https://doi.org/10.20378/irbo-52663

A Modal Logic for Handling
Behavioural Constraints in Formal

Hardware Verification

Michael V. Mendler

Doctor of Philosophy
University of Edinburgh
1992

Abstract

The application of formal methods to the design of correct computer hardware
depends crucially on the use of abstraction mechanisms to partition the synthesis
and verification task into tractable pieces. Unfortunately however, behavioural
abstractions are genuine mathematical abstractions only up to behavioural con-
straints, i.e. under certain restrictions imposed on the device’s environment.
Timing constraints on input signals form an important class of such restrictions.
Hardware components that behave properly only under such constraints satisfy
their abstract specifications only approximately. This is an impediment to the
naive approach to formal verification since the question of how to apply a theo-
rem prover when one only knows approzimately what formula to prove has not
as yet been dealt with,

In this thesis we propose, as a solution, to interpret the notion of ‘correctness
up to constraint’ as a modality of intuitionistic predicate logic so as to remove
constraints from the specification and to make them part of its proof. This
provides for an ‘approximate’ verification of abstract specifications and yet does
not compromise the rigour of the argument since a realizability semantics can
be used to extract the constraints. Also, the abstract verification is separated
from constraint analysis which in turn may be delayed arbitrarily. In the proposed
framework constraint analysis comes down to proof analysis and a computational

gsemantics on proofs may be used to manipulate and simplify constraints.

Acknowledgements

The development of this work has been influenced by discussions with my su-
pervisors Rod Burstall and Mike Fourman, and my friend Terry Stroup. I am
indebted to both Terry and Rod for their continued moral support and scientific
guidance.

I would like to thank Bernhard Steffen and Eugenio Moggi for a pleasurable
start in Edinburgh and for helping me along during my early days as a research
student. Bernhard and Eugenio put me up in their flat at Mayfield Terrace after
I had broken my collarbone. They looked after me for a fourtnight when I was
hardly able to move.

I have benefited from discussions with Barry Jay, Randy Pollack, Zhaohui
Luo, and James McKinna at Edinburgh, and Wolfgang Degen at Erlangen. At
Erlangen the Dienstagsclub, most notably Norbert Gotz, Uwe Nestmann, Thomas
Amrhein, Martin Hofmann, and Martin Steffen, provided a stimulating environ-
ment and a lot of encouragement.

1 am grateful to Klaus Miiller-Glaser for his encouragement and the opportu-
nity to become research assistant with the Lehrstuhl fir Rechnergestiitzten Schal-
tungsentwurf at Erlangen where a fair part of this work was written. During the
final phases of writing up I was employed by the Lehrstuhl fir Rechnerarchitek-
tur und Verkehrstheorie on the research project Spezifikation und Verifikation
verteilter Systeme.

Norbert Gotz, Matt Fairtlough, Zhaohui Luo, Stuart Anderson, and Georg
Schied have read parts of this thesis in' a draft version. My thanks go to them

jii

for their valuable criticism and various suggestions for improvement. Also, I
would like to thank Julian Bradfield for his assistance with type-setting and for
supplying TEX-macros for proof trees. 1 owe special thanks to Kees Goossens
who kindly helped with the binding and submission of this thesis.

This work was supported by scholarships from the Studienstiftung des Deut-
schen Volkes and the Stevenson Foundation, partly under SERC grant GR/F
35890 “Formal System Design”, and by the Deutsche Forschungsgemeinschaft,
SFB 182.

1 am greatly indebted to my wife Marion for her love and for reassuring me
all along. I will never forget the wonderful time we spent together in Scotland.
During those few years of postgraduéte study Marion gave birth to our girls Vere-
na, Marie, and Sophie. I know she took over much of the strenuous and tiresome
parts of caring for the babies, which took a lot of patience and understanding on

her side.

Declaration

This thesis has been composed by myself. The work reported herein, except
where indicated in the text, is my own, and has not been presented for any
university degree before. Some of the introductory material in Chapter 1 and
Section 2.3, and the example in Section 4.2 have already appeared in an early

version as [Men91la).

Michael V. Mendler

Table of Contents

1 Introduction

1.1 Hardware Verification and Behavioural Abstraction
1.2 The Problem of Constraints . .
13 AimofThesis
14 Outlineof Thesis

2 Motivation

...................

21 Examplel i e e
22 Example2 L o i e
23 Exampled e e

2.3.1 Synchronous Circuits . .

2.3.2 A Simple Circuit Design

8 Lax Logic
3.1 Definition of Lax Logic

...................

...................

...................

311 Baselogic...........

3.1.2 Extending the Base Logic

313 LaxLogic

3.2 Constraint Extraction

3.2.1 Application of Constraint Extraction

3.3 Natural Deduction Proofs and Constraint Extraction

4 Application Examples

vi

...................

............

11
13
13
15

23
28
28
35
48
59
71
80

87

vii

4.1 Decrementor, Incrementor, and Factorial 87
411 Decrementor., 89
4.1.2 Composing Incrementor and Decrementor 96
4.1.3 Incrementor o 0. 98
414 Factorial 112
4.2 Example of Synchronous Hardware Design e 128
Some Meta-Theory for Lax Logic 140
5.1 On Kripke Semanticsfor o 140
5.2 A Category Theoretical Interpretation of Lax Logic 152
5.2.1 Base Logic as an Indexed Preorder 152
5.2.2 Lax Logic as Indexed Category 166
Related Work 212
Conclusion 222
7.1 FurtherResearch; 224
711 Implementation 224
7.1.2 Application Areas, 225
7.1.3 Meta-Theory 0., 226

72 OpenProblems e e 229

List of Figures

2-1 Xor-Gate and Level-Triggered Latch 16
2-2 Exclusive-Or and One-UnitDelay 17
2-3 Implementation of the Modulo-2 Counter 20
3-1 Well-Formed Terms of the Base Logic, 1 3}
3-2 Sequent Rulesof the Base Logic 32
3-3 Derived Rules for the Base Logic 34
3-4 Well-Formed Termsof B,II 38
3-5 Equality Axioms of B for Standard Data Types 40
3-6 Well-Formed Formulae of Lax Logic 50
3-7 Structural Rulesof Lax Logic 52
3-8 Induction Rulesof Lax Logic 52
3-9 Logical Inference Rulesof Lax Logic 58
3-10 Constraint Extraction for Structural Rules of Lax ngic 65
3-11 Constraint Extraction for Logical Rules of Lax Logic, I 66
3-12 Constraint Extraction for Logical Rules of Lax Logic, II. 68
3-13 Derivation of OL from OF, OM and Extracted Constraint Term . 69
3-14 A Simple Application of Constraint Extraction 17
3-15 Natural Deduction Rulesof Lax Logic 85
3-16 Translation of Natural Deduction Trees into Constraint Terms . . 86
4-1 Derivation which Verifies the Decrementor Function 91
4-2 Derivation for Composition of Incrementor and Decrementor . . . 96
4-3 w-Bit Realization of Successor, 102

ix

4-4 Global Structure of Derivation 1. 103
4-5 Sub-Derivation (). i i 104
4-6 Step Case of Induction, Sub-Derivation (B} 105
4-7 Proofof Derivation 2 118
4-8 Proofof Derivationd, 119
4-9 Derivation for Abstracting zor as a Synchronous Device 131
4-10 Verification of Correctness for Modulo-2 Counter - .. 134
4-11 Low-Level Implementation of Modulo-2 Counter 138
5-1 Interpretation of Structural Rulesfor £ 204

5-2 Interpretation of Logical Rulesfor £o 205

Chapter 1

Introduction

This introductory chapter, as a motivation for the results to be described in
this thesis, identifies a prominent practical problem arising in the application of
interactive theorem proving to the formal synthesis of correct computer hardware

which so far has no satisfactory solution.

The point of departure of this thesis is the notion of a behavioural constraint
and its specific nature. In this chapter this notion, as understood here, is de-
fined and discriminated from other interpretations of the term. Further, the
practical problem which results from the need to handle constraints in verifying
circuits across incomplete abstractions is explained in some detail. The adequate
formalization of constraints, so it is argued, calls for special mechanisms to be
introduced in a theorem prover. Finally, the goal of our research is formulated,

the results of which are summed up in this thesis.

At the end of this chapter a short summary of the results and the structure

of the thesis is given.

Chapter 1. Introduction 2

1.1 Hardware Verification and Behavioural Ab-

straction

The application of interactive theorem proving to the design of computer hard-
~ware is taking first steps from pure correctness analysis to interactive synthesis.
Examples of such design tools, which were only recently developed, are LAMBDA
[FM89] and VERITAS [HDL89]. Both systems, at their roots interactive theo-
rem provers, directly aim at providing an environment for the synthesis of correct
digital circuits by stepwise refinement of an abstract behavioural specification.
The guiding idea underlying such design tools is to take established engineering
techniques in the practical design of hardware and gradually to formalize them

in terms of mathematical logic.

Hardware design proceeds — ignoring false starts and similar matters — by
refining numerous levels of abstraction, beginning typically with architectural
level block diagrams and ending, by way of register-transfer and gate networks,
in a transistor layout that is implemented in a physical medium. This process
postpones detailed design decisions until they are appropriate and factors the ver-
ification of the final implementation’s correctness into a sequence of smaller steps:
If at each level of abstraction the design is shown to behave as required by the

next higher level, then the final implementation meets its original specification.

Implementing this technique in terms of formal logics on a theorem prover
presupposes rigorous mathematical models for the descriptions at each level of
abstraction as well as corresponding abstraction and realization functions, so
that behaviours described at different levels may be compared. The spectrum
of models ranges from discrete computational structures appropriate to algorith-

mic descriptions down to differential equations modelling electrical behaviour of

transistors.

Behavioural abstractions by their very nature are genuine mathematical ab-

stractions only up to behavioural constraints, i.e. under certain restrictions im-

Chapter 1. Introduction 3

posed on the device’s environment. Examples of such constraints are timing con-
straints for flipflops or synchronous circuits, handshaking constraints for speed-
independent circuits, or the requirement that input data be within a specified
integer range in order to avoid overflow of arithmetical operations. Hence, in
general, the synthesis of a hardware design through levels of abstraction can be
verified only up to certain constraints, and the question arises how this should

best be implemented in modern interactive theorem provers.

1.2 The Problem of Constraints

A typical phenomenon which one encounters with the implementation of even
conceptually simple abstraction steps which are standard practice in hardware
engineering is that they cannot be formalized without introducing constraints.
Now, the notion of constraint in computer science and in particular in hardware
engineering is heavily overloaded, so a definition of what is meant by it in this

thesis is in order:

A consiraint is a restriction on the environment of a F(hardware or
software) component under which a particular absiraction of its be-

haviour is valid.

As an example consider the passage from a sequential circuit, built according
to the synchronous design paradigm, to its abstract description in terms of a
finite state machine. Here the abstraction is only valid as long as the environment
(among other things) obeys setup and hold timing constraints which require that
all input lines of the sequential circuit must be kept stable during a certain well-
defined phase of the clock. Clearly, the necessity for imposing timing constraints
is a general phenomenon, not restricted to the synchronous case. It is an even

more important issue in asynchronous designs. [Her88a,Ung69,Sub88a).

Although it is generally recognized that constraints are an essential concept

in hardware design the specific nature of constraints and the question of whether

Chapter 1. Introduction 1

constraints are amenable to or require special treatment in a hardware theorem
prover has not been adequately discussed. The work presented in this thesis
is motivated by the following four problems associated with having to handle
constraints on a theorem prover.

o By definition a constraint is the price one has to pay for making a partic-
ular behavioural abstraction work, i.e. it embodies an unwanted byproduct of
abstraction. Therefore, in contrast to specifications, constraints should ideally
be suppressible for a first cut of a design. This is the way engineers proceed
but it is not at all obvious how such a scheme can be formalized on a theorem-
prover. The question of how to apply a theorem prover when one only knows
approximately what formula to prove has not as yet been dealt with. After all,
in formal reasoning by its very nature, there is no room for ‘rough estimates’ or
‘approximate specifications’. One is forced to cross the t's and dot the i’s and
cannot leave out anything on which correctness of an abstraction depends.

¢ Another good reason for distinguishing constraints from specifications is due
to the fact that the former are conditions on the environment of a component
whereas the latter is a condition on the component itself. Consequently, in the
"design process, constraints are being accumulated bottom-up as more and more
parts of a circuit become implemented while at the same time the specification
is being resolved top-down. This again requires special effort on a theorem-
prover as it amounts to some kind of ‘bidirectionality’ in proof steps. At each
intermediate design state and abstraction level information about the verification
goal is incomplete: one does not know how to weaken the abstract specification
to accommodate for potential input constraints until the final implementation
has been given.

¢ The interaction between abstraction and constraints poses a tangled prob-
lem. Constraints interfere with the essential idea of reasoning about a behaviour
in abstract terms which is to avoid details specific to the implementation at
the more concrete level. For it is impossible to work with the device’s abstract

behaviour without at the same time having to deal with the concrete-level con-

Chapter 1. Introduction 5

straints on which it depends. To verify, for instance, that the behaviour of a
composite device meets its abstract specification it does not suffice simply to
compose the abstract specifications of its components. The verification also has
to show that at the concrete level the composition does not violate the constraints
of each component (which in general, will make it necessary to impose constraints
again on the environment of the composite device).

o Constraints defeat the idea of top-down refinement, which is first to decom-
pose a system into components at the abstract level and then independentiy to
implement each component at the concrete level; Verifying constraints requires
knowledge both of the overall structure of the system (the environment of a com-
ponent) from the abstract level and of the implementation (the constraints of a
component) at the lower level. In short, the general situation in the modelling of
hardware seems to be that of incomplete abstractions, i.e. abstractions modulo
constraints. The constraints on which the abstraction depends embody residual
aspects of the concrete level that impinge on the subsequent design and cannot

be abstracted away once and for all.

1.3 Aim of Thesis

Recognizing the special nature of constraints as opposed to specifications and
their importance for the design process, this thesis investigates the advantages of
distinguishing at the level of the logical inference mechanism between both kinds
of propositions; namely those pertaining to constraints and those pertaining to
specifications. This thesis contributes towards a systematic method for handling
constraints in logic-based design tools which is tailored to the specific nature of

constraints.

We want to make reasoning about abstract behaviour and constraint analysis
fall into two separate verification passes, rather than having them intertwined as
the straight-forward approach suggests, This thesis introduces and justifies an

extension to ordinary predicate logic in which the main verification of an abstract

Chapter 1. Introduction . 6

behaviour is truly an abstract verification in that it does not have to be concerned
with constraints. It proceeds by assuming a successful constraint analysis wher-
ever it depends on constraints. In the course of this main verification information
about the constraints is accumulated as a proof obligation to be filled in at a later
stage. Ideally (in an implementation of this logic), the remaining verification task
corresponding to constraint analysis would then be handed over to a specialized
tool or proof tactic. In some cases it could be solved automatically, for instance
extracting the minimal clock period for a synchronous system. In other cases,
where the logic is undecidable, it has to be done interactively. An example of
this would be proving that the output of a certain integer function lies within a

given finite range.

In this thesis we propose a notion of laz proof and laz specification which
provides for ‘approximate’ verification of abstract specifications, and for a sys-
tematic method of removing from the verification engineer the burden of having
to handle constraints. In order not to compromise the rigour of formal proofs this
degree of looseness is implemented within the framework of a strictly deductive
logic.

More concretely, we interpret the notion of ‘correctness up to constraint’ as a
modality of intuitionistic predicate logic so as to remove constraints from specifi-
cations and to make them part of their proofs. This provides for an ‘approximate’
verification of abstract specifications, and yet it does not compromise the rigour
of the argument since a realizability semantics can be used to extract the con-
straints. Thereby the task of verifying an abstract behaviour is separated from
the task of analyzing constraints which may be delayed arbitrarily. Thus, in
the proposed framework constraint analysis comes down to proof analysis and

a computational semantics on proofs may be used to manipulate and simplify

constraints.

The idea leading to Laz Logic presented in this thesis reflects good engineering

practice: In & first approximation one tries to establish the feasibility of a design.

Chapter 1. Introduction 7

Only then is it worthwhile to attempt a complete validation in a second step.
Lax Logic is an attempt to formalize this engineering principle mathematically

and to implement it at the root of a formal predicate logic.

1.4 Outline of Thesis

We begin in Chapter 2 with motivating the problem of constraints on a charac-
teristic example from hardware verification.

The formal calculus of Laz Logic will be set up in Section 3.1 of Chapter 3.
It is built on top of an arbitrary base logic which has to satisfy some minimal
requirements laid down in Sections 3.1.1 and 3.1.2. One of the things that we
require is that the base logic be of higher order. Lax Logic, defined in Section
3.1.3, is an intuitionistic first-order logic with induction scheme for natural num-
bers and lists, and a one-place modal operator ©. Laz Logic contains the base
logic as a sub-logic, and it is shown that it is a consistent and conservative ex-
tension, ¢f. Theorems 3.1.16 and 3.1.18. The logic is presented first in sequent
and in Section 3.3 also in natural deduction style.

In Section 3.2 we show how to extract constraint information from a proof in
Laz Logic and to use it to constrain the theorem proven. Constraint extraction,
which is defined for both for the sequent and natural deduction presentation of
Laz Logic, is parameterized in a notion of constraint that can be instantiated in
different ways to serve different purposes. In any case, constraining translates a
formula of Laz Logic into a proposition in the base logic. We prove correctness of
this process, viz. that the extracted constraint information is a well-formed term
and that it translates a theorem of Laz Logic into a theorem of the base logic,
¢f. Theorems 3.2.1 and 3.2.2. An important feature of constraint extraction is
that it ignores all proofs done in the base logic, so that a controlled form of proof
irrelevance is available. In Section 3.2.1 we give a summarizing account of how
we intend to apply the extraction process in later examples.

Chapter 4 discusses several simple but illuminating examples of applying the

Chapter 1. Introduction 8

logic and constraint extraction for a particular notion of constraint.
Meta-theoretical investigations of Laz Logic are undertaken in Chapter 5.
Section 5.1 looks into a Kripke-style semantics for the propositional fragment of
Laz Logic. Correctness theorem 5.1.9 is a minimal result to provide justification
for calling O a modality of possibility in the standard Kripke sense. In a second
line of meta-theory for Laz Logic we translate the syntactic calculus into a cate-
gory theoretical structure, a hyperdoctrine with some additional properties. More
concretely, it is shown how a hyperdoctrine model for Laz Logic can be obtained
starting from a hyperdoctrine model of the base logic. It is verified that the result
precisely captures constraint extraction, ¢f. Theorem 5.2.21 and 5.2.23. Also, it
is shown that in this model © becomes a strong monad, ¢f. Theorem 5.2.19.
This thesis finishes with Chapter 6 on related work and in Chapter 7 the main

points of this research are summed up, further research is suggesied, and open

problems indicated.

Chapter 2

Motivation

Let us illustrate the problem of constraints and the purpose of lax logic by means
of simple examples of abstraction mechanisms. The first one (Section 2.1) is to do
with representing natural numbers by finite bit-vectors, a central data abstraction
in hardware design. The second {Section 2.2) is about simulating integers by
natural numbers, which can be viewed as a simple temporal abstraction. The
last example (Section 2.3) illustrates the particular form of timing abstraction
that is fundamental to synchronous circuit design. ‘

All three examples, which are just complex enough to convey the basic idea,
are taken up again later to be formally verified in lax logic. In addition, the
second example, which is the simplest, will serve as an expository example in the

main part of this thesis.

2.1 Example 1

Consider the usual specification of the factorial function that one would like to

work with at the abstract level of natural numbers:
Jac(0) =1 A Vn. fac(n+ 1) = (n +1) - fac(n).

Now, if the factorial is to be implemented by a circuit operating over finite bit-

vectors then, of course, this specification is too optimistic. What the eventual

9

Chapter 2. Motivation 10

implementation actually will satisfy is a specification like
fac(0) =1 A ¥n.n <10 D fac(n+1)=(n+1): fac(n).

It contains an upper bound on the input to ensure that the implementation does
not suffer from an arithmetical overflow.

However, this specification in turn is too realistic since it explicitly contains
implementation specific details. It defeats the idea of the specification being in-
dépendent of the implementation. Firstly, when the specification is being set up
we cannot know what the constraint will turn out to be, for it is determined by
the implementation and the implementation is unknown at specification time.
Secondly, even if we knew the constraint beforehand, putting it into the specifi-
cation is a bad move: it prohibits us from changing the implementation without
affecting the higher levels of the design that are based on the specification.

Thinking about it for a moment one might come up with a third version of

specifying the factorial:
fac(0) =1 A AIN.Vr.n & N D fac(n+1) = (n+1)- fac(n).

It says ‘there is an upper bound N on the input but I don’t know which’. But
this still is not good enough. It is a bad compromise for at least three reasons.
Firstly, it will only work for implementations for which the copstraint has exactly
the form n < N. Secondly, the constraint is still sitting in the specification so
we have to mess around with it whether we want to or not. Thirdly, given a
particular implementation and a proof that it satisfies the specification, there is

no guarantee that we will be able to extract the upper bound N from the proof.

Lax logic resolves these problems by taking as the specification of the factorial

the lax formula
SPEC(f) £ f(0)=1 AW O(f(n+1)=(n+1)- f(n))

where the modal operator © stands for an a-priors unspecified constraint that is

going to be determined by a proof of SPEC(fac) for a concrete implementation

Chapter 2. Motivation 11

fac of the factorial. More precisely, from a proof of SPEC(fac) we will be able

to extract a constraint predicate y(n) and a proof of
fac(0) =1 A Vn.4(n) D fac(n +1)=(n+1)- fac(n).
Thereby we have achieved the following goals:

¢ The abstract specification SPEC of the factorial may be used in a design

without stumbling over constraints.

o The implementation Jfac may be replaced at any time without having to

change the specification too.

e We can let the proof of SPEC(fac), for a given concrete implementation
fac, decide for the constraint. So, more conservative and less ingenious

proofs may result in more conservative and more restrictive constraints.

¢ Constraint manipulation can be understood as computational behaviour of

proofs.

2.2 Example 2

Suppose we wanted to implement and verify a decrementing function dec for

natural numbers obeying the specification
Vn. suce(decn) =n

where succ is the successor function. Of course, such a totally defined decre-
menting function cannot exist as there is no predecessor for zero. It would
be inconsistent with the standard axioms for natural numbers, among which
is Vn.suecn # 0. An approximation of the decrementor can be found, though,
such that

Vn.n > 1 D suce(decn) =n.

In most applications this is good enough and the fact that there is an exception

at n = 0 often can be ignored completely. In these cases it is advantageous to free

Chapter 2. Motivation 12

formal reasoning from having to bother about the constraint n > 1 by passing
to the formula

Vn. O (suce{decn) = n).

 Starting from this ‘lax specification’ means pretending there was a genuine prede-
cessor for every natural number. One could, for instance, then proceed to define

addition and subtraction functions via primitive recursion and to verify
Vm,n. O (add(sub(m, n),n) = m).

In other words, one could simulate integer arithmetic on natural numbers using
the constraint level of lax logic to keep track of the points of exception. How
this is achieved will become clear from this and the other examples treated in

Chapter 4.

Simulating integers by naturals may seem a contrived application but in fact
there are reasons to believe that it may be quite useful in hardware verification.
There, time is modelled typically by natural numbers, the origin 0 representing
start-up, reset, or power-on time. However, the effect of the initial state levels out
and after a while the behaviour of a circuit is completely determined by its input.
From then on, any condition imposed on the output of the circuit translates into
a condition on its input during some interval of time earlier. This output-to-input
and backward-in-time reasoning is very convenient for circuit verification. But it
faces the technical complication of not being able to go back arbitrarily in time
which arises from taking the natural numbers as a model of time. It appears
that taking the integers for modelling time in many cases is the more natural
approach for verifying stationary input-output behaviour. We believe that this
abstraction, which in effect is ignoring start-up initialization of circuits, can be
made safe by using lax logic. The decrementor function is a generic example of

such use.

Chapter 2. Motivation 13
2.3 Example 3

The original motivation for the work in this thesis stems from the design of
synchronous hardware and the particular form of timing abstraction that is char-
acteristic to that application. This section essentially repeats and extends the
motivation of our earlier work [Men91a}.

We briefly explain the general situation (Section 2.3.1) and then turn to a

concrete example (Section 2.3.2) of a synchronous hardware design.

2.3.1 Synchronous Circuits

This section, in a nutshell, sums up the basic principles underlying synchronous
hardware design. The fundamental timing abstraction involved, namely from a
synchronous circuit to its abstract behaviour in terms of a finite state machine,

and the corresponding timing constraints are explained and formalized.

A typical synchronous circuit is built up from latches (such as D-type flipflops)
and combinational circuits (such as NAND gates, inverters, and nets thereof). In
a slightly simplified view! one can summarize the essence of the synchronous

design paradigm in the following design rules:

C1 All latch;:s are triggered by a common clock signal.
C2 There is at least one latch in every feedback loop.

C3 The clock period is long enough to allow for signal changes caused by any

clock event to settle throughout the circuit before the next clock event.

C4 The inputs to the circuit have to be stable long enough prior to any clock

event for signals to have become stable by the clock event.

'We ignote here, among other things, for the sake of simplicity set-up and hold times of

latches or the possibility to use multiple clocks. This does not, however, affect the point.

Chapter 2. Motivation 14

In a broad sense all of these design rules can be interpreted as constraints,
more precisely, C1—C2 as structural constraints and C3——C4 as behavioural con-
straints. From a verification point of view the structural constraints C1-—C2
are essentially reflections of internal behavioural constraints, i.e. they are con-
ditions necessary for verifying that no behavioural constraints are violated by
components within the circuit.

Much of the success of the synchronous design style is due to the fact that
under the design rules C1—C4 one does not need to consider propagation delays
when reasoning about the circuit’s behaviour. If one is interested in the state
of the circuit only at every clock event (or during a certain interval around it)
and records the evolution of input and output values at these points, then the

descriptive effort can be drastically reduced:

A1l Latches behave like unit delays.
A2 Combinational circuits behave like delay-free boolean functionas.

A3 The complete synchronous circuit reduces to a finite antomaton and the
autornaton’s behaviour can be derived by composing unit delays and delay-
free boolean functions. More precisely, every unit delay gives rise to one
state variable and the state transition function is determined by the inter-

connection of state variables through boolean functions.

Thus, relativizing the synchronous circuit’s behaviour to the absiract time given
by the succession of clock events abstracts from propagation delays. Note, the
restriction on clock events can also be viewed as part of the design rules and as
a constraint on the usage of the circuit which is characteristic to synchronous
abstraction.

Although, either implicitly or explicitly, timing abstraction has always been
used in the design of synchronous systems [Brz76,Fle80,Mar86}, it seems that first

attempts to formalize it for the purpose of verification have only recently been

Chapter 2. Motivation 15

made [Mel88,Her88b)]. The separation of design rule checking (C1—C4) from rea-
soning in abstract terms (A1—A3) is crucial for practical applications, but there
seems to be no satisfactory implementation of this separation on an interactive
theorem prover. For instance, Herbert’s methodology [Her88b), implemented
in the proof checker HoL [Gor85,Gor88], though it conceptually distinguishes
between statements about timing and abstract behaviour, leaves both aspects
intertwined at the level of proofs. Basically this means that design rule checking
and reasoning in abstract terms have to go together in a single proof. The logic
presented in this thesis provides a way to separate these concerns within a single

logical inference system.

2.3.2 A Simple Circuit Design

We take the simple case of a combinational circuit such as a xor-gate and a
level-triggered latch (Figure 2-1) which, as in [Her88b), are to be considered
as components of a synchronous system; i.e. they are put into an environment
with a global clock, relative to which certain conditions on the stability of inputs
can be imposed as timing constraints to allow timing abstraction. We then go
on to consider the simple design task of building a stoppable modulo-2 counter
from these components and explain how the presence of timing constraints poses
a methodological problem in the verification of this design example, why the
usual approach is unsatisfactory, and how lax logic is designed to cope with the

problem.

The behaviour of the xor-gate and the level-triggered latch will be described
by predicates over input and output signals both at the concrete level of asyn-
chronous circuits as well as on the abstract level of finite state machines. At
the abstract level the xor-gate is the delay-free exclusive-or boolean function and
the latch a one-unit delay. It is shown that the concrete level components only
approximately satisfy these abstract specifications and that the offset is given by

canonical timing constraints.

Chapter 2. Motivation . 16

Figure 2-1: Xor-Gate and Level-Triggered Latch
For simplicity we take signals to be functions from integers to booleans, i.e.
signal = int = bool

where => is the constructor for function types. Assuming that both gates have
constant propagation delays §x > 0 and 6, > 0, their behaviour may be defined

by the following axioms:

zor (z,y,2) L v 2t +ox) =zt +yt
¢

latch (d, ¢, q) Vi.(ct=1D¢q(t+68)=dt) A

(ct=0Dg(t+6)=q(t+6L 1))

Note, that we are using the operator 4 both for addition over int as well as
for modulo-2 sum over bool. According to the axioms the xor-gate performs the
modulo-2 sum of its inputs z,y at every time step and outputs them with a delay
8x on output z. The latch is enabled to pass data from input d to output ¢ with
a delay §;, by positive levels of the clock input ¢, and it is locked when ct = 0.

For the purpose of this discussion these simple axioms are assumed to be the
low-level, most detailed, description available for the components zor and latch.
Clearly, they are already an abstraction of the real devices’ behaviours. A more
realistic description would have to account for variable gate delays as well as setup
and hold times for the latch; it would perhaps assume continuous rather than
discrete time and signal values, require maximal signal rice and fall times, and so
on. Since for our logic it is of no importance how detailed a model of behaviour

one actually starts from, we have taken the simplest axioms possible. The reader

Chapter 2. Motivation 17

is referred to (BJ83,HD86] for a discussion of more sophisticated axiomatizations
of elementary digital circuits.

The important thing to note is that zor and latch contain both timing (delays)
and functional aspects (operations on booleans) intertwined. In a synchronous
design context, however, where one takes advantage of the design rules, one
expects not having to care about delays. More precisely, the xor-gate should
behave like a delay-free boolean function and the latch like an one-unit delay,

depicted in Figure 2-2.

T
—O—
y

Figure 2-2: Exclusive-Or and One-Unit Delay

In place of zor and latch one would rather work with axioms like

Vt.zt=zt+yt (2.1)
th,tg. nezi (tl N tg) o] q(tz) = d(tl) (2.2)

zor_syn (z,y,2)

e (e

latch_syn (d,q)

where nezt (8, , t;) is a predicate expressing that ¢; and {; are two consecutive

points in time. It is defined abstractly® by
L4
nezt (),8) = L <ta AVLE <t Dt <t

In this abstract view the clock no longer appears as an input to the latch. For
in a synchronous circuit the latch’s clock input is always connected to the global
clock signal and consequently no longer available as an input. Thus, assume a
clock signal)

clk : signal

2One might want to turn the predicate ezt into a function which for time ¢ yields the
successive abstract time step next(t) if it exists and is undefined otherwise. In a logic with
partial terms this could be done using the so-called :-operator which we do not have available

here.

Chapter 2, Motivation 18

which is globally defined throughout the system. As a result clk may be used
within formulae without it being mentioned explicitly as a parameter.
Obviously, zor.syn and latch_syn cannot be proven from zor and latch right
away since the delays cannot be wiped out. What can be proven, however, by
introducing constraints are certain approximations thereof. Before we can state
them we need some predicates for formulating constraints. We first assume that

clock ticks are marked by rising edges of clk and define a corresponding predicate

&

tickt £ clk(t—1)=0A clkt=1

which obtains true if there is a clock tick at time ¢. Given this predicate one may
define what it means that a signal z is stable in all intervals of length § prior to

clock events:

[

stablez § .th,tg. (ticktl A tl -6 5 tz S tl) D I(tl) = I(tg).

Finally, for constraining the clock we have two other predicates, the first express-
ing that the 1-phase of the clock lasts exactly one time step, and the second

imposing a minimal distance & on two consecutive clock ticks:

one_shot Vi.clkt=1 D (clk(t-1)=0A clk(t+1)=0)

L4
4

min_sep é Vi, ta. (t1 <ty A tick 4 A tick tz) DtzhL+ é.

With these predicates put into place the promised approximations of zor_syn and

latch_syn can be formulated:

zor.abs (x,y, z) ¢ (stablex 6x A stabley bx)
D Vitickt D zt=zt+yt

e

latch_abs (d, q) (oneshot A min_sep 6.)
D Vi, ty(tickt, A tickt,
D (nezt-abs (t1, t2) D q(t3) = d(t,)))

where nezt_abs is the following approximation of nezt;

mes

next_abs (ty , ¢;) ty <3 A Vttickt D (t;<t D t, < t)

Chapter 2. Motivation 19

The bold-faced parts indicate the offset of the approximations from the ideal
versions zor.syn and latch_syn. This offset explicitly reflects the design rules
C3—C4: timing constraints on inputs, on the clock signal, and the sampling at
clock events. In contrast to zor_syn, latch_syn these approximations now can be

derived from axioms zor and laich, i.c. we have

zor (z,y,z) F zor-abs(z,y,z)

latch (d, clk,q) + latch_abs (d,q).

This follows by straightforward first-order logic. Note, that due to the simplifica-
tion of the latch’s behaviour (i.e. no set-up and hold conditions) latch_abs does

not require stability of data input d relative to the clock.

The observation that stability constraints essentially work to squeeze out
delays of the behavioural description and thereby separate timing behaviour from
functional behaviour is already employed in [Her88b,Mel88]. As seen this idea can
be pushed further so as to encompass also constraints on time points, i.e. tick ¢
in this case. Being restrictions which also reflect the design rules, constraints on
time points should be subjected to the same treatment as are stability constraints

on signals. In fact, our logic will also deal with this type of constraints.

Now suppose as a simple design task, we wanted to build a stoppable modulo-
2 counter from zor and latch. It is to have one input and one output, and to
produce a stream of alternating Os and 1s as long as the input is at 1 and stop
at the current output value when the input switches to 0. More formally, its

behaviour is specified by the following formula:
ceni_spec (z,y) - Vi1, &z next_abs (t1,83) D y(&s) = z(t2) + y(1).

From this input-output specification one derives easily a Moore automaton or
equivalently an implementation consisting of an exclusive-or function and a one-
unit delay as depicted in Figure 2-3. Given, that zor_syn (2.1) describes the

behaviour of the exclusive-or and latch.syn (2.2) that of the one-unit delay, the

Chapter 2. Motivation 20

©03

1/0 1/1

1

CO

Figure 2-3: Implementation of the Modulo-2 Counter
behaviour of the implementation is given by
ent_syn (x,y, 2) S zor_syn (z,z,y) A latch.syn (y, z) (2.3)

which employs logical conjunction A of predicates ta express composition or su-
perposition of two behaviours. Verifying that the implementation is correct now

would amount to proving that the implementation (2.3) entails the specification,

i.e.
cnt_syn (2,y,2) b cnl_spec (z,y) (2.4)

This is an easy exercise invoking the rules of ordinary first-order logic. Unfor-
tunately, applying synchronous abstraction to zor and latch does not provide an
ideal exclusive-or or an ideal one-unit delay satisfying zor.syn and latch_syn but
merely approximations zor.abs and latch.abs. Therefore the implementation we
are actually able to get is

¢

cnt_abs (z,y,2z) = zor.abs(z,z,y) A latch_abs (y, 2).

Of course there is no reason to expect that ent_abs (z,y, 2) entails cnt.spec (z,y).
Rather, in place of the original ent_spec, we will again only achieve an approxi-
mation, perhaps something of the form
4
entappr(z,y) = (Co A Ci(=z,9)) D (V13 Cift,,t,)

D (nest.abs (y,82) D y(t;) = z(tz) + y(t1)))

Chapter 2. Motivation 21

where Cy, Cy, and C; are constraints that have to be imposed bp ‘the composite

circuit to allow the envisaged derivation
cnt-abs (z,y,z) + ent_appr(z,y). (2.5)-

Here we are facing the question of how to go about finding the constraints
Co, C1, C; and thus the modified specification cnt_appr. The straightforward ap-
proach, as employed for instance in [HD86}, is attempting a derivation of cnt_spec
(from cnit_abs), finding out where it fails, and at each such dead end identifying
assumptions that would make it work if they were available in the first place.
This information can then be used for determining the constraints Co, C1, Ca
and the place where they have to go to weaken the specification appropriately.
Now, this procedure is not quite satisfactory since it means going through the
verification proof twice, once for finding the constraints and a second time after
pasting them into the specification for completing the proof. Furthermore, and
more importantly, the proof has to intermingle timing constraints with abstracted
properties; it aims to verify the abstract specification cni-spec while at the same
time it has to deal with the constraints inside the propositions zor.abs, latch_abs,

nezt_abs, and cnt_appr.

As argued before, this is not what one really would like to do. Rather, one
would like first to perform the abstract verification of (2.4) without considering
constraints. This establishes the feasibility of the design at the abstract level.
The constraints, which are dependent on a particular implementation mechanism,
here the implementation as a synchronous circuit, are not determined before the
implementations of the abstract components are chosen. In the example, this
leads to the approximations zor.abs, latch.abs. Finally, a constraint analysis
should be able to use the abstract proof of (2.4) together with the knowledge of
the constraints contained in zor_abs and latch_abs for extracting the constraints

in cnt_appr.

In this fhesis it will be shown how this goal can be achieved by reformulating

the notions of proof and proposition so as to ‘hide’ constraints within them and

Chapter 2. Motivation

set up a calculus of derivaiions to deal with this laz logic.

22

Chapter 3
Lax Logic

Lax logic is a first-order extension of a version of higher-order predicate logic,
called the base logic. The heart of the extension is a modal operator ¢ that »
relaxes the meaning of a proposition so as to account for potential constraints

and constraint analysis.

Lax Logic =
First-Order Predicate Logic + Modality ¢

Base Logic =
Higher-Order Predicate Logic

The base logic is arbitrary to some extent, so that lax logic need not be seen as
a particular fixed calculus but rather as a method of “laxifying” ones favourite
predicate logic. In contrast to the base logic, lax logic cannot be arbitrary since
there we wish to extract constraint information. As a consequence, lax logic is
an intuitionistic extension, while the base logic may well have an axiom of choice
or the axiom of the excluded middle. Another consequence is that we will have
to record proof objects in lax logic while the semantics of the base logic is chosen
to be proof irrelevant. So, from an implementation viewpoint it is desirable to

single out reasoning within the base logic. This is the main reason why we are

23

Chapter 3. Lax Logic 24

going to distinguish clearly between the base logic and lax logic. The idea is that
the base logic is the intended realm of discourse in which formal verification takes
place whenever possible and that its first-order extension of lax logic is entered
only when there is need to consider approximate specifications and to handle

constraints.

Before we start off with formal definitions we briefly explain the central issues
of lax logic. Let ¢ and ¥ stand for arbitrary propositions of the base logic in
what follows. Given specification ¢, the abstract proof-theoretic intuition behind
O¢ is “for some constraint ¢, ¢ is provable under c”. In other words, a proof of
<O¢ is a pair (c, p) where ¢ is a constraint and p is a proof of ¢ under constraint c.
At this level of generality, nothing is said about what kind of object a constraint
actually is and what it means that a specification is provable “under” a constraint.
Different ﬁotions of constraint will have different properties, and thus will give
rise to different derivation rules for ©. The particular interpretation that we are
going to focus on in this thesis is discussed below in Section 3.2 and further in
Chapter 5. More concrete intuitions may apply to specific interpretations of lax

logic, as we have seen in the context of hardware verification.

There are three general rules for O, which we consider — without interpreta-
tive bias — as being characteristic for any notion of constraint, pronouncing <¢

“somehow ¢”. The three rules, or rather rule schemes, are

¢I—O¢<>I OO O T, Ok Oy

Téty

The reader is warned that throughout this thesis rules are written just the other

OF.

oM

way round as usual, i.e. they extend derivations for the sequents below the rule
bar into a derivation of the sequent above the rule bar. We have chosen to turn
derivation trees upside down since this presentation is more natural for refinement

proofs, which will be our main concern in this thesis.

Formally, OI introduces a < operator, OM collapses two occurrences of O

into one, and OF lifts a derivation of conclusion ¢ from hypothesis ¢ by prefixing

Chapter 3. Lax Logic 25

both the hypothesis and the conclusion with ©. The following three very natural

assumptions on the structure of constraints are sufficient to justify these rules:

o There is a void constraint 1 such that ‘¢ under 1’ is equivalent to ¢.

o There is a multiplication of constraints such that ‘(¢ under c) under &’ is

equivalent to ‘¢ under c-d’.

o Constraining preserves implication, i.e. if ¢ implies ¥, then ‘¢ under ¢’
implies ‘¢ under c'.

Recall that a proof of O¢ is to be a pair (¢, p) with c a constraint and p a proof
of ‘¢ under ¢’. By the first condition we know that whenever ¢ is provable, then
¢ is provable under the vacuous constraint 1, whence rule OI. The fact that
‘¢ under 1’ actually is equivalent to ¢ means that by passing from ¢ to O¢ we ‘
have not lost any information, provided we record the constraint. Similarly, the
second condition can be seen to justify rule OM, allowing us to melt together
two nested occurrences of O without loosing information. Finally, rule OF basi-
cally says that if from the hypothesis ¢ we can prove ¥, then from the (weaker)
hypothesis that ¢ is provable under some constraint ¢ we can prove ¥ under c.
This is guaranteed by the third condition. We might sum up the three conditions

as follows:

Postulate: A notion of constraint is a monoidal action (C, 1, -, — under —)
on formulae or truth values (of the base logic) that preserves impli-
cation.

For the sake of definiteness let us list a few concrete notions of constraint that

one might consider:

C {T,1}

1 T

L T=1L1l=T-Ll=4adT-T=T
— under — | ¢ under L = true

dunder T=¢

Chapter 3. Lax Logic 26

Here and in the rest of this thesis the symbol = is used to denote syntactic,
or definitional identity. This is perhaps the most simple non-trivial notion of
constraint; it takes as constraints a two-valued set {1, T} behaving like the
booleans, it has T as the void constraint that does not change the meaning of a
proposition while the only other constraint L evaporates a proposition to become
trivially provable,

Taking as a constraint the set-up time of a synchronous circuit results in a

very specific notion of constraint, viz.

C - |IN
1 0

n-m = maz {n,m}

— under — [undern=setupn O ¢

where IN denotes the natural numbers, and ‘setup n’ is a predicate expressing
that all inputs to a given circuit are stable immediately before each clock tick
during an interval the length of which is at least n time units.

In this thesis we are going to focus on the following very general notion of

constraint, which will be discussed and used at length later on:

C lists {y1,..., 7], where +; are from some subclass of propositions

1 f} (empty list)

@ (concatenation)

— under — | $under [y1,..., W)= WD DM D¢

A notion of constraint (C,1, -,— under —) defines what it means that a
proposition ¢ of the base logic holds under a constraint ¢ € C, i.e. the meaning of
‘¢ under ¢'. In lax logic we will be concerned with lifting this notion of constrain-
ing to arbitrary propositions, rather than just propositions of the base logic. An

example, which we have seen before, is the specification of the decrementor:

Vn. O (suce(decn) = n).

Chapter 3. Lax Logic 27

From a proof of this proposition, call it p, we wish to obtain a function f that

associates with each input n a constraint fn € C such that
Vn. (suce{decn) = n) under fn.

For the first notion of constraint mentioned above, viz. the one that has C =
{T,L}, f might be the characteristic function of the subset {n | n > 1} of
inputs that are decremented correctly. The function term f will be called the

constraint term, written f = |p|, and the predicate
(Vn. O (suce(decn) = n))*{z] = Vn.(suco(decn) = n) under zn

will be called the constraint predicate. It can be thought of as the lifting of
— under — to proposition Vn. O (succ(decn) = n).
To give another example let us assume that we have built the factorial function

using the decrementor as a subcomponent, i.e. that we have a proof of
Vn. O (suce(decn) =n) DO Vn. O(fac(n +1) = (n+1)- fac(r))

where, for simplicity, we have dropped the base case in the specification of the
factorial. From this proof we expect to extract a higher-order functional F' that
translates every input constraint f, i.e. the characteristic function of a subset of
inputs, of the decrementor into an input constraint of the factorial, F f, which
is again the characteristic function of a subset of inputs. This can be expressed

by requiring that the proposition

Vf. ¥n.(suc{decn) = n) under fn
D V¥n.(fac(n + 1)=(n+1)- fac(n)) under F fn

hold in the base logic. Thus, for more complex propositions the extracted con-
straint term and the constraint predicate can be quite complex objects. For
arbitrary propositions ¢, the constraint predicate ¢*[z] will be defined by induc-
tion on the structure of ¢, and the constraint term |p is given by induction on

the structure of proof p.

Chapter 3. Lax Logic 28

So much for an informal introduction to the rationale behind lax logic. The
rest of this chapter deals with the formal systems of base logic and lax logic
which are set up formally in Section 3.1. The syntactic calculus of lax logic is
presented both in sequent and, for use in later examples, in natural deduction
style (¢f. Section 3.3). In Section 3.2 the general notion of constraint, which was
briefly mentioned above, is discussed. Also, the associated constraint extraction
and analysis process for lax logic is defined, based on the constructive nature of

derivations.

3.1 Definition of Lax Logic

Our main concern lies in lax logic as an extension on top of a base logic, which sat-
isfies certain minimal requirements but is otherwise arbitrary. In order to stress
this aspect it would be natural to define the calculus of lax logic first, treating
the base logic as a parameter. Nevertheless, we start off with the base logic as
this has the advantage of requiring less notational overhead and of introducing
the syntax in its logical ordering.

The base logic will be introduced in two steps, viz. first a rudimentary part
in Section 3.1.1 amounting to a fragment of second-order logic, and then an
enrichment by a full-fledged lambda-calculus giving higher-order expressibility in

Section 3.1.2. The extension of lax logic, finally, will be treated in Section 3.1.3.

3.1.1 Base Logic

SIGNATURE. The language of the base logic is specified by a signature X, which
is a collection of sorts A, B, etc. and a collection of operators f, g, etc. together
with a map assigning to each operator f a finite non-empty sequence A; - - - A, of
sorts, called its arity. If n = 1, then f also is called a constant. It is assumed that
among the sorts there is a distinguished sort @, the sort of propositions. What

other sorts and operators there are in the signature depends on the particular

Chapter 3. Lax Logic 29

base logic chosen.

TYPES. Every sort A is a well-formed (primitive) type. For now the sorts will be
the only types. Later the base logic will be extended by type-forming operations
for building non-primitive types. Meta-variables o, T, etc. will be used to range

over types.

TERMS. Given a signature I we define the set of terms over I, ranged over
by meta-variables s,t,...,d,¥, etc. First, fix for each type 7 a countably infinite
number of variables, denoted by z7,y7, etc. Assuming that a variable uniquely
determines the type to which it belongs, the superscript 7 may be omitted. Terms
now are built from variables, operators, and the two special term forming symbols
universal quantifier ¥ and implication D in the usual way. More precisely, one
defines the class of well-formed terms t of type 7 along with the free variables of

a term as follows:
¢ Any variable z7 is a well-formed term of type 7; its only free variable is z.

o If f is an operator with arity 7, ..+ 7,7 and t;,...,1, well-formed terms of
type 1, ..., T, respectively, then f(ty,...,¢,) is a well-formed term of type

T; its free variables are those of ¢, = 1,...,n.

o If ¢ is a well-formed term of type 2 and z a variable, then Vz. ¢ is a well-
formed term of type Q; its free variables are the free variables of ¢ except

I.

o If ¢ and ¢ are well-formed terms of type Q, then ¢ D ¢ is well-formed of
type §; its free variables are those of ¢ and .

o If s and ¢ are well-formed terms of the same type, then s = ¢ is well-formed

of type §; its free variables are those of s and t.

Chapter 3. Lax Logic 30

The type 7 of a well-formed term ¢ and its set of free variables, denoted by FV(t),
are thus uniquely determined!. We note that if z is a free variable of ¢, then z
actually occurs as a sub-term of #. A term without free variables is called closed.
As usual every occurrence of a variable z within term Vz. ¢ is called bound. Two
terms are called a-convertible if they are syntactically identical modulo renaming
- of bound variables.

For now the terms defined will be the only terms of the base logic. Later the
base logic will be extended by other term-forming operations.

We may turn the definition of well-formedness into a formal calculus given
by Figure 3-1. The formal judgement A F ¢ : 7 is called a typing, where A =
T1,...,T, i8 a finite, possibly empty, non-duplicating list of variables called a
context. Such a typing is to stand for the statement that ¢ is well-formed of type
7 with free variables in A. We will say that a term is well-formed of type 7 in
contezrt A iff At t:+ can be derived.

As mentioned before, all rules in this thesis are to be read bottom up, i.c. a
rule instance of Figure 3-1 may be applied to turn derivations of the typings
below the rule bar into a derivation of the typing above it. For all forms of rules
to be introduced in this thesis we shall call the judgements below the rule bar

the premisses and the judgement above conclusion of the rule.

Observation 3.1.1 A termt is well-formed of type with all its free variables
in the context A iff Al t: 1 can be derived by the rules of Table 3-1.

Proof: The simple proof proceeds by induction on the structure of ¢ and the
derivation A + ¢t : 7. The only tricky case is to show that A I Vz.¢ : Q
is derivable if Vz. ¢ is well-formed with free variables in A. Two case must be
distinguished: If 2 ¢ A, then use the induction hypothesis on ¢ with free variables
in A,z. If z € A, then use induction hypothesis on ¢ with free variables in A\ z.

|]

1The definition of well-formed terms defines abstract syntax. We wil} use auxiliaty bracket-

ing ‘(’, ‘)’ to indicate the structure of a term.

Chapter 3. Lax Logic 31

Ak Sty te) i (f operator with arity 7 --- T47T)

A"tll‘ﬁ e A"tnifn
AbFVz.¢:0 AF¢Dy: Q1
Az ¢: 0 AlL¢: 0 AlFy:Q
ThziT | abl AFs=t:0 o tuve
T" variavle AFs:t AFt:r vp
Ajzkt:r . , Ay, z,AFt:T
NI variable, not in A Doy AFL:r

Figure 3—1: Well-Formed Terms of the Base Logic, I

We list a few immediate consequences of this observation. For each well-formed
term ¢ there is a unique 7 and a unique minimal A such that A ¢ : 7. This
minimal A is given by the set of free variables FV(t) of t. The closed terms of
type 7 are those t for which - ¢ : 7 is derivable. If A,z + ¢ : and z not free in
t, then At t: 7. Finally, the substitution rule
At s{t/z}: o
AzFs:o AFt:T

is valid, where as usual s{t/z} denotes the result of substituting in s all free

occurrences of variable z by ¢. As usual it must be assumed that substitution
renames bounds variable occurrences in s to avoid name capture of free variables

in t.

PROPOSITIONS. Every well-formed term of type is a proposition of the base

logic. Propositions will be ranged over by Greek meta-variables ¢, 4, ete.

SEQUENTS. The logical calculus c;f the base logic rests on the formal judgement
of logical entailment

Tra ¢
where A is a context and T = ¢y,---,¢, a possibly empty list of propositions,

i.e. well-formed terms of type 0, with free variables in A, i.e. we have A

Chapter 3. Lax Logic 32

¢i: Q,i=1,...,n. The judgement will be called sequent, the propositions
in [its Aypotheses and ¢ its assertion. The calculus is to be closed under the
usual structural rules of identity, weakening, cut, permutation of hypotheses and
substitution, plus the logical rules for implication and universal quantification.
The rules are shown in Figure 3-2. In rule sub the notation I'{{/z} means
substitution is performed on all hypotheses in I'. Note, we require the base logic
merely to be closed under these rules, so it may have more rules. In particular

we do not assume that the base logic is intuitionistic.

¢ Fa b | ¢ ba ¢ I'ba: ¢ .
AF¢:Q'd T Fa ¥ A'_d,:ﬂweak I1}_‘;4’w¢.’ak (z not in A)
r}_A-Y'l',A' ¢ F) ‘bv ¢1 T *_A]
TFazya 60 T, 60,1 Fa0 "
I‘{t/z} ‘-A !/){t/:t} b F FA lb cu¢
T ba.r ¢ AFL:i7" T Fa ¢ 1,0 ta ¥
bez=2 . FaVz.¢=Vz.¢
~————2z variable wf
T b ¢{s/z)
A7 F ¢ 0 Tras=t TFae{tfz) st
TFadDY T,gbay
T.otad 1 Tradov -
TtaVe.é) Vz.¢ka ${t/z}
TFa, ¢ "/ (@ notfreeinl) AFiir ArFea’l

Figure 3-2: Sequent Rules of the Base Logic

Observation 3.1.2 Every sequent ¢y,...,¢, Fa ¢ derived by means of the
rules of Figure 3-2 is well-formed. More precisely, A is a contezt (non-duplicating
list of variables), and the assertion v as well as all hypotheses @y,. .., ¢, are well-

formed propositions in context A.

The observation is due to our including of typings as additional premisses in

some of the rules. In usual presentations of typed predicate logic the typing

Chapter 3. Lax Logic 33

judgement is left as an implicit side condition rather than being formalized as
part of the calculus. For instance, the global side condition may be imposed that
a rule can only be applied in case all premisses and the conclusion of the rule are
well-formed. In our system we can safely add
AkF¢:Q
ks ¢
to the rules in Figure 3-2 without changing the set of derivably well-formed

propositions. Henceforth, it will be assumed tacitly that this rule is available.

The fact that the type of all propositions Q is a type of the language means
we can quantify over propositions. Thus, the other logical connectives false, true,
-, A, V, 3, & of (intuitionistic) predicate logic can be defined in the standard

way by D and V, see e.g. [Pra65)

fase L v,

true L P 252

¢ 4 ¢ D false
ony L v (go(wDz)) Dz
ove L v (402 d((wd2)D2)
3z.¢ L VP (Ve.(¢D2) D2
sy £ (4o9)A D9

where it is understood that variable z does not occur free or bound in ¢,v. The
abbreviations are well-formed: false and true are closed well-formed terms of type
Q; if ¢ is well-formed of type §, then so is —¢, its free variables are those of ¢;
if ¢ and ¢ are well-formed terms of type €1, then so are ¢ A ¢ and ¢ V ¢, their
free variables are those of ‘¢ and y; if ¢ is well-formed of type §) and z a variable,

then so is Jz. ¢, its free variables are those of ¢ except z.
Observation 3.1.8 For the logical connectives as defined above the usual elim-
ination and introduction rules, shown in Figure 8-3, can be derived from rules of

Figure 3-2.

Chapter 3. Lax Logic

34

b true truel f:‘:;“g falseE
4nbrad o $AYFaY

AL ¢:0 Atry:Q

$1a iV

Ab¢:9Q Ary:Q

$1ta Ve

AF 60 AFg aVh

hVealFat
htay & FA'/JVE'

AT 60 AF&nY

ThadAy

TFag Trap™M

AE,

I

32.¢|‘A ¢'
$ptasd

¢{t/z} Fa Fz. ¢

31 (z not free in ¥) Ao Fg:Q AFLir

JE

Figure 3-3: Derived Rules for the Base Logic

To sum up, the base logic, henceforth referred to by the symbol 8, is speci-
fied by a signature I of sorts and operators. Its syntactic ca.tegories are types,
terms a special kind of which are propositions, and sequents. The terms are con-
structed from variables and operators by syntactic substitution. In particular,
propositions are built up {rom terms of type 2 using logical symbols D and V.
It is pointed out again that the definitions of these syntactic categories are to be

understood as minimal requirements on B.

Let us briefly comment on the status of B as specified so far. Since we
allow ourselves to quantify over propositions, B has some kind of second-order
expressibility, which was exploited to encode the connectives A, V, etc. On the

other hand B is not full second-order logic. For instance, it is not possible to

Chapter 3. Lax Logic 35

define Leibnitz equality internally by
s=1y £ VP.P(x) > P(y)

with the understanding that P stands for any propositional context with a dis-
tinguished hole. The reason is that there are no predicate variables in B, whence
we cannot quantify over propositional contexts. In Prawitz’s simble second-order
logic [Pra65] P is called a 1-place predicate variable and in Andrews’ second order
logic F? [And86], a variable of type ‘(:)’.

In some, albeit less fundamental, sense B has more structure than Prawitz'’s
and Andrews’ systems of second-order logic. Namely, B can have second-order
operators of sort 2,8 or 0,2, Q ete. which, according to Andrews’ classification,
are part of third-order logic but not of second-order. So, for instance, the two-
place logical connective D could be introduced in B as a distinguished operator

of sort 2,0, Q rather than a syntactical operation for forming terms.

3.1.2 Extending the Base Logic

The object language of the base logic introduced so far does not comprise any
specific data types and associated operators. Here, an enrichment is necessary
for two reasons: First, we will need a minimum structure for expressing specific
‘real world’ verification examples in Chapter 4. Second, as will become clear
later, in order to feed back into the base logic the constraint information that we
are going to extract from proofs in lax logic, and to reason about it, the object

language of the base logic must be rich enough to express the structure of proofs.

In this section B will be extended by a simply typed lambda calculus with
finite products, finite sums, exponentials, natural numbers, and for every type 7
the type 7* of finite lists of elements of type 7. For these data types the usual
B and 7n-equalities, and additionally for lists and natural numbers the standard
induction schemes will be assumed. In the following we will spell out these
assumptions in detail. Let S, O be the class of sorts and operators, respectively,

that constitute the signature X of B. --

Chapter 3. Lax Logic 36

TYPES. The well-formed types of B are generated by S as the primiﬁve types

and the type forming operations
rue=A|l0lr4r |l |rxr|r=a>r | | N

Here A stands for any sort in S. N is the type of natural numbers and 7° the
type of lists with elements of type 7.

TERMS. The terms of B are built from variables (an infinite number of variables
of each type is assumed), the operators in O, the logical symbols D,V, =, and

the standard constructors and destructors for the composite types, i.e. they are

of the shapes
t o= z | f(t,...,0) | variables and operators

tot | Vot | t=1t| propositions
Ot | gt | et | casey(t,t,t) | finite sums
* | mt | mt] (41| finite products
tt | Azt | ezponentials
{11 tt] fold, (1) | lists
0 | suce | itery (i,t) naturals

where z,y, z are variables and f is an operator in O. The definition in Section

3.1.1 of well-formed terms of type 7 is extended by the following clauses:

o If ¢ is well-formed of type O then Ot is well-formed of any type 7; its free

variables are those of ¢.

o If t is well-formed of type o and r a type, then (;t and ¢;t are well-formed

of type o + 1 and 1 + o, respectively; their free variables are those of 1.

o If s and ¢ are well-formed of type 7, z variable of type a,, y variable of type
3, and u well-formed of type oy + o3 such that z,y are not free in u, z not
free in t and y not free in s, then case, ,(u, s,t) is well-formed of type T; its

free variables are those of s, t, and u except z and y.

Chapter 3. Lax Logic 37

* is a well-formed closed term of type 1.

If ¢ is well-formed of type o x T then =t and 3t is well-formed of type o

and 7, respectively; their free variables are those of ¢.

If s is well-formed of type o, ¢ well-formed of type 7, then (s,t) is well-

formed of type o X 7; its free variables are those of s and ¢.

If s is well-formed of type o = 7 and t well-formed of type 7, then st is
well-formed of type T; the free variables of st are the free variables of s and

i

If t is well-formed of type 7, and z a variable of type o, then Az.t is well-

formed of type o = 7; its free variables are those of ¢ except z.
(] is a well-formed closed term of type r* for any type T.

If s is well-formed of type T and ¢ well-formed of type 7*, then s :: ¢ is

well-formed of type 7°; its free variables are those of s and ¢.

H s and t are well-formed terms of type o, z variable of type o and z variable
of type 7, both not free in s, then the term fold, , (s,t) is well-formed of

type 7* = 0, its free variables are those of s and t except z and z.

0, succ are well-formed closed terms of type N,N => N, respectively. If a
and f are well-formed terms of type 7, r variable of type 7, not free in a, -
then iter; (a, f) is well-formed of type N => 7; its free variables are those

of a and f except z.

As before, terms of type § are called propositions. A well-formed term may have

more than one type according to the above definition. Types could be made

unique, as it is usually done, by annotating terms with types. For instance, one

would distinguish type-many instances |}, of the empty list and define [}, to have

Chapter 3. Lax Logic 38

type o iff o = 7. For terms &; 22 --- :1 ¢, =: [] of type 7° we shall use the more
standard? notation [tns---2ta)-

Note, the forms case, A, fold, and iter have variable binding effect, and the
notion of a bound variable has to be extended to terms case,y(u,s,t), Az.t,

fold, ; (s,t), and iter; (e, f) in the apparent way.

The above definition of well-formedness may be cast into a system of formal

rules as shown in Figure 3-4 which we add to the typing rules of Figure 3-1.

Al‘Dt:‘th . Ai-ut:c+‘rrt . A"Lgt:T-}-th .
AFt:0 P Akrt:o s Atrt:o P

At caseyy (u,s,1): 71
Aluioy+o; Azbks:ir Ayrkt:r

Fx:1 Abmtio Abmt:r AF(s,t):axT
AFt:oxr Abt:oxr Als:o Abt:T

AFst:r Abdztio=T
Atrt:o Abs:io=a>T Az’ Ft:r

FO:N At succ:N=N At dter, (s,t) : N= 71
Ars:r Az Hit:T
Arsut:r® Al fold, (s,t):1" = 0a
AFs:r Abt:7 Als:o Az ,2°Fi:0

Hi}:r

7 type

Figure 3—4: Well-Formed Terms of B, 11

Observation 3.1.4 A term t is well-formed of type + with all its free variables

tn the context A iff A\ t: 7 can be derived by the rules of Figures 3-1 and 3-4.

SEQUENTS. Finally, the base logic B is extended by the usual equality axioms

for the data types as summed up in Figure 3-5, the standard induction principle

3The reversing of the order in which the el ts appear is i tial but technically

convenient.

Chapter 3. Lax Logic 39

for finite lists

ks V2 ¢
r '—A ¢{[]/Z} Fi¢ .-A,z.x ¢{-’C 4 z/z}

where z, z are variables of type 7,7°, respectively, z not free in I, ¢, z not free

ListInd

in I, and induction for natural numbers

I'kFa V¢
Tka ¢{0/z) T, ¢ ba, ¢{succz/z}

where z is variable of type N not free in I.

Natind

We have separated the equality rules in Figure 3-5 into three classes, viz. B8, n,
¢ equalities. This classification is taken over from lambda calculus, where one
mainly is dealing with function types. As in lambda calculus the f-equations
capture the computational meaning of terms, the y-equations amount to exten-
sionality of the data types, and the é-rules are structural rules that enable us to
substitute equals for equals within the variable-binding operators), case, iter,
and fold. For the other operators such §-rules already are covered by the ordinary
substitution rule Subst. For instance, the rule

Fa (s,t) = (¢,1)
Fas=s Fat=t

is a derived rule in B. Extensionality of natural numbers, i.e. the uniqueness of

iteration, expressed by the scheme
fO=3 A Vy. f(succy)=t{fy/z} D f= iterz(s,t)

is derivable from extensionality of functions and induction. A similar remark

applies to extensionality of lists.

Observation 3.1.5 Every sequent I' k5 ¢ derived by the rules of Figures 3-2
and 9-5 is well-formed, i.e. A is a contezt (non-duplicating list of variables),
and the assertion ¢ as well as all hypotheses in I' are well-formed propositions in

context A.

Chapter 3. Lax Logic

40

B Equalities

b,.0t=0z Faz(Az.t)z = ¢

AzSFi:r Az7kitr

beoyr Mi2,9) = = byeyr Ta(z,y) = ¥

a caser (4u,s,t) = s{u/z}
Atuioy Azrbs:7 Ayyki:r

Fa casecy(iu,5,t) = t{u/y}
Alu:a; Azbs:7 AyrhHit:r

Fa,s itery (s,1) (succz) = t{iter. (s,t) z/x}) N A
Als:r Az"Ft:T not in

b iter.(s,8)0=s Fa (fold,, (s,)] = s
Ats:r AjxzTHt:r At s:o Az, 2°Ft:0

Fau (fold, ; (s, 2))(uzv) = t((fold,,z(s ¢)v)/w}{u/z}
Ats:o AzN,z°Ftl:o

*,u” notin A

n Equalities

Faz=+ ko (mr,ms) =2 Falzs(tz) =
Artio=>T

t
z° not in A

}-ALz'H": cuse:,g(zy h{t]I/Z} h{uy/z})
A hiT

z7,94°? not in A

¢ Equalities

= Az.t Fa case; (u,3,t) = case, ,(u,s', 1)
FA_,3=1 A"uiax'{-dg I-A.,c,.s:s' "A'v-zt=t'

Fa itery (s,2) = iter, (s,t) b4 fold, , (s,1) = fold, (s,t)
Abs:r Faort=t Abs:o I"A.,r,.t-t’

Figure 8-5: Equality Axioms of B for Standard Data Types

Chapter 3. Lax Logic 41

Remark: Strictly speaking, the observation assumes that equality is system-
atically decorated with types. In Figures 3-2 and 3-5 this additional typing

information is suppressed for better legibility.

Now the base logic is in place. It is noted that the extensions laid down in this
section are meant only as minimal requirements on B for which the construction
of lax logic will be possible. Thus, further data types, logical connectives, and
rules may be added to the base logic whenever a specific hardware verification
problem requires us to do so. Of course, this is sensible only to the extent that

B remain consistent.

Theorem 3.1.6 The base logic B, as introduced so far, is consistent.

Proof: (Idea) The simplest proof is the one by models: Consider a classical
set-theoretic model for B that interprets the ordinary data types in the standard
way, in particular such that [o = 7] is the set of all functions from [o] to [}, [N]
are the standard natural numbers, and finally such that the type 1 is interpreted
by the set [Q] = {true, false}. To every closed term s : 7 isvassigned an element
[s) € 7] in the usual way, such that [s =, t] = true iff [s] equals [t} in the
model, i.e. are identical elements in [r]. Further, it is shown that B is correct
for this interpretation, viz. that if I ¢ is derivable, then [¢] = true. Consistency
of B then follows from the fact that 0 and succ(0) are different natural numbers

in the standard model, i.e. F 0 = succ(0) cannot be derivable. .

It is well known that higher-order logic is incomplete wrt. the standard set-
theoretic notion of model, i.e. models which interpret a type o = 7 as the set
of all functions from o to 7. One has to consider non-standard models in order
to capture the expressibility of a particular higher-order logic in terms of models
[Hen50]). Consequently, in contrast to the first-order case there is no canoni-
cal system of higher-order logic. Rather, there are quite a number of different

formulations® in the literature, such as Church’s Simple Theory of Types (STT)

3The names STT, ITT, and LPE are not introduced in the literature. They are used in

Chapter 3. Lax Logic 42

[Chu40], Andrews’ systems F* and Q, [And86], Coquand’s Calculus of Con-
structions (CC) [CHS88], Lambek and Scott’s Intuitionistic Type Theory (ITT)
[LS86), Fourman and Scott’s Logic of Partial Elements (LPE) [Fou89}, and many
more. In general, one would expect as many different versions of higher-order

logics as there are intended notions of models.

Qur formulation of B provides yet another version, which does not compare
easily to the systems mentioned above. It basically should be understood as
extending many-sorted first-order logic by equality, inductive data types like
natural numbers and lists, and a sort § of propositions. It is important to point
out that Q has not been added with the aim to make the logic higher-order but
to have a particular notion of constraint (viz. constraint = list of propositions)
available as a type within the logic. For a simpler notion of constraint (such
as: constraint = boolean) first-order logic would be enough, although, then the
logical connectives false, A, V, 3 have to be introduced explicitly. Consequently,
the models of B which we will consider in Section 5 essentially are first-order

models with additional structure.

Of the higher-order systems mentioned above the one that is closest to B
is ITT of Lambek and Scott, in the sense that it is many-sorted, explicitly
axiomatizing data types, proof irrelevant, and based on the intuitionistic logical
primitives D,V. What are some differences between B and ITT, then? Firstly,
the type system of ITT is based on the notion of sets rather than functions,
i.e. the central feature is a power type operator P while B has the function type
operator 7 => 0. To compare both systems one may take the type Pr of ITT as
an abbreviation for the type 7 = 1, and the formation of sets {z € A | ¢(z)}
and elementship z € S stand for lambda abstraction Az. ¢ and application S z,
respectively. Other systems based on functional types are STT, Qo, CC. A
second difference is that in ITT, as well as in most other systems of higher-order

logic, equality is defined as Leibnitz equality while in B it is a primitive relation.

the following paragraphs only for the purpose of reference.

Chapter 3. Lax Logic 43

Thus, the meaning of equality in B can be chosen freely within certain limits

while it is fixed in ITT. Note, though, that in B we can prove
Fs=t = VP.PsDPt.

Also, in ITT, as well as in most other systems of higher-order logic, equality of

propositions is identified with logical equivalence, i.e.

I'tég=qy if THo=y

while in B the two ways of comparing propositions are independent concepts.
This has the advantage that in B, equality may be given a computationally
meaningful interpretation, e.g. a decidable relation on types like and Q*. How
this can be used will be seen from the examples in Chapter 4. A third, less
important, difference between B and ITT is that B not only axiomatizes the
data types products and natural numbers but also sums and lists which are not
incorporated in ITT.

To sum up this discussion we claim that if the extensionality axioms
Vfiig-(Vz.(fzDgz)A(9gzD fz)) D f=g

are added to B, where f, g have type 7 = Q, 7 arbitrary type, as well as the Peano
axioms, then, modulo the canonical translation hinted at before, all theorems of

ITT can be derived in B.

The remainder of this section discusses a few basic constructions in B that
will be used later on. First, we state without proof that from iteration iter and
products a primitive recursion operator natrec : (r x (N=> 7= 7)) 2> N=> 171

can be obtained that satisfies the equations

natrec(a, f) 0 a

S n(natrec(a, f)n).

natrec(a, f) (succ(n))

For instance, natrec can be defined as follows:

3

natrec = Az, Az, mp(iter, ((0, 21), (succ(y1), 22 ¥1 ¥2)) 7)

Chapter 3. Lax Logic . 44

where z,7,y are variables of types 7 x (N = 7 = 7), N, Nx 7, and 2z, ¥,
i = 1,2, abbreviate the terms x;2, 7.y, respectively. The key to verifying that
natrec obeys the equations above is to use the induction rule Natlnd to prove
that x(iter, (---,---)) is the successor function. Similarly, one can construct

from the operator fold for lists a recursion combinator
listrec:(cx(r=>1">0=>0)) => "0
for every choice of types o, 7 for which the equations

listrec(a, f){]
histrec(a, f) (z :: 2)

f z z(listrec(a, f) 2)

i

can be proven in B.

As has been hinted at in the beginning of this section one of the main reasons
for extending the base logic as described is that now the notion of constraint in
the sense in which we are going to use it is internal to the logic. We can formulate
as a proposition of B the meta-logical statement that some proposition is provable
under a constraint. Specifically, we can implement the general approach which
is to take as constraints the lists ¢ = [v,...,m] of propositions, and to say that
a proposition ¢ is ‘provable under’ ¢ iff the sequent i, ..., b ¢ is derivable
in B. Under this interpretation constraints are in one-one correspondence with

terms ¢ of type 2* and ¢ is provable under ¢ iff the proposition ¢° is provable,
where ¢° is defined for all ¢ by the clauses

¢U =¢ =D (¢c)

Moreover, we can define the map ¢, ¢ — ¢° as the following well-formed term of
type Q* = (2 = Q):

Ac.A¢. (fold, . (¢,2 D z))c

where c is a variable of type 0" and ¢, 2,z distinct variables of type Q. The
properties of weak are summed up in

Chapter 3. Lax Logic 45

Lemma 3.1.7 Let ¢, ¢, 7 be variables of type 2 and ¢ variable of type §1°.

o The term ‘weak’ as defined above is a closed well-formed term of type 1* =
(2 = N) for which the equations
be weak[]¢ = ¢
Foce weak(y:c)¢ = 7D (weakcg)

can be derived in B,

o Proposition Yc. weak c¢¢ is provably equivalent to ¢, and for all ¢ : °
proposition weak ¢ (¢ D) is provably equivalent to (weak c $) D (weak c¥),
i.e. the sequents

F¢ ¢ = Ve weakcd
Fow Ve weakc(d DY) = (weak cd) D (weak cyb)

can be derived in B.

Proof: The first part follows from the definition of weak, and from S-equality
for A-application and fold. The second part is obtained by induction on ¢ and by
using the first part of the lemma. »

In the following we will take the notation ¢° to stand for weakc$. Another

operation that we will need is concatenation @ : 7* = (7" = 7*) of lists:

&

@ = A m.(fold, (I,2::2))m

where [, m, z are distinct variables of type 7*, z variable of type 7. For convenience

we will use the infix notation {@m rather than @Im.
Lemma 3.1.8

o The term @ as defined above is a closed well-formed term of type T° =
(7" = 1*) for every® type T fbr which the equations
ki laf] =1
Fegm 1@(zum) = z:(1@m)

41t is assumed that the variables z,z,!,m in the definition of @ are chosen in some canonical

way for each type 7.

Chapter 3. Lax Logic 46

can be derived in B, where |, m are variables of type T* and z variable of

type 1.
o The following equations

b []@m:m
Fegm (k@)@m =kQ(IGm)
Foam ()" =¢'0m

can be derived in B where ¢, k,l,m are variables of the appropriale types.

Proof: The first part follows from the definition of @, and from § equality for
A and fold. The second part is obtained by induction on m, using the first part

of the Lemma and of Lemma 3.1.7. 8

The second part of Lemma 3.1.7 and 3.1.8 can be paraphrased more compactly
by stating that the triple (92°,[], @) together with the mapping ¢, ¢ +— ¢°is a
{monoidal) action on £ that preserves implication. As explained at the beginning

of this chapter these data are taken to define a notion of constraint.

Definition 3.1.9 A notion of constraint for B is a triple (C,1, -), where C isa
type and 1: C, - : C x C => C closed terms, together with a map c,¢ — ¢° that
assigns to each term ¢ : C and proposition ¢ : §} a proposition ¢° : 2, subject to

the following conditions:

e (C,1,) is an internal monoid, i.e. the monoid equations 1-¢ = c=c-1

and (c-d)-e=c-(d-e) can be derived in B.
e (C,1,) is an action on formulae, i.c. ¢* = ¢ and (¢°)* = ¢°-4.

¢ The action preserves enlailment, i.e. ¢ sequent T',¢y,...,¢dn Fa ¢ is deriv-

able in B iff for all AV c: C the sequents T',4,°,...,¢.° Fa ¢° are

derivable.

o The action respects substitution, i.e. if z is a variable and t a term of type

T, then (¢°){t/z]) = (¢{t/:t})‘{‘/’},

Chapter 3. Lax Logic 47

Remark: The third condition covers the special case n = 0, viz. T Fa ¢ iff
Ity ¢¢forall Al c: Q. For T = ¢ this means ¢ k4 ¢° for all Al c: 1. Note,
the definition does not require that the mapping c, ¢ — ¢° is actually expressible
within the logic as a term of type C x = Q, as is the case with the notion
of constraint (2*,[], @) considered later. It may also be a syntactic translation.
The fourth condition is there to make sure that this syntactic translation is
well-behaved wrt. substitution. We remark that for an action on truth-values
rather than formulae one would replace in the second condition the equality by

equivalence. This, too, would suffice for our purposes.

Lemma 3.1.10 (Q*,[], @) together with ¢° = weakc ¢ is a notion of constraint.

Proof: The first two properties of Definition 3.1.9 follow immediately from
Lemmata 3.1.7, 3.1.8. The if direction of the second condition is trivial anyway
since ¢! = ¢. The only-if part is proven by induction on the number n of
hypotheses and the second part of Lemma 3.1.7. The fourth property is satisfied

trivially by (Q°,[], @) since ¢¢ = weakc ¢, where weak is a closed term. .

In connection with using a list ¢ : Q* of propositions as a constraint a function
n: Q* = O will be useful that conjoins all the propositions in ¢ into a single

proposition Mec. This map can be defined by

e

n fold, (true,z A x).

Lemma 3.1.11 The propositions ¢° and (MNc) D ¢ are provably equivalent, i.e. the
sequent

Foec ¢ & (Nc) D ¢

is derivable in B, where ¢ and c are variables of type & and Q*, respectively.

Proof: easy, by list induction on c. "

Chapter 3. Lax Logic 48

3.1.3 Lax Logic

We are now going to extend B by a modal operator © with the intended meaning
that O¢ should be true if there is a constraint ¢ such that ¢ holds under ¢. Given

a notion of constraint (C, 1, -), this appears to suggest
op L 3C.¢ (3.1)

80 that lax logic simply becomes a definitional extension of B. Let us see why
this is not a good idea. Note first, however, that the rules
T,0¢ta OY
I¢ray

indeed are derived rules under this definition of O; OJ follows from the equiv-

¢taOd

74 OF

alence ¢! = ¢, and OF is a consequence of the fact that ¢ — ¢° preserves
entailment. The problem with the above naive definition (3.1) comes with the

rule scheme

'.
N AR LI

which translates to the sequent 3c.(3d.¢%)° Fa 3d. 44 which is interderivable

with the axiom scheme
Ye. ((3d.¢%)° o 3d.4%).

Now, suppose this were derivable, then we could conclude that for all At ¢: C
the proposition (3d. ¢*)° is provable iff 3d. ¢¢ is provable. But this says that no
constraint has any influence on the provability of a proposition of form 3d. ¢
which appears to be a strong condition to impose on a notion of constraint.

A second problem with the definition (3.1) arises for the particular notion of

constraint (Q1°,[}, @). Here, ¢° is equivalent to Nc D ¢. We can take ¢ = [4] as
the constraint to get

¥ = (NMe))od = 6D¢ X true.

So, for every ¢ there is a proof of 3c. ¢°. Hence under definition (3.1) any proposi-

tion of form O¢ would be provable, which trivializes O in a very undesirable way.

Chapter 3. Lax Logic 49

So, we better not hard-wire this property of the particular notion of constraint
{2*,[}, @) into the logic.

The third and most important reason for not adopting definition (3.1) is that
there is no guarantee, that from a proof of O¢ = 3c. ¢° we can actually extract
a constraint ¢ and a proof of ¢°. Since B can be an arbitrarily. strong classical

logic this may actually be impossible, in general.

Instead of using a definition like (3.1) we are going to embed B properly within
an intuitionistic first-order logic containing ¢ as a primitive modal operator
together with associated rules OI, OM, and OF. Apart from containing B as a
sub-logic it will be equipped with its own first-order connectives. This ‘top-up’
logic will be called laz logic and denoted by the symbol L.

The collection of types and terms of £, as well as the typings, are simply
inherited wholesale from the base logic. The embedding B < £ will be witnessed
syntactically by an operator ¢ that promotes a proposition ¢ from B into a formula
¢ of £. This mapping ¢ will be shown to preserve and reflect provability, i.e. ¢

is provable in B iff ¢¢ is provable in £ (Theorem 3.1.16).

FORMULAE. The formulae of £, ranged over by the meta-variables M, N, K,

etc. are given according to the grammar

M = true | MAM | false | MVM | MD M |
V.M | 3=.M | OM | o

where ¢ ranges over propositions of B and z over variables. These are the only
formulae of £. These connectives are to be distinguished from the primitive
connectives D, V, and the abbreviations true, false,V, 3 defined for B. However,
as it is clear from the context within a formula in which a symbol occurs whether
it belongs to B or £, namely inside or outside the scope of ¢, we may use the

same symbol in both cases. For instance, in

Jz. (M A AY))

Chapter 3. Lax Logic 50

the 3 and the left A are primitive connectors in £ while the right A is the ab-
breviation of conjunction in terms of O and V in B. The well-formed formulae
M of L together with the set FV(M) of free variables are defined as follows: A

formula M is well-formed if
o M is true or false; FV(M) = 8,

e M isone of My A Ma, My V My, or My D M; and both M, and M, are
well-formed formulae; FV(M) = FV(M,)U FV (M),

¢ N is a well-formed formula and M is ON; FV(M) = FV(N),

e M is one of Vz. N or 3z. N where z is a variable and N a well-formed

formula; FV(M) = FV(N)\ {z},

o M is 1 with ¢ a well-formed proposition of B; FV(M) = F V(¢).

Ftruewlf F falsewff AF gwh AFOMwif
AkF¢:Q AF M wit

AF MANwE AV Vz. M wff AV 3z. M wit
AFMwiE AFNwh A,zF Mwi AzF Mwif

A+ M>DNwf Ak MV Nwff
AFMwH AF Nwff AFMwiE AF Nwif

Azt M wi bl . Ay, z,A'¢F M wit
. L AT MwE (= variable, not in A) mm

Figure 3-8: Well-Formed Formulae of Lax Logic

The reader will notice that the only possibility for a formula not to be well-formed

is that it contains a sub-formula :¢ where ¢ is not a well-formed proposition of

Chapter 3. Lax Logic 51

B. A well-formed formula Af is closed if FV(M) = @. Again we remark that free
variables must occur as sub-terms. The notion of a dound variable is analogous to
B. As in the case of termns we can formalize the notion of a well-formed formula

using a new judgement

AF Mwff

where A = z,,...2, is a context. The rules are shown in Figure 3-6.

Observation 3.1.12

o A formula M is well-formed with all its free variables in context A iff
AW M wif is derivable by the rules of Figure 9-6.

o IfAas"F MwiTand AFt: 1, then AV M{t/z} wi.

Equivalence % of formulae is defined as before, viz. M = N ¥ MONAND M.

L-INFERENCES. The calculus of entailment between formulae of £ is presénted

via the judgement
F'ka M

called an [-sequent to distinguish it from sequents of B, which consequently
will be referred to as B-sequents. We will simply talk about sequents when the
logical system is clear from the context. I' = M;,..., M, is a list of Aypotheses
and M the assertion of the sequent. All M; and M must be well-formed formulae
with free variables in A. The inference rules for deriving £-sequents are listed in
Figure 3-7 (structural rules), Figure 3-9 (logical rules), and Figure 3-8 (induction
rules). They are as in standard first-order logic plus the embedding rule ¢, and
the three special rules OI, OM, and OF describing the properties of O. As
remarked at the beginning of this chapter these rules reflect the basic intended
properties of proving a formula ‘under a constraint’, i.e. the properties of a notion
of constraint. The next section (3.2) will show how the intuitive interpretation

of these rules can be made precise.

Chapter 3. Lax Logic 52

TLME, N Tra. M ik (2 notin A)
TFa N AF 0wk vek e, M veok (
Mba M
AF Mwi'®
F'-A.y.z.A’ M P,N, M, r |_A K pe
TFasga M T M NI FaK
T{t/z} bp M{t/z} THa N .
Thas M AF:r5uh TF. M T,MFaN°"

Figure 3-7: Structural Rules of Lax Logic

ThaVae M istnd type 7,7)
P I_A M{[]/z} F’M "A,:.: M{z . Z/Z} L!S n (z’z Of yp!

F "A V2. M
tind type N
Tky M{0/2z} T, M¥,, M{succz/z} Natlnd (s of type N)

Figure 3-8: Induction Rules of Lax Logic

Remark: It may appear that rules 3E, VE, in Figure 3-9 should be stated in
a more general form by adding an arbitrary list of hypotheses I' on both sides
of the rule bar, plus the condition that z not be free in I'. However, this is not

necessary as any hypotheses can be moved out of the way to the assertion side
using rules DI and DE.

Observation 3.1.13 Every inference T Fa M derived by means of rules of
Figures 3-7, 8-9, 3-8 is well-formed, i.e. A is a contezt (non-duplicating list of

variables), and the assertion M as well as all hypotheses in T are well-formed
formulae in contezt A,

Remark: This observation means that we do not need to add the usual side-

conditions on variables r, z in the induction rules of Figure 3-8 to make sure that

I' does not depend on z and also in rule List/nd that M does not depend on z.

Chapter 3. Lax Logic 53

If the premisses of rule ListInd have been derived, then we know from the right
sub-derivation that A,z,z is a context, whence z, z do not occur in A. From
the left sub-derivation we obtain that I', M {B/z} are well-formed in context A,
whence z,z cannot be free in I' and z cannot be free in M. A similar remark
applies to rule Natind.

The reader will notice that there is no equality in lax logic, i.e. there are no
atomic formulae like s = t. This is so for good reasons: Equality can be lifted
from the base logic, the formulae ¢(s = t) can be shown to behave like an equality

in lax logic.

Lemma 3.1.14 The following equality substitution schema

Tk, M{s/z}

Ao F MWE T Fai(s = 1) TFa M{i]z] Subst

i3 ¢ derived rule of lax logic.

Proof: By induction on the structure of formula M. The crucial base case is
when M = (¢ for which the schema follows from substitution in the base logic and
the embedding rule ¢. All the other cases are obtained by first deconstructing the
top-level connective in M, applying the inductional hypothesis to its components,

and then reconstructing M with the appropriate rules. s

Let us point out two central properties of O:

Theorem 3.1.15

o In the contezt of the other rules, OM and OF are equivalent to the inference

rule:

I, OM Fy ON
T,MFa ON

i.e. from OM and OF one can derive OL and vice versa.

oL

Chapter 3. Lax Logic 54
o O is strongly eztensional, i.e. the inference rule

Fa(MZN)D(OM ZON) . .
AFMwff AFNwif

is derivable.

Proof: In Figure 3-13 of the next section (Section 3.2) a derivation of OL from
rules OF and OM is given. The derivation of both OF and OM from OL, as

well as the derivation of Oezt is easy and left to the reader. L]

The base logic B is contained within the ¢ fragment — the class of formulae
of shape (¢ — of £ via the embedding rule «. Thus, £ can be viewed as an
extension of B. It is very desirable that this extension do not change the deductive
properties of B so that new theorems about B would be provable in £. The
following theorem says that all ¢¢ which are provable in the extension £ are

provable in B already, or that B corresponds exactly to the ¢ fragment of L.

Theorem 3.1.16 (Conservativity) £ is conservative over B, i.c. if some ip

is derivable in L, then ¢ must already be a theorem of B.

This perhaps is not surprising if we bring to mind the rules of £ for ©. <1,
OF, and OM all are one-way rules for ¢: once © is introduced there is no way
to eliminate it again. So, proofs of a proposition ¢¢ in £ cannot be achieved by

detouring over modal formulae. Theorem 3.1.16 holds in a more general form as

follows:

Theorem 3.1.17 (Strong Conservativity) Let M be o well-formed formula
in contezt A such that b4 M is derivable in L. Then, we must have a derivation
of ta M’ in B, where proposition M' is obtaincd.from M by removing all occur-

rences of O and i and replacing the other logical connectives by their respective
counterparts in B,

Chapter 3. Lax Logic 55

This theorem is a necessary condition for ¢ to act as a place-holder: it must
not be possible to turn a non-theorem of B into a theorem of £ merely by intro-

ducing Os in certain places.

Proof: By induction on the structure of derivations one proves that every
derivation of a L-sequent M),...,M; ko M can be translated into a derivation
of the B-sequent Mj,..., M, Fa M'. The crucial cases are the rules ¢, ¢I,
OM, and OF, which are all trivialized by the translation. For instance, sequent

OOM k45 OM translates into M' o M'. []

As a corollary to Theorem 3.1.16 we conclude that £ is consistent.

Theorem 3.1.18 £ is consistent.

Proof: The theorem follows from consistency of B: If I false were derivable in
L, then also - ¢ false would be derivable because of rule falseE. But by Theorem
3.1.16 this implies that I false is derivable in B. Contradiction. .

We have seen that we can turn a theorem of £ into a theorem of B by removing
all Os and s. What about the other direction? Surely, we do not want to have
that a theorem of B becomes a theorem of £ by arbitrarily introducing ¢s and
ts for this would mean that £ is a trivial extension. In fact, this is not the case.
It will be shown below (cf. Lemma 3.1.19) that if Ot D 14 is a theorem of L,
then also (¢ must be a theorem of £, whence ¢ must be a theorem of B. So, for
a non-theorem ¢ in B, which must exist by consistency, we have that Oup D 1
is not provable in £, while, of course § O ¢ is provable in B. Thus, the other
direction of Theorem 3.1.17 is not true in general and L is a non-trivial extension

of B.

Lemma 3.1.19 Let M be a well-formed formula in contezt A such that b5 M
is derivable in L. Then, there is a derivation of o My in £, where formula Mg
is obtained from M by replacing all those sub-formulae by ‘true’ that are prefized
with O,

Chapter 3. Lax Logic 56

Proof: One shows by induction on the structure of a derivation that whenever
a sequent I' k4 M is derivable, then there is a derivation of Tg Fa Mo. The

translation M — M, is formally given by the scheme

trueg = ftrue falsey false
(MAN) = MoANy, (MVN)o MoV No
(MDN) = MoD Ny (¢d)0 = 1@
(Vz. M) = Vz.M, (3z. M) 3z. Mo
(OM)o = true

As a corollary to this lemma we note:

Theorem 3.1.20 £ 4 V29, Oz is consistent.

Proof: If Vz. 012 were inconsistent, i.e. we could derive & (Vz.O1z) D false,
then by Lemma 3.1.19 we could also derive F (¥z. true) D false. But this means

L is inconsistent, since b, true and hence I Vz. true is derivable. Contradiction.

So much for a definition of lax logic in sequent style. In Section 3.3 also a
natural deduction presentation is given which will make later example derivations

much more economic. Let us finish off this section with highlighting the central

features of lax logic.

¢ In £ we have induction for natural numbers and lists. Being able to con-
struct inductive proofs of formulae which are arbitrarily complex in terms of
O-modalities is what fleshes out the bare bones of constraint manipulation, as

will be seen from the examples in Chapter 4.

¢ L is a first-order logic. We cannot quantify over formulae as there is no
type of all formulae. This is an important restriction which drastically reduces
the complexity of constraint information extracted from proofs in £. In the next

section we will see how to extract from every proof of a formula M a constraint

Chapter 3. Lax Logic 57

term the type of which, denoted by | M), is determined by the structure of M.
Now, if £ were higher-order, then M might have a free variable 2 that stands
for an arbitrary formula. In that case the type |M| will depend on the actual
formula substituted in for z, whence |M| would be a dependent type. Adding
dependent types to the type system of £ and B is a major complication that we
want to avoid in this thesis.

A consequence of the restriction to first-order quantifiers is ihaz the logical .
connectives false, true, V, A, cannot be defined in terms D and V. They must
be introduced explicitly as primitive symbols one by one. Note, however, that
since the base logic is part of £ we may still quantify over the type § of propo-
sitions, though. For instance, the formula V2%, O:z is well-formed and will play

a prominent role later.

¢ Finally, £ is intuitionistic, i.e. £-sequents allow a single formula on the right
side of I and there is no axiom of the excluded middle or an equivalent classical
principle. This allows us to extract from derivations in £ constraint information
in the form of ordinary lambda terms. Therefore, £ has to be a closed system with
no formulae and inference rules other than those defined above. For every new
feature that is to be added to £ constraint extraction must be defined and proven
correct separately. In contrast, B, which is proof irrelevant, can be arbitrarily
strong without any change to the theory of lax logic. This explains also why we
distinguish two kinds of sequent +,F with the consequence that some inference
rules are duplicated. We want to keep track of which parts of a proof are relevant

for later extracting constraint information and which parts are not.

Chapter 3. Lax Logic

F true

truel

Tra MAN
TFaM TF, NN

MANWV, M
AFrMwE AV Nwff

AE;

MANFA N AE
A MwE AFNwE ™"

THAMDN

AF M wff

falseba M falseE

MVNFAK vE
MbFsK NByK

MbaMVN

AF Mwi AF NwE 'l

NFaMVN vI
AFMwiE AV Nwif '

F'MEa N

TN !

PhaVe M .
m\ﬂ {z not free in T)

M{t/z} bo 3z. M

Atrt:1 Az F Mwﬂ'al

at.M"A N
MVta. N

TraMoN-F

Vz. M by M{t/z}
Art:r A"+ Mwit

VE

3E (x not free in N}

M¥s OM OOMEF, OM _ T,OMba ON
AT Mwh AF Mol F M, N °oF
l¢h---,¢¢k|‘Al¢"
$...,akav

Figure 3-9: Logical Inference Rules of Lax Logic

Chapter 3. Lax Logic 59

3.2 Constraini: Extraction

By exploiting the constructive nature of £ as a first-order extension of B we
are going to extract constraint information from derivations in £. We will show
how, by eliminating the operator < in favour of constraints, this information
may be analyzed and used to translate back derivations in £ into derivations
in B so that formulae become propositions and L-sequents become B-sequents.
Although the extraction will work for any notion of constraint (cf. Def. 3.1.9) we
will, for the sake of definiteness, focus on the notion of constraint given by the

triple (2%, (], @) for which
¢h-.---m] 5__1 weak[’Yvn . --:7l]¢ =m1nDDMmD¢

For this model a translation process will be defined that allows one to compute
for each derivation of an L-sequent & M the derivation of a B-sequent + M?,
where M is a proposition obtained from M by replacing all occurrences of ¢
by certain constraints. So, if O(:) is an occurrence of O in M, then it will be
replaced by (-)°, where c is a term of type Q*. In particular, the translation will

be such that a derivation of - ¢ is translated into a derivation of F ¢.

For simplicity let us restrict attention for a moment to proofs of formulae
in the empty context, i.e. on derivations of L-sequents M with M a closed
formula. As usual a derivation of a sequent I ¢ or I M is called a proof of ¢ or
M, respectively. Our plan is to associate with every closed M a constraint type
M| and a constraint predicate M* : |M| = §, such that from every proof of
M in £ a closed constraint term t of type [M] can be extracted together with a

proof of M*t in B. Thus, we want

JormulaM — |M)| type (32)
M?* : |M| = Q well-formed predicate (3.3)
proof of M+ t:|M| well-formed term (34)

proof of M*¢, (3.5)

Chapter 3. Lax Logic 60

Intuitively, | M| is the type of constraint information for M and M* a predicate
telling how M is parameterized or modified by constraint information. In general,
M*z will be a weakening of M depending on constraint term z. The extraction

yields for each proof of M in £ some specific constraint term ¢ and a proof of
M*t.

As an example consider the specification of the decrementor:
SPEC = Vn.O:(succ{decn) = n).
Here, the constraint type will be
ISPEC} = N=(2"x1)
and the constraint predicate

SPEC*z = Vn.(sucd(decn) = n)"t"

114

VYn. N (m(zn)) D suce(decn) = n.

Further, from a proof of SPEC in £ we obtain a constraint term ¢ of type N =
' (£ x 1) and a proof of SPEC*t in B. Thus, the proposition N(x;(¢n)) then is
the concrete constraint by which the decrementor’s ideal specification has to be

weakened to turn the lax proof of SPEC into a proper, ‘rigid’ proof in B.

For the ordinary first-order connectives of £ the translation process that we
will define is known from standard proof extraction techniques for intuitionis-
tic logics, cf. [TvD88] for instance. Christine P.-Mohring [PM89] introduces a
similar extraction process for the higher-order type theory of the Calculus of

_ Constructions. There, |M| in general is a dependent type while in our first-order

setting it is a simple non-dependent type.

We begin with the first part of the translation, i.e. with 3.2 and 3.3. The
crucial connectives to be covered are © and ¢. Let us consider ¢ first. Suppose ¢

some proposition of the base logic. Since proofs of ¢¢ in £ are to correspond

Chapter 3. Lax Logic 61

one-one to proofs of ¢ in B, and since in B no notion of proof information is

assumed, the translation for ¢¢ is taken to be simply
L'
kel £ 1 () € zg

where z is a fresh variable of type 1 not occurring in ¢. The definition of the
constraint predicate (¢¢)* of type 1 = Q could equally well be written in a
point-wise manner, viz. as (1$)*z = ¢. Both equations are equivalent since we
are assuming f and g-equalities and the {-rule for function spaces. This latter

form of definition will be adopted in the sequel.

What is the translation of O? Well, from proofs of Oup we seek to extract
a term ¢ : " and a proof of ¢°. Given the translation defined above for ¢ this
can Be expressed also by saying that the constraint information obtained from
a proof of O¢g is a pair (c,d) with ¢ a term of type ° and d : |¢$| constraint
information for ¢¢ with the property that b ((¢¢)*d)° is derivable in B. This

leads us to define

loM| £ @ x|M| ©OM)?*z L (M¥(mz)"*

where z is a fresh variable of type £2* x | M|, not occurring in M already. Again,
the ‘proper’ global definition of the constraint predicate (OM)* is obtained from
the equation shown by A-abstraction over z. For the other connectives constraint

type and constrained predicates are declared as follows:

|true| £ 4 truetz L true
IMAN] £ M| xIN] (MANY'z £ M#(zz) A N*(m2)
|false]| £ o false*z ' false
IMVN] £ M +IN] (MVN)?z £ (3Mz =z AM2)
V(3. z = iy A N*y)
MoN £ M =N (MON*z £ voMLM#*z > N*(z2)
Ve M| L r= M) (Ve M)z L V2T M*(az)
FerM| £ rxiM] @Mz L (M{mz/z))*(x2)

Chapter 3. Lax Logic . 62

where the logical constants true, false, and the connective A in the definiens
stand for their second-order encoding via V and D in B given in Section 3.1.1.
Just as before the variable z in each case is assumed not to occur among the free
variables in M or N. Additionally, in the clauses for D and V the variables z,y
must be of the appropriate types and not be free in M or N.

Remark: In the definitions above M?* is a predicate of type |M| = 0. Al-
ternatively, the clauses can be understood as defining a syntactic translation
M + M*(z] that turns M into a proposition with an extra free variable z. We

will sometimes adopt this latter view in order to saves f-transformations.
Theorem 3.2.1 (Correctness of Extraction I)

o For every well-formed formula M of £, with free variables in context A,
|M| as defined above s a well-formed type and M* a well-formed term of
type |M| = Q, with the same free variables as M.

o Let M be a well-formed formula with a free variable z of type T and t a well-

Jormed term of type v. Then, |M {t/z}| = |M| and M*{t/z} = (M{t/=})*.

Proof: The proof proceeds by induction on the structure of M. The interesting

case is to verify (OM)*{t/z} = (OM{t/z})*. In this case we have to use that

the action translation ¢,c — ¢° respects substitution:

(OM)* {1/} = (Az.(M*(ra2))"*){t])
= hz.(M*(m2))" " {t/z}
= Az (M#(myz){t/z})"* {17}
= Az (M*{t[z}(m2))™*
= dz.(M{t/z})*(m22))""
= (OM{t/z})*
The third equation is due to the action preserving substitution, the fifth equation

is the induction hypothesis.]

Chapter 3. Lax Logic 63
So much for the first part of the extraction process. The second part covering

3.4 and 3.5 proceeds by induction on the structure of derivations. To deal with

the general case we wish o extract from every derivation of an L-sequent
My, ..., MiFa M

and sequence z,,. .., zx of arbitrary but fixed variables of types |M;|,i =1,...,k,

respectively, a well-formed constraint term
Ayzy,...,z bt | M) (3.6)
and a derivation of the B-sequent
M*zy,.. . M2 bp .00, M. (3.7

In the case where both k = 0 and A = @ this specializes to 3.4 and 3.5. We
remark that in order to avoid renaming of variables we impose on the variables
2; the restriction that they be fresh, i.e. they must be different from all free
variables that occur in the whole derivation tree of M,,..., M Fa M, which,
because of rules VI, 3E, sub may even be variables not contained in A. We will
sometimes abbreviate the list zy,..., 2 of variables by z, the list M;,..., My of
hypotheses by ', and M;*z,,..., M;*z, by ['*z.

There are several ways to define the envisaged translation. For instance we
may use the fact that a derivation in £, being nothing but a tree of rule applica-
tions, can be represented in linear notation by traversing the derivation tree in
some fixed order (e.g. preorder) and noting down the names and other relevant
information of the rules as they are visited. The translation could then be defined
by induction along the structure of this ‘term’ of enriched rule names. What bits
of data are actually required of each rule may be inferred by the following guide-
line: For each rule, given complete knowledge of its conclusion, the data must
be sufficient to determine uniquely all premisses. To treat rule VE, for example,
we need to record in addition to the rule name the term ¢ that is substituted in

order to work out the premisses A F ¢t : 7 and A,z F M wff from the conclusion

Chapter 3. Lax Logic 64

Vz. M k5 M{t/z}. So we might write VE, to record an application of rule VE.
The most expensive rules in this respect, of course, are the ‘cut’ rules cut and
sub. Anyway, if the guideline is obeyed for all rules, then we obtain a unique
representation of the derivation of Mi, ..., My Fa M in linear notation. We will
use this approach in the next section to translate natural deduction proof trees

for £. They are much more economical than inference trees and also cut and

sub-free.

At this point, however, we wish to define the extraction process without any
intermediate steps and direct’ly translate each application of an inference rule,
and thus the tree as a whole. We are not reducing the amount of information
necessary to represent derivations first and writing it down in linear fashion. The
translation concerning (3.6) is shown in Figure 3-10 for the structural rules and
in Figures 3-11, 3-12 for the logical rules. The other part of the translation
concerning (3.7) we will not spell out explicitly since we are not interested in
proofs within the base logic; it is contained in the proof of Lemma 3.2.2 stated

below.

The first column in Figures 3-10, 3-11, 3-12 lists the name of each rule, the
second shows the rule (scheme), and in the third the constraint terms along with
their typings are given, by which the corresponding rule has to be replaced in

the translation. How are these tables to be understood?

First, some technical remarks are in order. For simplicity we have left out all
premisses that are judgements of well-formedness for formulae in the rules. These
premisses do not contribute towards the construction of the constraint term. In
contrast, premisses that are typings A\t : 7 of some term ? as in rules sub (see
Fig. 3-10), or VE and 3E (see Fig. 3-12) are necessary for typing the constraint
term since here the term t enters the constraint term. In these cases, therefore,
the complete derivation subtree that ends in prerpiss At t: 7 is taken over into
the typing tree for the constraint term. Also, to understand the typing of the

constraint term in these cases one has to bear in mind that |M{t/z}| = |M].

Chapter 3. Lax Logic 65

rule derived typing of constraint term
id MbFy M A, ZMz 2 M|
weak I''Mka N A,z2M e |N|
THa N AzFi:|N
weak Tha- M Az, Zbt: | M)
Tha M A,zF 1 M
perm F'kayza M Ay, AN, ZFE: M
Phasva M Az,y, A EF1: M
perm I'NMINFH K AZv,u,2 Fit:|K
FM,NT'Fy K Az uv,2 Rt |K
sub I'{t)z} Fa M{t/z}) Azt s{t/z} : |M]
TharM Abt:T A,z iFs: M| AFt:r
cut 'Fa N A,z s{t/z} : |N| 2 fresh
TFaM D,MVAN | AzFt:|M] A,zMF s:|N]|

Figure 3-10: Constraint Extraction for Structural Rules of Lax Logic

The last remark concerns the cases of VI and 3E (see Fig. 3-12): There the
free variable z that gets bound by the rule application and the variable z in the
constraint term that gets A-abstracted in case VI and substituted for in case 3E

are the same. This is very convenient but not strictly necessary.

How does the translation work? Suppose we are given a derivation of
My,...MiFa M

and a sequence 21, ..., z of fresh variables of types |M;|. The derivation tree is
transformed according to the tables of Figures 3-10, 3-11, 3-12 into a tree of
typings, by replacing each rule application by the corresponding typing rule for

the constraint term. As mentioned before, every subtree that is a typing in the

Chapter 3. Lax Logic 66

rule derived typing of extracted term
JalseE falset-o M A% F DOz |M|
VE, MVNFA K A, MV eqge, (2, 8,) | K| 2,y fresh
MFaKk NFaK| A,d"Fs:|K| AyF: K|
vl MFAMVN A, M2 M)+ |N]
v, NFaMVN A,z E gz | M|+ |N|
truel b true F#:1
AT I'ba MAN Ak (s, t): (M) x N
FT'FaM THy N Azks:|M] AzFi:|N|
AE; MANV, M A, ZMXINI L 2020 | M
AE, MANRAN A, ZMIXINI - 2 2 |N]
p) T+aMDN A,El-z\z.t:lM|=>|N|zfresh
T,MFo N Az, 2MTE ¢ |N|
DE. IMEA N A Mtz 2 [N
PFaMDN AiF M= |N|

Figure 3-11: Constraint Extraction for Logical Rules of Lax Logic, 1

original derivation is copied over to the typing tree of the constraint term. It can
be seen that in this process the variables on the left side of - propagate down
the tree while the constraint term on the right side propagates up the tree. Also,
except for additional choices of variables that have to be made, viz. in rules cut,
=, DI, 3E, OF, the translation is deterministic, and hence the constraint term
uniquely determined. Finally, it is not difficult to convince oneself that every
typing rule for the constraint term in Figures 3-10, 3-11, 3-12 is a derived rule,

so that in fact we end up with a valid derivation of a typing A, 2y, ...,z + 1 : |JM].

The correctness of the second part of our constraint extraction process is sum-

marized in the following theorem:
Theorem 3.2.2 (Correctness of Extraction II)

o Given a derivation of My,..., M, ks M and a sequence 2y,..., 2 of fresh

Chapter 3. Lax Logic 67

variables of types |M;}, i = 1,...,k, respectively. Then, the translation of
this derivation yields a well-formed term t of type |M| with free variables

among 4, z1,.. ., 2.
o For this term there is a valid derivation of the sequent

M*z,..., M2z Fa.sy,..n M.

Proof: The first part of the theorem has been covered by the remarks above.
As to the second part we give a direct argument only for OF. The other rules can
be treated in a similar way. The proofs are all straightforward and make use of
the properties of a notion of constraint and the equation M*{t/z} = (M{t/z})*.
For the rules Natind and ListInd one needs induction in B. It is remarked that
for the closed propositional fragment the second part follows from the category
theoretic interpretation of Section 5.2 (¢f. Corollary 5.2.24).

We have to find a derivation for
I*z, (OM)*z ks s, (ON)* (712, t{m1z/w})
under the inductional assumption that we are given a derivation
T*z, M*w ka0 N*t.

Now, by definition (OM)*z is the proposition (M*(#;2))™° and the assertion
(ON)*(my2,t{m2z/w}) is the proposition (N‘(Jrg(nz,t{a'gz/w})))"‘(""'{"""’)).

The rules of B allow us to prove
Fass (N#(ra(miz, t{maz/w))) N < (No(t{mazfw]))™,
so that the goal can be reduced to the equivalent
Tz, (M*(732))™" Fass (N*(t{maz/w}))™".

But this can be obtained from the inductional assumption by invoking rule sub

substituting 732 for w, and by the properties of a notion of constraint. s

11 ‘218077 xeT jo seqny [e2i8or] o} uoiRIXY jureljsuo]) :Z1—¢ andig

rule derived typing of extracted term
vI CkaVe M AZF Az t: 1= M|
Troo M Az, zF M)
VE Vo.M b5 M{t/z) A,272MI o M|
Abt:r AFi:rT
E M{t/z} ¥ 3z. M A, 2MUE (2 2) 7 x [M]
T AVttt AFt:r
3E Iz.MFs N A, z7M - t{mzfz}{xz [y} : |N] y fresh
MFp. N A,z yMIE ¢ |N|
ol MEs OM A, M ((]2): 9 x |M]
oM OOMbp OM A, 20X XM L (o, 5002 @ 1y 2, Taaz) 1 O X | M|
OF I,OMF, ON A, 7,2V XM | (12, t{maz[w]}) : Q° x |N]| w fresh
I'MEAN Az, w12 [N|
¢ Py, ... ik ba td A,zll,...,z,}!-t:l
¢l7---v¢k ’-A ¢
Natind TraVy. M A,z & natrec(a, \y. Mw.t) : N = | M|
TFa M{0/y} T,MFa, M{succy/y} Azta: M Ay zwMEt: M|
Listind TraVy. M A,z k- listrec(a, Az. dy. Mw. t) : 7* = | M|

Fta M{{]/y} T.MFa., M{z:y/y}

Azha: Ml A, z,y,z,wME t: M|

1307 xeq g sa3deqy

89

Chapter 3. Lax Logic 69

The extraction process has been hard-wired for the particular notion of con-
straint (02°,[), @). For an arbitrary notion of constraint (C,1, +) one simply

replaces the definition of the constraint type of formulae OM by
loM| £ ¢ x M|

and the translation of the rules OI, OM,OF in Figure 3-12 as follows

MEp, OM A, MU (1,2): C x | M|
OOM ¥y OM A, zCHCxM) b (72 312, %9m22) : C x |M]

IOM k4 ON A7, 2CMIE (2 t{xpz/w)) : C x |1v|wfmh
T,M¥F, N Az, wMF ¢ |N]|

The correctness theorems 3.2.1, 3.2.2 then carry over to the general case.

I,OM ks ON t
T,OM¥. OON . T,OM,00N FaON ™
T iFaoN F CoNT oMF, oN? "_',': P °":
OON b, ON __ \weak: - wed
___~A__o M

A,z b (myma(miz, H{mz/w}) @7y (mz, t{mz/w}) , mame(miz, t{732/w}))
Az zF (mz,t{mz/w)) AZz,yF (mmy@my, xary)
Azwht Ay, z,zF (mmy @y, mry)
A,y F (mimy @my , xamay)

Figure 3-13: Derivation of OL from OF, OM and Extracted Constraint Term

Now let us look at a simple exa-mmple. In Figure 3-13 the upper part depicts
a derivation of rule OL from rules OF and OM, rule cut, and a number of ap-
plications of the structural rules perm, weak. In the lower part the corresponding
constraint term is constructed. The types of the terms and variables have been

omitted to reduce the size of the tree. Given that

Chapter 3. Lax Logic 70

w has type |M|
2z hastype |OM]=Q"x[M|
y has type |JOON|=Q* x (2* x |[N|)
one may convince oneself that the types can be filled in so that every step in the

construction is a valid (derived) typing, and that the resulting constraint term
(mima(mz, t{mz/w}) @ xy (w2, t{maz/w} , ®ams(m12,t{m22/w}))

is well-formed of type |ON| = Q* x |N| with free variables in A, Z,z whenever ¢
is well-formed of type |[ON| with free variables in A, Z,w. We can now bring into
play the equality axioms for projections and pairing to simplify the constraint

term somewhat, viz. we can prove

Fag: (mm(miz,t{mz/w}) @my(m 2, t{mz/w} , nama(mz,t{maz{w}))
= (mt{mzfw} @myz , mt{maz/w}).
We may sum up all this by saying that the translation of rule

IOME, ON

I,ME5, ON oL

for extracting the constraint term is given by

Az, 2V XMy (t{rz/w) @mz , mat{mz/w)): Q° x |N|
A, 7,0 F 0 % [N w fresh.

We may add this translation for OL to Figure 3-12 and preserve the second half

of Theorem 3.2.2 since it holds that from every derivation of
T#z, M*w by 30 ON*t
can be obtained a derivation of
I*z,(OM)*z b (ON) (mit{mzfw) @ mz, wyt{mz/w})

where the type information is now suppressed. This follows from the proof of

Theorem 3.2.2 and the construction of the constraint term.

Chapter 3. Lax Logic n

Another important derived rule for which we need constraint extraction is the

equality substitution rule

r "A M{S/I}
Thads=,1t) Tta M{t/z

} Subst

The algorithm for deriving this rule for all instances of formula M is implicit in the
proof of lemma 3.1.14. If this construction was made explicit and the constraint
terms evaluated as above for OL, then one would find that modulo provable
equality of constraint terms all the cases can be subsumed by the following typing

rule:

AZF b: M|
Azba:1l AzFb:|M]

Thus, substitution of equals for equals in a formula does not change the constraint

term. This typing rule henceforth shall be regarded as the translation of Subst

into constraint terms.

3.2.1 Application of Constraint Extraction

Let us now discuss some examples for the kind of use that we are going to make
of constraint extraction, based on the particular notion of constraint (2*,[], @).
This section is a summary of the technical issues involved in the application

examples of Chapter 4.

For the purpose of this section we will focus on universal quantification V as
the major connector to formulate specifications. A behavioural specification in
the base logic of a piece of hardware, so let us assume, is a proposition of the
form VyP.1. The variable y might range over the possible values of an input
signal, B being the type of signal values, and y might express some property of
the output produced by the piece of hardware in response to the input signal.

For simplicity assume we are dealing with single input circuits.

Suppose, as in Chapter 2, we wanted to organize formal verification in a top-

down fashion, i.e. to break down the initial specification into sub-specifications

Chapter 3. Lax Logic A 72

and verify that provided we can find correct implementations for all the sub-
specifications composing the implementations in some suitable way results in a
circuit that satisfies the initial specification. The point is that this step can
already be verified before the sub-specifications are implemented. Formally, this
verification step, or refinement as it is sometimes called, amounts to proving a

proposition of the form

(V21 ¢y A+ AVzo $) D Vy. 9 (3.8)

where n counts the number of subcomponents. For example, if the factorial
function is to be built from an incrementor subcomponent, the refinement would

read

Vzy.inc(z1) = suce(z1) D Vy.fac{y+1) =(y+1)- fac(y)

Given (3.8) is proven the remaining task is to find implementations satisfying
the sub-specifications Vz;. ¢;. But because these sub-specifications have been
formulated before it is decided how they should be implemented, in particular,
they cannot be expected to allow for all possible input constraints. In fact, it
appears more realistic to assume, as we will do here, that specifications do not
take into account input constraints at all. In other words, it will happen that the

implementations do not exactly satisfy the sub-specifications, but instead
Vzi. % D ¢

where the 7;, i = 1,...,n are certain sufficiently strong input constraints. If
this is the case we are in bad shape with our top-down verification since then
all the previous refinement steps must be verified again: the fact that (3.8) is
true has become worthless. For instance, if the incrementor is implemented over

bit-vectors, it will come with an overflow constraint v = z;, < 2¥ to satisfy

Vzi.m D inc(z1) = suce(z)).

The problem can be avoided by formulating the refinement statement in lax

Chapter 3. Lax Logic 73
logic, more specifically replacing (3.8) by
(V1. Oudy A+ - AVZ,. Ougp) D Vy. O

where the modal © is put in to anticipate the input constraints +;. To simplify

the situation even more consider a refinement goal
M = (Vz°. Oup) DVYP. O

for a single subcomponent, where ¢ and 3 are well-formed propositions such that
z° is the only free variable of ¢ and y° is the only free variable of ¢. Medifying

the example above, for instance, yields such a formula, viz.
Vz. Oinc(z) = suce(z)) O Vy.O(fac{y+1) =y +1) - fac(y)).

From now on, let us look at the general case. We will see that from a proof of

M, i.e. a derivation of
F (Yz9.0ud) D VyP. Oy (3.9)

we can extract a constraint transforming function F such that if Vz. ¢ holds under

some input constraint v then Vy. ¥ holds under input constraint F7, i.e.
F (V2% 7D ¢) DV . (Fy) D¢ (3.10)

is derivable. Then no matter what input constraint v has to be introduced even-
tually in sub-specification Vz. ¢ in order to make it implementable the refinement
verification does not need to be redone. The refinement (3.10) as the translated
version of (3.9) works for all v; it guarantees that there is always a constraint F'y

for the specification Vy. ¢ of the composite circuit.

Here is how (3.10) can be obtained through constraint extraction: The con-
straint type of M can readily be computed from the definition given in the pre-

vious Section 3.2:

(M| = |(Vz®. Ouwp) D Vy°. O]

Chapter 3. Lax Logic 74

V2. O] = V. Oup|

(o = [Owg]) = (B = [O)
(=" x[id]) = (8= Q" x 1]
(a=>0x1)=(B=>0"x1)

1}

As to the constraint predicate M* one computes

F M*t = ((Vzo. Oup) D Yyb. Oup)*t
= V2 (V2o Oug)tz O (VP Owp)*(tz2)
= V207K (xo (Oud)*(22)) D VP (Owp)*(tzy)
= V20 (V22 (69)* ma(z2))) O W ()" (maltzy))™
= Voo (Yo gmis)) 5 vy gmltw)

This means by Lemma 3.2.2 that every derivation of (3.9) induces a constraint

term
ti{a=>0"x1)= (=0 x1)

and a proof of - M*t, i.e. a derivation of
b V202X (g, gnlas)) 5 gy ymits),

This is a universally quantified proposition and we may specialize 2z to any well-
formed term of type @ = 1* x 1. For instance, we can let z be the term
Az*.([7], #), where v is any proposition with z as free variable. With a little

equality reasoning we obtain a derivation of
F (Vz®.y D ¢) D V°. P (802 (ble)v) 3.11)

This proposition has almost the required form (3.10) except that the constraint
w1 (t(Az®. ([v],*))y) in general is a list of more than one proposition. But this can
be repaired using the natural map I : Q* = N with the property ¢ & (Mc) D 9.
This map was defined in Section 3.1.2. If we put Fv to be

Fy L nm(t(a (1), 9)w)

Chapter 3. Lax Logic 75

then it is not difficult to prove (3.10) from (3.11). This completes the discussion
of this rather abstract example of constraint extraction. More concrete examples

will be discussed later in Chapter 4 (e.g. in Section 4.1.4).

Another way of using constraint extraction that will be important for our
purposes can be explained by considering (3.10). Since v in (3.10) is completely

arbitrary, we may choose v = ¢ in particular, so that (3.10) becomes
F(vz".¢ D ¢) > (W'.(F¢) D)

where F'¢ = N(x(t(Az°. ([¢],*))y)). But now the antecedent of the outermost

O has become trivially provable, whence this is equivalent to
F Yy (F¢) D ¢. (3.12)

Compare this with the original goal (3.9): formally, we have turned a derivation

of

e

FOOVy.Oup where @ = Vz*. Oup (3.13)

into a derivation of

11

FYy.0 D¢ where 0 = F4§. (3.14)

Besides translating a proof in £ into a proof in B, we have managed to get rid of
the antecedent © in exchange for replacing the modal < in the succedent Vy*. Owp
by the constraint @. If we ignore the modal © and the embedding operator ¢ for
a moment, then what happens is that © D Vy. is replaced by Vy.0 D ¢. Of
course, © D Vy. is always equivalent to Vy.© D 1 by the property of predicate :
logic®. However, the important observation here is that § has y as a free variable
and may thus depend on variable y while ©, coming from outside of the scope
of the quantification, cannot depend on y. In other words we have transformed

the global assumption © into a (local) assumption @ that depends on the local

variable y.

Sup to renaming of the bound variable y

Chapter 3. Lax Logic 7%

What is the intuition behind this? © = Vz. Ouéis a generalization of Oué over
all z of which, in a proof of the implication © D Vy?. Oy, only a certain number
of special instances Orp{a/z} will actually be referred to in general. All other
cases are not strictly necessary in the proof. In the extreme case the proof might
not depend on any instance, whence the assumption © would not be necessary
at all. This information basically is recorded in the extracted constraint term ¢
which is the main constituent of 8. Different derivations of (3.13) will produce

different constraint terms ¢, and hence different local assumptions 8.

Let us demonstrate for a simple case that in the passage from (3.13) to (3.14),
6 in fact reproduces the special instances of Oup that are used in the derivation
(3.13). In order to get hold of specific constraint terms ¢ we must further specialize

the example. Suppose; proposition ¥ is

b L o(si/a} v 6if/2)

where f, and f; are two well-formed terms of type a with y? being their only free
variable. For the following abbreviate ¢{fi/z} by ¢{fi}, and similarly ¢{f;/z}
by ¢{f.}. For this particular choice of ¢ we can give two different proofs of

(3.13). If we ignore the O and ¢ operators, then the goal is to prove

(Vz.¢) D Vy.¢{fi} v ¢{f/}

The succedent (of D) claims that ¢ holds of at least one of two particular instances
while the antecedent postulates that it is true of all instances. Depending on
which of the cases in the succedent is picked we get two different proofs of the
goal. These proofs, with Os and ¢s put back in, are depicted as a single derivation
tree in the upper part of Figure 3-14.

Both derivations are identical except for the subtrees starting with rule cut.
The subtrees are parameterized in the index i € {I,r} of f;. For i = [the
derivation in the right subtree proves the disjunction ¢{f;} v ¢{f.} from its
left disjunct ¢{fi} and for ¢ = r from its right disjunct ¢{f,}. In both cases
the disjunct is inferred from the global assumption Vz.Oué by specializing it

Chapter 3. Lax Logic 77

F (V2o Ouw) D V. Oud{fi} V 8{F.}) SI
Vze. Oup F VP Ou(d{fi} V ¢{f)) VI
Vzo. O by Oug{fi} V 1S))

Vz*. 0ug b, Oipl /i) V2" Oud, O i)} Fy OUBTIT Y SN
e B S OV ™
ssum. B}V, (S f}V LD

IALILTIIANE

F Az My (2 fi), *)
zF dy. (m(z f), *)
A A\)iLE) h
2k (milz fi)®) * frea v fresh
y,zaaﬂ'xl FzJf; y,z,vF (nv, *)
yFfita g o™ TF (my,s)
v, w F*

w fresh

Figure 3-14: A Simple Application of Constraint Extraction

appropriately. This is done in the left subtree. Thus, this example exhibits a
very simple case of two proofs of (3.13) which differ in the instances of the global
assumption © = Vz. Cug they make use of.

The lower part of Figure 3-14 shows the translation for extracting the cor-
responding constraint terms. Again it is parameterized in i € {I,r} and also all

typing information is omitted. We find that we get the constraint terms
=iz Ay (m(z fi),*) i€ {lr}
both well-formed of type (¢ = 0 x1) = (B = Q° x 1) where z is a fresh
variable of type a = 0* x 1. For these terms the local assumption 0 of (3.14)
specializes to
b = Fi¢ = N(m((Az. Ay. (m(z £), #))(Az". ([¢}, *))v))

which in turn can be simplified as follows

Py 0i = O(m((Az. dy. (m(2 £i),$)) A" ([¢],))y))

Chapter 3. Lax Logic 8

= N(m(Ay. (m((Az°. ([],#) £), $)9))
= N(m(my((Az". (8], #)) £), +))

= N(my(xy([${£i}]: %), %))

=n{g{f:}]

= ¢{fi} A true

= ¢{f}

using equality axioms for product, function, and list types, and the properties of

M. To sum up we find that the two £-derivations of

b (Vz2. Ou) D VyP. Oud{fi} V #{S-])

are transformed into a B-derivation of

Fvyf (S} D (BlAYV (S} iedllr)

It can be seen that the local constraints ; are in fact different for the two deriva-
tions and that they reproduce that particular instance of the global assumption
that is used in the proof. This confirms that the local assumptions 8;, as promised,

precisely capture to what extent the proof depends on the global assumption
Vzo. O,

What might this be good for? It provides a mechanism for discharging any
global hypothesis of form Vz. O14 by translating a proof from £ into B. It recovers
from the hypothesis only those bits that were actually used in the proof and puts
them back into the local context. This mechanism is in its most general form

when applied to the particular hypothesijs®
let’s-not-bother L V2, Oz

In the course of a proof that is done in the context of this hypothesis we obvi-

ously can solve any subgoal Ouy no matter what 7 is. The result may be viewed

§The name of this formula was suggested by Rod Burstall

Chapter 3. Lax Logic 79

as an incomplete proof in which at certain points ‘holes’ have been left by re-
ferring to let’s-not-bother. Whenever we decide to do so the global hypothesis
let’s-not-bother can be discharged by constraint extraction as explained, replac-
ing all Os within the formula proven by certain local assumptions. It can be
expected from the discussion above that this roughly results in all the individual
subgoals, which have been left ‘unsolved’ using let’s-not-bother, popping up in
their appropriate contexts. The crucial property of let’s-not-bother making this

work is that is has a distinguished constraint term

e

?

Mz ([z], %)
of type |let’s-not-bother| = 0 = (2* x 1) that ‘solves’ it in the sense that

o~

let’s-not-bother®* ? = true

becomes trivially provable.

There are several situations when it is convenient to consider such incomplete
proofs (or rather: complete proof under hypothesis let’s-not—bothcr)'ndequate
first approximations of a proper proof of some theorem, and which therefore
should be available for use in other derivations. Firstly, at the one extreme the
unsolved subgoal may be inconsistent. This does not preclude, however, that the
incomplete proof constructed has done some useful job. Often parts of the proof
do not depend on this inconsistent subgoal at all or merely on a specialization
of it which may well be consistent. Secondly, the subgoal is consistent but is
not provable (or at least no proof is known) in the present context. This leaves
the possibility that it may later become provable when this incomplete proof is
used in a different context. Finally, at the other extreme the assumption may
be provable but simply is considered less important at the present stage and
consequently its proof, distracting from the main objective, better is delayed
until later. In Chapter 4 it will be demonstrated that each of these cases does
indeed arise in practical examples of hardware verification (e.g. in Sections 4.1.1,

4.1.3).

Chapter 3. Lax Logic 80

A concluding note: Although the distinguished formula let’s-not-bother has
the potential to prove, within £, any proposition of B, it does not produce a con-
tradiction. We recall that the hypothesis V2z%. Oz is consistent in £ (¢f. Theorem

3.1.20), while of course (Vz%.z) = false in B is inconsistent.

3.3 Natural Deduction Proofs and Constraint
Extraction

We have chosen to present lax logic in sequent style since we feel that this is the
most adequate and concise way for formally defining predicate logics. However,
for the presentation of concrete application examples it will be more convenient
to construct the relevant proofs in natural deduction rather than sequent style.
On the one hand this yields much more compact proofs which is important if they
are to fit on a single page or less. On the other hand the process of constraint
extraction can be explained as a simple mapping from natural deduction proof
trees into A-terms, in fact, the proof tree itself is the extracted constraint term, -

except that some information is thrown away.

It will be assumed that the reader is familiar with natural deduction proofs in
ordinary predicate logic (e.g. [Pra65]) and with the relationship between natural
deduction and sequent style presentations. The non-standard aspect of lax logic is
the idea of distinguishing between a base logic and a first-order extension thereof
with embedding operator ¢, and, of course, the modal one-place connective <.

So, we will pay special attention to these aspects only.

In Figure 3-15 the logical rules of lax logic are depicted as natural deduction
rules. Note, the notion of a context of hypothesis and variables is implicit in
natural deduction, so that‘the structural rules have no counterparts. They are
automatically built in by the fact that hypotheses and variables are ubiquitous.

The usual side conditions apply to rules VI, 3E, NatInd, and ListInd. These

are not mentioned in Figure 3-15. The only other rule with a side condition is ¢,

Chapter 3. Lax Logic 81

the two instances of which that we are going to use in the examples are
%L t—'/ic
These rules correspond to the two instances of the inference rule
Py st o p .
by ba
with number of hypotheses k = 0 and k = 1. In applying these rules it is under-
stood that ¢ and ¢ are propositions in the base logic and that ¢;,...,¢x Fa ¥
is actually derivable in the base logic, and that this derivation is given construc-
tively.

Since derivations in the base logic, or proofs of formulae of the shape t¢ in
lax logic, do not contribute to constraint information — the extracted relevant
constraint terms always evaluate to the trivial element * of type 1 — in all of
the examples no derivation in the base logic will ever be formally written out in
detail. Instead we will appeal to the imagination of the reader and simply treat
such proofs as implicit side conditions in every application of rule «. Notice, in

particular, that all equality reasoning is among these proofs.

Another aspect, which would be part of a fully formal proof but will be left
out in the examples, are the typing judgements. For instance, a second premiss
of rules VE; that is not shown in Figure 3-15 is the well-formedness of term ¢,
viz. that ¢ is well-formed of the same type as variable z in the context of (free)

variables that is effective at the point where the rule is applied.

As has been said one of the reasons for introducing a natural deduction presen-
tation of lax logic is that the process of extracting constraint terms can be nicely
explained: If we forget the formulae and only note down the rule names then a
natural deduction tree is nothing but a term of nested rule applications. This
term can be written down in linear notation and then directly transformed into
the constraint term as shown in Figure 3-16. The way to apply this translation

should be obvious.

Chapter 3. Lax Logic 82

Not having formalized the exact relationship between the sequent style pre-
sentation of lax logic of Section 3.1.3 and the natural deduction trees presented
here we cannot, of course, state and prove the equivalence of translating a natural
deduction tree as defined through Figure 3-16 and the extraction of constraint
terms defined in Section 3.2. The natural deduction approach introduced in this
section, therefore, should be regarded merely as a convenient shorthand for pre-
senting the examples in the following Chapter 4. So, rather than proving formal
correctness we contend ourselves with suggesting, via two examples, that reading
a natural deduction tree as a A-term in the way defined here results in exactly the
same well-formed constraint term that one would get if the extraction of Section

3.2 had been applied starting from the corresponding sequent style derivation.

As the first example the derivation of rule OL from OF and OM is chosen.
The sequent style proof was given in Figure 3-13. In natural deduction form this

proof reads as follows:

ON
SON OM

OM ON
it
w:My
The ellipsis --- stands for an arbitrary derivation, named ¢, of ON from M,

OF,

t.e. for the sequent ', M F, ON. This derivation, or natural deduction really is
a parameter to the above tree. The variable w in the tree serves two purposes:
In the natural deduction tree it uniquely identifies the assumption w : M that
is discharged by the application of rule OF,,, discharging being indicated by ..
For the constraint term underlying the tree w is a variable of type |M] of which
M* w may be assumed. It will appear free in the term represented by derivation
t and it is bound (rather: eliminated) by the term forming operation underlying
rule OF,,.

If the proof tree is written out in linear notation we get

OM OF(z,1).

Chapter 3. Lax Logic 83

The rule OF, has a left and a right sub-derivation, represented in the term by
the pair (z,2). The left subiree is already a leaf, i.e. an assumption, so we put in
a variable z in its place. Variable z is free in the term OM OF,(z,t) and because
it is representing the assumption OM it must be of type §1* x |M|. As explained
the right subtree is represented by ¢ with w as a free variable. Now we apply the

translations of Figure 3-16 to this term and obtain

OM OF,(2,1) OM (x 2, t{mz[w})

(mima(m12,t{F3z/w}) Qmy (712, t{x3z/w}),

il

maxa(m 2, t{xaz/w}))

which is exactly the same term as the one extracted from the sequent style
derivation in Figure 3-13. The names for variables z and w, as well as sub-

derivation ¢ were deliberately chosen so as to match Figure 3-13.

The second example takes up the derivation of Figure 3-14. In natural de-

duction style the derivation becomes

F (V. Oug) D Vo Ou(¢{fi} V ¢{Sr]) oI

Vyﬂ' OL(¢{f1}V¢ fr }) 7 iy
Oup{fiY Ve{f)) 7

Oup{fi} delfi} v éifd)
z2:Vz*. Oupy g vip{fi}v

Note, the proof of sequent ¢{f;} F, ¢{fi} V é{f.} contained in the sequent

derivation of Figure 3-14 is not part of the natural deduction tree. As mentioned

OF,
¢

before, the structure of derivations in the base logic is not of interest as far as
the constraint terms are concerned and thus will never be written out in the
examples. Also, it can be seen that the typing y I fi : « is not carried over to

the natural deduction tree. The above tree reads in linear notation:
DI VI, OF (VEs z , tv).

Now we translate it step-by-step into a proper A-term according to Figure 3-16.

We remark that the translations are understood as syntactic identities, so the

Chapter 3. Lax Logic

84

order in which they are applied does not matter.

DIVI, OF,(VEs z , ¢v)

SI VI, OF,(YEy, z , #)
DLV, OF (2 fi , %)
SLVI (xi(z fi), *+)

A2 VI, (mfz fi), *)

Az 0y (m(z2 £i), *).

Comparing this with the lower part of Figure 3-14 one finds again that one

ends up with exactly the same term as the constraint extraction process for the

sequent derivation, Of course the exact syntactic identity depends in this case

on the choice of the bound variables z,y.

Chapter 3. Lax Logic 85

MAN M N

true
w M wav B aAanh

— truel

ﬁ% falseE E.

MVN
N

vi,

N .
MM, N N VEan

oMy z3: My

M{t/z} N

Jz. M
Vel "B LM N

M=)

3E, al,

y:My

W

ml, side condition: ¢1,...,¢sba ¥

_ Mi{t/s} MON N
(s=1) M{sfz] Subst n ok M>N m-F

z: My

ON OM OM ON

oI OF;

OM ON ©OL: M

z: My

Yn. M
M{o/n} M{succn/n}

NatInd, ,

z: My

oMM SN

z: My

vi.M
M{(}/1} M{h:: 11}

ListIndy, ,

z: My

Figure 3-15: Natural Deduction Rules of Lax Logic

Chapter 3. Lax Logic

86

truel
falseE(a)
Al(a,b)

AE(a)

AE.(a)

VIi(a)

vI,(a)

VE;, z,(a, b1, bs)
VI, (a)

VE,(a)

3E,(a, b)
3I,(a)

ay, ..., o)
2l.(a)
SE(a,b)
OL.(a,b)
OlI(a)

OM(a)
"OF.(a,b)
Subst(a,b)
NatInd, .(a, b)
ListIndy -(a,b)

1]

i

]

i}

n

]

i

Ca

(a,b)

x4

T4

[ZX]

€ases, z,(a, by, by)

Az.a

at

b{ma/z}{xa/y}

(ta)

Az.a

ab

(m1(b{xaa/z}) @ ma, 73 (b{r2a/z)}))
(1)

((%1726) @ (m10), 73730)
(mia,b{xsa/z})

b

natrec (a, n. Az. b)
listrec (a, Ah. Al Az. b)

Figure 3-16: Translation of Natural Deduction Trees into Constraint Terms

Chapter 4

Application Examples

With lax logic in place we are now going to demonstrate its use on a number
of verification examples exhibiting different standard abstractions with differ-
ent characteristic constraints. We will put to work the techniques introduced

abstractly in Section 3.2.1 for the particular notion of constraint (2°,[], @).

The exaniples of Section 4.1 are non-trivial in the sense that they involve
induction proofs at least once in each case. Section 4.1 is placed at a higher level
of behavioural abstraction focusing on data abstraction for simple functional
programs. Section 4.2 expands in more detail on an example of synchronous

circuit design with the main abstraction mechanism being timing abstraction.

4.1 Decrementor, Incrementor, and Factorial

The examples presented in this section are the decrementor, incrementor, and
factorial function. Some attention is paid to methodological aspects of designing
these functions using lax logic. The design is structured into the phases mod-
ularization, realization, and composition and in each of these phases constraint
eztraction and constraint analysis may be performed separately. The decremen-
tor essentiz;lly is a decomposition exercise, the incrementor focuses on realization

and finally all of the three phases will be relevant for the factorial example.

87

Chapter 4. Application Examples 88

Incrementor, decrementor and factorial are designed at the abstract level over
the domain of natural numbers. They are modularized into subcomponents via
primitive recursion. For the incrementor, of course, this is trivial. For the decre-
mentor this decomposition proof systema.tica}ly introduces a lower bound as a
constraint on inputs. In the case of the factorial it will be seen how compos-
ing proofs propagates input constraints of subcomponents to a constraint for the
composite design.

Another step in the design of the factorial consists of realizing the incrementor
(a subcomponent for the factorial) at the concrete level of finite bit-vectors which
brings up an upper bound as the input constraint.

Further, incrementor and decrementor implementations will be composed to
obtain the identity function as a simple example of how computations in the
lambda calculus of constraints can serve to simplify constraints. We will observe

that the lower bound “automatically” vanishes through constraint computation.

The associated proofs exhibit three different ways of manipulating constraints.
They are induction proofs over natural numbers and the length of bit-vectors

~ and differ in the way constraints enter and evolve in the course of induction. For
the incrementor (at the concrete level) and decrementor (at the abstract level)
constraints are introduced only in the base case of the induction. In contrast,
the modularization proof for the factorial introduces a fresh constraint at each
induction stage, but does not require a constraint to prove the base case. As
to the way constraints evolve, both the incrementor and factorial pass on the
constraint from one stage to the next after having modified it appropriately,

while in the decrementor example no constraint has to be propagated at all.

A word on presentation: We will allow ourselves to be fairly loose with proofs
and constructions that pertain to the base logic. One one side this is mandatory
to cut down our discussion to a sensible size and to avoid being unreasonably
formalistic. On the other side this is justified by the fact that proofs and proposi-

tions of the base logic are irrelevant as far as the construction and manipulation

Chapter 4. Application Examples 89 .

of constraints is concerned. The base logic, as it were, is blanked by the process of
constraint extraction. Thus, it is only that part of a formal argument that takes
places in (the extension of) lax logic that we need to be rigorous about. Techni-
cally speaking, proofs in the base logic are treated as implicit side conditions on

the embedding rule ¢.

A word on notation: Any small caps Roman letter can serve as a variable,
e.g. i,m, f,z,y, elc. are going to be used as object variables. In contrast com-
posite names like fac and cnt are always meta-variables or abbreviations for {com-
posite) terms. Finally, three different notions of equality are going to occur side-
by-side that should be carefully distinguished: = is meta-logical, i.e. syntactical
identity; = denotes provable equality {an atomic proposition of the base logic
that may represent computational normalization on the primitive type 2); ¢ is

the logical equivalence of propositions, i.e. bi-implication.

4.1.1 Designing the Decrementor

Let us begin by taking up our running example introduced in Section 2.2, which
is a very simple decomposition exercise at the abstract level of natural numbers.
The task is to implement and verify a decrementing function dec : N = N for

natural numbers obeying the lax specification
Vn. Ot (succ(decn) = n). (4.1)

In the following we will pick an approximate implementation for the decrementor
and prove it correct wrt. specification (4.1). It is shown how an input constraint
equivalent to n > 1 can be extracted from the proof by the method of Section
3.2. We point out that it is not ezactly the predicate n 2> 1 that is extracted but
a characteristic function xn>; : N = Q which is better than An.n > 1 in the
sense that it exhibits more computational behaviour. This will be demonstrated

in Section 4.1.2 below.

Chapter 4. Application Examples i 90

Preliminaries
The central data structure are the natural numbers
(N,0: N, succ: N = N)

with recursion operator natrec, i.e. for each type 7, element a of type T and
function f : N = 7 = 7 the term natrec(a, f) : N = 7 can be formed, for which

the equations

natrec(a, f)0 e

f n(natrec(a, f)n)

natrec(a, f) (succn)

hold. Further, we will need the standard induction rule for natural numbers

vaN. M
M{0/n} M{succn/n}

Natlnd, ,

z:My

with the side condition that variable n may not be free in any assumption on
which M{succn/n} depends other than z : M. Recall that z is a label which
uniquely specifies the assumption M discharged by applying rule NatInd, -, while
discharging is indicated by the symbol . When translating this rule into a
constraint term, z : M is read as saying that variable z is of type |M| such that
M*z, or equivalently that z is a constraint term for M. It is important to note
that the induction rule is a rule of lax logic for which constraint extraction is
well-declared, so M may be an arbitrary well-formed formula containing ¢ and
t operators.

At the level of the base logic we will assume the standard natural number
arithmetic, i.e. Peano's axioms as a global theory in which the discussions take

place. The usual convention of writing the natural numbers

4

S succ(suce(0)) 3 = succ(succ(succ(0)))

1 = succ(0) 2

applies.

Chapter 4. Application Examples 91

In this and in the examples to follow we will make use of the fact that the
object language of the base logic is a sufficiently rich lambda calculus, so that
arithmetical operations like addition, multiplication, mod, div, etc. can be de-
fined in the usual way. In order to keep the examples reasonably simple we will
make free use of such operations and their algebraic properties without explic-
itly justifying the assumptions by deriving everything from scratgh. In principle,

however, everything can be nailed down rigorously in the base logic.

Verifying the Decrementor

The decrementor that we are going to verify maps zero back to itself, i.e. it solves

the recursive definition
dec0=0 dec(sucen) =n
It is obtained via primitive recursion as the term
&
dec = natrec(0,n. Az.n)

with n,z variables of type N. A simple proof of specification (4.1} from the

hypothesis let’s-not-bother = Vz. Ouz, i.e. a derivation of the sequent
let’s-not-bother k- Vn. Ou(succ(decn) = n) (4.2)

is given in Figure 4-1. The purpose of hypothesis let’s-not-bother will become

clear below.
¥n. Qi sucq decn) = n)
Oy suce(decd) = 0) VE Oy sucd dec{ sucen)) = succn) zajtlnd,,.,
Vz.Ouz oncc(dec0)=0 L(;ucc(dec(lucc n)) = succ u) .

Figure 4-1: Derivation which Verifies the Decrementor Function

We are interested in that part of the proof where constraint manipulation takes

place. Consequently, Figure 4-1 only shows the derivation in lax logic. The

Chapter 4. Application Examples 92

proof exercises natural induction (rule Nat/nd, ;) with the base case (left subtree)
being derived directly from the hypothesis let’s-not-bother. This is the only choice
possible as the base case amounts to the correctness of the decrementor for input
0 which cannot be obtained in the usual strict sense. In the right subtree, which
amounts to the induction step, rule : depends (side condition) on a subproof in

the base logic of the sequent
Fn succ(dec(sucen)) = sucen

Such a proof can easily be found by induction over n and some equational rea-
soning using the definition of dec. The actual structure of this proof in the base
logic is irrelevant and not given here, although of course a great deal of the veri-
fication is done there. Notice that the induction step does not use the induction
hypothesis Ou(succ(decn) = n) and also does not refer to let’s-not-bother. The
variable y which appears in rule NatInd,, of Figure 4-1 refers to the induction

hypothesis which itself is not written down as an assumption.

Constraint Analysis for the Decrementor

Let us analyze the constraint information contained in the derivation of Figure 4~

1 of sequent (4.2) along the lines set out in Section 3.2.1 of Chapter 3. We
compute constraint types as

Vz. Ouz|

[Vn. Ou(succ(decn) = n)|

Q= (" x1)
N= (9*x1).

Let w in the following be a variable of type 1 = (2* x 1). We expect to extract
a well-formed constraint term D of type N = (2* x 1) with w as its free variable

such that

(Vz. Ouz)*w by (Vn. Ou(suce(decn) = n))* D (4.3)
is derivable in the base logic. Working out the constraint predicates
Vz. z7i(ws)

Vn. (suce(decn) = n)”(D")

(V2. Ce2)*w

it

(Vn. Ousucc{decn) = n))*D

Chapter 4. Application Examples 93

we find that (4.3) means
Vz. 21 b, Vn, (suce(decn) = n)™ (O, (4.4)

Applying the idea of Section 3.2.1 we specialize w to the (closed) term ? =
Az. ([z],*) so that the hypothesis of (4.4) becomes provably equal to Vz.z D 2,
which is trivially provable, and hence (4.4) can be simplified to

F Vn. (suce(decn) = n)®
or, to bring into play function M : * = Q (¢f. Sec. 3.1.2), to the sequent
F Vn.(NC) O succ(decn) =n

where C of type 1° abbreviates the term #;(D{?/w}n). Thus, proposition list
C (or proposition NC), which has n as free variable, is the coustraint on the
input n under which dec satisfies its specification succ{decn) = n. Note that C
is specific to the particular proof of Figure 4-1. A different proof might result
in a different proposition list C. Our plan now is to work out what C looks like
and to verify that it is equivalent to n > 1 which is the constraint we intuitively

expect.

In order to extract the constraint term D from the derivation of Figure 4-1 we
work from the natural deduction proof as explained in Section 3.3 and consider
the derivation as a tree and, in linear notation, a term of rule applications:

Natind,
VEncc(dec0)=0 O_I Na”"dn,y(VEucc(leco)=0w) oI “)

w f
where variable w refers to the hypothesis let’s-not-bother. Constraint term D is

abtained from this as follows (cf. Table 3-16 in Sec. 3.3):

D NatInda o (VE, ucc(decoy=o w , OI ¢)

n

natrec (VE,yec(iecoy=o w , An. Ay. Of o)
natrec (w(succ(dec0) = 0) , An.Ay.([],¢))
natrec (w(succ{dec0) = 0) , An. Ay.([], *))

Chapter 4. Application Examples 94

Now we can evaluate the proposition list C = m(D{?/w}n). For n = 0 we get

C{o/n} = m(D{?/w}0)

x1(natrec (?(suce(dec0) = 0) , n. My.([], *))0)
= m(natrec (([succ(dec0) = 0], +) , M. Ay. ([], +))0)
= m([suce(dec0) = 0], %)

= [succ{dec0) = 0}

where = means provable equality in the base logic. Thus, the constraint C for
the base case n = 0 consists of the base case itself. This is not surprising since
the base case was discharged by resorting to let’s-not-bother, and so no work was
done at all. Removing the hypothesis let’s-not-bother in the way described via
constraint extraction, then, makes the base case pop up again as the constraint.

For n = succk one computes

C{succk/n}

il

m(D{? Jw}(succk))

mi(natrec (2(succ(dec0) = 0) , An. Ay.([], +)) (succk))
= my(natrec(([suce(dec0) = 0),+) , An.Ay.([], *)) (succk))
= m((n. . (1],) k (natrec (([suc{decD) = 0),) ,

An. Ay ([], #)) k)

= 7"1([]'*)
=]

Thus, the constraint list C for all the other (induction) cases is empty which
reflects the fact that the induction step does not refer to let’s-not-bother for
solving subgoals.

The following proposition validates both the extraction process and the proof
as it shows that the extracted constraint predicate fC is essentially what we
would hope for, viz. the weakest input constraint for the chosen implementation

dec:

Proposition 4.1.1 NC = n > 1.

Chapter 4. Application Examples 95

Proof: The proof proceeds by induction on n. For n = 0 one has N(C{0/n}) =
M[succ(dec0) = 0] = M1 = 0] = trueA 1 = 0 which is equivalent to 0 > 1 as both
conditions are false (Peano’s axiom succn # 0 tacitly assumed). For n = succk
one computes M(C{succk/n}) = N[] = true which is equivalent to succk > 1 as

both propositions are true (again Peano’s axioms assumed). - 2

If one wishes to do so, Proposition 4.1.1 now justifies replacing the extracted

constraint term D : N = Q* x 1 by the simpler term
DL an(n21],%
and
(Vz. Ouz)*w b, (Vn. Ousucc(decn) = n))* D'

is still derivable. However, D has the advantage that by simple #-normalization
the constraint (] : 2* results, when it is used for n = succ k, which is more useful
than the constraint {succk > 1] obtained from D'. In other words, the extracted
lambda-term D has potential computational behaviour while the processed D’

does not. An example of how this can be used will be discussed in Section 4.1.2.

* kX

To sum up the constraint encapsulated in the proof of the decrementor defines -
a non-trivial condition only for n = 0. What is going on, basically, is that the
induction skips the base case n = 0 trading it for a constraint, while the induction
step does the main job of verifying from n = 1 onwards. It has been shown that
the constraint extracted by the methods defined in Section 3.2 is equivalent to
the condition n > 1. ,

Notice, the evaluation of the constraint predicate NC carried through above,
for particular closed terms n, is algorithmical, viz. = reasoning basically is un-
folding definitions and = reasoning is applying B-reductions only. The non-
algorithmical part is the creative siep of coming up with the predicate n > 1,

and the induction argument in the proof of Proposition 4.1.1.

Chapter 4. Application Examples 96

4.1.2 Composing Incrementor and Decrementor

In this section we briefly illustrate the point made above that the constraint
predicate MNC extracted for the decrementor, or D{?/w} for that matter, has
computational behaviour, and that this makes it more useful than the ‘canonical’
predicate n > 1 which is nice to look at but also rather rigid. We show that if
- we precompose the decrementor with an ideal incrementor, i.e. the successor

function, to obtain the identity

~[ow = -

then resulting input constraint computes away simply by applying f-equalities

on the constraint term. This substantiates the claim that an operational inter-
pretation of constraint terms can be used to automatically manipulate and even

simplify constraints.

The statement that feeding the output of the successor function into the
decrementor yields — up to possible constraints — the identity, is expressed by

the sequent
Vn.Ou(succ(decn) =n) F Vn.Ou(dec(succn) = n).

The simple derivation of this sequent is presented in Figure 4-2, where the ap-

plication of rule ¢ is justified by assuming the Peano axioms in B.

Vn. O (dec(succn) = n)
O 1 (dec(succn) = n)
Ot (succ(dec(sucen)) = sucen) VE
¥n. O o (succ(decn) = n) fucen

VI,

t(dec(succn) = n) °F .
y : ¢(succ(dec(succn)) = sucen) v

Figure 4-2: Derivation for Composition of Incrementor and Decrementor

From this derivation we extract a well-formed constraint term ct of type

[¥n.O o (dec(sucen) = n)] = N = 0° x 1 with a free variable z of type

Chapter 4. Application Examples 97

[Vn. O (succ(decn) = n)| = N = Q° x 1 such that the sequent
(V. O t(succ(decn) =n))*z F, (¥n.Oc(dec(succn) = n))* ct

is derivable in B, which after expanding the definition of (-)* gives the equivalent

Vn. (succ(decn) = n)" ™+, Vn.(dec(succn) =n)" (etm), (4.5)
Thus, the expression ¢t translates a constraint term z for the decrementor into
a constraint term mi(ctn) for the resulting identity. We want to show that
if we instantiate z by the particular constraint term D{?/w} computed for the
decrementor in the previous section, then the resulting constraint becomes trivial,
i.e.

m (ct{D{?/w}/z}n) = []

and further that this equation is provable just by applying 8-equalities.

The term ¢t is computed from the derivation tree as follows (¢f. Fig. 3-16 in

Sec. 3.3):

ct vi, OFy (VEuun Z, l'y)
VI, OF, (2 (succn), %)

VI, (x1(z (succn)) , *)

I}

1l

An. (my(z (sucen)) , *)

Hence, substituting D{? /w} for z (D is defined in the previous section) gives

7 (ct{D{?/w}/z} n)
= m (An. (m{(D{?/w}) (succn)), *)n)
71 ({(An. (w1 ((natrec (7 (succ(dec0) = 0) , An. Ay.([], *))) (suecn)) , *))n)
= m((An. (7 ((An. Ay. ([], *)) n(natrec(---,---))) , *))n)
= m((n.(xi([], *)*))n)
= m((An.((], *))n)
= m([], %)
= (]

Chapter 4. Application Examples 98

The fourth line is by 8-equality of natrec. The fifth and seventh line by #-equality
for A, and finally sixth and eights line by B-equality for pairing. Notice that all
applications of beta-equality actually are 8-reductions, so that the above chain
of equations would completely be automated by an operational implementation

of the object language of B as an ordinary lambda-calculus.

That the computed term [] in fact is the constraint for the resulting iden-
tity function, viz. a proof in B of Vn.(dec(succn) = n)!!, can be derived from
(4.5) and the result that C = x1(D{?/w} n) is a constraint for the decrementor,

viz. that there is a proof of Vn. (succe(decn) = n)°

4.1.3 Designing the Incrementor

Let us consider another simple verification example which, as far as the business
of constraints is concerned, is different in character from the previous one and
slightly more complex. We set ourselves the task of realizing the abstract succes-
sor function at the concrete level of finite bit-vectors. The resulting combinatory
circuit is an incrementor. In this example the constraint crops in as an overflow
constraint compensating for the imprecision associated with representing natural

numbers by bit-vectors.

Preliminaries

We start by introducing the general setting and the abstraction and realization
mappings connecting up the two levels of data abstraction. Some simplifying
assumptions need to be explained, in particular concerning the formalization of

finite bit-vectors and related operations on bit-vectors.

The type of individual bits will be denoted by B, and, for simplicity, is treated
as the subset {0,1} C N of natural numbers. In practice this means that at

the informal level we may use natural number arithmetic for manipulating bits,

Chapter 4. Application Examples 99

provided we stay within the specified range. It would be more accurate, of course,
to model bits by the type 1 + 1 and to define the usual bit operations such as
exclusive-or (@) or conjunction (A) via constructors and destructor of the sum
type. Anyway, these operations, as we will assume here, are defined equally well
on the subset {0,1} in the obvious way. One can put a @ b = (a + b)mod2 and
aAb=(a-bymod2, for instance.

For modelling bit-vectors, then, we assume for each natural number w : N, a
type BY, elements of which behave like bit lists of length w. Specifically, there is
a unique element [], the empty bit-vecior, of type B?, and an operator :: taking
a single bit b: B and a bit vector v : BY into the vector b :: v of length w + 1.
Just.as for ordinary lists we will write [by-1,...,b:,8)] as an abbreviation for
bo by e by 2)

The formalization of bits and bit-vectors in the base logic deserves some ex-
planation: The base logic as it stands does not have subset types or depen-
dent types, so strictly speaking, there is no subset type B = {0,1} C N or
BY = {v: B* | length of v = w} C B*, and there is no type B*?" depending on
the value of an expression ezpr. Consequently, there are no well-formed formulae
like

VeB. M, vuN.vBT M.

Such formulae, however, can be used in the naive way if understood as abbrevi-

ations for
VeN. (is-bit () > M, VulN.VzN", i(is-bit-vec (w,2)) D M.

where is-bit (c) and is-bit-vec (w, z) are propositions characterizing the subsets
B = {0,1} € N and B* C N“ C N°. In other words, B and BY are mimicked
by the nearest available super-types and the information thereby lost is shifted

into the formulae. Also, for instance, a typing like

wiN, B f:B"Y

Chﬁpter 4. Application Examples 100

must be read as an abbreviation for the composite judgement
wN N R fiNe
is-bit-vec (w+1,z) b, is-bit-vec (w, f).

If this reading is applied systematically, then the elimination rule for universal

quantification in a situation like

VB M k. M{f/z}
wN, 2B | f:BY N B B M wi

really is an abbreviation for the derived rule

V2" (is-bit-vec (w,2)) D M by . M{f/2)
is-bit-vec (w + 1,2) by o is-bit-vec (w, f) wN,zN°, 2N+ M wif
wN, Nk f:N*

We skip here the question of if and under what conditions this simulating of B

and BY is semantically equivalent.

For translating between both levels of the design, abstraction and realization
mappings

ay:B*=>N p,:N=Bv¥

are employed. We follow the convention of representing natural numbers in the

dyadic number system and put

w=1

Auflbu-ts-b] L Y24 (4.6)
. =0

pun L [(ndiv2*)mod2,..., (ndiv2®) mod2]. (4.7)

Note that p,, is a total function truncating naturals in case they are too big to
fit within the space of w bits. We will not be more formal so as to define both
mappings explicitly by definite terms of the object language of lax logic, viz. via

the recursion operators for lists and natural numbers. For the sake of simplicity

Chapter 4. Application Examples 101

we will assume that we are provided with terms for ay,, p,, for which the equations

ol] = 0
aw+l[bw'---sbhb0] = 2'aw[buu---»bll+b0
pon = |]

pusin = nmod?2: py(ndiv2)

are provable in the base logic. Although this may not be an entirely trivial

requirement it does not pose any fundamental problem.

Verifying the Incrementor

The incrementor, as a bit-slice structure, is defined inductively along bit-length
w. To indicate which bit-length we are dealing with w is used as a parameter,

i.e. the w-bit incrementor is going to be a term
Inc, : BY = Bv.
We remind the reader of our explanations of how this typing is to be read in the

absence of dependent types and subset types in the base logic. Inc, will be built

from w half-adders Add: B x B = B x B where

Add(a,b) £ (Sum(a,b), Carry(a, b))
Sum(a,b) L a@b
Carrya,b) £ anb.

A cascade of such one-bit half-adders as shown in Figure 4-3 yields a function

Add, : B* x B = BY characterized by the equations

Addy 41 ([bu, -+ . b0],c0) = [8,...,50)
b = Sum(b,c)
ciyn = Carry(h;,ci)

or, more compactly by

Addyy1(bo b, o) = Sum(bo,co) :: Addy(b, Carrifby, co)).

Chapter 4. Application Examples 102

bu-1 by bo
a] |
) 1 1
Carry | gqq|-b Add Addp— Add -0
t 1 I 1
S ¥ ¥ " Ad
o By h b o

Figure 4-3: w-Bit Realization of Successor

It will be useful also to define a trivial 0-bit Adder Addy : B x B = BY, viz.
Addo([],c0) = [}

The incrementor is now obtained by specializing the carry input of Add, to
value 1, i.e.
Incyb £ Add,(b,1)
for w > 0. Again, in order not to complicate things unnecessarily we do not
want to be more formal and define the incrementor as some definite term in the
object language of lax logic, e.g. via some explicit cascading combinator. We
simply assume that Add,, is some specific term for which the equations above are

provable in the base logic.

The verification goal expressing that Ine, correctly realizes the successor op-

eration is
V. ¥aN. Ou((ay o Inc, opy)n = succn), (4.8)

where ay, py being the abstraction and realization mappings, and o is the (as-
sociative) composition combinator fog = Az. f(gz). Exploiting the fact that
these mappings are defined by recursion on bit-length w the proof will proceed

by natural induction on w.

Derivation 1 The abstraction of the w-bit incrementor Ine,, satisfies the specifi-

cation of the abstract incrementor under the hypothesis let’s-not-bother = Vz. Oz

Chapter 4. Application Examples 103
for all w in N, i.e. there is a derivation of the sequent

let’s-not-bother Y™, ¥nN, Ou(ay o Incy 0 pu) n = sucen)

The global structure of the derivation, at the heart of which lies induction over

w, is depicted in Figure 4-4.

Yuw¥n. Ou{aye Incy 2 pu) # = sucen)
(P)

Vw.Yn.Ve.Qulay(Addy(pyn,c)) = n +¢) NatIndyz
VaVe.Ouaws1(Adduii(puwirn,c)) =0+ ¢)

see below (P)
z: YaVe.Oulay(Addy(pyn,c)) =n+¢) v

Vn.Ve.Olap(Addy(pa n,¢)) = n + ¢) VI
Ve.Oulao(Addg(pon,c)) = n +¢) vI "
Ouao(Addo(pom,c)) =n +¢) o ©
V2. Oz N

e

ag(Addg(pon,c))=n+c¢

Figure 4-4: Global Structure of Derivation 1

The sub-derivation called (P,) is reducing the goal to the slightly more general
property
Yw.Yn.Ve. Ou(ay(Addy(pu n,c)) =n +c).

It says that Add, is a ‘stoppable’ incrementor, viz. that it is incrementing if
control input ¢ has value 1, and otherwise (¢ = 0) is passing on the input value

to the output. Sub-derivation (P,), written out in Figure 4-5, essentially applies

Chapter 4. Application Examples 104
the substitution rule Subst twice, the equations exploited being

sucen = n+1

a,(Add,(pun,1)).

(awelncyopu)n

The proofs of both equations in the base logic are not difficult to establish. The

rest of sub-derivation (P,) is fairly simple and does not need to be explained.

Yw.Vn. Ou({ay ° Incy ¢ pw) n = succn) Subst
t(succn =n+1) . Yw.¥n. O(awe Inc,epy)n=n+1) V; i
- w

Vn. O(awe Incyopu)n=n+1) VI
Ou(awo Incyop)n=n+1) "

U(awe Incy o pu) 1 = au(Addu(pum 1))

Subst

see below

Oau(Add,(pun,1)) =n+1) VE
Ve.Oulay(Addy(pyn,¢)) =n +c)

VaVe.Oulay(Add,(pyn,¢)) = n + ¢) ';’E

z: Yu¥nVe.Orlay(Addy(pun,e)) =n+c)

1

Figure 4-5: Sub-Derivation (P;)

The more interesting part of Figure 4-4 is the induction consisting of rule
Natlnd,, ;. The left subtree of rule Natlnd, . is the base case of the induction,
the right subtree is the induction step, which is abbreviated in Figure 4-4 by
(P).

Just like in the case of the decrementor the base case is dealt with by using
the global hypothesis let’s-not-bother. It is here where a constraint is introduced
into the proof. The subgoal that is solved using let's-not-bother instantiated with
the equation v g ao{Addy(pon,c)) = n + ¢, which by definition of a, Add and
p is equivalent to 0 = n + c. Although the condition 0 = n + ¢ is satisfiable, if
it is universally quantified over n and ¢, it is inconsistent with Peano arithmetic.

1In this sense the situation is the same as with the decrementor: The base case

Chapter 4. Application Examples 105

without O and ¢ is inconsistent (so it is not provable) but in lax logic it can be

proven from the consistent hypothesis let’s-not-bother.

The induction step, viz. sub-derivation (P;), is shown in Figure 4-6. The
fact that induction works, of course, owes to the regular bit-slice structure of the
incrementor; it reduces the verification problem of the w-bit incrementor to the
verification of a single 2-bit half-adder. Not surprisingly, as will be seen below, the
correctness constraint for the w-bit incrementor constructed with the lax proof of
Figure 4-4 essentially originates with a constraint for the 2-bit half-adder. The
invariant, or property, of the half-adder driving the proof (side condition, or ‘side

proof’ implicit in rule ¢ of Figure 4-6) is the law!
a+tb=(a®b)+2-(aAbd). (4.9)

From this it is easy to see that a + b= a @ b iffa A b = 0. Hence, the condition
aAb = 0 characterizes precisely how far the half-adder fails to implement addition,
and consequently embodies the germ for the overflow constraint generated by the

induction proof. We will be a little bit more precise about this below.

Va.Ve.Ou awr(Addy41(Pui1 me)) =n+¢) VI
VC.OL(&W.'.l(Addw,,.l(pw.,.] n, C)) =n+ c) VI "
Oy awt1(Addys1(Pusrnic)) =ntec) " ° OF,

Howt1(Adduy1(pus1 0 €)= 0 +) .
t(au(Addy(pu(n div2),nmod2Ac)) =ndiv2+ (nmod2Ac)) v

see below V'

Ouay(Add,(pu(ndiv2),nmod2Ac)) = ndiv2 + (nmod2 A ¢c))
Ye.Qu(aw(Add,(pu(n div2),c)) = ndiv2 +c) VE. 4
Vn.VC.OL(aW(Addw(pw n, C)) =n+ c) n divl

VEvumdzAc

Figure 4-6: Step Case of Induction, Sub-Derivation (B;)

! Another fundamental law exploited is 2-(n div2) + (n mod 2) = n.

Chapter 4. Application Examples 106

Constraint Analysis for the Incrementor

Let us now, in all detail, work out the overflow constraint for the incrementor

from Derivation 1,

Vz. Ouz b Yw. VYn, Ouf(ay o Incy, 0 py,) n = sucen)

presented in Figures 4-4 ~ 4-6. The constraint types of both sides are

Vz. Ouz| D= (N"x1)

N=N= (2 x1).

Vw. ¥n. Ou(awe Incy 0 pu) n = sucen)|

Thus, given a variable v of type @ = (f2* x 1) we expect to extract a constraint

term, say P, of type N = N = (2* x 1) with free variable v such that
(V2. O2)* v F, (Vw.V¥n. Ou(ayo Inc, 0 pu)n = succn))* P

which by definition of constraint predicates is the sequent

V.2 by Voo Vn. ((awe Incy e pu)n = sucen)™ P,

Again, we specialize v to the closed term ? = Xz. ([2], #) with the effect of trivi-

alizing the hypothesis and get

F Yw.Vn. ((ayo Incyopy)n = succn)"(P(?/"}"’"). (4.10)

4

Proposition list C(w,n) 1 (P{?/v}wn) of type *, then, is the overflow

constraint we are after. The whole proof consisting of Figures 4-4 - 4-6 reduced

Chapter 4. Application Examples 107

to its underlying tree of rule applications is:

P : Subst
¢ Vi,
vI,
Subst
[3 VE[

VE,
VE.

P; : Natind, 5

VI, BV,

\ZA Vi,
VE, OF,
v VEn mod 2Ac i
VEnivz ¥
z

where 4 is an abbreviation for the term ag(Addp(pon,c)) = n + c. We can now
apply the equations of Table 3-16 to read off from this natural deduction tree
the constraint term P. We do this in three steps corresponding to the three

sub-terms marked P, P;, P; in the above tree.

Evaluation of P;:

Py VI VI, OFy(VEn mod2acVEndiva 2, ‘V)

An. Ac. OFy(VEn mod2ac VEn div2 2, ¢]I)
SAn. e (WX(VEn mod 2ac VEn div2 z) s b 7’2(VEn mod 2ac VEn diva z))
An. Ae.(my(z(ndiv2)(nmod2 A c)), +)

The last equation holds because ta = * irrespective of the shape of a. Note, P;

is a term with free variable z.

Evaluation of Ps:

Py = Natlndy (VI,VI.VE, v, P;)

Natind,, ;(An. Ac.vy, P)

1]

natrec(An. Ae. vy, Aw. Az. Pp)

1]

natrec(An. Ae. vy, Aw. Az. An. Ae. (71(2(n div2) (n mod2 A c)) , +))

Chapter 4. Application Examples 108

where v = ag(Addy(pon,c)) = n + c. Note, P; is a term with free variable v.
Variable z free in sub-term P; is bound by natrec. The recursion operator natrec
which appears in the term P; reflects the induction used in the proof. It has type
natrec: 7 => (N=>7=>7)=> (N=>7)whereris N=B = (2 x 1).

Evaluation of P:

P

Subst(c , VI, VI, Subst(s , VE,VE,VYE,, P3))

VI VI, VE,YE,VE,, Py
Aw. An.VE,VE,VE, P

Aw. An. Pawnl

1}

Aw. An. (natrec(An. Ae. vy,
Aw. Az, An. Ae. (mi(z (ndiv2) (nmod2 A ¢)) , *)))wnl

Note, P i§ a term of type N = N => (2* x 1) with v as its only free variable.
We are interested in the proposition list C(w,n) = my(P{?/v} wn) which is
thus completely determined by the structure of the correctness proof and the
constraint 4 introduced within this proof. But what does it say? It is far from
obvious that this should be the expected overflow constraint. In fact, the lambda
term obtained for C(w, n) is not very illuminating. The term encodes an inductive

process which can be rephrased as a recursive definition in the following way:

&

Co(0,n,c) 79

Co(w,ndiv2,nmod2 Ac)

&

Co(succw,n,c)

&

C(w,n) 71Co(w,n,1)

Using this recursive definition we may try to give more familiar characterizations
of C(w,n) and Co(w,n,c). Two of such reformulations will be given below.
The first is presenting Co(w,n,c) as an inequation at the abstract level and the
second as an equation one part of which can be interpreted at the level of the
bit-vector realization. Note, Co(w,n,c) is of type * x 1, so it always satisfies

m3Co(w, 7, ¢) = *.

Chapter 4. Application Examples 109

Proposition 4.1.2 The proposition list #,Co(w,n,c) of type Q* has the form
mCo(w,n, c) = [¢] such that p X n+c < 2v.

Proof: The proof is done in an informal way as opposed to a formal derivation
in lax logic. There is, of course, no reason why it could not be formalized in
the base logic, provided proofs of all arithmetical laws used are supplied as well.
In particular the proof will bring into play the following two facts of Peano

arithmetic:

(z+y)div2 = zdiv2+ydiv2+ (zmod2Aymod?2)

<2y 2 zdiv2<y

One proceeds by induction on w. For the base case w = 0 one finds that
7Co(0,n, c) is equal to [ag(Addo(pon, €)) = n + ¢] by definition of ? and 7, so it
has the required form [¢]. The left side of the equation ¢ = ay(Addy(pon,c)) =
n + ¢ can be simplified to 0 by the definition of ap, Addp, and po, so that ¢ is
equivalent to 0 = n +c, which in turn is in fact equivalent to condition n+c¢ < 2°.
For the induction step one notes that Co(succw, n,c) = Co(w, n div2,n mod 2Ac)

and thus by induction hypothesis m;Co(succw, n,c) must have the form [¢] with
Zndiv2+(nmod2Ac) <2,

But with the two laws above we obtain

R

¢ ndiv24+(nmod2Ac) <2

R

ndiv2+cdiv2+ (nmod2Acmod2) < 2¥

R

(n+c)div2<2v

n+c< 2wt

R

The second equivalence is justified as ¢ is an element of B, or rather {0, 1}, hence

cdiv2=0and cmod2=c. s

Proposition 4.1.2 implies that the extracted constraint list C(w, n) = x,Co(w, n, 1)

modulo equivalence of propositions is in fact the expected overflow constraint

Chapter 4. Application Examples 110

n+1 < 2%, i.e. the condition on the abstract input n for which the dyadic rep-
resentation of sucen fits within w bits. Now, since M[¢] = ¢ sequent 4.10 that

we know to hold for C(w, n), viz.
F Y. Vn. ((awo Incy 0 pu) n = sucen)C™) (4.11)
can now be reformulated as
FVw.Va.n+1<2¥ D (ayolncyopy)n = sucen

which is precisely the approximation of the incrementor’s specification that one
would have had to guess if everything had to take place in the base logic alone.
The important point here is that the constraint was constructed systematically

in the course of a derivation in lax logic.

To finish off the incrementor, a second characterization of the constructed
constraint will be given. A closer look suggests that the overflow constraint in
general consist of two parts. Not only the result of the increment operation but
also the input n has to be representable by w bits. It is a particular property
of the incrementing operation that the latter follows from the former, so that
only one condition remains. These two sources for the overflow constraint are
made more explicit by the second characterization which is given next. As a more
important difference it makes use of the possibility of indicating the incrementing
overflow by the carry output of the low-level realization’s most significant half-
adder stage. Now, assuming such a carry-out signal for the w-bit incrementor is

handed out as an extra signal Carry,(b,c), i.e.

e

Carry([],) c

Carryy,,1(bo :: byc) 4 Carry, (b, Carry{bo, c))
the second characterization can be formulated:

Proposition 4.1.3 The propesition list 7,Co(w,n,¢) of type Q" has the form
1,Co(w, 1, c) = [§] such that ¢ = ndiv2” + Carry,(pun,c) = 0.

Chapter 4. Application Examples 111

Proof: As before the proof is by induction on w and only given informally. The
base case is straightforward since 7,Cyo(0,n,c) is provably equal to 0 = n + ¢
(cf. the proof of the previous proposition) and n + ¢ = n div 2% + Carryo(pon, ¢).

The induction step is obtained as follows: We have
Co(succw,n,¢) = Co(w,n div2,n mod 2 A c)
and thus by induction hypothesis #,Co(succw, n,c) is of form [¢] with
¢ = ndiv2div2” + Carryu(pu(ndiv2),nmod2Ac)=0.
From this we compute

(n div2) div 2 + Carryy(pu(n div2),n mod 2 A c)
n div 2“*! + Carry,(pu(n div2), Carry(n mod 2, c))

n div 29t + Carryy41((n mod 2) :: pu(n div2), c)

n div2¥** + Carryy41(pwsi 1, ©).

Since for natural numbers the condition z + y = 0 is equivalent to =0 and

y = 0 this second characterization directly leads to the constraint
ndiv2” =0 A Carryu(pun,1) =0

The left part ensures that the input n fits within w bits and the right that there
is no carry indication if the input is incremented as a bit-vector of length w.
Note that if we put w = 1, i.e. we are looking at a one-stage incrementor, this
second condition becomes Carry(p; r,1) = 0, or equivalently, p;n A1 = 0. This
is precisely the condition for which the half-adder correctly adds input bits ‘p; n’
and ‘1’, i.e. for which Add(pn,1)=p1n+1.

* ¥ %

Chapter 4. Application Examples 112

The reader will notice (cf. Figure 4-4) that induction really is based at w =0
and not at w = 1. In other words, verification is anchored in the ‘zero’-bit in-
crementor rather than in the one-bit incrementor. Also, this is the only place
where a constraint is explicitly introduced into the proof, i.e. where the hypoth-
esis let's-not-bother is used. All the rest of the proof is merely manipulating and
updating this constraint in order to get a constraint for arbitrary bit-length w
and input n. Thus, the constraint really is induced by a constraint for the zero-
bit case and the overflow constraint for the w-bit incrementor is nothing but the
zero-bit case systematically pushed up through the induction. This is exactly the
same situation as with the decrementor example. It is an open question if this
is merely a peculiarity of these specific examples or a more generally occurring

pattern, say for a certain class of abstractions.

4.1.4 Designing the Factorial

As the final example of this section consider the following design task involving
both levels of data abstraction: At the abstract level the factorial is to be de-
signed as a recursive function over natural numbers. The design is composed in
the ideal world of natural number arithmetic using successor and multiplication
as primitive operations®. These primitive operations will be assumed to be re-
alized at a lower level as combinatory algorithms over finite bit-vectors. Since
successor and multiplication (of natural numbers) can only be approximated on
finite bit-vectors, the resulting realization of the factorial will only approximately
be correct with respect to the initial abstract specification. The following will
demonstrate how lax logic may be applied to keep track of and accumulate over-

flow constraints arising from the two subcomponents.

2The term primitive’ means that we are not going to break down these operations themselves

in terms of zero, successor, and primitive recursion.

Chapter 4. Application Examples 113

Preliminaries

We begin by spelling out the design goal. We seek a function term fac: N = N

that satisfies the specification
«(fac0 = 1) A VaN. Oufac(succn) = succn - faén) (4.12)

where the O-operator indicates that the universal quantification may be rela-
tivized to some subset of natural numbers. A proof of this lax specification will

eventually construct a constraint® v : N = £, such that
fac0=1 A VaN.yn O fac(sucen) = sucen - facn

holds. For the design to be described it will be seen that 4 characterizes the
range of naturals for which no overflow occurs in the subcomponents. It will be
useful to single out those parts of a specification that pertain to the base logic,

80 we write

«(Fo(fac)) A VaN. Ou(Fy(fac))

fo=1and Fi(f) L fsucen) =

e

for the factorial’s specification, where Fy(f)

sucen - fn.

The design will go through three phases, called Modularization, Realization,

and Composition, which we briefly outline below.

MODULARIZATION. The factorial fac = a-comp(inc, mul) is decomposed into
an incrementor inc : N = N and a multiplier mul : N x N = N with sub-

specifications

VaN, Oul{ine) I{(inc) incn = succn

vaN.VaN. OcM(mul) M(mul)

el

mul(n;,n3) = n, -ng.

31t will actually be a function of type 1 x (N = (2° x 1)).

Chapter 4. Application Examples 114

It will be verified that given implementations for each of the two sub-specifications,

then their composition satisfies the specification of the factorial, i.e.

Vn. Oul(i) , Yny.Vna. OeM(m) Wi o Fo(a-comp(i, m)))
A VRN, Ou(Fy(a-comp(i, m))).

The composition operator a-comp essentially will be the iteration operator for
natural numbers. Consequently, the central proof technique will be natural in-
duction. Note, specifications for incrementor and multiplier, too, are lax propo-

sitions, i.e. they contain © in order to account for overflow constraints.

REALIZATION. The subcomponents inc and mul need to be realized as opera-
tions Inc, : BY = B" and Mul,, : B x BY = B" over w bits, such that their
abstractions satisfy the postulated abstract specifications. The verification goals

are!

Yw. Vn. Oullay, ° Incy ° py,) Vw. ¥ny. Vng. OeM{ay, e Mul, o (py X pu))

where x stands for the product combinator f x g = Az.(f(myz),g(x2z)). The
realization of the w-bit incrementor Inc,, has been given and proven correct in
Section 4.1.3 already. Using this Inc, and its correctness proof will introduce
a specific overflow constraint into the design of the factorial. As to the other
subcomponent there are many different ways of implementing a w-bit multiplier,
sequential as well as combinational. A detailed verification would be more com-
plicated than for the case of the incrementor while it is essentially of the same
flavour. As it would probably not give new insight into the ways constraints
emerge and accumulate in a proof of lax logic we will not work through a specific
realization, Mul,,, of the multiplier. Instead some reasonable assumptions will be
made about the correctness proof as well as the constraint that it carries, and

the design of the factorial will be completed from there.

4Since Mul, is a function of two arguments we need to use the realization mapping twice,

i.e. we have to precompose it with py, X py.

Chapter 4. Application Examples 115

As the result of the first two phases one obtains two low-level subcompo-
nents Inc,,, Mul, and a proof that if their behaviour is first abstracted and then
composed (at the abstract level) one obtains a behaviour which, under certain
constraints, satisfies the specification of the factorial. More formally, one con-

cludes

F Yw. o Fo(fac,)) A YaN. O Fi(fac,))

where

4

fac, = a-comp(ay o lneyopy, awo Muly e (py X pu)).

Although the design may be considered completed now, for a function (in fact,
a family of functions) has been constructed that satisfies the factorial’s specifi-
cation, this particular function may not be what one is ultimately looking for.
One might prefer first to compose the subcomponents as low-level bit-operations
and then abstract the resulting composite behaviour to yield a realization of the

factorial. This gets us to yet another, third design phase:

COMPOSITION. The task is to decide for a suitable low-level composition oper-

ator r-comp,, and to prove
F V. ¢(Fo(ay o Facy o py)) A YN OuFi(ay e Fac, o py))

where

e

Fac, = r-comp,(Inc,, Mul,).

Fac,, then, is a correct low-level realization of the factorial. The operator
r-comp,, might be a direct realization at the lower level of a-comp from the

abstract level, such that
Vf19. a-comp(awe fopu, auoge (pu X pu)) = aw o r-comp,(f,9) ¢ pu-

Although important, this third phase will be discussed only very briefly.

Chapter 4. Application Examples 116

Decomposing the Factorial

The goal in the modularization phase is to implement the factorial from sub-
components at the abstract level. If the O and ¢ operators are ignored (4.12) is
turned into an ordinary equational specification which may be read as a recursive
definition for fac:
Jun facO =1
| fac(sucen) = succn- facn.
From this one directly obtains a solution for fac in terms of iteration iter and
implementations for successor and multiplication. To this end we anticipate that
a solution for a recursive definition of form®
fun fO
| f(sucen)

is obtained from iteration by

a
h(sucen, fn)

J = m{iterz ((1,a), (suce(m z), hz))).

Now suppose there are functions inc : N = N and mul : (N x N) = N
available which are approzimations of the successor and multiplication operation

in that they satisfy
Vn. Ouline) Vny. Vng OeM(mul).

Trivial solutions, of course, are inc = An.succn and mul = Az. (m1z) - (72z). In

view of what was said above we are lead to put
a-comp(inc, mul) g ma(iterz ((1,1), (inc(my z), mulz))). (4.13)
as the composition operator. The goal for verifying that this is in fact a correct
decomposition of the factorial becomes
VY. Oul(i) , Yny. Vng. OeM(m) b o Fo(a-comp(i, m))) (4.14)
A VnN. Oy Fy(a-comp(i, m)))

5This scheme is not general primitive recursion. It is a special version that admits a spe-

cialized solution.

Chapter 4. Application Examples - 117

where #,m are variables of proper types. Note that it is only for the fact that
inc and mul are going to be approximations of successor and multiplication that
lax logic is needed at all. Otherwise the result would immediately follow from
the general solution of the recursive definitions mentioned above. In fact, this

standard proof basically will be reconstructed in lax logic.
We are now going to prove (4.14) in lax logic. First we introduce two useful

abbreviations:

fac

ent

a-comp(i,m)

m(iterz ((1,1), (i(m1 2),m z)))

e &

Derivation 2 Ifincrementor inc: N = N satisfies the specification Vn. Oul{inc),
then so does cnt{inc/i}{mulfm} : N = N, where mul : N x N = N arbitrary,
i.e. In. Oul(i) i V1. Oul{cnt).

The proof tree is shown in Figure 4-7. It refers implicitly (rules ¢) to two

sub-derivations in the base logic, viz. of the equations
cnt0 = succO0 and cnil(succn) = i(cnin)

which are easily obtained exploiting standard laws for products and recursion
equations for iter. Just like before these computations do not contribute to
the constraint term and therefore can be omitted. The proof employs standard
induction over natural numbers. No special care needs to be taken to account
for the O-operator. The presence of < only influences the proof in a very trivial
way: Removing all instances of O, ¢ and the application of related rules I,
OL, ¢ results in a well-formed proof in the base logic, and we claim there is a
canonical process turning that ordinary proof back into the one in Figure 4-7.
In particular, there is no non-canonical introduction of constraints. Recall that

rule OI introduces the vacuous constraint [].

With Derivation 2 at hand we can demonstrate the modularization proof for

(4.14) as in Figure 4-8. It does not involve induction and refers to two equational

Chapter 4. Application Examples 118

Vn.Ouentn = succn)
Natl
Ouent0 = succ0) O cnf sucen) = suce(sucen)) atlndn.x Subst
1(cnt0 = succ0) . t(cnt(succn) = i(cntn)) . Oui(cntn) = suce(sucen)) uvs
see below
Qu(i(cntn) = succe(sucen)) oL
Oui(entn) = suce(succn)) Subst z : Oucentn = sucen) v
ubs

y: i(entn = succn) v see below

Ou(i(sucen) = succ(sucen))
Va.Ouin = sucen)

VEuccn

Figure 4-7: Proof of Derivation 2
sub-derivations in the base logic which again are not difficult to obtain. Thus,
we can set down

Derivation 3 Given ar incrementor inc : N = N and a multiplier mul :
N x N = N which satisfy their abstract specifications, then their composition
a-comp(inc, mul) satisfies the specification of the factorial, i.e.
Vn. Oul(i) , Vny. Vng OtM(m)
Fim (Fo(a-comp(i,m)) A YnN. OuF;(a-comp(i, m)).

Constraint Analysis for Decomposition
We may now be interested in the constraint handling potential of Derivation 3:

Yn. Oul(i) , Yny. Vng OeM(m) (4.15)
Fim cFo(a-comp(i,m)) A YaN.OuF;(a-comp(i, m))

Chapter 4. Application Examples

119

(fac0 = succ0) A Vn.Oufac(sucen) = (succn) - (facn)) 7
(fac0 = succ0) . Vn.Oufac(sucen) = (sucen) - (facn)) 31
Oufac(sucen) = (succn) - (facn)) =
(fac(sucen) = m(entn, facn)) , o below Subst

Ot(m(cntn, facn) = (succn) - (facn)) oL
Oientn = succn) O(m(cntn, facn) = (succn) - (facn)) S b‘
VYn.Oulentn = sucen) " z:ifcntn = sucen) v see below ubst

Derivation 2

¥n.Ouin = succn)

Oum(sucen , facn) = (sucen) - (facn)) VE
Vng. Oy(m(sucen, ny) = (sucen) - ny) facn

Vm.Vnz.Oc(m(n;, nz) =n;- uz) VEsucc“

Figure 4-8: Proof of Derivation 3

Remember that every ¢ in a lax formula stands for a constraint, or rather a

constraint list of type 2* by which the formula is to be weakened at this point.

The constraint itself is determined by a proof of the formula. In this spirit, the

derivation of (4.15) determines a function that transforms a constraint of the

incrementor (represented by © in the first hypothesis) and a constraint of

the

multiplier (represented by © in the second hypothesis) into a constraint for the -

factorial (represented by © in the assertion). Constraint extraction allows us to

analyze this constraint transforming function. The constraint types of hypotheses

and assertion are

|Vn. Oul(i) |
| Vn;. Vng. O:M(m) |
{ tFo(a-comp(i, m)} A ¥n. OuFy(a-comp(i, m)) |

N=(("x1)
N=N= (2°x1)
1x(N=(Q"x1))

Chapter 4. Application Examples 120

Given a variable u of type N => (2* x 1) and a variable v of type N = N = (Q* x
1) we will extract by the translation process defined in Section 3.2 a constraint

term R of type 1 x (N = (2* x 1)) with free variables i,m, u, v, such that

(Yn. Oul(i))* u , (Vn1.Vng. OtM(m))* v
Fimuo (tFo(a-comp(i,m)) A YaN.OuFR, (a-comp(i,m)))" R

or, after expanding the definition of constraint predicates

V. 1) | Vn;. Yoy M(m)m ™ ™) (4.16)

Fimuy Fola-comp(i,m)) A Vn. Fi(a-comp(i, m))™ "R}

In the sequel the term m,((7,R) n) will be computed and interpreted.

The computation of R works from the natural deduction proof trees of Figures
4-7 and 4-8 of sequent (4.15). Both trees plugged together and reduced to rule

applications are shown below

R:AI
L vI,
“Subst
¢ oL,
VE, Subst
R, : Natind, ;—_VI_?E
ﬂ Subst m
¢t OL, v
Subst z
y VEIICC n
u

The point where we break up this tree into two digestible pieces is indicated with
R,.

Evaluation of R;:

U}

Natindy -(CIe, Subst(s, OL,(Subst(y,YE,yecn 1), 7))
Natlnd..,,(OIL , OLy(VEuccn u, 3))

R,

1l

Chapter 4. Application Examples . 121

= Natlnd, ;(OI+, OL(VE yecn t, 2))
= Natind, o(([], *), OL,(u (succn), z))
= Natlnd, o(([), *), (x1(u (sucen)) @ 112, x2(u (sucen))))

= natrec(([],+), An. dz. (x1(u (sucen)) @ my z, x3(u (sucen))))

This is what we get for R, by directly translating the proof tree. Note, R; has
u as its only free variable. Before we continue to compute R, i.e. the constraint
term for the whole tree, R, will be simplified a bit. Since variable u is of type
N = (22° x 1), the sub-term m3(u (succn)) is of type 1 and hence we can prove

x2(u (succn)) = . This, for a start, gives
Ry = natrec(([),*), An. Az. (#1(u (succn)) @ =z, #)).

Further, the recursion combinator natrec has type (ax (N >a= a))=>N=a
with, in this case, @ = 2* x 1. The component of type 1 is redundant so that
the recursion can further be simplified by removing the construction of * which
is merely carried through the recursion as a dummy. Exploiting the canonical

isomorphism
x1 =9
it can be proven by induction that
m(Rin) = natrec([], In. Az. m;1(u (succn))@z)n

where now a = Q° and z has type Q* (in contrast to Q°* x 1 before). Note,
72(Ry n) has type 1 whence m2(Ry n) = +. One immediately obtains an intuitive

picture of what is going on when my(Ry n) is evaluated for the first few n:

n(R0) = [}
m(Ry (succ0)) = my(u(succ0))@[]

71(Ry (suce (succ0)) 71 (u (suce(succ0))) @7y (u (succ0)) @[]

Chapter 4. Application Examples 122

Thus, for any given natural number n, the constraint list (R, n) is obtained by
accumulating the constraint lists u k with k = 1,...,n into a single list.

So much for the analysis of R;. We will be able to simplify x;(R; n) further
when the concrete input constraint of the incrementor will be plugged in for
variable u. (Remember that u stands for a proof of the formula Vn. Oul(i), the

specification of the incrementor.)

Evaluation of R:

R AI(e, VI, Subst(e, OL (VE, Ry, Subst{%,YVEfscn VE sucen v))))

AI(t, VI OLo(VEq By , YEfoen VE sucen)

M(x, VI, OL.(R1n, v(succn)(facn)))

(+, An.(m(By n) @ my(v (sucen) (facn)) , w(Ry m)))
= (%, An.(m(Ry n) @ x1(v(succn)(facn)), *))

R has free variables u, v, i, m, the latter two because of fac = a-comp(i, m).

Here, we can return to the point of departure, viz. the sequent (4.16). It
says that for any input constraint u : N = (2" x 1) for the incrementor and
input constraint v : N = N = (01* x 1) for the multiplier, 71 ((xzR}n) : Q°
defines a (sufficient) input constraint for the factorial at input n. Now, the term

m1((w2R) n) can be seen to satisfy
m{(m2R)n) = m(Rin) @ m(v(succn)(facn))

so that we get a direct interpretation of the factorial’s input constraint in terms

of those for incrementor and multiplier:

For a given input n of the factorial, the constraint list for n contains
all the constraints of the incrementor for inputs k = 1,...,n (cf. the
analysis of 7 (R1n) above) and the input constraint for the multiplier

at input pair (sucen, facn).

In particular, if both subcomponents are an ideal incrementor and an ideal mul-

tiplier, as it is the case for inc = An.succn and mul = Az. (mz) - (w22), then

Chapter 4. Application Examples 123

since the constraint lists m,(un) and m;(vnm) are empty® the constraint list

x1{(wR)) for the factorial is empty, too.

Realization

After decomposing the factorial and its specification the next design step consists
of realizing the subcomponents at the lower abstraction level as bit-operations.
For the incrementor this has been done already in Section 4.1.3. There we have
constructed a constraint term C(w,n) of type 2" depending on variables w and
n, where w is the bit-length and n the input to the incrementor, such that by

(4.11)
F V. Vn. Koy o Incy 0 p,)°™™. (4.17)

It was shown that C(w,n) is always a list with one element, C(w,n) = [4],
and that ¢ is equivalent to the condition n + ¢ < 2% (cf. Proposition 4.1.2) and
ndiv2¥ + Carryy(pun,c) = 0 (¢f. Proposition 4.1.3).

To complete the task of realizing the factorial we ought to deal with the
multiplier. However, because of the similarity to the problem of realizing the
incrementor this does not appear to provide any new insights while it is likely
to be an unreasonably excessive exercise in applying the formalism of lax logic.
Therefore, the multiplier will be left to a future software implementation of lax
logic. Of course, the interesting question will be if there one also can do away
with constraints in a similarly canonical way as in the case of the incrementor
and decrementor. Here, it will be simply assumed that there is some function

term Mul, : BY x B => B* and constraint list D(w,n1,n3) : * such that
F Yw. ¥y Yng. M(ay, 0 Mul, o (py X py))PLemma), (4.18)

With the proposition list D(w,n;,n;) being the overflow constraint of the w-
bit multiplier it can probably be shown analogously to the incrementor that

D(w,n;,n3) = [#] such that ¢ = n, - ny < 2.

SOf course, this ought to be verified.

Chapter 4. Application Examples - 124

Now that the decomposition of the factorial and the realization of its sub-
components has been completed we turn to analyzing the achievement in terms
of the constraints accumulated within the obtained correctness proofs. Fix a
particular bit-length w : N. With realizations of both subcomponents at hand
we can now proceed bottom-up and derive the overflow constraint induced if w-
bit incrementor and multiplier are composed to give a w-bit realization of the
factorial

4

fac,: N = N a-comp(ay, o Incy © pu , o Mul, ¢ (pu X pu))-

Specializing variables u, v, i{,m in sequent (4.16) as follows
u = An.(C{w,n), *)
v = g Ang. (D(w,ny,n3), *)
i = ayolncyop,
m = ayoMub,o(py, X pu)
and a little equality reasoning involving f-reduction for products and pairs yields
the sequent v

Yw.Vn. [ay, e Inc, opw)c(w,n) ,

Yw.Vny. Vna. M(a,, o Mul, o (py, X p.,,))D("""""’)
Fw Fo(fac,) A Vn. Fy(fac,)™ (4.19)

where

&

E(w,n) w1((r2R) n)

{An. (C(w,n), *)/u}{An;. Ang. (D(w,ny,7n3), *)/v}

{awe Incy o pu/i}{ow o Muby o (pu X pu)/m}.
Sequent (4.19) contains the information on how the constraints of incrementor
and multiplier are composed to yield the constraint for the factorial. Namely, if

Sequent (4.19) is plugged together with sequents (4.17) and (4.18) one obtains

lw Folfac,) A Vn. Fl(facw)E(""") (4.20)

Chapter 4. Application Examples 125

which proves the correctness of the w-bit factorial under constraint E(w,n) which
really is a list of propositions. We can use the function 1 : Q°* = 2 that conjoins
{A) a list of propositions into a single proposition to transform sequent (4.20)

into the equivalent
b Fo(fac,) A Vn. N E(w,n) D F(fac,)

which says that the proposition NE(w,n) is a sufficient condition on the input
for which the w-bit implementation fac, of the factorial satisfies its abstract
specification. It is remarked again, that E(w,n) is systematically extracted from
the realization proofs for incrementor and multiplier and the decomposition proof
of the factorial. In the following we want to obtain an intuitive characterization

of the input constraint NE(w, n).

With the abbreviation B’y =4 (71(R1 n)){Mn.(C{w,n), *)/u} we compute
E(w,n) = R @ D(w,succn, fac,n).

Hence, NE(w,n) = (NR';) A D{(w, succn, fac, n) by definition of M. So, we are
left with the job of working out the condition MR’y. To this end let us refine the
comments above about list (R, n) to see what the proposition list R’y looks

like. First, we have

R (m(Ry n)){An.(C(w,n), +)/u}

natrec([], An. Az. x((An. (C(w,n), *)) (sucen)) @ z)n

natrec([}, An. Az. C(w, succn) @ z)n.
So, evaluating R, for the first few n makes clear what is going on:

Ri{o/n} = |
R\ {succ0/n} C(w,succ0) @ []
Ri{succ(succ0)/n} = C(w,succ(succ0)) @ C(w,succ0) @ []

Chapter 4. Application Examples 126
For every n > 0 the list R’; contains all propositions C(w, k) for 0 < k < n. For
n = 0 the list is empty. Thus,

NR, & V0<k<nC(wk)

which is verified formally by an induction argument. This can be simplified even
further bearing in mind that in our particular case C{w,n) = n 4+ 1 < 2“ which

exhibits the property that for all n, C(w, succn) implies C(w,n) which means
YO<k<nC(wk) = n21lDC(wn).

Thus we find, modulo equivalence of propositions, that MR', is the same as the

condition n > 1 D C(w,n), and we arrive at the final result
Derivation 4 The w-bit realization of the factorial
Jac, = a-comp(aw o Inc,° py , oy ° Muly, o (py X pu))
satisfies specification
fac,0=0 A Vn.v,n D fac,(succn) = (sucen) - fac,n
where vy 1 is the condition
Yuh 4 (sucen) - (fac,n) <2 An21Dn+1<2%

The first half of 4, n, the condition (succn) - (fac, n) < 2¥, stems from the con-
straint D(w, succn, fac, n) (cf. the assumptions made above about the multiplier

constraint).

Summing up, the essential point of the example is that by using lax logic the
overflow constraint has been systematically accumulated in the verification of the
factorial and that this constraint can be analyzed in a completely independent
step after (lax) correctness is established. Further, no fancy induction principle
involving the O-operator was necessary, ordinary induction over natural numbers

proved to be adequate.

Chapter 4. Application Examples 127

Concrete-Level Composition

Strictly speaking the goal of designing the abstract factorial from bit-level oper-
ations may be considered achieved at this point. It was shown that the function
term

fac,, = a-comp(ay, o Incy o py , @y o Mulyo(py, X pu))
satisfies the specification of the factorial. But as mentioned in the beginning fac,,
might not be exactly what one is looking for. It may be more appropriate to ask
for a concrete-level composition operator r-comp,, such that the abstraction of

the concrete-level function

1113

Fac,, : B¥ = B¥ r-comp,(Ine,, Mul,)

satisfies the specification of the factorial, i.e. one has
. Folaye Fac,op,) A VYn. OtFi(awe Facyopy).

There will be many ways to define such an operator r-comp,, each of which is
encapsulating a different design style. If, for instance, Fac,, is to be interpreted
as a piece of hardware and Inc,, Mul, as combinatory circuits, then the options
range from combinatory to sequential composition and in the latter case further
from synchronous to asynchronous computation. All this is involved enough a

story to be worth being discussed all by itself and beyond the scope of this thesis.

Once r-comp,, is defined one would proceed by showing that r-comp,, is a

correct realization of the abstract composition operator a-comp in the sense that

V9. ayer-comp,(f,9)°pu

= a-comp(awe f°Pu, Ao go(Pu X pu))

which immediately would allow us to deduce F(a, ¢ Fac, ¢ p,) from F(fac,) no
matter what property Fis by simple equality substitution. This is the ideal world.
However, just as Inc, and Mul, are approximative realizations of the abstract

incrementor and multiplier the operator r-comp,, may be a realization of a-comp

Chapter 4. Application Examples 128

only up to certain constraints. If, for instance Inec,, and Mul,, were synchronous
sequential circuits, then the low-level composition results in a correct synchronous
system only under a constraint on the length of the clock phase depending on
delay parameters in both sub-circuits. How these constraints can be accounted
for by using lax logic and by introducing < in the right places is a question that

will have to be answered by future research.

4.2 Example of Synchronous Hardware Design

In this section we take up again the motivating example from Section 2.3 in
designing a synchronous modulo-2 counter. This example differs from the pre-
vious ones fundamentally in that it employs a relational rather than functional
approach for modelling the behaviour of components. Its main purpose, besides
taking a hardware application, is to demonstrate the use of lax logic on a different

description paradigm.

To keep explanations reasonably short we will not mention all details that
would have to be spelled out in a completely formal presentation. Among those
are for instance all definitions that have to do with basic data types such as
integers and booleans. We simply assume that these data types along with their
usual mathematical properties are available in the base logic. We may thus focus

on those parts of the verification that are done within £ proper.

The task, set up in Section 2.3.2, is to find a derivation for

cnt.abs (z,y,2) bz, crtappr(z,y) (4.21)

Chapter 4. Application Examples 129

where here and in the sequel r,y, z are distinct variables of type signal, and

zor_abs (z,z,y) A latch_abs (y,z2)
(Co A Ci(z,y)) D (Y, ta. Ca(ty,13)

D (nezt.abs (t1,t) D y(ta) = z(ta) +y(ta)))
(stablez 6x A stabley bx)

D Vitickt D zt=axt+yt
(one_shot A min_sep §L) D

D Vi, ta.(tick ty A tick t3) D

(next_abs(ty , ta) D g(ta) = d(t1))

next_abs(ly, t3) = ¢, <ty AVt tickt D (ty <t D ;<)

cnt_abs (z,y, 2)

cnt.appr (z,y)

zor.abs (z,y, 2)

latch_abs (d, ¢)

il

where here and in the following ¢,t;,%; are distinct variables of type ini. The
derivation of (4.21) is to be split into a main part that is free of constraints,
and a successive constraint analysis to establish constraints Cq, C1, C; for the
composite device. The first goal is achieved by reformulating zor_abs, latch_abs,

cnt.abs, and ent_apprin £ using O:

OVt. Ozt = zt + yt)

OV, ta. Ou(nextabs (41, t2) D q(ts) = d(ty))
zor.abs’(z,z,y) A latch_abs’(y,z2)

OViy,ts. Ou(next_abs (41, t3) D y(ta) = =(t2) + y(t1))

zor.abs’(z,y,2)
latch_abs’ (d, q)

cnt.abs’(z,y,2)

e e s s

cnt_appr’(z,y)
Syntactically speaking, all constraints are now removed from the formulae and
replaced by ©. Semantically speaking, and this is the crucial idea, a constraint

now is no longer part of the proposition but of the proof. For instance,
OVt Ou(zt =zt + yt) (4.22)

does not give any more information regarding constraints than indicating that
there may be hidden assumptions, namely one for each instance of the O-operator.
It is the proof of (4.22) that actually determines these constraints. In fact, the
constraints depend on from which low-level axioms about the exclusive-or gate the

abstracted proposition (4.22) is derived, and by which abstraction process. Here

Chapter 4. Application Examples 130

zor (cf. 2.3.2) will be used but one might take a more detailed description of the
gate, e.g. with variable delays, and then of course some other constraints would
result. Also, there may be more than one way to verify an abstract behaviour of
a composite device from properties about its components and each may result in

a different constraint.
Synchronous Abstraction of XOR and Latch

In the sequel we will give derivations

¢(zor(z,2,y)) Fay:. zor-abs’(z,z,y)

t(latch (y,clk,z)) V. latch_abs’(y,z2)

and thus establish that and to what extent the exclusive-or and latch are imple-
mentations of the abstract components. In these derivations, which will use the
additional hypothesis let’s-not-bother, actual constraints for the O place-holders

inside zor_abs’ and latch_abs’ will be determined.
We begin with the derivation of
let’s-not-bother, o (zor(z,2,y)) VFoy. zor-abs’(z,z,y)
or, more explicitly, of
let’s-not-bother, L (zor(x,2,y)) Fay, OVEO(yt=at+2t) (4.23)

shown in Figure 4-9. The means for introducing constraints, of course, is the
hypothesis let’s-not-bother which is used twice, namely for hiding the input con-
straint stablexzéx A stablez6x and the sampling constraint tick t. Instead of

using let’s-not-bother we could have worked from the separate hypotheses
Vz,z. Ou(stablex dx A stablezbx) Vt. Ou(tick t)

which is more explicit but results in the same constraints. As can be seen in the

lower part of Figure 4-9, an instance of the ¢-rule is referring to a derivation of

zor(z,2,y), stablex 8x A stablezbx , tickt Fey.0 yt =zt +2t (4.24)

Chapter 4. Application Examples 131

OVL.Ou(yt = zt + 2t)
Vt.Oyt = zt + 2t) OL(slabIez Sx A stablez 6x)
VI, VE
Ouyt = zt + 2t) : let’s-not-bother

steblex by Astablez bx

see below

Ouyt = zt + 21)
1yt = zt + zt) O tick t) VE
t(zor(z,z,y)) p:i(stablexbx Astablezbx)v ¢: L(tlck t) \/ (w) tickt

Figure 4-9: Derivation for Abstracting zor as a Synchronous Device

in B. This is obtained by straightforward first-order reasoning, and really is where
the main verification takes place. All the other proof steps in L, i.e. all the rules
shown in Figure 4-9 except ¢, merely serve to associate the two invocations of
let’s-not-bother, indicated by variable w, with the two occurrences of O. In other
words, they serve to introduce the constraints into the right places. We remark
that the derivation of (4.24) in B has to assume 8x > 0, and the following facts

about integers and associated operations <, —:
Viut—utu=1t Vi.t<t Viu:inbu20D>t—u<t
Let us check that the derivation of (4.23) in £ indeed captures a derivation of

zor(z,2,y) bgy. (stablezbx A stableybx) D
Vi.tickt O yt=xt+ zt

in B in the sense that the constraints are replaced by O and delegated to the
constraint term. To this end we extract from the derivation given above in

Figure 4-9 the constraint term X of type
IOVEOu(yt =zt + 2t)] = 0* x (int = (0 x int))

with a free variable w of type |let’s-not-bother| and v of type |¢ (zor(z, 2,y))| = 1.

Chapter 4. Application Examples 132

We know that for this term the sequent
let’s-not-bother* w, (tzor(z,2,¥))* v Fryauwy (OVLOu(yt=zt+ 2)* X

can be derived in B, or, if we specialize w to ? to trivialize the hypothesis

let’s-not-bother* w, and specialize v to *, the sequent
c(zor(2,2,y))* * Foy. (OVLO(yt =zt + 2t))* (X {7/w}{+/v}).
Unrolling the definition of * and using the equivalence ¢° 2 (Mc) D ¢ yields
. zor(z,z,y) Fzy: N@X{T/wHs/v}) D
Ve (M(my((m X {T/w) {+/v}) 1)) D yt =zt + 2t).

We leave it as an exercise to the reader to compute constraint term X and to

verify

R

stablex 8x A stabley bx (4.25)
tick t. (4.26)

N(m X {2 [w}{+/v})
A(m((ma X {7 /w}{*/v])1))

R

This completes the synchronous abstraction for the zor gate. The other com-

ponent to be abstracted is the latch, for which we can find a derivation of
let’s-not-bother, ¢ (latch (y, clk, 2)) ¥, latch-abs’(y,z)
or, more explicitly, of
let’s-not-bother , ¢ (latch (y, clk, z))

|_y,z Oth,tg. Ot(nezt_abs (tl , tz) »] q(tg) = q(tl)) (4.27)
swallowing the constraints in latch_abs. It is slightly more involved than the one
for zor as, among other things, it requires that there be bounded induction on
int in B. We do not present the derivation here and state only that it contains
the expected constraints. More precisely, the associated constraint term, call it
L, of type

|<>Vt,, t3.01 (nezt_abs (tl yt2) D q(tz) = q(tl))l

= Q" x(int=int= (0 x1))

Chapter 4. Application Examples 133

with free variable w of type |let’s-not-bother| and v of type 1, is such that the

(-)* translation of (4.27) obtains

latch(y, ctk, z) ¥V, (N(x L{?/w}{¢/v})) D Vi1, t2.
(N((maL{? fw}{*/v]})t1 t2)) D nezt.abs(t1, t2) D g(ta) = q(t1)

in B, and further it holds that

N(m L{?/w}{*/v}) = one_shot A min_sep (4.28)
N((w2L{?/w}{*/v}) t1 12) tickt; A tickt,. (4.29)

R

Abstract Verification of the Modulo-2 Counter

As the constraint-free version of (4.21) we now set out to derive the sequent
cnt_abs’ (z,y,2) V2, cntappr’(z,y) (4.30)

which differs from the ideal verification goal (2.4) only in the presence of ¢ and

¢. Now let us introduce the following syntactic abbreviations:

0 L nestabs(ty, ta)

e £ y(ta)=z(ta) +y(tr)
¢ L yt=stta

v L a(ts)=y(n)

With these abbreviations (4.30) translates into the sequent
OVELOLY A OV, 1.00(0 D $) Fuyy OVELE.0u(8 D €) (4.31)

Figure 4-10 shows the complete natural deduction tree for (4.31), where rule ¢

depends on a derivation of ¢{t2/t}, ¥ Fzyst, e, € in B, i.e. of

y(t2) = z(ta) + 2(t2), z(t2) = y(t1) Fagannan ¥(ta) = 2(t2) + y(t1)

which is simple enough. The derivation of (4.31) proves that composing a delay-

Chapter 4. Application Examples 134

OV, 12.0u(8 D ¢)

oL,
OVL.Oup OV, 12.0(0 D ¢)

AE; OF,
(v) OVt.Owp A OV, 12.0u(0 D V) OV, 12.0:(8 D ¥) AE Vi, 83.01(8 D ()
(v i :
see below
Ci(p,q) : V1,82.0:(8 D ¢)
Vt3.0u(0 D ¢€) "
—_—VI,,
Cu6 De) oL
< t g
1$ltalt} | E. Quf D €) oF,

p:ViOWy Quf DY) E @oe .
V3.0l D o) ‘:IE rig{taft} vy s (0D¥) v
gV, 00D Y) v

Figure 4-10: Verification of Correctness for Modulo-2 Counter

free modulo-2 sum and an one-unit delay as in Figure 2-3 yields a stoppable
modulo-2 counter. The reader may convince themselves that the only steps in
this derivation that would not arise in an ideal proof, i.e. one which does not
consider constraints at all, are the occurrences of the OL, OF rules. Further, one
notices, that these extra rules are used in a canonical way, viz. to implement the

derived inference rule

I,OM,...,OM; ks OM
P,Ml,...,Mk |"'A M

OF

which generalizes rule OF. It has the effect that at any point in a derivation the
assertion and an arbitrary number of hypotheses can be prefixed by ©. This is
done twice in Figure 4-10, once in the upper and once in the lower half of the
tree.

The derivation of (4.31) can be called abstract since it is performed with-
out looking at or even manipulating explicit constraints. The ©s only indicate
‘where constraints are to be expected and so intuitively serve as place-holders

for constraints. In manipulating the place-holder instead of real constraints the

Chapter 4. Application Examples 135

derivation is independent of constraints, and yet the associated proof term

&

c OL, (AEiv, OF, (AE, v, VI, ¥I,, OL, (YE,, p,

OF, (VE,YE, q, ¢(r,9)))))

where v refers to the hypothesis of (4.31), retains enough information for extract-
ing the constraints inside cnt_appr’ (z,y) out of those in cnt_abs’ (z,y,z). This
now can be done in a completely separate phase: in the constraint analysis phase.

First, we translate C into a constraint term applying the translation of Fig-

ure 3-16:

C = OL,(mv, OF, (730, M. M2. OL, (pty, OF, (gt1 tz, ¥))))
OLy, (mv, OF, (mv, Ay. At2. OL, (pta, (mi(gts ta), #))))
OLy (119, OF, (mav, My Ma. (mi(mi(gt 12),) @ my(pta), 72(pta))))
OLy (v, (m(mav), Ay. Ma. (ma(mi((ma(m20)) 1 2) , #)@mi(pta),
m(pt2))))
(ma(m3(m29), Ay My (ma(ma(ma(m20)) b £2) , *) @ my((ma(ma))ta)
m((m2(mv)) t2))) @ m(miv) , ma(m(mav),
My My (my(my (ra(m20)) 1 £2) , #) @y (ma(myv)) ta)

m3((ma(m1v)) ta))))

This term partly can be ‘evaluated’ via 8-equalities to obtain

C = (m(mv) @m(mv), Ay My (xo((72(m20)) 81 t2) @ m{(xa(miv)) t2)

my((wam1v) ta))).

By the correctness theorems of constraint extraction we know that C is a term
of type 0 x (int = int = (Q* x 1)) if v free variable of type (* x (int =
(£2* x 1))) x (2" x (int = int = (Q° x 1))) such that the sequent

(cntabs’(z,y,2))* v Foysw (cntappr’(z,y))* C

Chapter 4. Application Examples 136

is derivable in B. With a little massaging, this sequent can be shown to be

equivalent to

s OVt(mt) D¢ A
S DViLta(tts) DO DY ks
(& A &) D ViLta.(mtaApaty) D0 De (4.32)

where A = z,y, 2,6, 62,1, 72 with &, 8, variables of type §2, vy variable of type
int = €1, and 7, variable of type int = int = 1. The proof of this, which
is entirely straightforward, is omitted. It uses the definition of (-)*, the above
evaluation of C, and the equivalence g} = Ny, ..., M) D ¢ ZnA- A% D
¢fork=1and k=2 '

So, what we have got from working in the extracted constraint term C into
the abstract sequent (4.31) is a modification (4.32) that tells us how any set of
constraints for subcomponents can be translated into constraints for the compos-
ite circuit. More precisely, if 6, and 4, are constraints on the input and sampling
times for latch, respectively, and 8;, v, such constraints for latch, then & A §; and
T iz Ay 1 t; are sufficient constraints on the inputs and sampling times, respec-
tively, for the modulo-2 counter. Note, the computation of constraints is captured
completely within C, the translation of (4.31) into (4.32) only establishes that

the translation, and thus C, has the required properties.

It is important to realize that if we had had to confine reasoning to the
base logic, then the sequent (4.32) is the best we could have achieved in order
to be constraint-independent. However, deriving (4.32) directly would require
us to mess around with the ‘abstract’ constraints 6,62,71,72 and to throw in
extra proof steps to deal with them. In contrast, using lax logic and constraint
extraction the sequent (4.32) was obtained, up to equivalence, in a completely

automatic fashion from a natural and constraint-free proof.

Chapter 4. Application Examples 137

Concrete-Level Composition of the Counter

The abstract verification that composition of delay-free modulo-2 sum and one-
unit delay satisfies the specification of a modulo-2 counter has been achieved

through the derivation of
cnt.abs’(2,y,2) ko4, cntappr’(z,y). (4.33)
Further, the derivations of

let’s-not-bother , ¢ (zor(z,2,y)) Fiy. zor.abs’(z,z,y) (4.34)
let’s-not-bother, ¢ (latch (y, clk,z)) V., latch_abs’(y,z) (4.35)

witness that in a synchronous environment zor and latch may be regarded as
implementations of the corresponding abstract components delay-free modulo-
2 sum and one-unit delay. From these three parts (4.33), (4.34), and (4.35)
we extracted the constraint terms C, X, L, respectively. Residing inside X and
L, through the reference to hypothesis let’s-not-bother, are certain behavioural
constraints which record assumptions about the environment of the components
under which their abstraction is possible. The constraint term C contains the
information of how these constraints are to be composed to obtain the constraints
for the modulo-2 counter, which is captured by the sequent (4.32) formally.

Now we may put pieces together and prove that in a synchronous environment
the composition of concrete-level compenents zor and latch can be regarded as
an implementation of the abstract modulo-2 counter. This comes down to a

derivation of

let’s-not-bother , ¢ (zor (z,2,y)) A ¢(latch (y, clk, z))

by cnt_appr’(z,y) (4.36)

which is obtained easily by composing (4.33), (4.34), and (4.35) in £ as shown
in Figure 4-11 The hypothesis let’s-not-bother on which derivations (4.34) and

(4.35) depend is not shown in Figure 4-11. Let us now examine the constraints

Chapter 4. Application Examples 138

ent_appr’(z,y)
(4.33)

ent_abs’(z,9,2) Al
zor.abs’(z,z2,y) latch_abs’ (y, 2)

(4.34) (4.35)

t(zor(z,2,9)) AE & (Iatch(! y), clk, 2)) AE,
u

¢ (zor(z, z,y)) A ¢ (latch(y, clk, z)) (u)

Figure 4-11: Low-Level Implementation of Modulo-2 Counter

residing in the derivation of Figure 4-11. As the associated constraint term,

called I, we obtain:

I

l

C{A (X{AE ufv}, L{AE, u/v})/v}
C{(X{mu/v}, L{mu/v})/v}

I has a free variable u of type |¢(zor (z,2,¥)) A t(latch (y,clk,2))l =1 x 1,

and variable w of type |let’s-not-bother| which is free in sub-terms X and L. By

correctness of constraint extraction we conclude that the sequent
(let’s-not-bother)* w, (¢ (zor(z,2,y)) A ¢(latch (y, clk, 2)))* u
Feyewau (cntappr’(z,y))* 1
is derivable in B. If we specialize w to ? and u to (*,*), then it can be shown
that this sequent simplifies to become
zor(z,z,y) A latch(y, clk, z)
Foge N{(mX{?/w}{+/v})@(mL{?/wH{+/v})) >
Vir, ta. N (ma((ra X {7/ wH{*/v}) ta) @ mi((ma L{?/wH{mu/v}) i ts)) D
0 De
Thus, using the equivalences (4.25), (4.26), (4.28), (4.29), the input constraint

for the modulo-2 counter is

A((mX{?/w}{*/v}) @(mL{?/w}{*/v}))

Chapter 4. Application Examples 139

= one.shot A min_sepby A stablex bx A stabley éx

and the sampling constraint is

N (m((m2X {?/w}{*/v}) t2) @ mi((m L{? Jw}{mau/v}) t1 ta))
= tickty A tickty A tick 3.

This shows that the constraint term I has in fact collected together the con-

straints for zor and latch. The reader is invited to compare this with sequent

(4.32).

Chapter 5

"Some Meta-Theory for Lax
Logic

In Section 5.1 we investigate what properties the notion of constraint is to have
if it is to serve as a Kripke-style semantics for the modal operator ©, or in
other words: to what extent it is justifiable to call ¢ a ‘modal’ operator in the
standard Kripke sense. In Section 5.2 a category theoretical interpretation of lax
logic is presented that provides a more semantical explanation of the constraint

extraction process and of its correctness.

5.1 On Kripke Semantics for ¢

Our aim in this section is to analyze, in terms of ordinary Kripke-étyle semantics,
the intuitive reading according to which OM means ‘under some constraint’,
M. We naively assume the constraints form a set C, equipped with a binary
accessibility relation R that is used as a Kripke frame on which ‘truth’ of formulae

is decided.

As a simple start let us focus on the following propositional modal logic:

Formulae M are generated by the grammar
Mu=¢ |OM | MAM

140

Chapter 5. Some Meta-Theory for Lax Logic 141

where ¢ stands for an atomic sentence. We assume that there are at least two

distinct atomic sentences. A sequent is of the form
M, .. . M+M

where M;, ¢ = 1,...,k, and M are formulae. The inference rules are OI, OF,
OM, AE,, AE,, Al, and the structural rules id, weak, perm, and cut of Figure
3-1.

According to classical Kripke semantics a truth valuation on a frame C is
given by a function V that associates with every atomic sentence ¢ a subset
V(¢) C C, viz. the set of constraints under which ¢ is deemed to hold. Such a
triple C = (C, R, V) is called a Kripke model. A formula M then is valid at a
constraint ¢ in model C, written C,c |z M, if M is of shape

e ¢ and.c€ V(4)
o ON and there exists an a, cRa, such that C,a = N
¢ NAK and both C,a = N and C,a | K.

A formula M is valid in model C, written C |= M, if for all constraints ¢ € C,
one has C,c | M.

The notion of validity is lifted to sequents and rules in the obvious way: A
sequent M,,..., M, F M is velid in model C if for all constraints ¢, whenever all
hypotheses M;, i =1,...,k, are valid at ¢ in C, then the assertion M is valid at
cinC.

Finally, a rule is said to be valid in a class of models if whenever all premisses
of the rule are valid in each model of the class, then the conclusion of the rule is

valid in each model of the class.

Given these definitions we may now ask what conditions on a frame must be
imposed in order for the rules ©I, OM and OF to be valid in the class of models

based on this frame.

Chapter 5. Some Meta-Theory for Lax Logic 142

Lemma 5.1.1 Let (C,R) be a fized frame and let M be the class of models
(C,R,V) where V is an arbitrary valuation on R.

¢ Rule OI is valid in M iff R is reflezive
¢ Rule OM is valid in M iff R is transitive

¢ Rule OF is valid in M iff R is discrete, i.c. for all ¢,d € C, if cRd, then

c=d.

Proof: The first two statements concerning OI and OM are well-known,
¢f. [CheB0] for instance. The interesting case is rule OF; let T' = ¢, M = ¢,
and N = ¢ A ¢, where ¢, are arbitrary, but distinct atomic sentences. Thus,

the instance of OF that we are looking at is

6, 0P F O(gA¢)
" OF
dpF oAY
It is easy to check that the premiss is valid in all models, so for OF to be valid
in M we must have that the sequent
6P F O(pAy)
is valid in all models (C,R,V) in M. The valuation V in the sense defined
may send both sentences @, to arbitrary subsets 4 := V(¢) and B := V(¢)
of C. Unravelling the definition of a sequent being valid shows that in order for
this particular instance to be valid for all valuations the following second-order
condition must be met:
VA,BC C.VceC.
c€A&(JyeC.cRy&kye€ B)
= JyecC.cRy&kyecAd&yecB
This condition now implies that R is discrete. Namely, if a,b € C are given,
specialize A = {a} and B = {b} for which the condition becomes
Vee C.c€{a} & (Iye C.cRy&y e {b})
= JyeC.cRy&ye€ {a} &ye {b) (5.1)

Chapter 5. Some Meta-Theory for Lax Logic 143

which is equivalent to aRb = a = b. Thus, discreteness of R is necessary for the
validity of OF. That it is also a sufficient condition is seen as follows: If R is
discrete, then, for every valuation, a formula M is valid at ¢ iff OM is valid at
c. Thus, the meaning of o collapses and both sides of the rule bar in OF have

the same semantical meaning,. |

Since we want to stick to rule OF, Lemma 5.1.1 means that the classical notion
of valuation is not feasible for our purposes. Validity of OF forces the accessibility
relation of a constraint frame (C, R) to degenerate. This is unfortunate as R then
cannot be used to model a non-trivial relationship between constraints, and the

meaning of ¢ as a modal operator becomes vacuous.

From the proof of the lemma it is clear that the reason of this lies in the
fact that the classical notion of valuation allows truth values V(¢) of atomic
sentences to be arbitrary subsets of C that do not need to bear any relation to
R. In contrast, an intuitionistic notion of truth would require the sets V(¢) to be
hereditary, i.e. if c € V(¢) and cRd, then d € V(g). Arbitrary elements a,b € C
can no longer be fully determined by truth values of propositions. Thus, in the
proof of Lemma 5.1.1 it would not be possible to choose for A, B the singleton

sets {a}, {b} but only sets
A={z|aRz} B={z|bRz}
say, so that in place of (5.1) we get

Vc € C. aRc & (3y € C.cRy & bRy)
= Jye€ C.cRy & aRy & bRy

which is trivially satisfied whenever R is transitive.

In fact, the intuitionistic notion of valuation appears quite natural in our
setting if accessibility is taken to express the strength of constraints: cRd if d is

stronger than c. Then, if the strength of c is reflected by the class Q. = {¢ |

Chapter 5. Some Meta-Theory for Lax Logic 144

¢ € V(¢)} of atomic sentences that are true ‘under constraint’ ¢, one naturally

arrives at the condition cRd = §2, C 4, or, cRd& c € V(¢) = d € V(¢).

From this discussion it appears that a Kripke style semantic for our modal
operator O may be possible for an intuitionistic notion of valuation based on
constraint frames with reflexive and transitive accessibility relation. Indeed, it
will be seen that at least for the closed propositional fragment of £ all our rules

can be justified, under an intuitionistic interpretation, on non-degenerate frames.

First we need to make a few definitions. The fragment of £ that we are going

to investigate, denoted by Lo, has as well-formed formulae
Mu=wp | OM | MAM | MDOM | MV M | true | false

where ¢ stands for a well-formed closed proposition of B. The rules of £, are
all those of £, as in Figures 3-7 3-9, that pertain to the closed propositional
fragment. In particular, we have rule ¢ in Lo, so that £, contains B as a sub-

logic.
Definition 5.1.2
® A constraint frame is a preordered set (C,C).

o A constraint valuation for B on a constraint frame (C,C) is @ map V
that associates with every well-formed closed proposition ¢ of B an upper
closed subset V(¢) of C, i.e. for all ¢,d € C, such that cT d, if c € V(¢)
then d € V(8). Also, V is to respect entailment of B, i.e. if for closed
1.y Bny we have by,...,da - P, then N, V(g) C V(¥).

o A constraint model for B then is a triple (C,C, V) where (C,C) is a con-

straint frame and V' a constraint valuation for B on (C,C).

The elements of a constraint frame C are called constraints, ranged over by a, b, ¢,

etc. , with @ C b meaning that b is ‘stronger’ than a. In the sequel we will simply

Chapter 5. Some Meta-Theory for Lax Logic 145

talk about constraint models rather than constraint models for B. Constraint
models will be used to interpret formulae of £y by combining the ways Kripke

frames interpret modal and intuitionistic logic.

Definition 5.1.3 Let C = (C,C,V) be a constraint model for B. Given a for-

mula M of Ly and a constraint ¢ € C, we say M is valid at ¢ in C, wrilten

C,cEMiff

e M is of form ON and there exists a constraint a in C with c C a such that
C,aEN

¢ M isip andce V()

o MisNAK and bothC,cEEN andC,cE K

s MisNVK andC,cl=N orCicl= K

o M is true

¢ M is N D K and for all ¢ such that ¢cC a, C,a = N impliesC,a |= K

A formula M is said to be valid in C, written C |= M if for allc € C, M is valid

at c inC; M is valid if M is valid in any constraint model C.

Notice, the definition covers the case M = false: for no C and ¢ we have C,c =
false. Wherever the constraint model C is understood we will simply writec | M
rather than C,c }= M. A first result that we want to have for our notion of validity
is that the modal-free formulae, i.e. those which do not contain O, behave like

in ordinary intuitionistic logic.
Lemma 5.1.4 Let C be a constraint model and M a modal-free formula. If M
is valid in C at some constraint ¢ and ¢ C b, then M is valid at b, too.

Proof: Suppose ¢ | M, and ¢ C b. We prove b |= M by induction on

the structure of M. If M = .¢ then the assumption gives ¢ € V(¢) which

Chapter 5. Some Meta-Theory for Lax Logic 146

implies b € V() by the hereditary property of constraint valuations. Suppose
M = N D> K. We have to show a £ N implies a |= K for all g, b € a. But
this follows from the assumption ¢ = N D K since by transitivity, ¢ C a. The

remaining cases for M are trivial.]

As before we lift the notion of validity to sequences and rules in the following
way: A sequent M,,..., My F M is valid in a constraint model C if for every ¢,
whenever all hypotheses M;, i = 1,...,k, are valid at c in C then the assertion
M is valid at ¢ in C. A rule is valid (in a class of constraint models) if whenever
all premisses of the rule are valid in every constraint model (of the class) then

the conclusion of the rule is valid in every model (of the class).

Lemma 5.1.5 All rules of Lo are valid, where in rules OF and DI the side

condition is imposed that all ‘passive’ hypotheses T’ are modal-free.

Proof: Let a constraint model C be given. We begin with rule OI. We have to
show that for all well-formed M the sequent M F OM is valid in C. To this end
assume a ¢ with C,c |= M. We have to show C,c | OM, i.c. that there exists a
constraint a, ¢ C a such that C,a | M. Simply choose a = ¢ and use reflexivity
of C.

To verify that rule OM is valid in C we assume a ¢ such that C,c | OOM. By
definition this means there are constraints a, b, with ¢C b, bE a and C,a E M.
By transitivity cC a,s0 C,c | OM.

Now consider the rule OF. For it to be valid in C any instance of a se-
quent M, ..., My, OM I ON has to be valid in C under the supposition that
My,...,M,M ¥ N is valid in C. So, let a constraint ¢ be given and assume
C,cEM,i=1,...,k and C,c | OM. The latter condition means there exists
a, ¢ C a, such that C,a |= M. We are done if we can show that also () C,a = M;,
i =1,...,k For then the supposition that M,..., M, M ¥ N is valid can be
used to conclude that C,a = N, whence C,c | ON. Now, because of the side
condition imposed we may assume that all the additional ‘passive’ hypotheses

M; are modal-free. Thus, () follows from Lemma 5.1.4.

Chapter 5. Some Meta-Theory for Lax Logic 147

Rule ¢ is seen to be valid as follows: Suppose in B we have ¢y,...,¢. F ¢.
We have to show that t¢y,...,tds & 19 is valid in C. If ¢ is a constraint, and
C,cl ¢ for all ¢ = 1,...,n, then by definition ¢ € N; V(¢:). By the properties
of valuations then, ¢ € V(3), whence C, ¢ = 3.

The remaining structural rules, and with the exception of DI the rules for
the ordinary propositional connectives are trivial to check. As to DI, it has to
be shown that under the supposition, that M,,..., My, M F N is valid, the
sequent M;,..., My b M D N is valid, too. So, let ¢ be a constraint and assume
C,c | M;, i = 1,...,k. Given the definition of validity for D, it has to be
demonstrated that for all @, ¢ C a, if C,a | M, then C,a |= N. This follows
from the supposition provided we we can show for all i = 1,...,k, C,a = M.
This is the same situation as in proving OF: We know the M; are valid at ¢ and
need to verify they are valid at the stronger constraint a. As before we make use

of the side-condition that all M; are modal-free and invoke Lemma 5.1.4. s

It is possible to show that for arbitrary constraint models the side-condition
in rules OF and DI to the effect that all ‘passive’ hypotheses I' be non-modal
formulae cannot be dropped. In the following the question will be investigated of
what property of the constraint frame is needed to get rid of the side condition.

First observe that the sequent
OFF K>(M>DN)F (KD (OMDON)),

which may be considered a ‘flattened’ version of rule OF where the rule bar has .
been reduced to the turnstile I and the turnstile replaced by implication D, is
valid in every constraint model. To see this let d be a constraint and suppose we
have () d = K D (M D N). We wish to show d |= (X D (OM D ON)), s0
let ¢, d C ¢, such that ¢ |= K, and further b, ¢ C b, with b |= OM, be given. It
suffices to show that also b |= ON. First note that since d C c and ¢ |= K, (»)
obtains (#+) ¢ = M D N. Since b | OM, there must be @, b C a, such that
a |= M. Now by transitivity, c C a, so we can conclude from (++), a = N. But
this means nothing but b = ON. :

Chapter 5. Some Meta-Theory for Lax Logic 148

Note, in OF° the formulae K may be any formula, i.¢. it need not be modal-
free while in OF there is the side condition that all hypotheses in context T’ be
modal-free. This difference, of course, is not contradictory as both versions are
interderivable only by using the rule DI, for which the same restriction applies as
for OF. So, let us analyze the validity of rule DI to see what we can do. Consider

the following special instance of DI

NFirueD N
N trueb N

where N is any well-formed formula {of £p). Certainly, the premiss N, true - N
is valid in every constraint model, hence for this rule to be valid the sequent
N F true O N must be valid in every constraint model C = (C,C, V). Using the

definitions this is seen to be equivalent to
Ve,deC.cCd&ckEN = dEN

which is precisely saying that the set V(N) = {c| ¢ k= N} is hereditary, i.e. upper
closed. Thus, we have found a necessary condition for rule DI to be valid without

side-condition; it is also sufficient as we know from the proof of Lemma 5.1.5.

Lemma 5.1.6 Let M be a class of constraint models. Rule DI without side
condition is valid in M iff for all models C = (C,C,V) in M and all formulae
N, the set V(N) = {c| c|= N} is upper closed wrt. C.

The conclusion from this is that if we want to drop the side-condition on rules
OF and DI we must restrict the class of constraint models to those for which
Lemma 5.1.4 holds for all formulae, not just for the modal-free. If this class again

is to be characterized by a condition on the constraint frame, we end up with

Definition 5.1.7 A constraint frame (C,) is called confluent iff for alld,c,b €
C with d E ¢ and d T b there exists a, such that ¢ C a and b E a. A constraint
model C = (C,C, V) is confluent if its frame is.

Chapter 5. Some Meta-Theory for Lax Logic 149

Lemma 5.1.8 Let (C,C) be a constraint frame. Then, for all formulae M and
all models (C,C, V) based on this frame, i.e. for which V is any valuation in the

sense of Definition 5.1.2, the set
V(M) £ {c|ck M)

is upper closed wrt. C iff (C,C) is confluent.

Proof: For the if part it suffices to amend t;he induction proof of Lemma 5.1.4
by considering formulae of form OM. Assume ¢,b € C, cC b, and ¢ |= OM.
We wish to prove b = OM. From ¢ = OM we get @, ¢ C a with a | M. Since
C confluent we know there exists a d such that both a C d and b C d. The
induction hypothesis now yields d = M, whence b = OM.

For the only-if part of the statement take any closed proposition ¢ of B and
put M = (4. Suppose given three constraints a,b,c such that c C a and ¢ C b.

Define a valuation V4 as follows
Vis(§) =4 {z€ClaCz&éF ¢}
This map satisfies the conditions of valuations, and that it has the property
z€Viy(¢) & aCu

We are going to exploit the assumption that the V(M) are upper closed on the
particular model (C,C, V, 4(#)). More precisely, we use that V, 4(<Otd) is upper
closed. Now, since ¢ € a and a € V,4(#) we have ¢ € V, 4(Cug). This set
is upper closed, so b € V, 4(Oug), whence there must be a d, b C d such that
d € Vo 4(¢¢) = Vo 4(¢). The latter is equivalent by construction to a C d. Thus
we have found a d that is both above a and b, which completes the proof that C

is confluent. L

The following theorem sums up our analysis. It is the central result of this

section.

Chapter 5. Some Meta-Theory for Lax Logic 150

Theorem 5.1.9 (Soundness) Let M be the class of confluent constraint mod-
els. Then, the rules OF and DI are valid (without restriction) in M. Conse-
quently, all derivable sequents in Ly are valid in M. In particular, if for some

formula M, v M is derivable, then C = M for allC in M.

Proof: Rule DI is valid in M by Lemmata 5.1.6 and 5.1.8. Rule OF in its
general form can be derived from sequent OF?, rules DI, DE, and the structural
rules. Since OF°, DE and the structural rules are valid in every constraint model,
OF must be valid in M. Together with Lemma 5.1.5 we find that all rules of Lo

are valid in M. s
Here are a few concrete examples of confluent constraint models:
Example

o Take as constraints C the finite lists [y, . . . , 11] of well-formed closed propo-
sitions and let [yn,...,1] € [6m, ..., 8] if all §; occur among the ;. For

¢=[T,...,m] define

[’Yﬂ)"')’h]ev(¢) < ‘711---1'710._ ¢
These data constitute a confluent constraint model, C..

e A trivial confluent constraint model Cy is given by the one-element pre-
ordered set C = {*}, = C #, with constraint valuation V(¢) = {z |z =
* & F ¢}, i.e. V(@) is the singleton set {*} if ¢ provable in B and the

empty set otherwise. In this model OM is semantically equivalent to M.

e Another simple example, name it C,, is in a way between C, and Co: Take

C = {0,1}, with natural ordering 0 C 0, 0 C 1, and 1 C 1 and valuation
0eV(g) @F¢ 1eV(d) & uté

where u is some fixed proposition of B. This model is linearly ordered and

hence confluent. This model C. is inspired by Curry [Cur52]).

Chapter 5. Some Meta-Theory for Lax Logic 151

o Let (C,1, -} with action ¢, ¢ + ¢° be a notion of constraint for B in the
sense defined in Chapter 3, Definition 3.1.9. Then, (C,C,V) withc¢ E d iff
for all ¢, ¢°+ ¢7 and V(4) = {c | ¢°} is a constraint model. Clearly, C

is a preorder; also, a C a- b and b C a- b, whence L is confluent.

The discussion in this section confirms that it is possible to give a non-trivial
Kripke semantics of © for which the rules of Lo are sound. It has been shown
that this naturally leads to interpret O intuitionistically on a confluent Kripke
frame. '

We point out that Definitions 5.1.2, 5.1.3 are not the only possible way to give
a sound Kripke semantics to £o. For example, it is not mandatory to use a single
frame relation C to interpret both modality © and intuitionistic implication .
A drastic consequence of being thrifty in this way is that every formula OM is
semantically equivalent to the formula —~— M, where ~ abbreviates (-) D false.

In fact, one can verify immediately by checking definitions that
EOM=--M

This means that the semantics of © is not.independent from the connectives
D, false and that it may be too strong to be completely captured by derivability

in Lo. In fact, £; is incomplete:

Theorem 5.1.10 (Incompleteness) Lo is incomplete wrt. the Kripke seman-
tics given by Definitions 5.1.2 and 5.1.9. There is a formula N with C = N for

all constraint models C such that - N cannot be derived in Lq.

Proof: Take the formula N = Ofalse O false. Then, = N but not & N. The
first claim follows by definition of validity. The second claim is a consequence of
Theorem 3.1.19: If the sequent F Ofalse D false were derivable in £q, then, we

must have a derivation of F true D false in L. Contradiction to the consistency

of L. . a

Chapter 5. Some Meta-Theory for Lax Logic 152

5.2 A Category Theoretical Interpretation of
Lax Logic

In this section we present a specific category theoretic interpretation of lax logic.
It provides a semantical reconstruction of the syntactic process of constraint ex-
traction defined in Chapter 3.2, which, for a given notion of constraint, identifies
proofs of O ¢ ¢ with constraints c such that ¢°. This interpretation can be char-

acterized by the identification
Cup = Te. ¢

where I stands for a strong existential quantifier, i.e. one that satisfies, for in-

stance,. choice axioms like

Vz.Se.¢° D 3f.Vz.¢/"

(Zc.¢° D Te.9f) D Bf.Ve ¢t Dyle

which reflect some properties of constraint extraction. Consequently, the recon-
struction we are heading for essentially is a systematic way of extending the base

logic by a strong existential quantifier.

The category theoretical construction of lax logic presented in this section is
carried out in the shape of a hyperdoctrine [Law69,S¢e83,Pit89]. More specifi-
cally, it is shown by categorical construction how any base logic B given as a
hyperdoctrine structure can be extended by first-order primitives, in particular a
strong existential quantifier £. In this extension B is contained via an embedding
¢ that preserves and reflects provability, so that the new logic is a conservative

first-order extension of B.

5.2.1 Base Logic as an Indexed Preorder

We begin with transforming the base logic B into an indexed preorder

B =(T,B:7° — PreOrd)

Chapter 5. Some Meta- Theory for Lax Logic 153

where 7 is a category and B a contravariant {(pseudo-) functor from 7 into the
category PreOrd of preordered sets and order-preserving maps. Note, we are
using the same name B for both the previously introduced syntactic calculus of
the base logic and the indexed category to be constructed below. The translation
will follow closely the traditional Lawvere-style approach of representing pred-
icate logical theories in category theoretical terms [Law69]. More specifically,
category T is the categorical representation of the object language of the base

logic obtained according to the principles

objects = types morphisms = lerms

composition = substitution identities = variables

and the indexed (pseudo-) functor B : 7% — PreOrd representing the logical

calculus of the base logic is obtained from the principles

elements of fibres = propositions with free variables
ordering of fibres = sequents
translation maps between fibres = substitution

where with fibres we mean the preordered sets B[], T object in 7. The fact that
we do not assume that proofs or derivations in the base logic carry information
manifests itself in the fibres being preordered sets rather than arbitrary categories.

Most constructions to follow below, we believe generalize to the case where the
fibres are proper categories.

Notation: If A = zJ,...,z7~ is a context, then we denote the sequence
Tiy..-s7a of types by JJAJl. In the special case where A is the empty context
(), l|A]l is the empty sequence (). Given a well-formed term t with free variables

in A and sequence s = 3y,...3, of well-formed terms of types 71,..., s, We use

the notation t{s/A} to abbreviate the substitution t{s1/21)} - {sn/2n}.

Definition 5.2.1 The indezed preorder B = (T,B : T — PreOrd) is given

by the following data

Chapter 5. Some Meta-Theory for Lax Logic 154

o T is the calegory with objects the finite, possibly emply sequences T =
Ti,...,Tn of types of the base logic; a morphism o — 7, whereo = 0y,...,0m,
and T = Ty,...Ta, is an equivalence class {(A,t)] of a pair, where the first
component A is a context with ||A||= o and the second is a possibly empty
sequence t = t,...,t, of well-formed terms of lypes 11,...,Tn, respectively,

each of which has its free variables in A, i.e.
AFt:n 1=1,...,n,

under the equivalence that identifies (A,t) with (A',t') if t and t' are a-
convertible, i.e. '{AJA'} is syntactically identical to t modulo renaming of

bound variables.

The identity morphism id : T — 7 is the equivalence class [(A, A)] where
A is an arbitrary context such that ||A]|= 7. Composition of @ morphism
[(As8)] : p = 0, 5 = 81,...,8m with morphism [Ayt] : 0 — 7, =
ti,... b, and Ay = y{',...,yom is the equivalence class [(A,,to8)]:p— T

where tos is the sequence
tl{S/Ag} y see gy t"{S/At}.

o Given an object 7 = 7y,...,7, in T, then the fibre Blr] over 7 is the
preordered set with elements the equivalence classes [(A, ¢)] of pairs, where
the first component A is a context with ||Al|= 7 and the second ¢ a well-

formed proposition with free variables in A, i.e.
AF¢:Q,

under the equivalence that identifies [(A, ¢)] and [(A',¢')] if § and ¢' are
a-convertible, i.e. ¢'{AJA’} is syntactically identical to ¢ modulo renaming
of bound variables. Let A, A’ be contexts such that |A)l=||A!||= 7. For
elements [(A, ¢)] and [(A', ¢')] in B(r], the ordering [(A, ¢)] T [(A’, ¢")] is
defined to hold iff the sequent

¢Fa ¢'{a/a"}

Chapter 5. Some Meta-Theory for Lax Logic 155

is derivable in the base logic. Finally, given a morphism [(A'\t)]: 7' = 7
in T, the order-preserving translation B[[(A',t)]] : B[r] — B[r'] is given
by the map

(A, $)] — (A", ${t/AD)].

Notation: Morphisms {(A, t)}in T will be denoted more suggestively by [A |- ¢],
and elements [(A, ¢)] in B{||A]]) by [AF g or [AF ¢: Q).
Remark: It will simplify later definitions considerably to use the fact that any

two morphisms ¢ — 7 in T and also any two elements in B[o] can be normalized

to have a common context A, [|Al|= o, as their free variables. The first example

of such use is Lemma 5.2.2 below.
The indexed preorder B constructed in Definition 5.2.1 is well-defined. More-

over, without assuming any particular properties of the object language, T has

finite products.

Lemma 5.2.2 The category T has finite products. More specifically, the empty
sequence {) of types is terminal object, and the sequence o, T is a product of objects
o and 1 in T; its projections are my = [A,A'+ A] and 73 = [A, A’ F A'] where
A, A’ are arbitrary contexts such that | A||= o and || A')= 7. The pairing of

morphisms [A Vb s]:0 =7 with[AFt]:0— 7 is

{s;t) =g [AF s8] : 027,72

Proof: easy

Definition 5.2.3 Let T = (C,I: C®® — PreOrd) be an indezed preorder. A
congruence = on I is given by two families =.3 and =, of relations indezed in

objects a,b of C such that

Chapter 5. Some Meta-Theory for Lax Logic 156

o =,, is an equivalence relation on the morphisms in C with domain a and
codomain b and =, is an equivalence relation on the elements of the fibre

1[a]

o =, is preserved by composition of morphisms and =, respects the ordering,
ie. if f =y fand g =y g’ then go f =, g'o f', and whenever ¢ =, ¢,
Y=, ¢, and $ C 9, then ¢' C ¢’

e iff Za4 f', then for all objects ¢, ¢' in X[b), if ¢ = ¢', then 1[f]¢ =, I[F')¢
For a congruence = on T the induced quotient of T,
I = (Cz,Iz:(C=)”® — PreOrd)

is defined as follows: C= has as objects the objects of C and as morphismsa — b
the equivalence classes modulo =,, of morphisms f : a — b in C, denoted by
[f] = [flz.,- Composition and identities in Cz are defined qua representatives,
i.e. id, = [ida] and [g]o[f] = [go f]. The fibres I={a] have as elements equivalence
classes modulo =, of elements ¢ in I[a], denoted by [¢] = [@]z.. The ordering
on Ila] is given qua vepresentatives, i.e. [§] T (¢] iff ¢ C ¢. Finally, given a
morphism [f] : « — b in Cx the translation I=[[f]] : Iz[b] — I=[a] is the mapping
[4] ~ [E(114).

Remark: It is easy to check that the constructed quotient T is a well-defined
indexed preorder, in particular that the translation maps I-[[f]] are independent
of the particular choice of the representative f. The notion of a congruence rela-
tion on a category and the induced quotient category is standard. It is extended
here to work for indexed preorders, but only to the extent that it be sufficient
for our purposes. It is not claimed that this definition is helpful in its own right

from a category theoretic point of view.

‘Now we observe that ‘provable equality’ (=) in the base logic can be used to

define a congruence on the indexed preorder B = (7,B : T — PreOrd).

Chapter 5. Some Meta-Theory for Lax Logic 157

Lemma 5.2.4 Let B = (T,B : T°? — PreOrd) be the indezed preorder con-
structed in Defintion 5.2.1. For o and r objects in T define a relation =,, on

the morphtsmis o — 1 an T by
[AF 3] =, [AFT] if Fasi=¢

is derivable in B for all i = 1,...,n where s = 81,...,8, and t = t1,...,1n.

Further, define a relation =, on the elements in B[r] by
[AHg]=[AFy] if Fad=1y

is derivable in B. Then, = is a congruence on the indezed preorder B.

Proof: easy, by the rules of B.

The indexed preorder B, apart from a-conversion, is a purely syntactic object.
However, passing to the quotient B builds in additional identities that tux;n the
base T into a bicartesian! closed category. In order to define this categorical
structure we replace T by the full sub-category 7o generated by single element
lists. This will be justified by the fact that in 7= an object 7y,.. ., 7, is isomorphic

tory X+ x 7.

Notation: In B- we have built two equivalence relations on top of each other.
Morphisms in 7. and elements in B.[o] should be written [[A s]], where
the inner square brackets stand for ; change of context and renaming of bound
variable (i.e. a conversion) and the outer for provable equivalence. In the sequel

both brackets will be merged into one, writing [A F s].

Lemma 5.2.5 Let T - be the quoti'ent induced by the congruence of Lemma 5.2.4
on T. Then, the full sub-category To of T~ generated by single element lists T

is equivalent to T_.

"The term bicariesian here and in the following means ‘cartesian closed and equipped with

finite coproducts’

1
l

Chapter 5. Some Meta-Theory for Lax Logic 158

Proof: An equivalence between categories T¢ and 7= is a pair of functors
F:To— T. and G: T= — T, together with natural isomorphisms FG 2 1 :
T-—T-.and GF 2 1:Ty— Ty. Now T is full sub-category of T, so for F
we take the inclusion functor which is full and faithful. The existence of G and
the natural isomorphisms, then, is equivalent to the condition that each object
T =T,...,7s in T = is isomorphic to some object in Tg. One can show that such
an object is 7 X -+ X 7, where it is understood, say, that x associates to the
right. As one half of the isomorphism 7 — 7, X« - X 7, in T = take the equivalence
class [A F (21,(z2,(... %a))] where A = z]*,..., 2 is a context, and for the
other direction 7, X - -+ X T, — T the equivalence class [z F 7} 2,..., 7" z], where
zis a variable of type 73 X - - - X 7, and #} is the k-th projection 7, X« -+ X 7y — 7%,

k=1,...,n. Formally, n} z for 1 £ k < n can be defined inductively by

1, 1, 1, -
Tz =wp(mz) wMlz=m2z awlz=2

That both maps are mutually inverse is due to equivalence classes being taken
modulo provable equality. Note, the equivalence is independent of the choices of
variables made, and it covers the casen = 1. The casen = 0, i.e. 7 = () is treated
separately: the corresponding object in T is 1. One half of the isomorphism
() ~ 1 is given by [F#] and the other half 1 — () by [z}], where z is a variable
of type 1. .

Now we identify the promised bicartesian structure in 7. It is induced by the
type constructors 1,0, X, +, =>, the associated operations on terms (constructors

and destructors), and equations provable in the base logic.

Lemma 5.2.6 Let category To be as in Lemma 5.2.5. Then, Ty is bicartesian

closed.

Proof: We will only point to the relevant categorical data and omit proving
their universal properties, which comes down to proving certain equations in

the base logic. The construction of syntactic categories from lambda-calculi is

Chapter 5. Some Meta-Theory for Lax Logic 159

well-known, see e.g. [LS86). Recall that objects in T are (single) types o and
morphisms o — 7 are equivalence classes [z {] of well-formed terms t of type
T with (at most) a single variable z of type o as its free variable. Two such

equivalence classes [z | t] and [z | ¢] are identical iff F, ¢ = ¢ is derivable in B.

¢ Terminal object is the type 1. Given an object 7 the unique morphism

1, 17 — 1is the class [z } *] where z is any variable of type 7.

o The product of objects o and 7 is o x 7. The first projection o x 7 — ¢ is
{z F m 2], the second ¢ X 7 — 7 is [z I ;2] where z is any variable of type
o x 7. Given morphisms [z} f]: @ — o and [z F g] : &« — 7, their pairing
is [t (f,9)]: @ = o x 7. The class [z I (f,g)] is invariant under change

of representatives f, g and variable z.

o Initial object is the type 0. Given an object r the unique morphism D, :

0 — 7 is the class [z + Oz where z is any variable of type 0.

¢ The coproduct of objects o and 7 is the type o + 7. The first injection ¢ —
o + 7 is {z F 112] with z variable of type o, the second injection 7 —+ o + 7
is [z F 122] with z variable of type 7. Given morphisms {z i f] : ¢ — a and

lyFg]: 1 — o, their sum is
[zt cases (2, f,9)):o+7 = a

where z is any variable of type o + . The class [z case; (2, f,9)] is

invariant under change of representatives f,g and variable z.

o The exponent of objects ¢ and 7 is the type o = . Evaluation is the class
[zF (mz)(mz)]iox(6=>7)— T

where z is any variable of type o x (¢ = 7). For a morphism [z F f

(a x @) — 1 define its currying as

[zFAy.t{{z,¥)/z}]:a> (e = 1)

Chapter 5. Some Meta-Theory for Lax Logic 160

where z,y arbitrary variables of type a, o, respectively. The equivalence
class [z F Ay.t{(z,y)/z}] does not depend on the particular choice of rep-

resentative t and variables z,y.

Remark: The lemma only states that the required data exists but the proof
actually defines a canonical choice of categorical products, coproducts, etc. Note,
the constructions ate independent of the choices for variables named ‘2’ —or ‘z’,

‘y’ in the case of exponents — so they need not be picked in a canonical way.

Corollary 5.2.7 Let T . be as in Lemma 5.2.5. Then, T - is a bicartesian closed

category.

Proof: Follows from Lemmata 5.2.5, 5.2.6, and the fact that equivalences be-

tween categories preserve limits and colimits. L}

Remark: Since a canonical choice for the bicartesian structure is picked in 7o
the specific equivalence between T and T _ constructed in Lemma 5.2.5 can be
used to lift this choice to T_. The lifted structure in 7= also will be denoted
by the symbols 1,0, X, +,=>. Note, that we have got two different finite product
structures on 7 =: 1 and o x 7 lifted from T as well as () and o, T as identified in
Lemma 5.2.2 on 7 pushed into the quotient 7 _ in the obvious way. Both product
structures are isomorphic but not identical. Since it will sometimes be important
to be clear about which one is meant let us call the first one 7o-products, the
latter T-products. In general, the bicartesian structure induced by T, will be

referred to as the Tg-structure.

We have seen above that the base category T- of B_ is bicartesian closed.
Now we are going to investigate some of the structure that is induced on the
indexed preorder B- by the various properties that we assumed of the syntactic
calculus of the base logic in Chapter 3. First recall the definition of a hyperdoc-
trine [Law69,See83], the categorical equivalent of (first-order) predicate logical

theories.

Chapter 5. Some Meta-Theory for Lax Logic 161
Definition 5.2.8 A hyperdoctrine is an indezed categoryT = (C,X: C® — Cat)
with the following properties

o C has finite products

o for each object a in C the fibre I{a] is bicartesian closed.

o for each morphism t : @ — b in C the translation map Ift] : I[b] — I[a]

preserves the bicartesian closed structure.

o translations along projections have right and left adjoints satisfying the
Beck-Chevalley Condition (for certain pullback squares). More precisely,

for =y :a x b— a first projection in C there are functors
V[mi] : I{a x 8] — I{a] and 3I[m]: X{a x 6] — X[a]

with I[x,] 4 V[m) and 3[m)) 4 I|m;]. The Beck-Chevalley Condition holds
for pullback squares of the form

x
axb—r—g

lt

' '
a XbT’a

t xid

where t : a — a' morphism in C, i.e. we have I[t]oV[m)] 2 V[mj] o I[t x id]

and Ift]) o [m;) = 3[m,] o I[t x id].

Remark: This definition of a hyperdoctine is a little less restrictive than the one
given in [See83] in that Beck-Chevalley needs to hold only for pull-back squares
generated by first projections rather than for all pull-backs as in [See83). These
simplification is adopted for mere convenience and not for technical reasons.

We emphasize that in order to verify the last clause of the definition one may
pick an arbitrary product structure a x b on C that is chosen canonically for each
pair of objects a,b. In particular, it need not be the product of the first clause in

the definition. If it is satisfied for one choice, then it holds for any other, too.

Chapter 5. Some Meta-Theory for Lax Logic 162

Theorem 5.2.9 B- = (T-,B= : T? - PreOrd) is a hyperdoctrine with the

following additional properties
o T is bicartesian closed
e there is a natural family of bijections [r — Q] = B=|r] indezed in objects

T = Ti,...,Tn of T=, where [7 —] denotes the set of all morphisms

T QmT_.

o Translations B[id X ;] along morphisms id x 4 :axo - ax (e +7T)

where ¢1 : 0 — o + 7 15 a first injection have left adjoints
J[id x 11] : Bo[a x 0] = B_|a x (¢ + 7))

which satisfy Beck-Chevalley for pull-back squares of the shape

t xid ,
aXg———————"a XOo

idqu id x4

ax(a+1')—-m——a’x(a+‘r)

with t : « — o arbitrary morphism in T, i.e.

Jlid x 4]B=|t x id] = B[t x id]3[id x 4}

Remark: The additional properties of B= mentioned are crucial for our purposes
and will be used later. The second of these properties, viz. the natural bijection
[r — Q] = B=[r] reflects the higher order nature of the base logic. The last
clause could be strengthened to encompass general quantifiers (i.e. left and right
adjoints to arbitrary translations) but we refrain from doing so since we will only
_ need the particular adjoints 3[id X ¢;]. B= has other properties not mentioned,
like list objects and natural numbers object, which we will not need.

In the following proof of the theorem we will use the 7T-product and Tg-sum

to verify the last condition. But again, this means the condition will be true for

Chapter 5. Some Meta-Theory for Lax Logic 163

any other canonical choice of products and sums. In fact, we will use the last

condition later with the T rather than 7-product.

Proof: We begin with verifying that B. is a hyperdoctrine. That 7~ has finite
products has been proven already. The following will assume the T-products
from Lemma 5.2.2 (also ¢f. the remark following Corollary 5.2.7).

It is to be seen that for each + = 7y,..., 7, in T = the fibre B[] is bicartesian
closed. Recall that the elements in B.[r] are equivalence classes [A F ¢] with
lA||= 7 and ¢ well-formed proposition with free variablesin A, i.e. A F ¢: Q.
Two such classes [A F ¢] and [A - ¢] are equal iff Fa ¢ = ¢ is derivable. The
ordering in B_[r] is such that [A F @] C [A &] iff ¢ b4 ¢ is derivable. Finally,
if [A'"F], t = 4,...,t, is a morphism 7/ — 7 in T, then the translation
B_[[A’F t)][A & ¢) is the element [A' F ¢{t/A}].

Here are the definitions qua representatives that turn B.[r] into a bicartesian

closed category; assuming ¢, 9 are elements in B_[r] and A context with [|A]|= T,

one puts
true [AF true]
(Arelnlary] £ [argny)
fase L [AF false]
ardviary] £ [argvy
(arglofary] £ [argoy)
where
true = V2%z2Dz
dAYp = VP (pD(WD2)) Dz
false = V0.2
dVyY = Vzn.(qSDz)D((t/;:)z)Dz)

The definitions are independent of the choice of representatives ¢, ¥ and context
A, and variable z which must not occur in A. That these operations form a

bicartesian closed preorder is immediate by definition of C and the rules of the

Chapter 5. Some Meta-Theory for Lax Logic 164

base logic. It is also easy to see that the structure is preserved by translations.

It is even preserved on-the-nose, for instance

B_[[a'F)l((at g viak)

B_[[a'Fd([aF ¢V 4]

[A"F (6 V){t/A)]

[A"F ¢{t/Aa} v p{t/al]

[a"F ¢{t/aivIa'F ${t/a}]
(B-(la'Fl[aF ¢)) v (B[[A"F Hl[AaF¥]).

Let wy: 7x7’' — 7 be a first projection, i.e. Tx7' = 7,7/ and 7; = [A, A’ F A,
with A, A’ contexts such that ||A|l= 7 and [|A'||= 7'. We need to define right
and left adjoints ¥[my}, 3[r] of translations B_[m,] : B=[r] — B:[r,7]. Given
[A,A’F ¢) in B_[r,7'] and A’ = z,,...,2,, these are obtained by

V[m]lA, A"F 4]
Ima, A ¢]

[AF V2. .- Vaz,. ¢
[At 3z, 3z, ¢)

where Jz. A = V2%, (Vz.(A D 2)) D z. Again, these definitions are independent
of the choice of representative ¢ (due to ¢-equality for V. Recall that 3 in B is
defined via V.), contexts A, A’, and variable z. V[m} and J[r,] are right and left
adjoints to B-[m], and both satisfy Beck-Chevalley in the strong sense: For a

pull-back diagram
1
MXT—T

[A] F t] X [Ag F Az] (Al [t]

’]
Ty X T2 '——’,n.l 1

with A, = z;,...,, one obtains

AmB=([A1 F 8] x [A2 F Agl[AL, Az + ¢
= 3[m]B=([A:,82F 8, Af}[A3, A3 F ¢]

Chapter 5. Some Meta-Theory for Lax Logic 165

= 3x,)[A), Az & 8{t, A2/ A, Ba))
= Jxflan Azt ¢{t/A1)]

= (A, F 3ry. - 3z (${t/AL})]
= [AyF 3z Jza. @) {t/ALH
= B[k t)|3[m][A}, A ¢

and similarly for V[r{]. This completes the proof that B is a hyperdoctrine.

Next, the additional properties of B- will be dealt with. By Corollary 5.2.7,
7 - is bicartesian closed. That verifies the first property.

For the second property it is to be shown that there is a natural family of
bijections [r — 0] = B=[r] indexed in objects r of T=. This bijection, however,
is trivial since by definition the two sides of = are coextensional, viz. both have
as elements the equivalence classes [A F 1] of well-formed terms of type £ with
free variables in A such that ||AJ}= 7. Naturality amounts to proving that the
diagram

[r— 9 = B
hv ho[AF 1] |B=[{Al-t]]
[= 0] & Br]

commutes for all [A F 2} : 7 — 7' in T . But this is trivial again since both maps
h— ho[AF] and B.[[A } t]] are coextensional by definition.

Finally, we need left adjoints for translation along idx ¢, : axo = ax(o+7) .
where ¢; : 0 — o + 7 is a first injection. Here a, 0,7 are objects in T, i.e. a =
..., 0 0 =0,,...,0, and T = 74,...,7,. Further, as the coproduct o + 7
of o and 7 we take the Tp-sum, i.e. ¢ + 7 is the single-element type sequence

(1% - xa)+(ry X+ X T), and
= [As b ulz,(...,2))10+ 7]

is the first injection, where |A,||=)z1,...,zi|= 0. Since the shape of the term

a(zy, (..., 2} will not matter in the following it is abbreviated by i. The

Chapter 5. Some Meta-Theory for Lax Logic 166

morphism id x ¢y, then, is [{Aq, A, F A, i, where [|AL]|= a and A, disjoint from
A,.
Given an object [Aq4, Ay b @] in B=[a x o], we define the object

id x u)[Bay b F 8] L [AgyztFIzy. - Jari=zA g

where z is a fresh variable of type o + 7 that does not occur in A,,A,. The
definition is independent of the choice of representative ¢ — because of {-equality
for V — and contexts A,, A,. That Jfid x ¢] is left adjoint to B_[id x ¢;] now
follows from the properties of 3 and = in B. It is a functor, i.e. monotone
function, since

zy. - Jzri=2zA¢ba, Az -z i=2zAYP
dtaLa, ¥

is a derived rule in B, and it is a left adjoint since

Iy, - Fzi=zA¢la,. ¥ @ Fag.a, ¥ii/z}
& Faaa, ¥{i/2} gy, - Jppi=2Adla, . ¥

are derived rules in B. It remains to show that J[id x ¢} satisfies Beck-Chevalley.

To this end suppose [A, 2] is a morphism & — o' and [Aur, A, F $] an object
in B=[a’ x o). We have to show that

3lid x u]B_[t x id)[Aan A, F ¢ = B[t x id]3[id x 4)[Bar, A, F 6]

holds in B_[a x (¢ + 7)]. If both sides are computed using the definitions one

obtains
[Aa,z b Fzq. -+ Fzi i = 2 A (${t/A0})]
2 Ay zF (Fzy.---3z1.i = 2 A){t]/Au)]
which is certainly true, in fact, the equivalence is an identity. .

5.2.2 Lax Logic as Indexed Category
From the indexed preorder B- we now construct a new indexed category

DB. = (T.,DB.:T% - Cat)

Chapter 5. Some Meta-Theory for Lax Logic 167

in which we plan to interpret lax logic eventually. Its main aspect is that it will
provide enough structure to interpret the O operator. Note, the fibres DB[r] are
no longer preordered sets but proper categories, so that now proofs carry non-
trivial information. The information we are interested in, of course, is constraint

information.

Definition §.2.10 Let C be a category with finite products and I = (C,1:C” —
PreOrd) be an indezed preorder. The indezed category

DI = (C,DI:C% — Cat)

is defined as follows: Objects of the fibre DI[a] for a in C are pairs (S, ¢) where S
is an object of C and ¢ object in Y[a x S). A morphism (S,4) — (T,) in DI]a)
is @ morphism f:a x S — T inC such that ¢ C I[{m, f}]. The identity over
(S,¢) is the morphism 73 : a X S — S and composition of f : (S,$) — (T, ¥)
and g : (T, ¢) — (U,0) is

go(m, f):ax S = U.

For each t: a — b in C the translation functor DI[t] : DI[b] — DI[q] is given

by the assignment

(S,9) (S, [t x ids]9)
f - ot xids)
(T, %) | (T, 1]t x idr)y)

Remark: The fibre DB|1] over the terminal object is precisely the Grothen-
dieck category induced by the indexed category I (see e.g. [BW90]). The above
definition of DB- is a modification of the standard Grothendieck construction
that makes essential use of a the product structure in C. Thus, whenever we talk
about DT for some T we need to identify, at least implicitly, a particular product

structure on the base of .

To see what is going on let us apply the definition to obtain the indexed
category PB= = (T-,DB= : T? — Cat) using the 7-products on 7., and

Chapter 5. Some Meta-Theory for Lax Logic 168

reinterpret it in terms of the data of the original base logic B. Recall that objects
in T are finite sequences T of types and a morphism 7 — 7’ is an equivalence
class of sequences of well-formed terms whose number and types are given by 7’
and whose free variables are specified by 7. In order to explain functor DB=
we unroll Definitions 5.2.1, 5.2.10, and the definition of products as in Lemma
5.2.2: The objects in the fibre DB.[r] are pairs (7', [A, A’ I ¢]) where A, A’ are
contexts such that ||A)= 7/, ||A||= 7, and ¢ a well-formed proposition with free

variables in A, A’. Note, {|A,All= 7,7 =7 x 7'. A morphism
(1, [A, 80 F $i]) = (72, (B, Az ¢3])
in DB.[r] is morphism
A A Rt irxn— 1
in T such that

[, 80F ¢i] E Bof(m,[A, A1k ¢])][8, Agk ¢4
= B[[a,A1F AE))[A, Ax F ¢4)

[A, A1 F ¢2{A, /A, Az}]

(A, 81 F ¢2{t/Aq)]

which, by definition, means there is a derivation of the B

#1 Faa, $2{t/A2}.

This analysis suggests to view an object (r3,(A,Az F ¢;]) as a specification
of a list of elements of types 73 and a morphism [A,A; + ¢} with codomain
(72,[D, Az F ¢2]) as an implementation that satisfies specification ¢,. We remark
that the fact that A is a context of variables free in both ¢ and ¢; makes sure

that ¢; can specify an explicit relationship between input and output.

Remark: Morphisms in DB-[()] (the empty sequence of types () is terminal in
T.) are first-order deliverables [BM92,McK92]. Thus, the indexed category DB..

Chapter 5. Some Meta-Theory for Lax Logic 169

is an indexed category of first-order deliverables (over B) with free variables. In
[Men91b) the objects in DB.{A] were called pointwise designs and the indexed
structure DB.. the first-order logic of designs. The possible application of DB
as a logic of deliverables , however, is not of concern to us here, so we will not

expand on it further. (See Chapter 6 for comparison with McKinna's work.)

Lemma 5.2.11 Let C, indezed preorder I = (C,I: C*® — PreOrd), and DI as
in Definition 5.2.10. Then DI is a conservative extension of Z, i.e. there exists
a full and faithful embedding

¢: 15 DI

of indezed categories.

Proof: Fix an object a in C. Let the component ¢, : I{a] ~+ DIfa] of the natural

transformation ¢ be defined by the assignment

¢ (1,1[m)¢)
[g !axl
L4 (1,Tm]¥)

The short proof that ¢, is a full functor and natural in a is omitted. It is trivially

faithful, for the fibres Ifa) are preordered sets.]

Remark: The construction of ¢ depends on the product x used in the con-
struction of DI from Z. On the other hand, the terminal object 1 used in its
definition may be any choice of a terminal object.

The main point about the construction of DI from T is that in DI we get
(strong) existential quantification for free, independent of whether Z has it or

not.

Lemma 5.2.12 Let C, indezed preorder I = (C,I:C®® — PreOrd), and DI =
(C,DI: C® — Cat) be as in Definition 5.2.10. Let x be the finite products on
C. Then, DI has left adjoints for translations along projections satisfying the

Chapter 5. Some Meta-Theory for Lax Logic 170

strong Beck-Chevalley Condition (for certain pullback squares). More precisely,
Jor 1 : a x b— a a projection in C there is a functor L[] : DI[a x b] — DI[a]
with I[my] 4 DI[m,). The strong Beck-Chevalley Condition holds for pullback
squares of the form

m
axb————a

f xidl lf
a' xb—gr~a
where f:a — a' in C, i.e. we have DI[f] ¢ Z[m] = E[m,] o DI[f x id].

Proof: Let m : a x b — a be a projection in C. Then the functor Z[#] :

DIfa x b] — DI{a] is given by the assignment

(5,9) £[m(S,4) L (bx S,1[as]g)
f = Elﬂ'xlf g (7'2°7|’hf)°a5
(T,9) £m)(T,9) L (bx T,Iarly)

where S, T in C, ¢ in I[(a x b) x S], ¥ in I[(a x) x T}, f : (a x b) x § — T such
that
$E(m, Nl (¥)

and where ax : ax{bxX) — (axb)x X is the canonical rebracketing isomorphism
ax = ({m,mems), mpomy). It is easy to check that Z[m}(S, ¢) and Z[m)(T,¥)
both are objects in DI[a], and that Z{m;]f is a morphism from a x (b x S) to
bx T in C. So, for £[m]f to be a morphism from L[m](S,¢) to E[m](T,¥) it
remains to be seen that I[as)¢ C I[(m1, Z[m]f))I[lar]y. This can be verified as
follows:

Ifesle as{I{{m, H$ = I(m, f)eas]y
= I[(moas, foas)lp = I[{(m,momoas), foas)]p
= I[aro(m,{memoas, foas))]y
= I[(m, (m2em oas, feas))lar]y
= I{(m,(mem, f)eas)larly = I[(m, Z[m]f)]Iar]y.

n

Chapter 5. Some Meta-Theory for Lax Logic 171

Thus, the mapping E[r,] is well-defined, and it is not difficult to show that it is

in fact a functor.
In order to see that [is left adjoint to DI[x;] we have to prove that there

is a hom-bijection
[(5,¢) = DIm|(T, ¥)laxe = [E[m](S,¢) = (T,¥)]a

natural in both (S, $) and (T,), where the left homset is in DI[a x b] and the

right in DI[a]. The homset equation is equivalent to
[(S,8) = (T,X[m x id))axs = [(bx S, X[eu]g) = (T, ¥))

by definition of DI and E[r). We claim that such a natural hom-bijection is

given by the mutually inverse mappings
fr foas and g+ goaz'.

Suppose f € [(S,¢) — (T,I[m x id}Y)laxs, i.e. f: (a X b) x § — T morphism
in C such that

C I[{m, Hl[m x idlp = X[(m; x id)o{m,)l

I[(”l ° T, f)]'/)'

-
m

We wish to show that the image of f, feas is a morphism in the homset
[(6 x S,X[a,]¢) — (T, $)a. Clearly, foas is a morphism in C from a x (b x S)
to T'. We must show that Ifas]¢ C I[(m1, f o as)]y, which can be seen as follows:

IoslI[(riem, f)lY = I{miom, floasly
I[("hf"as)]'/’-

I[as]é

n

Thus the first direction f foag of the bijection is well-defined. Now we show
that the other direction g — goag' is well-defined. Let g be in the homset
[(b x S,X[a,)¢) = (T,¥))a, i.e. ¢ : @ x (b x S) = T morphism in C such that
I[as}é C I[{m, g)]#. We must verify that the morphism go a3’ from (a x b) x §

Chapter 5. Some Meta-Theory for Lax Logic 172

to T satisfies ¢ C I{(m1, g0 a3)I[m x id]sp:

¢ Lidl¢ = Ilascaz'lp = Iag'[Ias)é
Ioz' M[(m,)¢ = X[(m1,9)ea5'|p = I(moa5',goaz")¢

L em,goaz)p = Iim,goas")ilm x idy.

mn 1

It is easy to check that the hom-bijection is natural in both (S, ¢) and (T,).

Naturality in (S, ¢) comes down to the equations

Foase(m,Zmlt) = fol(m,t)eas
geag'e(m,t) = go(m,Z[m]t)eas’
where ¢ : (¢ x b) x S’ — S arbitrary. Naturality in (T,) follows from this and
bijectivity. Thus we have shown that Z[r} is left adjoint to DI[m].
Now we verify that Xfm] satisfies Beck-Chevalley. Let f : a — o be a
morphism in C, and (S, ¢) object in DIja x b]. We have ago(f x id) = ((f x

id) X id) o as, whence

DI[f]Z[r](S,¢) = DI[f](bx S,T[as]¢)

= (bx $,1[f x idI[as]¢)

= (bx S,Xaso(f x id)]$)

= (bx S,[((f x id) x id) o as]$)
= (bx 8, aslI[(f x id) x id]¢)
= Z[m](S,X(f x id) x id]¢)

= I[m|DI[f x id|(S, ¢)

The proof that
DI[f]1E[m]t = X[m]DI[f x id]¢

. for all morphisms t € [(S,¢) — (T,%)]axs is omitted. s

Since we wish to interpret the (syntactic) first-order calculus of £ in the

indexed category DB- we need DB- to be a hyperdoctrine (at least). Of course,

Chapter 5. Some Meta-Theory for Lax Logic 173

since the object language 7 .. and the predicate logic B= over it are folded together
in DB_, all structure in DB will have to come from both 7 - and B=. It is known
that, given an indexed category (C,I : C°” — Cat), the induced Grothendieck
category has limits provided C and the fibres Cl[a] for all @ in C have limits, and
provided limits in the fibres are preserved by translation functors [TBG89}. But

what about the more general construction of DB? In general, we find

Theorem 5.2.13 Let T = (C,I: C° — PreOrd) be a hyperdoctrine where all
fibres are preodered sets, and let C be bicartesian closed with products x and sums
+. Further, assume that translations I[id x 1] along the canonical morphisms
idx e :axb— ax(b+c) have left adjoints 3[id x ¢1} : Ila x b] — I[a x (b+¢)]
such that Beck-Chevalley is satisfied for pull-back squares

idxl.l
—_— .

axb ax(b+c)

fxid fxid

a’xbm—a’x(b+c)

where f : a — o' arbitrary, i.e. we have
Jlid x u)I[f x id) = I{f x id]3[id x]

Then, the indezed category DI = (C,DI: C® — Cat) as constructed in Defini-
tion 5.2.10 is a hyperdoctrine.

Proof: A word on notation: as in Definition 5.2.10 the objects in the base
category C of T and DI will be denoted by lower case letters a,b,c, etc. the
objects in the fibres I[a] by lower case Greek letters ¢,1), etc. and finally the
objects in the fibres DI[a] will be referred to as pairs (S, ¢), (T, ¢) where the first
components, denoted by upper case letters S,T, etc. are objects in C and ¢, 9,
etc. are objects in I[a x S]. To refer to the bicartesian structure of C we use
the symbols 1, x,=>,0, + and for the bicartesian structure of the fibres I[3] the
symbols true, A, D, false, V. .

Chapter 5. Some Meta-Theory for Lax Logic 174

First, given @ in C it is shown that DI[g] is bicartesian closed. We need to
identify in DI{a] a terminal object true, products (S, ¢) A (T, %), exponentials
(S,9) D (T,¢), initial object false, and sums (S, ¢) V (T, ¢). These are obtained
from the bicartesian structure of the base category C and of the fibres Ifb] in the

way described below:

TERMINAL OBJECT. The terminal object in DI[a} is the pair (1, true) where 1
is the terminal object in C and frue is terminal in I[a x 1]. For (S, 4) in DI{a]

the unique morphism !(s,4) into (1, true) is the unique morphism laxs in C.

Propucts. The product of objects (S, ¢) and (T, %) in DI[a] is the pair
(S,) A(T,9) £ (8 x T, Tidy x m1]¢ A Tfidy x 7a)
where x is product in C and A product in I[a x (S x T')]. The projections are
mem i (54)A(T,%) — (S,4)
Tzo®e (s$ ¢) A (T1 'ﬁ) - (Ta ¢)‘
Given morphisms ¢, : (S, ¢) — (T1,%:) and ¢; : (S,) — (T3, 43) in DI[a] their
pairing is given by the morphism
(t11t2) : (37 ¢) nd ((T11¢1) A (Tz, '/’2))

where (, } is the pairing in C. The simple proof that these data satisfy the standard

product equations is omitted.

EXPONENTIALS. The exponent of objects (S, $) and (T, 9) in DI[a] is the pair
(5,¢) 2 (T,%) £ (S= T, V[m)(Ilprojlé D {(ida x eval) o swap]y))

where = is exponential in C, eval: § x (S = T) — T its associated evaluation,
O exponential in I[(a x (§ = T')) x S}, and V[m] is right adjoint to I[\}. proj

and swap are auxiliary morphisms abbreviating

&

proj (mom,m):(ax(§=T)xS—ax$

(i

swap

(miomy,{ma,mem)) :(ax (S=2T))xS—ax(Sx(S=T)).

Chapter 5. Some Meta-Theory for Lax Logic 175

The evaluation map cval : (S,¢) A ((S,4) D (T,¥)) — (T,) is the morphism
eval o w3 : a X (§ % (S = T)) — T. Finally, given a morphism t : (S, ¢)A(T,9) —
(U, 8) in DIja] we need to define its ‘currying’ curry(t) : (S, ¢) — (T, ¥) D (U,0).
This morphism curry(t) is given by

curry(tea™) :ax S =+ (T = U)

where curry is currying in C, and ™! : (a X §) x T' — @ x (S x T) the obvious
rebracketing. The simple proof that these data satisfy the standard equations

for function spaces is omitted.

INITIAL OBJECT. The initial object in DI[a] is the pair (0, false) where O is
initial in C and false the initial object in I[a x 0]. For (S, ¢) in DI[a] the unique
morphism Cs4) from (0, false) into (S, §) is the morphism Osox; in C, where
Os:0 — S is the unique initial morphism into S.
SuMs. The sum of objects (S, ¢) and (T,) in DI[a] is the pair

(S O)V(T,) L (S+T, Jida x)¢V Uida x flop)[ida % :]9)

where ¢, are the injections S = S+ T and T — T + S as appropriate, and
flop: S+T — T+S5 is the canonical isomorphism {t3, 41], V is sum in I{a x (S+T)),

and 3[id, x ;] left adjoint to Ifid, x ¢;]. The injections are
f1oemy (S) ¢) d (Sv ¢)V(T)',’)
wom : (T,9)—(S,4)V(T,¥)

which, as morphisms in DI|a], will be denoted by ¢3,¢2. The sum of two mor--

phisms s : (S, ¢) — (U,6) and ¢ : (T, %) — (U,9) is the morphism
[s,t}ea : (S,4) V(T,9) = (U,9)

where o : (a x (§+T)) — ((a x §) + (a x T)) is the canonical distribution map

that exists in any bicartesian closed category; it can be defined as

o L evalo (w1, [eurry(u o flip), curry(sa o flip)] o 73)

Chapter 5. Some Meta-Theory for Lax Logic 176

with flip abbreviating the transposition map (x3,7). The sum of s and ¢ in
DIfa}, will be written [s, ¢].

Before we come to verify that these definitions accomplish what they should
we note that o~! = [id x 4,1d X ¢;] is the inverse of o. It will be used several

times below. To show that it is right inverse we compute

oo(id x ¢1) evalo {my, [curry(u o flip), curry(z o flip)] o 72) o (id X &)

= evalo(m, fcurry(u o flip), curry(ez o flip)) 0 43 0 73)
= evalo(my, curry(iy o flip) o m3)

= evalo (my, curry(u o flip) omy) o flip

= 4 °ﬁip°ﬁip

= Ll

and similarly, oo {(id X ;) = ¢z, whence oo™ = go{id X ¢1,id X 4] = [oo{id X
u),0e(id x ¢3)] = [u,¢2) = id. For the other direction let the morphism
[eurry(e, « flip), curry(iz - flip)} be abbreviated by =, so that o = evale(id x x).
We observe that

curry(o~! o0 o flip) oty
= curry(o™" s evalo (id x 7)o flip) oty
= curry(o™ e evalo (id X 7)o flipo {4, x id)) (5.2)
= curry(o™ o evalo (my, moyy 0 my))
= curry(o" o evalo (ma, curry(ny o flip) o 11))
= curry(c™ oy, o flip)
= curry((id x u1)e flip)
= curry(flipo (1 x id))
= curry(flip)oy,. (5.3)

Lines (5.2) and (5.3) exploit the fact that in cartesian closed categories currying

is ‘natural’, i.e. for all morphisms f : X XY — Z and g : X’ — X we have

Chapter 5. Some Meta-Theory for Lax Logic 177

curry(f)og = curry(fo(g x idy)). Similarly we find curry(o~ oo flip)oiz =
curry(flip)oe,. Hence,

ALY

o oa e flipo flip

= uncurry(curry(o~" o0 o flip)) o flip (5.4)
= uncurry([eurry(o™" o g o flip) 1y, curry(o™" e o flip) o t2]) o lip

= uncurry([curry(fip) o 1, curry(flip) o 12]) » flip

= uncurry(curry(fiip)) » flip

= id (5.5)

where for any f : X — (2Y), uncurry(f) : XxY — Z is defined by uncurry(f) 4
evalo (w3, fom). It holds that for all g : X x Y — Z, uncurry(curry(g)) = ¢
by the laws for function spaces. This justifies lines (5.4) and (5.5) above. All
the other lines are straightforward in applying the fundamental properties of
products and sums. Thus, we find that o and ¢~! are mutual inverse.

Now, let us check that the categorical sum in DIfa] is well-defined. For ¢;073
ax S — (S+T)to be a well-defined morphism from (S, $) into (S,) V (T, ¥)
in fibre DI[a) it must satisfy

¢ T I[{m,t oma)])(I[id x ulé VI[id x flop]3[id x 4]¥)

which, since I{(r,¢; o 73)] = I[id x &) and 3[id x ¢;] left adjoint to I[id x 4] is

equivalent to
Jlid x u)p T 3F[id x)¢ v I[id x flop]3id x u]y.

But this holds because V is sum in Ija x (§+T)]. Analogously, it can be seen that
12072 : ax T — (S+7T) is a well-defined morphism from (T, ¥} into (S, ¢)V(T, ¥)

in DI[a), i.e.

¥ C IX[{m,e30m))(3id x 1) v I[id x flop)3[id x 44)1h).

Chapter 5. Some Meta-Theory for Lax Logic 178
For this is equivalent to
¥ T Ifid x]3fed x 4]é V I[id x 12]I[id x flop]3[id x ¢)¢

since I[(m;,t30m,)) = I[id X ¢;] and since translations, in this case Ifid x 4],
preserve bicartesian structure. Now, I[idx io)I{id x flop] = I[(idx flop) o (idx 4a)] =
I[id x 1;], so by the properties of V is suffices to show

Y C Ifid x 4]3id x ul

which is immediate as 3[id x.1y] left adjoint to I[id X ¢;]. Finally, assume that
s:(S,¢) = (U,0) and t : (T, %) — (U,0) are well-defined morphisms in DI[a},

ies:axS—-U,t:axT— T, and

¢ I[(”lws)la ¢ cC I[("ht)]o'

We must check that the sum [s,t]oo : a x (S+T) — U of s and t is a well-defined
morphism from (S, ¢) V (T,) to (U,). This comes down to the condition

Jlid x 1] VIfid x flop]A[id x uJy C I[(m,[s,t]c0)]0

which by the properties of V is equivalent to the two inequations

id x ul¢ T I[{m,[s,t)e0))0 (5.6)
I[id x flop)3id x ulp € Y[(m,[s,t]0))8. (5.7

Now, the first of these is equivalent to
¢ C I{(m,[s,t]o0)o(id x)]0

since Afid x] left adjoint to Ifid X n] and functoriality of Ifid x 4}. But
this is precisely the assumption ¢ £ I[(my,s)}0, for (m,[s,t]eo)o(id x 44) =
(m1,l8,t]eq e (id X &1)) = {m,[s,t]et1) = (m,s). Hence we have shown (5.6).

Applying I[id x flop] to both sides turns (5.7) into the equivalent

Jidx ulp C I(m,s, oo (id x flop))]o (5-8)

Chapter 5. Some Meta-Theory for Lax Logic 179

noting that I[id x flop)I[id x flop] = I[(id x flop)e(id x flop)] = Ifid] is the
identity map, and I[id x floplX[(m,,[s,t]eo)] = I[{m1,[s,t]ea}e(id x flop)] =
I{(m,[s,t]oo o (id x flop))]. The right side of (5.8) can be simplified, using the
identity

[s,)o((id x flop) o)™

= [s,t]o((id x flop)o[id x ¢1,id X t3])~}

= [s,t]o([(id x flop) e (id x 1), (id x flop)e(id x)]}
= [s,8)o(id X t2,3d x 1a])™"

= (s, 8] o(id x 12,id X t3] o flop)™*

= [s,t]o(o7" o flop)™

= [s,t]oflopoc

[s,t)o o (id x flop)

= [t,8)oc
to become
Jid x u]y T I[{m,|t, s}e0)]0.
But this follows from the assumption 9 € I|(my,t)]8 since J[id x] left adjoint
to I[id x ;] and Ifid x 4]X[(my, [t, 8] e a)] = X[(my, [t, 8] oo} o (id X 1)) = X[{m, 1}].
Thus we have shown (5.7) whence the categorical sum in DI[a] is well-defined.

Now we wish to verify that these data indeed satisfy the universal properties

of a categorical sum in DI[a]. The three equations that we must prove are
[s,t}ot; = s (5.9).

¢ (5.10)

¢ (5.11)

Il

[syt]ocy

[tou,toe)

which constitute the characterizing 8- and 5-laws for categorical sums. Note,
these equations are to be read as equations in DIfa), i.e. ¢, 3, [,] are the injec-
tions and sum defined above, and composition o is composition of morphisms in

DIfa].

Chapter 5. Some Meta-Theory for Lax Logic 180

Ad (5.9), (5.10). By definition, (5.9) and (5.10) amount to proving that the

diagram

3 U : axT

ax$S
(m,uem)_ [sit]ed (7, iz0m2)
ax(S+7T)

commutes for all s;¢t. To this end we first recall that oe(id X ;) = « and
go(id X 13) = 1. Hence, we get [s,t]ogo(m,uom) = [s,t]eae(id X 4) =
[s;t]ets = s which precisely says that the left side of the diagram commutes.
The other side of the diagram is dealt with similarly.

Ad (5.11). By definition, (5.11) amounts to proving that the diagram

(axS)+(axT)
o [to(my,taoma),to(m,aams)]
ax (S+T)——t—— U

commutes in C for all t. Let the morphism [to(my, ¢y o ma), to(m, ¢a073)] in the
diagram be abbreviated by #. In the following we will show the currified version

of the diagram, i.e. the equation
curry(moooflip) = curry(toflip). {5.12)
From this, then, we immediately get the original diagram since
woo = wogoeflipeflip
= uncurry(curry(x oo o flip)) o flip
= uncurry(curry(to flip)) o flip

= toflipo flip
= t.

Chapter 5. Some Meta-Theory for Lax Logic 181

Now, let us prove (5.12):

curry(mw oo o flip)
= [curry(moooflip)on, curry(roa e flip)oey]
= [curry(roaoflips(u x id)), curry(r oo o flipo (iz X id))]
= [curry(moco(id x 1) flip), curry(x oo o (id X 12)o flip)]
= [curry(m oty o flip), curry(mo iz flip)]
= [curry(te(m,u oms) o flip), curry(to (m1, t2o 73) o flip)]
= [curry(toflipe(n x id)), curry(to flipo (e x id))]
= [curry(toflip)our, curry(to flip)o 2]

= curry(te flip).

Thus, we have shown that the fibres DI[a] are bicartesian closed. The proof
that this structure is preserved by translation functors is omitted. We remark
that the assumption in the statement of the theorem that 3[id x ¢,] satisfy Beck-
Chevalley is used to show that sums are preserved by translations. Next, it is
verified that there exist left and right adjoints of translations along first projec-

tions:

EXISTENTIALS. Let 7y :a X b— a be a first projection in C. Then, by Lemma
5.2.12 the translation functor I[m] : Ifa] — I[a x] has a left adjoint E[m]
satisfying the strong Beck-Chevalley Condition for pull-back squares induced by

first projections.

UNIVERSALS. Let 7, : axb — a be a first projection in C. Then, the assignment

(5,4) (b= S,V¥[n]lapplé)
t = curry(t - app)

(T, %) (b= T,V[m|I{apply)

Chapter 5. Some Meta-Theory for Lax Logic 182

where 7y : (e x (b= X)) xb— ax (b= X), X =S or X =T as appropriate,
are first projections and app: (a x (b => X))} x b — (a x b) x X stands for

app g ((myom, m2), evalo {7z, w30 r1))

defines a right adjoint to translation functor DI[m] : DI[a] — DI|a x 8]. It will
be denoted by I1fr,}.

First, we check that the assignment is well-defined. It is easy to see that if
(S, ¢}, (T,¢) objects in DIfa x b], then H[m](S,¢) = (b = S, V[r)I[app]¢) and
O{m](T, %) = (b= T,V[m)I[app]s) as defined are indeed objects in DI[a]. Also,
it is obvious that if t : (a x b)) x § — T, then II[m](t) = curry(toapp) is a
morphism in C from a x (b = S) to b = T. For II[m)(t) to be a well-defined

morphism
curry(toapp) : (b= S,VimlNlapplé) — (b= T, Vim:[Tapslp)
it remains to be seen that it satisfies
Vimllleppl$ T T(m, curry(te app))Vim|Happly. (5.13)

The right side of the inequation can be simplified using the fact that V[x,) satisfies

the Beck-Chevalley Condition, viz. we observe that
(ax(b=>9)) xb——wax(b=>S5)
{m1,7) xid‘ ‘(rl,r)
(ax(b=>T))xb—,rT-—ax(b=>T)
is a pull-back diagram induced by a first projection, where here and in the

following 7 is an abbreviation for curry(teapp). Beck-Chevalley implies that
I[(m1, w)]V[m1) = V[m)E[{my, x) x id], whence (5.13) is equivalent to inequation

Vimlappl¢ T V[m)I[{m1,x) x id}yp.

Now, since V[m] is monotone this reduces to

Happl¢ € X{(m1,7) x id|I[app}ip. (5.14)

Chapter 5. Some Meta-Theory for Lax Logic 183

Again, the right side can be simplified, viz. we compute

appe((m,n) x id)
= ((mom,my), evalo (my, maomy)) o ({71, %) X id)

({71 omy, ma) o ((m1, 1) x id), evalo (w3, maom) o ({m, 7) X id))

it

{{r1om1, 73}, evalo (my, womy))

(1 © app, evale (mq, curry(t o app) o 7y))

(w10 app, toapp)

(w1,t) o app

]

so that
¥(m, 7} x id|I{app] = Wappe ((m1, 7) x id)} = [(m,) o app] = Uapp|I[{m,1)}.
This together with monotonicity of I[app] reduces inequation (5.14) to
¢ € Ii(m,t)l¥

which immediately follows from the assumption that ¢ is a morphism from (S, ¢)
to (T,%) in DI[a x b]. This completes the proof of (5.13).

Next we check that the map Im] : DI[e x 8] — DIla] is a functor. Let
idisg) = 73 : (5,4) — (S,¢) be an identity in DI[a x 5] (cf. Definition 5.2.10),
then '

fr)idse = curry(rsoapp) = curry(evalo (ms,xzom))

0

curry(uncurry(ra)) = 7

Il

id(s,g)-

Further, let t : (S,¢) — (T,¢)and s : (T,) — (U,8) be morphisms in DX[a x b].
We wish to show that [l{x](s+t) = Mfm](s) «I[x,](2) holds in DI{a]. Unraveling

the definitions, this comes down to proving

curry(se(m,t)oapp) = curry(seapp)e(m, curry(toapp))

Chapter 5. Some Meta-Theory for Lax Logic 184

in C, which is done as follows, where again = abbreviates curry(t - app):

curry(so app) o (my,)
= curry(seappe((ry,x) x id))
= curry(se{{m1om,xs) o ({r1,7) x id), evalo (w3, a0} o ((my, *) X id)))
= curry(so ({71 o7y, 73), evalo (my, womy)))
= curry(se (x; = app,to app))
= curry(so(my,t) o app).
Now we verify that the functor II[x] : DI{a x] — DIq] is right adjoint to
DI|m]. The goal is to establish a hom-bijection

l(S, $) — n[ﬂ']](T, ¢)]a = [DI[F]](S, ¢) — (T,'l’)]axb (5.15)

where the left homset is taken in DI[g], the right in DI[e x b], and to prove
that it is natural in both (S, ¢) and (T,4). After eliminating the definitions the

hom-equation turns into

[(S,¢) = (b= T,V{mlapplp)l, = [(S,X{m x id]g) = (T,$)]ixs
We claim that such a bijection is given by the maps

.3!—)8b

&

evalo (id x 3) o swap

t o g curry(t o swap™! o flip)
where swap : (@ x b) x § — b x (@ x S) and its inverse swap~! are the canonical
morphisms that permute and rebracket their arguments in the apparent way. Let
us check first that the maps s + s* and ¢ — t! are well-defined. Suppose, s is a
morphism in the homset {(S,4) — (b= T,V[m|I[app]))],, i-e. s:a x5 — (b=
T) and

¢ T I((m,s)]V[m]I[apply. (5.16)
Clearly, s* is a morphism from (a x b} x S to T', for which we must show

Im x idl¢ T I{(m,s)y.

Chapter 5. Some Meta-Theory for Lax Logic 185

This is readily computed:

I[r, x id]¢
C Ilm x idl{(m, s)]V[m|Iapp]p (5.17)
= I{(m,s)o (m x id)V[m]Iapply
= I[myo({m,s) x id)s flipo swap]V[x1|I[applyp (5.18)
= I[((my,s) x id)o flipe swapll{my]¥[m Y appl
C X[({m},s) x id) o flipo swap)I[epp]y (5.19)

il

Happo ({m1, 8) x id) Oﬁiposwap]a/).
X{(m1, ') (5.20)

Inequation (5.17) is a consequence of the assumption (5.16) and monotonicity of
I[x) xid). Equations (5.18) and (5.20) cut short a number of simple computations
involving products, and inequation (5.19) follows since ¥[xy] is right adjoint to
I{m)]. Thus, we have shown that s — s is well-defined. Now to map t — th:
Suppose given a morphism ¢ in the homset [(S, X[z, x id}¢) — (T,)], i€ ¢:
(axb)yx S —Tand

Ty xidlg T Tfm, O, (5.21)
t! is a morphism from @ x § — (b = T), which is a morphism in DI[a] from

(5,9) to (b= T,¥[r|Y[app)sh) if it holds that
¢ C I{(m, ")V |Iappl$. (5.22)
By Beck-Chevalley for V{r,] we have I[{x;, t)]V[ry] & V[r,]I[{x:, ¢!} x id] since

(axS)xb L ax$

(1!‘1, tl) x td (71: tl)

(@x(b=T)) xb—g—ax (b=>T)

is a pull-back diagram induced by first projections. Hence, (5.22) is equivalent

to

¢ C V[mllappe((m, ') x id)ly

Chapter 5. Some Meta-Theory for Lax Logic 186

which in turn is equivalent to
Iml¢ C Iappo((m,t") x id)}y (5.23)

since V(] is right adjoint to I[m]. Analyzing the right side of (5.23) one finds
that appo ({m,t!) x id) = {m,t) o flipo swap, so that (5.23) becomes

I[m)¢ C I[flipe swap]I[(m,t)]y

which immediately follows from the assumption (5.21) if the monotone map
I[flips swap] is applied to both sides, and noting that (7, x id) ¢ flipe swap = =,.

Thus, we have shown that both maps s — s* and ¢ s ¢! are well-defined. The
claim is that they are mutually inverse and natural in objects (S, ¢) and (T, t/))..

The first part is expressed by the equations

Wy =t ()M =s
and the second part by
(soh)’ = s"oDI[m)h (hot) = (II[m]h)ot}
(to(DIm]) = thoh ((M[m]g)es) = gos'.

Note, of the latter four equations only one of the two rows needs to be proven
as the other follows because (t!) = ¢ and (s*)* = s for all ¢,s. Of course, all
equations are to be read as equations in DI[a] or DI[a x b], so that e.g. (soh)* =

&* o DI[m]k really means
evalo(id X (so(my, h)))oswap = evalo(id X s)oswapo(m,ho(x; X id)).

All equations are readily verified and proofs are omitted. This completes the
proof that the functor II{m] : DI[a x 3] — DI[a} is right adjoint to DI[x,].

Finally, it is shown that Il{m,] satisfies Beck-Chevalley for pull-back squares
of the form

K3
axb——a

R

’ !
a' xb~—r~a

t xid

Chapter 5. Some Meta-Theory for Lax Logic 187

where t : @ — a' morphism in C, i.e. that we have DIft]Il{r,] 2¢ II[x,] - DIt x-
td). This is an equivalence between functors, so we must check an object and
a morphism part. As to objects we find (DI[t] o II[x4])(S,¢) = (b = S,Ift x
id|V[x[Y[app]¢) and (I1[ms] o DI[t xid])(S, ¢) = (b => S, V[m:|I[app|I[(¢ x id) xid]¢)

which indeed are equivalent, for

I[t x id]¥[m]I[app]

VimyJI[(t x id) x id}I[app]
V[m|I(appe((t x id) x id)]
V[mI[((t x id) x id) e app]
V[rX[applI[(t x id) x id]

R

where the first line is a consequence of Beck-Chevalley for I. As to morphisms

we compute

(DIft] o« IM[m]) f

= DItJcurry(f o app)

= curry(foapp)e(t x id)

= curry(foappe((t x id) x id))
= curry(fe((t x id) x id) < app)
= H[m)(fo((t x id) x id))

= ([]DI[t x id])f.

Theorem 5.2.14 DB. = (T=,DB= : T? — Cat) is a hyperdoctrine.

Proof: by Theorems 5.2.9 and 5.2.13.]

Remark: Theorem 5.2.13 requires that the products x of the cartesian closed

structure of T- and the products that determine the construction of DB. are

Chapter 5. Some Meta-Theory for Lax Logic 188

the same. From now on we will assume, unless stated otherwise, that these
products are the T¢-products. Thus, for 0 = 03,...,0n, object in T =, an object
in DB_[o] is a pair (7,{w I ¢}) with 7 = 7,...,7, and w variable of type

(1 X - X op) x (11 X+ X 13).

The last theorem says that the structure of DB is rich enough to interpret the
ordinary (first-order) predicate logical part of £. Also we know how to interpret
the atomic formulae, i.e. formulae of form :¢ where ¢ is a proposition of the base
logic: we take the object in B corresponding to ¢ and translate it into DB via
the (full and faithful) embedding ¢ : B= » DB defined in Lemma 5.2.11. What
is missing still is the interpretation of the modal operator ©. For the particular

notion of constraint (Q°,[], @) the idea is to get the identification
OM = B¥.(Ne)o M

where M is the function that conjoins the propositions in the list ¢ into a single
proposition Mc. Let us translate this into more general terms so that it may be

applied to other notions of constraints as well.

Definition 5.2.15 Let T = (C,I: C°” — PreOrd) be an indexed preorder with
[inite products (A, true) in the fibres. A notion of constraint on I is an object ¢

in C together with

o a map that assigns to each morphism ¢ : a — ¢ and element ¢ in I{a] an

element ¢° in I[a]
e a morphism e, :a — ¢ foreacha inC

o a map that assigns to each pair of morphisms f,g : @ — ¢ a morphism

fg:ra—>c
subject to the following conditions:

1. e,ot =ey and (f-g)ot = (fot)-(got)

Chapter 5. Some Meta-Theory for Lax Logic 189

2 f,g:a—c, then ¢t = ¢ and ¢/ 7 = (¢/)
S.ea-f=f=f-eaand(f-g)-h=1Ff-(g-h)
4. IfEAGT Y, then AP C ¢/, and true T true!
5. Tlt](¢") = (L[elg) **
where f,g,h:a = ¢, t : b — a, and ¢,v¢, objects in I[a). The object ¢ is
the constraint object. A morphism f : a — ¢ is called a constraint over a. The

morphism e, : a — ¢ is called vacuous constraint over a, the indez a is sometimes

omilted. The combinatlion f-g of two constraints is the multiplication of f and
g.

Definition 5.2.16 Let T = (C,I: C°” — PreOrd) be an indezed preorder with
finite products in the fibres and DI = (C,DI:C — Cat) as in Theorem 5.2.13.

Given a notion of constraint on I one defines for each object (S,) in DI[a) an

object Ola](S, ¢) in DI[a] as follows
Olal($,8) £ (e x S, (Iid x m3)¢)™ °™)
where 7, is the projection ¢ x § — S ora x (¢ X §) — ¢ x S as appropriate.

Before we analyze the properties of the map (S, ¢) — Ofa)(5, ¢) in general, let
us concretize it to the special situation of (2*,[], @) as the notion of constraint

and the indexed category DB-..

Lemma 5.2.17 The following data make up a notion of constraint on B- =
(T=,B=: T? — PreOrd) where the finite products (A, true) in the fibres B=[r]
are the ones defined in the proof of Theorem 5.2.9:

o Constraint object in T is Q°
o Given [AF fl:7 = Q° inT= and [A} §) in B_[7), then put
A+ glert LA g

where ¢ is weak f ¢.

Chapter 5. Some Meta-Theory for Lax Logic 190
o Vacuous constraint over 7 is [A F (]]
o Muliiplication of [AF fl:7 = Q" and [A b g):T— Q% is

[aFf-jarg) € [aFfay)

where T object in T.. and A context such that ||A||= 7.

Proof: The definition of multiplication of constraints and of [A4 F ¢][A""n is
independent of the choice of répresentatives. The conditions (1)-(5) of Definition
5.2.15 immediately follow from Lemma 3.1.7 and 3.1.8 and the properties of

substitution.]

Remark: The construction in Lemma 5.2.17 can be generalized in the apparent
way to any (syntactic) notion of constraint (C, 1, -) with action map ¢, ¢ = ¢°in
the sense of Definition 3.1.9. We will refer to the notion of constraint in Lemma

5.2.17 by the triple (92*,[], @).

Lemma 5.2.18 Let 7 be object in T and M object in DB_[r]. Further, let the
object O[t]M in DB.[r] be defined according to Definition 5.2.16 for the specific
notion of constraint (Q°,[], @) (cf. Lemma 5.2.17). Then,

OlriM = Z[m]((¢N,) D DB[m M)
where
n & [Anz¥ FRz: Q)

 is an object in B=[r x '], A, an arbitrary contezt such that ||A.||= 7, and z an
arbitrary variable not occurring in A,. ¢ is the embedding functor ¢ : B_[r xQ*] —
DB.[r x Q°]. D is ezponentiation in DB_[r x ("], and 7, : 7 x Q* — 7 first

projection.

Chapter 5. Some Meta-Theory for Lax Logic 191

Proof: We will inake an exception and assume for the proof that the T-products
are used in the construction of DBy[r] and of the left adjoints £ and exponents
Din DB...

Let M be an object in DB:[7}], say

M = (o,]0,,A,F ¢))

with o object in T=, A, and A, disjoint contexts such that || A, }|= 7 and
llAsll= o. In general o will be a list ¢ = ay,...,0, of types but for simplicity we
assume here, without loss of generality, that n =1 and A, = y.

A tedious but straightforward process of applying ;ieﬁnitions shows that the

purported isomorphism
E[m}((:N,) D DB[m]M) = Or|M
ultimately comes down to an isomorphism
2 x(1=0),A) & (¥ x0,B)
in DB.[r], where

A = [A,z,wk Vu.(N2) D (¢{wo/y})
[A'nzvy l- ¢x]

It

Thus, we need morphisms
f:imx(x(1=20)—-0 %0
g : x(Qx0)=0"x(1=0)
which are mutually inverse and further is must hold
ACB_{(r,f)]B BEB:[(m,g)]A.
It is not difficult to check that the morphisms

f 4 [Ar 2z, wh z,ws]

g L [Ar,z,yF 2,Mv.9]

Chapter 5. Some Meta-Theory for Lax Logic 192

do the job, where w is a variable of type 1 = & and v a variable of type 1 both not
occurring in A, z,y. That f, g are inverse, i.e. fo(m),g) = id and go{ry, f) = id
follows from B, 5 and ¢ equalities for function type 1 = o in B. The inequality
A C B_[{m, f}] B amounts to deriving the sequent

Vu.(Nz2) 3 (${wv/y}) Fa,ew (¢°){z/zHw */y}

and the inequation B C B_[{m, g)] A to deriving

¢ Farey (Y0.(N2) O (${wo/y}){z/zH{dv.y/w}

in B, which are both readily obtained. Both derivations use the equivalence

¢* = (Nz) D ¢ and the former also the identity (¢°){t/z} = (¢{t/z})°“lr)-]

Theéorem 5.2.19 Let T and DI be as in Definition 5.2.16. Further assume
that the finite products in the fibres of T are preserved by translations along
morphisms in the base. Then, the mapping M — Oa)M specified in Defi-
nilion 5.2.16 induces a locally strong indexed monad on the indezed category
DI = (C,DI: C® — Cat). More specifically, for every a in C, Ola] can be

extended to become a functor
Ola] : DIfa] — DIfa]
and there are nalural transformations
nlal:id = Ola] pfa) : Ola)eCla} = Ofa]

where id is the identity functor on DI[a], such that (Cla),nla), ua]) is @ monad
on DI[a]; Further, these monads are natural in the object a of C, i.e. for every

morphism t : a — b in C the equations

Ola}oDIft] = DIft]-0[})
1[a]DI{t] = DIjt]n[b)
WlalDIE] = DIelult

Chapter 5. Some Meta-Theory for Lax Logic 193

hold, where the first is an identity of functors and the others identities of natu-
ral transformations. Finally, for every a the monad (Ola}, nla], ula]) is strong,

i.e. there is a family of morphisms
oun : M AO[a)N — Ofa](M A N)
in DI{a] natural in M and N such that

(Olalrar) oo truem = TolalM
(Olajartni)oomank = omnake(idm Aoy i)oamnouk

omneo(idy AIN) = MaN

i

omwe(idy A pn) puman o (Clajomn) oo opn

where r and a are the natural isomorphisms

ra : trueAM - M
aunk @ (MAN)AK - MA(NAK)

ianI[a]‘

Remark: We have to be careful to read the last four equations in the theorem
as equations in DI[a]: So, o is composition in DIfa], and A is the product
functor over DI[a] induced by the products in I[a]. Composition o was defined
in Definition 5.2.10 and product functor A is understood to be determined as in
the proof of Lemma 5.2.13.

We remark that the naturality of the monads (<[], n[a], #{a]) in index a turn
< into a monad on DI in the 2-category of indexed categories [KS74].

Strong monads were shown to be a very useful concept for modelling various
notions of computation [Mog89]. Here we may interpret © as a particular notion
of computation on proofs, viz. the computation of constraint information. The
notion of a strong monad is explained in {Mog89]. There the morphisms ¢ are

called tensorial strength of ©.

Chapter 5. Some Meta-Theory for Lax Logic 194

Proof: The proof will make use of (1)-(5) in Definition 5.2.15 of a notion
of constraint. We will refer to each of these as ‘property (x)’, where z is the
appropriate number.

Fix an object a in C. For ease of notation we write O rather than Ofa} as
the index ¢ is understood. Let O : DIfe] — DI|a] be defined on objects as in

Definition 5.2.16. It is extended to morphisms as follows:

(S,9) (e x 5,(Ifid x m]$)™ *™)
f — (m1omg, fo(id x m3))
(T,%) (e x T, (Iid x ma)p)™ *™)

The morphism Of = (m; 07y, fo(id x 73)) in C has domain a x (¢ x §) and
codomain ¢ x T, so for O f to be a well-defined morphism in DI[a] from O(S, ¢) =
(e xS, (I[id x m2}¢)™ °™) to O(T,) = (¢ x T, (I[id x m5]$h)™ ° ™) we must have

(I[id x 7}9)™ °™ € Y(my, OHIid x ma]yp)™ °™. (5.24)

Now, f is a morphism from (S, ¢) to (T, %), so by definition ¢ C I[(my, f}]y» which
implies Iid x m]¢ € I[id x woJI[(my, £)]9p = I[(my, f) o (id x 7)) = I[(my, f o (id X
w2))]. From property (4) we infer that § C v implies §¢ C 4¢ for all §,7,¢, so

we obtain

(Mid x m})™°™ C© (H(my, fo(id x ma))}p)™°™
which is the same as (5.24) for the right side can be transformed as follows

(I{m, fo(id x m))P)" ° = ([(my, m2e O]
(X[(me, OF)L[id x mg])™ 7210
I[(my, ONN(Tfid x mop)™ °™

i

using property (5). Thus, we have shown (5.24), whence © is well-defined on
morphisms. One may check that the map O actually defines a functor ¢ :

DIfa] — DIfa]).

Chapter 5. Some Meta-Theory for Lax Logic 195

For © to be 2 monad on DI|a) we need natural transformations ¢ : id— <O
and g : OO 5 O satisfying certain coherence equations. The element sy :

(S,8) = O(S,¢) of n at object (S, $) is defined as the morphism
4 .
Nse) = exid:iaxS—cxS§

where ¢ is the vacuous constraint at a. This is a well-defined morphism in DI]a)

with domain (S, ¢) and codomain O(S, ¢) since

& = lideyen
(I[(¢d x w3) o (71, (5,4)))8)™ o %2 9 {154

X(m, s (Ilid x x,])™ * =

¢

Il

n

by properties (2), (1), and (5). For arbitrary f : (S,4) — (T,¥) it one verifies
that Of ens4) = 1.y ° f holds in DI[a], thus 7 is a natural transformation. The
element pi(s4) : OoO(S, @) = O(S, §) of pt at (S, ¢) is defined as the morphism

B(s.6) g ((Wl omgoms) - (myoxz), M2 °ﬂz°7rz)

ax(cx(ex8))—=ecxS.

We wish to show that p(s¢) is a well defined morphism with domain ©+<(S, ¢)

and codomain O(S, ¢). This comes down to proving the inequation
(I[id x m](I[id x ma])™ °™)™ °™ T I((my, us.e)(Llid x m3]4)™ °™
Both sides are in fact equal which is seen as follows

(X[id x m5)(I[id x x5)@)™ ° ™) ° ™

(X[(id x 73) o (id x w3)|g)" * 2 ° Cdxmaly™
((X[id x (w3 omg)]g)™ °™2°"2)™ ° ™

(I[ld x (”2 Oﬂ'g)]¢)('l O x39m3): (7 ©n3)
(I[(id x m3) o (ma, s, gp))@)™ ° ™ ° Trstsio)
I[(ms, s))(Ilid x mal)™ ° ™

oxy

i

il

Chapter 5. Some Meta-Theory for Lax Logic 196

using properties (2) and (5). The proof of the naturality equation gz (o Of) =
Of op(s,¢) is omitted, We find that p is a natural transformation.
Now we come to check the coherence equations for 5 and u that make (O, 7, 4)

a monad. It is to be shown that the following diagrams commute in DI[a]:

Qugs,
0(5,8) 59 505, 4) 129 o5, 4) O0O(S,8) 4 00(5,9)

id H(5.¢) id Ho(5.9) Bis.)
os,9) (S, 8) —z~ NS 9)

Proofs of these equations are obtained using the fact that multiplication of con-
straints is a monoid, i.e. by property 3).

To sum up, we have defined a monad (<la], 5{a], ua]) for each object a in
C. Next we must prove that these monads are natural in a. To this end assume
a morphism ¢ : @ — bin C. Ola] is natural in a if functors Ofa]oDI|t] and

DI[t] o Ofb] are equal. For object (S, ¢) in DI[b] we compute

(DI[t] - O[E}) (S, ¢)

DI[t)(O[b)(S, 8))

DI[t)(c x S, (I[id x x3]¢)™°™)

(c x 8,1t x id](Ifid x 75)¢)™ ° ™)

(c x S, (I[¢t x id]T[id x my]g)™ ° ™ ° ¢xid))
(c x 8, (L[t x m)g)™ °™)

using property (5). For the other functor we compute

(Ola]oDI[t]) (S,¢) = Ola)(DIft)(S, ¢))
(e x S, (Xlid x m3)Ift x id]$)™ ° ™)

(¢ x S, (I[t x m3)¢)™ * ™)

]

Thus, functors O[a] o DI[t] and DI[t] « O[b] agree on objects. The proof that they

agree on morphisms too, is similarly straightforward. Naturality of n{d] in a

Chapter 5. Some Meta-Theory for Lax Logic ‘ 197

requires that n[¢]DIf¢] and DI[t]n[b] are equal as natural transformations, so we

need to evaluate them only on objects M in DI[b):

(n[a)DI{2))M nlalpugm = €a X id = (eyot) x id
(es x id)o(t x id) = DI[t)(es x id)

DI(t}n[8]

The third equation holds by property (1). The remaining proof that natural
transformations p[a]DIJt] and DI|t)u[b] are equal, which also invokes property
(1), is omitted.

Finally, the monads Ola] are strong, i.e. there exists a family of morphisms

o(senTw : (5, 8) A Ola)(T,) — Ola((S, ¢) A (T, 4))
natural in (S,¢), (T,¢) satisfying the four coherence equations stated in the
theorem. We claim that such o(s4),(7.y) are given by
9(5,6).(T.¥) - {m1oma0omy, (M) 0Ty, W20 My my))
ax(Sx(cxT)—ecx(SxT).

For these morphisms to be well-defined as morphisms in DI[a] we need to verify
the inequation

Ijid x m;)¢ A fid x m5)(¥[id x wa)p)™ ° ™ (5.25)
C If{m, o))(Xid x mo}(Iid x m])¢ A X[id x m]p))™ ° ™ (5-26)

where from now on the indices of o are dropped. Using property (5) the left side
is shown to be equal to I[id x m]¢ A (I[id x (x3072)]%)™ °™°™ and the right
side is simplified as follows:

X{(m1,)} (X[id x m3)(Xfid x m)é A Xfid x moJp))™°™
I{(m1,0))(Iid x (m1072)]¢ AX[id x (730 73)]3p)™ ° ™
(H(m, o))(X[id x (w1 0m3)]} A Tfid x (w3 0mg)yp))™ ° ™2 ° (1)
(X{(m1,0)]Tid x (my0m2)ld A I[(m1,0))I[id x (mg073)]3p)™ °°
(Iid x m1)¢ AX[id x (m2omg)Jp)™ ° ™2 ° ™2,

R

1%

Chapter 5. Some Meta-Theory for Lax Logic 198

The first equation is due to property (5) and the equivalences 2 due to the as-
sumption that translations I|-] preserve products A. Thus, we find that inequation

(5.26) is equivalent to

Ifid x m)¢ A (I[id x (wgoma)jip)™ °™°™
T (Ifid x)¢ ATjid x (rzomy))p)™° ™™
But this follows immediately from property (4). Namely, for arbitrary £, ¢ we

“have A ¢ C €A, hence by property (4), EA¢° C (€ A ¢)°. Thus we have verified

that the morphisms

(st : (5,8) AO[a)(T,) — Olal((S, ¢) A (T, ¥))

are well-defined. Now, we wish to show that they are natural in (S, ¢) and (T,).
This means we assume morphismms f : (S, ¢) — (5',¢") and g : (T, ¢) = (T", ')
in DIfe] and verify the identities

Qlaj(f ANid)oo(sy Ty = Oy (fAid)
Olaj(id A g)eo(sg)rw) = O(se)aw e (id A Og)

where o and A are composition and product functor in DI[a]. When definitions

are unrolled, then these two equations become

(ﬂ’n, (f°(7f1,7f12),1r22)°(id X Wz)) ® (71’122, (ﬂ’m 7’222))
= (M, (""121”222)) o {m, (f°(7f1,7f12),7f22))
(712, (712,90 (7|'1,7f22)) o (id x "2)) ° (Wh (7’122, (7|’12, 7’222)))
= (7’122, (71’121"222)) ° (Wl,(ﬂ’m("flz,g"(id X ﬂ'z)) ° (Wn’fn)))
where Ty,... stands for mgeome Ty -+ -. These equations are trivial to check.

Thus, the o(s¢4),(T.¢) are natural in both indices. To complete the proof of the

theorem we need to verify the four coherence equations

(Clalrm)eotryess = rolam

(Olalamni)eomang = ImNako(idy AN K)o amN oLk

Chapter 5. Some Meta-Theory for Lax Logic 199

omne(idy An) IMAN

pman o (Olalom,n) o oroan

omne(ida A pn)

assuming objects M = (5, ¢) and (T, ¢) where ra : trueAM — M and ayn i :
(M AN)AK — M A (N A K) are the canonical isomorphisms in DI[a]. As
before, these equation are to be read in DI[a] taking the appropriate definitions

of o and A, and the morphisms r and « are
r=my a = (T3, (Fn2, 723)).

The proof of the equations, which are straightforward, are omitted.

We now come to the final result of this chapter linking up the category theo-
retical construction of hyperdoctrine DB-. with the extraction of constraint terms
and constraint predicates from derivations in lax logic as presented in Chapter
3.2. It is shown that the natural interpretation of £ in DB_, treating O as the
monad induced by the notion of constraint (R2*,[], @), corresponds precisely to
the constraint extraction process of Chapter 3.2. In order to keep things sim-
ple we will deal only with the closed propositional fragment Lq of lax logic. We

believe that the result can be extended to £ to cover quantifiers and substitution.

We associate with every well-formed closed formula M of Ly, i.e. F M wff,

an object §Af} in DB_[()] according to the following schema

kel £ .-9) (5.27)
[trugd £ true (5.28)
(false] £ faise (5.29)
(MAN] £ [MIA[N] - (5.30)
(MvN] £ [M]vIN] (5.31)
MoN] € Mo (N] (5.32)
[omM] £ oM (5.33)

Chapter 5. Some Meta-Theory for Lax Logic 200

Remark: In case (5.27) since formula t¢ is supposed to be well-formed and
closed, ¢ must be a well-formed closed proposition, i.e. - ¢ : . In the definiens
of case (5.27), then, [¢] stands for the equivalence class of ¢ in B=[()] and ¢ is
the embedding « : B={()] = DB-[()).

The cases (5.28)-(5.32) deal with the propositional formulae of £. Each
propositional connective is interpreted by the corresponding categorical oper-
ation. So, true, false, A, V, and D are translated into terminal object, initial
object, product, sum, and exponent, respectively, in DBz[()}.

_ The last case (5.33) is to be read as interpreting the modal operator O by
the monad © : DB.[()] —» DB.[()) that is induced by the notion of constraint
(9*,[], @). The definition of this monad is given by Lemma 5.2.17 and Definition
5.2.16.

To reduce notation we write DB= for DB.[()] and B= for Bz{()). The
following definition will facilitate the access to objects and morphisms in DB..,
which are pairs (o, [w I ¢]) with ¢ = o,...,01, and w variable of type () x o0 =
() x (0 x --- x 01), where x from now on stands for the T product. It will be
convenient to break convention to let x associate to the left and to reverse the

numbering of sequences to go from right to left.

Definition 5.2.20 Let [A | ¢] be a morphism o — 7 in T- with o = ap,...,01,
T a single type, and A = z,,...,z, such that |A||= ¢. From this we obtain a

morphism () x ¢ — 7 in the following way:

BEY £ [wk ai(mw)/za) - {7l (Fa0) /1))

where w is an arbitrary variable of type () X (00 X --+ X 01) and x} denotes the

k-th projection op X +++ X 01~ 0x, 1 Sk <, i.c.
miz=al(mz) mPz=mz wlr==z
The case n = 0 is treated separately:

r £ fwr o

Chapter 5. Some Meta-Theory for Lax Logic 201

where w variable of type () x ().

Remark: The definition of [A - t]* does not depend on the choice of variable

w.

Theorem 5.2.21 Let M be a well-formed closed formula, i.e. v M wif. Fur-
ther, let |M| and M* be constraint type and constraint predicate of M as defined
in Chap. 8.2. Then, for every variable z of type |M| we have

(M} = (IM], [+ M*2]")

Proof: First note, M* 2 is a well-formed proposition with a single free variable
z and [z b M* z] morphism [M| — Q in T.. We can form [z F M?* z]* to get a
morphism () x |M| — §, which is at the same time an object in B=[() x |M]],
whence (|M], [z M* z]") is object in DB.. The identity

M} = (IM], [+ M*2]")

is proven by induction on the structure of M. We will give proofs only for the
cases (5.27), (5.30), and (5.33). The other cases, which can be obtained in a
similar way, are omitted. '

® (5.27) We want
6] = (gl [2F (:4)* 2]) (5.34)

where variable z has type |¢¢] = 1. Plugging together definitions we compute
[:¢] = ¢[Fg] = (1,B=[m][F¢]) where =, is the first projection () x 1 — (),
i.e. m = [wh] with w variable of type ()x1. Thus, B=[m][F¢] = B=[[wt]][F4] =
[wt ¢} =z ¢]" = [z F («¢)* 2]". This proves (5.34).

¢ (5.30) We want

[MAN] = (M| x|N|, [zF M*(m12) A N*(722)]") (5.35)

Chapter 5. Some Meta-Theory for Lax Logic 202

Unrolling the definitions and the inductional hypothesis yields

[MAN] = [M]A[N]
(IMl, [z + M* 2]") A (IN),[2 F N* 2]")

(IM| x |N|,B=[id x m][z - M* 2]" A B.[id x ma][z + N* 2°)

1

Here id x , is the canonical morphism () x (JM| x [N|) — () x |[M| in T, i.e.
idxm = [whk (mw,m(rw))]
Hence we get

B_[id x m][z F M* 2] B.=[[w F (mw, 7y (mw))]}{w b M*(7w)]

[w F M*(xy(m1w, 71 (7aw)))]
fw - M*(m (rw)))]

Notice that in the first line variable w is used with two different types. For the
left -, w has type () x (JM] x | N|) while for the right I it has type () x |M|. This
_confusion does no harm since both uses of w never occur in the same term. We
will use w from now on as a generic variable in this sense. Similarly to above we

have B.[id x wa][z F N* z]" = [w F N*(my(m,w))), whence
[MAN} = (IM] x V] [wb M*(xr(raw)) A N*(ra(maw))])

which proves (5.35).
¢ (5.33) We want

fOM] = (9" x M|, [zF (M*(m2))"*") (5.36)
The definition of the monad < and the inductional hypothesis yield

[oM] = ©[M]

O(|M], [z + M* 2J")
(Q‘ X IMl ’ (B=[1d X Wg][z - M#* z]‘)"’l °ﬂ’2)

Chapter 5. Some Meta-Theory for Lax Logic 203

where id x 73 is the canonical morphism () x (Q° x |M]) = () x [M], i.e. idxm =
[w F (7w, 72(72w))} and 7y 0 75 is the canonical morphism () x (2* x [M]) — O,

i.e. myom; = [wF m(7mw)]. So, we can simplify further to get

(B[id x m3){z - M* 2]")™ o
(B={[w F (mw, 7a(maw))]j[w F Ml(,rzw)])[wbn(z,w”
[w F M# (ra(myw))Jier mxavl

[F (M*(ra(maw)))™ ")

where the last equation is due to the definition of the notion of constraint

(2*;[], @) on B.. This proves (5.36). 1

The other part of constraint extraction in £ is extracting from the derivation

of a sequent

M,...ME, M

and sequence zy,..., 2 of arbitrary fresh variables of types |M;|,¢ =1,...,n,a

well-formed constraint term
Ay zpy...,z F1: | M|
and a derivation of the sequent
M 2y, Mi? 2 Fpn M*

in B. We wish to show that this extraction process can be understood in terms
of the categorical logic DB~ as interpreting derivations in £ as morphisms in
DB...

Again, we focus on the closed propositional fragment of £. We associate —
rule by rule along the structure of the derivation tree — with every derivation in

Loy a morphism such that

'k M — m:[[]- [M]

Chapter 5. Some Meta-Theory for Lax Logic 204
where [I'] is defined inductively as
4 L4
[T, M, M) = [T, MAIM] [(] = true

with A and true the finite products in DB, and prove that m is precisely the con-
straint term extracted from the derivation. This together with Theorem 5.2.21
provides a category theoretical semantics for Lo in DB~ which captures the in-
terpretation of formulae as constraint types and constraint predicates and the

interpretation of derivations as constraint terms.

The interpretation of Lo’s structural rules in terms of morphisms in DB- is

given in Figure 5-1 and of the logical rules in Figure 5-2.

rule morphisms in DB~
id MFM id: [M] — [M]
weak ''M¥FN mony : [[] A [M] — [N]
N m: [[] — [N]

perm Iy, N,M,To - K mot: ((IN] AIND A [M]) A[T2] — [K]
[, M,N, T, b K m: ([T A IM]) A [N]) A IT2] = [K]

t={(miom, M), mpom) X id

cut N no(id,m): [} = [N]
TFM T,MFN m: [— [M] n:[T]A[M] = [N]

Figure 5-1: Interpretation of Structural Rules for £,

Chapter 5. Some Meta-Theory for Lax Logic

rule morphisms in DB
JalseE Jalsev M O false — [M]
VE, MVNFEK [m,n]): [M]V [N] — [K]
MFK NVFE m:[M] — [K] n:[N]— [K]
v MFMVN 4 : [M] — [M} v [N}
vI, N+ MVN t3: [N} - [M]VN]
truel F true !: true — true
Al '+ MAN {m,n) : {T] = [M]A[N
T-M TFN m:[I]— [M] n:[T] - |[N]
AE MANFM r [M]A[N] - [M]
AE, MANFN 2 : [M] A [N] = [N]
oI TFMDON curry(m) : [T} — [M] > [N]
I''MFN m: [T} A [M] — [N]
OF ILMEN evalo (w3, mom;) : [T) A [M] — [N]
TFMDN m: [I'] — [M] D [N]
o1 MFOM n:[M] - O[M]
oM OOM ¥ OM 1 OO[M] ~ O[M]
OF I,OMFON Omoa : [T] A O[M] — O[N]
I'MFN m: [T} A [M]) - [N}
o : [T} A O[M] - O([r] A [M])
: W WIFAIC [FeD): o[Fo] — fFo)
¢+

Figure 5-2: Interpretation of Logical Rules for £

Chapter 5. Some Meta-Theory for Lax Logic 206

Remark: In Figures 5-1 and 5-2 it is assumed that the hypotheses lists I', Ty,
T'; are non-empty in which case we have [I', M] = [[]A[M] and [T1, M, N,T;] =
((IT:] A [M]) AIN]) AIT,]. This can be assumed without loss of generality since
a dummy hypothesis true can always be introduced via rule weak. So, only for
rule weak do we have to consider the special case where I' = (). In that case

IT] = true and the interpretation of weak simplifies as follows

MFN — mO!Wl:[M]—b[N]
FN m: true — [N}

where !jas) : [M] — true is the terminal morphism in DB..

Figure 5-2 needs more explanation: The morphism o used in the translation
of rule OF is the tensorial strength of ©. It is given by Theorem 5.2.19 as are
7 and g in the translation of rules ¢I and OM. Rule ¢ takes a sub-derivation
in B of a sequent ¢ b ¥ and turns it into a derivation of ¢ & «p in Lo. Its
translation into DB= is obtained as follows: Since ¢, are well-formed closed
terms of type 2 we get well-defined objects [F¢] and [F] in B=. Since ¢ - ¢ is
derivable we have a unique morphism m : [F¢] C [F¢] in B= by definition of C.

This morphism is now mapped to the morphism
vm: l[Rg] — [FY)
via the embedding functor : : B — DB_ defined in Lemma 5.2.11.

Observation 5.2.22 The translation of Figs. 5-1 and 5-2 is total and correct,
i.e. the translations can be applied rule by rule to any valid derivation in Lo of
a sequent I' - M, and the result is a well-defined morphism m : [T'] — [M] in
DB..

Theorem 5.2.23 Let a derivation of T & M in Lo with T = M,,..., M, be
given and m : [I'] —+ [M] be the corresponding morphism in DB oblained by
Figures 5-1 and 5-2. Further, let z,,...,z be arbitrary distinct variables of
types |M;], i = 1,...,n respectively, and zy,..., 21 F t : {M| the constraint term
constructed by the translation of Figs. 8-10, 8-11 and 3-12 of Section 3.2. Then,

m = [zn..,5nF 1"

Chapter 5. Some Meta-Theory for Lax Logic 207

as morphisms in T _.

Proof: We will only give the proofs for rules id, weak, falseE, OI, OM and OF.
All other rules can be dealt with in a similar way. Before we start let us convince
ourselves that the equation in the theorem makes sense: First suppose n > 1.
By Theorem 5.2.21, the first component of [I] is the type |[M,| x - - - x |M;] and
the first component of [M] is |M]. Hence, m : [[] — [M] as a morphism in
T = has the same domain and codomain as the morphism [z,,...,2 F t]°. In the
special case n = 0, i.e. [' = (), the first component of [I'} = [()] = trueis 1,
whence in this case, too, m : [I'] — [M] has the same domain and codomain as
[Ft]". Note that for the To-product () x 1 = 1 x 1 = () x (). The proof that
m = [2,,...,2 F 1] proceeds by induction on the structure of the derivation tree

of My,..., M F M.

¢ We begin with rule id which has the following translations:
MFM - ZMEz:|M| id: [M] — [M]

On the left of — the rule is shown and on the right both the corresponding
extracted constraint term taken from Figure 3-10 and the translation of the rule

into a morphism of DB. taken from Figure 5~1. 1t is to be checked that
id = [zF2]"

which follows from the definition of identities in DB_.

¢ The weak rule has the translations

MEN z,2ME ¢ Nl mom : [T]A[M] = [N]
TFN 7 TZFE:N| m : [[] — [N]

Suppose z = z,,...,2 and n > 1. In this case we must verify the equation

mom = [5zF ¢

under the ‘inductional hypothesis that m = [ZF ¢]". Also we know that z has

type [M[and is not free in t. Observe that by definition the projection 7y :

Chapter 5. Some Meta-Theory for Lax Logic 208

[C1A [M] — [I'] in DB. is the equivalence class [w b my(7;w)] and composition

fogin DB. is fo(m,g) in T_. Now we compute

Memw; =

I

I

i

I

Notice that

mo{m, jwt m(waw)})

mo ([w F muw], [wF i (rw))])

mofw k (mw,r,(7w))]

[z 1] o [w k (mw, m(mw))]

[wk H{mp(maw)/za} - {7} (maw)/z}] o [w F (11w, m(7aw))]

[w b t{rp(ma(miw, my(maw)))/za} - - {x] (wa(mrw, ma(m2w))) 2 }]
fw b t{x(m(raw))/za} - - {77 (m(m2w))/ 21 }]

[wF t{mni (raw)/za} - - {73 (maw)/ 21 })

[w b t{mn i3 (maw)/za} - - {m3 ¥ (mqw) [H{] (maw)/ 2}]

[2ny. . cy2,2 H)"

in the fifth line above we are using variable w with two different

types: In the left morphism of the composition ¢, w has type () x |I'| while in
the right morphism it has type () x ([T| x |M|), where |[| = |Ma| x -+ x |My].

Now suppose n = 0. In this case the goal is to verify

me!l = [wh]

The morphism ! :: [M] — true is [w I %], whence under the induction hypothesis

m = [Ft]” one finds:

since z does

moe! = mo(wl,[wf‘*]) = m°[IUf'(7rlw1*)]

[Ft] o [wh (mw,*)] = [wk t]e[wt (mw,*)]
[wkt] = [wt t{xw/z}]
fwt

1t

i

not occur free in ¢.

o The rule falseE has the translations

falser M — °F0z:|M| O:false — [M]

Chapter 5. Some Meta-Theory for Lax Logic 209

We have to show that O = [2® - Dz]" which is trivial by definition of morphism
Oin DB-.

o The rule OI has the translations
MEFOM — M ([],2): 0 x |M| n: [M] - O[M]

The monad O on DB, is defined so that § = e X td where e : () — Q° is the
void constraint over () for the notion of constraint (Q2*,{], @). Thus, e = [F[]]
and n = {wF ([], mw)] = {2+ ([],2)]". This was to be shown.

¢ The rule OM has the translations

OCOM F OM v WX XIMD | (x,(72) @ 12, m5(x22)) : O* x | M|
u: OO[M] - O[M]

The natural transformation u is defined such that

(("l’l °7f2°7f2) 4 (‘n'1°7f:),72°172°7l'2)
([w b 71 (ma(maw))] - [w b mi(maw)], [w b wa(ma(maw))])
([w F 71 (m2(maw)) @ mi(maw)], [0 b w2(my(ww))])

®
I

[w F (71 (72(mw)) @ my(maw) , 7a(2(m2w)))

[z F (mi(m22) @z, mo(ma2))]”

The first equation is the definition of u as in Theorem 5.2.19 and the second eval-
uates this definition for the concrete category DB-. The third line instantiates
the particular notion of constraint, ¢f. Lemma 5.2.17.
¢ The rule OF has the translations
[, OMF ON 2,29 XM |- (r,2,t{myz/v}) : O x |N|
LMFN Z oM 1: |N|

Omoea : [T] A O[M] — O[N]
m: [[]A [M] = [N]

We have to show

Omeo = [z,zF (mz,t{mz/v})]"

Chapter 5. Some Meta-Theory for Lax Logic 210

under the induction hypothesis that m = [z,v I #]". Without loss of gnerality,
Z=2zn,...,2;,n 2 1. O is defined so that Om = (mj o7z, mo(id X 73)}, where
meomy = [w F m(mw)] and id x 73 = [w F (mw,73(7w))]. By induction

hypothesis,
m = [wk t{xy}i(rw)/za} - {34 (maw) /21 H{a]H (7aw) [w}]
Thus,

Om = [wk (m(mw), t{mpT1(72(x0))/ 20}
<o Arp ¥ (mo(maw)) /2 T (ma(maw)) fw)))

Now we compute Omeo. The strength o is the morphism

(7l’1°7F2°7r2,(7f1°7l’2,7r2°7fz °7l'2))

[w bk (m(ma(maw)), (w1 (maw), m2(m2(72w))))]

q
i

i

For simplicity let us identify ¢ with the term on the right of I, i.e. ¢ = [w F).
Then,

Omoo
= Omo(m,0) = Omofwt (mw,0o)]
= [wk (m(m(mw,0)),
Hm i (ma(me(mw, 0)))/za} -+ {73 ¥ (ma(ma(miw, 0))) 21}
{7+ (ma(ma(mw, 0)))/v}))
= [wk (mo,
H{mnfi(120)/ za} -+ - {73 (ma0) [Hp H (m20) [0})]
[w b (mi(ma(m2w)),
t{mn(m1(m20))/2n} - -+ {77 (m1(m20))/ 21 H{ma(ma0) /v]})]
[w b (m1(ma(m2w)),
H{mp(mi(maw))/zn} - - - {71 (m1(maw)) /2 Hma(ma(maw)) [0 })]

[w bk (xy (7P (maw))

it

It

Chapter 5. Some Meta-Theory for Lax Logic 211

ot (maw)/za} - - {x3 1 (maw)) 2s Haa(x P (730)) v})
[wk (mz, t{m2/v})

{mati(mw)/za} - w3+ (maw) [Ha T (maw) /2]]

(2,2 F (mz, t{mz/v})]

i

il

which was to be demonstrated.
B

Theorems 5.2.21 and 5.2.23 now imply correctness of the constraint extraction

for Lo, more precisely the second part of Lemma 3.2.2 of Section 3.2:

Corollary 5.2.24 Given a derivation M,,...,My + M in Lo and a sequence
Zny.. .21 Of fresh variables, n > 1, of types |M;|, i =1,...,n. Let z,,...,zs b L
{M| be the constraint term constructed as in Sec. 9.2. Then, there is a derivation

of the sequent
Aln# Zny ey Ml' 2 '-'n--"v'l M* ¢

in the base logic.
Proof: For simplicity let us assume that n = 1. The general case can be

treated in the same way. The derivation of M; M gives rise to a morphism

m: [M] — [M] such that m = [z +]". Theorem 5.2.21 gives us domain and

codomain of m:

m o (M {a F M 2]T) = (M), [- M*2]°)
By construction of morphisms in DB_ we know that

[b M* 2y T Bo[(my, [z F][z + M* 2]

A little computation shows that the right side is equal to [z; F M* ¢]°, and it is
similarly easy to see that [z; F My* z3)" C [z + M* t])" implies

M*n b, M*t

by definition of L.]

Chapter 6

Related Work

Behavioural constraints abound in hardware engineering. Practically relevant de-
sign methodologies based on circuit behaviour have to accommodate constraints
in one way or other. Convincing examples may be found in Subrahmanyam’s
expositions [Sub88a,Sub88b], which give a good idea of how timing abstraction
provides a rich source of behavioural constraints. In algebraic modelling of cir-
cuit behaviour, such as those based on automata [BC88,LBC88] or those based on
processes [Dav88,Tra87], constraints are treated as first-class behaviours and the
verification of a constraint is reduced to the comparison of behaviours. Special-
purpose theorem provers, such as SILICA PITHECUS [Wei90] for the verification
of synchronous MOS circuits or BEAVER [HN89b] for the functional and timing
verification of synchronous systems above the gate level, contain sophisticated
built-in constraint handling as an essential part of behavioural specification and

analysis.

Despite its iniportance in hardware engineering, however, only recently was
the question addressed of formalizing the concept of constraints in modern general-
purpose theorem provers currently applied to the formal verification of hardware.
It was indicated already in Section 2.3.2 that John Herbert’s work [Her88b)] us-
ing HoL [Gor85,Gor88) can be seen as a step in this direction. Another work

in this area that we are aware of is Holger Busch's [Bus91)], which investigates

212

Chapter 6. Related Work 213

the proof-based transformation of circuit descriptions using the LAMBDA [FM89]

theorem prover. Both approaches will be discussed below.

The lack of attention paid to constraints in applying a general-purpose the-
orem prover to the formal verification of hardware can be explained in several
ways. For one, the concept of a constraint has a great variety of facets in prac-
tice, making it very difficult to associate a precise meaning with it, let alone
to formalize it in terms of mathematical logic. In the context of particular de-
sign methodologies few attempts in clarifying the notion have been made [Wei86,
Tra87,Sub88a,Dav88,DM88]. Most of these discussions come down to regarding
constraints as restrictions which are deliberately introduced to simplify the spec-
ification or verification task. Hence, the question of how temporarily to brush
constraints under the carpet does not pose itself. This contrasts with the stand
taken in this thesis, namely to consider constraints as unwanted by-products of
formalizing abstractions. Another reason why constraints are not perceived to
be of interest might be the following: When it comes to formalizing constraints
on a theorem prover, constraints are first of all propositions, and as propositions
they are part of the specification. In this frame of mind, it is tempting to settle
with the conclusion that if one knows how to deal with specifications then one

knows how to deal with constraints.

So much for a general introduction to the role of constraints in the context
of formal hardware verification. Let us now turn to a more concrete comparison
with related work. The main features of our research described in this thesis
which distinguish it from most other treatments in the field, so we believe, are
the following: We argue that constraints both deserve and require special consid-
eration, in particular that there is good reason to distinguish between constraints
and specifications, We model the notion of ‘correctness up to constraints’ as a
modality of predicate logic. We describe a novel method of handling constraints
that takes constraints out of the propositions and makes them part of their proofs,

with the benefit that constraint manipulation then is induced by computational

Chapter 6. Related Work 214

semantics for proofs, a concept well-known from mathematical investigations of
constructive logics. In the rest of this chapter these three main features, which
fall under the aspects hardware verification, modal logics, and proof semantics,

will be illuminated by discussing related work.

Hardware Verification

The two relevant approaches of dealing with constraints in the formal verifica-
tion of hardware are [Bus91] and [Her88b). To begin with, we note that both
approaches are restricted to the modelling of circuit behaviour as predicates while
lax logic is applicable not only to the components-as-predicates but also to the
functional components-as-functions paradigm.

Holger Busch in {Bus91] uses the general purpose interactive theorem prover
LAMBDA to implement a transformation system for behavioural circuit descrip-
tions in which constraints are paid special attention. He takes an algebraic ap-
proach based on the elementary notions component, composition, inclusion, and
equivalence of components. These algebraic ‘primitives’ are encoded in LAMBDA
in a natural way: Components are modelled as predicates or boolean-valued func-
tions which describe an input-output behaviour in a relational way, composition
is provided by general higher-order combinators, inclusion is logical entailment or
implication, and equivalence is biimplication. Due to the identification of com-
ponents with arbitrary relations, a constraint, in this framework, can be viewed
as a special kind of component. It is called a pseudo-component in [Bus91].

For instance, if A(z,z) and B(z,y) are predicates describing two hardware

components with z,y, z their signal ports, then their composition is defined as
(comp AB)(z,y) L 3z A(z,2) A B(z,y).
Let v(z) be a predicate expressing some constraint on signal z. It is transformed

into a pseudo-component with ports x, z by

4

7*(z,2) z =z Av(z).

Chapter 6. Related Work 215

Now, in order to impose constraint v on signal z of component B(z,y) one simply

composes B with the pseudo-component y*:
(comp” B)(z,y) = Jz.z2=2A9(2)AB(z,y) & 7(z)AB(z,y).

Thus, according to [Bus91] imposing a constraint on signals is reduced to
composition of components. This view of constraints has a few immediate con-
sequences that contrast with the approach taken in this thesis: First, constraints
in [Bus91] are always constraints on signals. In lax logic constraints can be im-
posed on arbitrary types, and we have seen that other constraints such as on
time (sampling at clock ticks) or on structural parameters (bit-length of incre-
mentor) indeed occur in practice. A second consequence of Busch’s approach is
that constraints always appear as part of the implementation, i.e. the fact that
component B satisfies specification A under constraint +, would be expressed by

the sequent (comp v* B)(z,y) bzy A(z,y), or
1(z) A B(z,y) b2y Alz,)

while in lax logic constraints are part of the specification, i.e. the verification

goal is let’s-not-bother, B(z,y) b2,y CA(z,y), or after constraint extraction
B(z,y) b2y 7(2) D A(=,9)-

Hence, in [Bus91] constraints strengthen the implementation while in lax logic
they weaken the specification. We believe that the latter view is more natural
since it analyses the offset of an approximate implementation in terms of the
intended ideal specification. But of course both views are equivalent.

We note finally that Busch’s approach can be viewed essentially as an imple-
mentation in LAMBDA of a fragment of Mary Sheeran’s RUBY language [JS90)
which provides a more general abstract foundation for transformational design
based on relations. Similar remarks to those made above apply for comparing

[JS90] with our approach in what regards the handling of constraints.

Chapter 6. Related Work 216

John Herbert in [Her88b] formalizes the temporal abstraction underlying syn-
chronous circuits using the HOL theorem prover. Behaviour is represented by ar-
bitrary HOL predicates and he proposes to express the correctness for a low-level

behaviour wrt. a high-level behaviour by a statement of the form

(low-level behaviour A input stability conditions) D>
(high-level behaviour A output stability assertions)
Shaping correctness theorems in this way provides for some separation of concerns
as it clearly distinguishes predicates pertaining to constraints from predicates per-
taining to behaviour. This pairing of constraint and behaviour, however, leaves
both aspects potentially intertwined at the level of proofs: One is stumbling ei-
ther over input stability conditions or output stability assertions whenever one
makes use of a behaviour, which means that constraint manipulation and reason-
ing in abstract terms have to go together in a single proof. Another shortcoming
is that a canonical and systematic manipulation of constraints, although sug-
gested, is neither supported nor enforced by simply rearranging a correctness

theorem. This can only be built into a notion of proof as it is done by lax logic.

Modal Logics

The main feature of lax logic is the intuitionistic modal operator ©. Now, the
formal properties of & much resemble those of a modality of possibility. In
particular, the rules Of and OM are integral part of the various modal logics of
the S4-type [CheB0], as is the special instance

OM k4 ON

MEAN

of the lifting rule OF. But here lies the most obvious difference to our modal
system: Rule OF in L is

F,OM¥,y ON
T'MFa N

which is rather more powerful in that with it lifting can be applied in an arbitrary

context of ‘passive’ hypotheses I'. This, as we have seen, has the consequence that

Chapter 6. Related Work 217

it is no longer possible to apply a classical Kripke semantics for ©. Compared to
the standard modal systems for © the strong OF is a speciality of £ besides the
fact that — without © — it is an intuitionistic logic.)

Classical modal logics, where < and the dual modality of necessity O are
interdefinable, have long been studied, cf. [Che80). There does not seem to be
much literature on intuitionistic modalities some of it concentrating on the O-
operator. Publications touching on intuitionistic logics with © that we are aware

of are [Cur57,Pra65,PS86).

Curry in [Cur57,Cur52} very briefly sketches a non-classical modality © that
appears to have the rules O and OF. He derives these rules from a proof-
theoretic interpretation of ¢ which is closely related to our reading. Basically,

he considers a hierarchy
FLCk,C .- Chy ---

of stronger and stronger deductive systems and takes CM to mean that M is
‘provable in some stronger system’, i.e. ¢ OM if Fy M for some 1 > k. Curry

does not elaborate on this system in much detail, however.

Prawitz in [Pra65) considers an extension of intuitionistic predicate logic by an
independent modal operator of possibility that has rule OI and a weaker version
of OF, namely where all hypotheses in I' must be of form —~OC for suitable C.
In a classical setting, i.e. with classical negation, this system coincides with the

well-known system S4 [Che80J.

Plotkin and Stirling [PS86] present a Kripkean analysis of an intuitionistic
propositional logic with two modalities O and ©. Their system in the presence
of the law of the excluded middle is equivalent to the system K [Che80]. This
means it encompasses a fairly weak notion of O which has rule OF without
passive hypotheses I' and which does not have OI and OM. They prove a general
correspondence theorem which allows to view rules OI and OM as semantical

conditions on the Kripke frame. However, the restriction on rule OF in their

Chapter 6. Related Work 218

framework cannot be lifted as they employ still a classical semantics for O, i.e. the
set of worlds at which an atomic sentence is true need not be upper closed wrt. the

frame relation that is used to interpret .

Proof Semantics

A main technical contribution of this thesis is to define a notion of proof (here:
constraint term) and realizability (here: constraint predicate) for a first-order
intuitionistic predicate logic with a ¢ modality and an embedded higher-order

base logic treated as proof irrelevant.

For ordinary intuitionistic predicate logics without modalities many notions
of constructive proof and realizability are known. Examples are Kleene realiz-
ability in Heyting arithmetic and variants thereof, see for instance [TvD88], S.
Hayashi’s computational logic Px [HN89a}, or Ch. P.-Mohring’s notion of re-
alizability [PM89] for a version of the Calculus of Constructions. Constraint
extraction in lax logic must be seen in this tradition: The constraint predicate
M?* z of lax logic is a realizability predicate, often written zr M or z realizesM,
and the constraint term is a particular realizer for M obtained from a constructive

proof of M.

The formal setting of Ch. P.-Mohring’s work is closest to ours in that it defines
realizability for a typed logic with the realizers extracted being typed lambda
terms (more precisely: F, programs). In contrast to this, Kleene realizability
uses as realizers partial recursive functions coded as Godel numbers and in PX
the realizers are Lisp programs. So, for the O-free fragment of lax logic the
process of constraint extraction may be viewed as a version of [PM89], viz. a
version which is extensional, first-order, and without explicit distinction between

informative and non-informative terms. Let us look at an example. To compare

Chapter 6. Related Work 219

we have to identify the types

Data object level types,

Spec with the class of formulae, and

Prop base propositions

in lax logic, respectively. Now, in P.-Mohring’s calculus, which is higher-order,

the conjunction of two formulae M : Spec and N : Spec would be represented by
MAN = VC:Spec.(MDNDC)DC.

Suppose M and N are proper formulae, i.e. of type Spec, in which case they are

called informative. Then, the realizer extracted from a proof of M A N according

to the translation rules given in [PM89] has type
IMAN| = VC:Data.(IM]D|N|DC)DC.

This is the second-order coding of the intensional product of the data types |M|
and |{N|. Similarly, disjunction translates into an intensional sum, ete. In lax
logic we would get the extensional product |[M| x |N] and extensional sum, etc.,
which explains the first point made above, viz. that constraint extraction is an
extensional version of [PM89). Further, if one of the two conjuncts, say M, is a
base proposition, i.e. of type Prop in [PM89)], then it is called non-informative.

In this case the translation directly gives
{IMAN| = VC: Data.(JN|DC)DC

which is an intensional copy of |N|, basically. Hence, the translation system-
atically simplifies redundant parts due to non-informative formulae at the syn-
tactic level, while in lax logic, where M would be of form M = t¢ one obtains
JM AN} =1 x|N|. This, by extensionality of products and 1, is isomorphic but
not identical to |N|. The distinction between informative and non-informative
formulae could be exploited for lax logic too, although it destroys the uniformity

of defining the constraint type inductively along the structure of formulae. A

Chapter 6. Related Work 220

third point that needs mention has to do with the first-order nature of constraint
extraction as opposed to the more general higher-order translation of [PM89)].

The defining clause
Vz'. M| = 7= |M|

for the constraint type of universal quantification given in Chapter 3.2 would
not make sense if 7 were the type of all formulae. Namely, in the case where M
depends on the variable z, |M]| tdo will depend on variable z. This is because
|M| depends on its sub-formulae and z, in case 7 = Spec, is a sub-formula. So,
IM | would be a dependent type, a notion that we do not have in the object
language of lax logic. In [PM89)] where one translates into F,,, dependent types

are available. The clause for second-order quantification there reads

|Vz : Spec. M| = Vz: Data.|M]|.

The development of the category theoretic interpretation of lax logic in Sec-
tion 5.2 bears close relations with the work of James McKinna on deliverables.
In his thesis [McK92] McKinna gives a category theoretic analysis of first-order
and second-order deliverables. We noted already that the hyperdoctrine DB=
constructed in Section 5.2 can be seen as an (indexed) category of first-order
deliverables with free variables. While the motivation for deliverables aims at
a programming language where programs are annotated with (proof-irrelevant)
propositional information regarding their correctness, here, in contrast, DB is
viewed as a logic where proofs have been decorated with constraint information.

Pragmatics aside, the mathematical structure of DB_ is between first-order
and second-order deliverables. Due to the free variables it is more expressive
than first-order deliverables (explicit input-output relationships can be specified
in it [McK92]), but it is weaker than second-order since these variables are object
variables in 7 and do not range over deliverables themselves. This is reflected by
the first-order nature of lax logic: we cannot quantify over formulae, a restriction

that is important for our definition of constraint extraction.

Chapter 6. Related Work 221

Finally, we note that [McKk92} employs an intensional approach to preserve
the computational mcaning of programs, which results in the relevant data struc-
tures coming out as semi-adjunctions and deliverables as a semi-cartesian closed
category. In contrast, this thesis being mainly concerned with logic sticks to the

traditional extensional notions of cartesian closed category and hyperdoctrine.

Chapter 7

Conclusion

The point of departure for the research reported in this thesis is the insight
that beﬁavioural constraints both deserve and require special treatment in for-
mal hardware verification, and that the non-trivial question of how to deai with
constraints in an adequate way on interactive theorem provers has not yet been
addressed in the literature. In this thesis a solution is proposed that captures
‘correctness up to constraints’ as a modal operator of intuitionistic logic and uses
proof extraction techniques to compute and manipulate constraints. Its main

contribution is

¢ to show that it is possible and advantageous to consider constraints as part

of proofs rather than of formulae, and

e to propose a particular formal logic in which constraints are constructed

systematically in the course of proving a specification.

By applying these ideas, which are novel and, as we believe, applicable also to

software engineering,
o constraint computation arises naturally as semantics on proofs,

o constraints on arbitrary data types can be handled, and

222

Chapter 7. Conclusion 223

o the way components are modelled is not prejudiced, i.e. the calculus is ap-
plicable under both the “components-as-functions” and the “components-

as-predicates” paradigm.

The first point is explicit in the extraction of constraint terms defined in Section
3.2, which may be seen as a semantical interpretation of proofs in lax logic. This
semantics is captured by the categorical model constructed in Section 5.2. The
second point is that constraints are given a much more general meaning than
usual, where they are taken to be restrictions exclusively on input signals. An
abstraction of input signals of type time = value typically is made up from an
abstraction on time and an abstraction on value. So if we restrict constraints to
signals we have deprived ourselves of the possibility for explaining constraints on
signals from constraints on times and on values. We do not explore this possibility
but demonstrate that it is useful in fact to work with constraints on other types
as well as on time, and that this can be done in our framework without adding
extra complexity. The third point is illustrated in Chapter 4 by the decrementor,
incrementor, and factorial for the “components-as-functions” paradigm, and the

modulo-2 counter for the “components-as-predicates” paradigm.

These are the main pragmatic advantages of our quite general treatment of
constraints. The central technical aspects of lax logic can be summarized as

follows:

Two-Level Logic Lax logic is a first-order intuitionistic logic that embraces a
higher-order base logic. It is a consistent and conservative extension, i.e. it does
not prove any new things about the base logic (Theorems 3.1.16 and 3.1.18). This
is an important result since it means that the new features added, viz. © and
constraint extraction, are orthogonal to and do not interfere with the structure

of the base logic.

Partial Proof Irrelevance Constraint extraction defined in Section 3.2 iden-

tifies all proofs that are performed within the base logic. Thus, the base logic is

Chapter 7. Conclusion 224

proof irrelevant, which is very useful for efficiency of implementation since only
proofs in the first-order extension of lax logic need to be stored. Through varia-
tion in formulating a specification the user has some control over how much of a

proof is in the base logic and how much is in lax logic.

Parametric Base Logic The definition of the base logic in Section 3.1.1 and
3.1.2 only nails down minimal requirements. Thus, lax logic need not be seen as
a particular and fixed logic but rather as a method for extending one’s favourite

predicate logic so as to accommodate constraints and approximate specifications.

Unorthodox & modality The operator O enjoys rather strong properties
which appear unorthodox for a modality of possibility. The objectionable prop-
erty is the fact that in rule OF, which serves to put Os around hypotheses and the
assertion of a sequent, we allow an arbitrary context of passive hypotheses. As
shown in Section 5.1 this precludes a classical interpretation of O. It was seen in
Section 4.1.4 that this strong OF rule, or equivalently the rule OF" (cf. page 134),

was the essential key in verifying the synchronous modulo-2 counter.

7.1 Further Research

This thesis suggests three natural directions for further research, relating to the

implementation, application, and meta-theory of lax logic.

7.1.1 Implementation

In order to assess its practical importance it will be necessary to implement lax
logic on a computer and test it on larger case studies.

An early version of lax logic, reported in [Men91a), has been implemented
in the interactive proof editor LEGO [LP92] and simple verification examples
such as the modulo-2 counter have been performed using it. In this prototypical

implementation the modal operator © is encoded using the X types [Luo91] and

Chapter 7. Conclusion 225

type universes [HP91) supported by LEGo. These examples are however too
simple to test the logic’s utility for non-academic verification problems. That
implementation with its naive encoding of OM as £y : Prop.v D M is insufficient
for two reasons: It is not faithful to the intended interpretation of lax logic as
laid down in this thesis, since equivalences like OM V ON = O(M v N), which
are valid by constraint extraction, cannot be derived in it. Also, since OM is
no longer a proposition in Prop but in Types (at least), the encoding of the
logic has to take place in the predicative type levels. Hence it makes essential
use of LEGO’s implicit type inference for universe levels which is an unnecessary
type-theoretic compﬁcation.

Clearly, much work is left to be done here. LEGO has proven to be a con-
venient and flexible environment for experimenting with prototype logics and
a more adequate implementation of lax logic in LEGO should be sought. Al-
ternatively, an implementation on top of other verification systems should be
investigated that are tailored to the needs of hardware design, and provide the
necessary infrastructure to run larger examples. In particular, LAMBDA [FM89]
and VERITAS [HDL89] seem to be promising candidates. In LAMBDA the possi-
bility of programming complex refinement tactics would permit the automation
of large portions of constraint analysis and verification for specific circuit design
styles like synchronous or speed-independent circuits. Although LAMBDA does
not have an explicit notion of proof, its flezible meta-variables could be used to

accumulate constraint information.

7.1.2 Application Areas

To prepare for realistic applications a particular area of application needs to
be picked and its characteristic constraints investigated. The natural area is
synchronous hardware design where on could examine the following classes of

timing constraints:

¢ setup and hold times for input signals

Chapter 7. Conclusion 226

¢ maximum duration and minimal separation of active clock phases

¢ lower bounds on sampling times when the circuit is known to have assumed

a defined state after power-on time.

In the context of synchronous circuits it would be interesting to consider more
than one clock signal and negative delays for reasoning about retiming, which
crucially relies on the third type of the constraints above.

As an interesting long-shot application for this research we envisage the inte-
gration of the interactive synthesis of speed-independent circuits (SICs) and syn-
chronous circuits (SYCs) within one homogeneous framework employing suitable
abstraction functions and corresponding timing constraints. Such a framework,
which will crucially benefit from systematic handling of constraints, should be
capable of handling a hierarchy of descriptions comprising two-phase SICs, four-

phase SICs, SYCs with single clock, and SYCs with multiple clocks.

7.1.3 Meta-Theory

We suggest several possibilities to develop further the meta-theory of lax logic.

Lifting Theorems

Theorem 3.1.17 states that if a formula is provable in lax logic, then its iprojection
into the base logic (i.e. all Os and s removed) is provable, too. We noted that
in general the converse is false. An interesting question with immediate practical
relevance is to characterize special cases in which the converse does hold, and
to find systematic ways of lifting theorems in the base logic to theorems in lax
logic. For instance, we conjecture, provided the base logic does not contain
propositions and rules other than those defined in this thesis, that every theorem
¢ of the base logic becomes a theorem in lax logic by prefixing its atomic parts
by Ou; further, if ¢’ is this lifted formula then a proof of ¢' can be obtained
constructively from every proof of ¢. Whether all these lifted proofs are optimal,

or maximal, constraintwise is a separate issue which needs to be investigated.

Chapter 7. Conclusion 227

Ordering on Proofs

The process of extracting constraint information comes down to a notion of ex-
plicit proofs for sequents in lax logic. To denote that a term ¢ : {M| is the
constraint information extracted from some derivation of F M we may write
F ¢ : M. The extraction rules then can be translated easily into a correct and
complete calculus for deriving instances of this new form of judgement.
Constraint analysis in our framework is proof analysis. It appears natural to
introduce an ordering on proofs, written cC. d : M, say, expressing that constmint
information c is ‘stronger’ than d. Intuitively, one would expect that cCd : M
holds if there is a proof of M* ¢ from M* d. Such an ordering is a natural concept
since constraint analysis then amounts to extracting the constraint information
d from a derivation of M, replacing it by a stronger constraint ¢, and proving
cCd: M. Also, the ordering measures the extent to which formula M has been

proven.

Let us make this more concrete. Consider a proof f : ¢¢ D Ouyp. By
definition, f is a constraint term of type 1 = (2* x 1) such that ¢ Dy D ¥
is derivable in the base logic, where v =4 I(r,(f *))} is the hidden constraint
constructed by f. Performing constraint analysis on f means replacing 4 by
some other, perhaps simpler, assumption 9’. The condition under which this is

possible is that
¢AY F v (7.1)

holds, i.e. ¥ together with ¢ is stronger than . In the extreme case where v/
is to be the weakest possible assumption, namely 4* = #rue, this amounts to
proving « from ¢. Given that the hidden assumption 7 is an input constraint of
a hardware device this will only be possible if ¢ contains complete information
about the environment of the device: showing ¢ v amounts to proving that
the environment satisfies the input constraints. The typical case, however, will

be that ¢ merely describes parts of a complete circuit in which case only parts

Chapter 7. Conclusion 228

of 4 will follow from ¢ while other parts have to be retained in 4’. Formally, if

' = O(m(f’ %)), then (7.1) is equivalent to the condition

(tdDC)*f F (14D Ot S

or, if this is taken to define T, the condition

FEf + 14209

The properties of T, assuming an appropriate definition, should be explored
and axiomatized in a correct and, if possible, complete way. One would like to
show that if F ¢ : M and ¢ is maximal for C, i.e. ¢ is a ‘weakest’ constraint,
then M has been proven properly, i.e. there is a proof of M’ in the base logic,

where M’ is obtained from M by dropping all Os and ¢s.

Categorical Models

From the syntactical data of lax logic we construct in Section 5.2 a first-order hy-
perdoctrine with some additional structure for an arbitrary notion of constraint.
For the concrete notion of constraint (2*,]], @) the resulting categorical model
was shown to capture constraint extraction. More generally, future research

should investigate the class of hyperdoctrines with

e a strong monad in each fibre that is preserved by translations, together

with

e a reflective sub-hyperdoctrine (viz. the base logic) which is represented by

a distinguished object Q in the base

as the intended semantical characterization of lax logic. It may be asked whether
lax logic is complete wrt. this class, or what the relationship is between this class
and the subclass of hyperdoctrines induced by the syntactic calculus together

with a concrete notion of constraint.

Chapter 7. Conclusion ' 229

Specialization to Other Notions of Constraint

In this thesis we are concerned mainly with a very abstract notion of constraint.
The formal treatment, however, is developed independently from the notion of
constraint and as indicated briefly at the beginning of Chapter 3 other notions can
be considered. In fact, for a particular well-defined application more constraint-
handling potential can be built in by specializing to the characteristic constraints
of the application. For verifying synchronous circuits a simple idea might be to
take as constraints natural numbers, denoting upper and lower bounds, and to
interpret the operation - on constraints as maz or min, depending on the type

of constraints involved.

Generalization to Higher-Order Logic

Another direction of meta-theoretic research is to attempt to extend lax logic
by higher-order quantification. As was noted before in Chapter 6 this requires

adding dependent types to the object language.

7.2 Open Problems

There are some technical deficiencies associated with the framework of lax logic

as laid out in this thesis, which still need to be tackled.

The Kripke semantics in Section 5.1 was shown to be incomplete for the
propositional fragment of lax logic. The question might be answered eventually
whether there is a modification which is complete. It seems clear that one would
have to consider two ‘independent’ frame relations C; and C,, where the first
is used for intuitionistic implication and the latter for O. Also, it might be

necessary to add axioms
Ofalse D false O(MVN)DOMVON

to the logic. These formulae would be valid in the Kripke models (provided truth

of V is decided locally) and also for constraint extraction but apparently they are

Chapter 7. Conclusion 230

not provable in lax logic. Also, an extension of the Kripke analysis covering full
lax logic is missing.

In the categorical semantics of Section 5.2 not all features of lax logic have
actually been covered. What is omitted is a categorical account of inductive data

types such as natural numbers and lists, and also of equality.

The examples trcated in Chapter 4 introduce constraints by referring to the
global hypothesis let’s-not-bother. In the context of this hypothesis arbitrary
subgoals of form Oi¢ can be solved by brute force. In the logic as it stands no
measures are taken to control this use in any way, which means essentially that
the user can make his job very easy by resorting to let’s-not-bother early on in a
proof. For instance, a verification engineer pressed for time might deal with the

decrementor
let’s-not-bother & ¥n. Ou(succ(decn) = n)

by applying VI and then using let’s-not-bother immediately to prove the spec-
ification Ou(succ(decn) = n), which of course means that he has not done
any verification work at all. This is revealed by the extracted constraint term
An. ([succ(decn) = n}, *), which shows that the whole proof obligation merely is
pushed into the constraint. Notice, the potential for such a thing to happen is
indicated already by the hypothesis let’s-not-bother in the lax proof: If there is
no hypothesis let’s-not-bother there is no problem either.

Thus, so far there is no guarantee that there is an upper bound on the strength
of a constraint. The open question is whether it is possible, within a restricted
proof environment, to get proper control over the constraints introduced. For
synchronous systems and minimal clock period as the constraint, for instance,
one might imagine a specialized sub-logic that exploits the fact that for every

circuit there is a minimal clock period beyond which it operates correctly.

Bibliography

{Andsé}

(BCsS]

(BJ83]

(BM92)

[Brz76}

{Bus91}

[BWo0)

P. B. Andrews. An Introduction to mathematical logic and type theory:
To truth through proof. Academic Press, 1986.

C. Berthet and E. Cerny. Verification of asynchronous circuits: Be-
haviours, constraints, and specifications. In G. Birtwistle and P. Sub-
rahmanyam, editors, VLSl Specification, Verification, and Synthesis,
pages 385-404. Workshop on Hardware Verification, Kluwer Academic
Publishers, 1988.

J. C. Barros and B. W. Johnson. Equivalence of the arbiter, the syn-
chronizer, the latch, and the inertial delay. IEEE Transactions on

Computers, C-32(7):603-614, July 1983,

R. M. Burstall and J. H. McKinna. Deliverables: a categorical ap-
proach to program development in constructions. Technical Report
ECS-LFCS-92-242, Edinburgh University, Department of Computer
Science, 1992,

Y. Brzozowsky. Digital Networks. Prentice-Hall, 1976.

H. Busch. Proof-based transformation of formal hardware models. In
M. Sheeran and G. Jones, editors, Proceedings of the Workshop on
Designing Correct Circuits. Springer Verlag, 1991.

M. Barr and C. Wells. Category Theory for computing Science. Pren-
tice Hall, 1990.

231

Bibliography 232

[CHs8]

[Che80}

{Chu4(}

[Cur52)

[Curs7]

[Dav88)

[DMss]

[Fle8o}

[FM89)

[Fou89]

Th. Coquand and G. Huet. The Calculus of Constructions. Informa-
tion and Computation, 76:95-120, 1988.

B. Chellas. Modal Logic. Cambridge University Press, 1980.

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56-68, 1940.

. B. Curry. The elimination theorem when modality is present. Jour-

nal of Symbolic Logic, 17:249-265, 1952,

H. B. Curry. A Theory of Formal Deducibility, volume 6 of Notre Dame

Mathematical Lectures. Notre Dame, Indiana, 1957.

Bruce S. Davie. A formal hierarchical design and validation method-
ology for VLSI. PhD thesis, Edinburgh University, Department of
Computer Science, October 1988.

B. S. Davie and G. J. Milne. Contextual constraints for design and
verification. In G. Birtwistle and P. Subrahmanyam, editors, VLSI
Specification, Verification, and Synthesis, pages 257-265. Workshop

on hardware verification, Kluwer Academic Publishers, 1988.

W. L. Fletcher. An engineering approach to digital design. Prentice-
Hall, Englewood Cliffs, N.J., 1980.

M. Fourman and E. M. Mayger. Formally based system design - Inter-
active hardware scheduling. In G. Musgrave and U. Lauther, editors,
Proceedings of the IFIP TC 10/WG 10.5 International Conference on
VLSI, Munich, pages 101-112, 1989.

M. P. Fourman. The logic of topoi. In J. Barwise, editor, Mathematical

Logic, pages 1053-1090. North-Holland, 1989.

Bibliography 233

{Gor8s)

[Gor8s]

(HD8G6]

[HDL89]

[Hen50]

[Her88a]

[Herg8b)

[HN89a)

[HN8ob)

M. 1. C. Gordon. HoL: A machine oriented formulation of higher
order logic. Technical Report 68, University of Cambridge, Computer
Laboratory, July 1985.

M. J. C. Gordon. HoOL: A proof generating system for higher-order '
logic. In G. Birtwistle and P. Subrahmanyam, editors, VLSI Specifi-
cation, Verification, and Synthesis, pages 73-128. Workshop on Hard-

ware Verification, Kluwer Academic Publishers, 1988.

F. K. Hanna and N. Daeche. Specification and verification using higher
order logic: A case study. In G. M. Milne and P. A. Subrahmanyam,
editors, Formal Aspects of VLSI design, Proc. of the 1985 Edinburgh
conf. on VLSI, pages 179-213. North-Holland, 1986.

F. K. Hanna, N. Daeche, and M. Longley. VERITAS+:a specification
language based on type theory. In Proc. Conf. on Hardware Specifica-
tion, Verification and Synthesis, Cornell University, July 1989.

L. Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15(2):81-91, June 1950.

J. Herbert. Formal verification of basic memory devices. Technical
Report 124, University of Cambridge, Computer Laboratory, February
1988.

John Herbert. Temporal abstraction of digital design. In G. Milne,
editor, The fusion of hardware design and verification, pages 1-25,
University of Strathclyde, Glasgow, Scotland, July 1988. IFIP WG
10.2.

S. Hayashi and H. Nakano. PX, A Computational logic. MIT press,
1989.

S. H. Hwang and A. R. Newton. BEAVER: a behavioral formal verifier
for VLSI design. In L. Claesen, editor, Applied formal methods for

Bibliography 234

[HPS91)

[3590)

[KS74]

[Law69)

(LBC8S]

[LP92]

[LS86]

[Luo9l]

[Mar86]

correct VLSI design, pages 605-624. Elsevier Science Publishers, B.V.
North Holland, 1989.

R. Harper and R. Pollack. Type checking, universe polymorphism,
and typical ambiguity in the calculus of constructions. Theoretical

Computer Science, 1991.

G. Jones and M. Sheeran. Circuit design in ruby. In J. Staunstrup,
editor, Formal methods for VLSI design, pages 13-70. North-Holland,
1990.

G. M. Kelly and R. Street. Review of the elements of 2-categories.
In G. M. Kelly, editor, Proc. Sydney Category Theory Seminar, pages
75-103. Springer, 1974.

F. W. Lawvere. Adjointness in foundations. Dialectica, 28:281-296,
1969.

M. Langevin, C. Berthet, and E. Cerny. Verification of input con-
straints for synchronous circuits. In G. Milne, editor, The fusion of
hardware design and verification, pages 137-155, University of Strath-
clyde, Glasgow, Scotland, July 1988. IFIP WG 10.2.

Z. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. LFCS Report ECS-LFCS-92-211, Department of Computer
Science, University of Edinburgh, 1992.

J. Lambek and P. J. Scott. Introduction to higher order categorical
logic. Cambridge University Press, 1986.

Z. Luo. A higher-order calculus and theory abstraction. Information

and Computation, 90(1):107~137, 1991.

L. R. Marino. Principles of computer design. Computer Science Press,

Rockwell, 1986.

Bibliography 235

[McK92]

[Mel83]

{Men91a}

[Men91b)

[Mog89)

[Pit89]

[PM89]

[Pra6s)

(Ps86)

J. H. McKinna. Deliverables: A categorical Approach to Program De-
velopment in Type theory. PhD thesis, University of Edinburgh, 1992.

Thomas I'. Melham. Abstraction mechanisms for hardware verifica-
tion. In G. Birtwistle and P. Subrahmanyam, editors, VLSI Specifica-
tion, Verification, and Synthesis, pages 267-292. Workshop on Hard-

ware Verification, Kluwer Academic Publishers, 1988.

M. Mendler. Constrained proofs: A logic for dealing with be-
havioural constraints in formal hardware verification. In G. Jones
and M. Sheeran, editors, Proceedings of the Workshop on Designing
Correct Circuits, pages 1-28. Springer Verlag, 1991.

M. Mendler. A first-order logic of designs. Talk given at the Workshop
on Categorical Methods in the Semantics of Programming Languages,

University of Glasgow, April 11-13 1991.

E. Moggi. Computational lambda-calculus and monads. In {th IEEE
Conf. LICS, 1989.

A. Pitts. Notes on categorical ldgic. Lecture Notes, University of

Cambridge Computer Laboratory, Lent Term 1989.

Ch. Paulin-Mohring. Extracting F,, programs from proofs in the cal-
culus of construction. In Proceedings 16th ACM Symposium on POPL,
pages 89-104, 1989.

Dag Prawitz. Natural Deduction. A Proof Theoretic Study, volume 3
of Stockholin Studies in Philosophy. Almquist & Wiksell, 1965.

G. Plotkin and C. Stirling. A framework for intuitionistic modal logics.
In Theoretical aspects of reasoning about knowledge, pages 399-406,
Monterey, 1986.

Bibliography 236

[See83]

(Sub88a]

[Sub8sb]

(TBG89]

[Tra87)

[TvD88]

[Ung69)

[Wei86)

[Wei90}

R. A. G. Seely. Hyperdoctrines, natural deduction and the beck condi-
tion. Zeitschrift fiir mathematische Logik und Grundlagen der Mathe-
matik, 20:505-542, 1983.

P. A. Subrahmanyam. Contextual constraints, temporal abstraction,
and observational equivalence. In G. Milne, editor, The fusion of hard-
ware design and verification, pages 156-182, University of Strathclyde,
Glasgow, Scotland, July 1988. IFIP WG 10.2.

P. A. Subrahmanyam. Towards a framework for dealing with sys-
tem timing in very high level silicon compilers. In P. Subrahmanyam
G. Birtwistle, editor, VLSI Specification, Verification, and Synthesis,
pages 159-215. Workshop on Hardware Verification, Kluwer Academic
Publishers, 1988.

A. Tarlecki, R. M. Burstall, and J. A. Goguen. Some fundamental
algebraic tools for the semantics of computation. part 3: Indexed cat-
egories. Internal Report ECS-LFCS-89-90, Edinburgh University, De-

partment of Computer Science, 1989.

Niklas Traub. A formal approach to hardware analysis. PhD thesis,
Edinburgh University, Department of Computer Science, March 1987.

A. S. Troelstra and D. van Dalen. Constructivism in Mathemalics.

North-Holland, 1988.

S. H. Unger. Asynchronous sequential switching circuits. Wiley-

Interscience, New York, 1969.

D. W. Weise. Formal multilevel hierarchical verification of synchronous

MOS VLSL PhD thesis, Massachusetts Institute of Technology, 1986.

D. Weise. Multilevel verification of MOS circuits. JEEE Transactions
on Computer-Aided Design, 9(4):341-351, April 1990.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28
	Seite 29
	Seite 30
	Seite 31
	Seite 32
	Seite 33
	Seite 34
	Seite 35
	Seite 36
	Seite 37
	Seite 38
	Seite 39
	Seite 40
	Seite 41
	Seite 42
	Seite 43
	Seite 44
	Seite 45
	Seite 46
	Seite 47
	Seite 48
	Seite 49
	Seite 50
	Seite 51
	Seite 52
	Seite 53
	Seite 54
	Seite 55
	Seite 56
	Seite 57
	Seite 58
	Seite 59
	Seite 60
	Seite 61
	Seite 62
	Seite 63
	Seite 64
	Seite 65
	Seite 66
	Seite 67
	Seite 68
	Seite 69
	Seite 70
	Seite 71
	Seite 72
	Seite 73
	Seite 74
	Seite 75
	Seite 76
	Seite 77
	Seite 78
	Seite 79
	Seite 80
	Seite 81
	Seite 82
	Seite 83
	Seite 84
	Seite 85
	Seite 86
	Seite 87
	Seite 88
	Seite 89
	Seite 90
	Seite 91
	Seite 92
	Seite 93
	Seite 94
	Seite 95
	Seite 96
	Seite 97
	Seite 98
	Seite 99
	Seite 100
	Seite 101
	Seite 102
	Seite 103
	Seite 104
	Seite 105
	Seite 106
	Seite 107
	Seite 108
	Seite 109
	Seite 110
	Seite 111
	Seite 112
	Seite 113
	Seite 114
	Seite 115
	Seite 116
	Seite 117
	Seite 118
	Seite 119
	Seite 120
	Seite 121
	Seite 122
	Seite 123
	Seite 124
	Seite 125
	Seite 126
	Seite 127
	Seite 128
	Seite 129
	Seite 130
	Seite 131
	Seite 132
	Seite 133
	Seite 134
	Seite 135
	Seite 136
	Seite 137
	Seite 138
	Seite 139
	Seite 140
	Seite 141
	Seite 142
	Seite 143
	Seite 144
	Seite 145
	Seite 146
	Seite 147
	Seite 148
	Seite 149
	Seite 150
	Seite 151
	Seite 152
	Seite 153
	Seite 154
	Seite 155
	Seite 156
	Seite 157
	Seite 158
	Seite 159
	Seite 160
	Seite 161
	Seite 162
	Seite 163
	Seite 164
	Seite 165
	Seite 166
	Seite 167
	Seite 168
	Seite 169
	Seite 170
	Seite 171
	Seite 172
	Seite 173
	Seite 174
	Seite 175
	Seite 176
	Seite 177
	Seite 178
	Seite 179
	Seite 180
	Seite 181
	Seite 182
	Seite 183
	Seite 184
	Seite 185
	Seite 186
	Seite 187
	Seite 188
	Seite 189
	Seite 190
	Seite 191
	Seite 192
	Seite 193
	Seite 194
	Seite 195
	Seite 196
	Seite 197
	Seite 198
	Seite 199
	Seite 200
	Seite 201
	Seite 202
	Seite 203
	Seite 204
	Seite 205
	Seite 206
	Seite 207
	Seite 208
	Seite 209
	Seite 210
	Seite 211
	Seite 212
	Seite 213
	Seite 214
	Seite 215
	Seite 216
	Seite 217
	Seite 218
	Seite 219
	Seite 220
	Seite 221
	Seite 222
	Seite 223
	Seite 224
	Seite 225
	Seite 226
	Seite 227
	Seite 228
	Seite 229
	Seite 230
	Seite 231
	Seite 232
	Seite 233
	Seite 234
	Seite 235
	Seite 236
	Seite 237
	Seite 238
	Seite 239
	Seite 240
	Seite 241
	Seite 242
	Seite 243
	Seite 244
	Seite 245

