖣𝗈𝗆𝖺𝗂𝗇(𝑟)) and ∄𝑦 . 𝑟(𝑥, 𝑦) ∈ 𝐸 then

/* add candidate axiom for role introduction */
5 𝑅 ← 𝑅 ∪ {(𝑥 ∶ ∃ 𝑟 .⊤)};

end
/* check for universal restriction in the node's axiom set

*/
6 if 𝐺 ⊧ ∀ 𝑟 .𝐶 and ∄𝑦 . 𝑟(𝑥, 𝑦) ∈ 𝐸 ∧ 𝐺 ⊧ (𝑦 ∶ 𝐶) then

/* add candidate axiom for role introduction */
7 𝑅 ← 𝑅 ∪ {(𝑥 ∶ ∃ 𝑟 . 𝐶)};

end
end

8 return R;
end

179

6. Mapping Refinement

Figure 6.4. Ordering of Refinement Rules

𝐺0 𝜌0, 𝜌1

𝐺1 𝜌1 𝐺2 𝜌0

𝐺3

𝜌0 𝜌1

𝜌1 𝜌0

(a) no ordering

𝐺0 𝜌0, 𝜌1

𝐺1 𝜌1 𝐺2 𝜌0

𝐺3

𝜌0 𝜌1

𝜌1

(b) ordered
Rule ordering indicates 𝜌0 < 𝜌1. 𝜌0 means 𝜌0 is marked not applicable for the

respective completion graph.

and takes several hours to complete. This lacklustre performance is clearly un-

acceptable for an interactive tool and significant performance enhancements are

necessary to make the refinement approach viable.

Rule Ordering

One important step that does not change the semantics of the refinement process

but (drastically) increases performance is rule ordering.

In fig. 6.4a no order is applied to refinement rules. Because the refinement process

is merge monotonic (definition 6.2, the order of rule application does not matter.

Hence [𝜌0, 𝜌1] and [𝜌1, 𝜌0] both produce the same result graph. Without ordering,
both paths are traversed.

When rule ordering is applied (fig. 6.4b), a rule with a higher order cannot be

applied after a rule with a lower order. In this case 𝜌0 has a higher order than 𝜌1,
hence after applying 𝜌1, 𝜌0 gets marked inapplicable (represented by 𝜌0).

Rule ordering may be imposed arbitrarily as long as the ordering forms a total

order.

180

6.2. Refinement Rules

Applicability of Rules

As noted in section 6.2.1 each refinement rule has a set of preconditions. For

example, a subclass rule 𝜌might require that 𝐶 ⊑ 𝐷 ∈ 𝖳𝖡𝗈𝗑 as well as𝐷 ∈ ℒ[𝑥]
for some node 𝑥 ∈ 𝑉 . If both preconditions are satisfied, we say that we have
evidence for introducing 𝐶 at 𝑥, i.e. evidence for applying 𝜌.

Evidence, however, is different from the applicability of a rule. For example, if both

{𝐷,¬𝐶} ⊆ ℒ[𝑥] we have evidence for introducing 𝐶, but we also immediately
trigger a clash if we do so. In this case, we say that 𝜌 is not applicable. If applying
𝜌 does not lead to a clash, 𝜌 is applicable.

These observations give rise to a tri-state logic for refinement rules. For some

completion graph𝐺 = (𝑉 ,𝐸,ℒ), a graph node 𝑥 ∈ 𝑉 , and a refinement rule 𝜌, 𝜌
can be in one of three states. For some node 𝑥 and a refinement rule 𝜌, 𝜌 either

has no evidence if the preconditions of 𝜌 are not satisfied at 𝑥.

is applicable if the preconditions of 𝜌 are satisfied and applying 𝜌 does not create
any inconsistencies.

is not applicable if either the preconditions of 𝜌 are not satisfied or applying 𝜌
creates an inconsistent completion graph 𝐺[𝜌].

Checking the state of a refinement rule is relatively expensive, because a consis-

tency check (i.e. a reasoner call) is required. The check also seems necessary since

the state of a rule can change during refinement. When𝐷 is not initially present in
ℒ0[𝑥] but subsequently becomes inserted, the state of 𝜌 changes from no evidence

to either applicable or not applicable.

Definition 6.2Merge Monotonic
Given two completion graphs 𝐺 = (𝑉 ,𝐸,ℒ) and 𝐺′ = (𝑉 ′, 𝐸′, ℒ′), with axiom
language 𝐿, a transformation 𝜌 ∶ 𝐺 ↦ 𝐺′ is merge monotonic iff there is a node
merge function 𝜎 such that

∀𝑥 ∈ 𝑉 , 𝜙 ∈ Σ𝐿 . 𝐺 ⊧ (𝑥 ∶ 𝜙) ⇒ 𝐺′ ⊧ (𝑥[𝜎] ∶ 𝜙)
We also say that (𝑥 ∶ 𝜙) holds in both 𝐺 and 𝐺′ modulo merging.

181

6. Mapping Refinement

One characteristic of the refinement process with the proposed refinement rules

is, that it is merge monotonic (definition 6.2). Colloquially, this means that any

concept that could be derived at some node in a graph𝐺 can also be derived in all
its successor graphs 𝐺′ modulo node merging. Because of this property, not all

state transitions are possible for refinement rules. In particular,

1. a subclass refinement that has no evidence may become applicable or not

applicable.

2. a subclass refinement that is applicable cannot loose its evidence. This di-

rectly follows from the merge-monotonicity of the termset of the candidate

node 𝑥. 𝐷 cannot vanish from 𝑥’s termset.

3. a subclass refinement that is not applicable remains not applicable.

The subclass refinement 𝜌 is based on a GCI 𝐶 ⊑ 𝐷. If 𝜌 is not applicable,
it means that inserting 𝐶 in ℒ[𝑥] results in a clash.

The clash may either be local at 𝑥 or it may happen at some other node. Non-
local clashes can happen because of either an ∃- or a ∀-subterm in 𝐶.

• A local clash happens if ¬𝐶 ∈ ℒ[𝑥]. Because the refinement process
is merge-monotonic neither 𝑥 or any merge-successor of 𝑥 can have
¬𝐶 ∉ ℒ[𝑥]. Local clashes are thus persistent.

• If the non-local clash was because of a ∀-term, the clash must have hap-
pened, because some term has been introduced into the node set of an

𝑟-successor 𝑦 of 𝑥 (for some role 𝑟). Even after merging, 𝑥 has only 𝑟-
successors with monotonically growing axiom sets.

Hence, we get either a local clash at 𝑦 or a non-local clash at 𝑦. By induc-
tion over the term length, ∀-clashes are persistent during refinement.

• If the non-local clash was because of an ∃-term, either the ∃-term is itself
inconsistent or it introduces a clash in an 𝑟-successor of 𝑥. If the ∃-term
is consistent by itself, this 𝑟-successor of 𝑦must be unique aftermerging,
as otherwise we could simply introduce a fresh, consistent 𝑟-successor.

182

6.2. Refinement Rules

Since all potential 𝑟-successors 𝑦 of 𝑥 havemonotonically growing axiom
sets, local clashes at 𝑦 are persistent. Non-local clashes at 𝑦 can be shown
to be persistent by induction on the nesting depth of the ∃-term.

4. a role successor refinement that is not applicable remains not applicable.

For the same reasons as for subclass refinements, the preconditions for a role

successor refinement cannot vanish without causing a clash. The refinement

is non-applicable if the target node 𝑥 already has an 𝑟-successor with either an
existing set of axioms (which cannot vanish because of merge-monotonicity)

or because introducing the ∃-term would cause a clash (which also cannot be
undone because of merge-monotonicity).

5. a role successor refinement that has evidence can loose its evidence only be-

cause of a new 𝑟-successor.

A role successor refinement has evidence, if either

• 𝖣𝗈𝗆𝖺𝗂𝗇(𝑟) ⊑ ℒ[𝑥] or

• ∀𝑟 .𝐶 ∈ ℒ[𝑥].

Since these are subsumption tests, the same criteria as for the subclass evi-

dence can be applied. This part of the evidence is thus persistent.

The role successor refinement also requires that 𝑥 does not yet have suitable
𝑟-successor. Since 𝑟 successors remain and their axiom sets grow monoton-

ically, it is sufficient to check only for clashes at 𝑟-successors.

These observations can be used to significantly improve the performance of the

refinement process. Where a state transition is not possible, the preconditions of

a refinement rules often need not be re-checked. Where the preconditions of a

refinement rule are partially invariant, only the variable part of the precondition

must be re-checked. In particular,

• refinement rules with no evidence need to be re-tested,

• if a refinement rule is not applicable, it remains so. It can thus be ignored

for the remainder of the refinement process,

183

6. Mapping Refinement

• if a subclass introduction refinement based on 𝐶 ⊑ 𝐷 is applicable, subse-

quent steps only need to test consistency of ℒ[𝑥] ∪ {𝐶}. Inconsistency with
𝐷 is only possible if the completion graph is already inconsistent before the

refinement, and

• if a role successor refinement is applicable, the next step only needs to test

for consistency of ℒ[𝑥] ∪ ∃𝑟… as any precondition consistency checks have

already been performed and cannot be invalidated.

The result of introducing these additional checks is an improvement of refinement

performance by a factor of 5.33. In practical numbers, a full refinement had its
running time reduced from slightly over 80 to only 15minutes.

6.3 Interactive Alignment

With the results obtained so far, we are able to perform interactive, assisted refine-

ment. As a proof of concept, a manual mapping tool has been developed to show-

case the feasibility of the assisted refinement process.

The interactive mapping tool takes as input two ontologies and a simple reference

alignment. It then allows the user to interactively refine each initial correspon-

dence. The basic workflow can be outlined as follows:

1. The user first selects one of the initial correspondences from a drop-down

menu. For example, in fig. 6.5, the correspondence for 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 from the

introductory example (section 1.2) has been selected.

The possible correspondences are presented in the usual (also used by e.g.

COMA++ [ADMR05], Snoggle [RDB+08]) side-by-side view with the source

graphs at the left and the target graphs at the right.

Both sides are presented as (tabbed) lists of (automatically layouted) comple-

tion graphs.

184

6.3. Interactive Alignment

2. After selecting the initial alignment, the tool automatically starts a search for

possible refinements. Once found, the possible refinements are made avail-

able to the user via context menu on the completion graph nodes as shown

in fig. 6.6. Refinements can be applied to both the source and the target side

of a displayed correspondence.

On both sides of the tentative alignment, multiple completion graphs may

be displayed. These will be shown separately on different tabs and can be

selected by the user. Refinement of the different completion graphs is inde-

pendent of the other graphs in the current suggestion list.

3. Selecting a particular refinement applies this refinement to the active comple-

tion graph and restarts the refinement search at the freshly obtained, refined

graphs.

Manual refinement is then repeated until the user is satisfied with the result-

ing correspondence.

4. Once the user is satisfied with a correspondence (represented by two side-by-

side completion graphs), she can commit the rule and it will be saved as a

new reference alignment.

The whole process is repeated until the user is unable to determine more corre-

spondences or until there are no remaining suggestions. For example, fig. 6.7

shows a possible correspondence for 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 from the introductory example with
refinement material type 𝖢𝗈𝖻𝗎𝗋𝗀𝖾𝗋.

Interactive generation of complex alignments will be evaluated in section 8.2. In

particular, all reference alignments used within this thesis have been generated

using the manual refinement tool.

Chapter Summary

In this chapter, we have developed a method to obtain complex correspondences

from simpler ones by defining an abstract, iterative refinement process (section 6.1).

The refinement process takes as input a set of alignments and produces an inter-

linked set of possible refinements of the original mappings, the refinement graph.

185

6. Mapping Refinement

Figure 6.5. Interactive Mapping Tool, generating mapping for 𝖵𝗂𝖾𝗋𝗎𝗇𝗀

Source view is on the left, target view is on the right. Graph parts automatically
expanded by the reasoner are shown. Multiple graphs are displayed in different

tabs.

Figure 6.6. Interactive Mapping Tool, Refinement suggestions for 𝖵𝗂𝖾𝗋𝗎𝗇𝗀

Source view is on the left, target view is on the right. Refinements can be applied
by selecting from a context menu. The context menu is specific to each graph

node, allowing local control over the refinement by the user.

Figure 6.7. Interactive Mapping Tool, Possible complex correspondence for
𝖵𝗂𝖾𝗋𝗎𝗇𝗀 with material 𝖢𝗈𝖻𝗎𝗋𝗀𝖾𝗋

Source view is on the left, target view is on the right. The user has selected a
plausible correspondence and can now commit that correspondence as a new

mapping rule.

186

6.3. Interactive Alignment

The process is able to incorporate user input in the form of reference queries 𝗋𝖾𝖿𝑠
and 𝗋𝖾𝖿𝑡. We have explored initial strategies (section 6.1.3) to direct the refinement
process based on these reference queries.

In a next step, we have instantiated the abstract process into a concrete version us-

ing DL completion graphs as the formalism for refinement state representation.

In this, we incorporated results from the previous chapter (chapter 5) that enabled

us to represent complex mappings using (augmented) DL completion graphs.

This model-based implementation of the refinement process also enabled us to

develop two relatively simple semantic refinement rules that make use of informa-

tion contained in 𝖳𝖡𝗈𝗑 of both the source and target ontologies.

To show the feasibility of the completion graph based refinement approach, we

showcased a tool to perform interactive refinement based on the presented refine-

ment rules.

In the next chapter, we will build on these results and develop techniques to ex-

tract suggestions for (refined) complex mappings from model-based refinement

graphs. In particular, we explore different implementations of the state similarity

function 𝗌𝗂𝗆𝐺 (previously 𝗌𝗂𝗆𝑆).

187

SECTION 7.0

Comparing DL Completion Graphs

In the previous chapter, I have developed a method to derive more complex

“refined” alignments from initial simple alignments.

Having a completion graph representation of an alignment, however, is not

beneficial on its own. In this chapter, the second part of the core of this thesis

is presented: methods to compare and align DL completion graphs to obtain a

complex ontology alignment.

Different similarity measures for DL completion graphs will be iteratively de-

veloped to obtain improved alignment results.

Model based matching makes it possible to make use of information explicitly

present in the completion graphs to define relatively simple semantic refinement

rules (section 6.2.1) that make use of local information but also cover a variety of

possible refinements.

The main benefit, however, is the ability to make use of the explicit information

contained in the completion graph and determined during the refinement process

to improve selection of mapping rules. We have already established (section 5.2)

that amodified tableau algorithm is useful to relate tuple generating dependencies

(tgds) and pairs of DL completion graphs. This modified tableau is one of the

reasons for the implementation of the LillyTab reasoner (section 4.3). Because of

this result, it seems reasonable to extend use of semantic information also to the

comparison of completion graphs.

7. Comparing DL Completion Graphs

Table 7.1. Simple Matching Results for the “Dom Bamberg” Ontology and its
Evolved Successor

matcher # prec. % rec. % f %
1. vector-based multi-words 49 55.1 26.7 36.0
2. lexical synonyms 39 59.7 22.8 32.9
3. parametric string 53 54.7 28.7 37.7
4. similarity flooding 19 9.1 1.0 1.8
5. AnchorFlood 47 42.6 19.8 27.0
6. AROMA 40 67.6 24.8 36.2
7. Blooms 12 41.7 5.0 8.8

Previous research in this direction indicates, that comparing saturated graphs is

indeed beneficial with regard to similarity calculation. For example, Janowicz and

Wilkes [JW09] proposed SIM-DL𝐴, which uses tableau expansion of complex𝒜ℒ𝒞
geospatial concepts to determine the similarity between the concepts. Their al-

gorithm is largely based on traversal of the completion tree (𝒜ℒ𝒞 has the tree
model property) and comparing individual branches independently. Because of

their promising results, it seems reasonable to assume that comparing DL com-

pletion graphs is also possible using relatively simple methods for more complex

logics.

7.1 Requirements Analysis

A “mapping capable” similarity measure between DL completion graphs needs to

consider several desirable properties that can be derived from the structure of the

ontologies involved and from the refinement process.

7.1.1. Element Level Similarity

All matching systems are based at some point on an element-level similarity mea-

surement, which yields the degree of correspondence between concepts, roles and

individuals. Even purely structural systems like Similarity Flooding [MGMR02] or

AnchorFlood [SA08] need an element level matcher to bootstrap.

190

7.1. Requirements Analysis

As described in section 6.1.1, model based refinement also requires simple 1 ∶ 1
anchoring correspondences to start the refinement process. To obtain the initial

alignment for model based refinement, AgreementMaker [CAS09] was used as a

mapping and evaluation tool. The results are shown in table 3.1 (duplicated in

table 7.1 for easier reference). Because complex matching is required to properly

align both ontologies involved, the matching quality is below what is typical for

these matchers (i.e. ≥ 90% precision).

The table, however, shows another interesting fact: systems that are purely based

on the lexical similarity (vector-based multi-words, lexical synonyms, parametric-

string, AROMA [DE08]) perform better than their counterparts that also use struc-

tural (AnchorFlood, similarity flooding [MGMR02]) or external (Blooms) [JHS+10]

methods.

A similar property has been observed by Ghazvinian et al. [GNM09] in a differ-

ent domain: matching biomedical ontologies does not necessarily benefit from

complex matching algorithms but can often be performed using relatively sim-

ple methods. The same seems to be true for built heritage. Built heritage jar-

gon is highly specialized and specific meanings are associated with certain tech-

nical terms. Typical methods like web search [PSCC10] or WordNET similarity

[VVR+05] do not work very well for such highly specialized jargon. On the other

hand, a complex lexical similarity function is often simply not necessary: jargon

changes only slightly over time, at least for a specific site. Lexical semantics in

built heritage are thus very homogeneous and persistent.

Because of this observation, lexical similarity will also be used as the foundation

for all similarity measurements between completion graphs (𝗌𝗂𝗆𝐺). At this point,

it seems sensible to try to re-use the element-level similarity measurement directly

for 𝗌𝗂𝗆𝐺. Unfortunately, this is usually not possible off the shelf, because existing

systems are not prepared to takeDL completion graphs as input and return a global

similarity measure between both graphs. Consequently, we need to provide our

own implementations of 𝗌𝗂𝗆𝐺.

191

7. Comparing DL Completion Graphs

Table 7.2. Alignment Length
𝐺𝑠,1 𝐺𝑠,2 𝐺𝑡,1 𝐺𝑡,2

𝐴 ✓ ✓ ✓
𝐵 ✓ ✓ ✓

Because we want to use lexical comparison, we first need a method to extract rel-

evant phrases from completion graphs. The core information content of a aug-

mented completion graph 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋) is contained in the sets ℒ
and 𝐸, enhanced by additional information from 𝜅 and 𝖣𝖾𝗉. Since ℒ contains

axioms ℒ ⊆ Σ𝐿 (with 𝐿 = 𝐿𝒮ℋ𝒪ℱ(𝒟)), we base our similarity measure on the

similarity of axiom sets.

Hence, our completion graph similarity measure 𝗌𝗂𝗆𝐺 ∶ 𝐺2 ↦ ℝ+
0 will be based

on a axiom based similarity measure 𝗌𝗂𝗆𝐿 ∶ Σ𝐿
2 ↦ ℝ+

0 .

7.1.2. Maximum Information Transfer and Alignment Length

The overall length of the alignment is a factor with regard to the quality of an align-

ment.

Have a look at table 7.2 and assume that 𝐴 and 𝐵 are semantic features of the

respective completion graphs 𝐺𝑠,𝑖, (𝐺𝑡,𝑗, respectively) . It should be easy to see,

that 𝐺𝑠,1 matches best with 𝐺𝑡,1 and 𝐺𝑠,2 matches best with 𝐺𝑡,2.

There is also an ordering between the alignment pairs: 𝑒2,2 = (𝐺𝑠,2, 𝐺𝑡,2) is a
refinement of 𝑒1,1 = (𝐺𝑠,1, 𝐺𝑡,1). Any knowledge base fragment that is mapped
by 𝑒2,2 automatically also contains a subfragment that is an application of 𝑒1,1.

This also means that an alignment like 𝑒1,2 = (𝐺𝑠,1, 𝐺𝑡,2) is only incomplete, but
not necessarily incorrect. Because the source side is too restrictive for 𝑒1,2 it is
possible that not all information that could be mapped will be mapped. However,

all information at the target side is still justified by a source feature (correctness).

Nonetheless, 𝑒1,1 should be considered the better alignment, because it transfers
more information from the source to the target than does 𝑒2,2.

192

7.1. Requirements Analysis

Following this argument, we can deduce, that

• the alignment should aim to produce the longest correct alignment, and

• it should be possible to either automatically produce all correct, shorter align-

ments or to automatically derive them from the longest correct alignment.

Consequently, when the similarity computation results in a tie between possible

options, we prefer the longer refinement rule. The length of a refinement rule is

measure in the number of conjunctive terms that it contains in both its body and

head.

7.1.3. Avoiding Unjustified Elements

Striving for maximum alignment length, alone, however, is also insufficient. To

demonstrate the problem, consider again the introductory example from section 1.2.

At some point, the refinement graphs source side and target side graphs in fig-

ure 6.1 have been generated. The initial mapping specifies, that 𝐺𝑠,0 maps to

𝐺𝑡,0, which is our starting point. Similarly, 𝐺𝑠,1 (plaster) corresponds to 𝐺𝑡,3 (P),

𝐺𝑠,2 (brick) with 𝐺𝑡,4 (B) and 𝐺𝑠,3 (lead) with 𝐺𝑡,5 (L).

Matching 𝐺𝑠,4 (other), however, is a slight problem. The material type “other”

is not present in the target ontology. Its presence in the source ontology is actu-

ally a modelling error. If the material type for a grout filling is not known, the

respective property value should have been simply omitted instead of introducing

an additional “catch-all” property value. 𝐺𝑠,4 can either be mapped to𝐺𝑡,0 or𝐺𝑡,1,

respectively.

𝐺𝑠,0 ↦ 𝐺𝑡,0 or 𝐺𝑡,1
𝐺𝑠,1 ↦ 𝐺𝑡,3
𝐺𝑠,2 ↦ 𝐺𝑡,4
𝐺𝑠,3 ↦ 𝐺𝑡,5
𝐺𝑠,4 ↦ 𝐺𝑡,1 or 𝐺𝑡,0

193

7. Comparing DL Completion Graphs

𝐺𝑠,0 ↦ 𝐺𝑡,0 is the graph pair implied by the initial correspondence before refine-

ment. In source-to-target mode, it is necessary to find a correspondence for every

source graph.

Some similarity measures consider only positive correspondences and simply ig-

nore features that are present in one but not on the other side of the comparison.

For example, primitive cosine similarity (without length normalization) does not

take into account vector space component axes with a zero value in one of the

document vectors. For alignment generation, this is undesirable. The problem

appears on both sides, of the mapping:

• Expressing a feature on the target side that has no justification on the source

side is equivalent to inventing information without a basis in existing data.

• Having an over-refined source part makes the query side of a complex corre-

spondence too restrictive. This means that the alignment might miss out on

mappable information that is present in the source knowledge base because

that part of the knowledge base is filtered out by the over-refined source.

Consequently, while –in general– larger alignments should be preferred over shorter

alignments, this is only true if both sides of a correspondence contain only ele-

ments that are justified by elements on the other side of the correspondence.

7.1.4. Phrase Extraction

Because we want to make use of lexical similarity, we need a method to extract

relevant textual phrases from completion graphs. Formally, we need a procedure

that takes as input a completion graph𝐺 and returns amultiset of phrase tokens 𝑇 .
The tokens usually are, but need not be represented by (Unicode) character strings

with maybe attached metadata. We use the term token or phrase interchangeably.

As noted in section 7.1.1, our completion graph similarity measure 𝗌𝗂𝗆𝐺 will be

based on the axioms in ℒ.

The calculation of the similarity measure will proceed in two steps:

1. select or filter relevant axioms from ℒ and then

194

7.1. Requirements Analysis

2. extract a multiset 𝖯𝗁 of phrases from the filtered terms.

The phrase extraction step needs to be performed by every lexical matching sys-

tem, however the exact procedure is rarely described in full detail in the literature.

Even dedicated papers like [SMW15] tend to skim over the details of lexical extrac-

tion, leaving out algorithmic details.

This is unfortunate, as the exact procedure of phrase extraction from an ontology

has a strong impact on alignment quality. Small changes can alter the quality of

the result by two digit percentages. Leaving out the description of the extraction

algorithm from a matcher system description greatly reduces the reproducibility

of published results.

To describe an ontology phrase extractor, at least the following information is

needed

granularity of extraction Is the extraction based on single elements (concepts, roles),

on fragments of an ontology or on sets of axioms? Are only 𝖳𝖡𝗈𝗑 elements
used for extraction or are individuals considered during analysis?

resource specification Which resources are used for phrase extraction?

Encoding of semantic web ontologies is typically done using web standards,

most often XML [PPSM09]. Thismeans in particular, that element names are

usually represented by Internationalized Resource Identifiers (IRI, [DS05]).

During phrase extraction, some systems consider only the IRI [DS05] of an el-

ement, most often only the fragment (#…) or last path component (/Ashlar).
This is conforming to most modelling conventions but rarely described ex-

plicitly in matcher descriptions. Indeed, e.g. AROMA made the implicit

assumption that every IRI that did not have the ontology IRI as a prefix can

be ignored completely. Lifting this restriction would confuse the matcher be-

cause the triple store’s query engine returned IRIs from imported ontologies

as local elements and thus confuse the matcher.

195

7. Comparing DL Completion Graphs

On a different note, ontology representations often contain a mix of absolute

and relative IRIs. Missing normalization would result in the assumption

that relative IRIs are shorter than they actually are, possibly skewingmatcher

results.

Does token extraction consider annotations (e.g. rdfs:label)? Are annota-
tions used unconditionally or only if token extraction from the IRI did not

yield satisfactory results?

preprocessing How are tokens preprocessed (if at all)?

Which tokeniser is used? Is the original token also returned or only the de-

composed result? Is Unicode normalization or language specific normaliza-

tion (e.g. German “ß”⇒ “ss”, “ä”⇒ “ae”) performed?

Are tokens subject to lexical and morphological analysis (e.g. stemming)?

Which other processing is applied (e.g. compound word decomposition)?

special processing Are any other specialized analysis methods employed?

This thesis uses a few hand-crafted together with as many off-the-self extractor

components as possible.

1. The extractor takes as input an ontology axiom 𝑎𝑥 ∈ Σ𝐿

a) In the simplest case the axiom is a class assertion (𝐶(𝑥)) and the class
reference 𝐶 will be used for further processing.

b) if the axiom is a role assertion ((∀ 𝑟 . 𝐶)(𝑥), (∃ 𝑟 . 𝐶)(𝑥)), tokens are ex-
tracted from both the role element 𝑟 as well as recursively from the sub-

term 𝐶.

c) if the axiom is a literal reference, that is either a nominal or a data value,

the referenced individual is processed further.

d) other axioms are ignored.

2. In a next step,

196

7.1. Requirements Analysis

a) for any named entity (concepts, roles, individuals), the IRI is inspected.

If a fragment part (#) is present and the string tokeniser (see below) does
not yield an empty result for the fragment string, the fragment part is fed

to the tokeniser. Otherwise the full IRI is processed.

This is a heuristic that reduces number of phrases with low information

content early on, because most ontology element IRIs will have a com-

mon prefix (usually that of the ontology IRI).

b) Additionally, if the input entity has any annotations with a literal value

(e.g. rdfs:label), the literal’s value is fed to the string tokeniser.

c) Any data value is preprocessed. Some ontology access APIs attach a type

specifier (e.g. ^^xsd::string)) to literal values. This type specifier is
removed together with any surrounding quotation marks.

3. The resulting string tokens are fed to a special purpose tokeniser.

a) The tokeniser first applies a thesaurus lookup. This thesaurus is user

supplied and most likely needs to be adopted for a target domain. It also

provides an easy entry point for user supplied information.

Any synonyms returned from the thesaurus are fed to the tokeniser in

addition to the original strings.

b) The tokeniser always returns the original input string unmodified as a

single token.

c) Subsequently, the tokeniser splits the input phrase into sequences con-

taining only Unicode letters (Unicode general category Lu and Ll as well

as digits). Each token must start with at least single letter.

This custom implementation is required, because the standard tokeniser

fromApache Lucene does not handle decomposition of camelCasedwords,

which are commonly used to distinguish individual parts in compound

words and multi-word element names.

4. Each token is again looked up in the thesaurus, any resulting synonyms are

added to the token stream in addition to the original phrase.

197

7. Comparing DL Completion Graphs

5. The output from the tokeniser is fed to a (linguistic) analyser. The analyser

a) performs compound word decomposition using the standard Apache

Lucene dictionary compound word filter and the OpenOffice dictionary

as a word list,

b) lower cases all characters,

c) applies a stop word filter using a standard word set,

d) applies lexical normalization using Lucene, and

e) performs stemming using the Lucene-supplied snowball stemmer¹².

Apart from the ability to selectively disable individual steps, this configuration

resembles the GermanAnalyzer filter from standard Lucene with the added

ability to selectively disable different parts of the analyser and with a custom

tokeniser.

To evaluate the effects of the lexical processing steps, the empirical evaluation will

be run in three different modes:

stemmer Runs only the stemmer without compound word decomposition or nor-

malization.

normalizer Runs the stemmer and the normalizer without compound word de-

composition.

stemmer-decomposer Runs all three steps: decomposer, normalizer, stemmer.

The effects of different analyser configurations on alignment quality are shown in

section 8.3.2.

¹²org.apache.lucene.analysis.de.GermanLightStemFilter

198

7.1. Requirements Analysis

Definition 7.1 Extracted Phrase Set
Given a completion graph 𝐺, a (possibly infinite) set of distinct phrases ℙ𝕙, an
axiom filter function 𝖿𝗂𝗅𝗍𝖾𝗋 ∶ 𝔾 ↦ Σ𝐿

+, together with a phrase extraction function
𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖯𝗁𝗋𝖺𝗌𝖾 ∶ Σ𝐿

+ ↦ 𝔓(ℙ𝕙), the extracted phrase set or extracted token set
𝖳𝗄(𝐺) is the multiset

𝖳𝗄(𝐺) ≡def ⋃
𝑎𝑥∈𝖿𝗂𝗅𝗍𝖾𝗋(𝐺)

𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖯𝗁𝗋𝖺𝗌𝖾(𝑎𝑥)

𝖳𝗄(𝐺) may also be written only as 𝖳𝗄, when 𝐺 is clear from the context.
When multiple completion graphs𝐺𝑖,… are involved, we also use 𝖳𝗄𝑖,… as short-
cuts for simplicity.

Function 7.1: extractPhrase(𝑥, 𝕆)
Input: 𝑥 ∈ (ℛ ∪ 𝒞 ∪ ℐ) an element reference from one of the ontologies

in 𝕆
𝕆 a set of ontologies

Output: 𝖯𝗁: a set of extracted phrases
begin

1 𝖯𝗁 ← ∅;
2 if 𝗁𝖺𝗌𝖨𝖱𝖨(𝑥) then
3 𝑖𝑟𝑖 ← 𝑔𝑒𝑡𝐼𝑅𝐼(𝑥);
4 if 𝗁𝖺𝗌𝖥𝗋𝖺𝗀𝗆𝖾𝗇𝗍(𝑖𝑟𝑖) then
5 𝖯𝗁 ← 𝖯𝗁 ∪ 𝗍𝗈𝗄𝖾𝗇𝗂𝗌𝖾(𝗀𝖾𝗍𝖥𝗋𝖺𝗀𝗆𝖾𝗇𝗍(𝑖𝑟𝑖));

end
else

6 𝖯𝗁 ← 𝖯𝗁 ∪ 𝗍𝗈𝗄𝖾𝗇𝗂𝗌𝖾(𝑖𝑟𝑖);
end

7 foreach 𝑎𝑛 ∈ 𝖺𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇𝗌(𝑥) do
8 𝖯𝗁 ← 𝖯𝗁 ∪ 𝗍𝗈𝗄𝖾𝗇𝗂𝗌𝖾(𝑎𝑛);

end
end

9 return 𝖯𝗁;
end

199

7. Comparing DL Completion Graphs

Function 7.2: extractToken(𝑎𝑥, 𝕆)
Input: 𝑎𝑥 ∈ Σ𝐿 an axiom in 𝒮ℋ𝒪ℱ(𝔻)

𝕆 a set of ontologies
Output: 𝖯𝗁: a set of extracted phrases
begin

1 𝖯𝗁 ← ∅;
/* 𝑎𝑥 is a class assertion */
if ∃𝐶 ∈ Σ𝐿, 𝑎 ∈ ℐ . 𝑎𝑥 = 𝐶(𝑎) then

2 𝖯𝗁 ← 𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖯𝗁𝗋𝖺𝗌𝖾(𝐶, 𝕆);
end
/* 𝑎𝑥 is a role axiom */
if ∃𝐶 ∈ Σ𝐿, 𝑟 ∈ ℛ . (𝑎𝑥 = ∃ 𝑟 .𝐶 ∨ 𝑎𝑥 = ∀𝑟 .𝐶) then

3 𝖯𝗁 ← 𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖯𝗁𝗋𝖺𝗌𝖾(𝑟, 𝕆);
end
/* 𝑎𝑥 is an individual reference */
if ∃ 𝑎 ∈ ℐ . (𝑎𝑥 = {𝑎}) then

4 𝖯𝗁 ← 𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖯𝗁𝗋𝖺𝗌𝖾(𝑎, 𝕆);
end

5 return 𝖯𝗁;
end

7.1.5. Axiom Filtering

Written out in full, the inputs for our to-be-designed similarity measures are two

augmented completion graphs, a source graph𝐺𝑠 ≡def (𝑉𝑠, 𝐸𝑠, ℒ𝑠, 𝜅𝑠, 𝖣𝖾𝗉𝑠,𝖬𝖾𝗋𝑠)
and a target graph 𝐺𝑡 ≡def (𝑉𝑡, 𝐸𝑡, ℒ𝑡, 𝜅𝑡, 𝖣𝖾𝗉𝑡,𝖬𝖾𝗋𝑡) together with their respec-
tive ontologies 𝑂𝑠 and 𝑂𝑡. Some similarity measures might also need access to

the full set of completion graphs 𝔾𝑠 and 𝔾𝑡 that participate in the mapping.

As outlined in the previous section, we will use phrase extraction from DL axioms

to facilitate the basic comparison of completion graphs. Hence all methods pri-

marily focus on the two sets ℒ𝑠 and ℒ𝑡. On the other hand, not all axioms from

ℒ𝑠 (ℒ𝑡) maybe considered relevant. We use filtering to extract only a limited subset

of relevant axioms.

Two filtering approaches will be followed in this thesis:

no filtering Phrase extraction runs on unfiltered ℒ𝑠 and ℒ𝑡.

200

7.1. Requirements Analysis

Function 7.3: analyseToken(𝗍𝗄, 𝗍𝗁𝖾𝗌, 𝖽𝖾𝖼𝗈𝗆𝗉𝗈𝗌𝖾, 𝗅𝗈𝗐𝖾𝗋, 𝖲𝗍𝗈𝗉, 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾, 𝗌𝗍𝖾𝗆)
Input: 𝗍𝗄 ∈ ℙ𝕙: an extracted token (from phrases ℙ𝕙).

𝗍𝗁𝖾𝗌: A function 𝗍𝗁𝖾𝗌 ∶ ℙ𝕙 ↦ 𝔓(ℙ𝕙) returning zero or
more synonyms for an input phrase 𝗉𝗁. 𝗍𝗁𝖾𝗌 is
assumed to be reflexive, i.e. 𝗉𝗁 ∈ 𝗍𝗁𝖾𝗌(𝗉𝗁).

𝖽𝖾𝖼𝗈𝗆𝗉𝗈𝗌𝖾: A function 𝖽𝖾𝖼𝗈𝗆𝗉𝗈𝗌𝖾 ∶ ℙ𝕙 ↦ 𝔓(ℙ𝕙) returning
the decomposition of some phrase 𝗉𝗁

𝗅𝗈𝗐𝖾𝗋: A function 𝖽𝖾𝖼𝗈𝗆𝗉𝗈𝗌𝖾 ∶ ℙ𝕙 ↦ ℙ𝕙 returning the
lower case of some phrase 𝗉𝗁

𝖲𝗍𝗈𝗉: A set of stop words.
𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾: A function 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾 ∶ ℙ𝕙 ↦ ℙ𝕙 returning the

normalization of 𝗉𝗁
𝗌𝗍𝖾𝗆: A function 𝗌𝗍𝖾𝗆 ∶ ℙ𝕙 ↦ ℙ𝕙 returning the

stemmed version of of 𝗉𝗁
Output: 𝖳𝗄: a set of transformed tokens, maybe empty
begin

1 𝖳𝗄 ← ⋃
𝗍𝗄 ∈𝖳𝗄

𝗍𝗁𝖾𝗌(𝗍𝗄);
2 𝖳𝗄 ← ⋃

𝗍𝗄 ∈𝖳𝗄
𝖽𝖾𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝗍𝗄);

3 𝖳𝗄 ← {𝗅𝗈𝗐𝖾𝗋(𝗍𝗄)|𝗍𝗄 ∈ 𝖳𝗄};
4 𝖳𝗄 ← 𝗍𝗄 \ 𝖲𝗍𝗈𝗉;
5 𝖳𝗄 ← {𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾(𝗍𝗄)|𝗍𝗄 ∈ 𝖳𝗄};
6 𝖳𝗄 ← {𝗌𝗍𝖾𝗆(𝗍𝗄)|𝗍𝗄 ∈ 𝖳𝗄};
7 return 𝖳𝗄;
end

201

7. Comparing DL Completion Graphs

Figure 7.1. Examples of Existential Generating Dependency Paths

𝑥

∃ 𝐫 .𝐂 ⊔𝐃
(a)

𝑥 𝑦𝑟
∃ 𝑟 . 𝐶 ⊔ 𝐷 𝐂 ⊔𝐃

(b)

𝑥 𝑦𝑟
∃ 𝑟 . 𝐶 ⊔ 𝐷 𝐶 ⊔𝐷, 𝐂

(c)

𝑥 𝑦𝑟
∃ 𝑟 . 𝐶 ⊔ 𝐷 𝐶 ⊔𝐷,𝐃

(d)

𝜅𝜅𝜅-based filtering Phrase extraction is primarily based on the governing terms 𝜅𝑠
(𝜅𝑡). Additional axioms related to governing terms are also optionally consid-

ered.

7.1.6. EGD Path

One problemwith governing terms is that in a saturated tableau, a governing term

is never a role axiom and this causes role connections to be unrepresented in any

similarity computation based purely on governing terms. One solution to this

problem lies in back-tracing the origins of governing terms across the reasoning

and refinement steps.

Consider, for example, the initial ABox in fig. 7.1a. The initial axiom is marked

as a governing term in bold font. Figures 7.1b to 7.1c show the expansion steps

performed by the DL tableau. In particular, it is possible to trace the movement of

the governing term from (𝑥 ∶ ∃ 𝑟 . 𝐶 ⊔ 𝐷) first to (𝑦 ∶ 𝐶 ⊔ 𝐷) and then to both to
(𝑦 ∶ 𝐶) and (𝑦 ∶ 𝐷).

202

7.1. Requirements Analysis

Thus, if we look at the final outcome, (𝑦 ∶ 𝐶) depends on (𝑦 ∶ 𝐶 ⊔ 𝐷), which in
turn depends on (𝑥 ∶ ∃ 𝑟 . 𝐶 ⊔ 𝐷). Equally, for (𝑦 ∶ 𝐷) to be present in the final
completion graph, (𝑦 ∶ 𝐶 ⊔ 𝐷) needs to exist and (transitively) (𝑥 ∶ ∃ 𝑟 . 𝐶 ⊔ 𝐷)
needs to be present as well. The sequence of axioms that need to be present for

another axiom to exist is called the dependency path of the original axiom.

Tracing back the dependency path is useful, because it gives information about

the origins of an axiom. This is especially important for mapping, because in

a saturated tableau, all governing terms 𝜅 are atomic. A major drawback of this
focus is that role connections are not represented at all. Evaluating the dependency

path remedies this problem as all role axioms leading to a certain governing term

are contained in the dependency path. The general idea of this path-tracing is

not new. The Clio system [HMH01] implements a similar method, albeit only for

(explicit) relations in relation databases. The dependency path is a similar concept.

The axiom-based nature of the ontological model, however, makes the dependency

path both harder to trace and more expressive.

However, given the existing mapping tableau, not all of the axioms on the depen-

dency path contain additional mapping information. In figure 7.1b, (𝑦 ∶ 𝐶 ⊔ 𝐷)
is not useful when traced back from either (𝑦 ∶ 𝐶) or (𝑦 ∶ 𝐷), because we already
have information about which one of 𝐶 or 𝐷 is present. A naive word extraction

approach applied to𝐶⊔𝐷 could actually do harmwith regard to completion graph
comparison. If (𝑦 ∶ 𝐶) is already known, adding extracted words from 𝐷 would

dilute the already stricter distinction.

We can make similar observations for the other compound axiom types:

(𝑥 ∶ 𝐶 ⊓ 𝐷) The axiom will be decomposed into two governing terms (𝑥 ∶ 𝐶) and
(𝑥 ∶ 𝐷). No information is lost.

(𝑥 ∶ 𝐶 ⊔ 𝐷) The axiom will be decomposed into two governing terms (𝑥 ∶ 𝐶) and
(𝑥 ∶ 𝐷) in two different completion graphs. No information is lost. Considering
(𝑥 ∶ 𝐶 ⊔ 𝐷)might even be harmful.

(𝑥 ∶ ∀ 𝑟 . 𝐶) The axiom will either be ignored when no 𝑟-successor is present or it
will generate a governing term (𝑧 ∶ 𝐶) for some existing 𝑟-successor 𝑧.

203

7. Comparing DL Completion Graphs

In both cases, we do not loose information about 𝑟. If no 𝑟-successor is
present in the graph, the successor is not part of the information represented

by the completion graph. If an 𝑟-successor is present, it was either present
initially or generated by other means.

(𝑥 ∶ ¬𝐶) Asnoted in section 5.1.3, negations are problematic onlywhen the negated
axiom is atomic (i.e. a class or nominal reference) as the negation will other-

wise be expanded further.

No attempt is made to handle negations for atomic axioms and they are

silently ignored, a precedence established by LogMap [Mei11].

(𝑥 ∶ ∃ 𝑟 . 𝐶) Both the mapping tableau as well as the refinement process only gen-
erate new completion graph nodes from existential axioms. Thus any node

in the completion graph is connected to the initial root node via a sequence

of at least one existential term dependency.

Because of the deterministic modification of the tableau (see section 5.1.6),

generating terms are also unique for each target node unless the role is func-

tional. However, when two generating terms for a functional role appear on

the same node, e.g. (𝑥 ∶ ∃ 𝑟 . 𝐶) and (𝑥 ∶ ∃ 𝑟 .𝐷) the source node 𝑥 is still the
same.

Given an augmented completion graph 𝐺 and an axiom 𝑎𝑥 = (𝑥 ∶ 𝐶) that was
introduced during the refinement process, determining the dependency path of 𝑎𝑥
is relatively simple, the dependency path is the transitive hull of all parents of 𝑎𝑥
in 𝖣𝖾𝗉.

Definition 7.2 Dependency Path
Given an augmented completion graph 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋) and an axiom
𝑎𝑥 ∈ ℒ, the dependency path 𝐷𝑃(𝑎𝑥) is the transitive closure (least fixed point)
such that

• 𝑎𝑥 ∈ 𝐷𝑃(𝑎𝑥)

• (𝑎𝑥 ∈ 𝐷𝑃(𝑎𝑥) ∧ (𝑎𝑥′ ↦ 𝑎𝑥) ∈ 𝖣𝖾𝗉) ⇒ (𝑎𝑥′ ∈ 𝐷𝑃(𝑎𝑥))

204

7.1. Requirements Analysis

The full dependency path, however, is a slightly unwieldy set as it contains many

axioms that might either be harmful (𝐴 ⊔ 𝐵) when considered for mapping or
yield no new information (∀𝑟 .𝐴, 𝐴 ⊓ 𝐵). To remedy this problem, we can make
a very strong observation: any node 𝑥 inside a completion graph 𝐺 as generated

from the mapping tableau and/or refinement has

• either a governing term itself, i.e. ∃𝐶 . (𝑥 ∶ 𝐶) ∈ 𝜅, or

• has axioms that lie on the dependency path to some other governing term,

because every leaf node in the saturated graph has at least one governing

term.

Additionally, all graphs that appear during refinement share a common ancestor

and they also share a common root node 𝑥0. 𝑥0 has the lowest possible position in

the total order of generated nodes (or even is a named node), so every node merge

operation (function 𝖺𝗎𝗀𝗆𝖾𝗋𝗀𝖾 5.2) that involves 𝑥0 happens in the direction of the

root node. In other words, the root node is common to all graphs and is also

persistent during refinement.

Because of this and because of how tableau completion and refinement operate,

there is at least one sequence of dependencies of the form 𝑒𝑔𝑑 = (𝑥 ∶ ∃ 𝑟 . 𝐶 ↦ 𝑦 ∶ 𝐶)
for every non-root node in 𝐺 that terminates at the root node. For any given node
𝑦, any such path from 𝑦 via such existential generating dependencies (definition 7.3)
is called an egd path.

Definition 7.3 Existential Generating Dependency
Given an augmented completion graph 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋) any entry
𝑒𝑔𝑑 = (𝑥 ∶ ∃ 𝑟 . 𝐶 ↦ 𝑦 ∶ 𝐶) ∈ 𝖣𝖾𝗉 is called an existential generating dependency
or egd.
Given a root node 𝑥0 ∈ 𝑉 and a node 𝑦 ∈ 𝑉 , a sequence of egd that, lead from 𝑦
back to 𝑥0 is called an egd path.

The definition of the egd path is more relaxed than the definition of the depen-

dency path. It removes the requirement of the next egd on the path to have a

dependency relationship with a governing term, but rather accepts any path that

eventually leads to the root node. Such a path always exists during refinement and

can be determined very efficiently. Since 𝒮ℋ𝒪ℱ(𝒟) lacks inverse roles, any egd

205

7. Comparing DL Completion Graphs

leading away from a node can be picked for a path that eventually leads back to the

root node. Even when inverse roles are present, we simply pick an egd that leads

into the direction of a predecessor node (with regard to the total order of nodes) to

obtain a path in linear time.

The egd path is tailored specifically to thematching process: the egd path contains

exactly those role axioms that are needed for some governing term 𝑎𝑥 ∈ 𝜅 to
appear in 𝐺.

Calculating the egd path for some axiom 𝑎𝑥 is possible by using the dependency
map𝖣𝖾𝗉. An implementation is shownwith procedure 𝖼𝗈𝗅𝗅𝖾𝖼𝗍𝖤𝖦𝖣𝗌 (procedure 7.4).
The implementation explicitly prefers direct generating egds. Since each node 𝑥
typically has only a single generating dependency, the distinction is often irrele-

vant. However, when multiple egds are present, preferring the direct ancestor of

a (governing) term remains closer to the graph’s semantic interpretation.

Procedure 7.4: collectEGDs(𝐺, 𝑎𝑥, 𝑥0)

Input: 𝐺 = (𝑉 ,𝐸,ℒ, 𝜅,𝖣𝖾𝗉,𝖬𝖾𝗋) an augmented completion graph
𝑎𝑥 = (𝑥 ∶ 𝐶) a node axiom set entry from ℒ
𝑥0 ∈ 𝑉 a node from 𝐺, the root node

Output: 𝑒𝑑𝑔: a set of axioms, the egd path of 𝑎𝑥
begin

1 𝑒𝑑𝑔 ← {𝑎𝑥};
2 (𝑥𝑐𝑢𝑟, 𝐶𝑐𝑢𝑟) ← 𝑎𝑥;
3 while 𝑥𝑐𝑢𝑟 ≠ 𝑥0 do

if ∃ 𝑦, 𝑟, 𝐵 . (𝑦 ∶ ∃ 𝑟 .𝐵) ↦ (𝑥𝑐𝑢𝑟, 𝐶𝑐𝑢𝑟) ∈ 𝖣𝖾𝗉 then
/* We have a direct egd ancestor */

4 𝑒𝑑𝑔 ← 𝑒𝑔𝑑 ∪ {(𝑦 ∶ ∃ 𝑟 .𝐷)};
5 (𝑥𝑐𝑢𝑟, 𝐶𝑐𝑢𝑟) ← 𝑎𝑥;

end
else if ∃ 𝑦, 𝑟, 𝐶,𝐵 . (𝑦 ∶ ∃ 𝑟 .𝐵) ↦ (𝑥𝑐𝑢𝑟, 𝐶) ∈ 𝖣𝖾𝗉 then

/* Pick an unrelated egd ancestor */
6 𝑒𝑑𝑔 ← 𝑒𝑔𝑑 ∪ {(𝑦 ∶ ∃ 𝑟 .𝐵)};
7 (𝑥𝑐𝑢𝑟, 𝐶𝑐𝑢𝑟) ← 𝑎𝑥;

end
end

8 return 𝑒𝑔𝑑;
end

206

7.2. Similarity Measures for Completion Graphs

7.1.7. Logical Derivates

The reasoning process already leaves us with an explicit account of logical deriva-

tives Considering such child axioms is also an option during token extraction. For

example, given 𝖳𝖡𝗈𝗑 = {𝖡𝗎𝖼𝗁𝖾𝗋 ⊑ 𝖠𝗌𝗁𝗅𝖺𝗋} and the axiom (𝑥 ∶ 𝖡𝗎𝖼𝗁𝖾𝗋), we get a
dependency to (𝑥 ∶ 𝖠𝗌𝗁𝗅𝖺𝗋). Collecting the child axioms is easily possible via the
dependency map.

7.2 Similarity Measures for Completion Graphs

With the requirements from the previous section, we go on to design similarity

measures for completion graph comparison. To enable evaluation, we first design

a set of simple “baseline” similarity measurements. These baseline similarities

will be subsequently refined, making more use of semantic information extracted

during both refinement and mapping tableau application.

7.2.1. Baseline Similarities

As a baseline to compare against, we use a similarity measure without term filter-

ing. 𝖿𝗂𝗅𝗍𝖾𝗋 (definition 7.1) is thus the identity function and we consequently extract
phrases from all axioms 𝑎𝑥 ∈ ℒ. This also considers roles, because the refine-
ment process introduces a corresponding existential term (𝑥 ∶ ∃ 𝑟 . 𝐶 ∈ ℒ𝑠 ∪ ℒ𝑡)
for every edge 𝑟(𝑥, 𝑦) ∈ 𝐸𝑠 ∪ 𝐸𝑡 and 𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖳𝗈𝗄𝖾𝗇 (function 7.2) handles phrase
extraction from role axioms (line 3).

The calls (source and target side) to 𝖾𝗑𝗍𝗋𝖺𝖼𝗍𝖳𝗈𝗄𝖾𝗇 leaves us with a two multisets of
tokens 𝖳𝗄𝑠 and 𝖳𝗄𝑡. To simplify subsequent algorithm descriptions, we use the

following shortcut notations (see also appendix A.1)

• 𝖳𝗄𝑠(𝑡) (𝖳𝗄𝑡(𝑡)) is the number of occurrences of 𝗍𝗄 in 𝖳𝗄𝑠 (𝖳𝗄𝑡).

• The corpus 𝖢𝗈𝗋𝗉 of 𝖳𝗄𝑠 and 𝖳𝗄𝑡 is the union of the supports of 𝖳𝗄𝑠 and 𝖳𝗄𝑡:
𝖢𝗈𝗋𝗉 = 𝗌𝗎𝗉𝗉(𝖳𝗄𝑠) ∪ 𝗌𝗎𝗉𝗉(𝖳𝗄𝑡) (see appendix A.1).

207

7. Comparing DL Completion Graphs

• Additionally, let ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑠(𝖢𝗈𝗋𝗉) be the vector of occurrences of strings from 𝖳𝗄𝑠
with regard to the corpus, i.e.

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑠(𝖢𝗈𝗋𝗉) ≡def (𝖳𝗄𝑠(𝗍𝗄0),… , 𝖳𝗄𝑠(𝗍𝗄𝑛))

for some arbitrary, but persistent ordering of the tokens in 𝖢𝗈𝗋𝗉.

The baseline similarity comes in three different variations, that differ in the way

the similarity between 𝖳𝗄𝑠 and 𝖳𝗄𝑡 is calculated.

Flat Cosine Similarity

The first version uses basic cosine similarity (equation (7.1)) to compare token

multisets.

𝗌𝗂𝗆
cos

(𝖳𝗄𝑠, 𝖳𝗄𝑡) ≡def
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑠 ∘ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑡

‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑠‖‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑡‖
(7.1)

Here, ∘ is the scalar product (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑠 are ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄𝑡 vectors). ‖‖ is the Euclidean norm, i.e.
the square root of the sum of squares. Note that we do not use token frequencies,

but absolute token occurrences.

Flat TFIDF Cosine

The second version of flat cosine is more elaborate. In information retrieval, co-

sine similarity is typically found to give toomuchweight to frequent tokens. These

tokens appear inmany documents and thus have less information content than do

rarer tokens. A possible remedy is to weigh the individual token frequencies by an

additional factor. Again, the basic method from information retrieval involves a

specific factor called term frequency–inverse document frequency (tfidf). To calculate

the tfidf factor for a single input token 𝑡 ∈ 𝑇 , we need to consider all the com-
pletion graphs 𝔾 in the current refinement graph. Note that the literature knows

208

7.2. Similarity Measures for Completion Graphs

many variations of the basic tfidf function. For this thesis, we will use raw term fre-

quency and unsmoothed, logarithmic inverse document frequency, with a special case

if |𝔾| = 1 (see definition 7.4).

Definition 7.4 Term Frequency–Inverse Document Frequency
Given a set of completion graphs 𝔾 = {𝐺0, 𝐺1,…}, and their respective extracted
token multisets 𝖳𝗄0, 𝖳𝗄𝑖, …, the term frequency 𝗍𝖿(𝗍𝗄, 𝖳𝗄𝑖, 𝔾) is

𝗍𝖿(𝗍𝗄, 𝖳𝗄𝑖, 𝔾) ≡def
𝖳𝗄𝑖(𝑡)

∑
𝐺𝑗∈𝔾

(𝖳𝗄𝑗(𝗍𝗄))

the inverse document frequency 𝗂𝖽𝖿(𝗍𝗄, 𝔾) is

𝗂𝖽𝖿(𝗍𝗄, 𝔾) ≡def ln
|𝔾|

| {𝖳𝗄𝑗(𝗍𝗄)|𝐺𝑗 ∈ 𝔾} |
and the term frequency–inverse document frequency 𝗍𝖿𝗂𝖽𝖿 is

𝗍𝖿𝗂𝖽𝖿(𝗍𝗄, 𝖳𝗄𝑖, 𝔾) ≡def 𝗍𝖿(𝗍𝗄, 𝖳𝗄𝑖, 𝔾) × { 𝗂𝖽𝖿(𝗍𝗄, 𝔾) if |𝔾| > 1
1 if |𝔾| = 1

The special case |𝔾| = 1 is the norm when we perform known source or known

target matching (see section 6.1.3). In the known source mode, |𝔾𝑠| = 1 and
known target implies |𝔾𝑡| = 1. Without the special treatment, the value of the
tfidf factor would be zero for |𝔾| = 1. The replacement value 1 has been chosen
because it is the simplest constant factor.

We call this version of flat cosine similarity 𝗌𝗂𝗆cos,tfidf .

Soft Cosine

The vector space model makes a hard distinction between individual tokens; even

a single typographical error between two otherwise equivalent tokens causes a new

vector axis to appear. For example, 𝖠𝗌𝗁𝗅𝖺𝗋 and 𝖠𝗌𝖼𝗁𝗅𝖺𝗋 are considered completely
separate tokens. As a potential remedy for cases where this distinction is too hard,

Sidorov2014 et al. [SGGAP14] propose a softer version of cosine similarity on the

209

7. Comparing DL Completion Graphs

basis of (lexicographical) similarity function between tokens. Soft cosine is speci-

fied in definition 7.5. Soft cosine needs a similarity function 𝗌𝗂𝗆𝖳𝗄 to relate indi-

vidual tokens.

Definition 7.5 Soft Cosine
Let 𝖳𝗄𝑠 and 𝖳𝗄𝑡 (forming a corpus 𝖢𝗈𝗋𝗉) be token multisets and let
𝗌𝗂𝗆𝑇 ∶ 𝖢𝗈𝗋𝗉 ↦ ℝ be a token similarity function.
The soft cosine similarity between 𝖳𝗄𝑠 and 𝖳𝗄𝑡 is then

𝗌𝗂𝗆cosine,soft(𝖳𝗄𝑠, 𝖳𝗄𝑡) ≡def
∑

𝗍𝗄𝑠∈𝖳𝗄𝑠,𝗍𝗄𝑡∈𝖳𝗄𝑡
𝗌𝗂𝗆𝖳𝗄(𝗍𝗄𝑠,𝗍𝗄𝑡)×𝗍𝗄𝑠×𝗍𝗄𝑡

√ ∑
𝗍𝗄𝑠,1∈𝖳𝗄𝑠,𝗍𝗄𝑠,2∈𝖳𝗄𝑠

𝗌𝗂𝗆𝖳𝗄(𝗍𝗄𝑠,1,𝑡𝑠,2)×𝗍𝗄𝑠,1×𝗍𝗄𝑠,2×√ ∑
𝗍𝗄𝑡,1∈𝖳𝗄𝑡,𝗍𝗄𝑡,2∈𝖳𝗄𝑡

𝗌𝗂𝗆𝖳𝗄(𝗍𝗄𝑡,1,𝑡𝑡,2)×𝗍𝗄𝑡,1×𝗍𝗄𝑡,2

Soft cosine is a true generalization of cosine similarity. With

𝗌𝗂𝗆𝖳𝗄(𝗍𝗄𝑠, 𝗍𝗄𝑡) =
1 iff 𝗍𝗄𝑠 = 𝗍𝗄𝑡
0 otherwise

soft cosine similarity degenerates into cosine similarity (see [SGGAP14]), so it is a

proper extension of the former. As is, we have a choice between a wide variety of

string distance measurements to use. For example, Apache Lucene offers at least

four different varieties of StringDistance¹³ implementations.

Once again, for matters of simplicity, we use LevensteinDistance¹⁴. This is im-
plemented by calculating the edit distance [Lev66] between the two input strings

and normalizing the result by the length of the longer input string.

𝗌𝗂𝗆edit(𝗍𝗄𝑠, 𝗍𝗄𝑡) = 𝗅𝖾𝗏𝖾𝗇𝗌𝗁𝗍𝖾𝗂𝗇(𝗍𝗄𝑠,𝗍𝗄𝑡)
𝗆𝖺𝗑(𝗅𝖾𝗇(𝗍𝗄𝑠),𝗅𝖾𝗇(𝗍𝗄𝑡))

(7.2)

Calculating soft cosine is more expensive (linear vs. quadratic time), but makes

room for non-binary relationships between tokens.

¹³interface org.apache.lucene.search.spell.StringInstance
¹⁴class org.apache.lucene.search.spell.LevensteinDistance

210

7.2. Similarity Measures for Completion Graphs

Table 7.3. Variations of Governing Term Cosine Similarity
Phrase Similarity flat cosine

cosine-tfidf
soft cosine

EGD-Path follow/don’t follow
Children collect/don’t collect

We now have three different versions of the basic “flat” similarity measure: 𝗌𝗂𝗆cos,

𝗌𝗂𝗆cos,tfidf , and 𝗌𝗂𝗆cosine,soft.

7.2.2. Governing Term Cosine Similarity

The first variation we introduce involves term filtering. Instead of evaluating every

axiom from ℒ, we consider only governing terms 𝜅. The result is governing term
flat cosine, as we still use unstructured evaluation of terms (flat), but now start with

the governing terms 𝜅.

This change adds to the list of parameter choices. Both the egd-path (section 7.1.6)

and logical derivates section 7.1.7 become meaningful concepts, leaving us with

24 different variations of governing term cosine (table 7.3).

7.2.3. Clustered Cosine Similarity

Our next variation of a similarity involves structuring the set of input axioms fol-

lowing semantic information from the refinement process. Remember back from

chapter 6, that we consider each refinement step as the introduction of a single,

new semantic feature. Given this assumption, it seems natural to cluster the fil-

tered axioms from a completion graph with regard to the refinement step they

were introduced in.

Consider fig. 6.1b way back from the introductory example. Here, (𝑥 ∶ 𝐺𝐹) was
initially present (and it is also present for all completion graphs with the same

initial alignment). In the next refinement step, we introduced (𝑥 ∶ ∃ 𝑓𝑊 .⊤). The

211

7. Comparing DL Completion Graphs

Table 7.4. Example Axiom-Clustered Alignment
1. (𝑥 ∶ 𝖦𝖥) (𝑥 ∶ 𝖦𝖥)
2. {(𝑥 ∶ ∃ 𝖿𝖶 .⊤) , (𝑦 ∶ 𝖥𝖬)}
3. (𝑥 ∶ ∃ 𝗎𝖬 .⊤), (𝑦 ∶ {𝗉𝗅𝖺𝗌𝗍𝖾𝗋}) (𝑦 ∶ 𝖯)

reasoner created the successor node 𝑦 and introduced (𝑦 ∶ 𝐹𝑀) as a logical conse-
quence. (𝑥 ∶ ∃ 𝑓𝑊 .⊤) and (𝑦 ∶ 𝐹𝑀) form a logical unit, the former being an egd
of the latter. The final step introduces either (𝑦 ∶ 𝑆), (𝑦 ∶ 𝑃), (𝑦 ∶ 𝐵), or (𝑦 ∶ 𝐿).

The result of the process are three axiom clusters, one for each refinement step. If

we look at the source side of the mapping (fig. 6.1a), we see a similar picture: the

initial axiom is the same ((𝑥 ∶ 𝖦𝖥)). There is only one refinement step and the sec-
ond axiom sets are{(𝑥 ∶ ∃ 𝗎𝖬 .⊤) , (𝑦 ∶ {𝗉𝗅𝖺𝗌𝗍𝖾𝗋})} {(𝑥 ∶ ∃ 𝗎𝖬 .⊤) , (𝑦 ∶ {𝖻𝗋𝗂𝖼𝗄})},
…

The resulting clusters of governing terms are shown in table 7.4.

Instead of viewing the (source and target) completion graphs as two unstructured

sets of axioms, we have used information from the refinement process and the

reasoner to split the axiom sets into semantic sub-clusters. These sub-clusters

can now be compared individually.

To calculate the similarity between these sets of clusters, we repeatedly pick the

best match between source and target until at least one side of runs out of axiom

clusters. In the example, we thus first match (𝑥 ∶ 𝖦𝖥) against (𝑥 ∶ 𝖦𝖥), obtaining
the assignment (1, 1). The rest of the correspondences are not so clear, however.
Is it better to align (𝑥 ∶ ∃ 𝗎𝖬 .⊤), (𝑦 ∶ {𝗉𝗅𝖺𝗌𝗍𝖾𝗋}) with {(𝑥 ∶ ∃ 𝖿𝖶 .⊤) , (𝑦 ∶ 𝖥𝖬)}
or with (𝑦 ∶ 𝖯)? What we see here, is an artefact of the refinement process. In
the target ontology, the specification of a concrete material is optional, while the

source ontology explicitly forces a value for the material datatype.

It is also possible to interpret this as an artefact of expressive power of the underly-

ing logic, as both OWL and OWL2 do not have the ability to express abstract classes

for which no pure instances may exist.

212

7.2. Similarity Measures for Completion Graphs

Table 7.5. Example Expanded Axiom-Clustered Alignment
1. (𝑥 ∶ 𝖦𝖥) (𝑥 ∶ 𝖦𝖥)
2. (𝑥 ∶ ∃ 𝖿𝖶 .⊤), (𝑦 ∶ 𝖥𝖬)
3. (𝑥 ∶ ∃ 𝗎𝖬 .⊤), (𝑦 ∶ {𝗉𝗅𝖺𝗌𝗍𝖾𝗋}) (𝑥 ∶ ∃ 𝗎𝖬 .⊤), (𝑦 ∶ 𝖯)

The result of the artefact is that on the source side, there is only a single semantic

feature, while on the target side we require two steps to obtain the same level of

refinement. A partial remedy to the problem is provided by applying the results

from section 7.1.6. Applying 𝖼𝗈𝗅𝗅𝖾𝖼𝗍𝖤𝖦𝖣𝗌 to (𝑦 ∶ 𝖯) after cluster extraction results
in the axiom set {(𝑥 ∶ ∃ 𝖿𝖶 .⊤) , (𝑦 ∶ 𝖯)}.

The resulting expanded alignment is shown in table 7.5. As is possible to see, the

source side in line 2 is empty. Target cluster 2 ({(𝑥 ∶ ∃ 𝖿𝖶 .⊤) , (𝑦 ∶ 𝖥𝖬)}) is left
dangling, i.e. it has no source counterpart to match against.

The resulting similarities are summed up, but not normalized. This gives priority

to longer matches where more clusters are aligned with each other. We call this

similarity measure clustered cosine similarity.

7.2.4. Dependency Cluster Similarity

In the previous section, we have deliberately ignored unmatched axiom clusters.

It should be easy to see that this seems unreliable: a completion graph with many

unmatched axiom clusters compares the same as one with only matched axiom

clusters, as long as their core of matched axiom clusters is the same. Upon closer

observation, however, some of the unmatched axiom are clearly relevant. In sec-

tion 7.2.3 (table 7.5) 2 ∶ {(𝑥 ∶ ∃ 𝖿𝖶 .⊤) , (𝑦 ∶ 𝖥𝖬)} cannot be removed, because it is
necessary for 3 ∶ {(𝑥 ∶ ∃ 𝗎𝖬 .⊤) , (𝑦 ∶ 𝖯)} to appear. The existence of 2 is justified,
because 3 has a good match on the source side.

Colloquially, an axiom cluster is a justified if it is

• matched with an axiom cluster on the other side of the alignment, or

• required for another, justified axiom.

213

7. Comparing DL Completion Graphs

Figure 7.2. Generating Refinement Rules

𝐺0 𝜌0, 𝜌1, 𝜌2

𝐺1 𝜌2, 𝜌3 𝐺2 𝜌0, 𝜌2, 𝜌4

𝐺3 𝜌4

𝜌0 𝜌1

𝜌2

While the former is clear enough, the latter requires additional formalization. To

do this, we need the concept of the generating refinement rule. Remember back

from section 6.2.4 that rules are either applicable or not applicable to a particular

completion graph. Add to this the abstract refinement graph in fig. 7.2.

Here, 𝜌0, 𝜌1, and 𝜌2 are initially applicable. After applying 𝜌0, 𝜌3 becomes appli-
cable in𝐺1. After applying 𝜌1, 𝜌4 is newly applicable in𝐺2. This means that 𝜌0 is
the generating refinement rule of 𝜌3 and 𝜌1 is the generating refinement rule of
𝜌4.

Note that the concept is different from the order of rule application. 𝜌2 is only
applied after 𝜌1, but 𝜌1 is not the generating refinement rule for 𝜌2. Because 𝜌2
was already applicable at the start, it has no generating rule.

Another way of viewing the situation is that one has to apply 𝜌1 to obtain 𝜌4, but it is
not necessary to apply 𝜌1 to obtain 𝜌2. Relating this concept to axiom justification

is straightforward: an axiom (𝑦 ∶ 𝐷) is justified by some other axiom (𝑥 ∶ 𝐶) if
(𝑦 ∶ 𝐷) was introduced via the refinement rule 𝜌𝑦 and (𝑦 ∶ 𝐷) was

• initially present, or

• introduced as a result of or before the generating refinement rule 𝜌𝑥 of 𝜌𝑦.

Again, colloquially, (𝑥 ∶ 𝐶) has to exist before (𝑦 ∶ 𝐷) can be introduced. Justifi-
cation is transitive, i.e. if an axiom is justified, it also justifies all its ancestors.

214

7.2. Similarity Measures for Completion Graphs

Figure 7.3. Dependency Cluster Constraint Matrix

𝗌𝗂𝗆0,0 𝗌𝗂𝗆0,1 … 𝗌𝗂𝗆0,𝑚 0 −1
𝗌𝗂𝗆1,0 𝗌𝗂𝗆1,1 … 𝗌𝗂𝗆1,𝑚 0 −1

⋮ ⋮ ⋮ ⋮
𝗌𝗂𝗆𝑛,0 𝗌𝗂𝗆𝑛,1 … 𝗌𝗂𝗆𝑛,𝑚 0 −1

0 0 … 0 0 0
−1 −1 … −1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑀 =

Extending clustered cosine similarity with this additional knowledge is possible,

but requires introduction of a similarity threshold. Because 𝗌𝗂𝗆cosine = 0 only for
completely disjoint sets of axioms, every axiom can usually be matched with every

other axiom as axioms usually share at least one token. The cut-off threshold is

set to

0.05 ∗ 𝖺𝗏𝗀
𝑖,𝑗

(𝗌𝗂𝗆𝑖,𝑗)

This means, we consider only the 5% worst axiom similarities relative to the cur-

rent set of corresponding axiom clusters to be non-pairable. The constant 0.05
has been determined empirically. Both increasing as well as decreasing the value

showed adverse effects for matcher runs. Note, however that the cut-off parameter

maybe specific to a particular alignment task.

To implement dependency cluster matching, we need to formulate a constraint

system. A (relatively) simple way of doing this is to write it down in matrix form

as shown in fig. 7.3. Assume that there are𝑚 source axiom clusters and 𝑛 target
axiom clusters. 𝗌𝗂𝗆𝑖,𝑗 is the truncated similarity between 𝑇𝑠,𝑖 and 𝑇𝑡,𝑗, respectively.

Each position in the matrix gets assigned a boolean variable 𝑥𝑖,𝑗 ∈ {0, 1}. The 𝑥𝑖,𝑗
form a second matrix 𝑋.

The rationale for this form is as follows:

• The value domain for all 𝑥𝑖,𝑗 is {0, 1}, i.e. we are using mixed integer linear
programming (MILP, [Wol08]).

215

7. Comparing DL Completion Graphs

• For 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛, setting 𝑥𝑖,𝑗 = 1 assigns the axiom cluster 𝑇𝑠,𝑖
to the axiom cluster 𝑇𝑡,𝑗.

• Setting any of 𝑥𝑖,𝑛+1 means that 𝑇𝑠,𝑖 is unmatched, but justified.

• Setting any of 𝑥𝑚+1,𝑗 means that 𝑇𝑡,𝑗 is unmatched, but justified.

• Setting any of 𝑥𝑖,𝑛+2 means that 𝑇𝑠,𝑖 is unmatched and unjustified.

Aswe can see, unjustified axioms are strongly discouraged by assigning them

a negative weight

• Setting any of 𝑥𝑚+2,𝑗 means that 𝑇𝑡,𝑗 is unmatched and unjustified.

• 𝑥𝑚+1,𝑛+1, 𝑥𝑚+2,𝑛+1, 𝑥𝑚+1,𝑛+2, and 𝑥𝑚+1,𝑛+2 purely exist to make thematrix

square and have no special meaning. They should always be zero.

To make this interpretation work, we must apply additional constraints to 𝑋:

target term single assigment For each 𝑖 ∈ {0,… ,𝑚}, ∑
𝑗∈{0,…,𝑛+2}

𝑥𝑖,𝑗 = 1

Every target term must be assigned exactly once.

source term single assigment For each 𝑗 ∈ {0,… , 𝑛}, ∑
𝑗∈{0,…,𝑚+2}

𝑥𝑖,𝑗 = 1

Every source term must be assigned exactly once.

source justified constraint For each 𝑖 ∈ {0,… ,𝑚}, 𝑥𝑖,𝑛+1 must be smaller or

equal to the sum of all the assignments of all the justifiers of 𝑇𝑠,𝑖.

For example if 𝑇𝑡,𝑗 is the only justifier of 𝑇𝑠,𝑖, then

𝑥𝑖,𝑛+1 ≤ ∑
𝑘∈{0,…,𝑚+1}

𝑥𝑘,𝑗

If there are no justifiers, 𝑥𝑖,𝑛+1 is forced to zero unless the corresponding

term was already present in the initial graph 𝐺0. This ensures that a source

term can only move to the justified state if it actually has a justifier.

target justified constraint Vice versa, for each 𝑗 ∈ {0,… , 𝑛}, 𝑥𝑚+1,𝑗must be smaller

or equal to the sum of all the assignments of all the justifiers of 𝑇𝑡,𝑗.

216

7.2. Similarity Measures for Completion Graphs

Table 7.6. Example Axiom Cluster Similarity Matrix
𝑡0 𝑡1 𝑡2
(𝑥 ∶ 𝖦𝖥) (𝑥 ∶ ∃ 𝖿𝖶 .⊤),

(𝑦 ∶ 𝖥𝖬)
(𝑥 ∶ ∃ 𝗎𝖬 .⊤),
(𝑦 ∶ 𝖯)

𝑠0 (𝑥 ∶ 𝖦𝖥) 1.00 0.01 0.01
𝑠1 (𝑥 ∶ ∃ 𝗎𝖬 .⊤),

(𝑦 ∶ {𝗉𝗅𝖺𝗌𝗍𝖾𝗋})
0.01 0.25 0.75

Once again, if 𝑇𝑠,𝑖 is the only justifier of 𝑇𝑗,𝑗, then

𝑥𝑚+1,𝑗 ≤ ∑
𝑘∈{0,…,𝑛+1}

𝑥𝑖,𝑘

If there are no justifiers, 𝑥𝑚+1,𝑗 is forced to zero unless the corresponding

term was present in the initial graph 𝐺0.

Using this constraint systemwewant to find the best possible assignment of terms

that maximizes the overall sum of similarities. This can be done by using a mixed

integer linear constraint optimizer, solving the equation

𝗌𝗂𝗆depcluster = max∑𝑀 ∘𝑋 (7.3)

As indicated by the function name, we will use this value as the similarity function

for dependency cluster similarity, 𝗌𝗂𝗆depcluster.

As an example, consider the term cluster from table 7.5 together with the axiom

set similarities given in table 7.6.

Combining these yields the similarity matrix𝑀 from equation (7.4).

𝑀 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1.00 0.01 0.01 0 −1
0.01 0.25 0.75 0 −1

0 0 0 0 0
−1 −1 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(7.4)

217

7. Comparing DL Completion Graphs

The variable matrix𝑋 (equation (7.5)) is of the same dimension. As indicated, the

filler variables 𝑥2,3 𝑥3,3, 𝑥2,4, and 𝑥3,4 are forced to zero.

𝑋 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥0,0 𝑥0,1 𝑥0,2 𝑥0,3 𝑥0,4
𝑥1,0 𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4
𝑥2,0 𝑥2,1 𝑥2,2 𝑥2,3 = 0 𝑥2,4 = 0
𝑥3,0 𝑥3,1 𝑥3,2 𝑥3,3 = 0 𝑥3,4 = 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(7.5)

The constraints for the matrix are given below.

• Since they are the last terms in the refinement, neither 𝑠1 nor 𝑡2 have a jus-
tifier. Both 𝑥1,3 and 𝑥2,2 are thus forced to zero, i.e. may not be assigned.

𝑥1,3 = 0 (7.6)

𝑥2,2 = 0 (7.7)

• Single term assignment yields that the row sum for the first two rows and

that the column sum for the first three columns is one.

𝑥0,0 + 𝑥0,1 + 𝑥0,2 + 𝑥0,3 + 𝑥0,4 = 1 (7.8)

𝑥1,0 + 𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 = 1 (7.9)

𝑥0,0 + 𝑥1,0 + 𝑥2,0 + 𝑥3,0 = 1 (7.10)

𝑥0,1 + 𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 1 (7.11)

𝑥0,2 + 𝑥1,2 + 𝑥2,2 + 𝑥3,2 = 1 (7.12)

• 𝑠0 is needed for 𝑠1, i.e. 𝑠1 justifies 𝑠0. But since 𝑠0 was initially present, we
do not encode this constraint.

218

7.2. Similarity Measures for Completion Graphs

• 𝑡0 is needed for 𝑡1, but since 𝑡0 was initially present, we do not encode a
constraint for it. However, 𝑡1 was not initially present and it is needed for 𝑡2,
hence we obtain equation 7.13.

𝑥2,1 ≤ 𝑥0,2 + 𝑥1,2 + 𝑥2,2 (7.13)

Optimizing this constraint system to maximize Σ𝑀 ∘ 𝑋, we obtain

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥0,0 = 1 𝑥0,1 = 0 𝑥0,2 = 0 ∶ 𝑥0,3 = 0 𝑥0,4 = 0
𝑥1,0 = 0 𝑥1,1 = 0 𝑥1,2 = 1 𝑥1,3 = 0 𝑥1,4 = 0
𝑥2,0 = 0 𝑥2,1 = 1 𝑥2,2 = 0 𝑥2,3 = 0 𝑥2,4 = 0
𝑥3,0 = 0 𝑥3,1 = 0 𝑥3,2 = 0 𝑥3,3 = 0 𝑥3,4 = 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(7.14)

𝑠0 is mapped to 𝑡0, 𝑠1 is mapped to 𝑡2 and 𝑡1 is dangling, but justified by 𝑡2. This is
reflected in the assignment: it was only possible to assign 𝑥2,1 = 1, because 𝑥1,2
was already non-zero (as per constraint equation (7.13)).

The implementation makes use of the Choco [JRL08] constraint solver.

Chapter Summary

In this chapter, we have designed multiple similarity measures to compare DL

completion graphs as obtained from the refinement process described in sec-

tion 6.1.

Starting from a relatively simple flat similarity measure that simply views a com-

pletion graph as a unstructured set of logical axioms (inℒ), we iteratively enhanced
this basic measurement using semantic information from both refinement and

reasoning steps. Herein, we also made use of non-standard reasoning services:

The dependencymap𝖣𝖾𝗉 and the governing term set 𝜅 from themapping tableau
(section 5.2) provided us with additional semantic information.

219

7. Comparing DL Completion Graphs

The result is clustered cosine similarity, where we separate axioms from 𝜅 (possi-
bly augmented from the egd-path and with logical derivates) into distinct clusters,

which we match against their corresponding counterparts individually. The new

similarity measure also a a full set of new parameters (term collection) to evaluate.

In a third version of a similarity measure, we incorporate the relationship between

refinement rules in the form of generating refinement rules (figure 7.2). This lead

us to the concept of axiom cluster justification and from there to a new dependency

cluster (depcluster) similarity measure.

All three of similarity measure, flat cosine, clustered cosine and depcluster simi-

larity will be evaluated empirically in the next, final section of this thesis.

220

SECTION 8.0

Evaluation and Conclusion

The final chapter of this thesis focusses on the empirical evaluation, in par-

ticular on the evaluation of the three completion graph similarities flat cosine,

clustered cosine, and depcluster. The effects of matcher parameter choices are

also presented.

We start with a description of the basic evaluation tool set, most importantly how

the correctness of generated mapping rules is evaluated. We then describe the

ontologies used during the evaluation and the design of the evaluation process

as a whole.

The chapter concludes with a summary of the observed results and gives an

outlook on future improvements.

8.1 Comparing Mapping Rules

To compare conjunctive queries, simple syntactic evaluation is insufficient. The

two terms𝐴(?𝑥) and𝐴(?𝑦) are syntactically different, but semantically equivalent
when both ?𝑥 and ?𝑦 are free variables.

In addition, background knowledge contained in the 𝖳𝖡𝗈𝗑, can make two syntac-
tically very different rules semantically equivalent. For example, consider

𝖳𝖡𝗈𝗑 = {𝐴 ⊑ 𝐵,𝐵 ⊑ 𝐴}.

In this case,𝐵(?𝑥) and𝐴(?𝑦) are semantically equivalent, since𝐴 ≡ 𝐵. A similar
case holds e.g. given 𝖱𝖡𝗈𝗑 = {𝑟 ⊏ 𝑞, 𝑞 ⊏ 𝑟}. Now, 𝑟(?𝑥, ?𝑦) and 𝑞(?𝑤, ?𝑧) are
semantically equivalent.

8. Evaluation and Conclusion

We use augmentation of the rule terms to solve this problem for our use case. The

expansion is incomplete in general, but is sufficient for the mapping use case.

When two rule terms Φ𝑟, Φ𝑚 are compared, we augment both Φ𝑟 and Φ𝑚 with

selected terms from the other, maintaining interpretation.

In particular

• If𝐴𝑟(?𝑥) is a class term present in Φ𝑟, and𝐵𝑚(?𝑦) is a class term present in
Φ𝑚, and 𝖳𝖡𝗈𝗑 ⊧ 𝐴𝑟 ⊑ 𝐵𝑚, add 𝐵𝑚(?𝑥) to Φ𝑟.

The same procedure is applied in the reverse direction.

• Similarly, if 𝑞𝑟(?𝑥, ?𝑦) ∈ Φ𝑟, 𝑠𝑚(?𝑤, ?𝑧) ∈ Φ𝑚, and 𝖱𝖡𝗈𝗑 ⊧ 𝑞𝑟 ⊑ 𝑠𝑚, add
𝑠𝑚(?𝑥, ?𝑦) to Φ𝑟.

Also again, the same procedure is applied in the reverse direction.

To validate generated rules against the reference rule sets, we oncemoremake use

of the Choco [JRL08] constraint solver on the augmented terms.

This leaves us with a binary classification between rules that are equal to existing

rules. To introduce at least some measure of fuzziness, we also consider correct

rules.

A rule is correct, if does not transfer invalid information. This is the case, when

• the rule head is equal or more specific than the rule head of a reference rule,

or

• the rule body is equal or less specific than the rule body of a reference rule.

For example, if the reference rule is 𝐴(?𝑥), 𝑟(?𝑥, ?𝑦),𝐵(?𝑦) ↦ 𝐶′(?𝑥),𝐷′(?𝑥),
the following are examples for correct rules:

𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐵(?𝑦), 𝐶(?𝑦) ↦ 𝐶′(?𝑥),𝐷′(?𝑥), (8.1)

𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐵(?𝑦) ↦ 𝐶′(?𝑥) (8.2)

𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐵(?𝑦) ↦ 𝐷′(?𝑥) (8.3)

𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐵(?𝑦), 𝐶(?𝑦) ↦ 𝐶′(?𝑥) (8.4)

222

8.2. Evaluation Design

A correct rule is semantically justified, but does not transfer as much information

as possible from source to target. If the head of a rule is over-refined, it excludes

some sub-graphs from the source side that could be mapped. If the body of a

rule is under-refined, it generates a smaller target sub-graph than what would be

optimal.

In the known-target case, only the body part is relevant, because the rule head is

derived from a user-supplied query. If known-target matching producesmany cor-

rect rules for some similarity computation, this is an indicator that the calculation

has a tendency to under-refine rules.

In the known-source case, only the head part is relevant, because the rule body is

derived from a user-supplied query. Conversely, a large number of correct rules in

the known-source case indicates a tendency to over-refine rules.

8.2 Evaluation Design

Evaluation is performed using two ontologies 𝑂1 and 𝑂2.

𝑂1 is the original built heritage ontology as extracted from the University of Bam-

berg’s “Mobile Mapping System” software. This is the actual ontology used for

documentation of damage, restoration, and repair work for the Bamberg Cathe-

dral.

𝑂2 is an evolved version of 𝑂1. It represents the same information set, but uses

more refinedmodellingmethods not available in themapping software itself. The

modelling in 𝑂2 is typically more complex and more extensible, but also in parts

more restricted, making strong use of 𝖳𝖡𝗈𝗑 constraints whenever possible. The
logical constraints in 𝑂1 are sometimes too lax, allowing for consistent but non-

sensical models, 𝑂2 is much more restricted while at the same time providing

well-defined extension paths.

Mapping from 𝑂1 to 𝑂2 requires complex alignments. The results shown in ta-

ble 3.1 have already demonstrated that simple alignments are not only insufficient

but that the need for complex alignment reduces alignment quality obtained from

simple matchers.

223

8. Evaluation and Conclusion

The evaluation is performed in two steps that evaluate and highlight different as-

pects of the refinement process.

1. At first, I evaluate the suitability of the refinement process for interactive

mapping refinement. Interactive mapping is performed using the tool de-

scribed in section 6.3.

2. The second step evaluates the automated alignment provided by the similar-

ity measures developed in developed in chapter 7.

Evaluation of Interactive Refinement

Automated refinement lends itself well to quantitative evaluation (see below), but

the situation is not so simple for interactive refinement. Measuring the user expe-

rience is problematic. Hence, usability will only be evaluated anecdotally. This is

done by reviewing the experience during the establishment of the reference rule-

sets.

In particular, the following potential problem areas will be observed:

Incompleteness If the iterative matching system is not capable of deriving a re-

finement rule, it is incomplete with regard to the use case.

Information Scarcity This happens when the user is not presented with sufficient

information to make a refinement decision.

Information Overload This situation occurs, when a user is presented with too

much information at once, i.e when the filtering or structuring of informa-

tion provided by the matching system is insufficient.

Evaluation of the Automated Alignment

The result of the first step is a (complex) reference alignment 𝐴1. 𝐴1 is complete,

i.e. it transfers as much information as possible from 𝑂1 to 𝑂2.

I use the reference alignment 𝐴1 (and a variation 𝐴2 of it) to evaluate the comple-

tion graph similarity measures developed in chapter 7.

224

8.2. Evaluation Design

The auto-generated alignmentswill be compared against the reference alignments.

I will measure the precision (number of correct alignments). Additionally, we will

also measure the number of correct alignments as explained in section 8.1.

Reference Alignments

In section 6.3 I showcased a tool for interactive refinement of initial correspon-

dences. In the first step of the evaluation, the tool will be used to derive the refer-

ence alignment from 𝑂1 to 𝑂2.

The initial, simple alignment between 𝑂1 and 𝑂2 is generated using Agreement-

Maker [CAS09]. Subsequently, we use the interactive refinement tool (section 6.3)

to generate a reference alignment 𝐴1. This alignment is then inspected for com-

pleteness, that is we check if the reference alignment is complete in the sense that

it transfers as much information as possible from 𝑂1 to 𝑂2.

For further evaluation, we use two different reference alignments:

Alignment 1 As already mentioned, the first alignment 𝐴1 contains all maximally

refined correspondences between 𝑂1 and 𝑂2.

This means that if both

𝐴(?𝑥), 𝑟(?𝑥, ?𝑦), 𝐵(?𝑦) ↦ 𝐶(?𝑥), 𝑞(?𝑥, ?𝑧),𝐷(?𝑧)

and

𝐴(?𝑥) ↦ 𝐶(?𝑥)

are valid correspondences, only themost specific (section 8.2) is represented.

𝐴1 contains 88 complex mapping rules.

Alignment 2 on the other hand is cut-off version of 𝐴1. Some of the correspon-

dences are less refined. For example, the correspondence from section 8.2

could be reduced to

𝐴(?𝑥), 𝑟(?𝑥, ?𝑦),⊤(?𝑦) ↦ 𝐶(?𝑥), 𝑞(?𝑥, ?𝑧),⊤(?𝑧)

225

8. Evaluation and Conclusion

Table 8.1. Matcher Parameters for the Evaluation
parameter possible values reference
reference terms 𝗋𝖾𝖿𝑠, 𝗋𝖾𝖿𝑡 section 6.1
matcher mode (known-)target,

(known-)source
section 6.1.3

phrase extraction stemmer, stemmer-
decomposer, normal-
izer

section 7.1.4

dependent axiom collection none, egd, children,
egd-children

section 7.1.5

string similarity cosine, cosine-tfidf,
softcosine

section 7.2.1

completion graph similarity flat, govterm-flat,
govterm-clustered,
depcluster

section 7.2

reference alignment 𝐴1, 𝐴2 section 8.2

Because of the reduction, Alignment 2 contains fewer mapping rules. Only

64 complex correspondences are represented.

𝐴2 has been explicitly designed to simulate selective extraction of limited

ontology/knowledge base fragments as outlined in section 6.1.

The evaluated refinement processes will be performed in two directions (see sec-

tion 6.1). In the first set of evaluation runs, we will fix the target side (by providing

𝗋𝖾𝖿𝑡) in line with the preservation scenario that is the basis for this thesis. In the
second set of evaluation runs, the source side (𝗋𝖾𝖿𝑠) will be fixed, meaning that we
search target ontology fragments for a set of known source ontology fragments.

Any alignment obtained from the automatic refinement process will be compared

against the reference alignment.

Table 8.1 gives an overview of the different matcher parameters and their possible

values. In total, there are 576 possible combinations, but not all combinations
of matcher parameters are sensible. For example, flat cosine similarity cannot be

combined with any of the term cluster expansion methods (egd, children, egd-

children) as the flat termmodel already uses all terms from the completion graph.

226

8.3. Evaluation Results

8.3 Evaluation Results

Tables with the raw evaluation results can be found in appendix A.3.

8.3.1. Interactive Refinement

The interactive refinement process manifests itself as very useful.

The reference alignment generated by the interactive method is complete with

regard to the limitations of the process itself (i.e. no value mapping, no multi-

variable mapping).

The context-sensitive presentation of the refinement steps was useful. Visualizing

the attachment points of an alignmentmade it possible to understand subordinate

relationships. For example, when the refinement 𝖡𝗎𝖼𝗁𝖾𝗋 is presented attach to
𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅 it is clear from the displayed graph structure that a material is introduced
as long as there is at least limited domain knowledge.

If a refinement on one side required multiple refinements on the other side, the

interactive process was sometimes not straightforward: for example, when the

source governing terms are 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 and 𝖡𝗎𝖼𝗁𝖾𝗋, but the target requires the intro-
duction of 𝗁𝖺𝗌𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅 before the concrete stone type (𝖡𝗎𝖼𝗁𝖾𝗋) can be introduced,
this often requires some experimentation by the user. This problemwas worsened

by the fact that the system currently does not provide undo functionality.

There was never information overload during the process. At any point in time,

there where usually only up to five applicable refinement rules and never more

than three refinement rules per graph node. The context sensitive presentation is

very helpful in this regard.

In general the interactive tool allows a user to quickly establish a set of complex

refinements in a matter of minutes, which is a huge improvement over a non-

assisted process.

227

8. Evaluation and Conclusion

Figure 8.1. Effects of Extractor Parameters

0

20

40

60

80

100

flat govterm-
flat

govterm-
clustered

depcluster

normalizer stemmer s+d

Score is averaged over all performed matcher runs. Missing entries indicate
configurations that were not evaluated.

8.3.2. Effects of Lexical Extractor Parameters

The remainder of the evaluation concerns itself with the fully automatic derivation

of complex alignments. Results here are more mixed than for the assisted case.

The automatic derivation is also more suited to quantitative evaluation

We first study the effects of the string similarity measure and lexical extraction

setup on alignment quality.

Figure 8.1 shows the averaged score for each similarity measure depending on the

choice of extractor parameter. There is a slight drop-off for depcluster in the s+d

(stemmer-decomposer) variant. This affects only 2 (𝐴1) or 1 (𝐴2) correspondences

and is probably only an artefact from the limited scope of the evaluation.

In general, configurations which use more elaborate lexical pre-processing per-

form better.

228

8.3. Evaluation Results

8.3.3. Effects of Axiom Set Similarity

Comparing the effects of the string set similarity measure has interesting results.

Traditional cosine similarity yields the best overall results.

The added computational complexity of soft cosine results in little benefit. This is

most likely, because the evaluation ontologies use controlled jargon and contain

too few lexical errors as to benefit from the added fuzzing of soft-cosine. It is

important to note, however, that the negative performance effect of soft-cosine is

relatively small. Also, the added fuzziness of soft cosine does not affect the quality

of the results.

The comparison (fig. 8.2) shows cosine-tfidf score lower on average for all com-

pletion graph similarity measures, which is astounding. When considering the

raw evaluation results (see appendix A.3), matching the first dataset 𝐴1 with flat

and govterm-flat needs to be considered a total failure, with only a single correct

correspondence returned (𝑃𝑟𝑒𝑐 = 1.1%). A similar, if somewhat better result
can be observed when matching 𝐴2, with a precision of up to 27%. Results are
slightly better for govterm-clustered and depcluster similarities, but basic cosine

and soft-cosine still perform better.

8.3.4. Effects of Axiom Collection

Figure 8.3 shows the effects of the axiom collection steps, i.e. following the egd-

path and collecting logical children. Both govterm-flat and govterm-clustered per-

form significantly better in all cases, when both collectionmethods (egd+children)

are used. The result is strong enough that evaluation of depcluster was limited to

using only the egd+children parameter set.

8.3.5. Comparison Of Completion Graph Similarity Measures

Figure 8.4 shows the best results by completion graph similarity measure. As

noted in section 8.3.3, cosine-tfidf was found to produce erratic results. To mea-

sure overall quality, TFIDF scores have thus been eliminated from the analysis.

229

8. Evaluation and Conclusion

Figure 8.2. Effects of Term Set Measure

0

20

40

60

80

100

flat govterm-
flat

govterm-
clustered

depcluster

cosine cosine-tfidf softcosine

Figure 8.3. Effects of Dependent Term Collection

0

20

40

60

80

100

govterm-
flat

govterm-
clustered

depcluster

none egd children e+c

Score is averaged over all performed matcher runs. Missing entries indicate
configurations that were not evaluated.

230

8.4. Discussion

Up so far, we have only evaluated matcher runs that use a fixed target (known-

target). For comparison of the best match obtainable from each completion graph

similarity, we also consider matcher runs with a fixed source (known-source).

Known-target When matching the full (𝐴1) alignment, there is a constant im-

provement from the simple to the more elaborate similarity measures. Govterm-

flat performs better than flat, govterm-clustered better than govterm-flat, with de-

pcluster similarity yielding the best results.

When the reduced reference alignment (𝐴2) is evaluated, however, the results be-

come more varied. After the initial improvement from flat to govterm-flat, there

is now a slight, but noticeable drop-off in precision.

In fact the matcher quality decreases from flat cosine to govterm-flat, and then to

to govterm-clustered. In absolute numbers, however, the difference is only two

refinement rules (61 vs. 60 vs 59).

Known-Source The best-match evaluation for known-source refinements show

a quite mixed picture. In the full refinement variant (𝐴1), govterm-flat performs

significantly better than flat cosine. With a precision of only up to 6% for 𝐴1 and

27% for 𝐴2, govterm-clustered is unsuited for the known-source use case.

The problems are only partially resolved by the upgrade to depcluster similarity.

Flat cosine and govterm-flat show the best precision for the known-source case.

8.4 Discussion

8.4.1. Interactive Refinement

While the overall feel of the interactive refinement tool seems good, a more thor-

ough evaluation would have been necessary to provide dependable results. In par-

ticular, a study withmultiple users with varying domain expertise would have been

useful.

231

8. Evaluation and Conclusion

Figure 8.4. Best Results by Completion Graph Similarity

0

20

40

60

80

100

𝐴1target
𝐴2target

𝐴1source
𝐴2source

flat
govterm-flat

govterm-clustered
depcluster

Shown is best obtain precision, limited to non-TFIDF scores (see discussion).

However, even as is, it can be stated that interactive refinement is very useful.

The current state of the refinement tool was completely sufficient to establish the

reference alignment and there are clear paths for further improvement (see sec-

tion 8.6).

8.4.2. Automatic Refinement

Overall results from the evaluation of automatic refinement are mixed (fig. 8.4).

The maximally refined rule scenario (𝐴1) benefits from all of the newly developed

methods. In the cut-off scenario (𝐴2), the situation is different: here, there is a

strong gap between the totally unstructured flat cosine and the structuredmethods

(starting with govterm-flat). The added effort for govterm-clustered and depclus-

ter, however, does not offer significant improvement for the cut-off scenario (𝐴2).

232

8.4. Discussion

For the known-source variant, the picture is more varied: here, only govterm-flat

improves or is at least en par with basic flat cosine similarity. Govterm-clustered

similarity strongly underperforms and depcluster similarity remains slightly be-

low the performance of flat cosine similarity.

These results can be explained by the structure of the ontologies involved and also

shines light on some additional aspects:

Lexical Preprocessing is Beneficial

It shows across all evaluation runs that using the most elaborate term extraction

pipeline delivers the best overall matching results.

The Matching Pipeline is an Integrated Process

The bad performance of TFIDF cosine for all but the depcluster matching in its

𝐴1 incarnation is an indication that stacking well-known methods in a pipeline

is not sufficient. Interaction between the different pipeline operations are more

subtle.

TFIDF as implemented seems to be a bad fit for the matching scenario. There are

relatively few documents that are also very short with only few terms. The set of

completion graphs extracted from the refinement process is probably also not a

representative set, which further skews the relevance calculation.

A similar problem is observedwhen analysing the causes for the failing of govterm-

clustered in the known-source variant. Govterm-clustered cannot distinguish can-

didates that differ only in dangling clusters (those not matched to an opposite

cluster). This combines badly with the fact the matching algorithm prefers longer

matches in the case of a tie from the underlying similarity computation.

Semantic Information is Beneficial

Governing-termbasedmatching in general works as intended and improvesmatch-

ing result as shown by the performance of govterm-flat similarity.

233

8. Evaluation and Conclusion

When clustering the governing terms before comparison, results are not so en-

couraging. While an improvement is noticeable when fixing the target side of

alignment rules (known-target), govterm-clustered similarity seems very much

unsuited to the evaluation case. Depcluster similarity partially remedies this prob-

lem, but still lags behind in the known-source case.

Matching Direction is Important

When inverting the matching direction, from known-target to known-source, the

expected result was that overall quality of generated correspondences is lower, be-

cause the target (and thus presumed future) ontology is more complex than the

source ontology. Hence fixing the target ontology reduces the search space and

thus the alignment quality.

This argument is quite strongly supported by the execution time of the alignment

search. In the known-source case, running times are over five times as long as

their known-target counterparts. There are more potential target candidates than

there are potential source candidates, i.e. for known-source the search space is

much larger.

The expectation was fulfilled by all employed similarity measures.

However, there is also an artefact. While the known-target variant shows either an

improvement or en-par performance when moving from govterm-flat to govterm-

clustered to depcluster, the known source variant has govterm-flat as the best sim-

ilarity measure with depcluster lagging slightly behind.

Govterm-clustered is seems prone to over-refining. This can be observed in ta-

bles A.4 and A.5. Govterm-clustered has the highest number of correct rules with

over-refined source queries of all the similarity measures. This is because a dan-

gling cluster has no negative impact on the calculated similarity, since only the best

matches are picked, with leftover clustered being ignored. Consequently, govterm-

clustered does not have the ability to distinguish between𝖡𝖺𝗅𝗄𝖾𝗇𝗅𝖺𝗀𝖾𝗋(?𝑥), 𝖯𝖺𝗋𝗍𝗈𝗇𝗈𝗆𝗂𝖾(?𝑥)
(bar stock, partonomy) and 𝖡𝖺𝗅𝗄𝖾𝗇𝗅𝖺𝗀𝖾𝗋(?𝑥).

234

8.4. Discussion

This property of govterm-clustered combines badly with a property of the target

ontology: in the target ontology, almost every primary concept can be option-

ally tagged with a marker class 𝖯𝖺𝗋𝗍𝗈𝗇𝗈𝗆𝗂𝖾 (partonomy), indicating that the ob-
ject is to be considered a container element in the building’s structure. When

using govterm-clustered, rules with the marker interface yield the same similar-

ity value as rules without the marker interface. Now because we want to prefer

longermatches (see section 7.1.2) when the similarity computation results in a tie,

govterm-clustered always prefers the augmented version (including a 𝖯𝖺𝗋𝗍𝗈𝗇𝗈𝗆𝗂𝖾
element). This is a deficit of govterm-clustered in combination with the refine-

ment process. Depcluster similarity avoid this problem by devaluing such unjus-

tified dangling clusters.

However, both govterm-clustered and depcluster suffer from another problem that

is more strongly present in the target ontology: non-atomicity of refinement rules.

For example, the target ontology uses subclassing to represent stone types. That is

there is a 𝖲𝗍𝗈𝗇𝖾𝖳𝗒𝗉𝖾 abstract base class and a 𝖡𝗎𝖼𝗁𝖾𝗋 ⊑ 𝖲𝗍𝗈𝗇𝖾𝖳𝗒𝗉𝖾 specific stone
type class. Unfortunately, OWL2 does not allow the formulation of abstract classes

and thus, the respective refinement is performed in two steps, since a standalone

instance of 𝖲𝗍𝗈𝗇𝖾𝖳𝗒𝗉𝖾 is a valid model. Consequently, there are two clusters on
the target side for a single cluster on the source side representing the same piece

of information. In general, depcluster is designed to prefer to match the more

refined cluster (e.g. 𝖡𝗎𝖼𝗁𝖾𝗋(?𝑥), 𝖲𝗍𝗈𝗇𝖾𝖳𝗒𝗉𝖾(?𝑥)), but since there is only a single
axiom representing the difference, this does not always work out.

Additionally, depcluster falls into a trap set by how a certain, well-used feature

is implemented in the source and target ontologies. Some elements in the tar-

get ontology can appear either in an inventory (𝖡𝖾𝗌𝗍𝖺𝗇𝖽) or in a measurement
(𝖬𝖺𝗌𝗌𝗇𝖺𝗁𝗆𝖾). This is implemented as two marker concepts¹⁵. In the source on-
tology, the inventory taking is implicit, with only the𝖬𝖺𝗌𝗌𝗇𝖺𝗁𝗆𝖾 explicitly tagged,
e.g. 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 −𝖬𝖺𝗌𝗌𝗇𝖺𝗁𝗆𝖾. Because of this, depcluster similarity cannot discern if
𝖵𝗂𝖾𝗋𝗎𝗇𝗀(?𝑥) (without𝖬𝖺𝗌𝗌𝗇𝖺𝗁𝗆𝖾 should be mapped to 𝖵𝗂𝖾𝗋𝗎𝗇𝗀(?𝑥), 𝖡𝖾𝗌𝗍𝖺𝗇𝖽(?𝑥)
or to 𝖵𝗂𝖾𝗋𝗎𝗇𝗀(?𝑥),𝖬𝖺𝗌𝗌𝗇𝖺𝗁𝗆𝖾(?𝑥). The information is not explicitly tagged in the

¹⁵axiomatised as 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 ⊑ 𝖡𝖾𝗌𝗍𝖺𝗇𝖽 ⊔ 𝖬𝖺𝗌𝗌𝗇𝖺𝗁𝗆𝖾

235

8. Evaluation and Conclusion

source ontology. Which alternative is chosen is more or less random, and because

the phenomenon affects themost complex primary trees found in both ontologies,

its effect is visible in many refinement rules, skewing the evaluation results.

8.5 Summary

In this thesis, I have shown a new path to derive complex ontology alignments

from simple correspondences. I have done so by employing and –if necessary–

modifying and extending existing formal methods. Finally, I have also shown and

evaluated newways to leverage semantic information to compare description logic

models, which proved useful in the derivation of new, complex mappings between

ontological models.

In a first step, I have formalized a relationship between conjunctive query terms

and completion graphs (chapter 5) in both directions. I have developed a method

to generate completion graphs from conjunctive query terms (section 5.1.1). The

other direction proved more complex and also shows the limitations of the ex-

pressive power of conjunctive queries in comparison to completion graphs (sec-

tion 5.1.2). The effects of these limitations for application of the method for on-

tology alignment have been discussed (section 5.1.3 to section 5.1.6). For some of

the limitations, potential workarounds have also been developed.

To facilitate the extraction of conjunctive query terms from saturated completion

graphs, an existing DL tableau method was extended. The modified “mapping

tableau” (section 5.2) extracts the necessary information tomap a completion graph

into (a set of) conjunctive terms. It also makes potential problems while mapping

a completion graph to a conjunctive term explicit. Having access to the internal

workings of the reasoning process (section 4.3.1) proved crucial to obtain the re-

spective results.

Having developed the basic tool set for “model based” ontology alignment, the sec-

ond step was the development of a model-based refinement process (section 6.1).

I have shown that this newly developed process

• can integrate background information (via tableau completion),

236

8.5. Summary

• is extensible,

• facilitates relatively simple refinement rules (section 6.2),

• avoids inconsistent mappings, and

• can be used interactively (section 6.3) as well as in automatic mode.

The result is a new, expressive formalism to derive complex correspondences it-

eratively from simpler ones obtained from “traditional” ontology matchers.

Finally, the model-based refinement process has been put to the test. For evalua-

tion, I have designedmultiple completion graph-based similaritymeasures. These

range from simple unstructured comparison of axiom sets (section 7.2.1) to iter-

atively more complex methods that incorporate more semantic information from

both reasoning with the modified tableau (section 5.2) as well as from the refine-

ment process (section 6.1) itself.

Empiric evaluation (chapter 8) of the full process has shown that

• model-based refinement is aworkable and effectivemethod to derive complex

correspondences between ontological models,

• the above is in particular true for interactive generation of alignments. Pre-

senting users with refinement choices is a natural and effective method of

creating complex alignments, and

• incorporating semantic information in similarity measures between comple-

tion graphs is beneficial.

We have seen that evaluation of the semantic structure of a completion graph by

using the governing terms of the graph has brought a big benefit in matcher qual-

ity almost across all evaluation runs (govterm-flat similarity).

Results for the evenmore elaboratemethods govterm-clustered and depcluster are

more mixed. The evaluation has shown a clear deficiency for govterm-clustered,

in not discouraging rules with dangling clusters from being preferred.

237

8. Evaluation and Conclusion

While depcluster similarity remedies this particular problem, alignment quality

is only improved in certain cases. However, the generated incorrect alignments

provide important information. The errors made by the more complex similarity

measures often showed actual modelling deficiencies (missing explicit 𝖡𝖾𝗌𝗍𝖺𝗇𝖽
tagging) and have also given valuable hints as too which modelling concepts are

best avoided (e.g. abstract concepts).

Also on the bright side, it must be noted that the desired reference rule was always

within the top three (of sometimes over a hundred) candidates returned by the

similarity measure. This makes them well suited for interactive alignment, where

the user can be presented with a candidate list.

8.6 Future Work

Research on a topic can usually continue indefinitely. Even now, I can think of a

few parameters to tune, a few algorithmic details to change, a few external systems

to integrate and –of course– a few more evaluation runs to perform. There is also

the other side, where there are clearly remaining problems but not clear path to

go on. Both of which will be covered in this section.

Design of Document Ontologies Remember back from section 3.3 that we have

little information on the suitability of matcher technology with regard to types of

documents. With regard to digital archiving, this means that we cannot currently

make assertions in two regards:

• we cannot evaluate existing documents for their suitability for format con-

version using ontology matching. That is, when presented with a document

ontology, we cannot check the document for features that make it hard for

the document to be aligned.

• we also cannot evaluate changes to a document ontologywith regard tomatch-

ing. This means, that even if we have a “matchable” document in the archive,

there is currently no way to find out if a future, modified ontology is still

“matchable” short of actually performing the alignment.

238

8.6. Future Work

What is still missing, is thus a method to determine suitability of document on-

tologies for alignment.

In this thesis, a first attempt was made in the formulation of the document on-

tology meta-schema (Section 3.3). However, the results from the automatic eval-

uation part show, that this document model is not sufficiently restrictive ensure

proper automatic alignment.

Syntactic restrictions in the ontology formalism (in particular the inability to ex-

press abstract classes in DLs) meant that our refinement rules were semantically

non-atomic. This in turn meant that similarity measures that rely on the fact that

refinement rules introduce atomic semantic features (govterm-clustered, depclus-

ter) can yield only limited results.

One way to improve this situation is to introduce additional information into the

document models. In general, a document model is only acceptable, when

• the refinement process is able to derive all relevant concrete document frag-

ments, and

• every refinement step is semantically atomic, that is every step introduces a

single semantic feature.

If this is not the case, the problem must either be fixed in the document model or

we need additional or different refinement rules that support the desired proper-

ties. Verification of the property, however, remains a semi-automatic task since a

proper definition of semantic property is still elusive.

Refinement Suggestion for Interactive Mapping While the interactive matcher

showed itself very useful, it also has its drawbacks. It is limited by the available

refinement rules, there is no way to manually introduce a particular refinement

not covered by existing refinement rules.

In addition, larger refinement paths maybe troublesome when not both ontolo-

gies are well known. A possible improvement would be to allow the user to select

a graph element that he/she wants a refinement suggestion for. The refinement

system the automatically uses the egd path of the selected element to generate a

239

8. Evaluation and Conclusion

candidate rule and uses the refinement search process to suggest possible refine-

ment steps for the user side of the mapping. This also enables to use the results

from a selective, automated refinement process for interactive refinement.

Primary Relations The document ontology model (section 3.3) implies that there

are (primary) relations between primary trees. Finding proper correspondences

and “attachment locations” for such cross-tree relations has been ignored by this

thesis.

Value Transfer The problem with primary relations is related also to another:

value transfer, i.e. the mapping of data property values. The current system can

only handle enumerated values and even those only when the enumeration is ex-

plicitly formulated in the 𝖳𝖡𝗈𝗑.

In the preservation case, the set of source documents is usually fixed. It is thus

possible to extract data value enumerations from the documents themselves. Even

more elaborate, the refinement process needs only to explore existing knowledge

base fragments.

Mapping different value ranges is difficult, however. This thesis shifts this burden

fully into the –user supplied– thesaurus. If one ontology contains the data value

“1500” and the other the data value “16th century”, user intervention is required

to assert that both data values (in context) have the same meaning.

Performance and Large Scale Matching This is an important point. The known-

target version of the alignment process is reasonable fast, especially when consid-

ering the performance enhancements from section 6.2.4. For creating the refer-

ence alignment, the process was run interactively and individual steps compute

reasonable fast with only a few seconds of waiting time in between.

On the other hand, our reference ontology contains only 53 (56) classes and 83 (21)
properties. This is far away from the SNOMEDCT test caseswith around 2, 000 to
3, 000 concepts, let alone the full SNOMED ontology with 316, 031 concepts. On

240

8.6. Future Work

the other hand, SNOMED while highly detailed is also –relatively– shallow: there

are only 153 properties, i.e. one per about 2, 000 classes and the representation

language is ℰℒ + +.

Nonetheless, improving refinement performance remains an open topic. More in-

formation can be re-used from previous refinement steps. It might also be possi-

ble to avoid using a custom tableau and re-use an off-the-shelf andmore optimized

DL reasoner.

Improved Refinement Rules The current set of two refinement rules (subclass

and role successor introduction) is sufficient to match built heritage ontologies.

However, many ontologies will have more elaborate representation patterns. Be-

cause the refinement process is modular, adding additional patterns is possible,

when the basic constraints (merge monotonicity, total order) are observed. The

alignment patterns described by Scharffe [Sch09] seem like a good starting point

to derive more complex refinement rules.

Improved Semantic Matching Last, but not least there is also room for improve-

ment in one of the primary results of this thesis. While the semantic contraction

offered by the refinement process and governing term-based semantic clustering

has been shown as a step in the right direction, I consider dependency cluster

matching to be more experimental. More work is required to improve similarity

precision when the refinement rules are not atomic (with regard to the expression

of a semantic feature).

Thus, future work is possible along two paths: it is possible to move onto a com-

pletely different approach to make more use of semantic information from the

refinement process. Future work can also try to refine the dependency cluster

approach, trying to obtain more stable results and improve reproducibility.

Tagging Semantic Features As noted in section 7.2.3 and discussed further in

section 7.2.3, the implemented semantic refinement rules (section section 6.2.1)

do not fully comply with requirement that each refinement rule introduces a single

241

8. Evaluation and Conclusion

new semantic feature. In particular for the source ontology (see section 7.2.3),

multiple refinement steps are sometimes required to introduce a single semantic

feature. This is undesirable.

There are two possible approaches to solve this problem. The approaches do not

exclude each other. One way is to try to guess the intention of the ontology de-

signer with regard to the atomicity of modelling features. This involves introduc-

ing smarter refinement rules that accomplish this task. Such smarter refinement

rules are to the benefit of dependency cluster similarity, which has trouble han-

dling an atomicity difference between source and target refinements.

The smart refinement approach can be combined with explicit annotation of se-

mantic features in the source and target ontologies. For example, if 𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅
(𝖥𝖬) (table 7.4) could be marked abstract, the problem would be solved in the ex-

ample case. Supplying the ontology designer with the ability to annotate elements

of an ontology that need to be present together, could significantly improve refine-

ment quality.

In addition, it is possible to argue for a pattern-based approach to ontology design:

to introduce a new feature into an existing ontology schema, the ontology designer

instantiates a pattern. The use of the pattern could be noted in the ontologies

metadata (annotations). This again would provide suitable hints for refinement

rules that a certain set of elements should be introduced atomically.

242

SECTION A.0

Appendix

A.1 Note on Notation

Graphical Ontology Notation

In some places in this thesis, graphical notation for ontological structures will be

used. Graphical presentation is usually preferred or given in addition to formal

representation. The notation somewhat borrows from UML class diagrams with

ontology specific notation used where appriopriate.

Figure A.1. Graphical Notation for Ontology Elements

SimpleClass

(a) simple class

ComplexClass

property

(b) complex class with property

ComplexClass

property RefClass

(c) complex class with object property

and referenced class

ComplexClass

property integer

(d) complex class with data property

and data type

ComplexClass

property {𝑎, 𝑏, 𝑐}
(e) complex class with data property

and value enumeration

A. Appendix

Relationships between classes are indicated by different types of arrows.

subclass relationship

subproperty relationship

object property

data property

{𝑎, 𝑏, 𝑐} data property with (enumerated) value range

integer
data property with data type

Set Arithmethic

𝐴 = {𝑎1, 𝑎2,… 𝑎𝑛}𝐴 = {𝑎1, 𝑎2,… 𝑎𝑛}𝐴 = {𝑎1, 𝑎2,… 𝑎𝑛} a set of 𝑛 elements. It is true, that 𝑎1 ∈ 𝐴, 𝑎2 ∈ 𝐴,…, 𝑎𝑛 ∈ 𝐴.

𝐴 = (𝑎1, 𝑎2,… 𝑎𝑛)𝐴 = (𝑎1, 𝑎2,… 𝑎𝑛)𝐴 = (𝑎1, 𝑎2,… 𝑎𝑛) a tuple, i.e. an ordered set of 𝑛 elements.

𝜋𝑖((𝑎1, 𝑎2,… , 𝑎𝑛)) = 𝑎𝑖𝜋𝑖((𝑎1, 𝑎2,… , 𝑎𝑛)) = 𝑎𝑖𝜋𝑖((𝑎1, 𝑎2,… , 𝑎𝑛)) = 𝑎𝑖 the projection function, 𝜋𝑖 returns the 𝑖th item from a

tuple. Given 𝐴 = (𝑎1, 𝑎2,… , 𝑎𝑛), we also write 𝐴[𝑖].

{𝑥 | Φ(𝑥)}{𝑥 | Φ(𝑥)}{𝑥 | Φ(𝑥)} the set of all 𝑥, for which Φ(𝑥) holds.

𝐶 = 𝐴 ∪ 𝐵𝐶 = 𝐴 ∪ 𝐵𝐶 = 𝐴 ∪ 𝐵 set union, 𝐶 ≡def {𝑐|𝑐 ∈ 𝐴 ∨ 𝑐 ∈ 𝐵}.

𝐶 = 𝐴 ∩ 𝐵𝐶 = 𝐴 ∩ 𝐵𝐶 = 𝐴 ∩ 𝐵 set intersection 𝐶 ≡def {𝑐|𝑐 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵}.

∅∅∅ the empty set, also written as {}.

|𝐴||𝐴||𝐴| the cardinality of set 𝐴, i.e. the number of distinguished elements 𝑎 ∈ 𝐴.

Also written as #𝐴, when convenient.

2𝐴 = 𝔓(𝐴)2𝐴 = 𝔓(𝐴)2𝐴 = 𝔓(𝐴) The powerset of A, i.e. the set of all subsets of 𝐴, including 𝐴 and

the empty set ∅.

𝐴×𝐵𝐴×𝐵𝐴×𝐵 The cross product of 𝐴 and 𝐵. The set of all tuples {(𝑎, 𝑏) |𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

𝐴2 = 𝐴×𝐴𝐴2 = 𝐴×𝐴𝐴2 = 𝐴×𝐴 Self cross product.

𝐴𝑛 =
𝑛
∏
𝑖=1

𝐴𝐴𝑛 =
𝑛
∏
𝑖=1

𝐴𝐴𝑛 =
𝑛
∏
𝑖=1

𝐴 Self set cross product, i.e. The set of all tuples {(𝑎1,… , 𝑎𝑛) |∀𝑖.𝑎𝑖 ∈ 𝐴}.

244

A.1. Note on Notation

𝐴𝑛+ =
∞
⋃
𝑘=1

𝐴𝑘𝐴𝑛+ =
∞
⋃
𝑘=1

𝐴𝑘𝐴𝑛+ =
∞
⋃
𝑘=1

𝐴𝑘 The set of all cross products of size 𝑘 = 𝑛,… ,∞. In particular,
𝐴+ ≡def 𝐴1+.

Multisets

𝐴 = (𝑆,𝑚)𝐴 = (𝑆,𝑚)𝐴 = (𝑆,𝑚) where 𝑆 is a set of elements and𝑚 ∶ 𝑆 ↦ ℕ+ a counting function. 𝐴
is a multiset. 𝑚 indicates the number of occurences of each element of 𝑆 in
𝐴.

𝐴(𝑎) = 𝑚(𝑎)𝐴(𝑎) = 𝑚(𝑎)𝐴(𝑎) = 𝑚(𝑎) the number of occurences of the element 𝑎 in themultiset𝐴 = (𝑆,𝑚).

𝑎 ∈ 𝐴𝑎 ∈ 𝐴𝑎 ∈ 𝐴
(𝑎 ∈ 𝐴) ⇔ 𝐴(𝑎) > 0

𝗌𝗎𝗉𝗉(𝐴)𝗌𝗎𝗉𝗉(𝐴)𝗌𝗎𝗉𝗉(𝐴) the support of 𝐴, the set of elements occuring in 𝐴 at least once.

𝗌𝗎𝗉𝗉(𝐴) ≡def {𝑎 ∈ 𝑆|𝐴(𝑎) > 0}

Term Manipulation

𝜙 [𝜎]𝜙 [𝜎]𝜙 [𝜎] A sequence of variable substitutions. 𝑥 ← 𝑎 indicates the variable 𝑥 is to be
replaced by the literal/object 𝑎.

𝜙 [𝜎] is the term obtained by applying all variable substitions from 𝜎 (in the
prescribed order) to the term 𝜙.

E.g. 𝜎 = [𝑥 ← 𝑦, 𝑦 ← 𝑧], replaces 𝑥 by 𝑦, first and subsequently replaces
every occurrence of 𝑦 by 𝑧. 𝜎 = [𝑥 ← 𝑦, 𝑦 ← 𝑧] is therefore equivalent to
𝜎 = [𝑥 ← 𝑧, 𝑦 ← 𝑧], which is different from 𝜎 = [𝑦 ← 𝑧, 𝑥 ← 𝑦].

Functions

𝑓 ∶ 𝐴 ↦ 𝐵𝑓 ∶ 𝐴 ↦ 𝐵𝑓 ∶ 𝐴 ↦ 𝐵 𝑓 is a function that maps from the domain 𝐴 onto the range 𝐵. Both
𝐴 and 𝐵 are sets.

245

A. Appendix

𝑦 = 𝑓0 ∘ … ∘ 𝑓𝑘(𝑥)𝑦 = 𝑓0 ∘ … ∘ 𝑓𝑘(𝑥)𝑦 = 𝑓0 ∘ … ∘ 𝑓𝑘(𝑥) Let 𝑓𝑖 ∶ 𝑋𝑖 ↦ 𝑌𝑖 be a set of functions and∀0 ≤ 𝑖 < 𝑘 . 𝑌𝑖 = 𝑋𝑖+1.

𝑦 = 𝑓0 ∘ … ∘ 𝑓𝑘(𝑥) ∶ 𝑋0 ↦ 𝑌𝑘 is the function chain of 𝑓0,… , 𝑓𝑘, iff

𝑦 = 𝑓0 ∘ … ∘ 𝑓𝑘(𝑥) ≡ 𝑦 = 𝑓𝑘(… 𝑓0(𝑥))∗)

injection A function 𝑓 ∶ 𝑋 ↦ 𝑌 is injective, iff

∀ 𝑥0, 𝑥1 ∈ 𝑋 . 𝑓(𝑥0) = 𝑓(𝑥1) ⇒ 𝑥0 = 𝑥1

surjection A function 𝑓 ∶ 𝑋 ↦ 𝑌 is surjective, iff

∀ 𝑦 ∈ 𝑌 . ∃ 𝑥 ∈ 𝑋 . 𝑓(𝑥) = 𝑦

bijection A function is bijective, iff it is both injective and surjective.

𝑓−1𝑓−1𝑓−1 Inverse function. If 𝑓 ∶ 𝑋 ↦ 𝑌 is a bijective function, 𝑓−1 ∶ 𝑌 ↦ 𝑋 is the

inverse function of 𝑓 , iff

∀𝑥 ∈ 𝑋 . 𝑓 ∘ 𝑓−1(𝑥)

Because 𝑓 is bijective, this is equivalent to

∀𝑦 ∈ 𝑌 . 𝑓−1 ∘ 𝑓(𝑦) = 𝑦

Description Logics

𝑎, 𝑏, 𝑐𝑎, 𝑏, 𝑐𝑎, 𝑏, 𝑐 Individuals/Objects named 𝑎, 𝑏, and 𝑐.

𝐴(𝑎)𝐴(𝑎)𝐴(𝑎) 𝑎 is a member of 𝐴, i.e. true iff the individual 𝑎 belongs to the concept 𝐴.
𝐴(𝑥) is sometimes also written as (𝑥 ∶ 𝐴).

{𝑎}{𝑎}{𝑎} {𝑎} is the singleton class containing exactly the individual 𝑎. This is called a
nominal.

𝑟(𝑎, 𝑏)𝑟(𝑎, 𝑏)𝑟(𝑎, 𝑏) The role 𝑟 connects the domain individual 𝑎 with the range individual 𝑏,
i.e. true iff (𝑎, 𝑏) is an instance of 𝑟. 𝑟(𝑎, 𝑏) is sometimes written as 𝑎𝑟𝑏.

246

A.2. Proofs

𝐴 ⊔ 𝐵𝐴 ⊔ 𝐵𝐴 ⊔ 𝐵 concept intersection, (𝑎 ∶ 𝐴 ⊔ 𝐵) ⇔ (𝑎 ∶ 𝐴) ∨ (𝑎 ∶ 𝐵)

𝐴 ⊓ 𝐵𝐴 ⊓ 𝐵𝐴 ⊓ 𝐵 concept intersection, (𝑎 ∶ 𝐴 ⊓ 𝐵) ⇔ (𝑎 ∶ 𝐴) ∧ (𝑎 ∶ 𝐵)

𝐴 ⊑ 𝐵𝐴 ⊑ 𝐵𝐴 ⊑ 𝐵 subconcept assertion, (𝑎 ∶ 𝐴 ⊑ 𝐵) ⇔ ((𝑎 ∶ 𝐴) ⇒ (𝑎 ∶ 𝐵))

∃ 𝑟 .𝐴∃ 𝑟 .𝐴∃ 𝑟 .𝐴 Some relationship, (𝑎 ∶ ∃ 𝑟 . 𝐴) ⇔ (∃𝑦.𝑟(𝑎, 𝑦) ∧ (𝑦 ∶ 𝐴))

∀ 𝑟 .𝐴∀ 𝑟 .𝐴∀ 𝑟 .𝐴 Only relationship, (𝑎 ∶ ∀ 𝑟 . 𝐴) ⇔ (∀𝑦 . 𝑟(𝑎, 𝑦) ⇒ (𝑦 ∶ 𝐴))

≤𝑛 𝑟 . 𝐴≤𝑛 𝑟 . 𝐴≤𝑛 𝑟 . 𝐴 Maximum cardinality constraint. The set of all concepts that have at

most 𝑛 distinct 𝑟-successors.

{𝑥|#{𝑦|𝑟(𝑥, 𝑦) ∈ 𝐸 ∧ 𝑦 ∈ 𝐴} ≤ 𝑛}

≥𝑛 𝑟 . 𝐴≥𝑛 𝑟 . 𝐴≥𝑛 𝑟 . 𝐴 Minimum cardinality constraint, The set of all concepts that have at least

𝑛 distinct 𝑟-successors.

{𝑥|#{𝑦|𝑟(𝑥, 𝑦) ∈ 𝐸 ∧ 𝑦 ∈ 𝐴} ≥ 𝑛}

⊤⊤⊤ 𝑡𝑟𝑢𝑒 or the all-encompassing concept

⊥⊥⊥ 𝑓𝑎𝑙𝑠𝑒 or the empty concept.

A.2 Proofs

Theorem 3.1 – Knowledge Base Lattice

Given a knowledge base𝐾𝐵 = (ℐ, 𝜄𝒞, 𝜄ℛ, 𝜄𝒜) and a knowledge base𝐾𝐵′ = (ℐ′, 𝜄′𝒞, 𝜄′ℛ, 𝜄′𝒜),
the relation

(𝐾𝐵 ≤ext 𝐾𝐵′)
⇔

(𝜄𝒞 ⊆ 𝜄′𝒞 ∧ 𝜄ℛ ⊆ 𝜄′ℛ ∧ 𝜄𝒜 ⊆ 𝜄′𝒜)

is a partial order.

Proof:

247

A. Appendix

𝐾𝐵 ≤ext 𝐾𝐵

• 𝐾𝐵 ≤ext 𝐾𝐵

• 𝜄𝒞 ⊆ 𝜄𝒞, 𝜄ℛ ⊆ 𝜄ℛ, and 𝜄𝒜 ⊆ 𝜄𝒜, (from the definition)

𝐾𝐵 ≤ext 𝐾𝐵′ ∧𝐾𝐵′ ≤ext 𝐾𝐵″ ⇒ 𝐾𝐵 ≤ext 𝐾𝐵″

• 𝐾𝐵 ≤ext 𝐾𝐵′ ∧𝐾𝐵′ ≤ext 𝐾𝐵″

• 𝜄𝒞 ⊆ 𝜄′𝒞, 𝜄ℛ ⊆ 𝜄′ℛ, and 𝜄𝒜 ⊆ 𝜄′𝒜, (from the definition) as well as 𝜄′𝒞 ⊆ 𝜄″𝒞,
𝜄′ℛ ⊆ 𝜄″ℛ, and 𝜄′𝒜 ⊆ 𝜄″𝒜, (from the definition).

• 𝜄𝒞 ⊆ 𝜄″𝒞, 𝜄ℛ ⊆ 𝜄″ℛ, and 𝜄𝒜 ⊆ 𝜄″𝒜, (since ⊆ is a partial order).

𝐾𝐵 ≤ext 𝐾𝐵′ ∧𝐾𝐵′ ≤ext 𝐾𝐵 ⇒ 𝐾𝐵 = 𝐾𝐵′

• wlg assume that all of 𝜄𝒞, 𝜄ℛ, and 𝜄𝒜 and all of 𝜄′𝒞, 𝜄′ℛ, and 𝜄′𝒜 are disjoint,

then

(𝐾𝐵 ≤ext 𝐾𝐵′) ⇔ ((𝜄𝒞 ∪ 𝜄ℛ ∪ 𝜄𝒜) ⊆ (𝜄′𝒞 ∪ 𝜄′ℛ ∪ 𝜄′𝒜))

• If the interpretations are disjoint and both ((𝜄𝒞 ∪ 𝜄ℛ ∪ 𝜄𝒜) ⊆ (𝜄′𝒞 ∪ 𝜄′ℛ ∪ 𝜄′𝒜))
and ((𝜄′𝒞 ∪ 𝜄′ℛ ∪ 𝜄′𝒜) ⊆ (𝜄𝒞 ∪ 𝜄ℛ ∪ 𝜄𝒜)) then 𝜄𝒞 = 𝜄′𝒞, 𝜄ℛ = 𝜄′ℛ, and 𝜄𝒜 = 𝜄′𝒜.
Hence also𝐾𝐵 = 𝐾𝐵′

■

Theorem 4.1 – LillyTab Soundness, Correctness and Completeness

The rules in table 4.3 (page 115) together with table 4.4 (page 116) are a sound,

complete, and terminating tableau decision procedure for 𝒮ℋ𝒪ℱ.

Proof: The proof is based on the proof for the original 𝒮ℋ𝒪𝒬-tableau [HS05b].
The original tableau is sound and complete for 𝒮ℋ𝒪𝒬. The original paper makes
the same assumption that unfolding of 𝖳𝖡𝗈𝗑-terms happens automatically into
ℒ. The original tableau is also sound and complete for general 𝖳𝖡𝗈𝗑es.

248

A.2. Proofs

LillyTab’s tableau is based on an embedding of 𝒮ℋ𝒪ℱ into 𝒮ℋ𝒪𝒬. LillyTab’s
tableau is a simplification of the full 𝒮ℋ𝒪𝒬-tableau, restricted to those rules and
conditions that are applicable for 𝒮ℋ𝒪ℱ. Intuitively, LillyTab implements a vari-
ant of the 𝒮ℋ𝒪𝒬-tableau that works only for 𝒮ℋ𝒪ℱ-concepts, but produces the
same results as the full tableau, when fed with a 𝒮ℋ𝒪ℱ knowledge base and

𝖳𝖡𝗈𝗑.

It is necessary to show that LillyTab performs the same operation that the 𝒮ℋ𝒪𝒬
tableau would and comes to the same results as the full 𝒮ℋ𝒪𝒬-tableau, when the
input concepts are in 𝒮ℋ𝒪ℱ.

We have to prove that

1. For those 𝒮ℋ𝒪𝒬-rules that are missing from LillyTab (𝑐ℎ𝑜𝑜𝑠𝑒,≥), that these
cannot be invoked for any 𝒮ℋ𝒪ℱ-concept.

2. If all input concepts are in 𝐿𝒮ℋ𝒪ℱ, the 𝒮ℋ𝒪𝒬-tableau does not introduce
any concepts outside of 𝐿𝒮ℋ𝒪ℱ, i.e. the 𝒮ℋ𝒪𝒬 tableau remains in 𝐿𝒮ℋ𝒪ℱ.

This includes that no inequality constraints are introduced at any point in the

tableau.

3. For those rules that have been modified in LillyTab, that they behave in the

sameway as the unmodified𝒮ℋ𝒪𝒬-rules, if only𝒮ℋ𝒪ℱ-concepts are present.

1. Removed rules are unnecessary

Two rules have been omitted from LillyTab, namely ≥ and 𝑐ℎ𝑜𝑜𝑠𝑒. For the
test, assume that the completion graph does contain only 𝒮ℋ𝒪ℱ concepts

(condition (2), above):

≥ The original rule reads

if 1. 𝑥 is not blocked
2. ≥𝑛 𝑟 . 𝐶 ∈ ℒ𝑘[𝑥]
3. There are no 𝑛 𝑟-successors {𝑦0,… , 𝑦𝑛} of 𝑥, such that

𝐶 ∈ ℒ𝑘[𝑦𝑖] and not ∀ 𝑖, 𝑗 . 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 ⇒ 𝑦𝑖≠̇𝑦𝑗
then create 𝑛 new nodes 𝑦1,… , 𝑦𝑛 with ℒ𝑘[𝑦𝑖] ← {𝐶},

𝐸𝑘 ← 𝐸𝑘 ∪ {𝑟(𝑥, 𝑦𝑖)}, and 𝑦𝑖≠̇𝑦𝑗for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

249

A. Appendix

The precondition of≥ lists≥𝑛 𝑟 . 𝐶. ≥𝑛 is not available in 𝒮ℋ𝒪ℱ. The
≥ rule can thus never fire for 𝒮ℋ𝒪ℱ

If 𝑛 = 1, condition (2) reads ∃ 𝑟 . 𝐶. In this case, ≥ falls together with

the with ∃-rule, because no inequality constraints are generated (there is
only one successor).

≥ can therefore be ignored for 𝒮ℋ𝒪ℱ.

𝑐ℎ𝑜𝑜𝑠𝑒 The original 𝑐ℎ𝑜𝑜𝑠𝑒-rule reads

if 1. 𝑥 is not blocked
2. {≥𝑛 𝑟 . 𝐶,≤𝑛 𝑟 . 𝐶} ∩ ℒ𝑘[𝑥] ≠ ∅
3. ∃ 𝑦 . 𝑟(𝑥, 𝑦) ∈ 𝐸𝑘 ∧ {𝐶,¬𝐶} ∩ ℒ𝑘[𝑦] = ∅

then Create two fresh successor graphs 𝐺𝑘+1 ← 𝐺𝑘 and

𝐺𝑘+2 ← 𝐺𝑘 and set

ℒ𝑘+1 ← ℒ𝑘 ∪ {(𝑦 ∶ 𝐶)},
ℒ𝑘+2 ← ℒ𝑘 ∪ {(𝑦 ∶ ¬𝐶)}, and
𝔾 ← (𝔾 −𝐺𝑘) ∪ {𝐺𝑘+1, 𝐺𝑘+2}.

If 𝑛 ≥ 2, 𝑐ℎ𝑜𝑜𝑠𝑒 is not applicable, since qualified number restrictions
with 𝑛 > 1 are not available on 𝒮ℋ𝒪ℱ.

If 𝑛 = 1, condition (2) can be fulfilled

• when 𝑟 is a functional role. In this case, 𝐶 = ⊤ (𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟) is
equivalent to ⊤ ⊑ (≤1 𝑟 .⊤)). Since {⊤,⊥} ∩ ℒ𝑘[𝑦] is never empty
and condition (3) always fails.

• whenℒ𝑘[𝑥] contains an existential restriction ∃ 𝑟 . 𝐶 ∈ ℒ𝑘[𝑥] (∃ 𝑟 . 𝐶
is equivalent to ≥1 𝑟 . 𝐶)

The intention of the 𝑐ℎ𝑜𝑜𝑠𝑒-rule is it to prevent clashes that stem
from inconsistent interaction of≥𝑛 and≤𝑛 concepts. Without 𝑐ℎ𝑜𝑜𝑠𝑒,
the concept description (≥3 𝑟. ⊤) ⊓ (≤1 𝑟. 𝐶) ⊓ (≤1 𝑟. ¬𝐶) would
be deemed consistent [BS01].

However, the choose rule in the original 𝒮ℋ𝒪𝒬 tableau is too strict.

250

A.2. Proofs

Following later tableau implementations ([BS01, HS05b, HKS06]) it

is sufficient to use {≤𝑛 𝑟 . 𝐶} ∩ ℒ𝑘[𝑥] ≠ ∅, instead. Since we have
only (≤1 . ⊤) (𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖺𝗅(𝑟)), introducing ¬⊤ = ⊥ will always result
in a clash and can therefore be avoided.

This makes the 𝑐ℎ𝑜𝑜𝑠𝑒-rule unnecessary for 𝒮ℋ𝒪ℱ.

2. Remain inside 𝐿𝒮ℋ𝒪ℱ and no inequality constraints are introduced.

Only the≥ rule can introduce inequality constraints. As shown in (1), ≥ can
safely be omitted, because it requires a minimum cardinality restriction as a

precondition, which is not a 𝒮ℋ𝒪ℱ concept.

The only concepts in 𝒮ℋ𝒪𝒬 that are not also in 𝒮ℋ𝒪ℱ are the cardinality

restrictions ≤, ≥. No rule can introduce additional cardinality restrictions.
Consequently, every cardinality restriction in the tableau either existed before

tableau completion or was a subterm of some pre-existing concept.

Since the initial concepts are all in 𝒮ℋ𝒪ℱ, only 𝒮ℋ𝒪ℱ concepts can be

introduced again by any tableau rule. When applying the full 𝒮ℋ𝒪𝒬 tableau
to 𝒮ℋ𝒪ℱ-concepts, all concepts encountered during tableau operation are
therefore 𝒮ℋ𝒪ℱ concepts

3. Modified rules behave equivalently

∃∃∃ Original rule:

if 1. 𝑥 is not blocked
2. ∃ 𝑟 . 𝐶 ∈ ℒ𝑘[𝑥]
3. ∄𝑦 . 𝑟(𝑥, 𝑦) ∈ 𝐸𝑘 ∧ 𝐶 ∈ ℒ𝑘[𝑦]

then create a new node 𝑧 and set ℒ𝑘[𝑧] ← {𝐶} and

𝐸𝑘 ← 𝐸𝑘 ∪ {𝑟(𝑥, 𝑧)}
The LillyTab tableau adds an optimization path that prevents immediate

firing of theℱ-rule after generating a second successor for a functional
role. Instead, the concept is directly propagated to an existing successor

(which would become the merge target, anyway).

∃-behaviour is equivalent to the original rule.

251

A. Appendix

≤≤≤ The ≤-rule is replaced by theℱ-rule. The original rule reads

if 1. 𝑥 is not blocked
2. ≤𝑛 𝑟 . 𝐶 ∈ ℒ[𝑥]
3. 𝑥 has 𝑛 + 1 𝑟-successors 𝑦0,… , 𝑦𝑛 such that 𝐶 ∈ 𝑦𝑖 for

all 𝑦𝑖
4. ∃ 𝑖, 𝑗 . ¬(𝑦𝑖≠̇𝑦𝑗)
5. if only one of 𝑦𝑖, 𝑦𝑗 is not anonymous, it is 𝑦𝑖 (i.e. if only

one of 𝑦𝑖, 𝑦𝑗 is a nominal node, it is 𝑦𝑖.
then 𝐺𝑘 ← 𝗆𝖾𝗋𝗀𝖾(𝐺𝑘, 𝑦𝑖, 𝑦𝑗)

Since 𝒮ℋ𝒪ℱ only has ≤1 𝑟 . ⊤ (3) holds, whenever a functional node

has more than one successor, inequality (≠̇) can only be introduced by
≥𝑛, which ismissing from themodified tableau. (5) is handled by𝗆𝖾𝗋𝗀𝖾,
which automatically orders its input nodes (see function 𝗆𝖾𝗋𝗀𝖾 (func-
tion 4.2)).

In 𝒮ℋ𝒪ℱ, the original≤-rule is therefore equivalent to the newℱ-rule.

The modified rules (∃, ≤) show the same behaviour for 𝒮ℋ𝒪ℱ that the original

rules do for 𝒮ℋ𝒪𝒬. The preconditions of the removed (𝑐ℎ𝑜𝑜𝑠𝑒, ≥) are never
satisfied for 𝒮ℋ𝒪ℱ. Consequently, the tableau rules are an implementation of
the 𝒮ℋ𝒪𝒬 tableau applied to the 𝒮ℋ𝒪ℱ language.

■

Theorem 5.1 – Completion Graph Mapping

A completion graph𝐺𝑞 constructed from a query𝑄 using function 𝗀𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖦𝗋𝖺𝗉𝗁
(function 5.1) has in its interpretation the same knowledge base subsets that are

matched by 𝑄.

Proof: Base cases: If 𝑄 = 𝐶(𝑎), then 𝐺𝑞 = ({𝑥} , ∅, {(𝑥{𝑎} ∶ {𝑎})}) This im-
plies 𝑎 ∈ 𝜄(𝑥{𝑎}).

252

A.2. Proofs

If 𝑄 = 𝐶(?𝑥), then 𝐺𝑞 = {{𝑥} , ∅, {(𝑥 ∶ 𝐶)}} This implies 𝑥 ∈ 𝜄(𝐶). 𝑄 = 𝐶(?𝑥)
implies that ∀𝑎 . 𝑎 = ?𝑥 ⟹ 𝑎 ∈ 𝜄(𝐶). Since 𝑥 = 𝜎𝑞[?𝑥] = 𝑎, the interpretations
are equivalent.

If 𝑄 = 𝑟(𝜉0, 𝜉1), then 𝐺𝑞 = ({𝑥0, 𝑥1} , {𝑟(𝑥0, 𝑥1)} , ∅) with 𝑥0 = 𝜎𝑞(𝜉0) and
𝑥1 = 𝜎𝑞(𝜉1). This implies that (𝑥0, 𝑥1) ∈ 𝜄(𝑟).

Additionally, 𝑄 = 𝑟(𝜉0, 𝜉1) implies that ∀𝑎, 𝑏 . (𝜉0 = 𝑎 ∧ 𝜉1 = 𝑏) ⇒ (𝑎, 𝑏) ∈ 𝜄(𝑟).
Since 𝑥0 = 𝜎𝑞[𝜉0] = 𝑎 and 𝑥1 = 𝜎𝑞[𝜉1] = 𝑏 again (𝑥0, 𝑥1) ∈ 𝜄(𝑟), the interpreta-
tions are equivalent.

Note that the interpretation of the union of two query terms 𝑄1 and 𝑄2 is the

intersection of both interpretations. This follows directly from the definition of

the conjunctive query.

The interpretation of the union of two completion graphs 𝐺1 and 𝐺2 is the inter-

section of both interpretations. This follows directly from definition 4.15.

Proving the base cases would therefore be sufficient.

Induction step: Let 𝐺𝑞 be a completion graph transformed from a query 𝑄.

1. Add 𝐶(𝜉) to 𝑄 to form 𝑄′. This means that now ∀𝑎 . 𝑎 = 𝜉 ⇒ 𝑎 ∈ 𝜄(𝐶)
Adding 𝐶(𝜉) is equivalent to adding 𝐶 to ℒ𝑞[𝜎𝑞(𝜉)]. This causes the ad-
ditional constraint that 𝜎𝑞[𝜉] ∈ 𝜄(𝐶). Since 𝜉 = 𝜎𝑞[𝜉], the interpretation
changes in the same way on both sides.

2. Add 𝑟(𝜉0, 𝜉1) to 𝑄 to form 𝑄′. This causes the additional constraint that

∀𝑎, 𝑏 . (𝜉0 = 𝑎 ∧ 𝜉1 = 𝑏) ⇒ (𝑎, 𝑏) ∈ 𝜄(𝑟).

Adding 𝑟(𝜉0, 𝜉1) is equivalent to adding 𝑟(𝜎𝑞(𝜉0), 𝜎𝑞(𝜉1)) to 𝐸𝑞. This causes

the additional constraint that (𝜎𝑞(𝜉0), 𝜎𝑞(𝜉1)) ∈ 𝜄(𝑟). Since 𝑥0 = 𝜎𝑞(𝜉0) and
𝑥1 = 𝜎𝑞(𝜉1), both interpretations change in the same way on both sides.

■

253

A. Appendix

Table A.1. Evaluation Results for Flat Cosine Similarity
equal correct Prec

𝐴1 normalizer cosine 38 0 0.43
𝐴1 normalizer cosine-tfidf 1 0 0.01
𝐴1 normalizer softcosine 38 0 0.43
𝐴1 stemmer cosine 38 0 0.43
𝐴1 stemmer cosine-tfidf 1 0 0.01
𝐴1 stemmer softcosine 38 0 0.43
𝐴1 stemmer-decomposer cosine 49 1 0.56
𝐴1 stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 stemmer-decomposer softcosine 49 1 0.56
𝐴2 normalizer cosine 49 1 0.77
𝐴2 normalizer cosine-tfidf 24 0 0.38
𝐴2 normalizer softcosine 49 1 0.77
𝐴2 stemmer cosine 51 1 0.80
𝐴2 stemmer cosine-tfidf 24 0 0.38
𝐴2 stemmer softcosine 51 1 0.80
𝐴2 stemmer-decomposer cosine 54 1 0.84
𝐴2 stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 stemmer-decomposer softcosine 54 1 0.84

A.3 Raw Evaluation Results

For all tables in this section, the first columns indicate the setup of matcher pa-

rameters as by table 8.1. The first numeric value is the number of generated cor-

respondences equal to one of the reference rules. The second value is the number

of generated correspondences that are correct, but where the target side is under-

refined. For known-sourcemappings the second number is omitted, as it is always

zero.

254

A.3. Raw Evaluation Results

Table A.2. Evaluation Results for Governing Term Flat Cosine Similarity
(part 1, 𝐴1)

equal correct Prec
𝐴1 normalizer cosine 22 0 0.25
𝐴1 normalizer cosine-tfidf 1 0 0.01
𝐴1 normalizer softcosine 16 0 0.18
𝐴1 stemmer cosine 16 0 0.18
𝐴1 stemmer cosine-tfidf 1 0 0.01
𝐴1 stemmer softcosine 20 0 0.23
𝐴1 stemmer-decomposer cosine 20 0 0.23
𝐴1 stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 stemmer-decomposer softcosine 12 0 0.14
𝐴1 egd normalizer cosine 50 0 0.57
𝐴1 egd normalizer cosine-tfidf 1 0 0.01
𝐴1 egd normalizer softcosine 50 0 0.57
𝐴1 egd stemmer cosine 50 0 0.57
𝐴1 egd stemmer cosine-tfidf 1 0 0.01
𝐴1 egd stemmer softcosine 50 0 0.57
𝐴1 egd stemmer-decomposer cosine 55 1 0.62
𝐴1 egd stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 egd stemmer-decomposer softcosine 55 1 0.62
𝐴1 children normalizer cosine 22 0 0.25
𝐴1 children normalizer cosine-tfidf 1 0 0.01
𝐴1 children normalizer softcosine 19 0 0.22
𝐴1 children stemmer cosine 21 0 0.24
𝐴1 children stemmer cosine-tfidf 1 0 0.01
𝐴1 children stemmer softcosine 18 0 0.20
𝐴1 children stemmer-decomposer cosine 16 0 0.18
𝐴1 children stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 children stemmer-decomposer softcosine 17 0 0.19
𝐴1 egd children normalizer cosine 51 0 0.58
𝐴1 egd children normalizer cosine-tfidf 1 0 0.01
𝐴1 egd children normalizer softcosine 51 0 0.58
𝐴1 egd children stemmer cosine 55 0 0.62
𝐴1 egd children stemmer cosine-tfidf 1 0 0.01
𝐴1 egd children stemmer softcosine 55 0 0.62
𝐴1 egd children stemmer-decomposer cosine 58 1 0.66
𝐴1 egd children stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 egd children stemmer-decomposer softcosine 58 1 0.66

255

A. Appendix

Table A.3. Evaluation Results for Governing Term Flat Cosine Similarity
(part 2, 𝐴2)

equal correct Prec
𝐴2 normalizer cosine 33 13 0.52
𝐴2 normalizer cosine-tfidf 24 0 0.38
𝐴2 normalizer softcosine 37 9 0.58
𝐴2 stemmer cosine 36 10 0.56
𝐴2 stemmer cosine-tfidf 24 0 0.38
𝐴2 stemmer softcosine 35 11 0.55
𝐴2 stemmer-decomposer cosine 31 13 0.48
𝐴2 stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 stemmer-decomposer softcosine 37 7 0.58
𝐴2 egd normalizer cosine 54 0 0.84
𝐴2 egd normalizer cosine-tfidf 24 0 0.38
𝐴2 egd normalizer softcosine 54 0 0.84
𝐴2 egd stemmer cosine 58 0 0.91
𝐴2 egd stemmer cosine-tfidf 24 0 0.38
𝐴2 egd stemmer softcosine 58 0 0.91
𝐴2 egd stemmer-decomposer cosine 60 0 0.94
𝐴2 egd stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 egd stemmer-decomposer softcosine 60 0 0.94
𝐴2 children normalizer cosine 36 9 0.56
𝐴2 children normalizer cosine-tfidf 24 0 0.38
𝐴2 children normalizer softcosine 39 6 0.61
𝐴2 children stemmer cosine 33 13 0.52
𝐴2 children stemmer cosine-tfidf 24 0 0.38
𝐴2 children stemmer softcosine 34 12 0.53
𝐴2 children stemmer-decomposer cosine 34 12 0.53
𝐴2 children stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 children stemmer-decomposer softcosine 35 11 0.55
𝐴2 egd children normalizer cosine 61 1 0.95
𝐴2 egd children normalizer cosine-tfidf 24 0 0.38
𝐴2 egd children normalizer softcosine 61 1 0.95
𝐴2 egd children stemmer cosine 61 1 0.95
𝐴2 egd children stemmer cosine-tfidf 24 0 0.38
𝐴2 egd children stemmer softcosine 61 1 0.95
𝐴2 egd children stemmer-decomposer cosine 58 1 0.91
𝐴2 egd children stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 egd children stemmer-decomposer softcosine 58 1 0.91

256

A.3. Raw Evaluation Results

Table A.4. Evaluation Results for Governing Term Clustered Cosine Similarity
(part 1, 𝐴1)

equal correct Prec
𝐴1 normalizer cosine 21 0 0.24
𝐴1 normalizer cosine-tfidf 1 0 0.01
𝐴1 normalizer softcosine 11 0 0.12
𝐴1 stemmer cosine 17 0 0.19
𝐴1 stemmer cosine-tfidf 1 0 0.01
𝐴1 stemmer softcosine 25 0 0.28
𝐴1 stemmer-decomposer cosine 18 0 0.20
𝐴1 stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 stemmer-decomposer softcosine 11 0 0.12
𝐴1 egd normalizer cosine 50 0 0.57
𝐴1 egd normalizer cosine-tfidf 1 0 0.01
𝐴1 egd normalizer softcosine 50 0 0.57
𝐴1 egd stemmer cosine 50 0 0.57
𝐴1 egd stemmer cosine-tfidf 1 0 0.01
𝐴1 egd stemmer softcosine 50 0 0.57
𝐴1 egd stemmer-decomposer cosine 55 1 0.62
𝐴1 egd stemmer-decomposer cosine-tfidf 1 0 0.01
𝐴1 egd stemmer-decomposer softcosine 55 1 0.62
𝐴1 children normalizer cosine 14 0 0.16
𝐴1 children normalizer cosine-tfidf 24 0 0.27
𝐴1 children normalizer softcosine 8 0 0.09
𝐴1 children stemmer cosine 20 0 0.23
𝐴1 children stemmer cosine-tfidf 16 0 0.18
𝐴1 children stemmer softcosine 6 0 0.07
𝐴1 children stemmer-decomposer cosine 16 0 0.18
𝐴1 children stemmer-decomposer cosine-tfidf 12 0 0.14
𝐴1 children stemmer-decomposer softcosine 11 0 0.12
𝐴1 egd children normalizer cosine 72 2 0.82
𝐴1 egd children normalizer cosine-tfidf 73 1 0.83
𝐴1 egd children normalizer softcosine 72 2 0.82
𝐴1 egd children stemmer cosine 71 1 0.81
𝐴1 egd children stemmer cosine-tfidf 68 2 0.77
𝐴1 egd children stemmer softcosine 70 2 0.80
𝐴1 egd children stemmer-decomposer cosine 76 2 0.86
𝐴1 egd children stemmer-decomposer cosine-tfidf 75 2 0.85
𝐴1 egd children stemmer-decomposer softcosine 73 2 0.83

257

A. Appendix

Table A.5. Evaluation Results for Governing Term Clustered Cosine Similarity
(part 2, 𝐴2)

equal correct Prec
𝐴2 normalizer cosine 32 14 0.50
𝐴2 normalizer cosine-tfidf 24 0 0.38
𝐴2 normalizer softcosine 38 8 0.59
𝐴2 stemmer cosine 39 7 0.61
𝐴2 stemmer cosine-tfidf 24 0 0.38
𝐴2 stemmer softcosine 34 12 0.53
𝐴2 stemmer-decomposer cosine 35 9 0.55
𝐴2 stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 stemmer-decomposer softcosine 34 10 0.53
𝐴2 egd normalizer cosine 54 0 0.84
𝐴2 egd normalizer cosine-tfidf 24 0 0.38
𝐴2 egd normalizer softcosine 54 0 0.84
𝐴2 egd stemmer cosine 58 0 0.91
𝐴2 egd stemmer cosine-tfidf 24 0 0.38
𝐴2 egd stemmer softcosine 58 0 0.91
𝐴2 egd stemmer-decomposer cosine 60 0 0.94
𝐴2 egd stemmer-decomposer cosine-tfidf 24 0 0.38
𝐴2 egd stemmer-decomposer softcosine 60 0 0.94
𝐴2 children normalizer cosine 37 9 0.58
𝐴2 children normalizer cosine-tfidf 35 11 0.55
𝐴2 children normalizer softcosine 37 9 0.58
𝐴2 children stemmer cosine 34 12 0.53
𝐴2 children stemmer cosine-tfidf 38 8 0.59
𝐴2 children stemmer softcosine 41 5 0.64
𝐴2 children stemmer-decomposer cosine 37 9 0.58
𝐴2 children stemmer-decomposer cosine-tfidf 34 12 0.53
𝐴2 children stemmer-decomposer softcosine 37 9 0.58
𝐴2 egd children normalizer cosine 41 20 0.64
𝐴2 egd children normalizer cosine-tfidf 51 10 0.80
𝐴2 egd children normalizer softcosine 48 14 0.75
𝐴2 egd children stemmer cosine 47 13 0.73
𝐴2 egd children stemmer cosine-tfidf 44 17 0.69
𝐴2 egd children stemmer softcosine 38 22 0.59
𝐴2 egd children stemmer-decomposer cosine 46 13 0.72
𝐴2 egd children stemmer-decomposer cosine-tfidf 47 12 0.73
𝐴2 egd children stemmer-decomposer softcosine 43 16 0.67

258

A.3. Raw Evaluation Results

Table A.6. Evaluation Results for Dependency Cluster Similarity
equal correct Prec

𝐴1 normalizer cosine 71 1 0.81
𝐴1 normalizer cosine-tfidf 79 1 0.90
𝐴1 normalizer softcosine 75 1 0.85
𝐴1 stemmer cosine 67 1 0.76
𝐴1 stemmer cosine-tfidf 80 1 0.91
𝐴1 stemmer softcosine 69 0 0.78
𝐴1 stemmer-decomposer cosine 76 0 0.86
𝐴1 stemmer-decomposer cosine-tfidf 81 1 0.92
𝐴1 stemmer-decomposer softcosine 77 0 0.88
𝐴2 normalizer cosine 59 1 0.92
𝐴2 normalizer cosine-tfidf 46 6 0.72
𝐴2 normalizer softcosine 59 1 0.92
𝐴2 stemmer cosine 59 1 0.92
𝐴2 stemmer cosine-tfidf 47 6 0.73
𝐴2 stemmer softcosine 59 1 0.92
𝐴2 stemmer-decomposer cosine 58 1 0.91
𝐴2 stemmer-decomposer cosine-tfidf 48 6 0.75
𝐴2 stemmer-decomposer softcosine 58 1 0.91

259

A. Appendix

Table A.7. Evaluation Results With Known Source
equal correct Prec

flat 𝐴1 cosine 55 1 0.62
flat 𝐴1 softcosine 55 1 0.62
govterm-flat 𝐴1 cosine 73 0 0.83
govterm-flat 𝐴1 cosine-tfidf 48 8 0.55
govterm-flat 𝐴1 softcosine 73 0 0.83
govterm-clustered 𝐴1 cosine 3 0 0.03
govterm-clustered 𝐴1 softcosine 5 0 0.06
depcluster 𝐴1 cosine 51 1 0.58
depcluster 𝐴1 softcosine 51 1 0.58
flat 𝐴2 cosine 56 0 0.88
flat 𝐴2 softcosine 56 0 0.88
govterm-flat 𝐴2 cosine 55 0 0.86
govterm-flat 𝐴2 cosine-tfidf 52 4 0.81
govterm-flat 𝐴2 softcosine 55 0 0.86
govterm-clustered 𝐴2 cosine 17 0 0.27
govterm-clustered 𝐴2 softcosine 16 0 0.25
depcluster 𝐴2 cosine 53 1 0.83
depcluster 𝐴2 softcosine 53 1 0.83

260

List of Definitions

2.1. Semantic Feature . 38

3.1. Ontology Elements . 45

3.2. Knowledge Base . 48

3.3. Knowledge Base Extension . 48

3.4. Ontology Frame . 49

3.5. Sub- and Superclass Set . 51

3.6. Sub- and Superproperty Set . 51

3.7. Domain and Value Range . 51

3.8. Role . 52

3.9. Domain and Range . 52

3.10. Language Signature . 54

3.11. Ontology Constraint System . 55

3.12. Consistent Knowledge Base for an Ontology Constraint System . . 55

3.13. Ontology . 56

3.14. Consistent Axiom . 57

3.15. Inferable Axiom . 58

3.16. Alignment Correspondence . 60

3.17. Alignment . 60

3.18. Simple Alignment . 61

3.19. Bridge Rule . 62

3.20. Conservative Bridge Rule . 62

3.21. Alignment Precision . 65

3.22. Alignment Recall . 65

3.23. Alignment 𝑓 -score . 65

A. Appendix

3.24. 𝛼-Consequence . 66

3.25. Ideal Alignment Precision . 66

3.26. Ideal Alignment Recall . 67

3.27. Inconsistent Correspondence . 71

3.28. Incoherent Alignment . 72

4.1. Formal Semantics for𝒜ℒ𝒞 . 87

4.2. Negation Normal Form . 88

4.3. Description Logic ABox . 94

4.4. Description Logic TBox . 94

4.5. Description Logic RBox . 94

4.6. DL Sub- and Superrole Closure . 95

4.7. DL Completion Graph . 97

4.8. Consistency of a Completion Graph 97

4.9. Concept Inferability in a Completion Graph 98

4.10. Capacity of a Completion Graph . 98

4.11. Completion Graph Extension . 99

4.12. Anonymous Node in a Completion Graph 101

4.13. Concept Use . 107

4.14. Definitorial Concept Inclusion . 107

4.15. Formal Semantics for 𝒮ℋ𝒪ℱ(𝐃) 112

4.16. Priority of Rule Application . 116

4.17. Consistency Checks for 𝒮ℋ𝒪ℱ(𝐷) 117

4.18. Saturated Completion Graph . 118

4.19. Subset Blocking . 119

5.1. Conjunctive Query . 123

5.2. Query Node Mapping . 124

5.3. Augmented DL Completion Graph 141

5.4. Generating Existential Dependency 146

5.5. Tuple Generating Dependency . 156

5.6. Mapped Node . 156

5.7. Deductive Conservative Extension 161

262

A.3. Raw Evaluation Results

6.1. Refinement Graph . 168

6.2. Merge Monotonic . 181

7.1. Extracted Phrase Set . 199

7.2. Dependency Path . 204

7.3. Existential Generating Dependency 205

7.4. Term Frequency–Inverse Document Frequency 209

7.5. Soft Cosine . 210

263

List of Theorems

3.1. Knowledge Base Lattice . 47

4.1. Soundness, Completeness, and Termination of the LillyTab Tableau

for 𝒮ℋ𝒪ℱ(𝐃) . 114

5.1. Correctness of Completion Graph Generation from Conjunctive

Query . 124

6.1. Completion Graph Refinement . 173

List of Figures

1.1. Part of a Built Heritage Digital Map for St. Stephan’s Cathedral,

Vienna . 4

1.2. Structure of an Archived Digital Map in Built Heritage 6

1.3. Source Ontology Fragment –𝖬𝖾𝖺𝗌𝗎𝗋𝖾 − 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑠 11

1.4. Target Ontology Fragment – 𝖦𝗋𝗈𝗎𝗍𝖥𝗂𝗅𝗅𝗂𝗇𝗀𝑡 12

2.1. OAIS Archive Management Overview 27

2.2. Module Dependencies . 33

2.3. Interpretation with the Universal Virtual Computer 34

2.4. Distorted Graphics after Import into Different Presentation Software 36

3.1. Alignment Generation . 60

3.2. Ontology Matching System Classification (figure from [Euz07]) . . 64

3.3. Structure of a Document Ontology 76

4.1. Syntax of Frame Logic . 84

4.2. Syntax of the Description Logic𝒜ℒ 85

4.3. Syntax of the Description Logic𝒜ℒ𝒞 89

4.4. Example Tableau Completion . 100

4.5. Blocking in Expressive DLs . 104

LIST OF FIGURES

4.6. Tableau Thrashing without Dependency Directed Backtracking . . 110

4.7. Dependency directed backtracking 111

5.1. Alternative Representations for Completion Graphs 126

5.2. ⊓-Propagation for Tableau Completion 127

5.3. ∀-Handling in Conjunctive Query Generation and Mismatching
Knowledge Base . 130

5.4. Blocked Completion Graphs and Corresponding Knowledge Bases 134

5.5. Non-determinism during Tableau Expansion with Concept Sub-

sumption . 135

5.6. Non-determinism during Tableau Expansion with Role Inheritance 137

5.7. 𝐾𝐵2⊑∃: Query Coverage over Knowledge Bases 138

5.8. Query Extraction using the Mapping Tableau 148

5.9. Example Mapping as Model Graphs 159

5.10. Knowledge Bases as Source and Target in Mapping 159

6.1. Example Refinement Graph Fragment 170

6.2. Refinement Graph . 174

6.3. Manual Mapping Tool: Mapping for Grouting 177

6.4. Ordering of Refinement Rules . 180

6.5. Interactive Mapping Tool, generating mapping for 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 186

6.6. Interactive Mapping Tool, Refinement suggestions for 𝖵𝗂𝖾𝗋𝗎𝗇𝗀 . . . 186

6.7. Interactive Mapping Tool, Possible complex correspondence for

𝖵𝗂𝖾𝗋𝗎𝗇𝗀 with material 𝖢𝗈𝖻𝗎𝗋𝗀𝖾𝗋 . 186

7.1. Examples of Existential Generating Dependency Paths 202

7.2. Generating Refinement Rules . 214

268

LIST OF FIGURES

7.3. Dependency Cluster Constraint Matrix 215

8.1. Effects of Extractor Parameters . 228

8.2. Effects of Term Set Measure . 230

8.3. Effects of Dependent Term Collection 230

8.4. Best Results by Completion Graph Similarity 232

A.1. Graphical Notation for Ontology Elements 243

269

List of Tables

1.1. Simple Correspondences for the Example Ontologies 7

1.2. Abbreviations for Concepts and Roles in the Initial Example 8

3.1. SimpleMatching Results for the “DomBamberg” Ontology and Its

Evolved Successor . 64

3.2. Number of Reference Alignments for the OAEI “conference” Dataset. 68

4.1. Interpretation-Preservation Transformations in𝒜ℒ𝒞 88

4.2. Tableau Rules for Absorbed Range and Domains 106

4.3. Tableau Rules for the LillyTab Reasoner, part 1 115

4.4. Tableau Rules for the LillyTab Reasoner, part 2 116

5.1. Tableau Rules for the Mapping Tableau, part 1 144

5.2. Tableau Rules for the Mapping Tableau, part 2 145

7.1. Simple Matching Results for the “Dom Bamberg” Ontology and its

Evolved Successor . 190

7.2. Alignment Length . 192

7.3. Variations of Governing Term Cosine Similarity 211

7.4. Example Axiom-Clustered Alignment 212

7.5. Example Expanded Axiom-Clustered Alignment 213

LIST OF TABLES

7.6. Example Axiom Cluster Similarity Matrix 217

8.1. Matcher Parameters for the Evaluation 226

A.1. Evaluation Results for Flat Cosine Similarity 254

A.2. EvaluationResults forGoverning TermFlat Cosine Similarity (part 1,𝐴1)255

A.3. EvaluationResults forGoverning TermFlat Cosine Similarity (part 2,𝐴2)256

A.4. Evaluation Results for Governing Term Clustered Cosine Similar-

ity (part 1, 𝐴1) . 257

A.5. Evaluation Results for Governing Term Clustered Cosine Similar-

ity (part 2, 𝐴2) . 258

A.6. Evaluation Results for Dependency Cluster Similarity 259

A.7. Evaluation Results With Known Source 260

272

List of Algorithms

4.1. Procedure unfold(G, TBox) . 108

4.2. Function merge(G, t, s) . 113

5.1. Procedure generateGraph(𝑄) . 125

5.2. Function augmerge(G, t, s) . 142

5.3. Function mergeMap(G, x) . 150

5.4. Function repr(G, x, 𝜎𝑞) . 151

5.5. Function generateCoreQuery(𝐺0, 𝐺𝑠, 𝜎𝑞) 153

5.6. Function generateQuery(𝐺0, 𝐺𝑠) . 154

5.7. Function primitiveApplyTGD((𝜙, 𝜓), 𝑂𝑠, 𝑂𝑡) 158

6.1. Function subClassRefinement(𝐺, 𝖳𝖡𝗈𝗑, 𝑥) 178

6.2. Function roleSuccRefinement(𝐺, 𝖳𝖡𝗈𝗑, 𝑥) 179

7.1. Function extractPhrase(𝑥, 𝕆) . 199

7.2. Function extractToken(𝑎𝑥, 𝕆) . 200

7.3. Function analyseToken(𝗍𝗄, 𝗍𝗁𝖾𝗌, 𝖽𝖾𝖼𝗈𝗆𝗉𝗈𝗌𝖾, 𝗅𝗈𝗐𝖾𝗋, 𝖲𝗍𝗈𝗉, 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾,
𝗌𝗍𝖾𝗆) . 201

7.4. Procedure collectEGDs(𝐺, 𝑎𝑥, 𝑥0) 206

INDEX

Index

Symbols

𝐾𝐵, 48
𝑂, 56
𝑂𝐶𝑆, 55
𝑂𝑠, 166

𝑂𝑡, 166

𝖢𝗈𝗋𝗉, 207
𝖣𝖾𝗉, 141
𝖬𝖾𝗋, 141
Ρ, 167
Σ𝐿, 54

Σ𝐿+
conjunctive

, 167

Σ𝐿conjunctive
, 167

𝖳𝗄(𝑡), 207
𝛼-consequence, 66
𝛽, 61, 62
𝗋𝖾𝖿𝑠, 167
𝗋𝖾𝖿𝑡, 167
𝗌𝗂𝗆depcluster, 217

𝗌𝗂𝗆𝐺, 169

𝗌𝗂𝗆𝑆, 167

𝗌𝗂𝗆cos,tfidf , 209

𝗌𝗂𝗆cos, 208

𝜄𝒞, 48
𝜄ℛ, 48

𝜄𝒟, 117
𝜅, 141, 202
≤𝒞, 49, 50

≤ℛ, 49

≤ext, 48

𝔸, 166
(𝐃), 93
𝒜ℒ𝒞, 87
𝒜ℒ, 85
𝒜, 45, 48, 55
𝒞, 45, 48, 55
ℰℒ, 85
ℰ, 45, 91
ℱℒ, 83
ℱℒ−, 84

ℱ, 91
ℋ, 91

ℐ, 45, 48, 55, 90
ℒ, 97, 141
𝒩, 92
𝒪ℱ, 49
𝒪, 92
𝒬, 92
ℛ, 45, 48, 55, 91
𝒮ℋ𝒪ℱ(𝐃), 112, 113

275

INDEX

𝒮ℋ𝒪ℐ𝒬, 92
𝒮ℛ𝒪ℐ𝒬, 92
𝒮, 90
𝒯, 45, 48, 55
𝒰, 90
⊧, 58
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝖳𝗄, 208
𝜙, 57, 58, 61, 62
𝜓, 61, 62
𝜎, 49
𝜎−1
𝑞 , 124

𝜎𝑞, 124

𝐶↓, 51
𝑟↓, 95
𝐶↑, 51
𝑟↑, 95
𝑓 -score, 65

A

ABox, 53

absorption, 106

affordance, 36

alignment, 60

𝑓 -score, 65
coherence, 70, 72

complex-, 61, 74

consistency, 70, 71

correspondence, 60

explaining, 74

length, 192

level 0, 59

level 1, 61

level 2, 61

parameter tuning, 73

precision, 65

ideal, 66

quality, 65

recall, 65

ideal, 67

reference-, 225

reduced-, 225

refinement, 164

rule

correct-, 224

semantic-, 70

simple, 61

user involvement, 73

alignment rule

length, 193

analyser

token-, 201

analysis

lexical, 198

archive

access, 28

administration, 28

data management, 28

digital-, 26

dissemination, 28, 36

ingest, 27

storage, 28

assertion

concept-, 53

property-, 53

axiom

consistent, 57

276

INDEX

definitorial, 107

filter, 199

filtering, 200

𝜅-based, 202
inferable, 58

justification, 214

axiom cluster, 212

B

backtracking

dependency directed-, 109

bitstream

preservation, 29

blocking, 102, 119

branching, 100

semantic-, 109

C

capacity

completion graph, 98

checksumming, 29

Choco, 219

class, 45

classification, 81

cluster

axiom-, 212

coherence, 81

combination

semantic-, 57

completion graph, 97, 121

augmented, 141

capacity, 98

comparing, 189

consistency, 97

inferability, 98

refinement, 173

relation to queries, 121

saturated, 118

similarity, 190, 207

compound word

decomposition, 198

concept, 44

assertion, 53

definitorial, 107

conjunctive query, 123

consistency, 81

completion graph, 97

tableau, 117

consistent, 57

corpus, 208

correspondence

alignment-, 60

length, 193

cosine, 208

flat-, 208

soft-, 210

D

data range, 117

decomposition, 198

semantic-, 36

depcluster, 213, 220

dependency

tuple generating-, 155

dependency directed backtracking, 109

dependency path, 204

description logic, 83

277

INDEX

expressive, 90

direction

matching-, 171, 234

dissemination, 28

distance

edit-, 210

document

affordance, 36

complex digital, 4

complex digital-, 35

intelligibility, 21

domain, 51, 105

concrete-, 111

duplication, 29

E

E, 97, 141

edit distance, 210

egd, 205

element, 45

justified, 193

primary, 75

secondary, 75

emulation, 32

evaluation

design, 223

reference alignment, 225

results, 227

existential generating dependency, 205

extension, 45, 48

extraction

granularity, 195

parameters-, 228

phrase set, 199

preprocessing, 196

query-, 143

resource, 195

special preprocessing, 196

token, 194, 199, 200

token set, 199

F

feature

semantic, 166

significant, 38

mapping, 38

filter

axiom-, 199

first order logic, 7

FOL, 7, 82

format ageing, 1, 25

G

GCI, 106

general concept inclusion, 106

govterm, 131, 141

govterm-cosine, 211

H

heterogeneity

semantic, 20

I

ILP, 164

inferability

completion graph, 98

inferable, 58

inference, 80

278

INDEX

information

representation, 19

semantic-, 211, 233

transfer, 192

ingest, 27

instance, 44, 45

intelligibility, 21

contextual, 30

dependency, 22

module, 22

monitoring, 31

intelligible

management, 29

interpretation

automated, 22

dependency, 22

module, 22

J

justification, 193, 214

K

KL-ONE, 83

knowledge base, 48

consistent, 55

description logic, 93

lattice, 47

knowledge representation, 79

known source, 171

known target, 172

L

L, 54

label

extraction, 199

language

signature, 54

length

alignment-, 192

lexical

processing, 233

lexical analyser, 198

LillyTab, 110

tableau, 113

literal, 45, 55

logic

description-, 83

first order-, 7, 82

FOL, 7

knowledge representation, 79

NNF, 88

Lucene, 198

M

mapping

query node-, 124

matcher

parameters, 226

matcher-mode, 171

known source, 171

known target, 172

matching

direction, 171, 234

ontology-, 63

pipeline, 233

semantic-, 70, 241

merge, 113

279

INDEX

augmented, 142

monotonic, 181

merge map, 141

merge monotonic, 181

merging

modulo-, 181

migration, 34

model

bridge-, 38

construction, 95

N

N, 97

NNF, 88

node

anonymous, 101

augmented merge, 142

merge, 113

normalizer, 198

O

object property, 52

ontology, 42, 49, 56

ABox, 53

alignment, 60

concept, 44

constraint system, 55

document-, 74

element, 45

instance, 44

knowledge base, 48

extension, 48

lattice, 47

literal, 45

matching, 63

large-scale, 68

scalability, 68

semantic, 69

system classification, 63

relation, 44

role, 52

TBox, 53

view

frame-based, 47

linked-data, 46

logics-based, 52

views, 45

optimization, 119

reasoner-, 105

OWL

2, 92

Lite-, 92

P

path

dependency-, 204

egd-, 205

performance

refinement, 240

refinement-, 178

phrase set, 199

pipeline

matching, 233

precision, 65

preservation

bitstream, 29

checksumming, 29

280

INDEX

duplication, 29

emulation, 32

migration, 34

planning, 28

scrubbing, 30

processing

lexical, 233

properties

significant, 35

property

assertion, 53

domain, 51, 52

object-, 52

range, 52

significant

abstract, 37

concrete, 37

source-to-target, 159

value range, 51

Q

query, 121

complexity, 155

conjunctive, 123

extraction, 124, 143

∃, 134
∀, 130
¬, 129
TBox, 132

relation to completion graphs, 121

query node mapping, 124

R

range, 105

RBox, 94

description logic, 94

reasoning, 9, 41, 80

Abox, 102

absorption, 106

classification, 81

coherence, 81

completion graph, 97

consistency, 81

dependency directed backtracking, 109

implementation, 119

lazy unfolding, 106

LillyTab, 110, 119

model construction, 95

optimization, 105, 119

resolution, 95

satisfiability, 80

semantic branching, 109

subsumption, 81

tableau, 96

TBox, 102

undecidability, 82

recall, 65

ideal, 66, 67

refinement, 8, 164

completion graph-, 173

graph, 168

matcher-mode, 171

model-based-, 168

over-refined-, 194

parameters, 226

performance, 178, 240

process, 166

281

INDEX

role successor-, 177

rule, 241

rule order, 180

semantic, 175, 175

semantic feature, 166

strategy, 169, 171

subclass introduction-, 176

refinement rule, 172

applicable, 181

evidence, 181

semantic, 175, 175

relation, 44, 45

primary-, 240

resolution, 95

restriction

self-, 93

role, 52

subrole closure, 95

successor refinement, 177

superrole closure, 95

rule

∃, 115, 145
∀, 115, 144
∀+, 115, 144

ℱ, 116, 145
⊓, 115, 144
⊔, 115, 144
𝑜, 116, 145
applicable, 181

bridge-, 62

conservative-, 62

comparing, 221

evidence, 181

generating-, 114

non-generating-, 114

order, 180

refinement-, 172, 241

semantic, 175, 175

tableau-, 113, 114, 144

rule-

alignment-

correct, 222

correct, 222

S

satisfiability, 80

saturation, 99, 118

scrubbing, 30

semantic

heterogeneity, 20

matching, 241

semantic feature, 166

semantics

𝒜ℒ𝒞, 87
𝒮ℋ𝒪ℱ(𝐃), 112

set

phrase, 199

subclass, 51

subproperty, 51

subrole, 51

superclass, 51

superproperty, 51

superrole, 51

token, 199

signature, 54

similarity

282

INDEX

axiom set-, 208, 229

baseline-, 207

clustered cosine-, 211

completion graph, 207

completion graph-, 190

corpus, 208

cosine, 208

tfidf, 208

depcluster-, 213, 220

dependency cluster-, 213

element level, 190

govterm-cosine-, 211

soft cosine-, 210

tfidf, 208

token-, 209

soft cosine, 210

source-to-target property, 159

stemmer, 198

stop word, 198

strategy

refinement-, 171

subclass

refinement, 176

subsumption, 81

T

tableau, 96, 113

augmented-, 144

blocking, 102, 119

consistency, 117

data structure, 117

mapping-, 139

rule, 144

saturation, 99

TBox, 53, 93

description logic, 93

term

cluster, 211

governing, 131, 141

tfidf, 209

tgd, 155, 163

token

analyser, 201

extraction, 194, 200

granularity, 195

preprocessing, 196

resource, 195

special preprocessing, 196

similarity, 209

token set, 199

tree

primary, 76

tuple generating dependency, 155

U

unfolding

domain-, 105

lazy-, 106, 108

range-, 105

V

V, 97, 141

value

range, 51

transfer, 240

view

frame-based, 47

283

INDEX

linked-data, 46

logics-based, 52

284

Bibliography

[Abr05] S. L. Abrams. Establishing a Global Digital Format Registry. Li-

brary Trends, 54(1):125–143, 2005.

[ADMR05] D. Aumueller, H.H. Do, S.Massmann, and E. Rahm. Schema and

ontology matching with COMA++. Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages

906–908, 2005.

[AGE+12] J. L. Aguirre, B. C. Grau, K. Eckert, J. Euzenat, A. Ferrara, R. W.

van Hague, L. Hollink, E. Jimenez-Ruiz, C. Meilicke, A. Nikolov,

et al. Results of the Ontology Alignment Evaluation Initiative

2012. In Proc. 7th ISWC workshop on ontology matching (OM),

pages 73–115, 2012.

[Baa03a] F. Baader. Terminological cycles in a description logic with exis-

tential restrictions. In International Joint Conference on Artificial

Intelligence, volume 18, pages 325–330. Lawrence Erlbaum Asso-

ciates Ltd, 2003.

[Baa03b] F. Baader, editor. The Description Logic Handbook: Theory, Imple-

mentation, and Applications. Cambridge University Press, 2003.

[Bar77] J. Barwise. Handbook of Mathematical Logic, chapter An introduc-

tion to first-order logic, pages 5–46. North Holland Publishing

Company, 1977.

[Bes72] J.G.P. Best. Some Preliminary Remarks on the Decipherment of Lin-

ear A. Hakkert, 1972.

BIBLIOGRAPHY

[BHN+94] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Fran-

coni. An empirical analysis of optimization techniques for termi-

nological representation systems. Applied Intelligence, 4(2):109–

132, 1994.

[BHP08] F. Baader, J. Hladik, and R. Penaloza. Automata can show

PSPACE results for description logics. Information and Compu-

tation, 206(9):1045–1056, 2008.

[BL84] R.J. Brachman and H.J. Levesque. The Tractability of Subsump-

tion in Frame-Based Description Languages. In Proc. of the 4th

Nat. Conf. on Artificial Intelligence (AAAI-84), pages 34–37, 1984.

[BS85] R.J. Brachman and J.G. Schmolze. An Overview of the KL-ONE

Knowledge Representation System*. Cognitive science, 9(2):171–

216, 1985.

[BS01] F. Baader and U. Sattler. An Overview of Tableau Algorithms for

Description Logics. Studia Logica, 69(1):5–40, 2001.

[BS03] F. Baader and U. Sattler. Description logics with aggregates and

concrete domains. Information Systems, 28(8):979–1004, 2003.

[BSW02] F. Baader, H. Sturm, and F. Wolter. Fusions of description logics

and abstract description systems. Journal of Artificial Intelligence

Research, 16:200–258, 2002.

[BW97] K. Berry and O. Weber. Kpathsea library, 1997.

[CAS09] I.F. Cruz, F.P. Antonelli, and C. Stroe. AgreementMaker: Effi-

cient Matching for Large Real-World Schemas and Ontologies.

Proceedings of the VLDB Endowment, 2(2):1586–1589, 2009.

[CDGL+13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and

R. Rosati. Data complexity of query answering in description log-

ics. Artificial Intelligence, 195:335–360, 2013.

286

BIBLIOGRAPHY

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to

know about datalog (and never dared to ask). Knowledge and Data

Engineering, IEEE Transactions on, 1(1):146–166, 1989.

[Cim06] P. Cimiano. Ontology Learning and Population from Text Algo-

rithms, Evaluation, and Applications. Springer, 2006.

[CM77] A. K. K Chandra and P. M. Merlin. Optimal implementation of

conjunctive queries in relational data bases. In Proceedings of the

ninth annual ACM symposium on Theory of computing, pages 77–

90. ACM, 1977.

[Con12] Consultative Committee for Space Data Systems. Reference Model

for an Open Archival Information System (OAIS), 2012.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vec-

tor Machines. Cambridge University Press, 2000.

[dBFK+05] J. de Bruijn, D. Fensel, U. Keller, M. Kifer, H. Lausen, A. Polleres,

and L. Predoiu. Web Service Modeling Language (WSML). Tech-

nical report, W3C Member Submission, 2005.

[DE08] J. David and J. Euzenat. On Fixing Semantic Alignment Evalua-

tion Measures. In The 7th International Semantic Web Conference,

page 25, 2008.

[Doa02] A. Doan. Learning to Map between Structured Representations of

Data. PhD thesis, University of Washington, 2002.

[DR02] H.-H. Do and E. Rahm. Coma: a system for flexible combination

of schema matching approaches. In Proceedings of the 28th inter-

national conference on Very Large Data Bases, pages 610–621. VLDB

Endowment, 2002.

[DS05] M. Dürst and M. Suignard. Internationalized resource identifiers

(IRIs). Technical report, RFC 3987, January, 2005.

287

BIBLIOGRAPHY

[EE05] M. Ehrig and J. Euzenat. Relaxed precision and recall for ontology

matching. In Proc. K-Cap 2005 workshop on Integrating ontologies,

Banff (CA), pages 25–32, 2005.

[EMS+11] J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, and

C. Trojahn. Ontology Alignment Evaluation Initiative: six years

of experience. Journal on Data Semantics, 2011.

[Euz04] J. Euzenat. An API for ontology alignment. Proc. 3rd international

semantic web conference, Hiroshima (JP), pages 698–712, 2004.

[Euz07] J. Euzenat. Semantic precision and recall for ontology alignment

evaluation. In Proc. 20th International Joint Conference on Artificial

Intelligence (IJCAI), pages 348–353, 2007.

[EV03] J. Euzenat and P. Valtchev. An integrative proximity measure for

ontology alignment. Proc. ISWC-2003 workshop on semantic infor-

mation integration, Sanibel Island (FL US), pages 33–38, 2003.

[Fag09] R. Fagin. Tuple-Generating Dependencies. In Encyclopedia of

Database Systems, pages 3201–3202. Springer, 2009.

[FMK+08] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and

G. Antoniou. Ontology change: classification and survey. The

Knowledge Engineering Review, 23(02):117–152, 2008.

[fS03] International Organization for Standardization. Reference Model

for an Open Archival Information System (OAIS). International

Organization for Standardization, 2003.

[GHKS08] B.C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse

of Ontologies: Theory and Practice. Journal of Artificial Intelligence

Research (JAIR), To Appear, 2008.

[GLS01] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic

conjunctive queries. J. ACM, 48(3):431–498, May 2001.

288

BIBLIOGRAPHY

[GNM09] A. Ghazvinian, N.F. Noy, and M.A. Musen. Creating mappings

for ontologies in biomedicine: Simple methods work. In AMIA

Annual Symposium Proceedings, volume 2009, page 198. American

Medical Informatics Association, 2009.

[GR02] F. Goasdoué and M.-C. Rousset. Compilation and approximation

of conjunctive queries by concept descriptions. In ECAI, pages

267–271, 2002.

[Gru08] TR Gruber. Ontology. In the Encyclopedia of Database Systems,

Ling Liu and M. Tamer Özsu, 2008.

[GS08] A. Gal and P. Shvaiko. Advances in Ontology Matching. Advances

in Web Semantics I, pages 176–198, 2008.

[HA07] G. Hodge and N. Anderson. Formats for digital preservation: A

review of alternatives and issues. Information Services and Use,

27(1):45–63, 2007.

[HGKR12] M. Hartung, A. Gross, T. Kirsten, and E. Rahm. Effective Map-

ping Composition for Biomedical Ontologies. In Semantic Inter-

operability in Medical Informatics (SIMI-12), 2012.

[HJK+07] P. Hitzler, Euzenat J., M. Krötzsch, L. Serafini, H. Stucken-

schmidt, H. Wache, and A. Zimmermann. Deliverable D2.2.5

Integrated View and Comparison of Alignment Semantics. Tech-

nical report, NoE Knowledge Web project, 2007.

[HKS06] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible

SROIQ. Proc. of the 10th Int. Conf. on Principles of Knowledge Rep-

resentation and Reasoning (KR 2006), pages 57–67, 2006.

[HL02] M. Hedstrom and C.A. Lee. Significant Properties of Digital Ob-

jects: Definitions, Applications, Implications. In Proceedings of the

DLM-Forum, pages 6–8, 2002.

289

BIBLIOGRAPHY

[HM00] V.Haarslev and R.Moller. Expressive ABox ReasoningWithNum-

ber Restrictions, Role Hierarchies, and Transitively Closed Roles.

In Int. Conf. on Principles of Knowledge Representation and Reason-

ing, pages 273–284. Morgan Kaufmann Publishers; 1998, 2000.

[HM01] V. Haarslev and R. Moller. RACER system description. Proc. of the

Int. Joint Conf. on Automated Reasoning (IJCAR 2001), 2083:701–

705, 2001.

[HMH01] M.A. Hernández, R.J. Miller, and L.M. Haas. Clio: A semi-

automatic tool for schema mapping. In ACM SIGMOD Record,

volume 30, page 607. ACM, 2001.

[Hor97] I.R. Horrocks. Optimising Tableaux Decision Procedures for Descrip-

tion Logics. PhD thesis, the University of Manchester, 1997.

[HS01] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ (D)

description logic. In International joint conference on artificial intel-

ligence, volume 17, pages 199–204. LAWRENCE ERLBAUM AS-

SOCIATES LTD, 2001.

[HS05a] P. Haase and L. Stojanovic. Consistent Evolution of OWL On-

tologies. The Semantic Web: Research and Applications: Second

European Semantic Web Conference, ESWC 2005, Heraklion, Crete,

Greece, May 29-June 1, 2005: Proceedings, 2005.

[HS05b] I. Horrocks and U. Sattler. A tableau decision procedure for

SHOIQ (D). Intl. Joint Conference on Artificial Intelligence, 2005.

[HSG04] U. Hustadt, RA Schmidt, and L. Georgieva. A Survey of Decid-

able First-Order Fragments and Description Logics. Journal of Re-

lational Methods in Computer Science, 1:251–276, 2004.

[HST99] I. Horrocks, U. Sattler, and S. Tobies. A Description Logic with

Transitive and Converse Roles, Role Hierarchies and Qualify-

ing Number Restrictions. Technical Report LTCS-Report 99-08,

RWTH Aachen, 1999.

290

BIBLIOGRAPHY

[HST00a] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for

very expressive description logics. Logic Journal of IGPL, 8(3):239,

2000.

[HST00b] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals

for the Description Logic 𝒮ℋℐ𝒬. In Automated Deduction-CADE-
17, pages 482–496. Springer, 2000.

[HT00] I. Horrocks and S. Tobies. Reasoning with Axioms: Theory and

Practice. CoRR, cs.LO/0005012, 2000.

[HV05] P. Hitzler and D. Vrandečić. Resolution-based approximate rea-

soning for OWL DL. In The Semantic Web–ISWC 2005, pages

383–397. Springer, 2005.

[JHCQ05] N. Jian, W. Hu, G. Cheng, and Y. Qu. Falcon-AO: Aligning On-

tologies with Falcon. In Integrating Ontologies Workshop Proceed-

ings, page 85. Citeseer, 2005.

[JHS+10] P. Jain, P. Hitzler, A. Sheth, K. Verma, and P. Yeh. Ontology align-

ment for linked open data. The Semantic Web–ISWC 2010, pages

402–417, 2010.

[JMSK09] Y.R. Jean-Mary, E.P. Shironoshita, and M.R. Kabuka. Ontology

matching with semantic verification. Web Semantics: Science, Ser-

vices and Agents on the World Wide Web, 7(3):235–251, 2009.

[JRG11] E. Jiménez-Ruiz and B. Grau. Logmap: Logic-based and scalable

ontologymatching. In The Semantic Web–ISWC 2011, pages 273–

288. Springer, 2011.

[JRGZH12] E. Jiménez-Ruiz, B. Grau, Y. Zhou, and I. Horrocks. Large-scale

interactive ontology matching: Algorithms and implementation.

In Proc. of ECAI, 2012.

[JRL08] N. Jussien, G. Rochart, and X. Lorca. Choco: an open source

java constraint programming library. In CPAIOR’08 Workshop on

Open-Source Software for Integer and Contraint Programming (OS-

SICP’08), pages 1–10, 2008.

291

BIBLIOGRAPHY

[JS91] S. Jajodia and R. Sandhu. A Novel Decomposition of Multilevel

Relations Into Single-Level Relations. In Research in Security and

Privacy, 1991. Proceedings., 1991 IEEE Computer Society Sympo-

sium on, pages 300–313, 1991.

[JW09] K. Janowicz and M. Wilkes. SIM-DL_A: A Novel Semantic Simi-

larity Measure for Description Logics Reducing Inter-Concept to

Inter-Instance Similarity. In The 6th Annual European Semantic

Web Conference (ESWC2009), pages 353–367, 2009.

[Ken89] W. Kent. The Many Forms of a Single Fact. In IEEE COMPCON,

1989.

[Kif05] M. Kifer. Rules and Ontologies in F-Logic. Lecture notes in com-

puter science, 3564:22–34, 2005.

[KKS11] Y. Kazakov, M. Krötzsch, and F. Simančík. Concurrent Classifica-

tion of ℰℒ-Ontologies. In The Semantic Web–ISWC 2011, pages
305–320. Springer, 2011.

[KL89] M. Kifer and G. Lausen. F-Logic: a Higher-Order Language for

Reasoning About Objects, Inheritance, and Scheme. Proceedings

of the 1989 ACMSIGMOD international conference onManagement

of data, pages 134–146, 1989.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-

Oriented and Frame-Based Languages. Journal of the ACM,

42(4):741–843, 1995.

[KS02] Y. Kalfoglou and M. Schorlemmer. Information-flow-based on-

tology mapping. On the Move to Meaningful Internet Systems 2002:

CoopIS, DOA, and ODBASE, pages 1132–1151, 2002.

[KSH12] M. Krötzsch, F. Simancik, and I. Horrocks. A description logic

primer. Technical report, University of Oxford, 2012.

[LB87] H.J. Levesque and R.J. Brachman. Expressiveness and Tractability

in Knowledge Representation and Reasoning 1. Computational

Intelligence, 3(1):78–93, 1987.

292

BIBLIOGRAPHY

[Lei94] D. Leivant. Higher order logic. Handbook of logic in artificial intel-

ligence and logic programming, 2:229–321, 1994.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, volume 10,

pages 707–710, 1966.

[LGW88] D. Lenat, RV Guha, and DV Wallace. The CycL Representation

Language. MCC technival report N ACA-AI-302-88, 1988.

[LM05] C. Lutz and M. Milicic. A Tableau Algorithm for Description Log-

ics with Concrete Domains and GCIs. Lecture Notes in Computer

Science, 3702:201, 2005.

[Lor00] R.A. Lorie. Long-term archiving of digital information. 2000.

[Lor01] R.A. Lorie. Long Term Preservation of Digital Information. Pro-

ceedings of the 1st ACM/IEEE-CS joint conference on Digital libraries,

pages 346–352, 2001.

[LS+99] O. Lassila, R.R. Swick, et al. Resource Description Framework

(RDF) Model and Syntax Specification. 1999.

[Lut03] C. Lutz. Description Logics with Concrete Domains—a Survey.

Advances in Modal Logics, 4:265–296, 2003.

[LvD05] R. A. Lorie and R. J. van Diessen. Long-term preservation of com-

plex processes. In Archiving Conference, volume 2005, pages 14–

19. Society for Imaging Science and Technology, 2005.

[LWW07] C. Lutz, D. Walther, and F. Wolter. Conservative Extensions in Ex-

pressive Description Logics. Proc. of IJCAI, 2007:453–458, 2007.

[MB04] A. Malhotra and P. V. Biron. XML schema part 2: Datatypes

second edition. W3C recommendation, W3C, October 2004.

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[McG13] G. McGath. The format registry problem. Code4Lib Journal, 19,

2013.

293

BIBLIOGRAPHY

[Mei11] C. Meilicke. Alignment incoherence in ontology matching. PhD the-

sis, PhD Thesis, University of Mannheim, Chair of Artificial In-

telligence, 2011.

[MGMR02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flood-

ing: a Versatile Graph Matching Algorithm and its Application

to Schema Matching. Data Engineering, 2002. Proceedings. 18th

International Conference on, pages 117–128, 2002.

[Min74] M.Minsky. A Framework for Representing Knowledge. Technical

report, Massachusetts Institute of Technology, 1974.

[Mit97] T.M. Mitchell. Machine learning. Burr Ridge, IL: McGraw Hill,

1997.

[Mot06] B. Motik. Reasoning in description logics using resolution and deduc-

tive databases. PhD thesis, Universität Karlsruhe, 2006.

[MPSH08] B. Motik, P.F. Patel-Schneider, and I. Horrocks. OWL2 Web On-

tology Language: Structural Specification and Functional-Style

Syntax. W3C Working Draft, W3C, 2008.

[MRG+05] P. Maniatis, M. Roussopoulos, TJ Giuli, D.S.H. Rosenthal, and

M. Baker. The LOCKSS Peer-To-Peer Digital Preservation System.

ACM Transactions on Computer Systems, 23(1):2–50, 2005.

[MSS05] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-

DL with Rules. Web Semantics: Science, Services and Agents on the

World Wide Web, 3(1):41–60, 2005.

[MST07] C.Meilicke, H. Stuckenschmidt, andA. Tamilin. RepairingOntol-

ogy Mappings. In PROCEEDINGS OF THE NATIONAL CON-

FERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page

1408. Menlo Park, CA; Cambridge, MA; London; AAAI Press;

MIT Press; 1999, 2007.

[MSZT+12] C. Meilicke, O. Sváb-Zamazal, C. Trojahn, E. Jiménez-Ruiz, J. L.

Aguirre, H. Stuckenschmidt, and B. Grau. Evaluating Ontol-

ogyMatching Systems on Large, Multilingual and Real-world Test

294

BIBLIOGRAPHY

Cases. Technical report, University of Mannheim, University of

Economics Prague, INRIA and LIG Grenoble, University of Ox-

ford, 2012.

[Mug91] S. Muggleton. Inductive logic programming. New generation com-

puting, 8(4):295–318, 1991.

[MvH04] D. L. McGuinness and F. van Harmelen. OWL web ontology lan-

guage overview. W3C recommendation, W3C, February 2004.

[NB12] D. Ngo and Z. Bellahsene. YAM++: A multi-strategy based ap-

proach for ontology matching task. In Knowledge Engineering and

Knowledge Management, pages 421–425. Springer, 2012.

[Neb91] B. Nebel. Terminological cycles: Semantics and computational

properties. Principles of Semantic Networks, pages 331–361, 1991.

[NNS11] J. Noessner, M. Niepert, and H. Stuckenschmidt. Coherent top-

k ontology alignment for OWL EL. In International Conference

on Scalable Uncertainty Management, volume 6929/2011 of Lecture

Notes in Computer Science, pages 415–427. Springer, 2011.

[OCE08] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query

answering in expressive description logics via tableaux. Journal of

Automated Reasoning, 41(1):61–98, 2008.

[OCRMGR15] L. Otero-Cerdeira, F. J. Rodríguez-Martínez, and A. Gómez-

Rodríguez. Ontology matching: A literature review. Expert Sys-

tems with Applications, 42(2):949–971, 2015.

[Par02] R.C. Paré. From Ternary Relationship to Relational Tables: a Case

Against Common Beliefs. ACM SIGMOD Record, 31(2):46–49,

2002.

[PDF08] Document Management – Portable Document Format – Part 1:

PDF 1.7, 2008.

295

BIBLIOGRAPHY

[PPSM09] B. Parsia, P.F. Patel-Schneider, and B. Motik. OWL 2 web

ontology language XML serialization. W3C recommendation,

W3C,October 2009. http://www.w3.org/TR/2009/REC-owl2-xml-

serialization-20091027/.

[PSCC10] C. Pesquita, C. Stroe, I.F. Cruz, and F.M. Couto. BLOOMS on

AgreementMaker: Results for OAEI 2010. Ontology Matching,

page 134, 2010.

[RDB+08] J. Ressler, M. Dean, E. Benson, E. Dorner, and C. Morris. Appli-

cation of Ontology Translation. Lecture Notes in Computer Science,

4825/2008:830–842, 2008.

[RDH+04] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,

R. Stevens, H. Wang, and C. Wroe. OWL Pizzas: Practical Experi-

ence of Teaching OWL-DL: Common Errors & Common Patterns.

Engineering Knowledge in the Age of the SemanticWeb, pages 63–81,

2004.

[Rei87] R. Reiter. On Closed World Data Bases. Morgan Kaufmann Pub-

lishers Inc. San Francisco, CA, USA, 1987.

[Res99] P. Resnick. Semantic Similarity in a Taxonomy: An Information-

Based Measure and its Application to Problems of Ambiguity in

Natural Language. Journal of Artificial Intelligence, 11(11):95–130,

1999.

[Ric56] RH Richens. General Programme for Mechanical Translation be-

tween Any Two Languages via an Algebraic Interlingua. 2nd In-

ternational Conference on Mechanical Translation, 3(2), Oct 1956.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica,

14(5):465–471, 1978.

[RMŠZS09] D. Ritze, C. Meilicke, O. Šváb-Zamazal, and H. Stuckenschmidt.

A Pattern-BasedOntologyMatchingApproach forDetectingCom-

plex Correspondences. The Fourth International Workshop on On-

tology Matching, 2009.

296

BIBLIOGRAPHY

[RNC+95] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards.

Artificial Intelligence: a Modern Approach. Prentice hall Englewood

Cliffs, NJ, 1995.

[Ros10] D.S.H. Rosenthal. Keeping bits safe: how hard can it be? Com-

munications of the ACM, 53(11):47–55, 2010.

[RP11] D. Ritze and H. Paulheim. Towards an automatic parameteri-

zation of ontology matching tools based on example mappings.

In Proc. 6th ISWC ontology matching workshop (OM), Bonn (DE),

pages 37–48, 2011.

[RVMŠZ10] D. Ritze, J. Völker, C. Meilicke, and O. Šváb-Zamazal. Linguis-

tic Analysis for Complex Ontology Matching. Ontology Matching,

page 1, 2010.

[SA08] M.H. Seddiqui and M. Aono. Alignment Results of Anchor-Flood

Algorithm for OAEI-2008. In The 7th International Semantic Web

Conference, page 120, 2008.

[SCC+97] K. A. Spackman, K. EE. Campbell, R.A. CÃ, et al. SNOMED RT: a

reference terminology for health care. In Proceedings of the AMIA

annual fall symposium, page 640. American Medical Informatics

Association, 1997.

[Sch91] K. Schild. A correspondence theory for terminological logics: Pre-

liminary report. Technical report, Technische Universität Berlin,

1991.

[Sch96] K. Schild. Querying knowledge and data bases by a universal descrip-

tion logic with recursion. PhD thesis, Universität des Saarlandes,

1996.

[Sch09] F. Scharffe. Correspondence Patterns Representation. PhD thesis,

University of Innsbruck, 2009.

[SE08] P. Shvaiko and J. Euzenat. Ten Challenges for Ontology Match-

ing. On theMove to Meaningful Internet Systems: OTM 2008, pages

1164–1182, 2008.

297

BIBLIOGRAPHY

[SEH+03] G. Stumme, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche,

B. Motik, D. Oberle, C. Schmitz, S. Staab, L. Stojanovic, et al. The

Karlsruhe View on Ontologies. University of Karlsruhe, Institute

AIFB, Technical report, 2003.

[SGGAP14] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto. Soft

similarity and soft cosinemeasure: Similarity of features in vector

space model. Computación y Sistemas, 18(3):491–504, 2014.

[SJ13] P. Shvaiko and Euzenat J. Ontology matching: state of the art

and future challenges. IEEE Transactions on Knowledge and Data

Engineering, 2013.

[SMH08] R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient

OWL reasoner. In Proceedings of the 5th International Workshop

on OWL: Experiences and Directions (OWLED 2008), pages 26–27,

2008.

[Smu95] R. M. Smullyan. First-order logic. Dover Publications, 1995.

[SMW15] Y. Suna, L. Maa, and S. Wangb. A Comparative Evaluation of

String Similarity Metrics for Ontology Alignment. Journal of In-

formation & Computational Science, 2015.

[Sow91] J.F. Sowa. Principles of Semantic networks. Citeseer, 1991.

[Sow00] J.F. Sowa. Knowledge representation: Logical, Philosophical, and

Computational Foundations. MIT Press, 2000.

[SP04] E. Sirin and B. Parsia. Pellet: An OWL-DL Reasoner. In 2004

International Workshop on Description Logics, page 212. Citeseer,

2004.

[SPM08] H. Stuckenschmidt, L. Predoiu, and C. Meilicke. Learning Com-

plex Ontology Alignments–A Challenge for ILP Research. In-

ternational Conference on Inductive Logic Programming (ILP2008),

2008.

298

BIBLIOGRAPHY

[SS88] M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In

International Conference on Principles of Knowledge Representation

and Reasoning, pages 421–431. Morgan Kaufmann, 1988.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive Concept Descrip-

tions with Complements. Artif. Intell., 48(1):1–26, 1991.

[ST05] L. Serafini and A. Tamilin. Drago: Distributed Reasoning Archi-

tecture for the Semantic Web. The Semantic Web: Research and

Applications, 3532/2005:361–376, 2005.

[Sta05] A. Stanescu. Assessing the Durability of Formats in a Digital

Preservation Environment. Perspectives, 21(1):61–81, 2005.

[TB07a] T. Triebsees and U. Borghoff. Towards Automatic Document Mi-

gration: Semantic Preservation of Embedded Queries. InDocEng

’07: Proceedings of the 2007 ACM symposium on Document engineer-

ing, pages 209–218, New York, NY, USA, 2007. ACM.

[TB07b] T. Triebsees and U.M. Borghoff. A Theory for Model-Based Trans-

formationApplied to Computer-Supported Preservation inDigital

Archives. Proceedings of the 14th Annual IEEE International Confer-

ence and Workshops on the Engineering of Computer-Based Systems,

pages 359–370, 2007.

[TH04] D. Tsarkov and I. Horrocks. Efficient reasoning with range and

domain constraints. InProc. of the 2004Description LogicWorkshop

(DL 2004), volume 104, pages 41–50, 2004.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner:

System description. Automated Reasoning, pages 292–297, 2006.

[THPS07] D. Tsarkov, I. Horrocks, and P.F. Patel-Schneider. Optimizing ter-

minological reasoning for expressive description logics. Journal

of Automated Reasoning, 39(3):277–316, 2007.

[Tob01] S. Tobies. Complexity results and practical algorithms for logics in

knowledge representation. PhD thesis, RWTH Aachen, 2001.

299

BIBLIOGRAPHY

[TP10] E. Thomas and Y. Pan, J. Z.and Ren. TrOWL: Tractable OWL 2

reasoning infrastructure. In The Semantic Web: Research and Ap-

plications, pages 431–435. Springer, 2010.

[TYK12] Y. Tzitzikas, Marketakis Y., and Y. Kargakis. Conversion and

emulation-aware dependency reasoning for curation services.

Proceedings of the 9th Annual International Conference on Digital

Preservation (iPres2012), Oct. 2012, Toronto., 2012.

[Var82] M. Y Vardi. The complexity of relational query languages. In

Proceedings of the fourteenth annual ACM symposium on Theory of

computing, pages 137–146. ACM, 1982.

[vdHvDvdM05] JR van der Hoeven, RJ van Diessen, and K. van der Meer. De-

velopment of a Universal Virtual Computer (UVC) for long-term

preservation of digital objects. Journal of Information Science,

31(3):196, 2005.

[vdHVW05] JR van derHoeven andHNVanWijngaarden. Modular emulation

as a long-term preservation strategy for digital objects. Proceedings

of the 5th International Web Archiving Workshop (IWAW05) Held

in Conjunction with the 8th European Conference on Research and

Advanced Technologies for Digital Libraries (ECDL 2005), September,

pages 22–23, 2005.

[VL04] L. Van Lier. The ecology and semiotics of language learning: A socio-

cultural perspective, volume 3. Springer Science &BusinessMedia,

2004.

[VVR+05] G. Varelas, E. Voutsakis, P. Raftopoulou, E.G.M. Petrakis, and E.E.

Milios. Semantic Similarity Methods in WordNET and their Ap-

plication to Information Retrieval on the Web. In Proceedings of

the 7th annual ACM international workshop onWeb information and

data management, pages 10–16. ACM, 2005.

300

BIBLIOGRAPHY

[vZSS09] O. Šváb Zamazal, V. Svátek, and F. Scharffe. Pattern-based On-

tology Transformation Service. In Proceedings of the 1st Interna-

tional Conference on Knowledge Engineering and Ontology Develop-

ment, 2009.

[Wei08] M. Weiten. OntoSTUDIO® as a Ontology Engineering Envi-

ronment. Semantic Knowledge Management: Integrating Ontology

Management, Knowledge Discovery, and Human Language Technolo-

gies, page 51, 2008.

[WGCN12] S. N. Wrigley, R. García-Castro, and L. Nixon. Semantic evalua-

tion at large scale (SEALS). In Proceedings of the 21st international

conference companion on World Wide Web, pages 299–302. ACM,

2012.

[Wol08] L. A. Wolsey. Mixed integer programming. Wiley Encyclopedia of

Computer Science and Engineering, 2008.

[Yeo10] G. Yeo. ‘Nothing is the same as something else’: Significant Prop-

erties and Notions of Identity and Originality. Archival Science,

pages 1–32, 2010.

301

eISBN: 978-3-86309-578-9

Being able to read successfully the bits and bytes stored inside a digital archive
does not necessarily mean we are able to extract meaningful information from an
archived digital document. If information about the format of a stored document
is not available, the contents of the document are essentially lost. One solution
to the problem is format conversion, but due to the amount of documents and
formats involved, manual conversion of archived documents is usually impracti-
cal. There is thus an open research question to discover suitable technologies to
transform existing documents into new document formats and to determine the
constraints within which these technologies can be applied successfully.
In the present work, it is assumed that stored documents are represented as for-
mal description logic ontologies. This makes it possible to view the translation
of document formats as an application of ontology matching, an area for which
many methods and algorithms have been developed over the recent years. With
very few exceptions, however, current ontology matchers are limited to element-
level correspondences matching concepts against concepts, roles against roles,
and individuals against individuals. Such simple correspondences are insuffici-
ent to describe mappings between complex digital documents.
This thesis presents a method to refine simple correspondences into more com-
plex ones in a heuristic fashion utilizing a modified form of description logic
tableau reasoning. The refinement process uses a model-based representation
of correspondences. Building on the formal semantics, the process also includes
methods to avoid the generation of inconsistent or incoherent correspondences.
In a second part, this thesis also makes use of the model-based representation to
determine the best set of correspondences between two ontologies. The develo-
ped similarity measures make use of semantic information from both descripti-
on logic tableau reasoning as well as from the refinement process. The result is
a new method to semi-automatically derive complex correspondences between
description logic ontologies tailored but not limited to the context of format mi-
gration.

	Contents
	Introduction
	Built Heritage Digital Maps
	Mapping a Map: Low Effort Migration
	Research Questions and Methodology
	Structure of this Thesis

	Digital Preservation
	Information Representation
	Intelligibility
	Format Ageing
	Structure and Operation of a Digital Archive
	Approaches to the Preservation of Digital Documents
	Intelligibility Management
	Bitstream Preservation
	Monitoring Contextual Intelligibility
	Intelligibility Monitoring
	Emulation
	Migration

	Significant Properties and Semantic Features

	Format Conversion and Ontology Matching
	Ontologies
	Related Work
	Ontology Elements
	Three Views on Ontologies
	The Ontology

	Ontology Alignment
	Bridging Ontologies
	Ontology Matching
	Measuring Alignment Quality
	Current Developments and Challenges in Ontology Alignment

	Document Ontologies

	Automated Reasoning in LillyTab
	Knowledge Representation Logics
	Automated Inference and Reasoning
	Description Logics
	Expressive Description Logics
	Description Logic Knowledge Bases

	Automated Reasoning in Description Logics
	Basics of Tableaux Reasoning
	Reasoner Optimizations

	LillyTab
	Rationale
	Tableau Rules
	Tableau Data Structures
	Reasoner Implementation

	Completion Graph Based Mapping
	Completion Graphs and Queries
	Mapping Conjunctive Queries to Completion Graphs
	Extracting Queries from Completion Graphs
	Handling Negation
	Handling Universal Quantifiers
	Handling TBox-axioms
	Handling Existential Non-Determinism
	Benefits of Completion Graph Representation

	A Mapping Tableau
	Extracting the Conjunctive Query
	Query Complexity

	Tuple Generating Dependencies
	Source-to-Target Property

	Mapping Refinement
	Refinement Process
	Model-Based Refinement
	Refinement Strategy
	Matcher Mode

	Refinement Rules
	Semantic Refinement Rules
	Subclass Refinement
	Role Successor Refinement
	Refinement Performance

	Interactive Alignment

	Comparing DL Completion Graphs
	Requirements Analysis
	Element Level Similarity
	Maximum Information Transfer and Alignment Length
	Avoiding Unjustified Elements
	Phrase Extraction
	Axiom Filtering
	EGD Path
	Logical Derivates

	Similarity Measures for Completion Graphs
	Baseline Similarities
	Governing Term Cosine Similarity
	Clustered Cosine Similarity
	Dependency Cluster Similarity

	Evaluation and Conclusion
	Comparing Mapping Rules
	Evaluation Design
	Evaluation Results
	Interactive Refinement
	Effects of Lexical Extractor Parameters
	Effects of Axiom Set Similarity
	Effects of Axiom Collection
	Comparison Of Completion Graph Similarity Measures

	Discussion
	Interactive Refinement
	Automatic Refinement

	Summary
	Future Work

	Appendix
	Note on Notation
	Proofs
	Raw Evaluation Results

	List of Definitions
	List of Theorems
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Bibliography

