
A Modal Logic f or Handling

Behavioural Constraints in Formal

Hardware Verification

Michael V. Mendler

Doctor of Philosophy

University of Edinburgh

1992

https://doi.org/10.20378/irbo-52663

Abstract

The application of formal methods to the design of correct computer hardware

depends crucially on the use of abstraction mechanisms to partition the synthesis

and verification task into tr~table pieces. Unfortunately however, behavioural

abstractions are genuine mathernatical abstractions only up to behavioural con-

straints, i.e. under certain restrictions imposed on the device's environment.

Timing constraints on input signals form an irnportant class of such restrictions.

Hardware components that behave properly only under such constraints satisfy

their abstract specifications only approximately. This is an impediment to the

naive approach to formal verification since the question of how to apply a theo-

rem prover when one only knows approzimately what formula to prove has not

as yet been dealt with.

In this thesis we propose, as a solution, to interpret the notion of 'correctness

up to constraint' as a rnodality of intuitionistic predicate logic so as to remove

constraints from the specification and to make them part of its proof. This

provides for an 'approximate' verification of abstract specifications and yet does

not compromise the rigour of the argument since a realizability semantics can

be used to extract the constraints. Also, the abstract verification is separated

from constraint analysis which in turn may be delayed arbitrarily. In the proposed

framework constraint analysis comes down to proof analysis and a computational

semantics on proofs may be used to manipulate and simplify constraints.

ii

Acknowledgements

The development of this work has been inßuenced by discussions with my su-

pervisors Rod Burstall a.nd Mike Fourma.n, a.nd my friend Terry Stroup. 1 a.m

indebted to both Terry and Rod for their continued mora.l support a.nd scientific

guidance.

1 would like to tha.nk Bernhard Steffen and Eugenio Moggi for a plea.surable

start in Edinburgh a.nd for helping me a.long during my ea.rly days as a resea.rch

student. Bernhard a.nd Eugenio put me up in their ßat at Mayfield Terra.ce a.fter

1 had broken my colla.rbone. They looked a.fter me for a fourtnight when 1 was

hardly able to move.

1 have benefited from discussions with Ba.rry Jay, Ra.ndy Pollack, Zha.ohui

Luo, and James McKinna at Edinburgh, a.nd Wolfgang Degen at Erlangen. At

Erlangen the Dienstagsclub, most notably Norbert Götz, Uwe Nestmann, Thomas

Amrhein, Martin Hofmann, and Martin Steffen, provided a stimulating environ-

ment a.nd a Jot of encouragement.

1 am grateful to Klaus Müller-Glaser for his encoura.gement a.nd the opportu-

nity to become research assistant with the Lehrstuhl für Rechnergestützten Schal-

tungsentwurf at Erlangen where a fair part of this work was written. During the

final pha.ses of writing up I was employed by the Lehrstuhl für Rechnerarchitek-

tur und Verkehrstheorie on the research project Spezifikation und Verifikation

verteilter Systeme.

Norbert Götz, Matt Fa.irtlough, Zha.ohui Luo, Stuart Anderson, and Georg

Schied have read parts of this thesis in a dra.ft version. My thanks go to them

iii

iv

for their valuable criticism and various suggestions for improvement. Also, 1

would like to thank Julian Bradfield for bis assistance with type-setting and for

supplying 'JEX-macros for proof trees. 1 owe special thanks to Kees Goossens

who kindly helped with the binding and submission of this thesis.

This work was supported by scholarships from the Studienstiftung des Deut-

schen Volkes and the Stevenson Foundation, partly under SERC grant GR/F

3~890 "Formal System Design", and by the Deutsche Forschungsgemeinschaft,

SFB 182.

1 am greatly indebted to my wife Marion for her love and for reassuring me

all along. 1 will never forget the wonderful time we spent together in Scotland.

During those few years of postgraduate study Marion gave birth to our girls Vere-

na, Marie, and Sophie. I know she took over much of the strenuous and tiresome

parts of caring for the babies, which took a lot of patience and understanding on

her side.

Declaration

This thesis ha.s been composed by myself. The work reported herein, except

where indica.ted in the text, is my own, a.nd ha.s not been presented for a.ny

university degree before. Some of the introductory ma.teria.l in Cha.pter 1 a.nd

Section 2.3, a.nd the exa.mple in Section 4.2 ha.ve alrea.dy a.ppeared in an early

version a.s (Men9la].

Michael V. Mendler

Table of Contents

1 Introduction 1

1.1 Hardware Verification a.nd Behavioural Abstraction 2

1.2 The Problem of Constraints 3

1.3 Aim of Thesis . . 5

1.4 Outline of Thesis 7

2 Motivation 9

2.1 Exa.rnple 1 9

2.2 Exa.rnple 2 . 11

2.3 Example3. 13

2.3.1 Synchronous Circuits .. 13

2.3.2 A Simple Circuit Design 15

3 Lax Logic 23

3.1 Definition of Lax Logic •• „ •••• 28

3.1.l Base Logic . . . 28

3.1.2 Extending the Base Logic 35

3.1.3 Lax Logic ... 48

3.2 Constra.int Extraction 59

3.2.1 Application of Constra.int Extra.ction 71

3.3 Natural Deduction Proofs and Constraint Extra.ction 80

4 Application Examples 87

vi

4.1 Oecrementor, lncrementor, and Factorial

4.1.l Decrementor

4.1.2 Composing lncrementor and Decrementor

4.1.3 lncrementor

4.1.4 Factorial ..

4.2 Example of Synchronous Hardware Design

I> Some Meta-Theory for Lax Logic

5.1 On Kripke Semantics for 0 ...

5.2 A Category Theoretical Interpretation of Lax Logic

5.2.1 Base Logic as an lndexed Preorder

5.2.2 Lax Logic as lndexed Category

6 Related Work

7 Conclusion

7.1 Further Research

7.1.l Implementation

7.1.2 Applica.tion Areas .

7.1.3 Meta.-Theory

7.2 Open Problems ...

vii

87

89

96

98

112

128

140

140

152
152

166

212

222

224
224

225

226

229

List of Figures

2-1 Xor-Gate and Level-Triggered Latch

2-2 Exclusive-Or and One-Unit Delay ..

2-3 Implementation of the Modulo-2 Counter

3-1 Well-Formed Terms of the Base Logic, I

3-2 Sequent Rules of the Base Logic .

3-3 Derived Rules for the Base Logic

3-4 Well-Formed Terms of B, II

3-5 Equality Axioms of B for Standard Data Types

3-6 Well-Formed Formulae of Lax Logic .

3-7 Structural Rules of Lax Logic

3-8 Induction Rules of Lax Logic .

3-9 Logica.l Inference Rules of Lax Logic

3-10 Constraint Extra.ction for Structural Rules of Lax Logic .

3-11 Constraint Extra.ction for Logical Rules of Lax Logic, I .

3-12 Constraint Extra.ction for Logical Rules of Lax Logic, II .

16

17

20

31

32

34

38

40

50

52
52

58

65

66

68

3-13 Derivation of <>L from <>F, <>M and Extracted Constraint Term . 69

3-14 A Simple Application of Constraint Extra.ction . . . 11

3-15 Natural Deduction Rules of Lax Logic 85

3-16 Translation of Natural Deduction Trees into Constraint Terms 86

4-1 Derivation which Verifies the Decrementor Function 91

4-2 Derivation for Composition of lncrementor and Decrementor 96

4-3 w-Bit Realization of Successor 102

viii

4-4 Global Structure of Derivation l .

4-5 Sub-Derivation (Pi)

4-6 Step Case of Induction, Sub-Derivation (P2)

4-7 Proof of Derivation 2

4-8 Proof of Derivation 3

4-9 Derivation for Abstracting reor as a Synchronous Device ..

4-10 Verification of Correctness for Modul1>-2 Counter .

4-11 Low-Level Implementation of Modulo-2 Counter

5-1 Interpretation of Structural Rules for C0

5-2 Interpretation of Logica.I Rules for Co . .

ix

103

104

105

118

119

131

134

138

204

205

Chapter 1

lntroduction

This introductory chapter, as a motivation for the results to be descrihed in

this thesis, identifies a prominent practical prohlem arising in the application of

interactive theorem proving to the formal synthesis of correct computer hardware

which so far has no satisfactory solution.

The point of departure of this thesis is the notion of a behavioural constraint

and its specific nature. In this chapter this notion, as understood here, is de-

fined and discriminated from other interpretations of the term. Further, the

practical problem which results from the need to handle constraints in verifying

circuits across incomplete abstractions is explained in some detail. The adequate

formalization of constraints, so it is argued, calls for special mechanisms to be

introduced in a theorem prover. Finally, the goal of our research is formulated,

the results of which are summed up in this thesis.

At the end of this chapter a short summary of the results and the structure

of the thesis is given.

1

Chapter 1. IntroducLion 2

1.1 Hardware Verification and Behavioural Ab-

straction

The application of interactive theorem proving to the design of computer hard-

ware is taking first steps from pure correctness analysis to interactive synthesis.

Examples of such design tools, which were only recently developed, are LAMBDA

[FM89) and VERITAS [HDL89). Both systems, at their roots intera.ctive theo-

rem provers, directly aim at providing an environment for the synthesis of correct

digital circuits by stepwise refinement of an abstract behavioural specification.

The guiding idea underlying such design tools is to take established engineering

techniques in the pra.ctical design of hardware and gradually to formalize them

in terms of mathematical logic.

Hardware design proceeds - ignoring false starts and similar matters - by

refining numerous levels of abstra.ction, beginning typically with architectural

level block diagrams and ending, by way of register-transfer and gate networks,

in a transistor layout that is implemented in a. physical medium. This process

postpones detailed design decisions until they are appropriate and factors the ver-

ification of the final implementation's correctness into a sequence of smaller steps:

lf at each level of abstraction the design is shown to behave as required by the

next higher level, then the final implementation meets its original specification.

lmplementing this technique in terms of formal logics on a theorem prover

presupposes rigorous mathematical models for the descriptions a.t each level of

abstra.ction as weil as corresponding abstraction a.nd realization functions, so

that behaviours described at different levels may be compared. The spectrum

of models ranges from discrete computa.tional structures appropriate to a.lgorith-

mic descriptions down to differential equations modelling electrica.I behaviour of
transistors.

Behavioural abstractions by their very nature are genuine mathematical ab-

stractions only up to behavioural constraints, i.e. under certa.in restrictions im-

Cha.pter 1. lntroduction 3

posed on the device's environment. Exa.mples of such constraints are timing con-

straints for flipfiops or synchronous circuits, handshaking constraints for speed-

independent circuits, or the requirement that input data be within a specified

integer range in order to avoid overfiow of arithmetical operations. Hence, in

general, the synthesis of a hardware design through levels of abstraction can be

verified only up to certa.in constraints, and the question arises how this should

best be implemented in modern interactive theorem provers.

1.2 The Problem of Constraints

A typical phenomenon which one encounters with the implementation of even

conceptually simple abstraction steps which are standard practice in hardware

engineering is that they cannot be formalized without introducing constraints.

Now, the notion of constraint in computer science andin particular in hardware

engineering is heavily overloaded, so a definition of what is meant by it in this

thesis is in order:

A constraint is a restriction on the environment of a (hardware or

software) component under which a particular abstraction of its be-

haviour is valid.

As an example consider the passage from a sequential circuit, built according

to the synchronous design paradigm, to its abstract description in terms of a

finite state ma.chine. Here the abstraction is only valid as long as the environment

(among other things) obeys setup and hold timing constraints which require that

all input lines of the sequential circuit must be kept stable during a certain well-

defined phase of the clock. Clearly, the necessity for imposing timing constraints

is a general phenomenon, not restricted to the synchronous case. lt is an even

more important issue in asynchronous designs. (Her88a,Ung69,Sub88a).

Although it is generally recognized that constraints are an essential concept

in hardware design the specific nature of constraints and the question of whether

Chapter 1. Introduction 4

constraints are amenable to or require special treatment in a hardware theorem

prover has not been adequately discussed. The work presented in this thesis

is motivated by the following four problems associated with having to handle

oonstraints on a theorem prover.

• By definition a constraint is the price one has to pay for making a partic-

ular behavioural abstraction work, i.e. it embodies an unwanted byproduct of

a~straction. Therefore, in contrast to specifications, constraints should ideally

be suppressible for a first cut of a design. This is the way engineers proceed

but it is not at all obvious how such a scheme can be formalized on a theorem-

prover. The question of how to apply a theorem prover when one only knows

approximately what formula to prove has not as yet been dealt with. After all,

in formal reasoning by its very nature, there is no room for 'rough estimates' or

'approximate specifications'. One is forced to cross the t's and dot the i's and

cannot leave out anything on which correctness of an abstraction depends.

• Another good reason for distinguishing constraints from specifications is due

to the fact that the former are conditions on the environment of a component

whereas the latter is a condition on the component itself. Consequently, in the

design process, constraints are being a.ccumulated bottom-up as more and more

pa.rts of a circuit become implemented while at the same time the specification

is being resolved top-down. This again requires special effort on a theorem-

prover as it amounts to some kind of 'bidirectionality' in proof steps. At each

intermediate design state and abstraction level information about the verification

goal is incomplete: one does not know how to weaken the abstract specification

to accommodate for potential input constraints until the final implementation

has been given.

• The interaction between abstra.ction and constraints poses a tangled prob-

lem. Constraints interfere with the essential idea of reasoning about a behaviour

in abstract terms which is to avoid details specific to the implementation at

the more concrete level. For it is imp088ible to work with the device's abstract

behaviour without at the same time having to deal with the concrete-level con-

Chapter 1. Introduction 5

straints on which it depends. To verify, for instance, that the behaviour of a

composite device meets its abstract specification it does not suffice simply to

compose the abstract specifications of its components. The verification also has

to show that at the concrete level the composition does not violate the constraints

of each component (which in general, will ma.ke it necessary to impose constraints

again on the environment of the composite device).

• Constraints defeat the idea of top-down refinement, which is first to decom-

pose a system into components at the abstract level and then independently to

irnplernent each cornponent at the concrete level; Verifying constraints requires

knowledge both of the overall structure of the system (the environment of a com-

ponent) frorn the abstract level and of the irnplernentation (the constraints of a

cornponent) at the lower level. In short, the general situation in the rnodelling of

hardware seerns to be that of incornplete abstractions, i.e. abstractions modulo

constraints. The constraints on which the abstraction depends ernbody residual

aspects of the concrete level that impinge on the subsequent design and cannot

be abstracted away once and for all.

1.3 Aim of Thesis

Recognizing the special nature of constraints as opposed to specifications and

their importance for the design process, this thesis investigates the advantages of

distinguishing at the level of the logical inference mechanism between both kinds

of propositions; narnely those pertaining to constraints and those pertaining to

specificatioµs. This thesis contributes towards a systematic method for handling

constraints in logic-hased design tools which is tailored to the specific nature of

constraints.

We want to make reasoning about abstract behaviour and constraint analysis

fall into two separate verification passee, rather than having them intertwined as

the straight-forward approach suggests. This thesis introduces and justifies an

extension to ordinary predicate logic in which the main verification of an abstract

Chapter 1. Introduction 6

behaviour is truly an a.bstract verification in that it does not have to be concerned

with constraints. lt proceeds by assuming a successful constraint analysis wher-

ever it depends on constra.ints. In the course of this main verification information

about the constra.ints is accumulated as a proof obligation to be filled in at a later

stage. Ideally (in an implementation of this logic), the remaining verification task

corresponding to constraint analysis would then be handed over to a specialized

tool or proof tactic. In some cases it could be solved automatically, for instance

extracting the minimal clock period for a synchronous system. In other cases,

where the logic is undecidable, it has to be done interactively. An example of

this would be proving that the output of a certain integer function lies within a

given finite range.

In this thesis we propose a. notion of laz proof and laz specification which

provides for 'approximate' verification of abstract specifications, and for a sys-

tematic method of removing from the verification engineer the burden of having

to handle constraints. In order not to compromise the rigour of formal proofs this

degree of looseness is implemented within the framework of a strictly deductive

logic.

More concretely, we interpret the notion of 'correctness up to constraint' as a

modality of intuitionistic predicate logic so as to remove constraints from specifi-

cations and to make them part of their proofs. This provides for an 'approximate'

verification of abstract specifications, and yet it does not .compromise the rigour

of the argument since a realizability semantics can be used to extra.et the con-

straints. Thereby the task of verifying an abstract behaviour is separa.ted from

the task of analyzing constraints which may be dela.yed arbitrarily. Thus, in

the proposed framework constraint analysis comes down to proof analysis and

a computational semantics on proofs may be used to ma.nipulate and simplify

constraints.

The idea lea.ding to Laz Logic presented in this thesis reftects good engineering

practice: In a first approximation one tries to establish the feasibility of a design.

Chapter 1. Introduction 7

Only then is it worthwhile to attempt a complete validation in a second step.

Lax Logic is an attempt to formalize this engineering principle mathematically

and to implement it at the root of a formal predicate logic.

1.4 Outline of Thesis

We begin in Chapter 2 with motivating the problem of constraints on a charac-

teristic example from hardware verification.

The formal calculus of Laz Logic will be set up in l)ection 3.1 of Chapter 3.

lt is built on top of an arbitrary base logic which has to satisfy some minimal

requirements laid down in Sections 3.1.l and 3.1.2. One of the things that we

require is that the base logic be of higher order. Laz Logic, defined in Section

3.1.3, is an intuitionistic first-order logic witb induction scheme for natural num-

bers and lists, and a one-place modal operator <>. Laz Logic contains the base

logic as a sub-logic, and it is shown tbat it is a consistent and conservative ex-

tension, cf. Theorems 3.1.16 and 3.1.18. The logic is presented first in sequent

and in Section 3.3 also in natural deduction style.

In Section 3.2 we show bow to extract constraint information from a proof in

Laz Logic and to use it to constrain the tbeorem proven. Constraint extraction,

which is defined for both for the sequent and natural deduction presentation of

Laz Logic, is parameterized in a notion of constraint that can be instantiated in

different ways to serve different purposes. In any case, constraining translates a

formula of Laz Logic into a proposition in the base logic. We prove correctness of

tbis process, viz. that the extracted constraint information is a well-formed term

and that it translates a theorem of Laz Logic into a theorem of tbe base logic,

cf. Theorems 3.2.1 and 3.2.2. An important feature of constraint extraction is

that it ignores all proofs done in the base logic, so that a controlled form of proof

irrelevance is available. In Section 3.2.1 we give a summarizing account of how

we intend to apply the extraction process in later examples.

Chapter 4 discusses several simple but illuminating examples of applying the

Chapter 1. Introduction 8

logic and constraint extraction for a particular notion of constraint.

Meta-theoretical investigations of Laz Logic are undertaken in Chapter 5.

Section 5.1 looks into a. Kripke-style semantics for the propositional fragment of

Laz Logic. Correctness theorem 5.1.9 is a minimal result to provide justification

for calling 0 a modality of possibility in the standard Kripke sense. In a. second

line of meta-theory for Laz Logic we translate the syntactic calculus into a cate-

gory theoretical structure, a hypenloctrine with some additional properties. More

concretely, it is shown how a hyperdoctrine model for Laz Logic can be obtained

starting from a hyperdoctrine model of the base logic. lt is verified that the result

precisely captures constraint extraction, cf. Theorem 5.2.21 and 5.2.23. Also, it

is shown that in this model 0 becomes a strong monad, cf. Theorem 5.2.19.

This thesis finishes with Chapter 6 on related work and in Chapter 7 the main

points of this research are summed up, further research is suggested, and open

problems indicated.

Chapter 2

Motivation

Let us illustrate the problem of constraints and the purpose of lax logic by means

of simple examples of abstraction mechanisms. The first one (Section 2.1) is to do

with representing natural numbers by finite bit-vectore, a central data. a.bstraction

in hardware design. The second (Section 2.2) is a.bout simulating integers by

natural numbers, which can he viewed as a simple temporal a.bstraction. The

last example (Section 2.3) illustra.tes the particula.r form of timing a.bstraction

that is fundamental to synchronous circuit design.

All three examples, which are just complex enough to convey the basic idea,

are taken up again later to he formally verified in lax logic. In addition, the

second example, which is the simplest, will serve as an expository exa.mple in the

ma.in part of this thesis.

2.1 Example 1

Consider the usual specifica.tion of the factorial function that one would like to

work with at the abstract level of natural numhers:

/ac(O) = 1 A Vn.fac(n + 1) = (n + 1) · fac(n).

Now, if the factorial is to be implemented hy a circuit opera.ting over finite bit-

vectors then, of course, this specifica.tion is too optimistic. Wha.t the eventual

9

Cbapter 2. Motivation 10

implementation actually will satisfy is a specification like

/oc(O) = 1 A Vn. n $ 10 :::> fac(n + 1) = (n + 1) · fac(n).

lt contains an upper hound on the input to ensure that the implementation does

not suffer from an arithmetical overflow.

However, this specification in turn is too realistic since it explicitly contains

implementation specific details. lt defeats the idea o(the specification heing in-

dependent of the implementation. Firstly, when the specification is being set up

we cannot know what the constraint will turn out to be, for it is determined by

the implementation and the implementation is unknown a.t specifica.tion time.

Secondly, even if we knew the constraint beforehand, putting it into the specifi-

cation is a bad move: it prohibits us from cha.nging the implementation without

affecting the higher levels of the design that are based on the specification.

Thinking about it for a moment one might come up with a. third version of

specifying the factorial:

/oc(O) = 1 A 3N. Vn. n $ N :::> fac(n + 1) = (n + 1) · fac(n).

lt says 'there is an upper bound N on the input but 1 don't know which'. But

this still is not good enough. lt is a bad compromise for at least three reasons.

Firstly, it will only work for implementations for which the constraint has exactly

the form n $ N. Secondly, the constraint is still sitting in the specification so

we ha.ve to mess around with it whether we want to or not. Thirdly, given a.

pa.rticula.r implementation and a proof that it satisfies the specification, there is

no gua.rantee that we will be able to extra.et the upper bound N from the proof.

Lax logic resolves these problems by taking as the specification of the factorial
the lax formula

SPEC(f) ~ /(0)=1 A Vn.O(/(n+l)=(n+l)·/(n))

where the modal operator <> stands for an a-priori unspecified constraint that is

going to be determined by a proof of SPEC(fac) for a concrete implementation

Chapter 2. Motivation 11

fac of the factorial. More precisely, from a proof of SPEC(fac) we will be able

to extract a constraint predicate 1'(n) and a proof of

/ac(O) = 1 /\ Vn. ')'(n) :::> fac(n + 1) = (n + 1) · /ac(n).

Thereby we have achieved the following goals:

• The abstract specification SPEC of the factorial may be used in a design

without stumbling over constraints.

• The implementation fac may be replaced at any time without having to

change the specification too.

• We can Jet the proof of SPEC(fac), for a given concrete implementation

fac, decide for the constraint. So, more conservative and less ingenious

proofs may result in more conservative and more restrictive constraints.

• Constraint manipulation can be understood as computational behaviour of

proofs.

2.2 Example 2

Suppose we wanted to implement and verify a decrementing function dec for

natural numbers obeying the specification

Vn.succ(decn) = n

where succ is the successor function. Of course, such a totally defined decre-

menting function cannot exist as there is no predecessor for zero. lt would

be inconsistent with the standard axioms for natural numbers, among which

is Vn. succn "/: 0. An approximation of the decrementor can be found, though,

such that

Vn. n ~ 1 :::> succ(decn) = n.

In most applications this is good enough and the fact that there is an exception

at n = 0 often can be ignored completely. in these cases it is advantageous to free

Chapter 2. Motivation 12

formal reasoning from having to bother about the constraint n ;:: 1 by passing

to the formula

Vn.O(succ(decn) = n) .

. Starting from this 'lax specification' means pretending there was a genuine prede-

cessor for every natural number. One could, for instance, then proceed to define

a<ldition and subtraction functions via primitive recursion and to verify

Vm,n. O(add(sub(m,n),n) = m).

In other words, one could simulate integer arithmetic on natural numbers using

the constraint level of lax logic to keep track of the points of exception. How

this is achieved will become clear from this and the other examples treated in

Chapter 4.

Simulating integers by naturals may seem a contrived application but in fact

there are reasons to believe that it may be quite useful in ha.rdware verification.

There, time is modelled typically by natural numbers, the origin 0 representing

start-up, reset, or power-on time. However, the effect of the initial state levels out

and after a while the behaviour of a circuit is completely determined by its input.

From then on, any condition imposed on the output of the circuit translates into

a condition on its input during some interval of time earlier. This output-to-input

and backward-in~time reasoning is very convenient for circuit verification. But it

faces the technical complication of not being able to go back arbitrarily in time

which arises from taking the natural numbers as a model of time. lt appears

that taking the integers for modelling time in many cases is the more natural

approach for verifying stationary input-output behaviour. We believe tha.t this

abstra.ction, which in effect is ignoring start-up initialization of circuits, can be

made safe by using lax logic. The decrementor function is a generic example of

such use.

Chapter 2. Motivation 13

2.3 Example 3

The original motivation for the work in this thesis sterns from the design of

synchronous hardware and the particular form of tirning abstraction that is char-

acteristic to that application. This section essentially repeats "'nd extends the

motivation of our earlier work (Men9la).

We briefiy explain the general situation (Section 2.3.1) and then turn to a

concrete example (Section 2.3.2) of a synchronous hardware design.

2.3.1 Synchronous Circuits

This section, in a nutshell, sums up the basic principles underlying synchronous

hardware design. The fundamental timing abstraction involved, namely from a

synchronous circuit to its abstract behaviour in terms of a finite state machine,

and the corresponding timing constraints are explained and formalized.

A typical synchronous circuit is built up from latches (such as D-type fiipfiops)

and combinational circuits (such as NANO gates, inverters, and nets thereof). In

a slightly simplified view1 one can summarize the essence of the synchronous

design paradigm in the following design rules:

Cl All latches are triggered by a common clock signal.

C2 There is at least one latch in every feedback loop.

C3 The clock period is long enough to allow for signal changes caused by any

clock event to settle throughout the circuit before the next clock event.

C4 The inputs to the circuit have to be stable long enough prior to any clock

event for signals to have become stable by the clock event.

1 We ignore here, among other things, for the sake o(simplicity set-up and hold times o(

latches or the p088ibility to use multiple clocks. This does not, however, affect the point.

Chapter 2. Motivation 14

In a broad sense all of these design rules can be interpreted as constraints,

more precisely, Cl-C2 as structural constraints and C3-C4 as behavioural con-

straints. From a verification point of view the structural constraints CI-C2

are essentially reßections of internal behavioural constraints, i.e. they are con-

ditions necessary for verifying that no behavioural constraints are violated by

components within the circuit.

Much of the success of the synchronous design style is due to the fact that

under the design rules Cl-C4 one does not need to consider propagation delays

when reasoning about the circuit's behaviour. If one is interested in the state

of the circuit only at every clock event (or during a certain interval around it)

and records the evolution of input and output values at these points, then the

descriptive effort can be drastically reduced:

Al Latches behave like unit delays.

A2 Combinational circuits behave like delay-free boolean functions.

AS The complete synchronous circuit reduces to a finite automaton and the

automaton's behaviour can be derived by composing unit delays and delay-

free boolean functions. More precisely, every unit delay gives rise to one

state variable and the state transition function is determined by the inter-

connection of state variables through boolean functions.

Thus, relativizing the synchronous circuit's behaviour to the abstract time given

by the succession of clock events abstracts from propagation delays. Note, the

restriction on clock events can also be viewed as part of the design rules and as

a constra.int on the usage of the circuit which is characteristic to synchronous

abstraction.

Although, either implicitly or explicitly, timing abstraction has always been

used in the design of synchronous systems (Brz76,Fle80,Mar86), it seems that first

attempts to formalize it for the purpoae of verification have only recently been

Chapter 2. Motivation 15

rnade (Mel88,Her88b]. The separation of design rule checking (Cl-C4) frorn rea-

soning in abstract terrns (Al-A3) is crucial for practical a.pplications, but there

seerns to be no satisfactory irnplernentation of this separation on a.n intera.ctive

theorern prover. For instance, Herbert's rnethodology (Her88b), irnplernented

in the proof checker HOL (Gor85,Gor88], though it conceptually distinguishes

between staternents about tirning a.nd a.bstra.ct behaviour, leaves both a.spects

intertwined at the level of proofs. Basically this mea.ns that design rule checking

a.nd reasoning in abstract terrns have to go together in a single proof. The logic

presented in this thesis provides a. wa.y to separate these concerns within a single

logical inference systern.

2.3.2 A Simple Circuit Design

We take the simple case of a combinational circuit such a.s a xor-gate a.nd a

level-triggered latch (Figure 2-1) which, as in (Her88b}, are to be considered

as cornponents of a synchronous systern; i.e. they are put into a.n environment

with a global clock, relative to which certain conditions on the stability of inputs

ca.n be irnposed as timing constraints to allow tirning abstraction. We then go

on to consider the simple design task of building a stoppable modulo-2 counter

frorn these cornponents a.nd explain how the presence of tirning constraints poses

a rnethodological problem in the verification of this design exarnple, why the

usual approach is unsatisfactory, a.nd how lax logic is designed to cope with the

problem.

The behaviour of the xor-gate a.nd the Ievel-triggered latch will be described

by predicates over input and output signals both at the concrete level of a.syn-

chronous circuits as weil as on the abstra.ct level of finite state ma.chines. At

the abstract level the xor-gate is the delay-free exclusive-or boolea.n function and

the latch a one-unit delay. lt is shown that the concrete level cornpoilents only

approxirnately satisfy these abstra.ct specifications a.nd that the offset is given by

canonical tirning constraints.

Cbapter 2. Motivation 16

c

Figure 2-1: Xor-Gate and Level-Triggered Latch

For simplicity we take signals tobe functions from integers to booleans, i.e.

signal = int => bool

where => is the constructor for function types. Assuming that both gates have

constant propagation delays f>x > 0 and f>L > 0, their behaviour may be defined

by the following axioms:

xor(x,y,z)

latch (d, c, q)

~ = Vt.z(t+f>x)=xt+yt
~ =: Vt. (et= 1 :> q(t+f>L) = dt) A

(et= 0:) q(t+f>L) = q(t+f>L -1})

Note, that we are using the operator + both for addition over int as weil as

for modulo-2 sum over booL According to the axioms the xor-gate performs the

modulo-2 sum of its inputs :z, y at every time step and outputs them with a delay

6x on output z. The latch is enabled to pass data from input dto output q with

a delay CL by positive levels of the clock input c, and it is locked when et = 0.

For the purpose of this discussion these simple axioms are assumed to be the

low-level, most deta.iled, description available for the components xor and latch.

Clearly, they are already an abstraction of the real devices' behaviours. A more

realistic description would have to account for variable gate delays as weil as setup

and hold times for the latch; it would perhaps assume continuous rather than

discrete time and signal values, require maximal signal rise and fall times, and so

on. Since for our logic it is of no importance how detailed a model of behaviour

one actually starts from, we have taken the simplest axioms possible. The reader

Chapter 2. Motivation 17

is referred to [BJ83,HD86] for a discussion of more sophisticated axiornatizations

of elementary digital circuits.

The important thing to note is that xor and latch cont&in both tirning (delays)

and functional aspects (operations on booleans) intertwined. In a synchronous

design context, however, where one takes advantage o{ the design rules, one

expects not having to care about delays. More precisely, the xor-gate should

behave like a delay-free boolean function and the latch like an one-unit delay,

depicted in Figure 2-2.

d ----G--- q

Figure 2-2: Exclusive-Or and One-Unit Delay

In place of xor and latch one would rather work with axioms like

xor_syn(x,y,z) ~ \ft.zt=xt+yt (2.1)

latch_syn (d, q) ~ \ft„ t2. next (t1, t2) ::> q(t2) = d(ti) (2.2)

where next (t1, t2) is a predicate expressing that t1 and t2 are two consecutive

points in time. lt is defined abstractly2 by

In this abstract view the clock no longer appears as an input to the latch. For

in a synchronous circuit the latch's clock input is always connected to the global

clock signal and consequently no longer available as an input. Thus, assume a

clock signal

clk: signal
20ne might want to turn the predicate ae:rl into a function which for time t yields the

succeaaive abstract time atep ne:rt(t) if it exists and ia unde6ned otherwiae. In a logic with

partial terms this could be done uaing the so-called •-operator which we do not have available
here.

Chapter 2. Motivation 18

which is globally defined throughout the system. As a result clk may be used

within formulae without it being mentioned explicitly as a parameter.

Obviously, zor_syn and latch_syn cannot be proven from zor and latch right

away since the delays cannot be wiped out. What can be proven, however, by

introducing constraints a.re certain approximations thereof. Before we can state

them we need some predicates for formulating constraints. We first assume that

clock ticks are marked by rising edges of clk and define a corresponding predicate

tickt ~ clk (t - 1) = 0 /\ clk t = 1

which obtains true if there is a clock tick at time t. Given this predicate one may

define what it means that a signal x is stable in all intervals of length 6 prior to

clock events:

Finally, for constraining the clock we have two other predicates, the first express-

ing that the 1-phase of the clock lasts exactly one time step, and the second

imposing a minimal distance 6 on two consecutive clock ticks:

one_shot ~ Vt. clkt = 1 :::> (clk(t -1) = 0 /\ clk(t + 1) = 0)

min_sep 6 ~ Vti. t2. (t1 < t2 /\ tick ti /\ tick t2) :::> f2 ~ ti + 6.

With these predicates put into place the promised approximations of zor_syn and

latch_syn can be formulated:

b () !_ xor_a s x, y, z (stable z 6x /\ stable 116x)

:::> Vt. tickt :::> z t = x t + y t

latch_abs (d, q) ~ (one..shot /\ min_sep 6L)

where nezLabs is the following approximation of ne:i:t:

nexLabs (t1, '1) ~ ti < f2 /\ Vt. tickt :::> (t1 < t :::> t2 ~ t)

Chapter 2. Motivation 19

The bold-faced parts indicate the offset of the approximations from the ideal

versions xor_syn and latch_syn. This offset explicitly reßects the design rules

C3-C4: timing constraints on inputs, on the clock signal, and the sampling at

clock events. In contrast to xor_syn, latch_syn these approximations now can be

derived from axioms zor and latch, i.e. we have

xor(z,y,z) 1- zor_abs(z,y,z)

latch (d, clk, q) 1- latch_abs (d, q).

This follows by straightforward first-order logic. Note, that due to the simplifica-

tion of the latch's behaviour (i.e. no set-up and hold conditions) latch_abs does

not require stability of data input d relative to the clock.

The observation that stability constraints essentially work to squeeze out

delays of the behavioural description and therehy separate timing hehaviour from

functional hehaviour is already employed in (Her88b,Mel88). As seen this idea can

be pushed further so as to encompass also constraints on time points, i.e. tickt
in this case. Being restrictions which also reßect the design rules, constraints on

time points should be subjected to the same treatment as are stability constraints

on signals. In fact, our logic will also deal with this type of constraints.

Now suppose as a simple design task, we wanted to huild a stoppable modulo-

2 counter from xor and latch. lt is to have one input and one output, and to

produce a stream of alternating Os and ls as long as the input is at 1 and stop

at the current output value when the input switches to 0. More formally, its

behaviour is specified by the following formula:

From this input-output specification one derives easily a Moore automaton or

equivalently an implementation consisting of an exclusive-or function and a one-

unit delay as depicted in Figure 2-3. Given, that zor_syn (2.1) describes the

behaviour of the exclusive-or and latch..syn (2.2) that of the one-unit delay, the

Chapter 2. Motivation 20

z-~ + y

z ~

Figure 2-3: Implementation of the Modulo-2 Counter

behaviour of the implementation is given by

cnLsyn (z,y,z) ~ xor..syn (z,z,y) /\ latch_syn (y,z) (2.3)

which employs logical conjunction /\ of predicates to express composition or su-

perposition of two behaviours. Verifying that the irnplernentation is correct now

would arnount to proving that the implernentation (2.3) entails the specification,

i.e.

cnLsyn(z,y,z) 1- cnl_spec(z,y) (2.4)

This is an easy exercise invoking the rules of ordinary first-order logic. Unfor-

tunately, applying synchronous abstraction to zor and latch does not provide an

ideal exclusive-or or an ideal one-unit delay satisfying zor_syn and latch_syn but

merely approximations zor_abs and latch..abs. Therefore the implementation we

are actually able to get is

~ cnLabs(x,y,z) = zor_abs(z,z,y) II latch.abs(y,z).

Of course there is no reason to expect that cnt.abs (z, y, z) entails cnt.spec (x, y).

Rather, in place of the original cnt.spec, we will again only achieve an approxi-

rnation, perhaps something of the form

cnt.appr(x,y) ~ (C. /\ C,(:i:,11)) :::> (Vti,t,. C,(t,,t.)

:::> (nezt.abs (t1, t2) :::> y(t,) = z(t2) + y(t1)))

Chapter 2. Motivation 21

where C0 , C1i and C2 are constraints that have to be irnposed o~ 'Öie cornposite

circuit to allow the envisaged derivation

cnLabs(z,y,z) 1- cnLappr(z,y).

Here we are facing the question of how to go about finding the constraints

C0 , C1i C2 and thus the rnodified specification cnLappr. The straightforward ap-

proach, as ernployed for instance in (HD86), is atternpting a derivation of cnLspec

(frorn cnLabs), finding out where it fails, and at each such dea.d end identifying

assurnptions that would rnake it work if they were available in the first place.

This inforrnation can then be used for deterrnining the constraints C0 , Ci, Ci

and the place where they have to go to weaken the specification appropriately.

Now, this procedure is not quite satisfactory since it rneans going through the

verification proof twice, once for finding the constraints and a second time after

pasting thern into the specification for completing the proof. Furthermore, and

rnore importantly, the proof has to interrningle timing constraints with abstracted

properties; it airns to verify the abstract specification cnLspec while at the same

time it has to deal with the constraints inside the propositions zor_abs, latch_abs,

nezLabs, and cnLappr.

As argued before, this is not what one really would like to do. Ra.ther, one

would like first to perform the abstract verification of (2.4) without considering

constraints. This establishes the feasibility of the design at the abstract level.

The constraints, which are dependent on a particular implementation mechanism,

here the implementation as a synchronous circuit, are not determined before the

irnplementations of the abstract components are chosen. In the example, this

leads to the approximations zor_abs, latch_abs. Finally, a constraint analysis

should be able to use the abstract proof of (2.4) together with the knowledge of

the constraints contained in zor_abs and latch_abs for extracting the constraints

in cnLappr.

In this thesis it will be shown how this goal can be achieved by reformulating

the notions of proof and proposition so as to 'hide' constraints within them and

Chapter 2. Motivation 22

set up a ca.lculus of derivations to deal with this laz logic.

Chapter 3

Lax Logic

Lax logic is a first-order extension of a version of higher-order predicate logic,

called the base logic. The heart of the extension is a modal operator <> that

relaxes the meaning of a proposition so as to account for potential constrainta

and constraint analysis.

The base logic is arbitrary to some extent, so that lax logic need not be seen as

a particular fixed calculus but rather as a method of "laxifying" ones favourite

predicate logic. In contrast to the base logic, lax logic cannot be arbitrary since

there we wish to extract constraint information. As a consequence, lax logic ia

an intuitionistic extension, while the base logic may weil have an axiom of choice

or the axiom of the excluded middle. Another consequence is that we will have

to record proof objects in lax logic while the semantics of the base logic is chosen

to be proof irrelevant. So, from an implementation viewpoint it is desirable to

single out reasoning within the base logic. This is the main reason why we are

23

Chapter 3. Lax Logic 24

going to distinguish clea.rly between the base logic and lax logic. The idea is that

the base logic is the intended realm of discourse in which formal verification takes

place whenever possible and that its first-order extension of lax logic is entered

only when there is need to consider approximate specifications and to handle

constraints.

Before we start off with formal definitions we briefly expla.in the central issues

of lax logic. Let t/> and 1/> stand for arbitrary propositions of the base logic in

what follows. Given specification t/>, the abstract proof-theoretic intuition behind

Ot/> is "for some constraint c, t/> is provable under c". In other words, a proof of

Ot/> is a pair (c,p) where c is a constraint and p is a proof of tf> under constraint c.

At this level of generality, nothing is said about what kind of object a constraint

actually is and what it means that a specification is provable "under" aconstraint.

Different notions of constraint will have different properties, and thus will give

rise to different derivation rules for 0. The particular interpretation that we are

going to focus on in this thesis is discussed below in Section 3.2 and further in

Chapter 5. More concrete intuitions may apply to specific interpretations of lax

Jogic, as we have seen in the context of hardware verifica.tion.

There a.re three general rules for 0, which we consider - without interpreta-

tive bias - as being characteristic for a.ny notion of constra.int, pronouncing Otf>

"somehow tf>". The three rules, or rather rule schemes, are

"'1- <>tf> 01 OOtf>l-Ot/> <>M

The rea.der is wa.rned tha.t throughout this thesis rules are written just the other

way round as usual, i. e. they extend derivations for the sequents below the rule

bar into a derivation of the sequent above the rule bar. We have chosen to turn

derivation trees upside down since this presentation is more natural for refinement

proofs, which will be our main concern in this thesis.

Formally, 01 introduces a 0 operator, OM collapses two occurrences of O

into one, and <> F lifts a deri vation of conclusion t/J from hypothesis tf> by prefixing

Chapter 3. Lax Logic 25

both the hypothesis and the conclusion with <>. The following three very natural

assurnptions on the structure of constraints are sufficient to justify these rules:

• There is a void constraint 1 such that '? under l' is equivalent to tP·

• There is a multiplication of constraints such that '(? under c) under d' is

equivalent to '? under c · d'.

• Constraining preserves implication, i.e. if tP irnplies !/J, then '? under c'

implies '!/J under c'.

Recall that a proof of O? is to be a pair (c, p) with c a: constraint and p a proof

of '? under c'. By the first condition we know that whenever? is provable, then

? is provable under the vacuous constraint 1, whence rule <>I. The fact that

'? under I' actually is equivalent to tP rneans that by passing frorn tP to O? we

have not lost any inforrnation, provided we record the constraint. Sirnilarly, the

second condition can be seen to justify rule OM, allowing us to rnelt together

two nested occurrences of 0 without loosing inforrnation. Finally, rule <>F basi-

cally says that if from the hypothesis? we can prove l/J, then frorn the (weaker)

hypothesis that tP is provable under sorne constraint c we can prove l/J under c.
This is guaranteed by the third condition. We might sum up the three conditions

as follows:

Postulate: A notion of constraint is a rnonoidal action (C, 1, ·, - under -)

on forrnulae or truth values (of the base logic) that preserves irnpli-

cation.

For the sake of definiteness let us list a few concrete notions of constraint that

one rnight consider:

c {T,1.}
T

l. · T = l. · l. = T · l. = l. and T · T = T

- under - tP under l. = true

tP under T = tP

Chapter 3. Lax Logic 26

Here and in the rest of this thesis the symbol = is used to denote syntactic,

or definitional identity. Tbis is perhaps the most simple non-trivial notion of

constraint; it takes as constraints a two-valued set {l., T} behaving like the

booleans, it has T as the void constraint that does not change the meaning of a

proposition while the only other constraint l. evaporates a proposition to become

trivially provable.

Taking as a constraint the set-up time of a synchronous circuit results in a

very specific notion of constraint, viz.

C N
1 0

n·m = ma:i: {n,m}

- under - t/i under n = setup n :::> t/i

where N denotes the natural numbers, and 'setup n' is a predicate expressing

that all inputs to a given circuit are stable immediately before each clock tick

during an interval the length of which is at least n time units.

In this thesis we are going to focus on the following very general notion of

constraint, which will be discussed and used at length later on:

C lists h1, ... , 'Yn}, where 'Yi are from some subclass of propositions

1 a (empty list)

@ (concatenation)

- under - t/i under hi. ... , 'Yn] = 'Yn :::> • • • :::> 'Yt :::> t/i

A notion of constraint (C, 1, · , - under -) defines what it means that a

proposition I/> of the base logic holds under a constraint c € C, i.e. the meaning of

'I/> under c'. In lax logic we will be concerned with lifting this notion of constrain-

ing to arbitrary propositions, rather than just propositions of the base logic. An

example, which we have seen before, is the specification of the decrementor:

'v'n.<>(succ(decn) = n).

Chapter 3. Lax Logic 27

From a. proof of this proposition, ca.II it p, we wish to obta.in a function f that

a.ssocia.tes with ea.ch input n a constra.int f n E C such tha.t

Vn.(succ(decn) = n) under fn.

For the first notion of constraint mentioned above, viz. the one that has C =
{ T, .L}, f might be the cha.ra.cteristic function of the subset { n 1 n ;::: 1} of

inputs tha.t a.re decremented correctly. The function term f will be called the

constraint term, written f = jpj, a.nd the predica.te

(Vn.<>(succ(decn)=nW{zJ = Vn.(succ(decn)=n) underzn

will be ca.lled the constraint predicate. lt can be thought of as the lifting of

- under - to proposition Vn.<>(succ(decn) = n).

To give a.nother exa.mple let us a.ssume tha.t we ha.ve built the fa.ctoria.l function

using the decrementor a.s a. subcomponent, i.e. that we ha.ve a. proof of

'v'n.<>(succ(decn) = n) :J Vn. <>(Jac(n + 1) = (n + 1) ·fac(n))

where, for simplicity, we have dropped the ba.se ca.se in the specifica.tion of the

fa.ctoria.l. From this proof we expect to extra.et a. higher-order functiona.l F tha.t

tra.nsla.tes every input constra.int f, i. e. the cha.ra.cteristic function of a subset of

inputs, of the decrementor into a.n input constra.int of the fa.ctoria.l, Ff, which

is again the cha.ra.cteristic function of a. subset of inputs. This can be expressed

by requiring that the proposition

Vf. Vn. (succ(decn) = n) under f n

:J Vn. (/ac(n + 1) = (n + 1) · fac(n)) under Ff n

hold in the ba.se logic. Thus, for more complex propositions the extracted con-

stra.int term and the constra.int predicate can be quite complex objects. For

a.rbitrary propositions t/>, the constraint predicate q,•(z) will be defined by induc-

tion on the structure of !/>, and the constra.int term IPI is given by induction on

the structure of proof p.

Cbapter 3. Lax Logic 28

So much for an informal introduction to the rationale behind lax logic. The

rest of this chapter deaJs with the formal systems of base logic a.nd lax logic

which are set up formally in Section 3.1. The synta.ctic ca.lculus of lax logic is

presented both in sequent a.nd, for use in la.ter examples, in na.tura.I deduction

style (c/. Section 3.3). In Section 3.2 the genera.l notion of constra.int, which was

brießy mentioned above, is discussed. Also, the associated constra.int extra.ction

and analysis process for lax logic is defined, based on the constructive nature of

derivations.

3.1 Definition of Lax Logic

Our ma.in concern lies in lax logic as an extension on top of a base logic, which sat-

isfies certa.in minimal requirements but is otherwise arbitrary. In order to stress

this aspect it would be natural to define the calculus of lax Jogic first, treating

the base logic as a parameter. Nevertheless, we sta.rt off with the base logic as

this has the advantage of requiring less notational overhead and of introducing

the syntax in its logical ordering.

The base logic will be introduced in two steps, viz. first a rudimenta.ry part

in Section 3.1.1 amounting to a fragment of second-order logic, and then an

enrichment by a full-ßedged lambda-calculus giving higher-order expressibility in

Section 3.1.2. The extension of lax logic, finally, will be treated in Section 3.1.3.

3.1.1 Base Logic

SIGNATURE. The language of the base logic is specified by a signature E, wbich

is a collection of sorts A, B, etc. and a collection of operators /, g, etc. together

with a map assigning to eacb operator / a finite non-empty sequence A1 • • • A„ of

sorts, called its arity. If n = 1, then /also is called a constant. lt is assumed that

among the sorts there is a distinguished sort 0, the sort of propositions. What

other sorts and operators there are in the signature depends on the particula.r

Chapter 3. Lax Logic 29

base logic chosen.

TYPES. Every sort Ais a well-formed (primitive) type. For now the sorts will be

the only types. Later the base logic will be extended by type-forming operations

for building non-primitive types. Meta-variables er, T, etc. will be used to range

over types.

TERMS. Given a signature E we define the set of terms over E, ranged over

by meta-variables s, t, ... , .p, t/J, etc. First, fix for each type T a countably infinite

number of variables, denoted by x\yT, etc. Assuming that a variable uniquely

determines the type to which it belongs, the superscript T may be omitted. Terms

now are built from variables, operators, and the two special term forming symbols

universal quantifier V and implication :::> in the usual way. More precisely, one

defines the class of well-formed terms t of type T along with the /ree variables of

a term as follows:

• Any variable zT is a well-formed term of type r; its only free variable is x.

• If f is an operator with arity r1 • • • T„T and ti, ... , t„ well-formed terms of

type Ti, ••• , r„, respectively, then f(ti. ... , t„) is a well-formed term of type

r; its free variables are those oft;, i = 1, ... , n.

• If .P is a well-formed term of type {} and x a variable, then Vx . .P is a well-

formed term of type O; its free variables are the free variables of .P except

x.

• If <P and t/J are well-formed terms of type 0, then <P :::> t/J is well-formed of

type n; its free variables are those of <P and "'·

• If s and t are well-formed terms of the same type, then s = t is well-formed

of type O; its free variables are those of s and t.

Chapter 3. Lax Logic 30

The type T of a well-formed term t and its set of free variables, denoted by FV(t),

are thus uniquely determined1• We note that if z is a free variable of t, then z

actually occurs as a sub-term oft. A term without free variables is called closed.

As usual every occurrence of a variable z within term 'r/z. 4> is called bound. Two

terms are called a-convertible if they are syntactically identical modulo renaming

. of bound variables.

For now the terms defined will be the only terms of the base logic. Later the

base logic will be extended by other term-forming operations.

We may turn the definition of well-formedness into a formal calculus given

by Figure 3-1. The formal judgement A 1- t : T is called a typing, where A =
ZJi ••• , z„ is a finite, possibly empty, non-duplicating !ist of variables ca.lled a

contezt, Such a typing is to stand for the statement that t is well-formed of type

T with free variables in t:l. We will say that a term is well-formed of type T in

contezt ß iff A 1- t : T can be derived.

As mentioned before, all rules in this thesis are tobe read bottom up, i.e. a

rule instance of Figure 3-1 rnay be applied to turn derivations of the typings

below the rule bar into a derivation of the typing above it. For all forma of rules

to be introduced in this thesis we shall call the judgements below the rule bar

the premisses and the judgement above conclusion of the rule.

Observation 3.1.1 A t~rm t is well-formed of type T with all its /ree variables

in . the context A ilf A 1- t : T can be derived by the rules of Table 9-1.

Proof: The simple proof proceeds by induction on the structure of t and the

derivation A 1- t : T. The only tricky case is to show that A 1- 'r/z. 4> : n
is derivable if 'rlx. 4> is well-formed with free variables in ll.. Two case must be

distinguished: If z ~ ll., then use the induction hypothesis on 4> with free variables

in ll., z. If z E ll., then use induction hypothesis on 4> with free variables in A \ z.

1
1The definition of well-formed terms definee abatract ayntax. We will U8e auxiliary bracket-

ing '(', ')' to indicate the atructure o(a term.

Chapter 3. Lax Logic

A 1- f (ti, . .. , tn) : T (f "th .) A 1- t A 1- t . operator w1 anty Ti··· T„T
i ·Ti n • Tn

A 1-Yx.t/i: 0
A,x 1- t/i: n

XT f- X • T
---· -xT variable

Al-t/i:O Ahp:O

Al-s=t:n
Al-s:T Al-t:TTatype

A, X 1- t : T • bl . A
A 1- t : T x vana e, not m

A,y,x,A'l-t:T
A,x,y,A' 1- t: T

Figure 3-1: Well-Formed Terms of the Base Logic, 1

31

We list a few immediate consequences of this observation. For each well-formed

term t there is a unique T and a unique minimal A such that A 1- t : T. This

minimal A is given by the set of free variables FV(t) oft. The closed terms of

type T are those t for which 1- t : T is derivable. If A, x 1- t : T and x not free in

t, then A 1- t : T. Finally, the substitution rule

A 1- s{t/x}: <T

A, XT 1- 8 : <T A 1- t : T

is valid, where as usual s{t/x} denotes the result of substituting ins all free

occurrences of variable x by t. As usual it must be assumed that substitution

renames bounds variable occurrences in s to avoid name capture of free variables

in t.

PROPOSITIONS. Every well-formed term of type(} is a proposition of the base

logic. Propositions will be ranged over by Greek meta-variables t/i, i/J, etc.

SEQUENTS. The logical calculus of the base logic rests on the formal judgement

of logical entailment

where A is a context and r = t/ii, · · · , tPn a possibly empty !ist of propositions,

i.e. well-formed terms of type 0, with free variables in A, i.e. we have A 1-

Chapter 3. Lax Logic 32

"'; : 0, i = 1,. „ , n. The judgement will be ca.lled sequent, the propositions

in r its hypotheses and "' its assertion. The ca.lculus is to be closed under the

usual structural rules of identity, weakening, cut, permutation of hypotheses and

substitution, plus the logical rules for implication and universal quantification.

The rules are shown in Figure 3-2. In rule sub the notation r{t/x} means

substitution is performed on all hypotheses in r. Note, we require the base logic

merely to be closed under these rules, so it may have more rules. In particular

we do not assume that the base logic is intuitionistic.

r f- A,w,:i:,A' t/J perm
r f- A,:i:,,,A1 t/J

f{t/:z:} f-A !/J{t/x}
r sub 1-A,z• !/; A 1- t : T

1-„ :z: = :z: -=---x variable

r 1-A,z t/J r 1-A "' weak (x not in A)

r,l/;,t/J,r' 1-A 9 perm
r,ef>,!/J,f'l-A9

f f-A t/J r, t/J 1-A l/J cut

1-A Vx.t/J=Vx.l/J {
1-A,:i: tP = l/J

f 1-A iJi

rl-At/J{s/x} Sb
A,x ... 1-,P:O rl-As=.,.t rl-At/J{t/x} ust

r 1-A "' '::) "" :>l r'"' 1-A "" E
r,t/Jl-A!/J r1-A"':>!/J:>

r1-A V:z:.t/Ju (f. • r) rt- ,j. vl xnot,reem
A,i: "II

Vx.t/Jl-A t/J{t/x} VE
A 1- t : r A, x.,. 1- "' : n

Figure 3-2: Sequent Rules of the Base Logic

Observation 3.1.2 Every sequent t/Ji. ... , t/J„ 1-A iP derived by means of the

rules of Figure 9-~ is well-formed. More precisely, A is a contezt {non-duplicating

list of variables), and the assertion iP as weil as all hypotheses q,„ ... , <f>„ are well-
formed propositions in conte::d A.

The observation is due to our including of typings as additional premisses in

some of the rules. In usual presentations of typed predicate logic the typing

Chapter 3. Lax Logic 33

judgement is left as an implicit side condition rather than being formalized as

part of the calculus. For instance, the global side condition may be imposed that

a rule can only be applied in case all prernisses and the conclusion of the rule are

well-formed. In our systern we can safely add

~hf>:n

fl--4 t/>
to the rules in Figure 3-2 without changing the set of derivably well-formed

propositions. Henceforth, it will be assumed tacitly that this rule is available.

The fact that the type of all propositions n is a type of the language means

we can quantify over propositions. Thus, the other logical connectives false, true,

-., A, V, 3, e! of (intuitionistic) predicate logic can be defined in the standard

way by :::> and V, see e.g. (Pra65)

false ~ vz0 .z

true ~ Vz0 .z :::> z

-,; ~ ; :::> false

(l/\t/J ~ Vz0 .(; :::> (1" :::> z)) :::> z

efJVt/J ~ Vz0 • (4' :::> z) :::> ({t/J :::> z) :::> z)

3z.t/J ~ Vz0 .(Vz.(t/> :::> z)) :::> z

"'~"' ~ (efi:>t/J)A(t/J:>efi)

where it is understood that variable z does not occur free or bound in t/>, t/J. The

abbreviations are well-formed: false and true are closed well-formed terms of type

n; if ; is well-formed of type n, then so is -ot/J, its free variables are those of t/>;

if ; and t/J are well-formed terms of type n, then so are t/> /\ t/J and t/> V t/J, their

free variables are those oft/> and t/J; if t/> is well-formed of typen and z a variable,

then so is 3z. ;, its free variables are those oft/> except z.

Observation 3.1.3 For the logical connectivea IJ8 defined above the usual elim-

ination and introduction rules, shown in Figure 9-9, can be derived from rules o/

Figure 9-e.

Chapter 3. La.x Logic

1- true --true/

3x. q, 1-.,, tP 3/ (x not free in t/J)
"'1-,,,..,"'

false 1-.,, 4>
A 1- q, : 0 /alseE

ef>{t/x}l-A3x.ef> 3E
A, x~ 1- 4> : {l A 1- t : T

Figure 3-3: Derived Rules for the Base Logic

34

To sum up, the base logic, henceforth referred to by the symbol 8, is speci-

fied by a signature E of sorts and operators. Its syntactic categories are types,

terms a special kind of which are propositions, and sequents. The terms are con-

structed from variables and operators by syntactic substitution. In particular,

propositions are built up from terms of type Sl using logical symbols :::l and V.

lt is pointed out aga.in that the definitions of tbese syntactic ca.tegories a.re to be

understood as minimal requirements on 8.

Let us briefly comment on tbe status of 8 as specified so far. Since we

allow ourselves to quantify over propositions, 8 has some kind of second-order

expressibility, wbicb was exploited to encode the connectives /\,V, etc. On tbe

other hand B is not full second-order logic. For instance, it is not possible to

Chapter 3. Lax Logic 35

define Leibnitz equality internally by

X =L Y ~ VP. P(x) :::> P(y)

with the understanding that P stands for any propositional context with a dis-

tinguished hole. The reason is that there are no predicate variables in 8, whence

we cannot quantify over propositional contexts. In Prawitz's simple second-order

logic [Pra65) Pis called a 1-place predicate variable andin Andrews' second order

logic :F2 (And86), a var~able of type '(i)'.
In some, albeit less fundamental, sense 8 has more structure than Prawitz's

and Andrews' systems of second-order logic. Namely, "B can have second-order

operators of sort n, n or n, n, 0 etc. which, according to Andrews' classification,

are part of third-order logic but not of second-order. So, for instance, the two-

place logical connective :::> could be introduced in 8 as a distinguished operator

of sort n, n, n rather than a syntactical operation for forming terms.

3.1.2 Extending the Base Logic

The object language of the base logic introduced so far does not comprise any

specific data types and associated operators. Here, an enrichment is necessary

for two reasons: First, we will need a minimum structure for expressing specific

'real world' verification examples in Chapter 4. Second, as will become clear

later, in order to feed back into the base logic the constraint information that we

are going to extract frorn proofs in lax logic, and to reason about it, the object

language of the base logic must be rieb enough to express the structure of proofs.

In this section B will be extended by a simply typed lambda calculus with

finite products, finite sums, exponentials, natural numbers, and for every type T

the type r• of finite lists of elements of type T. For these data types the usual

/3 and 17-equalities, and additionally for lists and natural numbers the standard

induction schemes will be assumed. In the following we will spell out these

assumptions in detail. Let S, 0 be the class of sorts and operators, respectively,

that constitute the signature E of 8.

Chapter 3. Lax Logic 36

TYPES. The well-/ormed types of 8 are generated by S as the primitive types

and the type forming operations

T ::= A 1 0 1 T + T 1 1 1 T x T 1 T => T 1 r• 1 N.

Here A sta.nds for any sort in S. N ia the type of natural numbers a.nd r• the

type of lists with elements of type T.

TERMS. The tenns of 8 are built from variables (an infinite number of variables

of ea.ch type is assumed), the. operators in 0, the logical symbols :::>,Ir/, =, and

the standard constructors and destructors for the composite types, i.e. they are

of the shapes

t ::= X 1 f(t„" ,t) 1

t:::>tllr/x.tlt=t
Dt 1 t1t 1 t2t 1 casez,,(t, t, t)

* 1 ir,t 1 ir2t 1 (t, t) 1
tt 1 .\x.t 1
[] I t :: t 1 fold,.z (t, t) 1

0 1 succ 1 iterz (t, t)

variables and operators

propositions
finite sums

finite products

exponentials

lists

naturals

where x,y,z are variables and f is a.n operator in 0. The definition in Section

3.1.l of well-formed terms of type T is extended by the following clauses:

• If t is well-formed of type 0 then Dt is well-formed of a.ny type r; its free

variables are those of t.

• If t is well-formed of type <1 a.nd Ta type, then t1t and t 2t are well-formed

of type " + T a.nd T + <1, respectively; their free variables a.re those of t.

• lf s and t are well-formed of type T, x variable of type u1, y variable of type

u2, and u well-formed of type 0"1+0"2 such that z, II are not free in u, x not

free in t and 11 not free in s, then case,..,,(u, s, t) is well-formed of type r; ita

free variables a.re those of s, t, a.nd u except z and II·

Chapter 3. Lax Logic 37

• * is a well-formcd closed term of type 1.

• lf t is well-formed of type <T x T then 71'1 t and 7f2t is well-formed of type <T

and T, respectively; their free variables are those of t.

• lf s is well-formed of type u, t well-formed of type r, then (s,t) is well-

formed of type <T x r; its free variables are those of s and t.

• lf s is well-formed of type u ::} Tand t well-formed of type r, then st is

well-formed of type r; the free variables of st are the free variables of s and

t.

• lf t is well-formed of type r, and z a variable of type u, then ~z. t is well-

formed of type <T => r; its free variables are those of t except z.

• [] is a well-formed closed term of type r• for a.ny type r.

• lf s is well-formed of type T and t well-formed of type r•, then s :: t is

well-formed of type r•; its free variables are those of s and t.

• lf s and t are well-formed terms of type u, z variable of type <Tand z variable

of type r, both not free in s, then the term fold,,s (s, t) is well-formed of

type r• => u; its free variables are those of s a.nd t except z and z.

• 0, succ are well-formed closed terms of type N, N::} N, respectively. If a

and f are well-formed terms of type T, z variable of type T, not free in a,
then iter„ (a, /) is well-formed of type N ::} r; its free variables are those

of a and J except z.

As before, terms of type n are called propositions. A well-formed term may have

more than one type according to the above definition. Types could be made

unique, as it is usually done, by annotating terms with types. For instance, one

would distinguish type-many instances 1 }r of the empty list and define 1 }r to have

Cbapter 3. Lax Logic 38

type (7 iff (7 = T. Fot terms ti :: .•. :: t„ :: a of type r• we sha.11 use the more

standard2 notation (t„, ... , t1).

Note, the forms case, A, fold, and iter have variable 'binding effect, and the

notion of a bound variable has tobe extended to terms case„,.(u,s,t), .b.t,

fold.~ (s, t), and iter„ (a, /) in the apparent way.

The above definition of well-formedness may be cast into a system of formal

rules as shown in Figure 3-4 which we add to the typing rules of Figure 3-1.

A 1- Ot : T A 1- t1 t : (7 + T t A 1- t2t : T + (7 t
Al-t:O T type Al-t:u Type Al-t:tT Type

A 1- case„,.(u, s, t) : T

A 1- u : D't + 0'2 A, :i:"' 1- s : T A, y"• 1- t : T

A 1- ir1t : u
Al-t:<TXT

A 1- ir2t: T

Al-t:uxr
Al-(s,t) :tT xr

Al-s:tT Al-t:r

Al-st:T
Al-t:u Al-s:u=>r

1- O: N 6.1-succ:N=>N

1-()·r• Al-s::t:r•
---''"'---

0

-T type
6. 1- s : r A 1- t : r•

A 1- A:i:. t : (7 => T

A,x"l-t:r

A 1- iter„(s,t): N => T

A 1- s : T A, XT 1- t : T

A 1- fold.., (s, t) : r• => tT
Al-s:u A,zT,x"l-t:tT

Figure 3-4: Well-Formed Terms of 8, II

Observation 3.1.4 A term t is well-formed of type T with all its free variables

in the context A iff 6.1- t: T can be derived by the rules of Figures 9-1 and 9-~.

SEQUENTS. Finally, the base logic B is extended by the usual equality axioms

for the data types as summed up in Figure 3-5, the standard induction principle

2The reversing of the order in which the elements appear is inessenlial but technically
convenient.

Chapter 3. Lax Logic 39

for finite lists

r t-.,, Vz. tP Listlnd
r 1-.,, q,{[]/z} r,q, 1-.,,,„,1 t/>{x :: z/z}

where x, z are variables of type T, T•, respectively, x not free in r, t/J, z not free

in r, and induction for natural numbers

rt-.,, Vz.t/J Natlnd
f t-.,, t/>{O/z} f,t/> t-.,_,, tf>{succz/z}

where z is variable of type N not free in r.
We have separated the equality rules in Figure 3-5 into three classes, r>iz. /J, „,
e equalities. This classification is taken over from lambda calculus, where one

mainly is dealing with function types. As in lambda calculus the /J-equations

capture the computational meaning of terms, the '1-equations amount to exten-

sionality of the data types, and the e-rules are structuraJ ru}es that enable US to

substitute equals for equals within the variable-binding operators ~. case, iter,

and fold. For the other operators such e-rules already are covered by the ordinary

substitution rule Subst. For instance, the rule

t-.,, (s,t) = (s',t')
1-.,,s=s' t-.,,t=t'

is a derived rule in 8. Extensionality of natural numbers, i.e. the uniqueness of

iteration, expressed by the scheme

JO=s /1 Vy.f(succy)=t{fy/:r;} :::> f=iter„(s,t)

is derivable from extensionality of functions and induction. A similar remark

applies to extensionality of lists.

Observation 3.1.5 Every sequent r t- 6 t/J derived b11 the rules of Figures 9-1

and 9-5 is well-formed, i.e. ~ is a contezt (non-duplicating list of variables),

and the assertion t/J as weil as all h11potheses in r are well-f ormed propositions in

contezt ~.

Chapter 3. Lax Logic

fJ Equalities

1-4 .eo t = Dz
A,x0 1- t: r

1-..,.,,, 1r1(z,y) = X

l-4.., (..\z. t)x = t
A,x" 1- t: r

l-4 case.:,v(t1u,s,t) = s{u/x}
A 1- u : <T1 A, x"• 1- s : r A, y'" 1- t : r

l-4 case.:.v(t2u,s,t) = t{u/y}
A 1- u : a, A, x"• 1- s : T A, y"' 1- t : T

1-4 ,, iter„(s,t)(succz) = t{iter„(s,t)z/x} N . A
A 1- • A T 1- t . z not m '-" 8. T ._.,z . T

l-4 iter..,(s,t)O = s
A 1- 8 : T A, :i;T 1- t : T

l-4 (/oldM{s,t))[] = s
Al-s:a A,zT,z"l-t:u

l-4,„,v (fold...,(s,t)}(u :: v) = t{(fold.,z(s,t)v)/z}{u/z} T" T t. A
' V U 00 lR Al-s:q A,zT,z"l-t:o- '

'l Equalities

-1-_,,4,..,,.c...:·•c..:.+c...:••~c:.;;as~e-="""'"..:..(z..:.,_hit..::.i_xLz'-'}"'-, _hi_i.:;2Y..,/~zJl_=_h · ~ z"•,y"' not in A 6, z"1+"3 1- h: T

{ Equalities

1-4 ..\z. s = >.x. t
l-4.., 8 = t

l-4 case.,,,(u,s,t) = case.,,„(u,s',t')

l-4 iter„(s,t) = iter„(s,t')
6 1- 8 : T 1-4,.,• t = t'

l-4 fold.„ {s, t) = fold.,,. (s, t')
Al-s:<T l-4, •• ,..,.t=t'

Figure 3-5: Equality Axioms of 8 for Standard Data Types

40

Chapter 3. Lax Logic 41

Remark: Strictly speaking, the observation assumes that equality is system-

atically decorated with types. In Figures 3-2 and 3-5 this additional typing

information is suppressed for better legibility.

Now the base logic is in place. lt is noted that the extensions laid down in this

section are meant only as minimal requirements on 8 for which the construction

of lax logic will be possible. Thus, further data types, logical connectives, and

rules may be added to the base logic whenever a specific hardware verification

problem requires us to do so. Of course, this is sensible only to the extent that

8 remain consistent.

Theorem 3.1.6 The base logic 8, as introduced so far, is consistent.

Proof: (Idea) The simplest proof is the one by models: Consider a classical

set-theoretic model for 8 that interprets the ordinary data types in the standa.rd

way, in particular such that (u => T) is the set of all functions from (u) to (T), (N)
are the standard natural numbers, and finally such that the type Sl is interpreted

by the set [O) = { true,false }. To every closed term s: T is assigned an element

(s) E (T) in the usual way, such that (s =T t) = true if! (s) equals (t) in the

model, i.e. are identical elements in (T). Further, it is shown that 8 is correct

for this interpretation, viz. that if 1- 4> is derivable, then (4>) = true. Consistency

of 8 then follows from the fact tha.t 0 and succ(O) a.re different natural numbers

in the standard model, i.e. 1- 0 = succ(O) cannot be derivable. 1

lt is weil known tha.t higher-order logic is incomplete wrt. the standard set- .

theoretic notion of model, i.e. models which interpret a type O' => T as the set

of all functions from u to T. One has to consider non-standa.rd models in order

to capture the expressibility of a particular higher-order logic in terms of models

(Hen50). Consequently, in contrast to the first-order case there is no canoni-

cal system of higher-order logic. Rather, there are quite a number of different

formulations3 in the literature, such as Church's Simple Theory of Types (STT)
3The names STT, ITT, and LPE are nol inlroduced in lbe lilerature. Tbey are used in

Chapter 3. Lax Logic 42

(Chu40), Andrews' systems F"' and Q0 (And86), Coquand's Calculus of Con-

structions (CC) (CH88), Lamhek and Scott's Intuitionistic Type Theory (ITT)

(LS86), Fourman and Scott's Logic of Partial Elements (LPE) (Fou89), and many

more. In general, one would expect u ma.ny different versions of higher-order

logics u there are intended notions of models.

Our formulation of 8 provides yet another version, which does not compare

easily to the systems mentioned a.bove. lt basically should be understood a.s
extending ma.ny-sorted first-order logic by equality, inductive data. types like

Dl!-lUra.l numbers a.nd !ists, a.nd a. sort {} of propositions. lt is importa.nt to point

out that n has not been added with the aim to ma.ke the Jogic higher-order but

to ha.ve a particular notion of constraint (viz. constra.int = !ist of propositions)

available as a. type within the logic. For a. simpler notion of constra.int (such

as: constra.int = boolean) first-order logic would be enough, a.lthough, then the

logical connectives /alse, /\, V, 3 have to be introduced explicitly. Consequently,

the models of B which we will consider in Section 5 essentially are first-order

models with additional structure.

Of the higher-order systems mentioned above the one that is closest to 8

is ITT of Lambek and Scott, in the sense that it is many-sorted, explicitly

a.xiomatizing data types, proof irrelevant, a.nd based on the intuitionistic logical

primitives ::>,V. What are some differences between 8 and ITT, then? Firstly,

the type system of ITT is based on the notion of sets rather than functions,

i.e. the central feature is a power type operator PT while 8 has the function type

operator T ~ u. To compare both systems one may take the type PT of ITT as

an abbreviation for the type T ~ n, and the formation of sets {z E A 1 <P(z)}
and elementship z E S stand for lambda abstra.ction .b. <P and application S z,
respectively. Other systems based on functional types are STT, Q0 , CC. A

second difference is that in ITT, as weil as in most other systems of higher-order

logic, equality is defined as Leibnitz equality while in 8 it is a primitive relation.

the fo\lowing paragrapbs only ror the purpoee or rererence.

Chapter 3. Lax Logic 43

Thus, the meaning of equality in 8 can be chosen freely within certain limits

while it is fixed in ITT. Note, though, that in B we can prove

1- s = t ~ V P. P s :::> Pt.

Also, in ITT, as weil as in most other systems of higher-order logic, equality of

propositions is identified with logical equivalence, i.e.

while in B the two ways of comparing propositions are independent concepts.

This has the advantage that in 8, equality may be given a computationally

meaningful interpretation, e.g. a decidable relation on types like 0 and n·. How

this can be used will be seen from the examples in Chapter 4. A third, less

important, difference between B and ITT is that 8 not only axiomatizes the

data types products and natural numbers but also sums and lists which are not

incorporated in ITT.

To sum up this discussion we claim that if the extensionality axioms

'Vf,g.(Vx.(/x:::>gx)A(g:z::>f:z:)) ::> f=g

are added to B, where f,g have type T => n, T arbitrary type, as weil as tbe Peano

axioms, then, modulo the canonical translation hinted at before, all theorems of

ITT can be derived in 8.

The remainder of this section discusses a few basic constructions in 8 that

will be used later on. First, we state without proof that from iteration iter and

products a primitive recursion operator natrec: (r x (N => T => r)) => N => T

can be obtained that satisfies the equations

natrec(a, f) 0

natrec(a, f) (succ (n))

a

J n (natrec(a,J) n).

For instance, natrec can be defined as follows:

Chapter 3. La.x Logic 44

where z,:i:,y are variables of types T x (N => T => T), N, N x T, a.nd z;,1/;,

i = 1, 2, abbreviate the terms ir;z, 7r;y, respectively. The key to vetifying that

natrec obeys the equations above is to use the induction rule Natlnd to prove

that ir1{iter~(„„„.)) is the successor function. Similarly, one can construct

from the operator fold for lists a recursion combinator

listrec: (a x (T => T" => a => u)) => T• => a

for every choice of types u, T for which the equations

listrec(a,f)[J = a

listrec(a,f)(x :: z) = fxz(listrec(a,f)z)

can be ·proven in 8.

As has been hinted at in the beginning of this section one of the ma.in reasons

for extending the base logic as described is that now the notion of constraint in

the sense in which we are going to use it is internal to the logic. We can formulate

as a proposition of 8 the meta-logical statement tha.t some proposition is provable

under a constraint. Specifically, we can implement the general approa.ch which

is to take as constraints the lists c = ("y„, ..• , 1'iJ of propositions, a.nd to say that

a. proposition q, is 'provable under' c iff the sequent 1'l • ••. , 1'n 1- </> is derivable

in 8. Under this interpretation constra.ints are in one-one correspondence with

te~ms c of type O* and q, is provable under c iff the proposition </>0 is provable,

where </>0 is defined for all c by the clauses

t/1-,::c = '7 :::> (</>•).

Moreover, we can define the map c, q,,..... q,• a.s the following well-formed term of
typen· ~ (0 ~ 0):

'- !M. wea,,; = >.c. >.q,. (f old„z (</>, z :::> x)) c

where c is a variable of type 11* a.nd "'· z, X distinct variables of type n. The
properties of weak are summed up in

Chapter 3. Lax Logic 45

Lemma 3.1. 7 ltt <P, r/l, 1 be 11ariables o/ tvpe Sl a11d c variable o/ t11pe Sl".

• 7'/1e lfl'lll 'wuik' "" deji11ed Clbove is a closcd well-/ormed term o/ typen· =>
(0 => 0) /ur U.'hi,·h thc tqualio11s

1- • weak [) 1/1 = 1/1

t- -,,c,• weak (1' :: c) 1/1 = "Y ::> (weak c </>)

can be derived in 8.

• Proposition Vc. weak elf> is provabl11 equ.ivalent to </>, and /or all c : 0"

proposition weak c (i/> ::> t/J) is provabl11 equ.ivalent to (weak c 4>) ::> (weak c t/l),
i.e. the sequ.ents

1-.,. 4> ~ Vc.weakclf>

t-.,.,.,., Vc. weak c(lf> ::> t/l) ~ (weak elf>) ::> (weak ct/l)
can be derived in 8.

Proof: The first part follows from the definition of weak, and from ,8-equality

for A·application and Jold. The second part is obtained by induction on c and by

using the first part of the lemma. •
In the following we will take the notation iJ>< to stand for weakclf>. Another

operation that we will need is concatenation @ : T" => (T" => T") of Iists:

"' @ = Al.Am.(/old,,„(l,z::z))m

where 1, m, z are distinct variables of type r", z variable of type T. For convenience

we will use the infix notation l@ m rather than @ l m.

Lemma 3.1.8

• The term @ as defined above is a closed well-formed term of type r" =>
(r" => r") for everv4 type T for which the equ.ations

1-, /@[) = l

1-z,1,m l@(z::m) = z::(/@m)
41t is assumed that the variables z,z,I, min tbe definition of Q aie cboeen in eome canonical

way for each type T.

Chapter 3. Lax Logic 46

can be derived in 8, where l, m are variables of type r• and z variable of

type T.

• The f ollowing equations

f-1 [)@m = m

f-•,l,m (k@l)@m = k@(l@m)

f-4>,l,m (i/>')m = q,iom

can be derived in 8 where q,, k, 1, m are variables of the appropriate types.

Proof: The first part follows from the definition of @, and from P equa.lity for

A a.nd fold. The second part is obtained by induction on m, using the first pa.rt

of the Lemma. and of Lemma 3.1. 7. 1

The second part of Lemma 3.1. 7 and 3.1.8 ca.n be para.phrased more compactly

by sta.ting that the triple (O", [], @) together with the ma.pping c, i/> H q,c is a

(monoidal) action on n tha.t preserves implica.tion. As explained at the beginning

of this chapter these da.ta a.re taken to define a. notion of constra.int.

Definition 3.1.9 A notion of constraint Jor 8 is a triple (C, l, ·), where C i8 a

type and 1 : C, · : C x C => C closed terms, together with a map c, i/> H q,c that

assigns to each term c: C and proposition q,: 0 a proposition q,• : 0, subject to

the f ollowing conditions:

• (C, 1, ·) is an internal monoid, i.e. the monoid equations 1 · c = c = c · l

and (c· d) · e = c-(d · e) can be derived in 8.

• (C, 1, ·) is an action on formulae, i.e. q,1 = q, and (4>')d = q,c·d.

• The action preserves entailment, i.e. a sequent f, q,1 , ••• , q,„ f-"' q, is deriv-

able in 8 iff f or all 6. f- c : c the sequents r' 4>1 c' . „ , q,„ c f- b. q,c are

derivable.

• The action respects substitution, i. e. if z i8 a variable and t a term of type

r, then W){t/:z:} = (i/>{t/z})c{'/„l.

Chapter 3. Lax Logic 47

Remark: The third condition Covers the Special case n = o, viz. r 1-A "' iJJ
r 1-A q,c for all A 1- c : n. For r = "' this means "' 1-A q,c for all A 1- c : n. Note,

the definition does not require that the mapping c, tf> >-+ </>0 is a.ctually expressible

within tbe logic as a term of type C X {l => {l, as is tbe case witb the notion

of constraint (0-, [), @) considered later. lt may also be a syntactic translation.

The fourth condition is there to make sure that this syntactic translation is

well-behaved wrt. substitution. We remark that for an action on truth-values

rather than formulae one would replace in the second condition the equality by

equivalence. This, too, would suffice for our purposes.

Lemma 3.1.10 (0-, [], @) together with ;• E weakc</> is a notion o/ constraint.

Proof: The first two properties of Definition 3.1.9 follow immediately from

Lemmata 3.1.7, 3.1.8. The i/ direction of the second condition is trivial anyway

since q,1 = tf>. The only-if part is proven by induction on the number n of

hypotheses and the second part of Lemma 3.1.7. The fourth property is satisfied

trivially by (n•, (), @) since .pc = weakc t/>, where weak is a closed term. 1

In connection with using a list c : 0- of propositions as a constraint a function

n : n- => n will be useful that conjoins all the propositions in c into a single

proposition nc. This map can be defined by

"' n = /old,,„ (true, z /\ x).

Lemma 3.1.11 The propositions ;• and (nc) :::> tf> are provably equivalent, i.e. the

sequent

is derivable in 81 Where "' and C 4rf! 1Jaria/Jlt:8 0/ type n and n• I respectiue/y,

Proof: easy, by list induction on c. 1

Chapter 3. Lax Logic 48

3.1.3 Lax Logic

We are now going to extend B by a modal operator <> with the intended meaning

that <>!/> sbould be true if there is a constraint c such that !/> holds under c. Given

a notion of constra.int (C, 1, ·), this appears to suggest

(3.1)

so that lax logic simply becomes a definitional extension of 8. Let us see why

this is not a good idea. Notefirst, however, that tbe rules

indeed are derived rules under this definition of <>; OJ follows from the equiv·

alence i/>1 e!! !/>, and 0 F is a consequence of the fact that !/> 1-+ !/>" preserves

entailment. The problem with the above naive definition (3.1) comes with the

rule scheme

which translates to the sequent 3c. (3d. !/>")° l-4 3d. if>" which is interderivable

with the axiom scheme

Vc. ((3d. i/>4}
0 ::> 3d. !/>"}.

Now, suppose this were derivable, then we could conclude that for all li 1- c: C

the proposition (3d. if>'f is provable iff 3d. !/>" is provable. But this sa.ys that no

constraint has any influence on the provability of a proposition of form 3d. i/>4

which appears to be a. strong condition to impose on a notion of constraint.

A second problem with the definition (3.1) arises for the particular notion of

constraint (n•, [), @). Here, t/f is equivalent to nc ::> !/>. We can take c = (!/>) as
the constraint to get

So, for every i/> there is a proof of 3c. i/>0
• Hence under definition (3.1) any proposi-

tion of form <>!/> would be provable, which trivializes <> in a very undesirable way.

Chapter 3. Lax Logic 49

So, we better not hard-wire this property of the particular notion of constraint

(0° 1 [), @) into the logic.

The third and most important reason for not adopting definition (3.1) is that

there is no guarantee, that from a proof of o; = 3c. ;· we can actually extract

a constraint c and a proof of tf>C. Since 8 can be an arbitrarily strong classical

logic this may actually be impossible, in general.

Instead of using a definition like (3.1) we are going to embed 8 properly within

an intuitionistic first-order logic containing 0 as a primitive modal operator

together with associated rules OJ, OM, and OF. Apart from containing 8 as a

sub-logic it will be equipped with its own first-order connectives. Thia 'top-up'

logic will be called lax logic and denoted by the symbol C.

The collection of types and terms of C., as weil as the typings, are simply

inherited wholesale from the base logic. The embedding B ..._. f; will be witnesaed

syntactically by an operator i that promotes a proposition tf> from B into a formula

itf> of !. This mapping i will be shown to preserve and reflect provability, i.e. tjJ

is provable in B ilf itf> is provable in C. (Theorem 3.1.16).

FORMULAE. The formulae of C., ranged over by the meta-variables M,N,K,

etc. are given according to the grammar

M ::= true 1 MA M 1 fal8e 1 MV M 1 M ':J M 1

Vx.M 1 3x.M 1 OM 1 itf>

where tf> ranges over propositions of 8 and x over variables. These are the only

formulae of !. These connectives are to be distinguished from the primitive

connectives :::>,V, and the abbreviations true,false, V,3 defined for 8. However,

as it is clear from the context within a formula in which a symbol occurs whether

it belongs to B or !, namely inside or outside the scope of '• we may use the

same symbol in both cases. For instance, in

Chapter 3. Lax Logic 50

the 3 and the left /\ are primitive connectors in C while the right /\ is the ab-

brevia.tion of conjunction in terms of :::> and V in 8. The well-formed formulae

M oC C together with the set FV(M) of /ree va.ria.bles a.re defined as follows: A

formula. M is we/1-fonned if

• M is true or false; FV(M) = 0,

• M is one of M1 /\ M2, M1 V M2, or M1 :::> M2 and both M1 a.nd M2 a.re

well-formed formulae; FV(M) = FV(M1) U FV(M2),

• N is a well-formed formula and M is ON; FV(M) = FV(N),

• M is one of Vx. N or 3x. N where x is a variable and N a well-formed

formula.; FV(M) = FV(N) \ {x},

• M is up with t/> a well-formed proposition of 8; FV(M) = FV(t/>).

t- true wff 1- false wff

6. t- M A N wff
At- Mwff At- Nwff

6. 1- M :::> N wff

At- ,qi wff
Ahp:O

At- Vx.M wff
A,xt- Mwff

At- OM wff
At- M wff

A 1- 3x.Mwff
A,x t- Mwff

At-MvNwff
6.t- Mwff At- Nwff A t- M wff A t- N wff

A,x t- M wff
6. 1- M wff (:z: variable, not in 6.)

A,y,x,A'I- Mwff
6.,x,y,A' 1- M wff

Figure 3-6: Well-Formed Formulae of Lax Logic

The reader will notice that the only possibility for a. formula not to be well-formed
is that it contains a sub-~orm 1 "- h "- · · · f '' u a. top w ere Y' 1s not a well-formed propos1t1on o

Chapter 3. Lax Logic 51

B. A well-formrd formula .U is closed if FV(M) = 0. Again we remark that free

variaLles must ucrnr a.s suL· tcrms. The notion of & 6ound variable is analogous to

B. As in tht• cast• uf ll'rms we can formalize the notion of a well-formed formula

using a new judgement

A f- Mwff

where A = x1 , • •• Xn is a context. The rules are shown in Figure 3-6.

Observation 3.1.12

• A formula M is well-formed with all its free 11aria6les in contezt A iff

A f- M wff is derivable by the rules of Figure 9-6.

• lf A,xr f- M wff and A 1- t: T, then A f- M{t/x} wff.

Equivalence 5!! of formulae is defined as before, 11iz. M 5!! N g M :::> N /\N :::> M •

.C.-INFERENCES. The calculus of enta.ilment between formulae of .C. is presented

via the judgement

called an .C.-sequent to distinguish it from sequents of 8, which consequently

will be referred to as 8-sequents. We will simply talk about sequents when the

logical system is clear from the context. r = M„ .. . , Mn is a !ist of hypotheses

and M the assertion of the sequent. All M, a.nd M must be well-formed formula.e

with free variables in A. The inference rules for deriving .C-sequents are listed in

Figure 3-7 (structural rules), Figure 3-9 (logical rules), a.nd Figure 3-8 (induction

rules). They are as in standard first-order logic plus the embedding rule '• a.nd

the three special rules 0/, OM, and OF describing the properties of <>. As

remarked at the beginning of this chapter these rules reflect the basic intended

properties of proving a formula 'under a constra.int', i.e. the properties o{ a. notion

of constraint. The next section (3.2) will show how the intuitive interpretation

of these rules can be made precise.

Cbapter 3. Lax Logic

f,M 1-A N
f 1-A N A 1- M wffweak

r 1-A,z M weak (:i: not in .0.)
f 1-A M

M 1-A M 'd
A 1- M wff 1

r 1-A.v.s.A' M perrn
r 1-"'"'·'·"'' M

f{t/:i:} f-A M{t/:i:} b
r 1-"'"'' M A ... t : 'T su

f,N,M,f' 1-A K perrn
f,M,N,f' 1-A K

rt-A N cut
fl-AM f,Ml-AN

Figure 3-1': Structural Rules of Lax Logic

rt-A Vz.M Listlnd(z,zoftypeT,T•)
f l-4 M{[)fz} f,M t-A,z,a M{z :: z/z}

f 1-A Vz.M Natlnd (z of type N)
fl-4 M{O/z} f,Ml-4,, M{succz/z}

Figure 3-8: Induction Rules of Lax Logic

52

Remark: lt may appear that rules 3E, V E, in Figure 3-9 should be stated in

a more general form by adding an arbitrary !ist of hypotheses f Oll both sides

of the rule bar, plus the condition that :i: not be free in r. However, this is not

necessary as any hypotlieses can be moved out of the way to the assertion side

using rules :>/ and :>E.

Observation 3.1.13 Every in/erence f 1-A M derived by means of rules of

Figures 3-7, 3-9, 9-8 is well-fonned, i.e. A is a contezt (non-duplicating list of

variables), and the assertion M as well as all hypotheses in r are well-formed
formulae in contezt A.

Remark: This observation means that we do not need to add the usual side-

conditions on variables z, z in the induction rules of Figure 3-8 to make sure that

f does not depend on :z and also in rule Listlnd that M does not depend on z.

Chapter 3. Lax Logic 53

If the premisses of rnle Listlnd have been derived, then we know from the right

sub-derivation that Ä, x, z is a context, whence x, z do not occur in Ä. From

the left sub-derivation we obtain that r, M {0/z} are well-formed in context ~.

whence x, z cannot be free in r and z cannot be free in M. A simila.r rema.rk

applies to rule Natlnd.

The reader will notice that there is no equality in lax logic, i.e. there are no

atomic formulae like s = t. This is so for good reasons: Equality can be lifted

from the base logic, the formulae i(s = t) can be shown to behave like an equality

in lax logic.

Lemma 3.1.14 The following equality substitution schema

r 1-A M{s/z}
Ä,xT 1- M wff r 1-A t(s =T t) r 1-A M{t/z} Subst

is a derived rule of lax logic.

Proof: By induction on the structure of formula M. The crucial base case is

when M = t~ for which the schema follows from substitution in the base logic and

the embedding rule t. All the other cases a.re obtained by first deconstructing the

top-level connective in M, applying the inductional hypothesis to its components,

and then reconstructing M with the appropriate rules. •
Let us point out two central properties of 0:

Theorem 3.1.15

• In the context of the other rules, 0 M and 0 F are equivalent to the inference

ru/e:

f,OM 1-A ON OL
f,M 1-A ON

i.e. from <>M and <>F one can derive <>L and vice versa.

Chapter 3. Lax Logic

• <> is strongly extensional, i. e. the inf erence rule

t-A (M ~ N) ::> (<>M ~ON) O t
ArMwff ArNwff ez

is derivable.

ProoC: In Figure 3-13 of the next section (Section 3.2) a derivation of OL from

rules OF and OM is given. The derivation of both <>Fand <>M from <>L, as

weil as the derivation of Oext is easy and left to the reader. •
The base logic 8 is contained within the t fragment - the dass of formulae

of shape t</> - of C via the embedding rule '· Thus, C can be viewed as an

extension of 8. lt is very desirable that this extension do not change the deductive

properties of 8 so that new theorems about 8 would be provable in C.. The

following theorem says that all i</> which are provable in the extension C. are

provable in 8 already, or that 8 corresponds exactly to the t fragment of C..

Theorem 3.1.16 (Conservativity) .C. is conservative over 8, i.e. i/ some t</>

is derivable in C, then </> must already be a theorem of 8.

This perhaps is not surprising if we bring to mind the rules of .C. for <>. 01,
<> F, and 0 M all are one-way rules for 0: once <> is introduced there is no way

to eliminate it again. So, proofs of a proposition i</> in C cannot be achieved by

detouring over modal formulae. Theorem 3.1.16 holds in a more general form as

follows:

Theorem 3.1.17 (Strong Conservativity) Let M be a well-formed formula

in contezt A such that t-A M is derivable in C.. Then, we must have a derivation

of r A M' in B, where proposition M' is obtained/rom M by removing all occur-

.rences of 0 and ' and replacing the other logical connectives by their respective
counterparts in 8.

Chapter 3. Lax Logic 55

This theorem is a necessa.ry condition for 0 to act as a place-holder: it must

not be possible to turn a non-theorem of B into a theorem of C merely by intro-

ducing Os in certain places.

Proof: By induction on the structure of derivations one proves that every

derivation of a C-sequent M1, ••• , M1r 1-A M ca.n be transla.ted into a deriva.tion

of the 8-sequent M;, ... , Mf. 1-A M'. The crucial cases a.re the rules '• <> I,
<>M, a.nd <>F, which are a.11 trivialized by the translation. For instance, sequent

<><>M 1-A <>M translates into M' 1-A M'. 1

As a corollary to Theorem 3.1.16 we conclude that l, is consistent.

Theorem 3.1.18 l, is consistent.

Proof: The theorem follows from consistency of 8: ff 1- false were derivable in

C, then also f- Lfalse would be derivable because of rule falseE. But by Theorem

3.1.16 this implies that f- false is derivable in 8. Contra.diction. 1

We have seen that we can turn a. theorem of [, into a. theorem of 8 by removing

all Os a.nd LS. What about the other direction? Surely, we do not want to have

that a. theorem of 8 becomes a theorem of l, by a.rbitra.rily introducing Os a.nd

LS for this would mea.n that l, is a trivial extension. In fact, this is not the case.

lt will be shown below (cf. Lemma 3.1.19) tha.t if Ou/>:) Lt/> is a theorem of C,

then also tt/> must be a theorem of C, whence t/> must be a. theorem of 8. So, for

a. non-theorem t/> in B, which must exist by consistency, we have tha.t Oit/> :) it/>

is not provable in C, while, of course t/> :) t/> is provable in 8. Thus, the other

direction of Theorem 3.1.17 is not true in general and l, is a non-trivial extension

of 8.

Lemma 3.1.19 Let M be a well-/ormed /ormula in contezt ~ auch that 1-A M

is derivabie in C. Then, there is a derivation o/1-A Mo in C, where formula Mo

is obtained /rom M by replacing all those sub-formulae by 'true' that are prefized

with <>.

Chapter 3. Lax Logic 56

Proof: One shows by induction on the structure of a derivation that whenever

a sequent r 1-A M is derivable, then there is a derivation of fo 1-A Mo. The

translation M ,..... Mo is formally given by the scheme

trueo = true falseo false

(M /\ N)o = Mo/\ No (MV N)o = Mo V No

(M ::> N)o = Mo::>No (t</>)o t</>

(l/x.M)o = Vx.Mo (3x.M)o 3x.Mo

(OM)o = true.

1

As a corollary to this lemma we note:

Theorem 3.1.20 C. + Vz0 • Oiz is consistent.

Proof: If Ilz. 0 t z were inconsistent, i.e. we could derive 1- (Vz. 0 t z) ::> /alse,

then by Lemma 3.1.19 we could also derive t- (Vz. true) ::> false. But this means

Cis inconsistent, since l-1 true and hence 1- Yz. true is derivable. Contradiction.

1

So rnuch for a definition of lax logic in sequent style. In Section 3.3 also a

natural deduction presentation is given which will make later example derivations

much more economic. Let us finish off this section with highlighting the central

fea.tures of lax logic.

• In C we have induction for natural numbers and lists. Being able to con-

struct inductive proofs of formula.e which are arbitrarily complex in terms of

0-rnoda.lities is what fleshes out the bare bones of constra.int rnanipulation, as

will be seen frorn the examples in Cha.pter 4.

• C is a. first-order logic. We cannot quantify over formulae as there is no

type of all formulae. This is an irnportant reatriction whicb drastica.lly reduces

the complexity of constra.int information extracted from proofs in C. In the next

section we will see how to extra.et from every proof of a formula. M a constra.int

Chapter 3. Lax Logic 57

term the type of which, denoted by IMI, is determined by the structure of M.
Now, if C were higher-order, then M might have a free variable z that stands

for an arbitrary formula. In that case the type IMI will depend on the actual

formula substituted in for z, whence IMI would be a dependent t11pe. Adding

dependent types to the type system of C and 8 ia a major complication that we

want to avoid in this thesis.

A consequence of the restriction to first-order quantifiers is that the logical

connectives /a/se, true, V,/\, 3 cannot be defined in terms ::> and V. They must

be introduced explicitly as primitive symbols one by one. Note, however, that

since the base logic is part of c we may still quantify over the type n of propo-

sitions, though. For instance, the formula Vz0 • <>iz is well-formed and will play

a prominent role Jater.

• Finally, Cis intuitionistic, i.e. C-sequents allow a single formula on the right

side of t- and there is no axiom of the excluded middle or an equivalent classical

principle. This allows us to extract from derivations in C constraint information

in the form of ordinary lambda terms. Therefore, C bas to be a closed system with

no formulae and inference rules otber than those defined above. For every new

feature that is tobe added to C constraint extraction must be defined and proven

correct separately. In contrast, B, which is proof irrelevant, can be arbitrarily

strong without any change to the theory of lax logic. Tbis explains also why we

distinguish two kinds of sequent 1-, 1- with the consequence that some inference

rules are duplicated. We want to keep track of which parts of a proof are relevant

for Iater extracting constraint information and which parts are not.

Chapter 3. Lax Logic

1- true --truel

M /\Nl-t,, M
A 1- M wff A 1- N wff/\Ei

M/\Nl-AN
6. 1- M wff 6. 1- N wff /\E,

M{t/.:r} 1-A 3.:r. M 31 6.1-t:T A,.:z:Tl-Mwff

f alse 1-A M , ls E
A 1- M wffJ4 e

Ml-AMVN
Al- Mwff 6.1- NwffV/i

Nl-AMVN
Al- Mwff Al- NwffV/,

Vz.Ml-A M{t/:i:} VE
t;. 1- t : T A, :i:T 1- M wff

3.:r. M 1-A N 3E (x not Jree in N)
M t-A,s N

M t-A OM OOM 1-A OM
t;. 1- M wff OJ A 1- M wff <:>M

'~h· ··•'~" 1-A if/>
~h···••lr 1-A tP L

Figure 3-9: Logical lnference Rules of LAX Logic

58

Chapter 3. Lax Logic 59

3.2 Constraint Extraction

By exploiting the constructive nature of C as a first-order extension of 8 we

are going to extract constraint information from derivations in C. We will show

how, by eliminating the operator <> in favour of constraints, this information

may be analyzed and used to translate ba.ck derivations in C into derivations

in 8 so that formulae become propositions and C-sequents become 8-sequents.

Although the extraction will work for any notion of constraint (cf. Def. 3.1.9) we

will, for the sake of definiteness, focus on the notion of constraint given by the

triple (n•,[J,@) for which

<flh•.„.,-y,J ~ weak (I'„, ... , "Y1) t/> = "Y1 ::> • • • ::> "Y11 ::> <fl.

For this model & translation process will be defined that allows one to compute

for each derivation of an C-sequent 1- M the derivation of & 8-sequent 1- M 0 ,

where M0 is a proposition obtained from M by repla.cing all occurrences of <>
by certain constraints. So, if <>(-) is an occurrence of <> in M, then it will be

replaced by ")°, where c is a term of type n·. In particular, the translation will

be such that a derivation of 1- t</I is translated into a derivation of 1- <fl.

For simplicity Jet us restrict attention for a moment to proofs of formulae

in the empty context, i.e. on derivations of C-sequents 1- M with M & closed

formula. As usual a derivation of a sequent 1- t/> or 1- M is called a proo/ of <P or

M, respectively. Our plan is to associate with every closed M a constraint type

IMI and a constraint predicate M* : IMI => n, such that from every proof of

M in C a closed constraint term t of type IMI can be extra.cted together with a

proof of M*t in 8. Thus, we want

/ormulaM >-+ IMI type (3.2)

M* : IMI => n well-/ormed predicate (3.3)

proo/ o/ M >-+ t : IMI well-/ormed term (3.4)

proo/ of M*t. (3.5)

Cbapter 3. Lax Logic 60

Intuitively, IMI is the type of constraint information for M and M' a predicate

telling how M is pa.ra.meterized or modified by constraint information. In general,

M'z will be a weakening of M depending on constraint term :e. The extraction

yields for ea.ch proof of M in C some specific constraint term t and a proof of

M't.

As a.n exa.mple consider the specification of the decrementor:

SPEC = Vn.Ot(succ(decn)=n).

Here, the constraint type will be

ISPEC1 - N '* (11" X l}

and the constraint predicate

SPEC-z _ \In. (succ(decn) = n)"J(n)

~ \In. n (ir1(zn)) :::> succ(decn) = n.

Further, from a proof of SPEC in C we obtain a constraint term t of type N =11-

(fl" X 1) and a. proof of SPEC-t in 8. Thus, the proposition n(ir1(tn)) then is

the concrete constraint by which the decrementor's ideal specification has to be

weakened to turn the lax proof of SPEC into a proper, 'rigid' proof in 8.

For the ordina.ry first-order connectives of C the translation process that we

will define is known from standard proof extraction techniques for intuitionis-

tic logics, cf. (TvD88] for insta.nce. Christine P.-Mohring (PM89) introduces a

similar extraction process for the higher-order type theory of the Calculus of

Constructions. There, IMI in general is a dependent type while in our first-order

setting it is a. simple non-dependent type.

We begin with the first part of the translation, i.e. with 3.2 and 3.3. The

crucia.l connectives tobe covered a.re 0 and t. Let us consider i first. Suppose"'

some proposition of the base logic. Since proofs of tt/J in C a.re to correspond

Chapter 3. Lax Logic 61

one-one to proofs of 4> in ß, aqd since in 8 no notion of proof information ie

assumed, the lranslation for 14> is taken to be simply

where z is a fresh variable of type 1 not occurring in 4>- The definition of the

constra.int predicate (14>)' of type 1 => 0 could equa.Jly weil be written in a

point-wise manner, viz. as (14>)" z = ip. Both equations are equiva.Jent since we

are assuming ß and 17-equalities and the e-rule for function spaces. This latter

form of definition will be adopted in the sequel.

What is the translation of O? Weil, from proofs of 01iP we seek to extract

a term c : fl" and a proof of iP•. Given the translation defined above for t this

can be expressed also by saying that the constraint information obtained from

a proof of 01iP is a pair (c, d) with c a term of type n• and d : liifol constraint

information for up with the property that 1- ((1ifo)"d)° is derivable in 8. This

leads us to define

IOMI g n· x IMI

where z is a fresh variable of type W x IMI, not occurring in M already. Aga.in,

the 'proper' global definition of the constraint predicate (OM)" is obtained from

the equation shown by A-abstraction over z. For the other connectives constraint

type and constrained predicates are declared as follows:

ltruel g 1 true• z ~ true

IM /\NI g IMlxlNI (M /\N)"z ~ M•(ir1z) /\ N"(ir2z)

lfalsel g 0 Jalse"z ~ false

IMVNI g IMl+INI (MV N)"z ~ (3xlMl.z = 11x /\ M"x)
V (3ylNI. z = t2J.1 /\ N•y)

IM :>NI g IMl=>INI (M ::> N)"z ~ VxlMI. M"x ::> N"(zx)

IVx"'.MI ~ T => IMI (VxT.M)"z ~ VxT.M"(zx)

l3xT.MI g T X IMI (3xT.M)"z ~ (M{ir1z/x})'°(ll'2z)

Cha.pter 3. Lax Logic 62

where the logica.l consta.nts true, f alse, and the connective A in the definiene

stand for their second-order encoding via V and :> in 8 given in Section 3.1.1.

Just as before the variable z in each case is assumed not to occur among the free

variables in M or N. Additionally, in the clauses for :::> and V the variables x,y

must be of the appropriate types and not be free in M or N.

Remark: In the definitions above M• is a predicate of type IMI :::} n. Al-

ternatively, the clauses can be understood ~ defining a syntactic translation

M 1-+ M'[z) that turns M into a proposition with an extra free variable z. We

will sometimes adopt this latter view in order to saves ß-transformations.

Theorem 3.2.1 (Correctness of Extraction 1)

• For every well-formed formula M of C., with free variables in contezt 6.,

IMI as defined above is a well-formed type and M• a well-formed tenn of

type IMI :::} n, with the same free variables as M.

• Let M be a weil-/ ormed f ormula with a free variable x of type T and t a well-

f ormed term of typeT. Then, IM{t/x}I = IMI and M*{t/x} = (M{t/:i:})' ·

Proof: The proof proceeds by induction on the structure of M. The interesting

case is to verify (OM)'{t/:i:} = (<>M{t/:i:})'. In this case we have to use that

the action translation </>, c 1-+ t/>0 respects substitution:

(OM)'{t/x} = pz.(M•(ir2z))""'){tix}

>.z. (M1 (ir2z))"1• { t/z}

= >.z.(M'(ir2z){t/z})"1•{t/z}

= >.z. (M*{t/x}(ir2z))"1
•

= >.z. ((M{t/x})'(ir2z))"1
'

(OM{t/z})'

The third equation is due to the action preserving substitution, the fifth equation
is the induction hypothesis. 1

Chapter 3. Lax Los'ic 63

So much for lhc firsl parl of lhe exlraclion process. The second part covering

3.4 and 3.5 pron~<I• Ly iuduclion 011 lhe 11lrnclure of derivations. To deal with

lhe gcnl·ral rn„e wc wi"h lo exlracl from evcry Jerivalion of an .C-sequent

and sequence za, ••• , Zc of arbitrary but fixed variables of types IM;!, i = 1, ... , k,

respectively, a well-formed constraint terrn

(3.6)

and a derivation of the 8-sequent

(3.7)

In the case where both k = 0 and A = 0 this specializes to 3.4 and 3.5. We

remark that in order to avoid renarning of variables we irnpose on the variables

z; the restriction that they be fresh, i.e. they must be different frorn all free

variables that occur in the whole derivation tree of M1„. „Mi. 1-A M, which,

because of rules VI, 3E, sub rnay even be variables not contained in A. We will

sornetirnes abbreviate the list za, ••• , Zk of variables by z, the list M„ . .. , M„ of

hypotheses by r, and M1. Z1„. „ M.· Zk by r• z.
There are several ways to define the envisaged translation. For instance we

may use the fact that a derivation in .C, being nothing but a tree of rule applica-

tions, can be represented in linear notation by traversing the derivation tree in

some fixed order (e.g. preorder) and noting down the narnes and other relevant

information of the rules as they are visited. The translation could then be defined

by induction along the structure of this 'term' of enriched rule names. What bits

of data are actually required of each rule rnay be inferred by the following guide-

line: For each rule, given cornplete knowledge of its conclusion, the data must

be sufficient to deterrnine uniquely all prernisses. To treat rule VE, for example,

we need to record in addition to the rule narne the term t that is substituted in

order to work out the prernisses A t- t : r and A, z 1- M wff from the conclusion

Chapter 3. Lax Logic 64

Vx.M 1-l> M{t/x}. So we might write VE1 to record an application of rule VE.

The most expensive rules in this respect, of course, are the 'cut' rules cut and

su6. Anyway, if the guideline is obeyed for all rules, then we obtain a unique

representation of the derivation of M1, ••• , M„ 1-t> M in linear notation. We will

use this approach in the next section to translate natural deduction proof trees

for C.. They are much more economical than inference trees and also cut and

sub-free.

At this point, however, we wish to define the extra.ction process without a.ny

intermediate steps and directly translate each application of an inference rule,

and thus the tree as a whole. We are not reducing the amount of information

necessary to represent derivations first and writing it down in linear fashion. The

translation concerning (3.6) is shown in Figure 3-10 for the structural rules and

in Figures 3-11, 3-12 for the logical rules. The other part of the translation

concerning (3.7) we will not spell out explicitly since we are not interested in

proofs within the base logic; it is contained in the proof o{ Lemma 3.2.2 stated

below.

The first column in Figures 3-10, 3-11, 3-12 lists the name of each rule, the

second shows the rule (scheme), andin the third the constraint terms along with

their typings are given, by which the corresponding rule has to be replaced in

the translation. How are these tables to be understood?

First, some technical remarks are in order. For simplicity we have 1eft out all

premisses that a.re judgements of well-formedness for formulae in the rules. These

premisses do not contribute towards the construction of the constraint term. In

contrast, premisses that are typings 6. r t: T of some term t as in rules sub (see

Fig. 3-10), or V E and 3E (see Fig. 3-12) are necessary for typing the constraint

term since here the term t enters the constraint term. In these cases, therefore,

the complete derivation subtree that ends in premiss 6. r t : T is taken over into

the typing tree for the constraint term. Also, to understand the typing of the

constraint term in these cases one has to bear in mind that jM{t/x}I = jMj.

Chapter 3. Lax Logic 65

rule derived typing o/ constraint term

id M l-4 M 6, zlMI 1- z : IMI

weak f,M l-4 N 6, z, zlMI 1- t : JNJ
rt-4 N A,z 1- t: INI

weak r l-4,„ M A,z,z 1- t: IMI
rt-4 M A,z 1-t: IMI

perm f 1-4,r,z,4' M A,y,z,A',z 1- t: IMI
r 1-4,r.~.4' M A,z,y,A',z 1- t: IMI

perm r,N,M,I'' l-4 J(A,z,v,u, z' 1- t: IKI
r,M,N,r' t-41< A, z,u,v,z' 1- t: IKI

sub f{t/x} l-4 M{t/x} 6,z 1- s{t/:1:}: IMJ
r 1-4,z" M Al-t:T A,z.,., z 1- s: JMI Al-t:T

cut r l-4 N A,i 1- s{t/z}: INI fresh
rt-4 M r,M l-4 N A,z 1- t: IMI A,z,zlllll t- ": INI z

Figure 3-10: Constraint Extraction for Structural Rules of Lax Logic

The last remark concerns the cases of YJ and 3E (see Fig. 3-12): There the

free variable :1: that gets bound by the rule application and the variable :1: in the

constraint term that gets A-abstracted in case YJ and substituted for in case 3E

are the same. This is very convenient but not strictly necessary.

How does the translation work? Suppose we are given a derivation of

and a sequence z1, ••• , z4 of fresh variables of types IM;I. The derivation tree is

transformed according to the tables of Figures 3-10, 3-11, 3-12 into a tree of

typings, by replacing each rule application by the corresponding typing rule for

the constraint term. As mentioned before, every subtree that is a typing in the

Cbapter 3. La.x Logic 66

rule derived typing o/ eztracted tenn J
/alseE falsel-l!i. M A,z0 1- Dz: IMI

VE, MVNl-i!i./(A,zlMl+INI 1- cases.w(z,s,t): IKI sh
Ml-b. K A, xlltll t- s : IKI A, ylN(1- t : IKI z, y fre N 1-b. /(

V/1 Ml-AMVN A, zlMI 1- i 1z : IMI + INI

V/, NJ-b.MVN A, zlNI 1- i2z : IMI + INI

true/ l- true 1- *: 1

/\/ fl-b.M/\N A,i 1- (s,t): IMI x INI
r 1-b. M r 1-b. N A,z 1- s: IMI A,z 1- t: INI

/\E1 M /\N 1-A M A, zlMlxlNI 1- ir1z : IMI

/\E, M/\Nl-AN A,zlMlxlNI 1- ir2z: INI

:>/ fl-AM:>N A, z 1- -\z. t : IMI => !NI f h
f,Ml-AN A, i, zlltll t- t : INI z res

:>E r,M 1-b. N A, z, zlMI 1- tz : INI
fl-AM:>N A,z 1- t: IMI => INI

Figure 3-11: Constraint Extraction for Logical Rules of Lax Logic, 1

original derivation is copied over to the typing tree of the constra.int term. lt ca.n

be seen that in this process the varia.bles on the left side of 1- propagate down

the tree while the constraint term on the right side propa.ga.tes up the tree. Also,

except for additiona.I choices of variables that have to be made, viz. in rules cut,

= , :>/, 3E, OF, the translation is deterministic, a.nd hence the constra.int term

uniquely determined. Finally, it is not difficult to convince oneself that every

typing rule for the constra.int term in Figures 3-10, 3-Il, 3-12 is a. derived rule,

so that in fact we end up with a. valid deriva.tion of a. typing A, z„ ... , z4 1- t : IMI.

The correclness of the second part of our constra.int extraction process is sum-

marized in the following theorem:

Theorem 3.2.2 (Correctness of Extraction II)

• Given a de1·ivatio11 of M1, . .. , /114 l-A M and a sequence z1, ... , z4 of fresh

Chapter 3. Lax Logic 61

variables of types IM;!, i = 1, ... , k, respectivel11. Then, the translation of

this derivation yields a well-formed term t of type JMJ with free variablu

among A, zi, . .. , Zk.

• For this term there is a valid derivation of the sequent

Proof: The first part of the theorem has been covered by the remarks above.

As to the second part we give a direct argument only for <>F. The other rules can

be treated in a similar way. The proofs are all straightforward and make use of

the properties of a notion of constraint and the equation M#{t/x} = (M{t/x })*.

For the rules Natlnd and Listlnd one needs induction in 8. lt is remarked that

for the closed propositional fragment the second part follows from the category

theoretic interpretation of Section 5.2 (cf Corollary 5.2.24).

We have to find a derivation for

under the inductional assumption that we are given a derivation

Now, by definition (<>M)• z is the proposition (M*(r2z))"11 and the assertion

(<>N)•(1f1z, t{ 11"2z/w}) is the proposition (N*(r2(r1z, t{ r 2z/w})))"''"11
•
1
{"•

1
/"'}).

The rules of 8 allow us to prove

so that the goal can be reduced to the equivalent

But this can be obtained from the inductional assumption by invoking rule sub

substituting ir2z for w, and by the properties of a notion of constraint. 1

'Tj o;;·
c:: „
~

Co>
1

!-:>
("')
0
::l
~ ...
e!.
::l ...
t'j
><

[
g·
Ö' „

i.
n
f..

~
2,

f
i.
.f' --

L_ rule j derived typing of eztracted term ___ ,

VI r 1-A v:c. M A, z f- A::c. t : T => IMI
r 1-A,z• M A,xr,zf-t:IMI

VE V::c.M 1-A M{t/x} A, zr~IMI 1- zt : IMI
Al-t:r Af-t:r

31 M{t/x} 1-A 3x.M A,zlMI 1- (t,z): T x IMI
A f- f: T Al-t:r

3E 3x.Ml-A N A, z„><IMI f- t{ir1z/x}{ir2z/y}: INI fresh
M A ... • N A, ::c1", ylX?J f- t : INI y

<>J M 1-A <>M A,zlMI 1- ([),z): n· X IMI

OM OOMt-A OM A, zn•x1n•xJMI) 1- (ir1ir2z@11v, 11"2ll"2z): n· X IMI

OF r,OM t-A <>N A,z,z12•xJMI f- (ir1z,t{ir2z/w}): n· X INI fresh
r,M 1-A N A, z, wlX?J f- t : !NI w

' ufoi. ••• , up1r: 1-A up A, zl, ... , zl 1- • : 1
lf>11···14'1t:f-A tP

Natlnd f f-A 'Vy.M A,z f- natrec(a, Ay. Aw. t): N => IMI
f 1-A M{O/y} f,M 1-A,, M{succy/y} A,z f- a: !MI A,y,.z,wlx:JJ 1- t: !MI

Listlnd fl-A Vy.M ß, z 1- listrec(a, Ax. Ay. Aw. t): r• => IMI
r f-A M{[)/y} r,M 1-A,,.,, M{x :: y/y} A,z f- a: IMI A,x,y,z,wll'lll 1- t: !MI

~
{j
ii"
~

f r r;·

~

Chapter 3. Lax Logic 69

The extraction process has been hard-wired for the particular notion of con-

straint (n", [), @). For an arbitrary notion of constraint (C, l, ·) one simply

replaces the definition of the constraint type of formulae OM by

l<>MI ~ c X IMI

and the translation of the rules OJ, <>M, OF in Figure 3-12 as follows

M f-11 OM A, zlMI 1- (1, z): C x IMI

<><>M f-11 <>M A, zCx(CxtMll)- (ir1ir2z · ll"1Z, ir2ir2z): C X IMI

r, <>M f-11 ON A,z,zC><IMI 1-(ir1 z,t{ir2z/w}): C x INI w fresh
f,M f-11 N A, z, wlXll 1- t : INI

The correctness theorems 3.2.1, 3.2.2 then carry over to the general case.

f,OM f-11 ON
-=r-, <>~M.,...,...f-_11_0=-o..,.....,..,N,._O_F_-=r,..., <>.,,_,,M..,,.,"""'<>_<>,....N.,..,,....,t--

11
-.,<>-=N cut

--'-~--"---~-;........,-=penn· · ·penn r,M t-11 <>N <><>N,r,<>M t-11 <>N . L

00 N t- 0 N weak · · · wea„
11 <>M

A,z,z 1- (ir1ir2(ir1z,t{ir2z/w})@ir1(ir1z,t{ir2z/w}), ir2ir2(ir1z 1 t{ir2z/w}))
A,z,z 1- (ir1z,t{ir2z/w}) A,z,z,y 1- (ir111"2y«h1Y, "K2ir2y)

A,z,w 1- t A,y,z,zl- (ir111"2y@ir1y, ir2"K2Y)
A, y 1- (ir1 "K2Y@ ir111 , "K2ir211)

Figure 3-13: Derivation of <>L from OF, <>M and Extracted Constraint Term

Now !et us look at a simple example. In Figure 3-13 the upper part depicts

a derivation of rule OL from rules OF and OM, rule cut, and a number of ap-

plications of the structural rules penn, weak. In the Jower part the corresponding

constraint term is constructed. The types of the terms and variables have been

omitted to reduce the size of the tree. Given that

Chapter 3. Lax Logic 10

w has type IMI
z has type IOMI = n" x IMI
y has type IOONI = n· X (n" X INI)

one may convince oneself that the types can be filled in so that every step in the

construction is a valid (derived) typing, and that the resulting constraint term

is well-formed of type !<>NI= n• x INI with free variables in ä.,z,z whenever t
is well-formed of type l<>NI with free variables in ä., %, w. We can now bring into

play the equality axioms for projections and pairing to simplify the constraint

term somewhat, viz. we can prove

1-A,l,z (11"111"2(11"1Z,t{11"2Z/w})<!h1(11"1Z,t{ir2z/w}, 11"211"2(11"1Z,t{11"2Z/w}))

= (11"1t{11"2z/w}@11"1Z, 11"2t{11"2z/w}).

We may sum up all this by saying that the translation of rule

f,OM l-4 ON OL
r,M l-4 ON

for extracting the constraint term is given by

Ä,z,zO-xlMI 1- (ir1t{ir2z/w}@ir1z, ir2t{ir2z/w}): n" X INI i h
Ä, %, wlMI 1- t : n· X INI w ,res .

We may add this translation for <>L to Figure 3-12 and preserve the second half

of Theorem 3.2.2 since it holds that from every derivation of

can be obtained a derivation of

where the type information is now suppressed. This .follows from the proof of

Theorem 3.2.2 and the construction of the constraint term.

Chapter 3. Lax Logic 71

Another important derived rule for which we need constra.int extraction is the

equality substitution rule

The algorithm for deriving this rule for all instances of formula M is implicit in the

proof of lemma 3.1.14. lf this construction was made explicit and the constraint

terms evaluated as above for OL, then one would find that modulo provable

equality of constraint terms all the cases can be subsumed by the following typing

rule:

ll, z 1- b : IMI
A, z 1- a : 1 A, z 1- b : lMl

Thus, substitution of equals for equals in a formula does not change tbe constraint

term. This typing rule henceforth shall he regarded as the translation of Subst

into constraint terms.

3.2.1 Application of Constraint Extraction

Let us now discuss some examples for the kind of use that we are going to make

of constraint extraction, based on the particular notion of constraint (W, [), @).

This section is a summary of the technical issues involved in the application

examples of Chapter 4.

For the purpose of this section we will focus on universal quantification V as

the major connector to formulate specifications. A behavioural specification in

the base logic of a piece of hardwa.i·e, so !et us assume, is a proposition of the

form Vyß . .,P. The variable y might range over the possible values of an input

signal, ß being the type of signal values, and .,P might express some property of

the output produced by the piece of hardware in response to the input signal.

For simplicity assume we are dealing with single input circuits.

Suppose, as in Chapter 2, we wanted to organize formal verification in a top-

down fashion, i.e. to break down the initial specification into sub-specifications

Chapter 3. Lax Logic 72

and verify that provided we can find correct implementations for all the sub-

specifications composing the implementations in some suitable way results in a

circuit that satisfies the initial specification. The point is that thie etep ca.n

already be verified before the sub-specifications are implemented. Formally, this

verification step, or refinement as it is sometimes called, amounts to proving a

proposition of the form

(3.8)

where n counts the number of subcomponents. For example, if the factorial

function is to be built from an incrementor subcomponent, the refinement would

read

\>'x1. inc(xi) = succ(xi) :) \>'y./ac(y + 1) = (y + 1) · /ac(y)

Given (3.8) is proven the remaining task is to find irnplementa.tions sa.tisfying

the sub-specifications \>'x;. 4'•· But because these sub-specifications have been

formula.ted before it is decided how they should be implernented, in particular,

they cannot be expected to allow for all possible input constraints. In fact, it

appears more realistic to assume, as we will do here, that specifications do not

take into account input constraints at all. In other words, it will happen tha.t the

implementations do not exactly satisfy the sub-specifications, but instead

Vx,. 'Yi :) t/Ji

where the 'Yi, i = 1, ... , n a.re certain sufficiently strong input constraints. If

this is the case we are in bad shape with our top-down verification since tben

all the previous · refinement steps must be verified a.ga.in: the fact that (3.8) is

true has become worthless. For instance, if the incrementor is implemented over

bit-vectors, it will come with an overflow constraint 'Yi = x1 < 2k to satisfy

The problem can be avoided by formulating the refinement sta.tement in lax

Chapter 3. Lax Logic 73

logic, more specifically replacing (3.8) by

where the modal 0 is put in to anticipate the input constraints "Yi· To simplify

the situation even more consider a refinement goal

for a single subcomponent, where <P and t/J are well-formed propositions such that

x0 is the only free variable of <P and yfJ is the only free variable of t/J. Modifying

the example above, for instance, yields such a formula, viz.

Vx. O(inc(x) = succ(x)) :) Vy. O(fac(u + 1) =('II+ 1) · fac(y)).

From now on, Jet us look at the general case. We will see that from a proof of

M, i.e. a derivation of

(3.9)

we can extract a constraint transforming function F such that ifVx. f> holds under

some input constraint "Y then Vy. t/J holds under input constraint F7, i.e.

(3.10)

is derivable. Then no matter what input constraint "'(has to be introduced even-

tually in sub-specification Vx. <Pin order to make it implementable the refinement

verification does not need tobe redone. The refinement (3.10) as the translated

version of (3.9) works for all "Yi it guarantees that there is always a constraint F7

for the specification Vy. t/J of the composite circuit.

Here is how (3.10) can be obtained through constraint extra.ction: The con-

straint type of M can readily be computed from the definition given in the pre-

vious Section 3.2:

Chapter 3. Lax Logic 74

- IVx<>. <>i<J>I => 1Vy11 • <>iiPI

- (a => l<>uPI) => (ß => l<>il{ll)

- (a => n• X lt</>I) => (ß => fl" X ltefil)

_ (°' => n· x 1) => (.8 => n· x 1)

As to the constraint predicate M* one computes

1- M•t := ((Vx<>.<>i</>) ::> VyP.<>u/J)"t

= Vz"~n·x1. (Vx<>.<>i<J>)"z ::> (VyP. <>iefi)*(tz)

= Vz"~n-xi. (Vx". (<>i</>)*(zx)) ::> VyP. (<>il{l)*(tzy)

= Vza~o·xi. (Vx". ((i</>)*1r1(zx))"1«'"') ::> VyP.((iefi)*(1r1(tzy)))"1<1
••)

= Vz"~n·x1. (Yx". <J>"•(•zl) ::> VyP. 1/J"i(c.r)

This means by Lemma 3.2.2 that every derivation of (3.9) induces a constraint

term

t: (a => n· x 1) => (ß => n• x 1)

and a. proof of 1- M•t, i.e. a derivation of

This is a universally qua.ntified proposition and we ma.y specialize z to any well-

formed term of type Q => n· X 1. For instance, we can Jet z be the term

.\x'".(b],*), where "f is any proposition with x a.s free variable. With a little

equality reasoning we obtain a derivation of

(3.11)

This proposition ha.s almost the required form (3.10) except tha.t the constraint

11"1(t(>.x<>. ([1], *))y) in genera.l is a list of more than one proposition. But this can

be repaired using the natural map n : n· => n with the property 1{1° e! (nc) ::> efi.

This map was defined in Section 3.1.2. If we put F"(to be

Chapter 3. Lax Logic 75

then it is not difficult to prove (3.10) from (3.11). This completes the discussion

of this rather abstract exa.mple of constra.int extraction. More concrete examples

will be discussed Jater in Chapter 4 (e.g. in Section 4.1.4).

Another way of using constra.int extraction that will be important for our

purposes can be explained by considering (3.10). Since "Y in {3.10) is completely

arbitrary, we may choose 'Y =<Pin particular, so that (3.10) becomes

where F<P = n(ir1(t(Äx0
• ([<P),•))11)). But now the antecedent of the outermost

:::> has become trivially provable, whence this is equivalent to

(3.12)

Compare this with the original goal (3.9): formally, we have turned a derivation

of

(3.13)

into a derivation of

1-Vyß.8:::>!/J where 8 ~ F<P. (3.14)

Besides translating a proof in [, into a proof in B, we have managed to get rid of

the antecedent 0 in exchange for replacing the modal 0 in the succedent V1J/J. Oit/J

by the constraint 8. If we ignore the modal 0 and the embedding operator 'for

a moment, then what happens is that 0 :::> V1J • .p is replaced by Vy. 8 ::> t/J. Of

course, 0 :::> Vy. !/J is always equivalent to V1J.0 ::> t/J by the property of predicate

logic5 • However, the important observation here is that 8 has 1J as a free variable

and may thus depend on variable II while 0, coming from outside of the scope

of the quantification, cannot depend on II· In other words we have transformed

the global assumption 0 into a (local) assumption 8 that depends on the local

variable II·

5 up to renaming of the bound variable II

Chapter 3. Lax Logic 76

Wha.t is the intuition bebind this? 0 :: V:i:. Ott/1 is a generalization of Ott/1 over

all :i: of which, in a proof of the implication 0 :J V7/1. Onp, only a certain number

of special instances <>it/l{a/:i:} will actually be referred to in general. All other

cases are not strictly necessary in the proof. In the extreme case the proof migbt

not depend on any instance, whence the assumption 0 would not be necessary

at all. This information basically is recorded in the extracted constraint term t
which is the ma.in constituent of 6. Different derivations of (3.13) will produce

different constraint terms t, and hence different local assumptions 0.

Let us demonstrate for a simple case that in the passage from (3.13) to (3.14),

6 in fact reproduces the special instances of Oup tha.t are used in the derivation

(3.13). In order to get hold of specific constraint terms t we must further specialize

the example. Suppose, proposition t/J is

where J. and !1 are two well-formed terms of type a with yß being their only free

variable. For the following abbreviate t/1{/i/ :i:} by t/1{/1}, and similarly t/J{f, / :i:}
by t/J{J,}. For this particular choice of l/J we can give two different proofs of

(3.13). lf we ignore the 0 and t operators, then the goal is to prove

The succedent (of :::>) claims that t/1 holds of at least one of two particular instances

while the antecedent postulates that it is true of all instances. Depending on

which of the cases in the succedent is picked we get two different proofs of the

goal. These proofs, with Os and ts put back in, are depicted as a single derivation

tree in the upper part of Figure 3-14.

Both derivations are identical except for the subtrees starting with rule cut.

The subtrees are parameterized in the index i E { I, r} of f;. For i = 1 the

derivation in the right subtree proves the disjunction <P{!i} V t/>{f,} from its

left disjunct <P{fi} and for i == r from its right disjunct t/J{f, }. In both ca.ses

the disjunct is inferrcd from the global assumption Yx. Oit/> by specializing it

Chapter 3. Lax Logic 77

1- (Vx"'. Oup) ::> Vyß. Oi(ef;{/1} V ef;{f,}) I
\/x"'. Oi4> 1- VyfJ. <>i(4>{/1} V .f>{f,}) V/';)

Vx"'. Oief; 1-, Oi(cHf1} V c/>{/,})
Vx"'.Oief; 1-v Oie/>{!;} VE Vx"'.Oic/>,Oief;{/;} 1-v <>i(ef;{f1} V c/>{f,}) cut iA

Y 1- f;: a 1' <>ic/>{f;} t-1 Oi(c/>{f,} V cf>{/,}) <>F perm, wea
assum. ic/>{/;} t-, i(c/>{fi} V c/>{/,})'

c/>{f;} t-, c/>{/1} V ef;{f,} V/;

Figure 3-14: A Simple Application of Constraint Extraction

appropriately. This is done in the left subtree. Thus, this exa.mple exhibits a

very simple case of two proofs of (3.13) which differ in the instances of the global

assumption E> = Vx. Otef; they make use of.

The lower part of Figure 3-14 shows the translation for extracting the cor-

responding constraint terms. Again it is parameterized in i E { l, r} and also all

typing information is omitted. We find that we get the constraint terms

i E {/,r}

both well-formed of type (a => f2° X 1) => (ß => {}" X 1) where Z is a fresh

variable of type a => {}" x 1. For these terms the local assumption fJ of (3.14)

specializes to

fJ; = F;<P = n(ir1((.k .\y. (ir1(z /;), •))(.\x"'. ([ef;), •))11))

which in turn can be simplified a.s follows

Cbapter 3. Lax Logic

= n(ir1(Ay. (ir1 ({Ax0
• ((!/>), *)) /;), *) y))

= n(ir1(ir1((Ax0
• ((I/>], •)) /;), •))

= n(ir1(ir1((4>{/;}),•),•))

= n(l/>{f;}]

= !/>{/;} /\ true

~ !/>{/;}

78

using equality axioms for product, function, and list types, and the properties of

n. To sum up we find that the two .C-derivations of

are transformed into a B-deriva.tion of

i E {l,r}.

lt can be seen tha.t the loca.l constra.ints 9; are in fact different for the two deriva-

tions and that they reproduce that particular instance of the global assumption

that is used in the proof. This confirms tha.t the local assumptions 6;, as promised,

precisely capture to wha.t extent the proof depends on the global assumption

Vx0 .0tl}>.

Wha.t might this be good for? lt provides a mechanism for discha.rging any

global hypothesis of form Vz. Otl}> by translating a proof from .C into B. lt recovers

from the hypothesis only those bits that were actually used in the proof and puts

them back into the local context. This mechanism is in its most general form

when applied to the particular hypothesis8

let's-not-bother ~ Vz0 . Otz

In the course of a proof that is done in the context of this hypothesis we obvi-

ously ca.n solve any subgoal Ot7 no matter what 'Y is. The result may be viewed

6The name of this formula was suggested by Rod Buratall

Chapter 3. Lax Logic 79

a.s an incomplete proof in which at certain points 'holes' have been left by re-

ferring to /et 's-not-bother. Whenever we decide to do so the global hypothesis

/et 's-not-bother can be discharged by constraint extraction as explained, replac-

ing all <>s within the formula proven by certain local a.ssumptions. lt can be

expected from the discussion above that this roughly results in all the individual

subgoals, which have been left 'unsolved' using let's-not-bother, popping up in

their appropriate contexts. The crucial property of /et 's-not-bother making this

work is that is ha.s a distinguished constraint term

of type l/et's-not-botherl;:: {l:::} (fl• X 1) that 'solves' it in the sense that

/et 's-not-bother• ? ~ true

becomes trivially provable.

There are several situations when it is convenient to consider such incomplete

proofs (or rather: complete proof under hypothesis let's-not-bother) adequate

first approximations of a proper proof of some theorem, and which therefore

should be available for use in other derivations. Firstly, at the one extreme the

unsolved subgoal may be inconsistent. This does not preclude, however, that the

incomplete proof constructed has done some useful job. Often parts of the proof

do not depend on this inconsistent subgoal at all or merely on a specialization

of it which may weil be consistent. Secondly, the subgoal is consistent but is

not provable (or at least no proof is known) in the present context. This leaves

the possibility that it may later become provable when this incomplete proof is

used in a different context. Finally, at the other extreme the assumption may

be provable but simply is considered less important at the present stage and

consequently its proof, distracting from the main objective, better is delayed

until later. In Chapter 4 it will be demonstrated that each of these cases does

indeed arise in practical examples of hardware verification (e.g. in Sections 4.1.1,

4.1.3).

Chapter 3. Lax Logic 80

A concluding note: Although the distinguished formula let 's-not-bother has

the potential to prove, within C, any proposition of 8, it does not produce a con·

tradiction. We recall that the hypothesis V z0 . Oiz is consistent in C, (cf. Theorem

3.1.20), while of course (Vz0 . z) = false in 8 is inconsistent.

3.3 Natural Deduction Proofs and Constraint

Extraction

We have chosen to present lax logic in sequent style since we feel that this is the

most adequate and concise way for formally defining predicate logics. However,

for the presentation of concrete application examples it will be more convenient

to construct the relevant proofs in natural deduction rather than sequent style.

On the one hand this yields much more compact proofs which is important if they

are to fit on a single page or less. On the other band the process of constraint

extraction can bc explained as a simple mapping from natural deduction proof

trees into ..\-terms, in fact, the proof tree itself is the extracted constraint term,

except that some information is thrown away.

lt will be assumed that the reader is familiar with natural deduction proofs in

ordinary prcdicate logic (e.g. (Pra65)) and with the relationship between natural

deduction and sequent style presentations. The non-standard aspect of lax logic is

the idea of distinguishing between a base logic and a first-order extension thereof

with embedding operator i, and, of course, the modal one-place connective 0.

So, we will pay special attention to these aspects only.

In Figure 3-15 the logical rules of lax logic are depicted as natural deduction

rules. Note, the notion of a context of hypothesis and variables is implicit in

natural deduction, so that the structural rules have no counterparts. They are

automatically built in by the fact that hypotheses and variables are ubiquitous.

The usual side conditions apply to rules V/, 3E, Nat/nd, and List/nd. These

are not mentioned in Figure 3-15. The only other rule with a side condition is i,

Cbapter 3. Lax Logic 81

the two instances of which that we are going to use in the exarnples are

These rules correspond to the two instances of the inference rule

tef>i. ••• 1 Lef>• t-A LtP
ef>i. ••• ,ef>. 1-A l/J L

with number of hypotheses k = 0 and k = l. In applying these rules it is under-

stood that 4> and "1 are propositions in the base logic and that ef>1, ••• , 4>• 1-A t/J
is actually derivable in the base logic, and that this derivation is given construc-

tively.

Since derivations in the base logic, or proofs of formulae of the shape ief> in

lax logic, do not contribute to constraint information - the extracted relevant

constraint terms always evaluate to the trivial element • of type 1 - in all of

the examples no derivation in the base logic will ever be formally written out in

detail. Instead we will appeal to the imagination of the reader and simply treat

such proofs as implicit side conditions in every application of rule '· Notice, in

particular, that all equality reasoning is among these proofs.

Another aspect, which would be part of a fully formal proof but will be left

out in the examples, are the typing judgements. For instance, a second premiss

of rules VE1 that is not shown in Figure 3-15 is the well-formedness of term t,
viz. that t is well-formed of the same type as variable z in the context of (free)

variables that is effective at the point where the rule is applied.

As has been said one of the reasons for introducing a. natural deduction presen-

tation of lax logic is that the process of extracting constraint terms ca.n be nicely

explained: If we forget the formulae and only note down the rule names then a.

natural deduction tree is nothing but a term of nested rule a.pplica.tions. This

term can be written down in linear notation and then directly transformed into

the constraint term as shown in Figure 3-16. The way to apply this tra.nslation

should be obvious.

Chapter 3. Lax Logic 82

Not having formalized the exact relationship between the sequent·style pre-

sentation of lax logic of Section 3.1.3 and the natural deduction trees presented

here we cannot, of course, sta.te and prove the equivalence of translating a natural

deduction tree as defined through Figure 3-16 and the extraction of constraint

terms defined in Section 3.2. The natural deduction approach introduced in this

section, therefore, should be regarded merely as a convenient shorthand for pre-

senting the examples in the following Chapter 4. So, rather than proving formal

correctness we contend ourselves with suggesting, via two examples, that reading

a natural deduction tree as a A-term in the way defined here results in exactly the

same well-formed constraint term that one would get if the extraction of Section

3.2 had been applied starting from the corresponding sequent style derivation.

As the first example the derivation of rule 0 L from 0 F and 0 M is chosen.

The sequent style proof was given in Figure 3-13. In natural deduction form this

proof reads as follows:

ON
OONOM

OM ON OF.,,

: t
w: M.t

The ellipsis · · · stands for an arbitrary derivation, named t, of ON from M,

i.e. for the sequent f,M 1-.i. ON. This derivation, or natural deduction really is

a parameter to the above tree. The variable w in the tree serves two purposes:

In the natural deduction tree it uniquely identifies the assumption w : M that

is discharged by the application of rule OF..,, discharging being indica.ted by ./·

For the constraint term underlying the tree w is a variable of type IMI of which

M' w may be a.ssumed. lt will a.ppea.r free in the term represented by derivation

t and it is bound (ra.ther: elimina.ted) by the term forming opera.tion underlying

rule OF..,.

If the proof tree is written out in linear notation we get

OM OF..,(z, t).

Chapter 3. Lax Logic 83

The rule OF„ has a left a.nd a right suh-derivation, represented in the term by

the pa.ir (z, t). The left subtree is a.lready a)eaf, i.e. an assumption, so we put in

a variable z in its place. Variable z is free in the term OM OF..,(z, t) and because

it is representing the assumption OM it must be of type 0- x IMI. As explained

the right subtree is represented by t with w as a free variable. Now we apply the

tra.nslations of Figure 3-16 to this terrn and obta.in

OMOF..,(z,t) - OM(ir1z,t{11'2z/w})

- (ir1ir2(1l'1z,t{1l'2z/w})@1l'1{1l'1z,t{1l'2z/w}),

'll"2ir2(ir1z, t{ 1l'2z/w}))

which is exactly the same term as the one extracted from the sequent style

derivation in Figure 3-13. The names for variables z and w, as weil as sub-

derivation t were deliberately chosen so as to match Figure 3-13.

The second example takes up the derivation of Figure 3-14. In natural de-

duction style the derivation becomes

1- (Vx"'.01</i) ::>Vyl1.01(1/J{/1}V</i{/.}) l
'Vyil.01(</i{/1}Vl/l{/.})YJ :::> •

01(</i{/1} V t/>{f.}) 11 OF.
Ot</i{f;} VE 1(4>{/1}Vt/>{/.}) V

z : Vx"'. Oit/>.; /; v: it/>{/;}.; '

Note, the proof of sequent </i{/;} 1-11 </i{/1} V t/>{f.} contained in the sequent

derivation of Figure 3-14 is not part of the natural deduction tree. As mentioned

before, the structure of derivations in the base logic is not of interest as far as

the constraint terms are concerned a.nd thus will never be written out in the

examples. Also, it can be seen that the typing y 1- /; : et is not carried over to

the natural deduction tree. The ahove tree reads in linear notation:

Now we translate it step-by-step into a proper A-term according to Figure 3-16.

We remark that the translations are understood as syntactic identities, so the

Cbapter 3. Lax Logic

order in which they are applied does not matter.

:>I. V/11 OF„(VE1, z, 'v)

- :>I. Viv OF„(VE1, z, •)

_ :>l,VI„<:>F„(zf;,•)

- :>J,V/11 (ll'1(z/;), •)

_ >.z.V/11 (ll'1(z/;), •)

- >.z.>.y.(ll'1(zf;), •).

84

Comparing this with the lower part of Figure 3-14 one finds again that one

ends up with exactly the same term as the constraint extraction process for the

sequent derivation. Of course the exact syntactic identity depends in this case

on the choice of the hound variables z,y.

Chapter 3. Lax Logic

true M
- truel f alse J alseE

MAN
M N III

MVN l
-xr--V1 MZN VI.

M{t/x} \:/E
Vx.M 1

M{t/x}
i(s = t) M{s/z} Subst

ON
OM ON OL„

z: M .t

\:/n. M Natlnd..
M{O/n} M{succn/n} .z

X: M ./

N
~----3E11 3x.M N

3z.M 31 M{t/z} 1

'II: M .t

X: M ./

OM
OOMOM

ON -----OF„ <>M N

z:M.t

\:/l.M L. l d
M{[)/l} M{h :: l/l} ist n i.,i.z:

z: M .t

Figure 3-15: Na.tural Deduction Rulea of La.x Logic

85

Cbapter 3. Lax Logic 86

truel - *
/alseE(a) - Da

M(a,b) - (a,b)

AE1(a) = 11"1a

AE.(a) - 11"2a

V l1(a) - i 1 a

V J,(a) - i2a

V E„1,„2 (a, bi, bi) - case„,,„2 (a, bi, bi)

\11„(a) - >.x. a

\IE1(a) - at

3Ew(a,b) - b{ ir1a/ :r }{ 11"2a/y}

311(a) - (t,a)

t(a1, ... ,ak) - *
:J/„(a) - >.x.a

:JE(a,b) - ab

OL„(a,b) - (iri(b{ir2a/:r})@ 11"1a, 11'2(b{ir2a/z}))

Ol(a) - ([),a)

OM(a) - ((11'111"2a)@(11"1a),ir21l'2a)

. OF„(a,b) - (ir1a,b{11"2a/z})

Subst(a,b) - b

Natlnd,.,„(a, b) - natrec (a, >.n . .\:r. b)

Listlndh,l,r(a, b) - listrec (a, >.h. >.l. >.x. b)

Figure 3-16: Translation of Natural Deduction Trees into Constraint Terms

Chapter 4

Application Examples

With lax logic in place we are now going to demonstrate its use on a. number

of verification examples exhibiting different standard abstractions with differ-

ent characteristic constraints. We will put to work the techniques introduced

abstractly in Section 3.2.1 for the particular notion of constraint (0", (), @).

The examples of Section 4.1 are non-trivial in the sense tha.t they involve

induction proofs at least once in each case. Section 4.1 is placed at a higher level

of behavioural abstraction focusing on data abstraction for simple functional

programs. Section 4.2 expands in more detail on an example of synchronous

circuit design with the main abstraction mechanism being timing abstraction.

4.1 Decrementor, Incrementor, and Factorial

The examples presented in this section are the decrementor, incrementor, and

factorial function. Some attention is paid to methodological aspects of designing

these functions using lax logic. The design is structured into the phases mod-

ularization, realization, and composition and in each of these phases constraint

e:draction and constraint anal11sis may be pedormed separately. The decremen-

tor essentially is a decomposition exercise, the incrementor focuses on realiza.tion

and finally all of the three phases will be relevant for the factorial example.

87

Cbapter 4. Application Examples 88

Incrementor, decrementor and factorial are designed at the abstract level over

tbe domain of natural numbers. They are modularized into subcomponents via

primitive recursion. For the incrementor, of course, this is trivial. For the decre-

mentor this decomposition proof systematically introduces a lower bound as a

constraint on inputs. In the case of the factorial it will be seen how compos·

ing proofs propagates input constraints of subcomponents to a constraint for the

composite design.

Another step in the design of the factorial consists of realizing the incrementor

(8: subcomponent for the factorial) at the concrete level of finite bit-vectors which

brings up an upper bound as the input constraint.

Further, incrementor and decrementor implementations will be composed to

obtain the identity function as a simple example of how computations in the

lambda calculus of constraints can serve to simplify constraints. We will observe

that the lower bound "automatically" vanishes through constraint computation.

The associated proofs exhibit three different ways of manipulating constraints.

They are induction proofs over natural numbers and the length of bit-vectors

and differ in the way constraints enter and evolve in the course of induction. For

tbe incrementor (at the concrete level) and decrementor (at the abstract level)

constraints are introduced only in the base case of the induction. In contrast,

the modularization proof for the factorial introduces a fresh constraint at each

induction stage, but does not require a constraint to prove the base case. As

to the way constraints evolve, both the incrementor and factorial pass on the

constraint from one stage to the next after having modified it appropriately,

while in the decrementor example no constraint has to be propagated at all.

A word on presentation: We will allow ourselves to be fairly loose with proofs

and constructions that pertain to the base logic. One one side this is mandatory

to cut down our discussion to a sensible size and to avoid being unreasonably

fortnalistic. On the otber side this is justified by the fact that proofs and proposi-

tions of the base logic are irrelevant as far as the construction and manipulation

Chapter 4. Application Examples 89

of constra.ints is concerned. The base logic, as it were, is blanked by the proceas of

constraint extraction. Tl1Us, it is only that part of a formal argument that takes

places in (the extension of) lax logic that we need tobe rigorous about. Techni-

cally speaking, proofs in the base logic are treated a.s implicit side conditions on

the embedding rule L.

A ward on notation: Any email caps Roman letter can serve a.s a variable,

e.g. i, m, /, z, 11, etc. are going to be used as object variables. In contrast com-

posite names like fac and cnt are always meta-variables or abbreviations for (com-

posite) terms. Finally, three different notions of equality are going to occur side-

by-side that should be carefully distinguished: = is meta-logical, i.e. syntactical

identity; = denotes provable equality (an atomic proposition of the base logic

that may represent computational normalization on the primitive type O); ~ is

the logical equivalence of propositions, i.e. bi-implication.

4.1.1 Designing the Decrementor

Let us begin by taking up our running example introduced in Section 2.2, which

is a very simple decomposition exercise at the ahstract level of natural numbers.

The task is to implement and verify a decrementing function dec : N => N for

natural numbers obeying the lax specification

Vn.OL(succ(decn) = n). (4.1)

In the following we will pick an approximate implementation for the decrementor

and prove it correct wrt. specification (4.1). lt is shown how an input constraint

equivalent to n ~ 1 can be extracted from the proof by the method of Section

3.2. We point out that it is not ezactl11 the predicate n ~ 1 that is extracted but

a characteristic function Xn~ 1 : N => 0 which is better than ~n. n ~ 1 in the

sense that ·it exhibits more computational hehaviour. This will he demonstrated

in Section 4.1.2 below.

Chapter 4. Application Examples 90

Preliminaries

The central data structure are the natural numbers

(N,O: N,succ: N => N)

with recursion operator natrec, i.e. for each type T, element a of type T and

function f: N => T => T the term natrec(a,f): N => T can be formed, for which

the equations

natrec(a, /) 0 = a

natrec(a, f)(succn) = f n (natrec(a, /) n)

hold. Further, we will need the standard induction rule for natural numhers

VnN. M Natlnd,.
M{O/n} M{succn/n} .z

X: M"
with the side condition that variable n may not be free in any assumption on

which M{succn/n} depends other than x : M. Recall that x is a labe! which

uniquely specifies the assumption M discharged by applying rule Natlnd,..z, while

discharging is indicated by the symbol .,;. When translating this rule into a

constraint term, x : M is read as saying that variable x is of type IMI such that

M 1 x, or equivalently that x is a constraint term for M. lt is important to note

that the induction rule is a rule of lax logic for which constraint extraction is

well-declared, so M may be an arbitrary well-formed formula containing <> and

' operators.

At the level of the base logic we will assume the standard natural number

arithmetic, i.e. Peano's axioms as a global theory in which the discussions take

place. The usual convention of writing the natural numbers

41 1 = succ(O) 2 ~ succ(succ(O)) 3 ~ succ(succ(succ(O)))

applies.

Chapter 4. Application Examples 91

In this and in the examples to follow we will make use of the fact that the

object lauguage of the base logic is a sufficieutly rieb lambda calculus, so that

arithmetical opcratious like addition, multiplication, mod, div, etc. ca.n be de-

fined in the usual way. lu order to keep the examples reasonably simple we will

make free use of such operations and their algebraic properties without explic-

itly justifying the assumptions by deriving everything from scratcb. In principle,

however, everything can be nailed down rigorously in the base logic.

Verifying the Decrementor

The decrementor that we are going to verify maps zero back to itself, i.e. it solves

the recursive definition

decO = 0 dec(succn) = n

lt is obtained via primitive recursion as the term

dec ~ natrec (0, An. Ax. n)

with n, x variables of type N. A simple proof of specification (4.1) from tbe

hypothesis let's-not-bother = Vz. <>iz, i.e. a derivation of the sequent

/et 's-not-bother 1- Vn. <>i(succ(dec n) = n) (4.2)

is given in Figure 4-1. The purpose of hypothesis let 's-not-bother will become

clear below.

. Vn.Oi(succ(decn)=n) Natlnd,,
Oi(succ(decO) = 0) VE Oi(succ(dec(succn)) = succn) .u

Vz.Ou Hcc('«O)=O i(succ(dec(succn)) = succn) OJ
---~-------~~---~~---,

Figure 4-1: Derivation which Verifies the Decrementor Function

We are interested in that part of tbe proof where constraint manipulation takes

place. Consequently, Figure 4-1 only shows the derivation in lax logic. The

Chapter 4. Application Examples 92

proof exercises natural induction (rule Nat/nd,.,,) with the base case (left subtree)

being derived directly from the hypothesis let 's-not-bother. This is the only choice

possible as the base case amounts to the correctness of the decrementor for input

0 which cannot be obtained in the usual strict sense. In the right subtree, which

amounts to the induction step, rule t depends (side condition) on a subproof in

the base logic of the sequent

1-„ succ(dec(succn)) = succn

Such a proof can easily be found by induction over n and some equational rea-

soning using the definition of dec. The actual structure of this proof in the base

logic is irrelevant and not given here, although of course a great deal of the veri-

fication is done there. Notice that the induction step does not use the induction

hypothesis Ot(succ(decn) = n) and also does not refer to let's-not-bother. The

variable y which appears in rule Natlnd,.,, of Figure 4-1 refers to the induction

hypothesis which itself is not written down as an assumption.

Constraint Analysis for the Decrementor

Let us analyze the constraint information contained in the derivation of Figure 4-

1 of sequent (4.2) along the lines set out in Section 3.2.1 of Chapter 3. We

compute constraint types as

l'v'z.Otzl _ O=>(O*xl)

l'v'n. Ot(succ(decn) = n)I - N:::} cn· X 1).

Let w in the following be a variable of typen:::} (O* X 1). We expect to extract

a well-formed constraint term D of type N => (O* x 1) with was its free variable

such that

('v'z. Otz)'w 1-.., ('v'n. Ot(succ(dec n) = n))' D

is derivable in the base logic. Working out the constraint predicates

('v'z. Otz)'w _ 'v'z. z·„,(wa)

('v'n. Ot(succ(decn) = n))' D - 'v'n. (succ(decn) = n)"i(Dn)

(4.3)

Chapter 4. Application Examples 93

we find that (4.3) means

\lz. z"'(w>) 1-w \In. (succ(decn) = n}"'(Dnl_ (4.4)

Applying the idea of Section 3.2.1 we specialize w to the (closed) term ? =
Az. ((z], •)so that the hypothesis of (4.4) becomes provably equal to Vz. z ::> z,

which is trivially provable, and hence (4.4) can be simplified to

1- Vn. (succ(decn) = n)0

or, to bring into play function n: W ~ n (cf. Sec. 3.1.2), to the sequent

1- Vn. (n C) ::> succ(decn) = n

where C of type n• abbreviates the term 11"1(D{? /w}n). Thus, proposition list

.., C (or proposition n C), which has n as free variable, is the constraint on the

input n under which dec satisfies its specification succ(decn) = n. Note tba.t C

is specific to the particular proof of Figure 4-1. A different proof might result

in a different proposition list C. Our plan now is to work out wbat C looks like

and to verify that it is equivalent to n ~ 1 which is the constraint we intuitively

expect.

In order to extract the constraint term D from the derivation of Figure 4-1 we

work from the natural deduction proof as explained in Section 3.3 and consider

the derivation as a tree and, in linear notation, a term of rule applications:

Natlnd,.,~

VEncc(decO)=O 0/
w

where variable w refers to the hypothesis let's-not-bother. Constraint term D is

obtained from this as follows (cf. Table 3-16 in Sec. 3.3):

D - Natlnd,.,~(VE,.u('uO)=OW, 0/ i)

- natrec(\IE„u(decO)=OW, An.A71.0/ i)

_ natrec(w(succ(decO) = 0), An.A71.([J,i))

_ natrec (w(succ(decO) = 0), An. Ay. ([), •))

Chapter 4. Application Examples 94

Now we can evaluate the proposition list C = ir1(D{?/w}n). For n = 0 we get

C{O/n} _ ir1(D{?/w}O)

- ir1(natrec(?(succ(dec0) = 0), .\n . ..\y. ([), •))O)

ir1(natrec(([succ(decO) =0],•), ..\n . ..\y.([J, •))O)

= ir1([succ(decO) = O),•)

= (succ(decO) = 0)

where = means provable equality in the base Jogic. Thus, the constraint C for

the base case n = 0 consists of the base case itself. This is not surprising since

the base case was discharged by resorting to let's-not-bother, and so no work was

done at all. Removing the hypothesis let 's-not-bother in the way described via

constraint extraction, then, makes the base case pop up again as the constraint.

For n = succ k one computes

C{succk/n} _ 7r1(D{?/w}(succk))

- ir1(natrec(?(succ(decO) = O), .\n . .\y.((), •))(succk))

r1(natrec(((succ(decO) = O),•), ..\n . ..\y. ((), •)) (succk))

= ir1((..\n . ..\y.(!J, •))k(natrec(((succ(decO) = OJ,•),

.\n . ..\y.((J, •))k))

Thus, the constraint !ist C for all the other (induction) cases is empty which

reßects the fact that the induction step does not refer to !et 's-not-bother for

solving subgoals.

The following proposition validates both the extraction process and the proof

as it shows that the extracted constraint predicate nC is essentially what we

would hope for, viz. the weakest input constraint for the chosen implementation

dec:

Proposition 4.1.1 nC ~ n;;:: 1.

Chapter 4. Application Examples 95

Proof: The proof proceeds by induction on n. For n = 0 one has n(C{O/n}) =
n(succ(decO) = 0) = n(l = 0) == trueA 1 = 0 which is equivalent to 0 ~ 1 as both

conditions are false (Peano's axiom succn I= 0 tacitly assumed). For n:: succk

one computes n(C { succ k/n}) = n[) = true which is equivalent to succ k ~ 1 as

both propositions are true (again Peano's axioms assumed). 1

If one wishes to do so, Proposition 4.1.1 now justifies replacing the extracted

constraint term D : N "* n· X 1 by the simpler term

D' ~ .\n.((n ~ 1), •)

and

is still derivable. However, D has the advantage that by simple 11-normaliza.tion

the constraint () : n• results, when it is used for n = succ k, which is more useful

than the constraint (succk ~ 1) obtained from D'. In other words, the extracted

lambda-term D has potential computational behaviour while the processed D'

does not. An example of how this can be used will be discussed in Section 4.1.2.

* * *
To sum up the constraint encapsulated in the proof of the decrementor defines

a non-trivial condition only for n = 0. What is going on, basically, is that the

induction skips the base case n :: 0 trading it for a constraint, while the induction

step does the main job of verifying from n :: 1 onwards. lt has been shown that

the constraint extracted by the methods defined in Section 3.2 is equivalent to

the condition n ~ 1.

Notice, the evaluation of the constraint predicate nc carried through above,

for particular closed terms n, is algorithmical, viz. :: reasoning basically is un-

folding definitions and = reasoning is applying 11-reductions only. The non-

algorithmical part is the creative step of coming up with the predica.te n ~ 1,

and the induction argument in the proof of Proposition 4.1.1.

Chapter 4. Application Examples 96

4.1.2 Composing Incrementor and Decrementor

In this section we briefty illustrate the point made above that the constraint

predicate nc extracted for the decrementor, or D{? /w} for that matter, hu

computational behaviour, and that this makes it more useful than the 'canonical'

predicate n ~ 1 which is nice to look at but also rather rigid. We show that if

we precompose the decrementor with an ideal incrementor, i.e. the successor

function, to obtain the identity

succ dec

then resulting input constraint computes away simply by applying ß-equalities

on the constraint term. This substantiates the claim that an operational inter-

pretation of constraint terms can be used to automatically manipulate and even

simplify constraints.

The statement that feeding the output of the successor function into the

decrementor yields - up to possible constraints - the identity, is expressed by

the sequent

'v'n.Oi(succ(decn) = n) 1- 'v'n.Oi(dec(succn) = n).

The simple derivation of this sequent is presented in Figure 4-2, where the ap-

plication of rule i is justified by assuming the Peano axioms in 8.

Vn.Oi(dec(succn) = n) VI
Oi(dec(succn) = n) " OF.

Oi(succ(dec(succn)) = succn) VE i(dec(succn) = n) '
Vn.Oi(succ(decn) = n) „ II: i(succ(dec(succn)) = succn) ,/

Figure 4-2: Derivation for Composition of lncrementor and Decrementor

From this derivation we extract a well-formed constraint term et of type

l'v'n.<>i(dec(succn) = n)I = N ::} n· X 1 with a free variable z of type

Chapter 4. Application Examples

IVn.<>i(suec(deen) = n)I = N =? n· X 1 such that the sequent

(Vn.Oi(suee(deen) = n))* z t-. (Vn.<>i(dec(succn) = n))* et

97

is derivable in 8, which after expanding the definition of (·)* gives the equivalent

Vn. (succ(decn) = n)"' (an) t-. Vn. (dec(succn) = n)"' (c1">. (4.5)

Thus, the expression et translates a constraint term z for the decrementor into

a constraint term ir1 (et n) for the resulting identity. We want to show that

if we instantiate z by the particular constraint term D{? /w} computed for the

decrementor in the previous section, then the resulting constraint becomes trivial,

i.e.

'11"1 (ct{D{?/w}/z}n) = [)
and further that this equation is provable just by applying .8-equalities.

The term et is computed from the derivation tree as follows (cf. Fig. 3-16 in

Sec. 3.3):

et - VI„ <>F'll (VE „ z, t!f)

- VI„<>F,(z(succn), •)

- VI„ (ir1(z (succn)), •)

- >.n. (ir1(z (succn)), •)

Hence, substituting D{? /w} for z (Dis defined in the previous section) gives

11'1 (ct{D{? /w}/z} n)

- iri(>.n.(11'1((D{?/w})(succn)), •)n)

_ iri((>.n.(ir1((natrec(?(succ(decO) = 0), >.n.>.y.([J, •)))(succn)), •))n)

= 1fi{(>.n.(ir1((>.n.>.y.((], •))n(natrec(-„,„.))), •))n)

ir1 ((>.n. (ir1([], •)•))n)

iri((>.n.([], •))n)

iri([], •)

= [)

Che.pter 4. Applice.tion Exe.mples 98

The fourth line is by ,8-equality of natrec. The fifth and seventh line by ß-equality

for ..\, and finally sixth and eights line by ,8-equality for pairing. Notice that all

applications of beta-equality actually are ß-reductions, so that the above chain

of equations would completely be automated by an operational implementation

of the object language of 8 as an ordinary lambda-calculus.

That the computed term [) in fact is the constraint for the resulting iden-

tity function, viz. a proof in 8 of Vn. (dec (succ n) = n)II, can be derived from

(4.5) and the result that C = 11'1(D{? /w} n) is a constraint for the decrementor,

viz. that there is a proof of Vn. (succ(decn) = n)°

* * *

4.1.3 Designing the Incrementor

Let us consider another simple verification example which, a.s far a.s the business

of constraints is concerned, is different in character from the previous one and

slightly more complex. We set ourselves the ta.sk of realizing the abstra.ct succes-

sor function at the concrete level of finite bit-vectors. The resulting combinatory

circuit is an incrementor. In this example the constraint crops in a.s an overflow

constraint compensating for the imprecision a.ssociat.ed with representing natural

numbers by bit-vectors.

Preliminaries

We start by introducing the general setting and the abstraction and realization

mappings connecting up the two levels of data abstraction. Some simplifying

a.ssumptions need to be explained, in particular concerning the formalization of

finite bit-vectors and related operations on bit-vectors.

The type of individual bits will be denoted by B, and, for simplicity, is treated

a.s the subset {O, l} C N of natural numbers. In pra.ctice this means that at

the informal level we may use natural number arithmetic for manipulating bits,

Chapter 4. Application Examples 99

provided we stay within the specified range. lt would be more accurate, of course,

to model bits by the type 1 + 1 and to define the usual bit operations such as

exclusive-or (EB) or conjunction (A) via constructors and destructor of the sum

type. Anyway, these operations, as we will assume here, are defined equally weil

on the subset {O, l} in the obvious way. One ca.n put a $ b = (a + b)mod2 and

a Ab= (a · b) mod2, for instance.

For modelling bit-vectors, then, we assume for each natural number w: N, a

type Bw, elements of which behave like bit lists of length w. Specifically, there is

a unique element [), the empty bit-vector, of type B0 , and an operator :: taking

a single bit b : B and a bit vector v : Bw into the vector b :: v of length w + 1.

Just as for ordinary lists we will write (b..,_i. ... , bi. bo] as an abbreviation for

fio ;; b1 '• • bw-1 ;; [).

The formalization of bits and bit-vectors in the base logic deserves some ex-

pla.nation: The base logic as it sta.nds does not have subset types or depen-

dent types, so strictly speaking, there is no subset type B = {O, l} C N or

B"' = {v: B 0 l length of V= w} ca·, a.nd there is no type B"'' depending on

the value of an expression expr. Consequently, there are no well-formed formulae

like

Such formulae, however, can be used in the naive way if understood as abbrevi-

ations for

where is-bit(c) and is-bit-vec(w,z) are propositions characterizing the subsets

B = {O, l} ~ N and B"' ~ N"' ~ N°. In other words, B and B"' are mimicked

by the nearest a.vailable super-types and the informa.tion thereby lost is shifted

into the formulae. Also, for insta.nce, a typing like

Cha.pter 4. Applica.tion Examples 100

must be read as an abbreviation for the composite judgement

J :N•

is-bit-vec (w + 1, z) 1-„„ is-bit-vec (w, !).

If this reading is applied systematically, then the elimination rule for universal

quantification in a situation like

VzB"'.M f-..,.z M{f/z}
N nw+1 1- f. B"' N ß•+i B• f- M ffVE w ,x . w ,x ,z w

really is an abbreviation for the derived rule

VzN'. i(is-bit-vec (w, z)) :::> M f-..,,z M {! /z}
is-bit-vec (w + 1, x) 1-10,„ is-bit-vec (w, !) wN, xN', zN' f- M wff

wN,xN' 1- f: N'

We skip here the question of if and under what conditions this simulating of B

and B"' is semantically equivalent.

For translating between both levels of the design, abstraction and realization

mappings

0 10 : B"'::} N p„ : N =? B"'

are employed. We follow the convention of representing natural numbers in the

dyadic number system and put

w-1
aw(b„_1„ .. , bo) g E 2i · b; (4.6)

i=O

p10 n g ((ndiv2"'-1)mod2 , ... , (ndiv2°)mod2]. (4.7)

Note that p„ is a total function truncating naturals in case they are too big to

fit within the space of w bits. We will not be more formal so as to define both

mappings explicitly by definite terms of the object language of lax logic, viz. via

the recursion operators for lists and natural numbers. For the sake of simplicity

Cbapter 4. Applicatio11 Examples 101

we will assume that we are provided with terms for a„, p„ for which the equations

ao() = 0

a„+1 (b„, ... , b1> bo) = 2 · a„(b..,, ... ,b1) + bo

pon = (]

Pw+i n = n mod 2 :: p„(n div 2)

are provable in the base logic. Although this may not be an entirely trivial

requirement it does not pose any fundamental problem.

Verifying the Incrementor

The incrementor, as a bit-slice structure, is defined inductively a.long bit-length

w. To indicate which bit-length we are dealing with w is used as a parameter,

i.e. the w-bit incrementor is going tobe a term

lnc,. : B'" => B'".

We remind the reader of our explanations of how this typing is to be read in the

absence of dependent types and subset types in the base logic. Inc„ will be built

from w half-adders Add: B x B => B x B where

Add(a, b) ~ (Sum(a, b), Carr1i,a, b))

Sum(a, b) ~ a $ b

Carri.{a,b) ~ a/\b.

A cascade of such one-bit half-adders as shown in Figure 4-3 yields a function

Add,. : B'" x B =? B'" characterized by the equations

Add..+1 ([b„, .. ·.• bo], eo)

b~ •

or, more compactly by

(b~, ... ,b~I

Sum(b;,e;)

Carry(b;,e;)

Add..+i(bo :: b, eo) = Sum(bo,eo) :: Add..,(b, Cani.(bo,eo)).

Cba.pter 4. Applica.tion Exa.mples

a

Ca"1f8b

Sum

b..,_. b1 bo

rr~F--~„
L ~dd..,

b'..,_. 14 "°
Figure 4-3: w-Bit Realiza.tion of Successor

102

lt will be useful also to define a trivial 0-bit Adder Addo : B0 x B :::} B0 , viz.

Adt4i([), eo) = [).

The incrementor is now obtained by specializing the carry input of Add.., to

value 1, i.e.
q

Jnc.., b E Add..,(b, 1)

for w ~ 0. Again, in order not to complicate things unnecessarily we do not

want tobe more formal and define the incrementor as some definite term in the

object language of lax logic, e.g. via some explicit cascading combinator. We

simply assume that Add.., is some specific term for which the equations above are

provable in the base logic.

The verification goal expressing that /nc.., correctly realizes the successor op-

eration is

VwN. \>'nN.Ot((a..,o/nc..,•p..,)n = succn), (4.8)

where a..,, p.., being the abstraction and realization mappings, and o is the (as-

sociative) composition combinator f •g = >.x. f(g x). Exploiting the fact that

these mappings are defined by recursion on bit-length w the proof will proceed

by natural induction on w.

Derivation 1 The abstraction of the w-bit incrementor Inc.., satisfies the specifi-

cation of the abstract incrementor under the hypothesis let 's-not-bother E \>'z. <>iz

Cbapter 4. Application Examples 103

Jor all w in N, i. e. there is a derivation of the sequent

let 's-not-bother 1- VwN. lr/nN. <>i((a.., • Inc.., • p..,) n = succn)

The global structure of the derivation, at the heart of which lies induction over

w, is depicted in Figure 4-4.

Vw.Vn. Oi((a..,•/nc,,,op..,)n = auccn)

(Pi)

Vw.Vn.Vc.OL(aw(Add,,(pw n,c)) == n + c) Natlnd,,,_,,

see below
Vn.Vc.OL(c:tw+1(Addw+1(Pw+1 n,c)) = n + c)

(P2)

x: Vn.Vc.OL(a..,(Add,,(p..,n,c)) = n + c) ../

Vn.Vc.OL(ao(Ad~(pon,c)) = n + c) VI
Vc.OL(ao(Ad~(Po n, c)) = n + c) V/ "
<>i(ao(Ad~(pon,c))=n+c)VE c

Vz. 0LZ 'Y

'Y ~ ao(Ad~(Po n, c)) = n + c

Figure 4-4: Global Structure of Derivation 1

The sub-derivation called (P1) is reducing the goal to the slightly more general

property

Vw.Vn.Vc. Oi(a..,(Add,.,(p.., n, c)) = n + c).

lt says that Add,., is a 'stoppable' incrementor, viz. that it is incrementing if

control input c has value 1, and otherwise (c = 0) is passing on the input value

to the output. Sub-derivation (P1), written out in Figure 4-5, essentially applies

Chapter 4. Application Examples 104

the substitution rule Subst twice, the equations exploited being

succn = n + 1

(a..,olnc,,,•p..,)n a..,(Add..,(p..,n, 1)).

The proofs of both equations in the base logic are not difficult to establish. The

rest of sub-derivation (P1) is fairly simple and does not need tobe explained.

Vw.Vn. Oi((a..,•lnc..,•p..,)n = succn)
_,...-------~-=---=-....:....:~----'--...,..---~subst
i(succn = n + 1), Vw.Vn. Oi((a..,• Inc.., •p..,) n = n + 1) VI..,

Vn. Oi((a„• Inc.., •p„) n = n + 1) V/
Oi((a„•lnc..,•p..,)n = n + 1) n

-----~----~--~----Subst

i((a.., • Inc.., • p„) n = a..,(Add..,(p.., n, 1)))
-"""-=--_:;;-=-=---~-"""""-"--~~,

Oi(a..,(Add..,(p..,n,l))=n+l) VEi
Vc.Oi(a„(Add..,(p..,n,c)) = n + c) VEn

Vn.Vc.Oi(a„(Add..,(p„n,c)) = n + c) VE„
z: Vw.Vn.Vc.Oi(a„(Add..,(p„n,c)) = n + c)

Figure 4-5: Sub-Derivation (Pi)

see below

The more interesting part of Figure 4-4 is the induction consisting of rule

Natlnd..,,,,. The left subtree of rule Natlnd..,,„ is the base case of the induction,

the right subtree is the induction step, which is abbreviated in Figure 4-4 by

(P2).

Just like in the case of the decrementor the base case is dealt with by using

the global hypothesis let 's-not-bother. lt is here where a constraint is introduced

into the proof. The subgoal that is solved using /et 's-not-bother instantiated with

the equation 'Y ;g a0(Ad~(p0 n, c)) = n + c, which by definition of o, Add and

p is equivalent to O = n + c. Although the condition 0 = n + c is satisfiable, if

it is universally quantified over n and c, it is inconsistent with Peano arithmetic.

In this sense the situation is the same as with the decrementor: The base case

Chapter 4. Application Examples 105

without 0 and i is inconsistent (so it is not provable) but in lax logic it can be

proven from the consistent hypothesis let 's-not-bother.

The induction step, viz. sub-derivation (P2), is shown in Figure 4-6. The

fact that induction works, of course, owes to the regula.r bit-slice structure of the

incrementor; it reduces the verification problem of the w-bit incrementor to the

verification of a single 2-bit half-adder. Not surprisingly, as will be seen below, the

correctness constraint for the w-bit incrementor constructed with the lax proof of

Figure 4-4 essentially originates with a constraint for the 2-bit half-adder. The

invariant, or property, of the half-adder driving the proof (side condition, or 'side

proof' implicit in rule i of Figure 4-6) is the law1

a + b = (a 6l b) + 2 · (a A 6). (4.9)

From this it is easy to see that a + b = a e b iff a Ab= 0. Hence, the condition

aAb = 0 charactel'izes precisely how far the half-adder fails to implement addition,

and consequently embodies the germ for the overflow constraint generated by the

induction proof. We will be a little bit more precise about this below.

Vn.Vc.Oi(o..,+1(Add,,,+1(Pw+1 n,c)) = n + c) VI
Vc.Oi(aw+1(Add..,+1(Pw+1 n, c)) = n + c) VI n

Oi(aw+1(Add.u+1(Pw+1 n,c)) = n + c) •
~~~~~-'--"-'..;;..;_~.;;;..:...""'-.;;;..:..;~--'-'~~--='--~~~-<>Fw 

i(a„+1(Add..,+1(Pw+1 n,c)) = n + c) 
II: i(a„(Add,,,(p„(n div2), n mod2 /\ c)) = n div2 + (n mod2 /\ c)) ./ see below 

<>i(a..,(Add,,,(p..,(n div2), n mod2 /\ c)) = n div2 + (n mod2 /\ c)) 
Vc.Oi(a„(Add,,,(p„(n div2), c)) = n div 2 + c) VERW•N2Ac 

Vn.Vc.<>i(a..,(Add,,,(p..,n,c)) = n+c) VEn~i•2 

Figure 4-6: Step Case of Induction, Sub-Derivation (P2) 

1 Another fundamental law exploited ia 2 · (n div 2) + (n mod 2) = n. 



Chapter 4. Application Examples 106 

Constraint Analysis for the Incrementor 

Let us now, in all detail, work out the overflow constraint for the incrementor 

from Derivation 1, 

Vz.Otz 1- Vw. Vn.Oi((aw•lnc,.,•pw)n = succn) 

presented in Figures 4-4 - 4-6. The constraint types of both sides are 

IVz. Otzl - n::} (S1° X 1) 

IVw.Vn.Ot((aw•lncw•Pw)n=succn)I _ ~=?N=?(S1°xl). 

Thus, given a variable v of type !1::} (S1° x 1) we expect to extract a constraint 

term, say P, of type N =? N::} (Sl* x 1) with free variable v such that 

(Vz.Otz)"v 1-v (Vw.Vn.Ot((aw•lnc,.,•pw)n = succn))" P 

which by definition of constraint predicates is the sequent 

Again, we specialize v to the closed term ? E .h. ((z), •) with the effect of trivi-

alizing the hypothesis and get 

(4.10) 

Proposition !ist C(w,n) ~ 11'1(P{?/v}wn) of type Sl*, then, is the overflow 

constraint we are after. The whole proof consisting of Figures 4-4 - 4-6 reduced 



Chapter 4. Application Examp/es 

to its underlying tree of rule applications is: 

P: Subst 
V/VI 
V/n 

Subst 

P3 : Natlnd,,,,. 
V/n P2: V/„ 
V/0 Yr:-
VE„ 0F, 

V VE„mo4211c 
VE„,;.2 11 

z 

107 

where "'( is an abbreviation for the term a0(Ad~(Pon,c)) = n + c. We can now 

apply the equations of Table 3-16 to read off from this natural deduction tree 

the constraint term P. We do this in three steps corresponding to the three 

sub-terms marked P, P3 , P2 in the above tree. 

Evaluation of P2 : 

P2 - VlnVlcOF,(VEnmo4211cVE„,;.2z, q1) 

- >.n.>.c.OF,(VEnmo4211cVEn4i•2Z, tJI) 

- >.n. >.c. (ll'1(VEn mo4 211c VEn 4io 2 z), ur2(VE„ mo4 211c V E„ 4i•2 z)) 

- >.n.>.c.(ll'1(z(ndiv2)(nmod21\c)), •) 

The last equation holds because ia = * irrespective of the shape of a. Note, P2 

is a term with free variable z. 

Evaluation of P3 : 

P3 - Natlnd,,,,.(VI„Vl0 VE„v, P2 ) 

- Natlnd,,,,,(>.n.>.c.vr, P2) 

_ natrec(>.n. >.c. vr, >.w. >.z. P2) 

- natrec(>.n. >.c. vr, >.w. >.z. >.n. >.c. (ir1(z(n div2)(n mod2 /\ c)), •)) 



Chapter 4. Application Examples 108 

where 'Y = o0(Addo(p0 n, c)) = n + c. Note, P3 is a term with free variable v. 
Variable z free in sub-term P1 is bound by natrec. The recursion operator natrec 

which appears in the term P3 reßects the induction used in the proof. lt has type 

natrec: T * (N * T * r) * (N * r) where T is N * B * (n x 1). 

Evaluation of P: 

P - Subst(i, V/.,, V/„ Subst(i, VE1 VE„ VE.,, P3)) 

= V/.,,V/„ VE1 VE„ VE.,,P3 

- >.w.>.n.VE1VE„VE.,,P3 

- >.w.>.n.P3wnl 

_ >.w. >.n. ( natrec( >.n. >.c. V")' , 

>.w. >.z. >.n. >.c. (ir1(z (n div 2)(n mod2 II c)), • ))) wn 1 

Note, Pisa term of type N * N * (n• x 1) with v as its only free variable. 

We are interested in the proposition list C(w,n) = '11"1(P{?/v}wn) which is 

thus completely determined by the structure of the correctness proof and the 

constraint 'Y introduced within this proof. But what does it say? lt is far from 

obvious that this should be the expected overßow constraint. In fact, the lambda 

term obtained for C( w, n) is not very illuminating. The term encodes an inductive 

process which can be rephrased as a recursive definition in the following way: 

Co(O,n,c) g ?-y 

Co(succw,n,c) g Co(w,ndiv2,nmod2Ac) 

C(w,n) g 11"1Co(w,n,l) 

Using this recursive definition we may try to give more familiar characterizations 

of C(w,n) and C0(w,n,c). Two of such reformulations will be given below. 

The first is presenting C0 ( w, n, c) as an inequation at the abstract level and the 

second as an equation one part of which can be interpreted at the level of the 

bit-vector realization. Note, Co(w, n, c) is of type 0- X 1, so it always satisfies 

11"1Co(w,n,c) = •· 



Chapter 4. Application Examples 109 

Proposition 4.1.2 The proposition list ir1C0 (w, n, c) of type 0- has the form 

ir1Co(w,n,c) =[cf>) such that cf> e! n + c < 2"'. 

Proof: The proof is done in an informal way as opposed to a formal derivation 

in lax logic. There is, of course, no reason why it could not be formalized in 

the base logic, provided proofs of all arithmetical laws used are supplied as weil. 

In particular the proof will bring into play the following two · facts of Peano 

arithmetic: 

(.x + 11) div 2 .x div 2 +II div 2 + (.x mod 21\ II mod 2) 

.x < 2 · y 9! .x div 2 < y 

One proceeds by induction on w. For the base case w = 0 one finds that 

ir1Co(O, n, c) is equal to [a0(Ad~(p0 n, c)) = n + c) by definition of? and "'(, 80 it 

has the required form (</>]. The left side of the equation cf>= ao(Addo(Po n, c)) = 
n + c can be simplified to 0 by the definition of a 0 , Ad~, and Po1 80 that <P ia 

equivalent to 0 = n+c, which in turn is in fact equivalent to condition n+c < 2°. 
For the induction step one notes that C0(succw, n, c) = C0(w, n div 2, n mod 21\c) 

and thus by induction hypothesis ir1C0 (succw, n, c) must have the form (cf>) with 

4> 9! n div2 + (n mod2 /\ c) < 2"'. 

But with the two laws above we obtain 

4> 9! ndiv2+(nmod2/\c)<2"' 

~ ndiv2+cdiv2+(nmod21\cmod2) <2"' 

9! (n + c) div 2 < 2"' 

The second equivalence is justified as c is an element of B, or rather { O, 1}, hence 

cdiv2 = 0 and cmod2 = c. 1 

Proposition 4.1.2 implies that theextracted constraint !ist C(w, n) = ir1C0 (w, n, 1) 

modulo equivaleuce of propositions is in fact the expected overftow constraint 



Chapter 4. Application Examples 110 

n + 1 < 2w, i.e. the condition on the abstract input n for which the dyadic rep-

resentation of succn fits within w bits. Now, since n(t/i) = t/> sequent 4.10 that 

we know to hold for C(w, n), viz. 

1- Vw. Vn. ((aw 0 lnew •Pw) n = succn)C(w,n) (4.11) 

can now be reformulated as 

1- Vw.Vn.n+ 1 < 2w ::> (awolnew•p..,)n = succn 

which is precisely the approximation of the incrementor's specification that one 

would have bad to guess if everything had to take place in the base logic alone. 

The important point here is that the constraint was constructed systematically 

in the course of a derivation in lax logic. 

To finish off the incrementor, a second characterization of the constructed 

constraint will be given. A closer look suggests that the overßow constraint in 

general consist of two parts. Not only the result of the increment operation but 

also the input n has to be representable by w bits. lt is a particular property 

of the incrementing operation that the latter follows from the former, so that 

only one condition remains. These two sources for the overftow constraint are 

made more explicit by the second characterization which is given next. As a more 

important difference it makes use of the possibility of indicating the incrementing 

overftow by the carry output of the low-level realization's most significant half-

adder stage. Now, assuming such a carry-out signal for the w-bit incrementor is 

handed out as an extra signal Ca"1f.u(b,c), i.e. 

CaTTYo([J, c) 

Carryw+i(bo :: b,c) 

c 

Carry..(b, Carry(bo, c)) 

the second characterization can be formulated: 

Proposition 4.1.3 The proposition list 11"1Co(w,n,c) of type 0- has the form 

11'1C0 (w, n, c) = (t/i] such that t/> ~ n div 2w + Carr11w(p..,n, c) = 0. 



Chapter 4. Application Examples lll 

Proof: As before the proof is by induction on w and only given informally. The 

base case is straightforward since ir1C0 (0, n, c) is provably equal to 0 = n + c 

(cf. the proof of the previous proposition) and n + c = n div 2° + Carryo(pgn, c). 

The induction step is obtained as follows: We have 

Co(succw, n, c) = Co(w, n div 2, n mod 2 /\ c) 

and thus by induction hypothesis ir1 C0 ( succ w, n, c) is of form (l/l) with 

1/1 :::! n div 2 div 2w + Carryw(Pw(n div 2), n mod 2 /\ c) = 0. 

From this we compute 

(n div 2) div 2'" + Carryw(Pw(n div 2), n mod 2 /\ c) 

n div 2'"+1 + Carryw(Pw(n div 2), Carry(n mod2, c)) 

n div 2w+J + Carry„+l((n mod2) :: p„(n div 2), c) 

n div 2'"+1 + Carry„+1(Pw+1 n, c). 

1 

Since for natural numbers the condition ;;: + y = 0 is equivalent to ;;: = 0 and 

y = 0 this second characterization directly leads to the constraint 

n div 2'" = 0 /\ Carry„(pw n, 1) = 0 

The left part ensures that the input n fits within w bits and the right that there 

is no carry indication if the input is incremented as a bit-vector of length w. 

Note that if we put w = 1, i.e. we are looking at a one-stage incrementor, this 

second condition becomes Carry(p1 n,1) = 0, or equivalently, p1 n/\1 = O. This 

is precisely the condition for which the half-adder correctly adds input bits 'P1 n' 

and 'l', i.e. for which Add(p1 n,1) = p1 n+1. 

* * * 



Chapter 4. Application Examp/es 112 

The reader will notice (cf. Figure 4-4) that induction really is based at w = 0 

and not at w = 1. In other words, verification is anchored in the 'zero'-bit in-

crementor rather than in the one-bit incrementor. Also, this is the only place 

where a constraint is explicitly introduced into the proof, i.e. where the hypoth-

esis let 's-not-bother is used. All the rest of the proof is merely manipulating and 

updating this constraint in order to get a constraint for arbitrary bit-length w 

and input n. Thus, the constraint really is induced by a constraint for the zero-

bit case and the overflow constraint for the w-bit incrementor is nothing but the 

zero-bit case systematically pushed up through the induction. This is exactly the 

same situation as with the decrementor example. lt is an open question if this 

is merely a peculiarity of these specific examples or a more generally occurring 

pattern, say for a certain dass of abstractions. 

4.1.4 Designing the Factorial 

As the final example of this section consider the following design task involving 

both levels of data abstraction: At the abstract level the factorial is to be de-

signed as a recursive function over natural numbers. The design is composed in 

the ideal world of natural number arithmetic using successor and multiplication 

as primitive operations2• These primitive operations will be assumed to be re-

alized at a lower level as combinatory algorithms over finite bit-vectors. Since 

successor and multiplication (of natural numbers) can only be approximated on 

finite bit-vectors, the resulting realization of the factorial will only approximately 

be correct with respect to the initial abstract specification. The following will 

demonstrate how lax logic may be applied to keep track of and accumulate over-

flow constraints arising from the two subcomponents. 

2The term 'primitive' means that we are not going to break down these operations themselves 

in terms of zero, successor, and primitive recursion. 



Chapter 4. Application Examples 113 

Preliminaries 

We begin by spelling out the design goal. We seek a function term Jac : N '* N 

that satisfies the specification 

i(JacO = 1) /\ \fnN. <>i(Jac(succn) = succn · facn) (4.12) 

where the 0-operator indicates that the universal quantification may be rela-

tivized to some subset of natural numbers. A proof of this lax specification will 

eventually construct a constraint3 'Y : N '* n, such that 

facO=l /\ VnN.'Yn :::> fac(succn)=succn·facn 

holds. For the design to be described it will be seen that 'Y characterizes the 

range of naturals for which no overflow occurs in the subcomponents. lt will be 

useful to single out those parts of a specification that pertain to the base logic, 

so we write 

for the factorial's specification, where F0(/) ~ f 0 = 1 and F1(/) ~ /(succn) = 

succn · / n. 

The design will go through three phases, called Modularization, Realization, 

and Composition, which we briefly outline below. 

MODULARIZATION. The factorial fac = a-comp( inc, muT) is decomposed into 

an incrementor inc : N :::? N and a multiplier mul : N x N :::? N with sub-

specifications 

VnN.OiJ(inc) l(inc) ~ incn = succn 

Vnfl.vnr.<>iM(muT) M(muT) ~ mul(ni.n2)=n1·n2. 

3It will actually be a function of type 1 X (N ~ca· X 1)). 



Chapter 4. Application Examples 114 

lt will be verified that given implementations for each of the two sub-spedfications, 

then their composition satisfies the specification of the factorial, i.e. 

Yn. <>tI(i), Yn1. Yn2. <>iM(m) h,m i(Fo( a-comp(i, m))) 

A YnN.Ot(F1(a-comp(i,m))). 

The composition operator a-comp essentially will be the iteration operator for 

natural numbers. Consequently, the central proof technique will be natural in-

duction. Note, specifications for incrementor and multiplier, too, are lax propo-

sitions, i.e. they contain <>in order to account for overftow constraints. 

REALIZATION. The subcomponents inc and mul need tobe realized as opera-

tions lnc,,, : Bw :::} B"' and Mul,., : Bw x B"' => Bw over w bits, such that their 

abstractions satisfy the postulated abstract specifications. The verification goals 

are4 

Yw. Vn. Oil(a„ ofncw o p,,,} Vw. Vn1. Vn2. OiM( a.., o Mul,,, o (p,,, x p.,,}} 

where x stands for the product combinator f x g = ~x.(/(ir1 x),g(11'2x)). The 

realization of the w-bit incrementor lnc„ has been given and proven correct in 

Section 4.1.3 already. Using this lnc,,, and its correctness proof will introduce 

a specific overßow constraint into the design of the factorial. As to the other 

subcomponent there are many different ways of implementing a w-bit multiplier, 

sequential as weil as combinational. A detailed verification would be more com-

plicated than for the case of the incrementor while it is essentially of the same 

ßavour. As it would probably not give new insight into the ways constraints 

emerge and accumulate in a proof of lax logic we will not work through a specific 

realization, Mul,,,, of the multiplier. Instead some reasonable assumptions will be 

made about the correctness proof as weil as the constraint that it carries, and 

the design of the factorial will be completed from there. 

4Since Mul,,, is a function of two arguments we need to use the realization mapping twice, 

i. e. we have to precompose it with p„ x p„. 



Chapter 4. Application Examples 115 

As the result of the first two phases one obtains two low-level subcompo-

nents lncw, Mulw and a proof that if their behaviour is first abstracted and then 

composed (at the abstract level) one obtains a behaviour which, under certain 

constraints, satisfies the specification of the factorial. More formally, one con-

cludes 

where 
rJJ f acw = a-comp( aw o lnew • Pw , aw • Mul,,, 0 (Pw X Pw) ). 

Although the design may be considered completed now, for a function (in fact, 

a family of functions) has been constructed that satisfies the factorial's specifi-

cation, this particular function may not be what one is ultimately looking for. 

One might prefer first to compose the subcomponents as low-level bit-operations 

and then abstract the resulting composite behaviour to yield a realization of the 

factorial. This gets us to yet another, third design phase: 

COMP.OSITION. The task is to decide for a suitable low-level composition oper-

ator r-compw and to prove 

where 
rJJ Facw E r-compw(Inc,., Mul,,,). 

Fac,., then, is a correct low-level realization of the factorial. The operator 

r-compw might be a direct realization at the lower level of a-comp from the 

abstract level, such that 

V f,g. a-comp(aw• J o Pw, aw o go (p.., X p..,)) = aw o r-compw(J,g) o Pw• 

Although important, this third phase will be discussed only very brießy. 



Chapter 4. Application Examples 116 

Decomposing the Factorial 

The goal in the modularization phase is to implement the factorial from sub-

components at the abstract level. lf the 0 and i operators are ignored (4.12) is 

turned into an ordinary equational specification which may be read as & recursive 

definition for /ac: 

fun facO 

f ac(succn) succn · facn. 

From this one directly obtains a solution for /ac in terms of iteration iter and 

implementations for successor and multiplication. To this end we anticipate that 

a solution for a recursive definition of form5 

fun /0 
f(succn) 

is obtained from iteration by 

a 

h(succn, f n) 

f = 7r2(iter„ ((l,a),(succ(ir1 x), hx))). 

Now suppose there are functions inc : N =? N and mu/ : (N x N) =? N 

available which are approximations of the successor and multiplication operation 

in that they satisfy 

Vn. Otl( inc) 

Trivial solutions, of course, are inc =An. succn and mu/ = AX. (7r1x) · (ir2x). In 

view of what was said above we are lead to put 

a-comp( inc, mul) ~ ir2( iter„ ((1, 1 ), ( inc(ir1 x ), mulx ))). ( 4.13) 

as the composition operator. The goal for verifying that this is in fact a correct 

decomposition of the factorial becomes 

Vn. Otl(i), Vn1. Vn2. OtM(m) h,m t(Fo(a-comp(i, m))) (4.14) 

/\ VnN. Oi(F1( a-comp(i, m))) 
5This scheme is not general primitive recursion. lt is a special version that admits a ape-

cialized solution. 



Chapter 4. Application Examples 117 

where i, m are variables of proper types. Note that it is only for the fact that 

inc and mul are going to be approximations o( successor and multiplication that 

lax logic is needed at all. Otherwise the result would immediately follow from 

the general solution of the recursive definitions mentioned above. In fact, this 

standard proof basically will be reconstructed in lax logic. 

We are now going to prove (4.14) in lax logic. First we introduce two useful 

abbreviations: 

Jac ~ a-comp(i, m) 

cnt ~ 7r1(iter„({l,l),{i(7r1X),mx))) 

Derivation 2 // incrementor inc : N => N satisfies the specification 'r/n. Oil( inc), 

then so does cnt{inc/i}{mul/m}: N => N, where mul: N x N => N arbitrary, 

i.e. 'v'n. Ot/{i) f-;,m 'v'n. Ot/{cnt). 

The proof tree is shown in Figure 4-7. lt refers implicitly (rules t) to two 

sub-derivations in the base logic, viz. o( the equations 

cntO = succO and cnt(succn) = i(cntn) 

which are easily obtained exploiting standard laws for products and recursion 

equations for iter. Just like before these computations do not contribute to 

the constraint term and therefore can be omitted. The proof employs standard 

induction over natural numbers. No special care needs to be taken to account 

for the 0-operator. The presence of 0 only influences the proo( in a very trivial 

way: Removing all instances of 0, t and the application of related rules 0/, 

OL, i results in a well-formed proof in the base logic, and we claim there is a 

canonical process turning that ordinary proof back into the one in Figure 4-7. 

In particular, there is no non-canonical introduction o( constraints. Recall that 

rule 0/ introduces the vacuous constraint (). 

With Derivation 2 at band we can demonstrate the modularization proof for 

(4.14) as in Figure 4-8. lt does not involve induction and refers to two equational 



Chapter 4. Application Examples 118 

Vn.<>t(cntn = succn) Natlnd,.,„ 
Ot(cntO = succO) Ot(cn(succn) = succ(succn)) S b 
t(cntO = succO) <>I t(cnt(succn) = i(cntn)) Ot(i(cntn) = succ(succn)) u st 

' ' see below 

Ot(i(cntn) = aucc(auccn)) <>L 
<>i(i(cntn) = succ(succn)) :i: Oi(cntn = succn).; 11 

---'-"'"--'-----''---..:..;..-Subst 
y: i(cntn = succn).; see below 

<>i(i(succn) = succ(succn)) E 
V ,,... (. ) V 8UCCn n.vt 1 n = succn 

Figure 4-7: Proof of Derivation 2 

sub-derivations in the base logic which again are not difficult to obtain. Thus, 

we can set down 

Derivation 3 Given an incrementor inc : N ~ N and a multiplier mul : 

N x N ~ N which satisfy their abstract specifications, then their composition 

a-comp( inc, mu~ satisfies the specification of the factorial, i.e. 

Vn. Ot/(i) , 'v'n1. 'v'n2. OtM(m) 

h,m tFo( a-comp( i, m}} /\ VnN. OtF1 ( a-comp( i, m )). 

Constraint Analysis for Decomposition 

We may now be interested in the constraint handling potential of Derivation 3: 

Vn. Od(i}, 'v'n1. 'v'n2. OiM(m) (4.15} 

1-;,m iF0(a-comp(i,m)) II VnN.OtF1(a-comp(i,m)) 



Chapter 4. Application Examples 

i(facO = succO) II \fn.<>i(fac(succn) = (succn) · (facn)) 
-,-c,-----..,...-------~-,---'-....,...--,-..._:--,..,.........,.,../\[ 
i(facO = succO) \fn.Oi(fac(succn) = (succn) · (facn)) \fl 

L <>i(fac(succn) = (succn) · (facn)) n ----'"--..:.----'----'--'--"---"'.:..-- Subst 
i(fac( succ n) = m( cnt n , fac n)) see below 
-'-~------------~i 

Oi(m(cntn, facn) = (succn) · (facn)) OL 
<>i(cnln=succn) E <>i(m(cntn,facn)=(succn)·(/acn)) "' ---'------'--\f n Subst 

\fn.Oi(cntn = succn) :i:: i(cntn = succn) ./ see below 
Derivation 2 

\fn.Oi(in = succn) 

Oi(m(succn, facn) = (succn) · (facn)) VE 
/•cn \fn2.<>i(m(succn, n2) = (succn) · ni) VE 

lfn1.Vn2.0t(m(ni. n2) = n1 • n2) succn 

Figure 4-8: Proof of Derivation 3 

119 

Remember that every 0 in a lax formula stands for a constraint, or rather a 

constraint !ist of type !l* by which the formula is to be weakened at this point. 

The constraint itself is determined by a proof of the formula. In this spirit, the 

derivation of (4.15) determines a function that transforms a constraint of the 

incrementor (represented by <> in the first hypothesis) and a constraint of the 

multiplier (represented by 0 in the second hypothesis) into a constraint for the 

factorial (represented by <>in the assertion). Constraint extraction allows us to 

analyze this constraint transforming function. The constraint types of hypotheses 

and a.ssertion are 

IVn.Oi/(i)I N=>(0°xl) 

IVn1.Vn2.0tM(m)I = N => N => cn· X 1) 

ltFo(a-comp(i,m))AVn.OtF1(a-comp(i,m))I = 1 X (N => cn· X 1)) 



Chapter 4. Application Examples 120 

Given a variable u of type N =? (11" x 1) and a variable v of type N =? N =? (O* X 

1) we will extract by the translation process defined in Section 3.2 a constraint 

term R of type 1 x (N =? (11" x 1)) with free variables i, m, u, v, such that 

('v'n. Od(i))• u , ('v'n1. 'v'n2. OiM(m))1 v 

f-;,m,u,v (tFo(a-comp(i,m)) /\ 'v'nN.OtF1(a-comp(i,m)))• R 

or, after expanding the definition of constraint predicates 

Vn. /(i)"'(un), 'v'n1. 'v'n2. M(m)"i(vni no) (4.16) 

f-;,m,u,v Fo( a-comp(i, m)) /\ Vn. F1(a-comp(i, m))"1H"2 R)n) 

In the sequel the term ir1 ( ( ir2R) n) will be computed and interpreted. 

The computation of R works from the natural deduction proof trees of Figures 

4-7 and 4-8 of sequent (4.15). Both trees plugged together and reduced to rule 

applications are shown below 

R:Al 

OL„ 
Subst 

R1 : Natlnd,.,„ z VE1•cn 
OJ Subst VE,.ccn 

OL, V 

Subst :i: 

11 VE„ccn 
u 

The point where we break up this tree into two digestible pieces is indicated with 

R1. 

Evaluation of R1: 

R 1 = Natlnd,.,„(OI t, Subst(i, OL,(Subst(y, VEnccn u), z))) 

_ Natlnd..,:r:(Olt, OL,(VEmcnu, z)) 



Chapter 4. Application Examples 

- Natlnd,.,„(<>I •, <>Lv(VE, •• .,. u, z)) 

_ Natlnd,.,„(([ ], •), <>Lv( u (succn), z)) 

- Natlnd,.,„(([), •), (ir1( u (succn)) IQ ir1z, ir2( u ( succn)))) 

- natrec(([],•), .\n . .\z.(ir1(u(succn))4h1z 1 ir2(u(succn)))) 

121 

This is what we get for R1 by directly transla.ting the proof tree. Note, R 1 ha.s 

u a.s its only free variable. Before we continue to compute R, i.e. the constra.int 

term for the whole tree, R1 will be simplified a. bit. Since variable u is of type 

N:::} cn· X 1), the sub-term 11'2(u(succn)) is of type 1 and hence we can prove 

ir2(u (succn)) = *· This, for a start, gives 

Furth er, the recursion combinator natrec ha.s type ( a x (N => a :::} a)) => N => a 

with, in this ca.se, a = n• x 1. The component of type 1 is redundant so that 

the recursion can further be simplified by removing the construction of * which 

is merely carried through the recursion a.s a dummy. Exploiting the canonical 

isomorphism 

fi" X 1 ~ n° 

it can be proven by induction that 

ir1(R1 n) = natrec([), ..\n • ..\x. ir1(u (succn))@x) n 

where now a = n· and X ha.s type n· (in contra.st to n· X 1 before). Note, 

ir2(R1 n) has type 1 whence ir2(R1 n) = *· One immediately obta.ins an intuitive 

picture of what is going on when ir1(R1 n) is evaluated for the first few n: 

ir1(R10) 

ir1(R1 (succO)) 

[] 

11'1(u (succO))@[] 

ir1(R1 (succ(succO)) = ir1(u (succ(succO))) lfh1(u (succO))@(] 



Chapter 4. Application Examples 122 

Thus, for any given natural number n, the constraint !ist ir1(R1 n) is obtained by 

accumulating the constraint lists u k with k = 1, ... , n into a single list. 

So much for the analysis of R1• We will be able to simplify ir1(R1 n) further 

when the concrete input constraint of the incrementor will be plugged in for 

variable u. (Remember that u stands for a proof of the formula Vn. Od(i), the 

specification of the incrementor.) 

Evaluation of R: 

R - t\I(t, l/ln Subst(t, <>L„(l/En R1, SubstJ..x, l/Ejocn VEnccn v)))) 

- 11/(t, l/ln <>L„(l/E„ R1, 1/ E1•cn 1/ E,„ccn v)) 

- t\I( *, l/ln <> L„(R1 n, v (succn) (facn))) 

- (•, .>.n.(7r1(R1n)@11"1(v(succn)(/acn)),'ll"2(R1n))) 

(•, >.n.('ll"1(R1 n)@ 'll"1(v(succn)(facn)), •)) 

R has free variables u, v, i, m, the latter two because of fac = a-comp(i, m). 

Here, we can return to the point of departure, viz. the sequent (4.16). lt 

says that for any input constraint u : N => (W X 1) for the incrementor and 

input constraint V : N => N => (W X 1) for the multiplier, ir1((ir2R) n) : n· 
defines a (sufficient) input constraint for the factorial at input n. Now, the term 

11'1((ir2R) n) can be seen to satisfy 

so that we get a direct interpretation of the factorial's input constraint in terms 

of those for incrementor and multiplier: 

For a given input n of the factorial, the constraint list for n contains 

all the constraints of the incrementor f or inputs k = 1, ... , n (cf. the 

analysis of ir1 ( R1 n) above) and the input constraint for the multiplier 

at input pair (succn, facn). 

In particular, if both subcomponents are an ideal incrementor and an ideal mul-

tiplier, as it is the case for inc = ..\n. succn and mul = ..\x. (ir1x) · (ir2x), then 



Chapter 4. Application Examples 123 

since the constraint lists 11"1 ( u n) and 11"1 ( v n m) are empty6 the constraint !ist 

ir1((1r2R) n) for the factorial is empty, too. 

Realization 

After decomposing the factorial and its specification the next design step consists 

of realizing the subcomponents at the lower abstraction level as bit-operations. 

For the incrementor this has been done already in Section 4.1.3. There we have 

constructed a constraint term C( w, n) of type {}" depending on variables w and 

n, where w is the bit-length and n the input to the incrementor, such that by 

(4.11) 

f- Yw. Vn. J(cr.,, o /nc.,,o p.,,)c(w,nl. (4.17) 

lt was shown that C(w,n) is always a !ist with one element, C(w,n) = [;), 
and that ; is equivalent to the condition n + c < 2"' (cf. Proposition 4.1.2) and 

n div 2"' + Car1·yw(p.,,n, c) = 0 (cf Proposition 4.1.3). 

To complete the task of realizing the factorial we ought to deal with the 

multiplier. However, because of the similarity to the problem of realizing the 

increnientor this does not appear to provide any new insights while it is likely 

to be an unreasonably excessive exercise in applying the formalism of lax logic. 

Therefore, the multiplier will be left to a future software implementation of lax 

logic. Of course, the interesting question will be if there one also can do away 

with constraints in a similarly canonical way as in the case of the incrementor 

and decrementor. Here, it will be simply assumed that there is some function 

term Mul,,,: B"' x B"' =? B"' and constraint !ist D(w, n1t n2): {}" such that 

( 4.18) 

With the proposition !ist D(w,n1tn2) being the overßow constraint of the w-

bit multiplier it can probably be shown analogously to the incrementor that 

D(w, n1t n2) =[;)such that ; ~ n1 • n2 < 2"'. 

60f Course, this ought to be verified. 



Cbapter 4. Application Examples 124 

Now that the decomposition of the factorial and the realization of its sub-

components has been completed we turn to analyzing the achievement in terms 

of the constraints accumulated within the obtained correctness proofa. Fix a 

particular bit-length w : N. With rea.lizations of both subcomponents at band 

we can now proceed bottom-up and derive the overßow constraint induced if w-

bit incrementor and multiplier a.re composed to give a w-bit realization of the 

factorial 

' N N g_ JUCw: -+ a-comp(aw o/nc,,, o p,.,, Cl!w o Mul,., o (p„ X p„)). 

Specializing variables u, v, i, m in sequent ( 4.16) as follows 

u .- .\n.(C(w,n), *) 

V .- .\n1.An2.(D(w,n1in2), *) 

.- a„ o /ncw o p„ 

m .- a„oMul..•(Pw X p„) 

and a little equality reasoning involving ß-reduction for products and pairs yields 

the sequent 

where 

'Vw. 'Vn. /(aw o /nc., o p..,)°\w,n) , 

Vw. Yn1. Yn2. M(aw•Mul,.,•(p.., x p..,))D(w,n1,"2) 

1-.., Fo(fac..,) /\ Vn. F1(/ac..,)81"'•n) 

=
<}!.. E(w, n) 1r1({1r2R) n) 

{An. (C(w, n), *)/u}{.\n1 . .\n2-(D(w, ni, n3), *)/v} 

{a..,•lnc.,•p..,/i}{a..,•Mul,.,•(pw X p„)/m}. 

( 4.19) 

Sequent (4.19) contains the information on how the constraints of incrementor 

and multiplier are composed to yield the constraint for the factorial. Namely, if 

Sequent (4.19) is plugged together with sequents (4.17) and (4.18) one obtains 

1-.., Fo(/ac..,) /\ Vn. F1(/ac„)8 (w,n) (4.20) 



Chapter 4. Application Examples 125 

which proves the correctness of the w-bit factorial under constraint E(w, n) which 

really is a !ist of propositions. We can use the function n : n· :::} 0 that conjoins 

(A) a !ist of propositions into a single proposition to transform sequent (4.20) 
into the equivalent 

1-w Fo(Jac.,,) A Vn. nE(w,n) :::> F1(Jac„) 

which says that the proposition nE( w, n) is a sufficient condition on the input 

for which the w-bit implementation fac„ of the factorial satisfies its abstract 

specification. lt is remarked again, that E( w, n) is systematically extracted from 

the realization proofs for incrementor and multiplier and the decomposition proof 

of the factorial. In the following we want to obtain an intuitive characterization 

of the input constraint nE(w,n). 

With the abbreviation /f 1 =q (ir1(R1 n)){~n. (C(w, n), •)/u} we compute 

E(w,n) = .R!1 @ D(w,succn,fac„n). 

Hence, nE(w,n) = (nR'i) A D(w,succn,fac„n) by definition of n. So, we are 
left with the job of working out the condition n/f1• To this end Jet us refine the 
comments above about !ist ir1(R1 n) to see what the proposition Iist lf1 looks 
like. First, we have 

R'1 - (1r1(R1 n)){An.(C(w,n), •)/u} 

- natrec([), An.Ax.11"1((An.(C(w,n), •))(succn)) 0 x)n 

natrec((J, An.Ax.C(w,succn)@ z)n. 

So, evaluating R'1 for the first few n makes clear what is going on: 

.R!i{O/n} (] 

.R!i{succO/n} = C(w,succO)@ (J 
R'i{succ(succO)/n} = C(w,succ(succO))@ C(w,succO)@ [J 



Chapter 4. Applicatfon Examples 126 

For every n > 0 the !ist R'1 contains all propositions C(w, k) for 0 < k $ n. For 

n = 0 the !ist is empty. Thus, 

nR'1 E!! YO<k$n.C(w,k) 

which is verified formally by an induction argument. This can be simplified even 

further bearing in mind that in our particular case C( w, n) E!! n + 1 < 2"' which 

exhibits the prnperty that for all n, C(w, succn) implies C(w, n) which means 

YO<k$n.C(w,k) E!! n~l:::>C(w,n). 

Thus we find, modulo equivalence of propositions, that nR'1 is the same as the 

condition n 2: 1 :::> C(w,n), and we arrive at the final result 

Derivation 4 The w-bit realization of the factorial 

facw = a-comp(aw 0 Incw. Pw' Ow 0 Mul.., 0 (p.., X p..,)) 

satisfies specification 

fac.., 0 = 0 /\ Yn. "'fw n :::> fac..,(succn) = (succn) · fac.., n 

where "'fw n is the condition 

'Yw n 

The first half of ')'.., n, the condition ( succ n) · (fac.., n) < 2"', stems from the con-

straint D( w, succ n,f ac.., n) (cf. the assumptions made above about the multiplier 

constraint ). 

* * * 

Summing up, the essential point of the example is that by using lax logic the 

overflow constraint has been systematically accumulated in the verification of the 

factorial and that this constraint can be analyzed in a completely independent 

step after (lax) correctness is established. Further, no fancy induction principle 

involving the <>-operator was necessary, ordinary induction over natural numbers 

proved to be adequate. 



Chapter 4. Application Examples 127 

Concrete-Level Composition 

Strictly speaking the goal of designing the abstract factorial from bit-level oper-

ations may be considered achieved at this point. lt was shown that the function 

term 

satisfies the specification of the factorial. But as mentioned in the beginning fac„ 

might not be exactly what one is looking for. lt may be more appropriate to ask 

for a concrete-level composition operator r-comp.., such that the abstraction of 

the concrete-level function 

dl Fac;. : B"' ~ B"' = r-comp„(lnc;., Mul..,) 

satisfies the specification of the factorial, i.e. one has 

There will be many ways to define such an operator r-comp.., each of which is 

encapsulating a different design style. lf, for instance, Fac.., is to be interpreted 

as a piece of hardware and /nc.,, Mul,,, as combinatory circuits, then the options 

range from combinatory to sequential composition and in the latter case further 

from synchronous to asynchronous computation. All this is involved enough a 

story to be worth being discussed all by itself and beyond the scope of this thesis. 

Once r-comp.,, is defined one would proceed by showing that r-comp.., is a 

correct realization of the abstract composition operator a-comp in the sense that 

Y f,g. Ow • r-compw(J,g) •p,., 

= a-comp(o..,• J o p..,, o..,o g•(p.., X p..,)) 

which immediately would allow us to deduce F(o..,•Fac.,op..,) from F(Jac.,,) no 

matter what property Fis by simple equality substitution. This is the ideal world. 

However, just as lnc.., and Mul,,, are approximative realizations of the abstract 

incrementor and multiplier the operator r-comp„ may be a realization of a-comp 



Chapter 4. Application Examples 128 

only up to certain constraints. If, for instance /ncw and Mul,,, were synchronous 

sequential circuits, then the low-level composition results in a correct synchronous 

system only under a constra.int on the length of the clock phase depending on 

delay parameters in both sub-circuits. How these constra.ints ca.n be a.ccounted 

for by using lax logic a.nd by introducing 0 in the right pla.ces is a question that 

will have to be answered by future research. 

4.2 Example of Synchronous Hardware Design 

In this section we take up again the motivating example from Section 2.3 in 

designing a synchronous modulo-2 counter. This example differs from the pre-

vious ones fundamentally in that it employs a relational rather than functional 

approach for modelling the behaviour of components. Its main purpose, besides 

taking a hardware application, is to demonstrate the use of lax logic on a different 

description paradigm. 

To keep explanations reasonably short we will not mention all deta.ils that 

would have to be spelled out in a completely formal presentation. Among those 

are for instance all definitions that have to do with basic data types such as 

integers and booleans. We simply assume that these data types along with their 

usual mathematical properties are available in the base logic. We may thus focus 

on those parts of the vet"ification that are done within .C proper. 

The task, set up in Section 2.3.2, is to find a derivation for 

cnLabs (x,y,z) t-„.~ cnt_appr(x,y) (4.21) 



Chapter 4. Application Examples 

where here and in the sequel x, y, z are distinct variables of type signal, and 

cnLabs (x, y, z) 

cnLappr (x, y) 

xor_abs (x, y, z) 

latch..abs ( d, q) 

xor_abs (x, z, y) /\ latch_abs (y, z) 

(Co/\ C1(x,y)) :::> (Vt1it2.C2(t1it2) 

:::> (nexLabs (t1it2) :::> y(t2) = x(t2) + y(t1))) 

(stablex5x /\ stabley5x) 

:::> Vt. tick t :::> zt = xt + yt 
( one_shot /\ min..sep DL) :::> 

:::> Vt1i t2.( tick t1 /\ tick t2) :::> 

(nexLabs(t1, t2) :::> q(t2) = d(t1)) 

nexLabs(t1, t2) = t1 < t2 /\ \lt. tick t :::> (t1 < t :::> f2 $ t) 

129 

where here and in the following t, t1i t 2 are distinct variables of type int. The 

derivation of (4.21) is to be split into a main part that is free of constraints, 

and a successive constraint analysis to establish constraints C0, C1, C2 for the 

composite device. The first goal is achieved by reformulating xor_abs, latch..abs, 

cnLabs, and cnLappr in C using 0: 

xor_abs'(x,y,z) 

latch_abs' ( d, q) 

cnLabs' (x, y, z) 

cnLappr'(x,y) 

d/ = 0"</t.Ot(zt=xt+yt) 

~ O"</ti.l2.0t(nexLabs(t1, f2) :::> q(t2) = d(t1)) 

~ xor_abs'(x,z,y) /\ latch_abs'(y,z) 

~ 0 Vt11 t2. 0 t ( nexLabs (t1 , f2) :::> y(t2) = x(t2) + y(t1)) 

Syntactically speaking, all constraints are now removed from the formulae and 

replaced by 0. Semantically speaking, and this is the crucial idea, a constraint 

now is no longer part of the proposition but of the proof. For instance, 

O'v't. Ot(zt = xt + yt) (4.22) 

does not give any more information regarding constraints than indicating that 

there may be hidden assumptions, namely one for each instance of the 0-operator. 

lt is the proof of (4.22) that actually determines these constraints. In fact, the 

constraints depend on from which low-level axioms about the exclusive-or gate the 

abstracted propositiou (4.22) is derived, and by which abstraction process. Here 



Chapter 4. Application Examples 130 

zor (cf. 2.3.2) will be used but one might take a more detailed description of the 

gate, e.g. with variable delays, and then of course some other constraints would 

result. Also, there may be more than one way to verify an abstract behaviour of 

a composite device from properties about its components and each may result in 

a different constraint. 

Synchronous Abstraction of XOR and Latch 

In the sequel we will give derivations 

t(xor(x,·z,y)) 1-„,v„ xor_abs'(x,z,y) 

t(latch(y,clk,z)) 1-v.• latch_abs'(y,z) 

and thus establish that and to what extent the exclusive-or and latch are imple-

mentations of the abstract components. In these derivations, which will use the 

additional hypothesis let 's-not-bother, actual constraints for the 0 place-holders 

inside xor_abs' and latch_abs' will be determined. 

We begin with the derivation of 

let 's-not-bother, t (xor(x, z, y )) 1-„,v.• xor_abs' (x, z, y) 

or, more explicitly, of 

let's-not-bother, i(xor(x,z,y)) 1-„,v,• OVt.Oi(yt = xt + zt) (4.23) 

shown in Figure 4-9. The means for introducing constraints, of course, is the 

hypothesis let 's-not-bother which is used twice, namely for hiding the input con-

straint stable x 5x /\ stable z bx and the sampling constraint tick t. Instead of 

using let 's-not-bother we could have worked from the separate hypotheses 

Vx, z. Oi (stablex 5x /\ stable z 5x) Vt. Ot (tick t) 

which is more explicit but results in the same constraints. As can be seen in the 

Jower part of Figure 4-9, an instance of the i-rule is referring to a derivation of 

xor(x,z,y), stablex5x /\ stablez5x, tickt l-„,v,1,1 yt = xt + zt (4.24) 



Chapter 4. Application Examples 131 

01/t.Oi(yt = zt + zt) OF. 
Vt.Oi(yt = zt + zt) VI Oi(stablez 6x /\ stablez6x) VE" 

Ot(yt = zt + zt) 1 w: let's-not-bother •tcHedxl\•tdlulx 

see below 

<>i(yt = :r:t + zt) 
-,-~~~~~~"-"--~~'---'-~~~-0-0....,....~<>F, 
i(yt = :r:t + zt) <>i(tickt) VE 

t(zor(z,z,y)) p:i(stablez6x/\stablez6x)./ q:i(tickt)..,/ (w) lieil 

Figure 4-9: Derivation for Abstracting :r:or as a Synchronous Device 

in 8. This is obtained by straightforward first-order reasoning, and really is where 

the main verification takes place. All the other proof steps in C, i. e. all the rules 

shown in Figure 4-9 except i, merely serve to associate the two invocations of 

let 's-not-bother, indicated by variable w, with the two occurrences of <>. In other 

words, they serve to introduce the constraints into the right places. We remark 

that the derivation of (4.24) in 8 has to assume 5x ~ 0, and the following facts 

about intcgers and associated operations $, -: 

Vt, u. t - u + u = t Vt. t $ t Vt, u : int. u ~ O :::> t - u $ t 

Let us check that the derivation of (4.23) in C indeed captures a derivation of 

xor(x,z,y) 1-„,~.· (stablex5x /\ stabley5x) :::> 

'v't. tick t :::> yt = xt + zt 

in B in the sense that the constraints are replaced by 0 and delega.ted to the 

constraint term. To this end we extract from the derivation given above in 

Figure 4-9 the constraint term X of type 

10 'v't. 0 t (yt = xt + zt)I = n· X ( int => (O* X int)) 

with a free variable w of type llet's-not-botherl and v of type li (:i:or(x, z, y))I ::: 1. 



Chapter 4. Application Examples 132 

We know that for this term the sequent 

let's-not-bother• w, (izor(x,z,y))•v 1-„,v,z,w,v (<>Yt.<>t(yt = xt + zt))• X 

can be derived in B, or, if we specialize w to ? to trivialize the hypothesis 

let's-not-bother11 w, and specialize v to *• the sequent 

i(xor(x,z,y))11 * 1-„,v,• (<>Yt.Oi(yt = xt + zt)) 11 (X{?/w}{•/v}). 

Unrolling the definition of • and using the equivalence <P0 ~ (nc) :::> <P yields 

zor(x,z,y) 1-„,v„ n(ir1X{?/w}{•/v}) :::> 

Yt.(n(ir1((ir2X{?/w}{•/v})t)) :::> yt=xt+zt). 

We leave it as an exercise to the teader to compute constra.int term X and to 

verify 

n(ir1X{?/w}{•/v}) ~ stablexi5x A stableyi5x 

n(ir1((ir2X{?/w}{•/v})t)) ~ tickt. 

(4.25) 

(4.26) 

This completes the synchronous abstraction for the xor gate. The other com-

ponent to be abstracted is the latch, for which we can find a derivation of 

let 's-not-bother, '(latch (y, clk, z)) l-v.• latch.abs' (y, z) 

or, more explicitly, of 

/et 's-not-bothe1·, i ( latch (y, clk, z)) 

l-v.• OYti,h.Oi(nezt.abs(t1,t2) :::> q(t2)=q(t1)) (4.27) 

swallowing the constraints in latch.abs. lt is slightly more involved than the one 

for zor as, among other things, it requires that there be bounded induction on 

int in 8. We do not present the derivation here and state only that it contains 

the expected constraints. More precisely, the associated constraint term, call it 

L, of type 

0- x (int::} int::} (n" x 1)) 



Chapter 4. App/ication Examp/es 133 

wilh free variable w of type l/et :,-not-6otherl and v o( type 1, is such that the 

o· lrauslation of (4.:.!7) obtains 

latch(y, clk,:) t-~.· (n(ir1L{?/w}{•/v})) :::> Vt„t2. 

(n((ir2L{?/w}{•/v})t1 t3)) :::> nezLa6s(t1, t3) :::> q(t2) = q(t1) 

in 8, and further it holds that 

n(ir1L{?/w}{•/v}) ~ one..shot A min_seph (4.28) 

n((7r2L{?/w}{•/v})ti t3) E!!! ticlct1 A tickt2. (4.29) 

Abstract Verification of the Modulo-2 Counter 

As ihe constraint-free version of (4.21) we now set out to derive the sequent 

cnt_abs'(x,y,:) t-„.v.• cnLappr'(x,y) (4.30) 

which differs from the ideal verification goal (2.4) only in the presence of <> and 

i. Now let us introduce the following syntactic abbreviations: 

(} ~ nezLabs ( t1 , t3) 

( ~ y(t2) = x(t2) + y(ti) 

"' 
~ yt = xt + zt 

"' ~ :(t2) = y(t1) 

With these abbreviations (4.30) translates into the sequent 

Figure 4-10 shows the complete natural deduction tree for (4.31), where rule i 

depends on a derivation of t/>{t2/t}, t/J f-„,v„,11,12 t in 8, i.e. of 

which is simple enough. The derivation of (4.31) proves that composing a delay-



Chapter 4. Application Examples 134 

aee 6elow 

Figure 4-10: Verification of Correctness for Modulo-2 Counter 

free modulo-2 sum and an one-unit delay as in Figure 2-3 yields a stoppable 

modulo-2 counter. The reader may convince themselves that the only steps in 

this derivation that would not arise in an ideal proof, i.e. one which does not 

consider constraints at all, are the occurrences of the OL, OF rules. Further, one 

notices, that these extra rules are used in a canonical way, viz. to implement the 

derived inference rule 

which generalizes rule OF. lt has the effect that at any point in a derivation the 

assertion and an arbitrary number of hypotheses can be prefixed by 0. This is 

done twice in Figure 4-10, once in the upper and once in the lower half of the 

tree. 

The derivation of {4.31) can be called abstract since it is performed with-

out looking at or even manipulating explicit constraints. The Os only indicate 

where constraints are to be expected and so intuitively serve as place-holders 

for constraints. In manipulating the place-holder instead of real constraints the 



Chapter 4. Application Examples 135 

derivation is independent of constraints, and yet the associated proof term 

dJ C ::: OLp(/\E1v, OF,(/\E,v, VI,, VI,2 0L,(VE,2 p, 

OF. (VE,2 VE1, q, t(r,a))))) 

where v refers to the hypothesis of (4.31), retains enough information for extract-

ing the constraints inside cnLappr' (x, y) out of those in cnt_abs' (x,y,z). This 

now can be done in a completely separate phase: in the constraint analysis phase. 

First, we translate C into a constraint term applying the translation of Fig-

ure 3-16: 

C - OLp (ir1v, OF9 (ir2v, ..\t1 . ..\t2. OL, (pt2, OF. (qt1 t2, •)))) 

- 0Lp(ir1v, OF9(ir2v, ..\t1 • ..\t2.0L,(pt2, (ir1(qt1t2), •)))) 

- OLp(ir1v 1 <>F,(ir2v, ..\t1 . ..\t2.(ir1(ir1(qt1t2), •)@ir1(pt2) 1 ir2(Pt2)))) 

- OLp ( 11'1 V, ( 11'1( ll'2V) • ..\t1 . ..\t2. ( ir1( ll'1((ir2(ir2V)) t1 t2)' • )@ir1(pt2). 

ir2(p t2)))) 

- (ir1(ir1(ir2v), ..\t1 . ..\t2-(ir1(ir1((ir2(ir2v))t1t2) 1 •)@ir1((ir2(ir1v))t2), 

ir2((ir2(ir1v)) t2)))@ ir1(ir1v), ir2(ir1(ir2v), 

..\t1 • ..\12. ( 11'1( ll'1 (( ll'2( ll'2V )) f1f2) 1 • )@ir1((ir2( ll'J V}) f2) 1 

ll'2(( 71'2( ll'1V )) f2)))) 

This term partly can be 'evaluated' via ß-equalities to obtain 

C = (ir1(ir2v)lih1(ir1v), ..\t1 . ..\t2.(ir1((ll'2(ll'2V})t1t2)@ll'1((ir2(ir1v))t2), 

11'2{( 11'211'1 V) f2}) ). 

By the correctness theorems of constraint extraction we know that C is a term 

of typen- x (int => int => (n• x 1)) if v free variable of type (!l* x (int => 
(f!* x 1))) x (!l" x (int => int => (0- x 1))) such that the sequent 

( cnt_abs' (x, y, z))" v t-„.~···" (cnt_appr' (x, y))" C 



Chapter 4. Application Examples 136 

is derivable in 8. With a little massaging, this sequent can be shown to be 

equivalent to 

li1 :> \lt. (11 t) :> c/> A 

li2 :> Vt1, t2. ( 12 t1 t2) :> (} :> "' h~ 

( li1 A li2) :> Vti, t2-( 11'2 A 12 t1 t2) :> (} :> t (4.32) 

where /). = x,y,z,lii,li2,1i.12 with lii,li2 variables of typen, 11 variableof type 

int => n, and 12 variable of type int => int => 0. The proof of this, which 

is entirely straightforward, is omitted. lt uses the definition of (-)*, the above 

evaluation of C, and the equivalence .ph•·····"l1l Ei:! n ['Yk, ... , 1.J :> 4> Ei:! 11A· · ·A1• :> 
cf> for k = l and k = 2. 

So, what we have got from working in the extracted constraint term C into 

the abstract sequent (4.31) is a modification (4.32) that teils us how any set of 

constraints for subcomponents can be translated into constraints for the compos-

ite circuit. More precisely, if li1 and 71 are constraints on the input and sampling 

times for latch, respectively, and li2, 72 such constraints for /atch, then li1 A li2 and 

-Y1 t2 A 12 t1 t2 are sufficient constraints on the inputs and sampling times, respec-

tively, for the modulo-2 counter. Note, the computation of constraints is captured 

completely within C, the translation of (4.31) into (4.32) only establishes that 

the translation, and thus C, has the required properties. 

* * * 

lt is important to realize that if we had had to confine reasoning to the 

base logic, then the sequent (4.32) is the best we could have achieved in order 

to be constraint-independent. However, deriving (4.32) directly would require 

us to mess around with the 'abstract' constraints li1>lii,1i,12 and to throw in 

extra proof steps to deal with them. In contrast, using lax logic and constraint 

extraction the sequent (4.32) was obtained, up to equivalence, in a completely 

automatic fashion from a natural and constraint-free proof. 



Chapter 4. Application Examples 137 

Concrete-Level Composition of the Counter 

The abstract verification that composition of delay-free modulo-2 sum and one-

unit delay satisfies the specification of a modulo-2 counter has been achieved 

through the derivation of 

cnLabs'(x,y,z) 1-„,p,• cnLappr'(x,y). 

Further, the derivations of 

let 's-not-bother, L (xor(x, z, y)) 1-„,p,• xor_abs' (x, z, y) 

let 's-not-bother, L (latch (y, clk, z)) 1-•·• latch_abs' (y, z) 

(4.33) 

(4.34) 

(4.35) 

witness that in a synchronous environment zor and latch may be regarded as 

implementations of the corresponding abstract components delay-free modulo-

2 si.Jm and one-unit delay. From these three parts (4.33), (4.34), and (4.35) 

we extracted the constraint terms C, X, L, respectively. Residing inside X and 

L, thrnugh the reference to hypothesis let 's-not-bother, are certain behavioural 

constraints which record assumptions about the environment of the components 

under which their abstraction is possible. The constraint term C contains the 

information of how these constraints are to be composed to obtain the constraints 

for the modulo-2 counter, which is captured by the sequent (4.32) formally. 

Now we may put pieces together and prove that in a synchronous environment 

the composition of concrete-level components zor and latch can be regarded as 

an implementation of the abstract modulo-2 counter. This comes down to a 

derivation of 

let's-not-bother, L(zor(x,z,y)) A L(latch (y,clk,z)) 

1-.-,p,• cnt_appr'(x,y) (4.36) 

which is obtained easily by composing (4.33), (4.34), and (4.35) in C aa shown 

in Figure 4-11 The hypothesis let's-not-bother on which derivations (4.34) and 

(4.35) depend is not shown in Figure 4-11. Let us now examine the constraints 



Chapter 4. Application Examples 

cnLappr'(x, 11) 

( 4.33) 

~~~~~~c_n_L_a~bs_'~(x~·~Y·~z~>~~~.......,.~,-f\/ 
xor_abs'(x,z,y) latch..abs'(11,z)

(4.34) (4.35)

i(zor(z,z,y)) /\Ei i(latch(y,clk,z)) f\E
i(zor(x,z,11)) /\ i(latch(y,clk,z)) (u) (u) r

Figure 4-11: Low-Level Implementation of Modulo-2 Counter

138

residing in the derivation of Figure 4-11. As the associated constraint term,

called I, we obtain:

l _ C{/\/(X{/\E1u/v}, L{AE,u/v})/v}

- C{(X{7r1u/v}, L{7r2u/v})/v}

I has a free variable u of type li(zor (x,z,y)) /\ i(latch (y,clk,z))I = 1X1,

and variable w of type llet's-not-botherl which is free in sub-terms X and L. By

correctness of constraint extraction we conclude that the sequent

(let's-not-bother) 11 w, (i(zor(x,z,y)) /\ t(latch(y,clk,z))) 11 u

1-„,y,z,w,u (cnLappr'(x,y)) 11 /

is derivable in 8. If we specialize w to ? and u to (•, *), then it can be shown

that this sequent simplifies to become

xor(x, z, y) /\ latch (y, clk, z)

1-„,v.• n((7r1X{?/w}{•/v})@(7r1L{?/w}{•/v})) :::>

'v'ti.t2. n (7r1((7r2X{?/w}{•/v})t2)<ih1((ir2L{?/w}{7r2u/v})t1 t2)) :::>

0 :::> f.

Thus, using the equivalences (4.25), (4.26), (4.28), (4.29), the input constraint

for the modulo-2 counter is

Chapter 4. Application Examples

~ 011e_shot /\ min_sepöi /\ stablexöx A stableyöx

and the sampling constraint is

n (ir1((ir2X {? /w}{ *fv}) t2) @ir1((ir2L{? /w}{ir2u/v }) t1 t2))

~ tick t1 /\ tick t2 /\ tick t2.

139

This shows that the constraint term I has in fact collected together the con-

straints for xor and lat.ch. The reader is invited to compare this with sequent

(4.32).

* *"'

Chapter 5

Same Meta-Theory for Lax

Logic

In Section 5.1 we investigate what properties the notion of constraint is to have

if it is to serve as a Kripke-style semantics for the modal operator 0, or in

other words: to what extent it is justifiable to call 0 a 'modal' operator in the

standard Kripke sense. In Section 5.2 a category theoretical interpreta.tion of lax

logic is presented that provides a more semantica.l explanation of the constraint

extra.ction process and of its correctness.

5.1 On Kripke Semantics for 0

Our aim in this section is to analyze, in terms of ordinary Kripke-style semantics,

the intuitive reading according to which <>M means 'under some constraint',

M. We naively assume the constraints form a set C, equipped with a binary

accessibility relation R that is used as a Kripke/rame on which 'truth' offormulae

is decided.

As a simple start !et us focus on the following propositional modal logic:

Fonnulae M are generated by the grammar

M ::= 4' 1 <>M M /\ M

140

Chapter 5. Some Meta-Theory for Lax Logic 141

where <P stands for an atomic sentence. We assume that there are at least two

distinct atomic scntences. A sequent is of the form

where /lfi, i = 1, „., k, and Mare formulae. The in/erence rules are 0/, OF,

OM, AE1, AE., Al, and the structural rules id, weak, penn, and cut of Figure

3-7.

According to dassical Kripke semantics a truth valuation on a frame C is

given by a function V that associates with every atomic sentence <P a subset

V(,P) ~ C, viz. the set of constraints under which <Pis deemed to hold. Such a

triple C = (C, R, V) is called a Kripke model. A formula M then is valid at a

constraint c in model C, written C,c I= M, if M is of shape

• <P and c E V(,P)

• ON and there exists an a, cRa, such that C,a I= N

• NA/(and both C,a I= N and C,a I= /(.

A formula M is valid in model C, written C I= M, if for all constraints c E C,

one has C,c I= M.

The notion of validity is lifted to sequents and rules in the obvious way: A

sequent M1, ... , Ah 1- M is valid in model C if for all constraints c, whenever all

hypotheses M;, i = 1, ... , k, are valid at c in C, then the assertion M is valid at

c in C.

Finally, a rule is said to be valid in a dass of models if whenever all premisses

of the rnle are valid in each model of the dass, then the condusion of the rule is

valid in each model of the dass.

Given these definitions we may now ask what conditions on a frame must be

imposed in order for the rules <> I, <> M and <> F to be valid in the dass of models

based on this frame.

Chapter 5. Some Meta-Theory for Lax Logic 142

Lemma 5.1.1 Let (C,R) be a fixed frame and let M be the class of models

(C,R, V) where V is an arbitrary valuation on R.

• Rule 01 is valid in M ilf R is reflexive

• Rule OM is valid in M ilf R is transitive

• Rule OF is valid in M ilf R is discrete, i.e. for all c,d E C, if cRd, then

c= d.

Proof: The first two statements concerning OJ and OM are well-known,

cf (Che80J for instance. The interesting case is rule OF; !et r = q,, M = 1/J,
and N = </> /\ ..p, where </>, ..p are arbitrary, but distinct atomic sentences. Thus,

the instance of 0 F that we are looking at is

</>, 01/J t- 0(</> /\ iP) <> F
t/i, ..p "'/\ ..p

lt is easy to check that the premiss is valid in all models, so for <> F to be valid

in M we must have that the sequent

</>, 01/J J- O(</> /\ !/J)

is valid in all models (C, R, V) in M. The valuation V in the sense defined

may send both sentences q,, ..p to arbitrary subsets A := V(q,) and B := V(!/J)

of C. Unravelling the definition of a sequent being valid shows that in order for

this particular instance to be valid for all valuations the following second-order

condition must be met:

1/ A, B <; C. Vc E C.

c E A & (3y E C. cRy & y E B)

=> 3y E C. cRy & y E A & y E B

This condition now implies that R is discrete. Namely, if a, b E C are given,

specialize A = { a} and B = { b} fo1· which the condition becomes

Vc E C. c E {a} & (3y E C.cRy&y E {b})

=> 3y E C.cRy&y E {a} & !1 E {b} (5.1)

Chapter 5. Some Meta-Theory for Lax Logic 143

which is equivalent to aRb '* a = b. Thus, discreteness of R is necessary for the

validity of OF. That it is also a sufficient condition is seen as follows: If R is

discrete, then, for every valuation, a formula M is valid at c iff OM is valid at

c. Thus, the meaning of 0 collapses and both sides of the rule bar in OF have

the same semantical meaning. 1

Since we want to stick to rule 0 F, Lemma 5.1.1 means that the classical notion

of valuation is not feasible for our purposes. Validity of <>F focces the accessibility

relation of a constraint frame (C, R) to degenerate. This is unfortunate as R then

cannot be used to model a non-trivial relationship between constraints, and the

meaning of 0 as a modal operator becomes vacuous.

From the proof of the lemma it is clear that the reason of this lies in the

fact that the classical notion of valuation allows truth values V(l/I) of atomic

sentences to be arbitrary subsets of C that do not need to bear any relation to

R. In contrast, an intuitionistic notion of truth would require the sets V(l/I) tobe

hereditary, i.e. if c E V(<P) and cRd, then d E V(<P). Arbitrary elements a, b E C

can no longer be fully determined by truth values of propositions. Thus, in the

proof of Lemma 5.1.1 it would not be possible to choose for A, B the singleton

sets {a}, {b} but only sets

A = {x 1 aRx} B = {x 1 bRx}

say, so that in place of (5.1) we get

Vc E C. aRc & (3y E C. cRy & bRy)

'* 3y E C. cRy & aRy & bRy

which is trivially satisfied whenever R is transitive.

In fact, the intuitionistic notion of valuation appears quite natural in our

setting if accessibility is taken to express the strength of constraints: cRd if d is

stronger than c. Then, if the strength of c is reflected by the dass Oe = { 4> 1

Chapter 5. Some Meta-Theory for Lax Logic 144

c E V(,P)} of atomic sentences that are true 'under constraint' c, one naturally

arrives at the condition cRd =? nc ~ nd, or, cRd& c E V(,P) =? d E V(</>).

From this discussion it appears that a Kripke style semantic for our modal

operator 0 may be possible for an intuitionistic notion of valuation based on

constraint frames with reflexive and transitive accessibility relation. lndeed, it

will be seen that at least for the closed propositional fragment of l, all our rules

can be justified, under an intuitionistic interpretation, on non-degenerate frames.

First we need to make a few definitions. The fragment of C that we are going

to investigate, denoted by .Co, has as well-formed formulae

M ::= tt/> 1 OM 1 M /\ M 1 M :J M 1 MV M 1 true 1 false

where </> stands for a well-formed closed proposition of 8. The rules of .Co are

all those of .C, as in Figures 3-7 3-9, that pertain to the closed propositional

fragment. In particular, we have rule t in C.0 , so that .Co contains 8 as a sub-

logic.

Definition 5.1.2

• A constraint frame is a preordered set (C, !;) .

• A constraint valuation for ß on a constraint frame (C, !;;) is a map V

that associutes with eve111 weil-/ ormed closed proposition </> of 8 an upper

closed subset V(tf>) o/ C, i.e. for all c, d E C, such that c !;; d, if c E V(4>)

then d E V(</>). Also, V is to respect entailment of 8, i.e. i/ for closed

4>1 1 ••• , tf>„, 1/> we have 4>1 1 ••• , 4>n f- t/>, then n; V(,P;) ~ V(!Ji).

• A constraint model for B the11 is a triple (C, !;;;;, V) where (C, !;;) is a con-

straint frame and V a constraint valuation for B on (C, !;).

The elements of a constraint frame C are called constraints, ranged over by a, b, c,

etc. , with a !;;;; b meaning that bis 'stronger' than a. In the sequel we will simply

Chapter 5. Some Meta-Theory for Lax Logic 145

talk about constraint models rather than constraint models for 8. Constraint

models will be used to interpret formulae of C0 by combining the ways Kripke

frames interpret modal and intuitionistic logic.

Definition 5.1.3 Let C = (C, ~.V) be a constraint model for 8. Given a for-

mula M of C0 and a constraint c E C, we say M is valid at c in C, written

C,c f: M iff

• M is of form ON and there exists a constraint a in C with c !;; a such that

C,af=N

• M isup andce V(<P)

• M is NA J(and both C, c f: N and C, cf= K

• M isNVJ(andC,cF=N orC,cf=J(

• M is true

• M is N ::> /(and for all a such that c !; a, C,a f= N implies C,a I= K

A /ormula M is said tobe valid in C, written CF M if for all c E C, M is valid

at c in C; M is valid i/ M is valid in any constraint model C.

Notice, the definition covers the case M =. false: for no C and c we have C, c ·f:
f alse. Wherever the constra.int model C is understood we will simply write c f= M

rather than C, c I= M. A first result that we want to have for our notion of validity

is tha.t the modal-free formula.e, i.e. those which do not conta.in 0, beha.ve like

in ordinary intuitionistic logic.

Lemma 5.1.4 Let C be a constraint model and M a modal-free formula. !/ M

is valid in C at some constraint c and c !; b, then M is valid at b, too.

Proof: Suppose c f: M, and c !; b. We prove b f= M by induction on

the structure of M. If M =. t<P then the assumption gives c E V(<P) which

Chapter 5. Same Meta-Theory for Lax Logic 146

implies b E V(</>) by the hereditary property of constraint valuations. Suppose

M = N :::> f(. We have to show a I= N implies a I=](for all a, b !;;;; a. But

this follows from the assumption c f= N :::>](since by transitivity, c !;;;; a. The

remaining cases for M are trivial. 1

As before we lift the notion of validity to sequences and rules in the following

way: A sequent M 1 , ••• , Mi.: 1- M is valid in a constraint model C if for every c,

whenever all hypotheses M;, i = 1, ... , k, are valid at c in C then the assertion

M is valid at c in C. A rule is valid (in a dass of constraint models) if whenever

all prernisses of the rule are valid in every constraint model (of the dass) then

the conclusion of the rule is valid in every model (of the dass).

Lemma 5.1.5 All rules of .C0 are valid, where in rules OF and :>I the side

condition is imposed that all 'passive' hypotheses r are modal-free.

Proof: Let a constraint model C be given. We begin with rule 01. We have to

show that for all well-formed M the sequent M 1- OM is valid in C. To this end

assume a c with C,c I= M. We have to show C,c I= OM, i.e. that there exists a

constraint a, c ~ a such that C,a I= M. Sirnply choose a = c and use reflexivity

of !;;.

To verify that rnle OM is valid in C we assurne a c such that C, c I= OOM. By

definition this rneans there are constraints a, b, with c ~ b, b !;;;; a and C,a I== M.

By transitivity c ~ a, so C,c I= OM.

Now consider the rule OF. For it to be valid in C any instance of a se-

quent Mi, ... , Afi.:, OM 1- ON has to be valid in C under the supposition that

Mi, ... , Ah, M 1- N is valid in C. So, let a constraint c be given and assume

C,c I== M;, i = 1, ... ,k, and C,c I= OM. The latter condition means there exists

a, c (;;; a, such that C, a I= M. We are done if we can show that also(•) C, a I= M;,

i = 1„ .. , k. For then the supposition that M1 „. „ Mi.:, M 1- N is valid can be

used to condude that C, a I= N, whence C, c 1= ON. Now, because of the side

condition imposed we may assume that all the additional 'passive' hypotheses

M; are modal-free. Thus, (•) follows from Lemma 5.1.4.

Chapter 5. Some Meta-Theory for Lax Logic 147

Rule t is seen to be valid as follows: Suppose in 8 we have </>1, ••• , </>n 1- t/J.

We have to show that t</>1i ••• , t</>n 1- tt/J is valid in C. If c is a constraint, and

C, c I= t</>; for all i = 1, ... , n, then by definition c e n; V(</>;). By the properties

of valuations then, c E V(t/J), whence C,c I= it/J.
The remaining structural rules, and with the exception of :>/ the rules for

the ordinary propositional connectives are trivial to check. As to :>/, it has to

be shown that under the supposition, that M1i ... , Mk, M 1- N is valid, the

sequent Mi. . .. , Mt 1- M :> N is valid, too. So, Jet c be a constraint and assume

C,c I= M;, i = 1,„„k. Given the definition of validity for :>, it has tobe

demonstrated that for all a, c !;;; a, if C,a I= M, then C,a I= N. This follows

from the supposition provided we we can show for all i = 1, ... , k, C, a I= M;.

This is the same situation as in proving OF: We know the M; are valid at c and

need to verify they are valid at the stronger constraint a. As before we make use

of the side-condition that all M; are modal-free and invoke Lemma 5.1.4. 1

lt is possible to show that for arbitrary constraint models the side-condition

in rules OF and :>/ to the effect that all 'passive' hypotheses r be non-modal

formulae cannot be dropped. In the following the question will be investigated of

what property of the constraint frame is needed to get rid of the side condition.

First observe that the sequent

OF' I< :> (M :> N) 1- (I< :> (OM :>ON)),

which may be considered a 'fiattened' version of rule OF where the rule bar has

been reduced to the turnstile 1- and the turnstile replaced by implication :>, is

valid in every constraint model. To see this Jet d be a constraint and suppose we

have (•) d I= [(::> (M :> N). We wish to show d I= (/(:> (OM :> ON)), so

Jet c, d !;;; c, such that c I= I<, and further b, c !;;; b, with b I= OM, be given. lt

suffices to show that also b I= ON. First note that since d !;;; c and c I= K, (•)

obtains (u) c I= M :> N. Since b I= OM, there must be a, b !;;;; a, such that

a I= M. Now by transitivity, c !;;; a, so we can conclude from (**), a I= N. But

this means nothing but b I= ON.

Chapter 5. Some Meta-Theory for Lax Logic 148

Note, in OE" the formulae [(may be any formula, i.e. it need not be modal-

free while in 0 F there is the side condition that all hypotheses in context f be

modal-free. This difference, of course, is not contradictory as both versions are

interderivable only by using the rule :>/, for which the same restriction applies as

for OF. So, Jet us analyze the validity of rule :>/ to see what we can do. Consider

the following special instance of :>/:

N l- true'J N
N,truel- N

where N is any well-formed formula (of .C0). Certainly, the premiss N, true l- N

is valid in every constraint model, hence for this rule to be valid the sequent

N l- true 'J N must be valid in every constraint model C = (C, i;;;, V). Using the

definitions this is seen to be equivalent to

'Vc,d E C. c !; d &cf= N =? d 1= N

which is precisely saying that the set V(N) = { c 1 c f= N} is hereditary, i.e. upper

closed. Thus, we have found a necessary condition for rule :>/ to be valid witbout

side-condition; it is also sufficient as we know from the proof of Lemma 5.1.5.

Lemma 5.1.6 Let M be a class of constraint models. Rule :iI without side

condition is valid in M iff for all models C = (C, !;;, V) in M and all formulae

N, _the set V(N) = {c 1 c I= N} is upper closed wrt. i;;;.

The conclusion from this is that if we want to drop the side-condition on rules

O F and -:J/ we must restrict the dass of constraint models to those for which

Lemma 5.1.4 holds for all formulae, not just for the modal-free. If this dass again

is to be characterized by a condition on the constraint frame, we end up with

Definition 5.1. 7 A co11straint frame (C, !;) is called confiuent i.ff for all d, c, b E

C with d !; c and d !;; b there e:i:ists a, such that c !;; a and b !;; a. A constraint

model C = (C, !;, V) is confiuent i/ its frame is.

Chapter 5. Some Meta-Theory for Lax Logic 149

Lemma 5.1.8 Let (C, b) be a consfraint frame. Then, for all formulae M and

all models (C, b, V) based on this frame, i.e. for which V is any valuation in the

sense of Definition 5.1.~, the set

V(M) ~ {c 1 c I= M}

is upper closed wrt. b iff (C, b) is confluent.

Proof: For the i/ part it suffices to amend the induction proof of Lemma 5.1.4

by considering formulae of form OM. Assume c,b E C, c b b, and c I= OM.

We wish to prove b f= OM. From c I= OM we get a, c b a with a 1= M. Since

!;;; conßuent we know there exists a d such that both a !;;; d and b !;;; d. The

induction hypothesis now yields d I= M, whence b I= OM.

For the only-if part of the statement take any closed proposition <f> of 8 and

put M = uf>. Suppose given three constraints a, b, c such that c !;;; a and c !;;;;; b.

Define a valuation V4 ,• as follows

Va .• (e) =dJ {x E C 1 ab x & <!> 1- e}.

This map satisfies the conditions of valuations, and that it has the property

xEV. .• (<f>) <=:> a!;;;x.

We are going to exploit the assumption that the V(M) are upper closed on the

particular model (C,!;;;, V. .• (<f>)). More precisely, we use that V4 ,.(0t</>) is upper

closed. Now, since c !;;;;; a and a E V. .• (<f>) we have c E V4 ,.(0t</>). This set

is upper closed, so b E V. .• (Ot</>), whence there must be ad, b !;;; d such that

d E V.,.(t<f>) = V4 •• (<f>). The latter is equivalent by construction to a !;;;;; d. Thus

we have found a d that is both above a and b, which completes the proof that !;;;;;

is conßuent. 1

The following theorem sums up our analysis. lt is the central result of this

section.

Chaptei· 5. Some Meta-Theory for Lax Logic 150

Theorem 5.1.9 (Soundness) Let M be the class of confluent constraint mod-

els. Then, the rules OF and JI are valid {without restriction) in M. Conse-

quently, all derivable sequents in J:.0 are valid in M. In particular, if for some

formula M 1 1- M is derivable, then C I= M for all C in M.

Proof: Rule Jl is valid in M by Lemmata 5.1.6 and 5.1.8. Rule OF in its

general form can be derived from sequent OF0 , rules JI, JE, and the structural

rules. Since 0 F 0 , JE and the structural rules are valid in every constraint model,

0 F must be valid in M. Together with Lemma 5.1.5 we find that all rules of Lo
are valid in M. 1

Here are a few concrete examples of confluent constraint models:

Example

• Take as constraints C the finite lists hn, ... , -yi) of well-formed closed propo-

sitions and let hn, ... , 1d !; [6m, ... , 61] if all 6; occur among the /i· For

c = hn, ... , 1d define

hn1 „ • ,')'i) E V{</>) <::> 111·„11'n r </>

These data constitute a confluent constraint model, C •.

• A trivial confluent constraint model Co is given by the one-element pre-

ordered set C = {•}, * !; *• with constraint valuation V(</>)= {x 1 x =

* & 1- </>}, i. e. V (4>) is the singleton set { *} if </> provable in 8 and the

empty set otherwise. In this model OM is semantically equivalent to M.

• Another simple example, name it Ce, is in a way between C. and C0 : Take

C = { 0, 1}, with natural ordering 0 !; 0, 0 !; 1, and 1 !; 1 and valuation

0 E V(</>) <=> 1- </> 1 E V(</>)<=> ur .p

where u is some fixed proposition of B. This model is linearly ordered and

hence confluent. This model Ce is inspired by Curry (Cur52]).

Chapter 5. Some Meta.-Theory for Lax Logic 151

• Let (C, 1, ·) with action c, «P i-+ t/Jc be a notion of constraint for 8 in the

sense defined in Chapter 3, Definition 3.1.9. Then, (C,i;;;, V) with c i;;; d iff
for all «P, tjJ< 1- t/J4 and V(t/J) = {c l 1- tjJ<} is a constraint model. Clearly, !;;

is a preorder; also, a i;;; a · b and b 6 a · b, whence 6 is confluent.

1

The discussion in this section confirms that it is possible to give a non-trivial

Kripke semantics of 0 for which the rules of Co are sound. lt haa been shown

that this naturally leads to interpret <> intuitionistically on a confluent Kripke

frame.

We point out that Definitions 5.1.2, 5.1.3 are not the only possible way to give

a sound Kripke semantics to C0 • For example, it is not mandatory to use a single

frame relation ~ to interpret both modality <> and intuitionistic implication ::>.
A drastic consequence of being thrifty in this way is that every formula <>M i1

semantically equivalent to the formula -. -. M, where -. a.bbreviates (-) :::> false.

In fact, one can verify immediately by checking definitions that

f=OM5!!-.-.M

This means that the semantics of <> is not independent from the connectives

::>,/alse and that it may be too strong tobe completely captured by deriva.bility

in Ca. In fact, Co is incomplete:

Theorem 5.1.10 (Incompleteness) C0 is incomplete wrt. the J(ripke seman·

tics given by Definitions 5.J.e and 5.1.9. There is a formula N with C I= N for

all consti-aint models C such that 1- N cannot be derived in l:.a.

Proof: Take the formula N := <>Jalse ::> /alse. Then, f= N but not 1- N. The

first claim follows by definition of validity. The second claim is a. consequence of

Theorem 3.1.19: If the sequent t- <>/alse ::> false were derivable in C0 , then, we

must have a derivation of 1- true :::> false in 1:.. Contra.diction to the consistency

of 1:.. 1

Chapter .5. Some Meta-Theory for Lax Logic 152

5.2 A Category Theoretical Interpretation of

Lax Logic

In this section we pl'esent a specific category theoretic interpretation of lax logic.

lt provides a semantical reconstruction of the syntactic process of constraint ex-

traction defined in Chapter 3.2, which, for a given notion of constraint, identifies

proofs of 0 i </> with constraints c such that </>". This interpretation can be cha.r-

acterized by the identification

where E stands for a strong existential quantifier, i. e. one that satisfies, for in-

stance„ choice axioms like

Vx. Ec. </>0 :::> 3/. Vx. </>1"'

which reflect some properties of constraint extraction. Consequently, the recon-

struction we are heading for essentially is a systematic way of extending the base

logic by a strong existential quantifier.

The category theol'etical construction of lax logic presented in this section is

carried out in the shape of a hyperdoctrine [Law69,See83,Pit89]. More specifi-

cally, it is shown by categorical construction how any base logic 8 given as a

hyperdoctrine structure can be extended by first-order primitives, in particula.r a

strong existential quantifier E. In this extension 8 is contained via an embedding

i that pl'eserves and l'eflects provability, so that the new logic is a conservative

first-order extension of 8.

5.2.1 Base Logic as an Indexed Preorder

We begin with transforming the base logic 8 into an indexed preorder

8 = (T, B: TDP-+ PreOrd)

Chapter 5. Same Meta- Theory for Lax Logic 153

where T is a category and B a contravariant (pseudo-) functor from T into the

category PreOrd of preordered sets and order-preserving maps. Note, we are

using the same name B for both the previously introduced syntactic calculus of

the base logic and tbe indexed category tobe constructed below. The translation

will follow closely tbe traditional Lawvere-style approach of representing pred-

icate logical theories in category theoretical terms (Law69]. More specifically,

category T is the categorical representation of the object language of the base

logic obtained according to the principles

objects

composition

types

substitution

morphisms = terms

identities = variables

and the indexed (pseudo-) functor B : T°" -+ PreOrd representing the logical

calculus of the base logic is obtained from the principles

elements of fibres = propositions with free variables

ordering of fibres = sequents

translation maps between fibres = substitution

where with fibres we mean the preordered sets B[T), T object in T. The fact that

we do not assume that proofs or derivations in the base logic carry information

manifests itself in the fibres being preordered sets rather tha.n arbitrary categories.

Most constructions to follow below, we believe ge~eralize to the case where the

fibres are proper categories.

Notation: If .6. == xr', „., x~" is a conteJCt, then we denote the sequence

T1, ••• , r„ of types by II .6. II· In the special case where .6. is the empty context

(), ll.6.ll is the empty sequence (). Given a well-formed term t with free variables

in .6. and sequence s = si, . .. s„ of well-formed terma of types Ti, . •. , T„, we uae

the notation t{s/.6.} to abbreviate tbe substitution t{s1/zi} .„ {s„/z„}.

Definition 5.2.1 The inde:ied preorder B = (T, B : Top .,.. PreOrd) ia given

by the f ollowing data

Chapter 5. Some Meta-Theory for Lax Logic 154

• T is the category with objects the finite, possibly empty sequences T =
Ti, ... , Tn of types of the base logic; a morphism u -+ T, where <1 = <Ti. ... , <Tm

and T = Ti, ... Tn, is an equivalence class ((6, t)] of a pair, where the first

component A is a context with llAll= u and the second is a possibly empt11

sequence t = ti. ... , tn of well-formed terms of t11pes Ti, ... , T„ 1 respectivel111

each of which has its /ree variables in A, i.e.

A 1- t;: Ti i = 1, .. . ,n,
under the cquivalence that identifies (A, t) with (A', t') i/ t and t' are a-

convei·tible, i.e. t'{A/A'} is syntactically identical tot modulo renaming of

bound variables.

The identity morphism id : T -+ T is the equivalence class ((A, 6)) where

A is an arbitrary context such that llAll= T. Composition o/ a morphism

[(Ä„s)] : p-+ u, s = s11 ••• ,sm with morphism (Äi,t] : <T-+ T, t =

ti, ... ,t„ and Ä1 = vr', ... ,y;:.m is the equivalence class [(A„tos)]: p-+ T

where t o s is the sequence

• Given an object T = Ti, ... , Tn in T, then the fibre B(T] over T is the

preordernd set with elements the equivalence classes [(A, 4>)) of pairs, where

the first component Ä is a context with llAll= T and the second t/> a well-

fonned proposition with free variables in A, i.e.

ß 1- t/>: n,

under the equivalence that identifies ((.1., t/>)] and [(A', t/>')] i/ t/> and 4>' are

a-convertible, i.e. t/>'{ß/A'} is syntactically identical to 4> modulo renaming

of bound variables. Let A, A' be contexts such that II Ä 11=11 A'll= T. For

elements [(A, 4>)) and [(ß', 4>')] in B[T], the ordering [(A, 4>)) b [(A', 4>')] is

defined to hold iff the sequent

t/> 1-~ t/>'{ß/ß'}

Chapter 5. Some Meta-Theory for Lax Logic 155

is derivable in the base logic. Finally, given a morphism ((Ä', t)) : T1 ..:..+ T

in T, lhe order-preserving translation B[[(ß', t))) : B(T) -+ B(T1 is given

by the map

[(Ä,I/>)) ((ß',l/>{t/Ä})].

Notation: Morphisms [(ß, t)) in 7 will be denoted more suggestively by (.6.1- t),
and elements ((.6., 4>)) in B[llßllJ by [Ä 1- 4>) or [Ä 1- 4>: n].

Remark: lt will simplify later definitions considerably to use the fact that any

two morphisms <1 -+ T in 7 and also any two elements in ß(q) can be normalized

to have a common context Ä, llßll= O', as their free variables. The first example

of such use is Lemma 5.2.2 below.

The indexed preorder B constructed in Definition 5.2.1 is well-defined. More-

over, without assuming any particular properties of the object language, 7 has

finite products.

Lemma 5.2.2 The calegory 7 has finite products. More specifically, the empty

sequence () of types is terminal object, and the sequence O', T is a product of objects

O' and T in 7; its projections are 71'1 = [ß, ß' 1- Ä) and 71'2 = (ß, ß' 1- Ä') where

Ä, ß' are a1·bitrnry contexts such that II Ä II= <1 and II ß'll= T. The pairing of

morphisms [Ä 1- s): <1 -+Ti with [Ä 1- t): O'-+ T2 is

(s, t) =q (Ä f- S, t) : O' -+ Ti. T2

Proof: easy 1

Definition 5.2.3 Let I = (C,I : C0
' -+ PreOrd) be an indezed preorder. A

congruence = on I is given by two f amilies =a.• and =a of relations indexed in

objects a, b of C such that

Chapter 5. Some Meta-Theory for Lax Logic 156

• =•.b is an equivalence relation on the morphisms in C with domain a and

codomain b and =• is an equivalence relation on the elements o/ the fibre

I(a]

• =•,b is preserved by composition of morphisms and ::0 respects the ordering,

i. e. if J =•,b J' and g =b,c g' then g • f =•,c g' • J', and whenever <P =• <P',

i/J =• i/J', and </> b !/J, then </>' b ef/

• if f =•.b f', then for all objects </>, </>' in I(b], if </> Eb </>', then I(JJ<P =• I(/')<P'

For a congruence = 011 I the induced quotient of I,

I: = (C: 1 1: : (C:)0"-+ PreOrd)

is defined as f ollows: C: has as objects the objects of C and as morphisms a -+ b

the equivalence classes modulo Ea,b of morphisms f : a -+ b in C, denoted by

[!] = [!]= •. •· Composition and identities in C: are defined qua representatives,

i.e. id. = (id.] and (g]•(J] = (g•/]. Thefibres I:[a] have as elements equivalence

classes modulo =• of elements </> in I(a], denoted by (</>] = (c/>] 5 •• The ordering

on I(a] is given qua representatives, i.e. [</>] !;; [1"] iff <P b !/J. Finally, given a

morphism [!] : a-+ b in C: the translation I:([J]]: I;s(b] -+ I:(a] is the mapping

(cP],..... (I(J].PJ.

Remark: lt is easy to check that the constructed quotient I 5 is a well-defined

indexed preorder, in particular that the translation maps I:[[J]J are independent

of the particular choice of the representative f. The notion of a congruence rela-

tion on a category an<l the induced quotient category is standard. lt is extended

here to work for indexed preorders, but only to the extent that it be sufficient

for our purposes. lt is not claimed that this definition is helpful in its own right

from a category theoretic point of view.

Now we observe that 'provable equality' (=)in the base logic can be used to

define a congruence on the indexed preorder B = (T, B : T 0"-+ PreOrd).

Chapter 5. Some Meta-Theory for Lax Logic 157

Lemma 5.2.4 ld ß == (7, B : 7°' -+ PreOrd) 6e the indezed preorder con·

strucltd i11 Vtji111/w11 5.!!. I. Fur o a11d T objecta ill 7 define a relation =„,, on

tl1e murp/110111~ o -. T 111 7 b11

[A 1- s) =„,, [A 1- t) ifJ 1-6 s; == t;

is derivable in B for all i = 1, ... , n where s = si, ... , Sn and t = t„ ... ,tn.

Further, define a relation =, on the elements in B(r) by

is derivable in B. Then, = is a congruence on the indexed preorder 8.

Proof: easy, by the rules of 8. 1

The indexed preorder 8, apart from a-conversion, is a purely syntactic object.

However, passing to the quotient B= builds in additional identities that turn the

base 7 into a bicartesian1 closed category. In order to define this categorical

structure we replace 7 = by the full sub-category 7 0 generated by single element

lists. This will be justified by the fact that in 'I = an object r1, ••• , T„ is isomorphic

to T1 X••• X T„.

Notation: In B= we have built two equivalence relations on top of each other.

Morphisms in 7 = and elements in B=(o) should be written [(A 1- s]], where

the inner square brackets stand for a change of context and renaming of bound

variable (i.e. a conversion) and the outer for provable equivalence. In the sequel

both brackets will be merged into one, writing (A 1- s).

Lemma 5.2.5 Let 7 = be the quoti~nt induced by the congruence of Lemma 5.t.-1
on T. Then, the Juli sub-category 7 0 of 'I = generated by single element lists T

is equivalent to 7 =.
1The term 6icartesian here and in the following meana 'cartesian cloaed and equipped with

finite coproducts'

Chapter 5. Some Meta-Theory for Lax Logic 158

Proof: An equivalence between categories To and T = is a pair of functors

F : T o -+ T = and G : T = -+ T 0 together witb natural isomorphisms FG Ei!! 1 :

T =-+ T = and GF ~ 1 : 7 0 -+ To. Now T 0 is full sub-category of T =•so for F
we take the inclusion functor whicb is full and faithful. The existence of G and

the natural isomorphisms, then, is equivalent to the condition that each object

T =Ti, •.. , Tn in T = is isomorphic to some object in T 0 • One can show that such

an object is T1 x · · · x Tn, where it is understood, say, that x associates to the

right. As one half of the isomorphism T -+ r1 x · · · x Tn in T = take the equivalence

class (t.1- (xi,(x2,(... xn)···)J where t. = xp, ... ,x~· is a context, and for the

other direction r1 x · · · x Tn -+ T the equivalence class (z 1- irj z, ... , ir: z), where

z is a variable of type T1 x · · · x Tn and irr is the k-th projection Tt x · · · x Tn -+ Tk,

k = 1, ... , n. Formally, irr z for 1 :5 k :5 n can be defined inductively by

iriz=:i:.

That both maps are mutually inverse is due to equivalence classes being taken

modulo provable equality. Note, the equivalence is independent of the choices of

variables made, and it covers the case n = 1. The case n = O, i.e. T = () is treated

separately: the corresponding object in T 0 is 1. One half of the isomorphism

() -+ 1 is given by [h) and the other half 1 -+ () by [z 1-], where z is a variable

of type 1. 1

Now we identify the promised bicartesian structure in T 0 . lt is induced by the

type constructors 1, O, x, +, =~» the associated operations on terms (constructors

and destructors), and equations provable in the base logic.

Lemma 5.2.6 Let category To be as in Lemma 5.2.5. Then, T 0 is bicartesian

closed.

Proof: We will only point to the relevant categorical data and omit proving

their universal properties, which comes down to proving certain equations in

the base logic. The construction of syntactic categories from lambda-calculi is

Chapter 5. Some Meta-Theory for Lax Logic 159

well-known, see e.g. [LS86). Re~all that objects in 7 0 are (single) types tr and

morphisms u -+ T are equivalence dasses (z 1- tJ of well-formed terms t of type

T with (at most) a single variable z of type u as its free variable. Two such

equivalence dasses [z 1- t] and [z 1- t'J are identical ilf 1-z t = t' is derivable in 8.

• Terminal object is the type 1. Given an object T the unique morphism

!, : T -+ 1 is the dass (z 1- •) where z is any variable of type T.

• The product of objects u and T is u x T. The first projection tr X T-+ u is

[z 1- ir1z], the second u x T-+ T is [z 1- ir2z) where z is any variable of type

u x T. Given morphisms (x 1- JJ : a-+ u and (x 1- gJ: a-+ r, their pairing

is (x 1- (f, g)) : a -+ u x T. The dass (x 1- (f,g)] is invariant under change

of representatives f,g and variable x.

• Initial object is the type 0. Given an object T the unique morphism O, :

0-+ T is the dass [z 1- Dz) where z is any variable of type 0.

• The coproduct of objects u and T is the type u + T. The first injection u --+

u + T is [z 1- t 1z) with z variable of type u, the second injection T -+ u + T

is (z 1- i 2 z] with z variable of type T. Given morphisms (x 1- JJ : u -+ a and

(y 1- g) : T -+ a, their sum is

(z 1- case„.~(z,f,g)): u + T-+ a

where z is any variable of type u + T. The dass (z 1- case.:.w(z,f,g)] is

inval'iant under change of representatives f,g and variable z.

• The exponent of objects u and T is the type u:::} T. Evaluation is the dass

whel'e z is any variable of type a x (a :::} r). For a morphism [z r tj :
(a x u)-+ T define its currying as

[x 1- ~y.t{(x,y)/z}): a-+ (u:::} r)

Chapter 5. Some Meta-Theoiy for Lax Logic 160

where x,y arbitrary variables of type er, u, respectively. The equivalence

dass (x 1- >.y. t{(x, y)/z }] does not depend on the particular choice of rep-

resentative t and variables x, y.

1

Remark: The lemma only states that the required data exists but the proof

actually defines a canonical choice of categorical products, coproducts, etc. Note,

the constructions are independent of the choices for variables named 'z' - or ':i:',
'y' in the case of exponents - so they need not be picked in a canonical way.

Corollary 5.2. 7 Let T = be as in Lemma 5.2.5. Then, T = is a bicartesian closed

category.

Proof: Follows from Lemmata 5.2.5, 5.2.6, and the fact that equivalences be-

tween categories preserve limits and colimits. 1

Remark: Since a canonical choice for the bicartesian structure is picked in To
the specific equivalence between T 0 and T = constructed in Lemma 5.2.5 can be

used to lift this choice to T =· The lifted structure in T = also will be denoted

by the symbols 1, 0, x, +, =>. Note, that we have got two different finite product

structures on T =: 1 and u x T lifted from T 0 as weil as () and u, T as identified in

Lemma 5.2.2 on T pushed into the quotient T = in the obvious way. Both product

structures are isomorphic but not identical. Since it will sometimes be important

tobe clear about which one is meant let us call the first one 7 0-products, the

latter T-products. In general, the bicartesian structure induced by T 0 will be

referred to as the T o-structure.

We have seen above that the base category T = of B= is bicartesian closed.

Now we are going to investigate some of the structure that is induced on the

indexed preorder B= by the various properties that we assumed of the syntactic

calculus of the base logic in Chapter 3. First recall the definition of a hyperdoc-

trine (Law69,See83], the categorical equivalent of (first-order) predicate logical

theories.

Chapter 5. Some Meta-Theory for Lax Logic 161

Definition 5.2.8 A hyperdoctrine is an indezed categoryI = (C,I: Cop-+ Cat)

with the following properties

• C has finite products

• for each object a in C the fibre I[a] is bicartesian closed.

• for each morphism t : a -+ b in C the translation map l{t) : I[b] -+ I[a]
preserves the bicartesian closed structure.

• translations along projections have right and left adjoints satisfying the

Beck-Chevalley Condition (for certain pul/back squares). More precisely,

for ir1 : a x b -+ a first projection in C there are functors

'v'(ir1) : I(a x b) -+ I(a) and 3[ir1) : I[a x 6) -+ l(a)

with I[ir1) -t V[ir1) and 3[ir1) -t I(ir1]. The Beck-Chevalley Condition holds

for pullback squares of the form

a'xb~a'

where t: a-+ a' morphism in C, i.e. we have I[t)o'v'[ir1) 5!! V[ir1)ol(t x id]
and I[t] o 3[ir1) 9:! 3(iri) ol(t X id].

Remark: This definition of a hyperdoctine is a little less restrictive than the one

given in {See83] in that Beck-Chevalley needs to hold only for pull-back squares

generated by first projections rather than for all pull-backs as in (See83). These

simplification is adopted for mere convenience and not for technical reasons.

We emphasize that in order to verify the last clause of the definition one may

pick an arbitrary product structure a x b on C that is chosen canonically for each

pair of objects a, b. In particular, it need not be the product of the first clause in

the definition. If it is satisfied for one choice, then it holds for any other, too.

Cha.pter 5. Some Meta.-Theory for La.x Logic 162

Theorem 5.2.9 B= = (T =• B= : T':! -+ PreOrd) is a hyperdoctrine with the

J ollowing additional properties

• T = is bicartesian closed

• there is a natural family of bijections [T -+ n] ~ B=(T) indezed in objects

T = Ti, ... , Tn of T =• where [T -+ n) denotes the set of all morphisms

T-+ n in T=.

• Translations B=(id x i 1] along morphisms id x i 1 : a x <T -+ a x (<T + T)

whe1·e t1 : a -+ <T + T is a first injection have left adjoints

3(id x ii): B=(a x <T)-+ B=[a x (<T + T)]

which satisfy Beck-Chevalley for pull-back squares of the shape

t X id a' x a axa

id X t1 l l id X t1

a x (a+T) t X id a'x(a+T)

with t : a-+ a' arbitrary morphism in T =• i.e.

3(id X ii)B=(t X id) ~ B=(t X id)3(id X t 1).

Remark: The additional properties of B= mentioned are crucial for our purposes

and will be used later. The second of these properties,-viz. the natural bijection

[T -+ n] ~ B=(T] reßects the higher order nature of the base logic. The last

clause could be strengthened to encompass general quantifiers (i.e. left and right

adjoints to arbitrary translations) but we refrain from doing so since we will only

need the particular adjoints 3(id x ii]. B= has other properties not mentioned,

Jike !ist objects and natural numbers object, which we will not need.

In the following proof of the theorem we will use the T-product and To-sum

to verify the last condition. But again, this means the condition will be true for

Chapter 5. Same Meta-Theory for Lax Logic 163

any other canonical choice of products and sums. In fact, we will use the last

condition later with the T o rather than '.T-product.

Proof: We begin with verifying that 8= is a hyperdoctrine. That T = has finite

products has been proven already. The following will assume the T-products

from Lemma 5.2.2 (also cf. the remark following Corollary 5.2.7).

lt is tobe seen that for each T =Ti, ••• , r„ in T = the fibre B:(r) is bicartesian

closed. Recall that the elements in B:(r) are equivalence classes (A l- t/>J with

llAll= T and <P well-formed proposition with free variables in A, i.e. A 1- tP : n.
Two such classes [A 1- <PI and (A 1- "1) are equal ilf 1-6. t/> = "1 is derivable. The

ordering in B=(r) is such that (A 1- <PI!; (A 1- "11ilf<P1-6. "1 is derivable. Finally,

if (A' 1- tl, t = ti, ... , tn is a morphism r' -t T in T =• then the translation

B=[(A' 1- t))(A 1- <P) is the element [A' 1- ?{t/A}].
Here are the definitions qua representatives that turn B=[r) into a bica.rtesian

closed category; assuming <P, "1 are elements in B=(rl and A context with llAll= T,

one puts
true g (A 1- truel

[A 1- ?) A (A 1- "1) g (A 1- <PA t/J)
false g (A 1- /a/se)

(A 1- t/>) V (A 1- "11 g [A 1- t/>V "')
(A 1- <PI :::> (A 1- "11 g (Af-t/>:::>"'I

where

true - Vz0 .z:::iz

4i A tP - Vz0 . (4i ::> ("1 ::> z)) ::> z

false - Vz0 .z

4i V tP - Vz0 . (4i ::> z) :::> (("1 ::> z) ::> z)

The definitions are independent of the choice of representatives qi,"' and context

A, and variable z which must not occur in A. That these operations form a

bicartesian closed preorder is immediate by definition of !; and the rules of the

Chapter 5. Same Meta-Theory for Lax Logic 164

ba.se logic. lt is also easy to see that the structure is preserved by translations.

lt is even preserved on-the-nose, for instance

B:[(A' 1- tl)((A 1- </>IV (A 1- 1/J))

B:[(A' 1- tl)((A 1- </>V 1/J])

(A' 1- (</>V 1/J){t/A}I

(A' 1- </>{t/A} V t/i{t/A}I

(A' 1- </>{t/A}] V (A' 1- t/i{t/A}I

(B:[(A' 1- t))[A 1- </>))V (B:[(A' 1- t))[A 1- 1/J)).

Let ir1·: TXT 1 -+ T beafirstprojection, i.e. TXT 1 = T,T' and ir1 = [A,A'I- Al,
with A, A' contexts such that llAll= T and llA'll= r'. We need to define right

and left adjoints 'v'(ir11, 3(ir11 of translations B=(ir11 : B=(rl -+ B:[T, r'). Given

[A, A' 1- <PI in B=(r, r'I and A' = x1, ... , Xn, these are obtained by

'v'(ir1)[A, ß' 1- <PI

3(ir1J[A, 6.' 1- <PI

(A 1- 'v'x1. · · · 'v'x„. <PI

(A 1- 3x1. · · · 3xn. <PI

where 3x. A = Vz0 . ('v'x. (A ::> z)) ::> z. Again, these definitions are independent

of the choice of representative </> (due to e-equality for 'v'. Recall that 3 in B is
defined via 'v'.), contexts A, A', and variable z. 'v'(ir1) and 3(ir1) are right and left

adjoints to B:(iri), and both satisfy Beck-Cheva.lley in the strong sense: For a

pull-back diagram

11"1 T1 XT2-T1

[A1 1- tl X [A2 1- A2l j 1 [A1 1- tl

r: x T2 1i'l r:
with A2 = x1 , .•• , Xn one obtains

3(ir1]B:[(A1 1- t) x (A2 I- A2]](A~, A2 1- </>]

= 3(ir1]B=[[A1iA2 I- t,A2]][A~,A2 I- </>)

Chapter 5. Some Meta-Theory for Lax Logic

3fir1J(Ai.Ai r \Ö{t,A,/A;,A,}]

3(ir.J[A1,A1 r \Ö{l/A;}}

= (A11- 3x1.···3.rn.(\Ö{i/A;}))

= [A1 1- (3x1. · · · 3xn. \Ö){t/A~}]

B= [(A1 1- tJ13(7r1)[A;, A, 1- r/I)

and similarly for 'v'(ir1). This completes the proof that B= is a hyperdoctrine.

165

Next, the additional properties of 8= will be dealt with. By Corollary 5.2.7,

T = is bicartesian closed. That verifies the first property.

For the second property it is to be shown tha.t there is a natural family of

bijections [r -+ nj e! B=[r) indexed in objects T of T =· This bijection, however,

is trivial since by definition the two sides of e! a.re coextensional, viz. hoth have

as elements the equivalence cla.sses [A 1- tJ of weJl-formed terms of type ll with

free variables in A such that llAll= T. Naturality amounts to proving that the

diagram
[r-+ n]

h t-+ ho[A 1- t) 1
(r'-+ n)

S!! B=(r)

1 B=((A 1- t)]

~ B=(r1

commutes for all (A 1- t) : T -+ T 1 in T =· But this is trivial again since both maps

h 1-+ h o (A 1- tJ and R.((A 1- tlJ are coextensional by definition.

Finally, we need left adjoints for translation along id x i 1 : a x <T -+ a x (<T + T)

where t 1 : u -+ u + T is a first injection. Here a, u, T are objects in T =• i.e. a =
ai, ••• , ak, u = u1, ••• , <T1, and T = Ti, ••• , Tm· Further, as the coproduct <T + T

of <T and T we take the 7 0-sum, i.e. <T + T is the single-element type sequence

(u1 x · · · X u1) + (T1 x · · · X Tm), and

is the first injection, where llAvll=llx1, ... , x1ll= <T. Since the shape of the term

t 1(x1i(... ,x1)-··} will not matter in the following it is abbreviated by i. The

Chapter 5. Some Meta-Theory for Lax Logic 166

morphism id X tli then, is (Aa, A„ 1- Aa, il, where llAall= a and Aa disjoint from

A„.

Given an object (Aa, A„ 1- .PI in B=(°' x al, we define the object

where z is a fresh variable of type q + T that does not occur in Aa, A„. The

definition is independent of the choice of representative .p - because of {-equality

for V - and contexts Aa, A„. That 3(id x ii] is left adjoint to B=(id x t1I now

follows from the properties of 3 and = in B. lt is a functor, i.e. monotone

function, since

3x1. · · · 3x1. i = z /\ .P l-a0 „ 3x1. · • · 3x1. i = z /\ t/J
.P 1- ll.a,ll.a tP

is a derived rule in B, and it is a left adjoint since

3x1. · · · 3x1. i = z /\ .P l-a0 ,z t/J
.P l-a0 ,ll.a t/J{i/z}

are derived rules in B. lt remains to show that 3(id x i 11 satisfies Beck-Chevalley.

To this end suppose (A0 1- tl is a morphism a -+ a' and (Aa•, A„ 1- .PI an object

in B=(a' x a]. We have to show that

holds in B=(°' x (a + T)I. If both sides are computed using the definitions one

obtains

(Aa, z 1- 3x1. · · · 3x1. i = z /\ (,P{ t/ Aa•})1
8t (Aa, z 1- (3x,. · · · 3x1. i = z /\ ,P){t/A,,,.}]

which is certainly true, in fact, the equivalence is an identity. 1

5.2.2 Lax Logic as Indexed Category

From the indexed preorder B= we now construct a new indexed category

Chapter 5. Some Meta-Theory for Lax Logic 167

in which we plan to iuterpret lax logic eventually. Its main aspect is that it will

provide enough structure to interpret the <> operator. Note, the fibres DB[r] are

no langer preordered sets but proper ca.tegories, so that now proofs ca.rry non-

trivial information. The information we a.re interested in, of course, is constraint

information.

Definition 5.2.10 Let C be a category with finite products ond I = (C,I: C°" ->
PreOrd) be an indexed preorder. The indexed category

VI= (C,DI: c•P-+ Cat)

is defined as follows: Objects of the fibre DI[o] for a in C are pairs (S, </>) where S

is an object ofC and 4> object in I(a x SJ. A morphism (S,4')-> (T,t/l) in DI[a)
is a morphism f: a x S -+ T in C such that 4> ~ 1((11'1,/)]1/J. The identity over

(S, 4>) is the morphism ir2 : a x S -+ S and composition of f : (S, 4>) -+ (T, tJ>)

and g : (T, i/J) -+ (U, 8) is

For each t : a -+ b in C the translation functor DI(t) : DI(b] -+ DI(a) is given

by the assignment
(S, 4>)

f

(T, t/J)

(S, I(t x ids)efJ)

1 f • (1 X ids)

(T, l(t x idT)I/>)

Remark: The fibre DB!IJ over the terminal object is precisely the Grothen-

dieck category induced by the indexed category I (see e.g. (BW90]). The above

definition of VB= is a modification of the standard Grothendieck construction

that makes essential use of a the product structure in C. Thus, whenever we talk

about VI for some I we need to identify, at least implicitly, a particular product

structure on the base of I.

To see what is going on let us apply the definition to obtain the indexed

category VB= = (T =•DB= : T':! -+ Cat) using the T-products on T =• and

Chapter 5. Some Meta-Theory for Lax Logic 168

reinterpret it in terms of the data of the original base logic B. Recall that objects

in T = are finite sequences T of types and a morphism T --+ r' is an equivalence

dass of sequences of well-formed terms whose number and types are given by r'

and whose free variables are specified by T. In order to explain functor DB=
we unroll Definitions 5.2.1, 5.2.10, and the definition of products as in Lemma

5.2.2: The objects in the fibre DB=(r] are pairs (T 1, [A, A' 1- tf>)) where A, A' are

contexts such that llA'll== T 1, llAll= r, and t/> a well-formed proposition with free

variables in A, A'. Note, llA, A'll= T, r' = T x r'. A morphism

in DB=(r) is morphism

in T = such that

[A, A1 1- .Pi) ~ B=[(7r1i [A, A1 1- tj))[A, A2 1- t/>2]

B= [[A, A1 1- A, t)J[A, A2 1- t/>2]

(A,A11- </>2{A,t/A,A2})

(A,A11- t/>2{t/A2})

which, by definition, means there is a derivation o{ the 8

This analysis suggests to view an object (T2, (A, A2 1- t/>2)) as a specification

of a !ist of elements of types T2 and a morphism [A, A1 1- t) with codomain

(r2, [A, A2 1- <,62]) as an implementation that satisfies specification <,62• We remark

that the fact that A is a context of variables free in both t and <,62 makes sure

that tf>2 can specify an explicit relationship between input and output.

Remark: Morphisms in DB=(()] (the empty sequence of types () is terminal in

T =) are first-order deliverables (BM92,McK92). Thus, the indexed category VB=

Cbapter .5. Same Meta-Tbeory for Lax Logic 169

is an indexed category of first-order deliverables (over 8) with free variables. In

(Men91bj the objects in VB=f.:l] were called pointwise designs and the indexed

structure DB= the first-order logic of designs. The possible application of VB

as a logic of deliverables , however, is not of concern to us here, so we will not

expand on it further. (See Chapter 6 for comparison with McKinna's work.)

Lemma 5.2.11 Let C, indexed preorder I = (C,I: Cop-+ PreOrd), and 1JI as

in Definition .5.f.10. Then VI is a conservative extension of I, i.e. there exists

a full and f aithful embedding

t: I..:.. DI

of indexed categories.

Proof: Fix an object a in C. Let the component '" : I[aJ -+ DI(a] of the natural

transformation t be defined by the assignment
tP

~1 ~

The short proof that '" is a full functor and natural in a is omitted. lt is trivially

faithful, for the fibres I[a] are preordered sets. 1

Remark: The construction of t depends on the product x used in the con-

struction of VI from I. On the other hand, the terminal object 1 used in its

definition may be any choice of a terminal object.

The main point about the construction of VI from I is that in VI we get

(strong) existential quantification for free, independent of whether I has it or

not.

Lemma 5.2.12 Let C, indexed preorder I = (C,I: C0'-+ PreOrd), and VI=

(C, DI : c•p -+ Cat) be as in Definition 5.f.10. Let X be the finite products on

C. Then, VI has left adjoints f or translations along projections satisfying the

Chapter 5. Some Meta-Theory for Lax Logic 170

strong Beck-Chevalley Condition (for certain pullback squares). More precisely,

for ir1 : a x b -+ a a projection in C there is a functor E(ir1) : DI(a x b) -+ DI(a)

with E(ir1) -l DI(ir1). The strong Beck-Chevalley Condition holds for pullback

squares of the form

a' x b-ri-a'

where f: a-+ a' in C, i.e. we have DI[/)•E(ir1) = E(ir1)•DI[/ X id).

Proof: Let ir1 : a x b -+ a be a projection in C. Then the functor E(ir1) :

DI[a x b) -+ DI[a] is given by the assignment

(s, 4>)

1[
E(ir1)(S, t/>) ~ (b x S, I(as]t/>) l E(ir1)/ ~ (ir2 • iri. /) • as

E(ir1)(T,.,P) ~ (b x T,l(aT)tP)

......

(T,.,P)
where S,T in C, 4> in I((a x b) x SJ, .,Pin I((a x b) x T), f: (a x b) x S-+ T such

that

and where ax : ax(bxX) -+ (axb)xX is the canonical rebracketing isomorphism

ax = ((ir1,ir1 •ir2),ir2•ir2). lt is easy to check that E(ir1)(S,t/>) and E(ir1)(T,t/i)

both are objects in Dl[a), and that E(ir1)/ is a morphism from a x (b x S) to

b x Tin C. So, for E(iri)/ tobe a morphism from E(ir1)(S,t/>) to E(ir1)(T,.,P) it

remains to be seen that I(as)t/> b I((iri, E(ir1)/))I(aT)tP. This can be verified as

follows:

I(as)4> b l(as)I((ir1,/)).,P = I((iri,/}•as)t/J

I((ir1 •as,/•as)).,P = I(((iri,ir2•ir1 •as),/•as)).,P

I[aT • (ir1, (ir2 • ir1 ° as,/ 0 as)))t/i
1((ir1, (ir2 • ir1 • as, f 0 as)))I[aT)tP

I[(iri. (ir2 • ir1 ,/) 0 as))I(aT)tP = I((iri, E(iri)/))I(aT)tP·

Chapter 5. Some Meta-Theory for Lax Logic 171

Thus, the mapping E(ll'i) is well-defined, and it is not difficult to show that it is

in fact a. functor.

In order to see that E(11'1) is left adjoint to Dl(ir1) we have to prove tha.t there

is a hom-bijection

natural in both (S, t/>) and (T, t/i), where the left homset is in Dl(a x b] a.nd the

right in DI(a). The homset equation is equivalent to

((S,t/>)-+ (T,1(11'1 X id)t/i)]ad !:!! ((b X S,l(a.]t/>)-+ (T,t/i)]a

by definition of DI and E(lr1). We da.im that such a natural hom-bijection is

given by the mutually inverse mappings

f ,_. f • as and g ,_. g • a$1
•

Suppose f E ((S,t/>) -+ (T,1(11'1 x id)t/i))axb, i.e. J: (a x b) x S-+ T morphism

in C s1;1ch that

t/> b 1((11'1,f))l(ll'1 X id)t/i = 1((11'1 X id) 0(11'1>f)]tP

1((11'1011'1, J))t/i.

We wish to show that the image of J, f • as is a morphism in the homset

((b x S, I(a,)t/>) -+ (T, t/>}) 0 • Clearly, f •as is a morphism in C from a x (b x S)

to T. We must show that l[as)t/> !; l((ir1i f •as)]t/i, which can be seen as follows:

I(as)t/> !; l(as)l[{1r1•ir1>f))t/i = l((ir1•11"1,f)•as)t/i

l((ir1,f •as)]t/i.

Thus the first direction f ,_. f •as of the bijection is well-defined. Now we show

that the other direction g ,_. g •a$1 is well-defined. Let g be in the homset

((b x S, I(a,)t/>) -+ (T, t/i))0 , i.e. g : a x (b x S) -+ T morphism in C such that

l(as)t/> !:;; 1((11'1>U))t/i. We must verify that the morphism g•a$1 from (a x b) x S

Chapter 5. Some Meta-Theory for Lax Logic

<P l[id]<P = I[as O(:J:$1]<P = I[a:S1]I[as]<P

[;; I[a:S1]I[(iri,g)J!/J = I[(ir1tg) oa$1]!/.> = l[(ir1 oa$1 ,goa$1)]!/J

I[(ir1 oiri,goa:S1))!/.> = l[(iri,goa51)]I[ir1 X id]i/J.

172

lt is easy to check that the hom-bijection is natural in both (S, <P) and (T, !/J).

Naturality in (S, <P) comes down to the equations

f o as o (iri, E[ir1)t) f o (iri, t) o as

g o a$1 o (ir1, t) = g o (ir1i E[ir1)t) o a$1

where t: (a x b) x S'-+ S arbitrary. Naturality in (T,!/J) follows from this and

bijecth:ity. Tims we have shown that E[ir1] is left adjoint to DI[irt).

Now we verify that E[irt) satisfies Beck-Chevalley. Let f : a -+ a~ be a

morphism in C, and (S,<P) object in DI[a x b]. We have aso(/ X id) = ((! x
id) x id) o as, whence

The proof that

DI[/)(b x S, I[as]<P)

(b x S,I[/ x id]I[as)<P)

(b x S,l[aso(/ x id))tP)

(b X S,l[((/ X id) X id)oas)tP)

(b X s, I[as)I[(f X id) X id]<P)

E[ir1](S,I((f X id) X id]<P)

E(ir1]DI[/ X id](S,<P)

for all morphisms t E ((S,<P)-+ (T,!/J))axh is omitted. 1

Since we wish to interpret the (syntactic) first-order calculus of C. in the

indexed category VB= we need VB= tobe a hyperdoctrine (at least). Of course,

Chapter 5. Some Meta-Theory for Lax Logic 173

since the object language T = and the predicate logic 8= over it are folded together

in 'DB„, all strncture in 'DB= will have to come from both T = and B=· lt is known

that, given an indexed category (C,I: C0P-+ Cat), the induced Grothendieck

category has limits provided C and the fibres C(a) for all a in C have limits, and

provided limits in the fibres are preserved by translation functors (TBG89). But

what about the more general construction of 'DB? In general, we find

Theorem 5.2.13 Let I = (C,I: C0 P -+ PreOrd) be a hyperdoctrine where all

fi6res are preodered sets, and let C 6e 6icartesian closed with products X and sums

+. Further, assume that translations l(id X t 1) along the canonical morphisms

id x t1 : a x 6-+ a x (6 + c) have left adjoints 3(id x t1) : l(a x b) -+ l(a x (b + c))

such that Beck-Chevalley is satisfied for pull-6ack squares

axb id X t1 a x (b+c)

f X idl 1 f X id

a1 X b id X t1
a1 x (6+c)

where f : a -+ a1 ar6itrary, i.e. we have

3(id X t1)l(/ X id) !:!! 1(/ X id)3(id X t1)

Then, the indexed category VI = (C, DI : C0P -+ Cat) as constructed in Defini-

tion 5.!!.10 is a hyperdoctrine.

Proof: A word on notation: as in Definition 5.2.10 the objects in the base

category C of I and VI will be denoted by lower case letters a, b, c, etc. the

objects in the fibres l(a] by lower case Greek letters 4>, t/I, etc. and finally the

objects in the fibres DI(a) will be referred to as pairs (S, 4>), (T, .,P) where the first

components, denoted by upper case letters S, T, etc. are objects in C and t/>, ..p,
etc. are objects in I(a x S). To refer to the bicartesian structure of C we use

the symbols 1, x,=},0,+ and for the bicartesian structure of the fibres 1(6) the

symbols true, /\, :> ,f alse, V.

Chapter 5. Some Meta-Theory for Lax Logic 174

First, given a in C it is shown that DI[a) is bicartesian closed. We need to

identify in DI[a) a terminal object true, products (S, <P) /\ (T, t/J), exponentials

(S, <P) :::> (T, t/J), initial object false, and sums (S, <P) V (T, t/J). These are obtained

from the bicartesian structure of the base category C a.nd of the fibres I[b) in the

way described below:

TERMINAL OBJECT. The terminal object in DI[a) is the pair (1, true) where 1

is 'the terminal object in C and true is tenninal in I{a x 1). For (S, 4') in Dl[a)
the unique morphism !(s,.p) into (1, true) is the unique morphism !0 xs in C.

PRODUCTS. The product of objects (S, <P) and (T, t/J) in DI[a) is the pair

(S,?)A(T,t/i) ~ (SxT,l[id0 X7r1)<PAl[id0 xir2)t/i)

where x is product in C and A product in I[a x (S x T)). The projections are

(S, 4') A (T, t/i)--+ (S, 4')

(S,q,) A (T,t/i)--+ (T,t/i).

Given morphisms t1 : (S,4')--+ (Ti,t/Ji) and t2 : (S,<P)--+ (T2,t/J2) in DI(a) their

pairing is given by the morphism

where (,) is the pairing in C. The simple proof that these data satisfy the sta.ndard

product equations is omitted.

EXPONENTIALS. The exponent of objects (S, <P) and (T, t/J) in DI[a) is the pair

(S, <fi) :::i (T, t/J) ~ (S::;. T, lf(7r1){1(proj)<fi :::> I((id0 x eval) • swap)iJi))

where ::;. is exponential in C, eval: S x (S::;. T) --+ T its associated evaluation,

:::> exponential in l[(a x (S ::} T)) x S), and lf[ir1) is right adjoint to l(iri). proj

and swap are auxiliary morphisms abbreviating

proj f!, (ir1 •iri.ir2):(ax(S::;.T))xS--+axS

swap ~ (ir1 • iri. (ir2, ir2 • ir1)) : (a X (S => T)) X S--+ a x (S x (S::;. T)).

Chapter 5. Some Meta-Theory for Lax Logic 175

The evaluation map cval: (S,</>) /\ ((S,</>) :::> (T,1/1))-+ (T,1/1) is the morphism

eval• ir2: ax(Sx(S =? T))-+ T. Finally,givenamorphismt: (S,</>)A(T,t/J)-+

(U,9) in DI[a) we need to define its 'currying' curry(t): (S, </>)-+ (T, t/J) :::> (U, 9).

This morphism curry(t) is given by

curry(t•a-1): a x S-+ (T =? U)

where cun·y is currying in C, and a:-1 : (a x S) x T-+ a x (S x T) the obvious

rebracketing. The simple proof that these data satisfy the standard equations

for function spaces is omitted.

INITIAL OBJECT. The initial object in Dl[a) is the pair (O,/alse) where 0 is

initial in C and false the initial object in I[a x 0). For (S, </>)in DI[a) the unique

morphism D(s.~) from (O,false) into (S,</>) is the morphism Ds•ir2 in C, where

Os : 0 -+ S is the unique initial morphism into S.

SUMS. The sum of objects (S, </>) and (T, t/J) in DI[a) is the pair

(S, </>)V (T, !/>) ~ (S + T, 3[id0 x t1)</> V l[id0 x flop)3[id0 x t1)tfa)

where t1 are the injections S -+ S + T and T -+ T + S a.s appropriate, and

flop: S+T-+ T+S is the canonical isomorphism [t2,i1), V is sum in I[ax (S+T)),

and 3[ida x t1) left adjoint to I[id0 x t 1). The injections are

t1•ir2 (S,</>)-+(S,</>)V(T,t/J)

t2•ir2 (T,1/1)-+ (S,</>) V (T,t/J)

which, as morphisms in DI[a), will be denoted by t1i t 2• The sum of two mor- ·

phisms s: (S,</>)-+ (U,9) and t: (T,1/1)-+ (U,9) is the morphism

[s, t) •u: (S, </>)V (T, t/J)-+ (U,9)

where u: (a x (S + T)) -+ ((a x S) + (a x T)) is the canonical distribution map

that exists in any bicartesian closed category; it can be defined a.s

Cha.pter 5. Some Meta.-Theory for Lax Logic 176

with flip abbreviating the transposition map (1r2, ir1). The sum of a and t in

DI[a}, will be written (s, t].

Before we come to verify that these definitions accomplish what they should

we note that u-1 = (id x ti,id x i 2) is the inverse of u. lt will be used several

times below. To show that it is right inverse we compute

C7 o (id X ti) eval 0 { lr1t 1 CUIT1J(t1 0 flip), CUIT1J(t20flip))01r2) 0 (id X '1)

eual 0 {1r1' [CUIT1J(,, 0 flip), CUIT1J(t2 0 flip)} 0 ,, 0 7r2)

evalo {iri, CUIT1J(t1oflip)01f2)

eval o { ir2, curry(t1 o flip) o 1r1) o flip

t1 0 flip 0 flip

and similarly, ao(id X i 2) = t 2, whence uou-1 = uo[id X ii.id X i 2] = [uo(id X

ii),uo(id x t2)) = [ti.t2] = id. For the other direction !et the morphism

[cu1T1J(t1 oflip), curry(t2oflip}] be abbreviated by ir, so that u = evalo(id X ir).
We observe that

curry(u-1 oq o flip) o t1

CUIT1J(U-I oevalo(id X ir)oflip)ot1

curry(u-1 oevalo(id X ir)oflipo(t1 X id))

CUIT1J{U-l o eva/o {ir2, iroi1 01f1))

curry(u-1 o evalo {ir2, curry(t1 o flip) o ir1))

curry(u-1 oi1 oflip)

cun·y((id x ii) o flip)

curry(flip o (i1 x id))

curry(flip) o t 1•

(5.2)

(5.3)

Lines {5.2) and (5.3) cxploit the fact that in ca.rtesian closed categories currying

is 'natural', i.e. for all morphisms f : X x Y -+ Z and g : X' -+ X we have

Chapter 5. Same Meta-T/ieory for Lax Logic 177

cun11(/) o g = rurry(/ o (g x idy)). Similarly we find curry(u-1 o CT o ftip) o t3 ='
cun·y(Jlip) o 'l· 11~11n',

u- 1 oa

O'-I oqojlipojlip

uncurry(curry(u-1 o a o jlip)) o jlip

uncur111([curry(u-1 oa o ftip) • ti. curry(u-1 ouo jlip) • t2)) • ftip

u11curry([cul'ry(jlip) • t 1, curry(jlip) o t2]} o ftip

u11curry(curry(fiip)) o fiip

id

(5.4)

(5.5)

wherefor any f: X-+ (ZY), uncurry(J): XxY-+ Z is defined by uncurry(f) ~

eval•(7r2,/•11"1). lt holds that for allg: X x Y-+ Z, uncurry(curry(g)) = g

by the laws for function spaces. This justifies lines (5.4) and (5.5) above. All

the other lines are straightforward in applying the fundamental properties of

products and sums. Thus, we find that u and u-1 are mutual inverse.

Now, Jet us check that the categorical sum in DI(a) is well-defined. For t1 •ri:
a X S -+ (S + T) to be a well-defined morphism from (S, 4>) into (S, 4>) V (T, .,P)

in fibre DI[a] it must satisfy

which, since 1((11'11 t 1 o71'2)] = I[id x 11] and 3[id x t1} left adjoint to I(id x ii} is

equivalent to

3[id X ii)4> ~ 3(id X t1)4> V l(id X flop)3(id X t1).,P.

But this holds because V is sum in I(a x (S +T)). Analogously, it can be seen tha.t

i 2 • ir 2 : a x T -+ (S + T) is a well-defined morphism from (T, .,P) into (S, 4>) V (T, .,P)

in DI[a), i.e.

Chapter 5. Some Meta-Theory for Lax Logic 178

For this is equivalent to

1/; !;;; l(id X i2)3(id X t1)cP V l(id X t2)l(id X flopj3(id X ii)t/>

since I({iri. i2 oir2)] = I[id x i2] and since transla.tions, in this case I(id x t2],

preserve bicartesia.n structure. Now, I[idx i 2)I[idxftop] = I[(idxftop) • (idxt2)] =

I(id x ii), so by the properties of V is suffices to show

which is immediate as 3[id x. ii) left a.djoint to I[id x i 1]. Finally, assume tha.t

s: (S,cP)-+ (U,O) a.nd t: (T,1/;)-+ (U,O) a.re well-defined morphisms in DI(a],

i.e. s: a x S--+ U, t : a x T--+ T, a.nd

We must check tha.t the sum [s, t) o u : a x (S + T) --+ U of s a.nd t is a. well-defined

morphism from (S, cP) V (T, 1/;) to (U, 0). This comes down to the condition

3[id x ti)cP V I(id x ftop)3(id x t1)t/> !;;; I({ir1, (s, tJ •u))O

which by the properties of V is equiva.lent to the two inequa.tions

3[id x t1]cP !;;; I[(iri, (s, tJ •u)JO

I(id x flop)3[id x t 1]1/; !;;; I({iri, (s, t) • u)JO.

Now, the first of these is equiva.lent to

(5.6)

(5.7)

since 3(id x ii] left adjoint to I[id x i 1] a.nd functoria.lity of I(id x ia]. But

this is precisely the assumption cP !;;; I({iri, s)JO, for {iri. (s, tJ •u) • (id x ii) =
{ir11 (s,t)•u•(id x t1)) = {iri,(s,t)•t1) = (iri,s). Hence we ha.ve shown (5.6).

Applying I[id x flop) to both sides turns (5.7) into the equiva.lent

3[id x ii)t/> !;;; l({ir1, (s, tj •u • (id X flop))JO (5.8)

Chapter 5. Some Meta-Theory for Lax Logic 179

noting that I[id x flop)I[id x flop) = I[(id x flop) o (id x flop)) = I(id) is the

identity map, and I[id x flop)l[(ir1i[s,t)ou)) = I((ir1i[s,t)ou)o(id x .flop)) =
I[(ir1i [s, t) ouo (id x flop))). The right side of (5.8) can be simplified, using the

identity

[s,t]ouo(id xflop)

to become

[s, t] o ((id x flop) ou-1)-1

[s, t) o((id X flop) o [id X t1i id X t 2U-1

(s, t) o(((id X jlop) o (id X t1), (id X jlop) o (id X t2)J}-l

= [s, t) •([id X t2, id X t1))-l

[s,t)o((id X t1iid X t2)oflop)-I

= [s, t) o(u-1 •flop)-1

[s,t)oflopou

= [t,sJ•u

3[id X ti)t/> !,;; I[{ir1i [t,s)ou))O.

But this follows from the assumption t/> !,;; I[{ir1, t))O since 3[id X t 1) left adjoint

to I[id X ti) and I[id x ii)I[(ir1i[t,s)•u)) = I((iri,[t,s)•u)o(id X ti}) = l[{ir1it)).

Thus we have shown (5.7) whence the categorical sum in Dl[a) is well-defined.

Now we wish to vcrify that these data indeed satisfy the universal properties

of a categorical sum in DI(a). The three equations that we must prove are

[s, t) •t1

[s, t) •t2 =

[t 0 t11t0 t2)

s (5.9)

(5.10)

(5.11)

which constitute the characterizing /3- and 17-laws for categorical sums. Note,

these equations are tobe read as equations in DI(a], i.e. t 11 t 2, [-, ·) are the injec-

tions and sum delined above, and composition o is composition of morphisms in

DI[a).

Chapter 5. Some Meta-Theory for Lax Logic 180

Ad (5.9), (5.10). ßy definition, (5.9) and (5.10) amount to proving that the

diagram

axS 8 U axT

1„ .•• ~.l~~·<,)
a x (S +T)

commutes for all s, t. To this end we finit recall that u o (id x '1) = '1 and

u•(id x t1) = t1. Hence, we get [s,t)ouo(ir1,i1•ir2) = [s,t)ouo(id X L1) =
[s, t) • i 1 = s which precisely says that the left side of the diagra.m commutea.

The other side of the diagram is dealt with similarly.

Ad (5.11). By definition, (5.11) amounts to proving that the diagra.m

(a X S) + (a x T)

• ~„,,.„),l•(•„•·<>11
a x (S + T) --r- U

commutes in C for all t. Let the morphism (to(iri.i1 oir2),to(iri.i2oir2)) in the

diagram be abbreviated by ir. In the following we will show the currified version

of the diagram, i.e. the equation

curry(ir •u•ftip) = curry(toftip).

From this, then, we irnmediately get the original diagram since

1r 0 (1 7r • (10 ftip 0 ftip

uncurry(curry(7r o u o flip)) o flip

uncurry(curry(t o flip)) o flip

t 0 flip 0 flip

::::: t.

(5.12)

Chapter 5. Some Meta· Theory for Lax Logic

Now, Jet us prove (5.12):

curry(ir o u • flip)

(CUITY(1f 0 (10 flip) 0 Lt, curry(1f 0 IT 0 flip) 0 t2}

(curTy(ir•u•flip•(Lt x id)),curry(ir•1T•flip•(i2 x id)))

(curry(ir•u•(id x Lt)•flip),curry(71'•1T•(id x i2)•/lip))

(curry(ir o Lt o flip), curry(ir • i2 • flip))

(curry(t o (iri. Lt• ir2) • flip), curry(t • (iri, L3 o ir2) o flip))

(CUITY(t 0 flip 0 (L1 X id)), curry(t 0 /lip 0 (L2 X id))]

[CU1'1-y(t 0 flip) 0 Li, curry(t 0 flip) 0 Li]

CUl'l'Y(t o jlip).

181

Thus, we have shown that the fibres DI(a) are bicartesia.n closed. The proof

that this structure is preserved by translation functors is omitted. We remark

that the assumption in the statement of the theorem that 3(id x i 1) satisfy Beck-

Chevalley is used to show that sums are preserved by tra.nslations. Next, it is

verified that there exist left and right adjoints of tra.nslations along first projec-

tions:

EXISTENTIALS. Let 1ft : a x b-+ a be a first projection in C. Then, by Lemma

5.2.12 the translation functor 1(71't) : I(a] -+ I(a x b) has a left adjoint E[71't)
satisfying the strong Beck-Chevalley Condition for pull-hack squares induced hy

first projections.

UNIVERSALS. Let 1ft : a x b-+ a be a first projeclion in C. Then, the assignment

(S, 4>)

t 1
(T,I/>)

......

(b ~ S, 'v'[1ft}l(app}4')

1 curry(to app)

(b ~ T, 'v'[irt]I[app]I/>)

Chapter 5. Some Meta-Theory for Lax Logic 182

where ir1 : (a x (b =?X)) x b-+ a x (b =?X), X= S or X= T as appropriate,

are first projections and app: (a x (b =}X)) x b-+ (a x b) x X stands for

defines a right adjoint to translation functor DI(ir1) : DI(a) -+ DI(a X b). lt will

be denoted by Il(iri).

First, we check that the assignment is well-defined. lt is easy to see that if

(S, </>), (T, t/J) objects in DI(a x b), then Il[ir1)(S, </>) = (b =? S, 'v'(ir1)I(app)</>) and

II(ir1)(T, t/J) = (b =} T, 'v'[ir1)1[app)t/J) as defined are indeed objects in DI(a). Also,

it is obvious that if t : (a x b) x S -+ T, then II(ir1)(t) = curry(t • app) is a

morphism in C from a x (b =? S) to b =} T. For II(iri)(t) to be a well-defined

morphism

curry(t•app): (b =? S,'v'(ir1)I(app)</>)-+ (b =} T,'v'[ir1)I(app]t/J)

it remains to be seen that it satisfies

'v'[ir1)I(app)rf> !;;; I({ir1, curry(t • app)))'v'(ir1)I[app)t/J. (5.13)

The right side of the inequation can be simplified using the fact that 'v'(ir1] satisfies

the Beck-Chevalley Condition, viz. we observe that

(a X (b =? S)) X b-21- a X (b =? S)

(iri, ir) X id l l {ir1, ir)

(a X (b =? T)) X b--;rj a X (b =? T)

is a pull-back diagram induced by a first projection, where here and in the

following ir is an abbreviation for curry(t • app). Beck-Chevalley implies that

I({iri, ir))V(ir1) E! 'v'(iri)I[{iri, ir) x id), whence (5.13) is equivalent to inequation

Now, since 'v'(iri) is monotone this reduces to

l(app)r/> !;;; I({iri, ir) x id)I[app)t/J. (5.14)

Chapter 5. Some Meta-Theory for Lax Logic

Again, the right side can be simplified, viz. we compute

so that

appo ((iri. ir) X id)

= ((ir1°ir„ir2), eval•(7r2 1 11"2•1!'1))•((7ri,lr) x id)

= ((ir1•11"1,ir2)•((ir1 1 7r) x id),eval•(11'2,1l'2•1l'1)•((7r1ilr) x id))

((ir1 • iri. ir2}, eval• (11'2, 11' • ir1)}

= (7r1 • app, eval• (7r2 1 curry(t • app) •11'1))

= (7r1 • app, t o app)

= (7r1, t) • app

This together with monotonicity of I[app) reduces inequation (5.14) to

183

which immediately follows from the assumption that t is a morphism from (S, ~)

to (T, t/I) in DI[a x bJ. This completes the proof of {5.13).

Next we check that the map II[ir1) : DI[a x bJ DI[a) is a functor. Let

id(s.•) = 11'2 : {S, t/>) --> (S, 4>) be an identity in DI[a x bJ (cf. Definition 5.2.10),

then

curry(ir2 • app) = curry(eval• (ir2, ir2 • ir1))

curry(uncurry(ir2)) = ir2

= id(s.•1-

Further, let t: (S,</>)-+ (T,t/J) and s: {T,t/J)-> (U,O) be morphisms in DI(a x bJ.

We wish to show that II(ir1)(s •t) = II(ir1)(s) •Il(ir1)(t) holds in Dl(a). Unraveling

the definitions, this comes down to proving

curry(s • (ir1i t) o app) = curry(s • app) • (7ri, curry(t • app))

Chapter 5. Some Meta-Tlieo1y for Lax Logic

in C, which is done as follows, where again ir abbreviates curry(t • app):

curry(s o app) • (iri, ir)

curry(s•app•((ir1,'lf) x id))

184

= curry(s•{{'lf1•ir1,'lf2)•({iri,ir) x id),eval•{ir2,ir2•ir1)•{{iri.11') x id)))

curry(s • { {1f1 • 'lf1, ir2), eval• (ir2, ir • ir1)))

curry(s • { 'lfJ • app, t o app))

curry(s • {1f1 , t) • app).

Now we verify that the f\Ulctor U(iri) : DI(a x b) -+ DI(aj is right adjoint to

DI(ir1). The goal is to establish a hom-bijection

(5.15)

where the Jeft homset is taken in DI(a), the right in DI(a x b), and to prove

that it is natural in both (S, rp) and (T, tjJ). After eliminating the definitions the

hom-equation turns into

((S,rp)-+ (b => T,'v'(ir1)I(app)t/J))0 ~ ((S,I(ir1 x id]rp)-+ (T,tjJ))4X6

We claim that such a bijection is given by the maps

s ,..... i g eval•(id x s)•swap

,..... t1 g curry(t • swap-1 • fiip)

where swap: (a x b) x S-+ b x (a x S) and its inverse swap-1 are the canonical

morphisms that permute and rebracket their arguments in the apparent way. Let

us check first that the maps s 1-+ i and t ,..... tl are well-defined. Suppose, s is a

morphism in the homset ((S, r/J) -+ (b => T, 'v'(ir1)I(app)tjJ))0 , i.e. s: a x S-+ (b =>
T) and

(5.16)

Clearly, s' is a morphism from (a x b) x S to T, for which we must show

Chapter 5. Same Meta-Theory for Lax Logic

This is readily computed:

l(7r1 x idJ<fi

b l[7r1 x id)I[(11'i. s))V(11'1)I(app)1/>

1[(11'i. s) • (11'1 x id))V(7r1)l(app)1/>

185

(5.17)

= 1(71'1 •((1l'i.s) X id)oftip•swap)V(ir1)l(app)1/> (5.18)

l(((ir1,s) x id)•ftip•swap)l(ir1)V(ir1)1(app)1/>

b l[((ir11s) x id)•ftip•swap]l(app]l/> (5.19)

l(app•((7r11S) X id)ofliposwap]l/>

(5.20)

Inequation (5.17) is a consequence of the assumption (5.16) and monotonicity of

1(11'1 x id). Equations (5.18) and (5.20) cut short a number ofsimple computatioris

involving products, and inequation (5.19) follows since V(ir1) is right adjoint to

1(11'1). Thus, we have shown that s 1-+ i is well-defined. Now to map t 1-+ t1:

Suppose given a morphism t in the homset ((S,1(11'1 x id)</l)--+ (T,1/>})
0
,.., i.e. t:

(a x b) x S -+ Tand

(5.21)

t• is a morphism from a x S --+ (b => T), which is a morphism in Dl(a) from

(S, ~) to (b => T, V[11'1)1(app)t/i) if it holds that

(5.22)

By Beck-Chevallcy for V(ir1) we have 1((11'11 tl)JV(ir1) ~ V(ir1)1((ir11 tl) X id) since

(a x S) x b 11'1 a x S

(11'i. tl) X id 1 1 (11'1, tl)

(a x (b => T)) x b 1i'l a x (b => T)

is a pull-back diagram induced by first projections. Hence, (5.22) is equivalent

to

Chapte1· 5. Some Meta-Theo1y for Lax Logic 186

which in turn is equivalent to

(5.23)

since \l'(ir1) is right adjoint to I(ir1]. Analyzing the right side of {5.23) one finds

that app•((iri,tD) x id) = (iri.t)•fliposwap, so that (5.23) becomes

I[iri]ip !;;;; I[fliposwap)l[(ir11 t))t/i

which immediately follows from the assumption (5.21) if the monotone map

I[Jlip • swap) is applied to both sides, and noting that (ir1 x id) o flipo swap = ir1.
Thus, we have shown that both maps s, s• and t, tD are well-defined. The

claim is that they are mutually inverse and natural in objects (S, <P) and (T, !/J).
The first part is expressed by the equations

and the second part by

(s • h)'

(t o (DI(ir1)))1
s'oDI(ir1)h (hot)I = (Il[ir1)h)otl

tloh ((Il(ir1)g)os)' gos'.

Note, of the latter four equations only one of the two rows needs to be proven

as the other follows because (tl)' = t and (s')• = s for all t, s. Of course, all

equations are tobe read as equations in DI[a] or DI[a x b], so that e.g. (so ht =
i o DI(ir1)h really means

eval•(id x (s•(ir„h)))•swap = evalo(id x s)•swap•(ir1 ,ho(ir1 X id)).

All equations are readily verified and proofs are omitted. This completes the

proof that the functor Il(ir1) : DI(a X b) -+ DI[a) is right adjoint to DI[ir1).

Finally, it is shown that Il(ir1) satisfies Beck-Chevalley for pull-hack squares

of the form

a' x b -;ri- a'

Chapter 5. Some Meta-Theory for Lax Logic 187

where t: a-+ a' morphism in C, i.e. that we have DI[t)oll[ir1) ~ Il[ir1)0Dl[t x

id). This is an equivalence between functors, so we must check an object and

a morphism part. As to objects we find (DI(t)oll[ir1))(S,I/>) = (b => S,I[t x

id)'v'(ir1)1[app)I/>) and (Il[ir1) o DI[t xid))(S, I/>) = (b '* S, 'v'(ir1)I[app)l[(t x id) xid)I/>)
which indeed are equivalent, for

I[t x id)'v'[ir1)I[app)

O!! 'v'[ir1)I((t X id) X id)l(app)

'v'(ir1)1(appo({t X id) X id))

'v'(ir1)l(({t X id) X id) o app)

'v'(ir1)l(app)l[(t X id) X id)

where the first line is a consequence of Beck-Chevalley for I. As to morphisms

we compute

(DI[t) o Il[ir1))/

= DI[t)curry(/ o app)

curry(f o app) o (t x id)

curry(f o appo ((t X id) X id))

= curry(f o ((t x id) x id) o app)

ß(ir1){/ o ({ t X id) X id))

(Il(ir1)Dl(t x id))/.

Theorem 5.2.14 VB== (T =,DB=: T':-+ Cat) is a hyperdoctrine.

Proof: by Theorems 5.2.9 and 5.2.13.

1

1

Remark: Theorem 5.2.13 requires that the products x of the cartesian closed

structure of T = and the products that determine the construction of VB= are

Chapter 5. Some Meta-Theory for Lax Logic 188

the same. From now on we will assume, unless stated otherwise, that these

products are the T 0-products. Thus, for u = u1 , ••• , Um object in T =• an object

in DB=(u) is a pair (T, (w 1- 4>)) with T = Ti, „., Tn and w variable of type

(u1 X „. X Um) X (r1 X „. X Tn)·

The last theorem says that the structure of VB= is rich enough to interpret the

ordinary (first-order) predicate logical part of J:.. Also we know how to interpret

the atomic formulae, i.e. formulae of form it/> where 4> is a proposition of the base

logic: we take the object in B= corresponding to 4> and translate it into VB= via

the (full and faithful) embedding i : B= __:,VB= defined in Lemma 5.2.11. What

is missing still is the interpretation of the modal operator <>. For the particular

notion of constraint (!1", (), @) the idea is to get the identification

<>M e! Ec0 '.i(nc) ::> M

where n is the function that conjoins the propositions in the !ist c into a single

proposition nc. Let us translate this into more general terms so that it may be

applied to other notions of constraints as weil.

Definition 5.2.15 Let I = (C, 1: C0 P -+ PreOrd) be an indexed preorder with

finite products (/\, true) in the fib1-es. A notion of constraint on I is an object c

in C together with

• a map that assigns to each morphism c : a -+ c and element 4> in I(a] an

element t/>c in I(a)

• a mo1·phism ea : a -+ c for each a in C

• a map that assigns to each pair of morphisms f, g : a -+ c a morphism

f·g:a-+C

subject to the f ollowing conditions:

1. ea o t = eb and (J · g) o t = (! o t)- (g o t)

Chapter 5. Some Meta-Theory for Lax Logic 189

e. f,g: a-+ c, then q,•· = q, and q,!-11 = (if>')'

3. e. · J = f == J · e. and (f · g) · h = f -(g · h)

,/. lf e /\"' !;;; "'' then e /\ q,J !;;; fjJl, and true !;;; truel

5. I(t](fjJl) == (I(t)if,)101

where f,g,h: a-+ c, t: b-+ a, and !/i,t/J,e objects in I[a). The object c is

the constraint object. A morphism J : a-+ c is called a constraint over a. The

morphism e. : a -+ c is called vacuous constraint over a, the indez a is sometimes

omitted. The combination J · g of two constraints is the multiplication of f and

g.

Definition 5.2.16 Let I = (C, 1 : C0
" -+ PreOrd) be an indezed preorder with

finite products in the fibres and VI= (C, DI: COJJ-+ Cat) as in Theorem 5.B.19.

Given a notion of constraint on I one defines for each object (S, l/i} in DI[a) an

object O(a](S, if>) in Dl(a] as follows

O(a](S,q,) ~ (cxS,(I(idxr2)1/i)"' 0
"')

where 11'2 is the projection c x S -+ S or a x (c x S) -+ c X S as appropriate.

Before we analyze the properties of the map (S, l/i) ,_. O(a)(S, l/i) in general, let

us concretize it to the special situation of (n", [), @) as the notion of constraint

and the indexed category VB=.

Lemma 5.2.17 The following data make up a notion of constraint on B= =
(7 =• B= : 7':!-+ PreOrd) where the finite products (/\, true) in the fibres Bc[T]
are the ones defined in the proof of Theorem 5.B.9:

• Constraint object in 7 = is n·
• Given [A f- 11 : T -+ n· in 7 = and IA f- l/i) in B=[r], then put

(A f- if>](At-n ~ (A f- q,lJ

where q,J is weakf q,.

Cha.pter 5. Some .Meta.-Theory for Lax Logic 190

• Vacuous constraint over T is [A 1- [])

• Multiplication of [A 1- /] : T -+ n- and [A 1- g] : T -+ n- is

[A 1- II. [A 1- g] ~ [A 1- f@g)

where T object in T = and A context such that llAll= T.

Proof: The definition of multiplication of constraints and of [A~ 1- t;) 1~11-n is

independent of the choice of representatives. The conditions (1)-(5) of Definition

5.2.15 immediately follow from Lemma 3.1.7 and 3.1.8 and the properties of

substitution. 1

Remark: The construction in Lemma 5.2.17 can be generalized in the apparent

way to any (syntactic) notion of constraint (C, 1, ·) with action map c, ,Po-+ ,pc in

the sense of Definition 3.1.9. We will refer to the notion of constraint in Lemma

5.2.17 by the triple (n",[),@).

Lemma 5.2.18 Let T be object in T = and M object in DB=[T]. Further, let the

object O[T]M in DB={T] be defined according to Definition 5.2.16 for the specific

notion of constraint (0-, [), @) (cf. Lemma 5.2.17). Then,

where

nT g (.6.„zn' f- nz: {lj

is an object in B=[T x 0-), AT an arbitrary context such that llATll= T, and z an

arbitrary variable not occu1-ring in AT. t is the embedding functor t : B=[T xO*] -+

DB=[T X n-]. :) is exponentiation in DB=[T X n•], and ir1 : T X n· -+ T first

projection.

Chapter 5. Some Meta-Theory for Lax Logic 191

Proof: We will make an exception and assume for the proof that the T-products

are used in the construction of DB=(T) and of the left adjoints E and exponents

:::>in DB=·
Let M be an object in DB:(T], say

with u object in T =• A., and A.~ disjoint contexts such that II A., 11= T and

llA.~11= u. In general u will be a !ist u = u1, ••. , u„ of types but for simplicity we

assume here, without loss of generality, that n = 1 and A.~ = y.

A tedious but straightforward process of applying definitions shows that the

purported isomorphism

ultimately comes down to an isomorphism

(!1" x (1 => u), A) ~ (!1" x u, B)

in DB=(T], where

A (A.„z,w 1-Yv.(nz) :::> (<P{wv/y}))

B (A.„ z, y 1- <P').

Thus, we need morphisms

f T X (n• X (1 => u))-+ n• X U

g T X ({l• X u)-+ n• X (1 => u)

which are mutually inverse and further is must hold

lt is not difficult to check that the morphisms

f 11, (A.„z,w 1- z,w•)

g 11, (A.„ z, y 1- z, ..\v. y)

Chapter 5. Some Meta-Theory for Lax Logic 192

do the job, where w is a variable of type 1 :::} u and v a variable of type 1 both not

occurring in 6.7 , z, y. That f ,gare inverse, i.e. f • (7r1t9) = id and go (:ir1.f) = id
follows from ß, T/ and e equalities for function type 1 :::} u in 8. The inequality

A !; B=[(7r1, J)) B amounts to deriving the sequent

\:/v. (nz) ::> (t/l{wv/y}) 1-A„•,w W){z/z}{w • /y}

and the inequation B !;;;; B=((iri,g)) A to deriving

t/I' rA,,z,v ('v'v.(nz) ::> (t/l{wv/y})){z/z}{..\v.y/w}

in B, which are both readily obtained. Both derivations use the equivalence

t/I' ~ (nz) ::> t/I and the former also the identity (t/l°){t/x} == (tfa{t/x})°{l/r}. 1

Tht'!orem 5.2.19 Let I and VI be as in Definition 5.B.16. F'urther assume

that the finite products in the fibres of I are preserved by translations along

morphisms in the base. Then, the mapping M 1-+ <>(a)M specified in Defi-

nition 5.2.16 induces a locally strong indexed monad on the indexed category

VI == (C, DI : C0
P --+ Cat). More specifically, for every a in C, <>(a) can be

extended to become a functor

<>(a] : DI(a] --+ DI[a]

and there are naluml transformations

11(a] : id...:.. <>[a] µ[a) : O(a) • O(a]...:.. <>(a)

where id is the i1lentity functor on DI(a], such that (O(a), T/(a), µ(a]) is a monad

on Dl[a]; Fu7'lher, these monads are natural in the object a of C, i.e. for every
morphism t : a -+ b in C the equations

O(a)•Dl(t) DI[t] •<>(b)

Tf(a]DI(t] == DI[t)Tf(b]

µ(a]DI[t] == DI[t)µ[b)

Chapte1· 5. Same Meta-Tl1eory for Lax Logic 193

hold, where the ffrst is an identity o/ functors a11d the others identities o/ natu-

m/ tra11sfor111atio11s. Fi11aily, /or every a the monad (<>[a}, qfa}, µ[a)) is strong,

i.e. there is a fllmi/y o/ morphisms

<rM,N : M /\ <>(a}N -t O(a](M /\ N)

in Dl(a) 11alurnl in M and N such that

(<>(a h1) 0 q true,M == l'<>[aJM

(O[a]aM,N,K) 0 UAf/\.N,I(== lrM,N/\.K 0 (idM /\ UN,K) 0 aM,N,<>[t1JK

<TJ\l,N o (idM /\ T/N) T/Mfl.N

11M,N o (idM /\ µN) = µM/\.N•(O(a]uM,N)•<rM,<>(t1)N

where 1· a11d a a1·e the natural isomorphisms

1'1\1 true/\ M -t M

°'M,N,K (M /\ N) /\ /(-t M /\ (N /\ K)

in DI(a].

Remark: We have to be careful to read the last four equations in the theorem

as equations in DI[a]: So, • is composition in DI(aj, and /\ is the product

functor over DI[a] induced by the products in I[a). Composition o was defined

in Definition 5.2.10 and product functor /\ is understood to be determined as in

the proof of Lemma 5.2.13.

We remark that the naturality of the monads (O[a), ri[a), µ(a)) in index a turn

0 into a monad on DI in the 2-category of indexed categories {KS74J.

Strong monads were shown to be a very useful concept for modelling various

notions of computation (Mog89). Here we may interpret 0 as a particular notion

of computation on proo/s, viz. the computation of constraint information. The

notion of a strong monad is explained in (Mog89}. There the morphisms u are

called tenso1·ial slrength of 0.

Chaptel' 5. Some Meta-Theoiy lol' Lax Logic 194

Proof: The proof will make use of (1)-(5) in Definition 5.2.15 of a. notion

of constraint. We will refer to each of these a.s 'property (x)', where :: is the

appropriate numher.

Fix an ohject a in C. For ease of notation we write 0 rather than O[aJ as

the index a is understood. Let 0 : Dl[aJ -+ Dl[aJ be defined on objects as in

Definition 5.2.16. lt is extended to morphisms a.s follows:

(S, 4>)

11
(T,1/>)

(c X S, (l[id X lr2)ef>)"' 0"')

1(11'1011"2,/ o(id X 11'2})

(c X T, (l(id x 71'2)1/>)"' 0 "')

The morphism 0/ = (11'1011"2,/o(id x 11'2)) in C has domain a x (c x S) and

codomain c x T, so for 0 f tobe a well-defined morphism in Dl[a) from O(S, <P) =

(c x S,(l(id x 11'2)</>)"' 0
"

2
) to O(T,t/!) = (c x T,(l[idx 11'2)1/!)"' 0"2) we must ha.ve

Now, f is a morphism from (S, </>) to (T, 1/>), so by definition 4> [; 1((11'1,/})!f> which

implies l(id X 71'2)4> ~ l[id X 11'2)l[(lr1,/))t/! = 1[(11')) /} 0 (id X 11'2))1/! = 1((11'1,/ 0 (id X
11'2)))1/!. From property (4) we infer that 8 !;;; "f implies 6< !;;; 7< for all 6,7,c, so

we obtain

which is the same as (5.24) for the right side can be transformed as follows

(1[(11'1, 11'2 0 0 /)))"1 001

(1[(11'1> <> /))I(id X 11'2))"' 0 "' 0 (1'1,0/)

= 1((11'1,0/))(l(id x 11'2)1/!)"' 0
"

2

using property (5). Tims, we have shown (5.24), whence 0 is well-defined on

morphisms. One may check that the map <> actually defines a functor 0 :

DI[a) -+ Dl[a).

Chapter 5. Some Meta-Theory for Lax Logic 195

For 0 tobe a monad on DI(a] we need natural tra.nsformations 'I/: id..:.+<>

and µ : 0 o 0..:... 0 satisfying certain coherence equations. The element 'l(S,#) :

(S, 4>)-+ O(S, 4>) of rJ at object (S, 4>) is defined as the morphism

r/(S,#) g e X id : a X s -+ c X s

where e is the vacuous constraint at a. This is a well-defined morphism in DI(a]

with domain (S, <P) and codomain <>(S, 4>) since

<P 4>" = (I(id)4>)"°"1

= (I[(id x ir2) o (iri, 'l(s,,i))4>)""' 0
"

2 0 <"•·'l(s.+il

I((iri, '7(5,,J))(I(id X ir2]4>)""' 0 „.
by properties (2), (1), and (5). For arbitrary f : (S, 4>) -+ (T, t/>) it one verifies

that <> J o rJ(S,<f>) = rJ(T,.P) o f holds in DI[a), thus 17 is a natural transformation. The

element /l(S,</>) : <> oO(S, 4>) -+ O(S, 4') of µ at (S, 4>) is defined as the morphism

µ(S,o(>) g ((11"1 ° 11"2 o 11"2) -(11"1 o ir2), 11"2o11"2 • ir2)

a x (c x (c x S)) -+ c x S.

We wish to show that µ(s.•J is a weil defined morphism with domain O•O(S,t;)

and codomain O(S, 4>). This comes down to proving the inequation

Both sides are in fact equal which is seen as follows

(l[id X ir2J(I[id X ir2)tJ>)"10 "2)„1 0 „2

= ((l((id X ir2)•·(id X ir2))4>)"10 •'2•(idx„.J)""' 0
"

2

= ((I[id X (ir2 •ir2))4>)"1 0 „. 0 „2)"1 0
" 2

= (I(id X (11"2 • ir2))4>)(„, 0 „. 0.-2) · („, 0 r.)

= (I((id x ir2)o(iri,µ(s.•i)J4>)"°' 0 „• 0 <"•·1'(s,+Jl

= l((ir1, µ(S,o(>j)){l(id X ir2)4')"1 0
"

2

Chapter 5. Some Meta-Theory for Lax Logic 196

using properties (2) and (5). The proofof the naturality equation µ(T,.P) • (<> 0 <> /) =
0 f • µ(S.•) is omitted, We find that µ is a natural transformation.

Now we come to check the coherence equations for T/ and µ that make (<>, .,.,,µ)

a monad. lt is to be shown that the following diagrams commute in DI(a]:

O(S, <P) ~ OO(S, <P) ~ O(S, <P) OOO(S, ,P) Oµ(s.•i OO(S, ,P)

~·l·/ µ~„,
O(S, <P) OO(S, <P) µ(s.•> O(S, <P)

Proofs of these equations are obtained using the fact that multiplication of con-

straint~ is a monoid, i.e. by property (3).

To sum up, we have defined a monad (O[a), T/[a), µ[a)) for each obje~t a in

C. Next we must prove that these monads are natural in a. To this end assume

a morphism t : a -+ b in C. O[a) is natural in a if functors O[a) • DI[t] and

DI[t) oO[b] are equal. For object (S, <P) in DI[b) we compute

(DI[t) •O[b]) (S, <P) DI(t)(O(b)(S, <P))

Dl(t)(c x S,(l(id X ir2)i/J)"'10 „2)

(c X S,l[t X idj(l(id X ir2)<P)"'' 0 "'2)

(c X S,(l(t X id]l[id X ir2)<P)"'' 0 "'••(lxicl})

(c X S,(l(t X ir2)<P)"" 0 „3)

using property (5). For the other functor we compute

(<>[a] • DI[t)) (S,<P) O[a](DI(t)(S, cp))

(c X s, (l[id X ir2)I[t X id)4>}"'1 0
"'')

= (cxS,(I[txir2]<Pf' 0
'"')

Thus, functors O(a) oDl(t) and DI(t) •O(b) agree on objects. The proof that they

agree on morphisms too, is similady straightforward. Naturality of T/[a] in a

Chapter 5. Same Meta- Theory for Lax Logic 197

requires that 71[a)DI[t) and DI(t]71(b) are equal as natural transformations, so we

need to evaluate them only on objects M in DI(b):

(11(a)DI[t])M 17[a]ol[1)M = ea x id = (e6•t) x id

(e6 X id)o(t X id) = Dl[t)(e6 X id)

DI(t]71[b]

The third equation holds by property (1). The remaining proof that natural

transformations µ(a)DI(t] and DI(t]µ(b] are equal, which also invokes property

(1), is omitted.

Finally, the monads O(a] are strong, i.e. there exists a family of morphisms

u(s.•J.(T,ti-J: (S, ~) A O[a)(T, t/J)-+ O(a)((S, ~) A (T, t/J})

natural in (S,~), (T,t/J) satisfying the Cour coherence equations stated in the

theorem. We claim that such O"(S,•J.(T,t/<) are given by

O"(S,.),(T,,P) ~ (11"1 ° 11"2 ° 11"2 1 (ir1 o 11"2, 11"2o11"2o11"2))

a x (S x (c x T))-+ c x (S x T).

For these morphisms to be well-defined as morphisms in DI[a] we need to verify

the inequation

l{id x iri)~ A l{id x ir2J(l{id x ir2)t/J)"' 0
"' (5.25)

~ I[(iri. u))(I(id x ir2)(I(id x irM A I(id x ir2]t/i))"' 0
"• (5.26)

where from now on the indices of u are dropped. Using property (5) the left side

is shown tobe equal to I(id x ir 1]~ A (I(id x (ir2•ir2)]t/J)"10
••

0
•• and the right

side is simplified as follows:

I((ir1,u))(I(id x ir2)(I(id x irMAI(id x ir2}1/J))"10
••

~ I[(iri. u))(I[id x (ir1 o ir2)}~ /1 I(id x (ir2 o ir2)}t/i)"' 0
"•

(I[(ir1, u))(I{id X (11"1 o ir2))~ /1 I(id X (ir2 o ir2)]t/i))"1 0
••

0 (•i,a)

~ (l((ir1,u)]I[id x (ir1 oir2))~ /1 I[(iri.o-))l(id x (ir2•ir2))t/J)"10
"

(l[id X iri)~ /1 l[id x (ir2 o ir2))1/I)'"' 0
"•

0
"•.

Cha.pter 5. Some Meta.-Theory for Lax Logic 198

The first equation is due to property (5) and the equivalences ~ due to the a.s-

sumption that translations I(·) preserve products A. Thus, we find that inequation

(5.26) is equivalent to

l(id X 7ri)tP A (l(id X (7r207r2))tfa)"" 0"2 0"2

\;;;; {l(id X 7ri)l/i A I(id X (7r207r2))tji)"' 0
"
20 "2

~ut this follows immediately from property (4). Namely, for arbitrary {, t/> we

haveeAl/i \;;;; eAl/i, hence by property (4), eA</ic \;;;; (e A efi)°. Thus we haveverified

that the morphisms

O'(s.<1>),(T,.PJ: (S, efi) A O(a)(T, tfa)-+ O(a)((S, efi) A (T, tfa))

are well-defined. Now, we wish to show that they are natural in (S, </!} a.nd (T, tfa).

This means we assume morphisms f: (S,efi)-+ (S',l/i') a.nd g: (T,tji)-+ (T',#)
in DI[a) and verify the identities

O{aj(f A id) o O'(S,</>),(T,,P)

O{a)(id Ag) oO'(S,</>),(T,.P)

O'(S',</>'),(T,,P) 0 (f A id)

O'(S,</>),(T',.P') 0 (id A Og)

where o and A are composition and product functor in DI[a). When definitions

are unrolled, then these two equations become

(7r12 1 (/ 0(7ri,11'12}, 71'22} 0 (id X 11'2)} o (7r122, (7r12, 11'222}}

= (11'122, (11'12, 11'222}} 0 (7ri, (/ 0 (7r1, ir12}, 71'22}}

(7r12 1 (7r12,9°(11'1,7r22}} 0 (id X 11'2)} 0 (7r1,(ir122,(7r12 1 11'222}}}

= (7r122,(ir12,7r222}} 0 (ir1,(ir12,(7r12 1 go(idx11'2)} o (7ri,7r22}}}

where 11'klm·„ stands for 11"k o ir1° lrm o · · „ These equations a.re trivial to check.

Tims, the O'(S,</>J,(T,.P) are natural in both indices. To complete the proof of the

theorem we need to verify the four coherence equa.tions

(O[a]rM) 0 O' true,M

(O(a]aM,N,Id 0 O'M11N,K

ro[a)M

O'M,N11K 0 (idM A O'N,K) 0 Cl'.Af,N,<>(a]K

Chapter 5. Some Meta-Theory for Lax Logic 199

<1M,N°(idM /\'IN) f/MhN

<Tilf,No(idM /\µN) = µMhNo(0(a)O'M,N) 0 <1M,<>(a)N

assuming objects M = (S, <P) and (T, .,P) where r111: true/\ M-> M and aM,N,K:

(M /\ N) /\](-+ M /\ (N /\ K) are the canonical isomorphisms in Dl(a]. As

before, these equation are to be read in DI[aJ taking the appropriate definitions

of o and /\, and the morphisms r and a are

The proof of the equations, which are straightforward, ·are omitted.

We now come to the final result of this chapter linking up the category theo-

retical construction of hyperdoctrine 'DB= with the extraction of constraint terms

and constraint predicates frorn derivations in lax logic as presented in Chapter

3.2. lt is shown that the natural interpretation of C in 'DB=, treating <> as the

rnonad induced by the notion of constraint (ll*, (], @), corresponds precisely to

the constraint extraction process of Chapter 3.2. In order to keep things sim-

ple we will deal only with the closed propositional fragment Co of lax logic. We

believe that the result can be extended to C to cover quantifiers and substitution.

We associate with every well-formed closed formula M of Co, i.e. f- M wft",

an object (MJ in DB=(OJ according to the following schema

(t<PJ ~ 'ft- <PI (5.27)

(true) ~ true (5.28)

Uaise) ~ false (5.29)

(M /\ N) ~ (M) /\ (N) (5.30)

(MV N) ~ (M) V [N) (5.31)

[111 :::> N) ~ [M) :::> (N) (5.32)

[<>111) ~ <>[M) (5.33)

Chapter 5. Some Meta-Theory for Lax Logic 200

Remark: In case (5.27) since formula up is supposed to be well-formed and

closed, <P must be a well-formed c!osed proposition, i.e. 1- <P: 0. In the definiens

of case (5.27), then, (1-<P) stands for the equivalence dass of <Pin B=[()) and i is

the embedding i: B=[OJ -+ DB=[OJ.

The cases (5.28)-(5.32) deal with the propositional formulae of .C.. Each

propositioual connective is interpreted by the corresponding categorical oper-

ation. So, true, false, A, V, and :::> are translated into terminal object, initial

object, product, sum, and exponent, respectively, in DB=[OJ .

. The last case (5.33) is to be read as interpreting the modal operator 0 by

the monad <> : DB=[()) -+ DB=[OJ that is induced by the notion of constraint

(!1*, [], @). The definition of this monad is given by Lemma 5.2.17 and Definition

5.2.16.

To reduce notation we write DB= for DB=[OJ and B= for B=[()). The

following definition will facilitate the access to objects and morphisms in DB=,

which are pairs (a, [w 1- <P)) with a =an, ... , ai, and w variable of type() x a =
() x (an x · · · x at), where x from now on stands for the 7 0 product. lt will be

convenient to break convention to Jet x associate to the left and to reverse the

numbering of sequences to go from right to left.

Definition 5.2.20 Let [.ti.1- t) be a morphism a-+ T in T = with <1 =<In, ••• ,<11,

Ta single type, and .6. = Xn 1 ••• ,x1 such that 11.ti.ll= a. From this we obtain a

morphism () x a -+ T in the following way:

where w is an arbitrary variable of type () x (an x · · · x at) and 1rZ denotes the

k-th projection an X • • • X a1 -+ ak, 1 S k Sn, i.e.

The case n = 0 is treated separately:

(H]* ~ (w 1- t)

Chapter 5. Some Meta-Theory for Lax Logic 201

where w variable of type () x ().

Remark: The definition of [ß 1- t)* does not depend on the choice of variable

w.

Theorem 5.2.21 Let M be a well-formed closed formula, i.e. t- M wft'. Fur-

ther, let IMI a11d M* be co11straint type and constraint predicate of M as defined

in Chap. 9.~. Then, for every variable z of type IMI we have

[M) = (IMI , [z 1- M* z)*)

Proof: First note, M* z is a well-formed proposition with a single free variable

z and [z 1- M• z] morphism IMI -+ n in 'T =· We can form [z 1- M1 z)" to get a

morphism () x IMI -+ n, which is at the same time an object in B:(() x IMIJ,
whence (IMI, [z 1- M' z]") is object in DB=. The identity

[M) = (IMI , (z 1- M* z)*)

is proven by induction on the strncture of M. We will give proofs only for the

cases (5.27), (5.30), and (5.33). The other cases, which can be obtained in a

similar way, are omitted.

• (5.27) We want

(5.34)

where variable z has type ltc/>I = 1. Plugging together definitions we compute

[ic/>) = L [1-c/>J = (1, B=[7r1)[1-cf>)) where ir1 is the first projection () x 1 -+ (),

i.e. 71'1 = [wl-) with w variable of type() x 1. Thus, B:(7r1)[1-c/>) = B:[(wl-])(1-c/>) =
(w 1- c/>) = [z 1- cf>)"= [z 1- (tc/>)* zf. This proves (5.34).

• (5.30) We want

(M II N) (5.35)

Chapter 5. Sorne Meta-Theory for Lax Logic 202

Unrolling the definitions and the inductional hypothesis yields

(M /\ N) (M) /\ (N)

(IMI, [z 1- Mt# z)*) /\ (INI, [z 1- Nt# z)")

(IMI X INI, B=(id X ir,][z 1- Mt# zr /\ B=(id X ir2)[z 1- Nt# z)")

Here id x ir1 is the canonical rnorphism () x (IMI x INI)-+ () x [MI in 7 =• i.e.

Hence we get

B„[(w 1- (ir1w,ir1(ir2w))]](w 1- M#(ir2w))

(w 1- M#(ir2(ir1w, ir1(ir2w))))

\w 1- Af#(ir1(ir2w))]

Notice that in the first line variable w is used with two different types. For the

left 1-, w has type() x (IMI x INI) while for the right 1- it has type() x [MI. This

confusion does no hann since both uses of w never occur in the same term. We

will use w from now 011 as a generic variable in this sense. Similarly to above we

have B=(id x ir2)[z 1- Nt# z]* = (w 1- N"(ir2(ir2w))), whence

which proves (5.35).

• (5.33) We want

The definition of the rnonad <> and the inductional hypothesis yield

i<>M] O[MJ

<>(IMI, (z 1- M„ z)*)

(n" x IMI, (B=(id X ir2)[z 1- Mt# zJT' 0
"')

(5.36)

Chapter 5. Some Meta-Theo1y [01· Lax Logic 203

whcre id x 7r·l is lhc canonical morphism () x (!1" x IMI)-+ () x IMI, i.e. idx ir2 =
(w 1- (7r 1 w, 7r2(7r1w))1 au<l 7r 1 o 7r2 is the canonical morphism () x (n• x IMI) -+ n•,
i.e. 7r 1 o7f 2 = [w 1- 7r 1 (7r2w)]. So, we ca11 simplify further to get

(B=[id x 7r2](z 1- 111' z]")"' 0
"
2

(B=((w 1- (7r1W, ir2(ir2w))]](w 1- M'(ir2w)J)f'*„,(„,w)J

[w 1- M•(ir2(ir2w))J1wt-..i("•wll

[w 1- (M'(ir2(ir2w)))"11"•"'1]

where the last equation is due to the definition of the notion of constraint

(n*; [], @) on ß=. This proves (5.36). 1

The other part of constraint extraction in C. is extracting from the derivation

of a sequent

and sequence z„, ... , z1 of arbitrary fresh variables of types IM;j, i = 1, ... , n, a

well-formed constraint term

.6, Zn 1 ••• , Zt 1- t : IMI

and a derivation of the sequent

Jlfn il Zn,·••, Mt# Zt 1-A,•n•···••I M* t

in 8. We wish to show that this extraction process can be understood in terms

of the categorical logic 1)8= as interpreting derivations in C. as morphisms in

1)8=·

Again, we focus 011 the closed propositional fragment of J:,. We associate -

rule by rnle along the structure of the derivation tree - with every derivation in

J:,o a morphism such that

r 1- M ,..... m : [f) -+ [M)

Cha.pter 5. Some Meta.-Theory for La.x Logic 204

where (r) is defined inductively a.s

(()) ~ true

with A and true the finite products in DB=, and prove that m is precisely the con-

straint term extracted from the derivation. This together with Theorem 5.2.21

provides a category theoretical semantics for Co in VB= which captures the in-

t~rpretation of formulae as constraint types and constraint predicates and the

interpretation of deri vations as constraint terms.

The interpretation of [,0 's structural rules in terms of morphisms in 'DB= is

given in Figure 5-1 and of the logical rules in Figure 5-2.

rule morphisms in DB=

id M 1- M id: (M) -+ (M)

weak r,M 1- N m•ir1: (f) II (M) __,, (N)
f 1- N m: [r)-+ (N)

perm fi,N,.M,f2 I- K m•t: (([f1) II (NJ) II (M)) II (f2)-+ (K)
fi,.M,N,f2 I- K m: (((f1) II (M)) II (N)) A (f2)-+ (K)

t = ((ir1•ir1,ir2},1r2•ir1} X id

cut f 1- N n•(id,m): [r)-+ (N)
r 1- M f,.M 1- N m: (f)-+ (M) n: (r) 11 [.M)-+ [N)

Figure 5-1: Interpretation of Structural Rules for Lo

Chapter 5. Some Meta-Theory for Lax Logic 205

rule morphisms in DB=

falseE Jalsel- M D: false-+ [M)

VE, MVNl-1([m, n] : (M) V (NJ-+ (KJ
M 1- /(N 1- /(m: [M)-+ (K) n: (N)-+ (K)

V/1 M 1-·MV N t1 : (M) -+ (M) V (N)

V/, Nl-MVN '2 : (NJ-+ (M) V (N)

truel 1- true ! : true -+ true

/\./ r1-M11N (m, n) : (r) - (M) 11 (N)
f 1- M r1- N m :ff) (MJ n: (r) (N)

llE1 M11Nl-M ir1 : (M) A (N)-+ (M)

llE, MllNl-N ir2 : (M) /\ (N)-+ (N)

:>/ rt-M:>N curry(m): ff)-+ (M) :> (N)
r,M 1- N m : [r) A (M) -+ [N)

:>E r,M 1- N eval• (ir2, m • ir1) : (r) II [M] -+ [N)
rt-M:>N m: [r) [M) :::> (N]

OJ Ml-OM IJ: [M)-> O(M)

OM OOMl-OM µ : OO(M)-+ O(M)

OF f,01111- ON <>m•u: [r) /\ <>(M)-+ <>[N)
r,M 1- N m : (r)" [M) [N)

u : (f) II <>[M) -> <>((r) II (M))

' up 1- tl/J t([hp] !; [hp]): t[h/•]-+ i(hp]

~1-"'

Figure 5-2: Interpretation of Logical Rules for Co

Cbapter 5. Some Meta-Tbeory for Lax Logic 206

Remark: In Figures 5-1 and 5-2 it is a.ssumed tha.t the hypotheses Jists r, r„
r2 a.re non-empty in whichca.se weha.ve [r,M) = (r)A[M) and (ri,M,N,r2) ==
(([f1) J\ [MJ) J\ [N)) J\ (f2). This can be a.ssumed without loss of genera.lity since

a. dummy hypothesis true ca.n a.lwa.ys be introduced via. rule weak. So, only for

rule weak do we ha.ve to consider the specia.l ca.se where r = (). In tha.t case

(r) = true a.nd the interpreta.tion of weak simplifies a.s follows

M l- N,. m•!1MJ: (M)-+ (N)
l- N m : true -+ (N)

where !(MJ: [MJ-+ t1"Ue is the terminal morphism in DB=.

Figure 5-2 needs more expla.na.tion: The morphism u used in the translation

of rule OF is the tensorial strength of 0. lt is given by Theorem 5.2.19 a.s a.re

1/ a.nd µ in the tra.nsla.tion of rules OJ and OM. Rule ' ta.kes a. sub-deriva.tion

in B of a. sequent <P 1- t/J a.nd turns it into a. deriva.tion of i<P l- up in Co. Its

tra.nsla.tion into DB= is obta.ined a.s follows; Since <P, t/J a.re well-formed closed

terms of type !1 we get well-defined objects (1-<P) a.nd (l-t/J) in B=· Since <P 1- t/J is
deriva.ble we ha.ve a. unique morphism m : [1-<P] i;;; [l-t/J) in B= by definition of !;.

This morphism is now mapped to the morphism

im : i(l-<P) -+ i(l-1")

via. the embedding functor ': B=-+ DB= defined in Lemma. 5.2.11.

Observation 5.2.22 The translation of Figs. 5-1 and 5-!! is total and correct,

i.e. the translations can be applied rule by rule to any valid derivation in Co o/

a sequent r l- M, and the result is a well-defined morphism m : [r) -+ (M) in

DB=.

Theorem 5.2.23 Let a derivation o/ r l- M in Co with r = Mn, ... , M1 be

given and m : [r) -+ [M) be the corresponding morphism in DB= obtained by

Figures 5-1 and 5-!!. Further, let Zn, ••• , z1 be arbitrary distinct variables of

types IM;!, i = 1, ... , n 1·espectively, arid Zn, ••• , z1 1- t : IMI the constraint term

constructed by the franslation of Figs. 9-10, 9-11 and 9-1 !! of Section 9.!!. Then,

Chapter 5. Some Meta-Theory for Lax Logic 207

as morphisms in T =.

Proof: We will only give the proofs for rules id, weak, JalseE, 01, OM and OF.

All other rules can be dealt with in a similar way. Before we start Jet us convince

ourselves that the equation in the theorem ma.kes sense: First suppose n 2: 1.

By Theorem 5.2.21, the first component of (r) is the type IMnl x · · · x IM1I and

the first component of (M) is IMI. Hence, m : (f) -+ (M) as a. morphism in

'T = has the same domain and codomain as the morphism [zn, ... , z1 1- t)". In the

special ca.se 11 = 0, i.e. r = (), the first component of (r) = (()) = true is 1,

whence in this case, too, m : (r) -+ (M) has the same domain and codomain a.s

(H]". Note that for the 'T0-product () x 1 = 1X1 = () x (). The proof that

m = [zn, .. . , z1 1- t]" proceeds by induction on the structure of the derivation tree

of Mn, ... , Mi J- 1\1.

• We begin with rule id which has the following translations:

M J- M >-+ zlMI 1- z : IMI id: (M) --+ (M)

On the left of >-+ the rule is shown and on the right both the corresponding

extracted constraint term taken from Figure 3-10 and the translation of the rule

into a morphism of DB= taken from Figure 5-1. lt is to be checked that

id = (z 1- z]*

which follows from the definition of identities in DB=.

• The weak rule ha.s the translations

l',l\fJ- N
rt- N

z, zlMI 1- t: INI
z f-t: INI

m•r1: [r) A (M)--+ (N)
m: (f)-+ (N)

Suppose z = Zn, ••• , z1 and n 2: I. In this case we must verify the equation

m•ir1 = [z,z 1- t)°

under the ·inductional hypothesis that m = {i 1- tj". Also we know that z has

type l.MI and is not free in t. Observe that by definitiou" the projection ir1 :

Chapter 5. Some Meta-Theory for Lax Logic 208

[r) /\ (MJ-+ [r) in DB= is the equivalence dass (w f- 11'1(11'2w)) and composition

f •g in DB= is f •(11'i.9} in T=. Now we compute

m•1!'1 = m•{1ri,(wf-ir1(7r2w)])

m • ([w f- 11'1w), [w f- 7r1(ir2w)])

m•[w f- (ir1W,7r1(7r2w)))

(z f-t]°•(w f- (ir1w,7r1(ir2w))J

= [w f- t{ir:(ir2w)/zn}- · · {iri'(ir2w)/zi}) • [w f- (ir1w, ir1(ir2w)))

(w f- t{7r:(7r2(7r1W, 11'1(1r2W)))/zn} · · · {1ri'(11'2(1!'1W, 11'1(ir2w)))/zi})

(w f- t{11':(11'1(1r2w))/zn} · · · {1ri'(1r1{1r2W)}/z1}]

[w f- t{11':fü11'2w)/zn} · · · {11'~+ 1 (11'2w)/z1}]

[w f- t{11':+~(71'2w)/zn} · · · {1r~+1(7r2W}/z1}{iri'+ 1 (ir2w}/z}]

Notice that in the fifth line above we are using variable w with two different

types; In the left morphism of the composition •, w has type () x lf I while in

the right morphism it has type(} x (lfl x jMI), where lfl = IMnl X • • • X IM1I·
Now suppose n = O. In this case the goal is to verify

m•! = (w f- t]"

The morphism ! :: (M) -+ true is [w f- •), whence under the induction hypothesis

m = [f-t)" one finds:

[H)" •[w f- (ir1w,•)I = (w f- t}•[w f- (1r1w,•)]

[w f- t] = [w 1- t{1t'2w/z})

(w f- t]"

since z does not occur free in t.

• The rule f alseE has the translations

f alse t- M H z0 f- Dz : IMI D : /alse-+ (M)

Chapter 5. Some Meta-Theory for Lax Logic 209

We have to show that D = [z0 1- Dz)* which is trivial by definition of morphism

o in DB=.

• The rule 0/ has the tra.nslations

M ... <:>M 1--+ zlMI 1- ([),z): W x IMI 11 : (M) --> <>(M)

The monad <:> on DB= is defined so that 1/ = e X id where e : () --> n· is the

void constraint over () for the notion of constraint (n•,[j,@). Thus, e = (1-(]]

and 1/ = (w 1- ([], ir2w)J = (z 1- ([],z))*. This was tobe shown.

• The rule <:> M has the tra.nslations

<:><:>M ... <:>M 1--+ z11'x(ll'x1Mll t- (ir1(ir2z)@ir1z,ir2(ir2z)): W X IMI

µ : OO(M) --> O(M)

The natural transformation µ is defined such that

((w 1- ir1(7r2(ir2w))) · (w 1- ir1(ir2w)], (w 1- ir2(ir2(ir2w))])

= ((w 1- ir1(ir2(ir2w))@ir1(ir2w)), (w 1- ir2(ir2(ir2w))))

(w 1- (ir1(ir2(ir2w)) <&h1(ir2w), ir2(ir2(1r2w)))

(z 1- (ir1(7r2z)@7r1Z, ir2(7r2z)))*

The first equation is the definition of µ as in Theorem 5.2.19 a.nd the second eval-

uates this definition for the concrete category DB=. The third line instantiates

the particular notion of constraint, cf. Lemma 5.2.17.

• The rule <:>F has the translations

r,<:>M ... ON
f,M ... N

We have to show

z,zn'xlMI 1- (7r1z,t{?r2z/v}): n- X INI
....... Z, vlMI r t : JNI

<>m 0 O' : (r) A O(M) --> O(N)
m : (f) A (M) --> (N)

Chapter 5. Some Meta-Theory for Lax Logic 210

under the induction hypothesis that m = [z, v 1- t)". Without loss of gnerality,

z = Zn, ... , zi, n ~ 1. <> is defined so that Om = (ir1 o ir2, m o (id x ir2)), where

ir1oit2 = [w 1- ir1(ir2w)) and id x ir2 = (w 1- (ir1w,ir2(ir2w))). By induction

hypothesis,

Thus,

Om [w 1- (ir1(ir2w), t{ir:füir2(ir2v))/zn}

· · · { ir2+1(ir2(ir2w))/ z1 }{ irf+1(ir2(ir2w))/w})]

Now we compute Omou. The strength O' is the morphism

For simplicity let us identify O' with the term on the right of 1-, i.e. O' = (w 1- u).

Then,

Omou

Omo(iri,u) = Omo[w 1- (ir1w,u))

[w 1- (ir1(ir2(ir1w,u)),

t{ ir:t:(ir2(ir2(ir1w, u)))/ Zn}··· { ir2+1(11'2(ir2(ir1w, u)))/ zi}

{ irf+1 (ir2(ir2(ir1 w, O')))/v}))

[w 1- (ir10',

t{ ir:füir2u)/Zn}··· { ir;+1(ir2u)/ zi} { ir~+1(ir2u)/v}))

[w 1- (ir1(ir2(ir2w)),

t{ ir:(11'1 (11'20'))/Zn} · · · { irf (11'1 (11'20'))/ Z1}{ir2(11'20')/v}))

[w 1- (ir1(ir2(ir2w)),

t{ ir:(iri(ir2w))/ Zn} · · · { irf(ir1(ir2w))/ zi} { ir2(ir2(ir2w))/v}))

[w 1- (ir1(ir;•+1(ir2w)),

Chapter 5. Some Meta-Theory for Lax Logic 211

t{ ?r~t:< 11"2W)/ z„} · · · { 11"2'+1(1r2w)/ z1}{7T2(irj+1(11"2w))/v})}

== [wl-(?r1z,t{1r2z/v})

{1r~m?r2w)/z„} · ·· {7T2+1(7T2w)/zi}{?rj+1(1r2w)/z}J

[z,z 1- (1r 1z, t{?r2z/v}))*

which was to be demonstrated.

1

Theorems 5.2.21 and 5.2.23 now imply correctness of the constraint extraction

for Co, more precisely the second part of Lemma 3.2.2 of Section 3.2:

Corollary 5.2.24 Given a derivation M„„ „, M 1 t- Af in Co and a sequence

z„„ .. , z1 of f1·esh va1·iables, n;:::: 1, of types IM;I, i = 1„ .. , n. Let z„, „ „ zi 1- t:

IMI be the consll'aint te1m constructed as in Sec. 9.f!. Then, there is a derivation

of the sequent

Af„11 z„, ... ,Mi" z11-•••...•• 1 M" t.

in the base logic.

Proof: For simplicity let us assume that n = 1. The general case can be

treated in the same way. The derivation of Mi t- M gives rise to a morphism

m : (M1) -+ f MJ such that m = (z1 1- t)*. Theorem 5.2.21 gives us domain and

codomain of m:

m : (!Md, [zi 1- M1" zi]") -+ (IMI, [z 1- M" z]")

By construction of morphisms in DB= we know that

A little computation shows that the right side is equal to [z1 1- M 11 t)", and it ia

similarly easy to see that {z1 1- M1 11 zi)" !;;: {z1 1- M 11 t]" implies

by definitiou of !;;;. 1

Chapter 6

Related Work

Behavioural constraints abound in hardware engineering. Practically relevant de-

sign methodologies based on circuit behaviour have to accommodate constraints

in one way or other. Convincing examples may be found in Subrahmanyam's

expositions [Sub88a,Sub88b], which give a good idea of how timing abstraction

provides a rich source of behavioural constraints. In algebraic modelling of cir-

cuit behaviour, such as those based on automata [BC88,LBC88] or those based on

processes [Dav88,Tra87), constraints are treated as first-class behaviours and the

verification of a constraint is reduced to the comparison of behaviours. Special-

purpose theorem provers, such as SILICA PITllECUS [Wei90) for the verification

of synchronous MOS circuits or BEAVER (HN89b) for the functional and timing

verification of synchronous systems above the gate level, contain sophisticated

built-in constraint handling as an essential part of behavioural specification and

analysis.

Despite its importance in hardware engineering, however, only recently was

the question ad<lresse<l of formalizing the concept of constraints in modern general-

purpose theorem provers currently applied to the formal verification of hardware.

lt was indicated already in Section 2.3.2 that John Herbert 's work (Her88b) us-

ing HOL (Gor85,Gor88) can be seen as a step in this direction. Another work

in this area that we are aware of is Holger Busch's (Bus91), which investigates

212

Chapter 6. Related Work 213

the proof-based transformation of circuit descriptions using the LAMBDA [FM89)

theorem prover. Both approaches will be discussed below.

The lack of attention paid to constra.ints in applying a general-purpose the-

orem prover to the formal verification of hardware can be explained in several

ways. For one, the concept of a. constra.int has a grea.t variety of fa.cets in pra.c-

tice, making it very difficult to associate a precise meaning with it, let alone

to formalize it in term~ of mathematica.l logic. In the context of particular de-

sign methodologies few attempts in clarifying the notion have been made (Wei86,

Tra.87,Sub88a,Dav88,DM88J. Most of these discussions come down to regarding

constraints as restrictions which are deliberately introduced to simplify the spec-

ification or verification task. Hence, the question of how tempora.rily to brush

constraints under the carpet does not pose itself. This contrasts with the stand

taken in this thesis, namely to consider constraints as unwanted by-products of

formalizing abstractions. Another reason why constraints are not perceived to

be of interest might be the following: When it comes to formalizing constraints

on a theorem prover, constraints are first of all propositions, and as propositions

they are part of the specification. In this frame of mind, it is tempting to settle

with the conclusion that if one knows how to deal with specifications then one

knows how to deal with constraints.

So much for a general introduction to the role of constraints in the context

of formal hardware verification. Let us now turn to a more concrete comparison

with related work. The main features of our research described in this thesis

which distinguish it from most other treatments in the field, so we believe, are

the following: We argue that constraints both deserve and require special consid-

eration, in particular that there is good reason to distinguish between constraints

and specifications. We model the notion of 'correctness up to constraints' as a.

modality of predicate logic. We describe a novel method of handling constraints

that takes constraints out of the propositions and makes them part of their proofs,

with the benefit that constraint manipulation then is induced by computa.tional

Chapter 6. Related \Vo1·k 214

semantics for proofs, a concept well-known from mathematical investigations of

constructive logics. In the rest of this chapter these three main features, which

fall under the aspects hardware verification, modal logics, and proof semantics,

will be illuminated by discussing related work.

Hardware Verification

The two relevant approaches of dealing with constraints in the formal verifica-

tion of hardware are [Bus91) and (Her88b]. To begin with, we note that both

approaches are restricted to the modelling of circuit behaviour as predicates while

lax logic is applicable not only to the components-as-predicates but also to the

functional components-as-functions paradigm.

Holger Dusch in (ßus91) uses the general purpose interactive theorem prover

LAMBDA to implement a transformation system for behavioural circuit descrip-

tions in which constraints are paid special attention. He takes an algebraic ap-

proach bascd on the elementary notions component, composition, inclusion, and

equivalence of components. These algebraic 'primitives' are encoded in LAMBDA

in a natural way: Components are modelled as predicates or boolean-valued func-

tions which describe an input-output behaviour in a relational way, composition

is provided by general higher-order combinators, inclusion is logical entailment or

implication, and equivalence is biimplication. Due to the identification of com-

ponents with arbitrary relations, a constraint, in this framework, can be viewed

as a special kind of component. lt is called a pseudo-component in (Bus91).

For instance, if A(x,z) and B(z,y) are predicates describing two hardware

components with x, y, z their signal ports, then their composition is defined as

(compAB)(x,y) ~ 3z. A(x,z) A B(z,y).

Let 1(z) be a predicate expressing some constraint on signal z. lt is transformed

into a pseudo-component with ports x, z by

1*(x,z) ~ x=zA')'(z).

Chapter 6. Related \Vork 215

Now, in order to impose constraint 'Y on signal z of component B(z, y) one simply

composes B with the pseudo-component -y•:

(comp-y• B)(x, y) = 3z. z = z /\ -y(z) /\ B(z, y) St:! -y(x) /\ B(x,y).

Thus, according to (Bus91) imposing a constraint on signals is reduced to

composition of components. This view of constraints has a few immediate con-

sequences that contrast with the approach taken in this thesis: First, constraints

in (Bus91) are always constraints on signals. In lax logic constraints can be im-

posed on arbitrary types, and we have seen that other constraints such as on

time (sampling at clock ticks) or on structural parameters (bit-length of incre-

mentor) indeed occur in practice. A second consequence of Busch's approach is

that constraints always appear as part of the implementation, i.e. the fact that

component B satisfies specification A under constraint -y, would be expressed by

the sequent (comp-y• B)(x,y) 1-„,, A(x,y). or

-y(x) /\ B(x,y) 1-„,, A(x,y)

while in lax logic constraints are part of the specification, i.e. the verification

goal is let's-not-bothe1·,B(x,y) J.„,, OA(x,y), or after constraint extraction

B(x,y) 1-„,, -y(x) :::> A(x,y).

Hence, in [Bus91) constraints strengthen the implementation while in lax logic

they weaken the specification. We believe that the latter view is more natural

since it analyses the offset of an approximate implementation in terms of the

intende<l ideal specification. But of course both views are equivalent.

We note finally that Busch's approach can be viewed essentially as an imple-

mentation in LAMBDA of a fragment of Mary Sheeran's RUBY language (JS90}

which provides a more general abstract foundation for transformational design

based on relations. Similar remarks to those made above apply for comparing

(JS90) with our approach in what regards the handling of constraints.

Chapter 6. Related Wol'k 216

John Herbert in [Her88b) formalizes the temporal abstraction underlying syn-

chronous circuits using the HOL theorem prover. Behaviour is represented by ar-

bitrary HOL predicates and he proposes to express the correctness for a low-level

behaviour wrt. a high-level behaviour by a statement of the form

(low-leve/ behaviour A input stability conditions) ::>
(high-level behaviour A output stability assertions)

Shaping correctness theorems in this way provides for some separation of concerns

as it clearly distinguishes predicates pertaining to constraints from predicates per-

taining to behaviour. This pairing of constraint and behaviour, however, leaves

both aspects potentially intertwined at the level of proofs: One is stumbling ei-

ther over input stability conditions or output stability assertions whenever one

makes use of a behaviour, which means that constraint manipulation and reason-

ing in abstract terms have to go together in a single proof. Another shortcoming

is that a canonical and systematic manipulation of constraints, although sug-

gested, is neither supported nor enforced by simply reananging a correctness

theorem. This can only be built into a notion of proof as it is clone by lax logic.

Modal Logics

The main featurc of lax logic is the intuitionistic modal operator <>. Now, the

formal properties of <> much resemble those of a modality of possibility. In

particular, the rules <>I and <>M are integral part of the various modal logics of

the 54-type (Che80), as is the special instance

OMf-.i. ON
M f-,i. N

of the lifting rule OF. But here lies the rnost obvious difference to our modal

system: Rule OF in Cis

I',<>M f-.i. ON
I',M f-.i. N

which is rather more powerful in that with it lifting can be applied in an arbitrary

context of 'passive' hypotheses r. This, as we have seen, has the consequence that

Chapter 6. Related Wo1·k 217

it is no langer possiblc to apply a classical Kripke semantics for <>. Compared to

the standard modal systems for <> the strong <>Fis a speciality of C besides the

fact that - without <> - it is an intuitionistic logic.

Classical modal logics, where <> and the dual modality of necessity Cl are

interdefinable, have long been studied, cf. (Che80]. There does not seem to be

much literature on intuitionistic modalities some of it concentrating on the 0-

operator. Publications touching on intuitionistic logics with 0 that we are aware

of are (Cur57,Pra65,PS86].

Curry in (Cur57,Cur52} very brießy sketches a non~classical modality 0 that

appears to have the rules 0/ and OF. He derives these rules from a proof-

theoretic interpretation of <> which is closely related to our reading. Basically,

he considers a hierarchy

of stronger and stronger deductive systems and takes <>M to mean that M is

'provable in some strenger system', i.e. t-. <>M if f-1 M for some I ~ k. Curry

does not elaborate on this system in much detail, however.

Prawitz in (Pra65) considers an extension of intuitionistic predicate logic by an

independent modal operator of possibility that has rule 0/ and a weaker version

of OF, namely where all hypotheses in r must be of form -.<>C for suitable C.

In a classical setting, i.e. with classical negation, this system coincides with the

well-known system S4 (Che80).

Plotkin and Stirling (PS86} present a Kripkean analysis of an intuitionistic

propositional logic with two modalities Cl and 0. Their system in the presence

of the law of the excluded middle is equivalent to the system K (Che80). This

means it encompasses a fairly weak notion of 0 which has rule <>F without

passive hypotheses fand which does not haveO/ and OM. They prove a general

correspondence theorem which allows to view rules 0/ and OM as semantical

conditions on the Kripke frame. However, the restriction on rule <>F in their

Chapter 6. Related \Vork 218

framework cannot be lifted as they employ still a classical semantics for 0, i.e. the

set of worlds at which an atomic sentence is trne need not be upper closed wrt. the

frame relation that is used to interpret 0.

Proof Semantics

A main technical contribution of this thesis is to define a notion of proof (here:

constraint term) and realizability (here: constraint predicate) for a first-order

intuitionislic predicate logic with a 0 modalily and an embedded higher-order

base logic treated as proof irrelevant.

For ordinary intuitionistic predicate logics without modalities many notions

of constructive proof and realizability are known. Examples are Kleene realiz-

ability in Heyting arithmetic and variants thereof, see for instance (TvD88), S.

Hayashi's computational logic Px (HN89a), or Ch. P.-Mohring's notion of re-

alizability (PM89) for a version of the Calculus of Constructions. Constraint

extraction in lax logic must be seen in this tradition: The constraint predicate

M 11 z of lax logic is a realizability predicate, often written z r M or z realizesM,

and the constraint term is a particular realizer for M obtained from a constructive

proof of M.

The formal setting of Ch. P.-Mohring's work is closest to ours in that it defines

realizability for a typed logic with the realizers extracted being typed lambda

terms (more precisely: F„ programs). In contrast to this, Kleene realizability

uses as realizers partial recursive functions coded as Gödel numbers and in Px

the realizers are Lisp programs. So, for the 0-free fragment of lax logic the

process of constraint extraction may be viewed as a version of (PM89J, viz. a

version which is extensional, first-order, and without explicit distinction between

informative and non-informative terms. Let us look at an example. To compare

Chapte1· 6. Related Work

we have to identify the types

:::: 1 with the dass of
Prop

{

object level types,

formulae, and

base propositions

219

in lax logic, respectively. Now, in P.-Mohring's calculus, which is higher-order,

the conjunction of two fonnulae M : Spec a.nd N : Spec would be represented by

MA N =: VC : Spec. (M ::> N ::> C) ::> C.

Suppose M an<l N are proper formulae, i.e. of type Spec, in which case they are

called in/ ormative. Then, the realizer extracted from a proof of M /\ N according

to the translation rules given in [PM89} has type

IM A NI = VC: Data. (IMI :J INI :J C) :J C.

This is the second-orde1· coding of the intensional product of the data types IMI
and !NI. Similarly, disjunction translates into an intensional sum, etc. In lax

logic we would get the extensional product IMI x INI and extensional sum, etc.,

which explains the first point made above, viz. that constraint extraction is an

extensional version of [PM89). Further, if one of the two conjuncts, say M, is a

base proposition, i.e. of type Prop in [PM89J, then it is called non-informative.

In this case the translation directly gives

IM A NI = VC : Data. (INI :J C) :J C

which is an intensional copy of INI, basically. Hence, the translation system-

atically simplifies redundant parts_ due to non-informative formula.e at the syn-

tactic level, while in lax logic, where M would be of form M = i; one obtains

IM A NI = 1 x INI. This, by extensionality of p1·oducts and 1, is isomorphic but

not identical to jNj. The distinction between informative and non-informative

formulae could be exploited for lax logic too, although it destroys the uniformity

of defining the constraint type inductively along the structure of formulae. A

Chapter 6. Related \Vork 220

third point that needs mention has to do with the first-order nature of constraint

extraction as opposed to the more general higher-order translation of (PM89).

The defining clause

j\fx". MI = T => IMI

for the constraint type of universal quantification given in Chapter 3.2 would

not make sense if T were the type of all formulae. Namely, in the case where M

depends on the variable x, IMI too will depend on variable x. This is because

IMI depends on its sub-formulae and x, in case T = Spec, is a sub-formula. So,

IMI would be a dependent type, a notion that we do not have in the object

language of lax logic. In (PM89) where one translates into F„, dependent types

are available. The clause for second-order quantification there reads

l\lx: Spec. MI = \fx: Data. jMj.

The development of the category theoretic interpretation of lax logic in Sec-

tion 5.2 bears close relations with the work of James McKinna on deliverables.

In his thesis (McK92) McKinna gives a category theoretic analysis of first-order

and second-order deliverables. We noted already that the hyperdoctrine VB=

constructed in Section 5.2 can be seen as an (indexed) category of first-order

deliverables with /1·ee variables. While the motivation for deliverables aims at

a programming language where programs are annotated with (proof-irrelevant)

propositional information regarding their correctness, here, in contrast, VB= is

viewed as a logic where proofs have been decorated with constraint information.

Pragmatics aside, the mathematical structure of VB= is between first-order

and second-order deliverables. Due to the free variables it is more expressive

than first-order deliverables (explicit input-output relationships can be specified

in it (McK!J2)), but it is weaker than second-order since these variables are object

variables in 'T and do not range over deliverables themselves. This is reflected by

the first-order nature of lax logic: we cannot quantify over formulae, a restriction

that is important for our definition of constraint extraction.

Chapter 6. Related l\'ork 221

Fiually, we 11ole Lltal [~lcl\92] employs an intensional approach to preserve

lhe compulalioual mcauiug of programs, which results in the relevant data struc-

tures comiug oul as srn1i-adjunctions and deliverables as a semi-cartesian closed

calegory. In conlrasl, this thesis being mainly concerned with logic sticks to the

traditional exlensional notions of cartesian closed category and hyperdoctrine.

Chapter 7

Conclusion

The point of departure for the research reported in this thesis is the insight

that behavioural constraints both deserve and require special treatment in for-

mal hardware verification, and that the non-trivial question of how to deal with

constrainls in an adequate way on interactive theorem provers has not yet been

addressed in lhe literature. In this thesis a solution is proposed that captures

'correctness up to constraints' as a modal operator of intuitionistic logic and uses

proof extraction techniques to compute and manipulate constraints. Its main

contribution is

• to show that it is possible and advantageous to consider constraints as part

of proofs rather than of formulae, and

• to propose a particular formal logic in which constraints are constructed

systematically in the course of proving a specification.

By applying these idcas, which are novel and, as we believe, applicable also to

software engineering,

• constraint computation arises naturally as semantics on proofs,

• constraints on arbitrary data types can be handled, and

222

Chapter 7. Condusion 223

• the way components are modelled is not prejudiced, i.e. the calculus is ap-

plicable under both the "components-as-functions" and the "components-

as-predicates" paradigm.

The first point is explicit in the extraction of constraint terms defined in Section

3.2, which may be seen as a semantical interpretation of proofs in lax logic. This

semantics is captured by the categorical model constructed in Section 5.2. The

second point is that constraints are given a much more general meaning than

usual, where they are taken to be restrictions exclusively on input signals. An

abstraction of input signals of type time => value typically is made up from an

abstraction on time and an abstraction on value. So if we restrict constraints to

signals we have deprived ourselves of the possibility for explaining constraints on

signals from constraints on times and on values. We do not explore this possibility

but demonstrate that it is useful in fact to work with constraints on other types

as weil as on time, and that this can be done in our framework without adding

extra complexity. The third point is illustrated in Chapter 4 by the decrementor,

incrementor, and factorial for the "components-as-functions" paradigm, and the

modulo-2 counter for the "components-as-predicates" paradigm.

These are the main pragmatic advantages of our quite general treatment of

constraints. The central technical aspects of lax logic can be summarized as

follows:

Two-Level Logic Lax logic is a first-order intuitionistic logic that embraces a

higher-order base logic. lt is a consistent and conservative extension, i.e. it does

not prove any new things about the base logic (Theorems 3.1.16 and 3.1.18). This

is an important result since it means that the new features added, viz. 0 and

constraint extraction, are orthogonal to and do not interfere with the atructure

of the base logic.

Partial Proof Irrelevance Constraint extraction defined in Section 3.2 iden-

tifies all proofs that are performed within the base logic. Thus, the base logic is

Chapter 7. Conclusion 224

proof irrelevant, which is very useful for efficiency of implementation since only

proofs in the first-order extension of lax logic need to be stored. Through varia-

tion in formulating a specification the user has some control over how much of a

proof is in the base logic and how much is in lax logic.

Parametric Base Logic The definition of the base logic in Section 3.1.1 and

3.1.2 only nails down minimal requirements. Thus, lax logic need not be seen as

a particular and fixed logic but·rather as a method for extending one's favourite

predicate logic so as to accommodate constraints and approximate specifications.

Unorthodox <> modality The operator <> enjoys rather strong properties

which appear unorthodox for a modality of possibility. The objectionable prop-

erty is the fact that in rule <>F, which serves to put Os around hypotheses and the

assertion of a sequent, we allow an arbitrary context of passive hypotheses. As

shown in Section 5.1 this precludes a classical interpretation of <>. lt was seen in

Section 4.1.4 that this strong <>Frule, or equivalently the rule OF* (cf. page 134),

was the essential key in verifying the synchronous modulo-2 counter.

7 .1 Furt her Research

This thesis suggests three natural directions for further research, relating to the

implementation, application, and meta-theory of lax logic.

7.1.1 Implementation

In order to assess its practical importance it will be necessary to implement lax

logic on a computer and test it on !arger case studies.

An early version of lax logic, reported in (Men9la), has been implemented

in the interactive proof editor LEGO (LP92) and simple verification examples

such as the modulo-2 counter have been performed using it. In this prototypical

implementation the modal operator <> is encoded using the E types (Luo91) and

Chapter 7. Conclusion 225

type universes (HP91) supported by LEGO. These examples are however too

simple to test the logic's utility for non-academic verification problems. That

implementation with its naiveencoding of OM as l}y: Prop.7 ::> M is insufficient

for two reasons: lt is not faithful to the intended interpretation of lax logic as

laid down in this thesis, since equivalences like OM V ON~ O(M V N), which

are valid by constraint extraction, cannot be derived in it. Also, since OM is

no longer a proposition in Prop but in Typeo (at least), the encoding of the

logic has to take place in the predicative type levels. Hence it makes essential

use of LEGO's implicit type inference for universe levels which is an unnecessary

type-theoretic complication.

Clearly, much work is left to be done here. LEGO has proven to be a con-

venient and flexible environment for experimenting with prototype logics and

a more adequate implementation of lax logic in LEGO should be sought. Al-

ternatively, an implementation on top of other verification systems should be

investigated tliat are tailored to the needs of hardware design, and provide the

necessary infrastructure to rnn !arger examples. In particular, LAMBDA (FM89)
and VERITAS (HDL89) seem to be promising candidates. In LAMBDA the possi-

bility of programming complex refinement tactics would permit the automation

of !arge portions of constraint analysis and verification for specific circuit design

styles like synchronous or speed-independent circuits. Although LAMBDA does

not have an explicit notion of proof, its flexible meta-variables could be used to

accumulate constraint information.

7.1.2 Application Areas

To prepare for realistic applications a particular area of application needs to

be picked and its characteristic constraints investigated. The natural area is

synchronous hardware design where on could examine the following classes of

timing constraints:

• setup and hold times for input signals

Chapter 7. Conclusion 226

• maximum duration and minimal separation of active clock phases

• lower bounds on sampling times when the circuit is known to have assumed

a defined state after power-on time.

In the context of synchronous circuits it would be interesting to consider more

than one clock signal and negative delays for reasoning about retiming, which

crucially relies on the third type of the constraints above.

As an interesting long-shot application for this research we envisage the inte-

gration of the interactive synthesis of speed-independent circuits (SICs) and syn-

chronous circuits (SYCs) within one homogeneous framework employing suitable

ahstraction functions and conesponding timing constraints. Such a framework,

which will crucially benefit from systematic handling of constraints, should he

capable of handliug a hierarchy of descriptions comprising two-phase SICs, four-

phase SICs, SYCs with single clock, and SYCs with multiple clocks.

7.1.3 Meta-Theory

We suggest several possibilities to develop further the meta-theory of lax logic.

Lifting Theorems

Theorem 3.1.17 states that if a formula is provahle in lax logic, then its projection

into the base logic (i.e. all Os and ts removed) is provable, too. We noted that

in general the converse is false. An interesting question with immediate practical

relevance is to characterize special cases in which the converse does hold, and

to find systematic ways of lifting theorems in the base logic to theorems in lax

logic. For instance, we conjecture, provided the base logic does not contain

propositions and rules other than those defined in this thesis, that every theorem

rjJ of the base logic becomes a theorem in lax logic by prefixing its atomic parts

by Ot; further, if </J' is this lifted formula then a proof of </J' can he ohtained

constructively from every proof of </J. Whether all these lifted proofs are optimal,

or maximal, constraintwise is a separate issue which needs to he investigated.

Chapter 7. Conclusion 227

Ordering 011 Proofs

The process of extracting constraint information comes down to a notion of ex-

plicit proofs for sequents in lax logic. To denote that a term c : IMI is the

constraint information extracted from some derivation of l- M we may write

l- c : 111. The extraction rules then can be translated easily into a correct and

complete calculus for deriving instances of this new form of judgement.

Constraint analysis in our framework is proof analysis. lt appears natural to

introduce an ordering on proofs, written c b d : M, say, expressing that constraint

information c is 'stronger' than d. lntuitively, one would expect that c b d : M

holds if there is a. proof of M• c from M• d. Such an ordering is a natural concept

since constraint analysis then amounts to extracting the constraint information

d from a derivation of M, replacing it by a stronger constraint c, and proving

c b d : 111. Also, the ordering measures the extent to which formula M has been

proven.

Let us make this more concrete. Consider a proof f : i 4' :::> 0 i 'l/J. By

definition, f is a constraint term of type 1 => (n" x 1) such that 4' :) 'Y :::> 1"
is derivable in the base logic, where 1 =elf n(11'1(/•)) is the hidden constraint

constructed by f. Performing constraint ana.lysis on f means replacing 'Y by

some other, perhaps simpler, assumption 1'. The condition under which this is

possi ble is that

(7.1)

holds, i.e. t' together with t/J is stronger than 'Y· In the extreme case where -y'

is to be the weakest possible assumption, namely 'Y' = true, this amounts to

proving 'Y from t/J. Given that the hidden assumption 'Y is an input constraint of

a hardware device this will only be possible if (J contains complete information

about the environment of the device: showing t$ 1- 1 amounts to proving tha.t

the environment satisfies the input constraints. The typical case, however, will

be that t$ merely describes parts of a complete circuit in which case only parts

Chapter 7. Conclusion 228

of "'f will follow from </> while other parts have to be retained in "Y'· Formally, if

"'f1 = n(7r1{f' *)), then (7.1) is equivalent to the condition

or, if this is takeu to define G, the condition

The properties of G , assuming an appropriate definition, should be explored

and axiomatized in a conect and, if possible, complete way. One would like to

show that if t- c : M and c is maximal for G, i.e. c is a 'weakest' constra.int,

then M has been proven properly, i.e. there is a. proof of M' in the base logic,

where M' is obtained from M by dropping all <>s a.nd ts.

Categorical Models

From the syntactical data of lax logic we construct in Section 5.2 a first-order hy-

perdoctrine with some additional structure for an arbitrary notion of constra.int.

For the concrete notion of constraint (0*, [), @) the resulting categorical model

was showu to capture constraint extraction. More generally, future research

should investigate the dass of hyperdoctrines with

• a strong monad in each fibre that is preserved by translations, together

with

• a reflective sub-hyperdoctrine (viz. the ba.se logic) which is represented by

a <listinguished ob ject n in the ba.se

as the intende<l semantical characterization of lax logic. lt may be asked whether

lax logic is complete wrt. this dass, or what the relationship is between this dass

and the subclass of hyperdoctrines induced by the syntactic calculus together

with a concrete notion of constraint.

Chapter 7. Conclusion 229

Specialization to Other Notions of Constraint

In this thesis we are concerned mainly with a very abstract notion of constraint.

The formal treatment, however, is developed independently from the notion of

constraint and as indicated brießy at the beginning of Chapter 3 other notions can

be considered. In fact, for a particular well-defined application more constraint-

handling potential can be built in by specializing to the characteristic constraints

of the application. For verifying synchronous circuits a simple idea might be to

take as constraints natural numbers, denoting upper and lower bounds, and to

interpret the operation · on constraints as maz or min, depending on the type

of constraints involved.

Generalization to Higher-Order Logic

Another direction of meta-theoretic research is to attempt to extend lax logic

by higher-order quantification. As was noted before in Chapter 6 this requires

adding dependent types to the object language.

7.2 Open Problems

There are some technical deficiencies associated with the framework of lax logic

as laid out in this thesis, which still need to be tackled.

The I<ripke semantics in Section 5.1 was shown to be incomplete for the

propositional fragment of lax logic. The question might be answered eventually

whether there is a modification which is complete. lt seems clear that one would

have to consider two 'independent' frame relations !;; and !;0 , where the first

is used for intuitionistic implication and the latter for 0. Also, it might be

necessary to add axioms

Ofalse :::> false O(MV N) :::>OMVON

to the logic. These fonnulae would be valid in the Kripke models (provided truth

of V is decided locally) and also for constraint extraction but apparently they are

Chapte1· 7. Conclusion 230

not provable in lax logic. Also, an extension of the Kripke analysis covering full

lax logic is missiug.

In the categorical semantics of Section 5.2 not all features of lax logic have

actually bccn covcred. What is omitted is a categorical account of inductive data.

types such as natural numbers and lists, and also of equality.

The examples trcated in Chapter 4 introduce constraints by referring to the

global hypothesis let 's-not-bother. In the context of this hypothesis arbitrary

subgoals of form Oup can be solved by brute force. In the logic as it sta.nds no

measures are taken to control this use in any way, which means essentially that

the user can make his job very easy_ by resorting to let 's-not-bother early on in a

proof. For instauce, a verification engineer pressed for time might deal with the

decremeutor

/et 's-11ot-bother 1- Vn. Ot(succ(dec n) = n)

by applying V 1 and then using /et 's-not-bother immediately to prove the spec-

ification Ot(succ(decn) = n), which of course means that he has not done

any verification work at all. This is revealed by the extracted constraint term

.\n. ((succ(decn) = n), *), which shows that the whole proof obligation merely is

pushed into the constraint. Notice, the potential for such a thing to happen is

indicated already by the hypothesis let 's-not-bother in the lax proof: If there is

no hypothcsis let 's-not-bother there is no problem either.

Thus, so far there is no guarantee that there is an upper bound on the strength

of a constraint. The open question is whether it is possible, within a restricted

proof environment, to get proper control over the constraints introduced. For

synchronous systems and minimal clock period as the constraint, for instance,

one might imagine a specialized sub-logic that exploits the fact that for every

circuit there is a minimal clock period beyond which it operates correctly.

l

Bibliography

[And86} P. B. Andrews. An Introduction to mathematical logic and type theory:

To frulh through proof Academic Press, 1986.

[BC88} C. Berthet and E. Cemy. Verification of asynchronous circuits: Be-

haviours, constra.ints, and specifications. In G. Birtwistle and P. Sub-

rahrnanyarn, editors, VLSI Specification, Verification, and Synthesis,

pages 385-404. Workshop on Hardware Verification, Kluwer Academic

Publishers, 1988.

(BJ83] J. C. Banos and B. W. Johnson. Equivalence of the arbiter, the syn-

chronizer, the latch, and the inertial delay. IEEE Transactions on

Com1>ute1·s, C-32(7):603-614, July 1983.

(BM92) R. M. Burstall and J. H. McKinna. Deliverables: a categorical ap-

proach to prograrn developrnent in constructions. Technical Report

ECS-LFCS-92-242, Edinburgh University, Department of Computer

Science, 1992.

(füz76] Y. Brzozowsky. Digital Networks. Prentice-Hall, 1976.

[Bus91] H. Busch. Proof-based transformation of formal hardware models. In

M. Sheeran and G. Jones, editors, Proceedings of the Workshop on

Designing Correct Circuits. Springer Verlag, 1991.

[BW90) M. Barrand C. Wells. Category Theory for computing Science. Pren-

tice Hall, 1990.

231

Bibliograpliy 232

[CH88) Th. Coquand and G. Huet. The Calculus of Constructions. Informa-

tion a11d Computation, 76:95-120, 1988.

[Che80J B. Chellas. Modal Logic. Cambridge University Press, 1980.

[Chu40) A. Church. A formulation of the simple theory of types. Journal of

Symbo/ic Logic, 5:56-68, 1940.

(Cur52] H. B. Curry. The elimination theorem when modality is present. Jour-

nal of Symbolic Logic, 17:249-265, 1952.

(Cur57] H. B. Curry. A Theory of Formal Deducibility, volume 6 of Notre Dame

ilfathematical Lectures. Notre Dame, Indiana, 1957.

(Dav88) Druce S. Davie. A formal hierarchical design and validation method-

ology for VLSI. PhD thesis, Edinburgh University, Department of

Computer Science, October 1988.

(DM88) D. S. Davie and G. J. Milne. Contextual constraints for design and

verification. In G. Birtwistle and P. Subrahmanyam, editors, VLSI

Specification, Verification, and Synthesis, pages 257-265. Workshop

on hardware verification, Kluwer Academic Publishers, 1988.

(Fle80] W. I. Fletcher. An engineering approach to digital design. Prentice-

Hall, Englewood Cliffs, N.J., 1980.

[Fl\189) M. Fourman and E. M. Mayger. Formally based system design - lnter-

active hardware scheduling. In G. Musgrave and U. Lauther, editors,

Proceedings of the IFIP TC 10/WG 10.5 International Conference on

VLSI, Munich, pages 101-112, 1989.

(Fou89] M. P. Fourman. The logic of topoi. In J. Barwise, editor, Mathematical

Logic, pages 1053-1090. North-Holland, 1989.

Bi bliog1·aphy 233

(Gor85) M. J. C. Gordon. HOL: A machine oriented formulation of higher

or<ler logic. Technical Report 68, University of Cambridge, Computer

Laboratory, July 1985.

(Gor88J M. J. C. Gordon. HOL: A proof generating system for higher-order

logic. In G. Birtwistle and P. Subrahmanyam, editors, VLSI Specifi-

cation, Verification, and Synthesis, pages 73-128. Workshop on Hard-

ware Verification, Kluwer Academic Publishers, 1988.

(HD86J F. K. 1-Ianna and N. Daeche. Specification and verification using higher

order logic: A case study. In G. M. Milne and P. A. Subrahmanyam,

editors, Formal Aspects of VLSI design, Proc. o/ the 1985 Edinburgh

conf on VLSI, pages 179-213. North-Holland, 1986.

(HDL89] F. K. Hanna, N. Daeche, and M. Longley. VERITAS+:a specification

language based on type theory. In Proc. Conf on Hardware Specifica-

tion, Verification and Synthesis, Corne// University, July 1989.

[Hen50) L. Henkin. Completeness in the theory of types. Journal of Symbolic

Logic, 15(2):81-91, June 1950.

[Her88a) J. Herbert. Formal verification of basic memory devices. Technical

Report 124, University of Cambridge, Computer La.boratory, February

1988.

[Iler88b) John Herbert. Tempora! abstraction of digital design. In G. Milne,

e<litor, The Jusion of hardware design and verification, pages 1-25,

University of Strathclyde, Glasgow, Scotland, July 1988. IFIP WG

10.2.

[HN89a) S. I-Iayashi an<l H. Nakano. PX, A Computational logic. MIT press,

1989.

[HN89b) S. H. Hwang and A. R. Newton. BEAVER: a behavioral formal verifier

for VLSI design. In L. Claesen, editor, Applied formal methods for

Bibliograpl1y 234

co1-rect VLSI design, pages 605-624. Elsevier Science Publishers, B.V.

North Holland, 1989.

[HP91) R. Harper and R. Pollack. Type checking, universe polymorphism,

and typical ambiguity in the calculus of constructions. Theoretical

Computer Science, 1991.

(JS90)

[KS74)

G. Jones and M. Sheeran. Circuit design in ruby. In J. Staunstrup,

editor, Formal methods for VLS!design, pages 13-70. North-Holland,

1990.

G. M. Kelly and R. Street. Review of the elements of 2-categories.

In G. M. Kelly, editor, Proc. Sydney Category Theory Seminar, pages

75-103. Springer, 1974.

[Law69] F. W. Lawvere. Adjointness in founda.tions. Dialectica, 28:281-296,

1969.

[LBC88) M. Langevin, C. Berthet, and E. Cerny. Vecification of input con-

straints for synchronous circuits. In G. Milne, editor, The fusion of

hardware dcsign and verification, pages 137-155, University of Strath·

clyde, Glasgow, Scotland, Ju)y 1988. IFIP WG 10.2.

(LP92)

[LS86J

Z. Luo and R. Pollack. LEGO Proof Development System: User's

Manual. LFCS Report ECS-LFCS-92-211, Department of Computer

Science, University of Edinburgh, 1992.

J. Lambek and P. J. Scott. Introduction to higher order categorical

logic. Cambridge University Press, 1986.

(Luo91) z. Luo. A higher-order calculus and theory abstraction. Information

and Computation, 90(1):107-137, 1991.

[Mar86] L. R. Marino. Principles of compute1· design. Computer Science Press,

Rockwell, 1986.

Bibliography 235

[McK92) J. H. McKinna. Deliverables: A categorical Approach to Program De-

velopment in Type theory. PhD thesis, University of Edinburgh, 1992.

[Mel88) Thomas F. Melham. Abstraction mechanisms for hardware verifica-

tion. In G. Birtwistle and P. Subrahmanyam, editors, VLSI Specifica-

tio11, Ve1·ification, and Synthesis, pages 267-292. Workshop on Hard-

ware Verification, Kluwer Academic Publishers, 1988.

(Men91a) M. Mendler. Constrained proofs: A logic for dealing with be-

ha.vioural constraints in forma.! hardware verification. In G. Jones

a.nd M. Shceran, editors, Proceedings of the Workshop on Designing

Correct Circuits, pages 1-28. Springer Verlag, 1991.

[Men9lb) M. Mendler. A first-order logic of designs. Talk given at the Workshop

011 Categorica.l Methods in the Semantics of Programming Languages,

University of Glasgow, April 11-13 1991.

(Mog89] E. Moggi. Computational la.mbda-calculus a.nd monads. In ,/th IEEE

Conf. L/CS, 1989.

(Pit89] A. Pitts. Notes on ca.legorica.l logic. Leclure Notes, University of

Cambridge Computer Laboratory, Lent Term 1989.

[PM89) Ch. Paulin-Mohring. Extracting F.., progra.ms from proofs in the cal-

culus of construction. In Proceedings 16th ACM Symposium on POPL,

pages 89-10•1, 1989.

[Pra65) Dag Prawilz. Natural Deduction. A Proof Theoretic Study, volume 3

of Stockholm Studies in Philosophy. Almquist & Wiksell, 1965.

(PS86) G. Plotkin and C. Stirling. A framework for intuitionistic modal logics.

ln Thcoretical aspects of reasoning about knowledge, pages 399-406,

Monterey, 1986.

Bibliograpliy 236

(See83J R. A. G. Seely. Hyperdoctrines, natural deduction and the beck condi-

tion. Zeitschrift für mathematische Logik und Grundlagen der Mathe-

matik, 20:505-542, 1983.

(Sub88a) P. A. Subrahmanyam. Contextual constraints, temporal abstraction,

and observational equivalence. In G. Milne, editor, The fusion of hard-

wa·re design a11d verification, pages 156-182, U niversity of Strathclyde,

Glasgow, Scotland, July 1988. IFIP WG 10.2.

(Sub88b) P. A. Subrahmanyam. Towards a framework for dealing with sys-

tcm timing in very high level silicon compilers. In P. Subrahmanyam

G. Birtwistle, editor, VLSI Specification, Verification, and Synthesis,

pages 159-215. Workshop on Hardware Verification, Kluwer Academic

Publishers, 1988.

[TBG89] A. Tarlecki, R. M. Burstall, and J. A. Goguen. Some fundamental

algebraic tools for the semantics of computation. part 3: lndexed cat-

egories. Interna! Report ECS-LFCS-89-90, Edinburgh University, De-

partment of Computer Science, 1989.

[Tra87) Niklas Traub. A formal approach to hardware analysis. PhD thesis,

Edinburgh University, Department of Computer Science, March 1987.

[TvD88] A. S. Troelstra and D. van Dalen. Coristructivism in Mathematics.

North-Holland, 1988.

(Ung69] S. H. Unger. Asynchro11ous seque11tial switching circuits. Wiley-

]nterscience, New York, 1969.

[Wei86] D. W. \\leise. Fonnal multilevel hierarchical verification of synchronous

MOS VLSI. PhD thesis, Massachusetts Institute of Technology, 1986.

(Wei90] D. Weise. Multilevel verification of MOS circuits. IEEE Transactions

011 Computer-Aided Design, 9(4):341-351, April 1990.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28
	Seite 29
	Seite 30
	Seite 31
	Seite 32
	Seite 33
	Seite 34
	Seite 35
	Seite 36
	Seite 37
	Seite 38
	Seite 39
	Seite 40
	Seite 41
	Seite 42
	Seite 43
	Seite 44
	Seite 45
	Seite 46
	Seite 47
	Seite 48
	Seite 49
	Seite 50
	Seite 51
	Seite 52
	Seite 53
	Seite 54
	Seite 55
	Seite 56
	Seite 57
	Seite 58
	Seite 59
	Seite 60
	Seite 61
	Seite 62
	Seite 63
	Seite 64
	Seite 65
	Seite 66
	Seite 67
	Seite 68
	Seite 69
	Seite 70
	Seite 71
	Seite 72
	Seite 73
	Seite 74
	Seite 75
	Seite 76
	Seite 77
	Seite 78
	Seite 79
	Seite 80
	Seite 81
	Seite 82
	Seite 83
	Seite 84
	Seite 85
	Seite 86
	Seite 87
	Seite 88
	Seite 89
	Seite 90
	Seite 91
	Seite 92
	Seite 93
	Seite 94
	Seite 95
	Seite 96
	Seite 97
	Seite 98
	Seite 99
	Seite 100
	Seite 101
	Seite 102
	Seite 103
	Seite 104
	Seite 105
	Seite 106
	Seite 107
	Seite 108
	Seite 109
	Seite 110
	Seite 111
	Seite 112
	Seite 113
	Seite 114
	Seite 115
	Seite 116
	Seite 117
	Seite 118
	Seite 119
	Seite 120
	Seite 121
	Seite 122
	Seite 123
	Seite 124
	Seite 125
	Seite 126
	Seite 127
	Seite 128
	Seite 129
	Seite 130
	Seite 131
	Seite 132
	Seite 133
	Seite 134
	Seite 135
	Seite 136
	Seite 137
	Seite 138
	Seite 139
	Seite 140
	Seite 141
	Seite 142
	Seite 143
	Seite 144
	Seite 145
	Seite 146
	Seite 147
	Seite 148
	Seite 149
	Seite 150
	Seite 151
	Seite 152
	Seite 153
	Seite 154
	Seite 155
	Seite 156
	Seite 157
	Seite 158
	Seite 159
	Seite 160
	Seite 161
	Seite 162
	Seite 163
	Seite 164
	Seite 165
	Seite 166
	Seite 167
	Seite 168
	Seite 169
	Seite 170
	Seite 171
	Seite 172
	Seite 173
	Seite 174
	Seite 175
	Seite 176
	Seite 177
	Seite 178
	Seite 179
	Seite 180
	Seite 181
	Seite 182
	Seite 183
	Seite 184
	Seite 185
	Seite 186
	Seite 187
	Seite 188
	Seite 189
	Seite 190
	Seite 191
	Seite 192
	Seite 193
	Seite 194
	Seite 195
	Seite 196
	Seite 197
	Seite 198
	Seite 199
	Seite 200
	Seite 201
	Seite 202
	Seite 203
	Seite 204
	Seite 205
	Seite 206
	Seite 207
	Seite 208
	Seite 209
	Seite 210
	Seite 211
	Seite 212
	Seite 213
	Seite 214
	Seite 215
	Seite 216
	Seite 217
	Seite 218
	Seite 219
	Seite 220
	Seite 221
	Seite 222
	Seite 223
	Seite 224
	Seite 225
	Seite 226
	Seite 227
	Seite 228
	Seite 229
	Seite 230
	Seite 231
	Seite 232
	Seite 233
	Seite 234
	Seite 235
	Seite 236
	Seite 237
	Seite 238
	Seite 239
	Seite 240
	Seite 241
	Seite 242
	Seite 243
	Seite 244
	Seite 245

