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Figure 1: The proposed visualization approach showing trains scheduled using a reinforcement learning approach. The interface consists of:
(a) an episode selection panel, (b) a timeline view, (c) a map view, and (d) a graph view. Hovering over a region in the map view highlights in the
timeline view the trains that visited the region (yellow background for highlighting, gray rectangles show the visit duration).

ABSTRACT

Multi-agent systems require coordination among the agents to solve
a given task. For movement on fixed-track networks, traditional
scheduling algorithms have dominated so far, but the interest in
autonomous and intelligent agents is growing as they promise to
react to unexpected and exceptional situations more robustly. In this
paper, we study data from the Flatland 2020 NeurIPS Competition,
where trains move through a virtual rail network. We developed a
timeline-based visualization that provides an overview of all train
movements in a simulated episode, clearly hinting at different phases,
non-optimal routes, and issues such as deadlocks. This view is
complemented with a map view and a graph view, interactively
linked through highlighting and synchronous animation. Defining
regions of interest in the map builds an analysis graph for detailed
inspection. A comparison mode allows contrasting two different
episodes regarding the same rail network across all views. We have
conducted this application study in close collaboration with the
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Flatland community. Identified analysis goals stem from interviews
with key persons of the community, while the approach itself was
developed in two iterations based on feedback from experts with
diverse backgrounds. This feedback, together with an analysis of the
winning submissions from the competition, confirms that the initial
analysis goals can be answered.

Keywords: Multi-agent systems, scheduling, visual comparison,
spatio-temporal analysis.

1 INTRODUCTION

Multi-agent systems solve complex problems by having autonomous
entities (agents) interact with each other [10, 17, 22]. According
to a recent survey [10], city and build environments form a major
application area, for instance, to simulate and anticipate future traffic
behavior (e.g., [12, 23]) or to optimize scheduling (e.g., [6, 9]). In
such use cases, coordination between agents is of utmost importance
to avoid collisions and to optimize route selection. Visualizations
that enable the spatio-temporal analysis of multi-agent scheduling
and movement can help to understand the agents’ actions, their in-
terdependence, and the coordination between them, in turn, helping
to optimize agent behavior.

In our work, we focus on visually analyzing movement and
scheduling behavior in an environment where the agents are con-
strained by a fixed-track network. While we study a simulation, in
reality, the fixed tracks can be a physical delimiter such as a rail, or
a virtual track that the agents must not leave (e.g., robots moving
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in a warehouse). More specifically, we base our approach on the
Flatland environment [15], a testbed for developing agents that act
as trains in rail networks. The goal is to schedule trains to reach
their target destinations within minimum travel time. We designed
our approach to meet analysis goals elicited in interviews with three
domain experts. We developed it in two iterations, where the first
version was used to gather feedback from experts with different
backgrounds. We then refined the approach and finally used it to
analyze data from the Flatland 2020 NeurIPS Competition.

Figure 1 shows the developed visualization approach on a selected
episode (i.e., one run of the Flatland simulation on one fixed-track
network using a specific scheduling algorithm). A train’s journey
is represented in a row of the timeline view (Figure 1b). Important
events such as start and end times, junctions crossed by a train, move-
ments, and different issues such as deadlocks are also encoded in the
respective rows. The map view (Figure 1c) shows the rail network
of the selected episode and allows defining regions of interest. Each
region becomes a node and movements between the regions are
depicted as links in the node-link graph (Figure 1d). Based on the
expert feedback, we extended our approach to visually compare two
selected episodes run on the same fixed-track network (Figure 3).

In summary, our contribution is an application study proposing
a visual analytics approach with linked views and interactions to
support (i) an in-depth exploration of agent coordination behavior
in a selected episode and (ii) visual comparison across two selected
episodes. We developed the approach in close collaboration with
the Flatland community and other experts, as well as tested the
approach through a realistic application example. The supplemen-
tary material [2] includes the prototype of the approach1, a video,
supplementary figures and tables, the video and questionnaire used
to collect expert feedback, and their respective responses.

2 RELATED WORK

As indicated by state-of-the-art survey papers [3, 20], many visual-
izations have been proposed to analyze mobility and transportation.
While real-world traffic (e.g., cars on road network) shares similar
properties to our scenario, the analysis goals are usually different,
for instance, to study traffic congestions [7] or explore traffic at-
tributes [11, 25]. Insights regarding these goals help to modify the
network for efficient traffic flow. In contrast, we aim to understand
the movement behavior of agents in fixed-track networks to improve
their scheduling. Although we are not aware of any visual analytics
approach for studying movement in such networks, we find related
approaches for visualizing other multi-agent scenarios, visualiza-
tions of transit schedules, and visually abstracted movement.

To trace the movement of individual agents, timeline visualiza-
tions are common. For instance, Cummings and Mitchell [8] propose
a glyph-based timeline visualization for human operators to monitor
the live status of multiple unmanned vehicles (robots), where the
movement schedule for each vehicle was already planned. Gener-
alizing further, VizScript [13] generates timeline visualizations for
complex multi-agent systems. However, unlike our approach, it does
not convey the effect of important events on other agents, e.g., dead-
locks. Most similar to our approach is MOSAIC Viewer [5], which
proposes a timeline visualization to show the activities of each agent
in an individual row, together with a graph representing each agent
as a node and communication links between them as edges. How-
ever, MOSAIC Viewer focuses on investigating the agents’ activities
when they are not synchronized in their worldviews.

To visually investigate collective movement behavior, heatmaps
can be used. For instance, Suarez et al. [21] presented a research plat-
form for simulating large-scale multi-agent combat and navigation
policies. The platform comes bundled with several heatmap-based
visualizations to help understand the learned policies. In our ap-
proach, we also use a heatmap to show the collective movement

1also hosted at: https://s-agarwl.github.io/fv

Figure 2: A sample map of the Flatland environment.

behavior of a selected scheduling technique as an overview, but
allow further exploration with abstraction and linked interactions.
We also extend the heatmap to show the differences in movement
behavior between two scheduling techniques.

The Marey graphs, dating back to the 19th century, is a classical
example that shows transit schedules by plotting distance against
time (cf. [14]). More recently, Palomo et al. [19] proposed a visual
analytics system to assist in analyzing transport schedules and detect
potential deficiencies, which extends Marey graphs for showing
large numbers of trips. Related to this, Xu et al. [28] extended
Marey graphs for analyzing manufacturing processes, specifically
assembly line performance, also making adaptions for visualizing
large-scale data. However, Marey graphs are not applicable in our
case: They are appropriate for visualizing the movement with respect
to a single line (i.e., one route in the network), but cannot visualize
the movement of several trains in a complex network at once.

To reduce visual clutter when showing all movements between
places or regions, some visualizations have been proposed to repre-
sent origin–destination flows in a more abstract way. For instance,
Zeng et al. [29] used an adapted Sankey diagram to represent the
flow. Similarly, Andrienko et al. [4] proposed a spatio-temporal
abstraction of the origin–destination movement data and a diagram
map representation including a glyph-based design of nodes without
showing any links. In our approach, we also abstract the move-
ment between regions and represent it as a node-link graph. The
abstracted graph representation can also be considered as a form of
mobility graph as introduced by von Landesberger et al. [27], that
is, a node-link diagram that shows the movement between semantic
places. While mobility graphs focus on representing aggregated
movement behavior, our aim is to enable a detailed analysis of
individual agents.

3 THE Flatland ENVIRONMENT

Flatland [15] is an open source project and simulates the train
scheduling on different maps of rail networks. Each map is a 2D
grid consisting of railway tracks on which the trains can travel, and
stations as destinations for the trains (Figure 2). Different levels
exist that vary in the grid size, the number of stations, and trains
to be scheduled. Within each level, different maps are produced
that differ in the rail network layout and rate of malfunctions among
trains. In a map, each train has a starting position on a track and
a station as destination. The trains do not have intermediate stops
on their journey. Trains travel at a constant speed of one tile per
timestep and cannot move backwards. No two trains can be present
on the same tile of the grid at the same timestep. The challenge is to
schedule and steer the trains so that they reach their destination in
minimum time. An episode in Flatland is one run of a scheduling
technique on a map. Each episode has a maximum time limit, which
scales with the size of the map and after which the episode ends,
even if some trains are still on track. Also, trains can randomly
experience malfunctions during the episode, which restricts their
movement for some time.
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In machine learning terminology, each train is modeled as an
agent. Hence, it becomes a multi-agent scheduling problem, where
agents need to collaborate and come up with an optimized schedule
while handling malfunctions at runtime. The environment supports
customization of agent observations (i.e., what each train sees in
the rail network), which is crucial for agents to make decisions
during runtime. To advance machine learning research, two Flatland
competitions have been organized (in 2019 and 2020 at the AMLD
and NeurIPS conferences).

While developing a scheduling technique for Flatland, the ex-
perts need to analyze the paths followed by the trains and discover
issues (e.g., situations leading to a deadlock) to fine-tune the tech-
nique and improve its performance. Usually, the experts rely on
watching episode playbacks, which is inefficient or can be incon-
clusive due to several key challenges. First, in Flatland, the effect
of errors or suboptimal agent decisions are only often visible much
later in the episode. Remembering and linking the decisions of
each agent to their effect becomes difficult in the playback. Second,
understanding agent coordination behavior in Flatland is crucial for
further improvement of the scheduling technique, which, however,
can hardly be monitored in the playback. Currently, the experts rely
on performance statistics (e.g., percentage of trains that reached their
destination) as a proxy for agent coordination behavior. However,
it is insufficient, as they do not help the experts to understand and
improve the qualitative aspects of coordination behavior on global
and local areas of the network. Third, the experts need to identify
unusual agent behavior within the context of the network (e.g., for-
mation of a long queue due to an agent waiting on a single track
connecting distant stations). While individual issues like these might
surface when watching the playback, it requires stepping back and
forth to recontruct their history, whereas other related issues might
stay unnoticed. Fourth, a detailed comparison of alterante schedul-
ing approaches, even on the same map, is impractical as two videos
are difficult to watch at the same time and, watching them one after
the other, requires high cognitive effort to remember relevant details
for comparison.

4 ANALYSIS GOALS

Before designing our approach, we conducted interviews with Flat-
land experts to understand their information needs regarding the
visualization of single episodes. We interviewed three experts (E1
to E3), with each interview taking about 30 minutes. E1 had a main
role in organizing the Flatland competitions and provides technical
support for participants. E2 was affiliated to the Swiss Federal Rail-
ways (SBB – Schweizerische Bundesbahnen, a Flatland partner)
and analyzed the scheduling behavior of trains in Flatland, as well
as substantially contributed to the code base of the environment. E3
is an artificial intelligence professional affiliated with the German
railway company Deutsche Bahn (DB), also a Flatland partner, and
explored agent-based scheduling techniques in Flatland. Based on
the interviews, we derived five specific analysis goals (G1 to G5).

First, all experts wanted to obtain an overview of the schedules
of individual trains in the episode (E1, E2, and E3). Expert E1
highlighted the need to analyze junctions crossed by a train (as
they are crucial locations for making a decision), occurrence of
malfunctions, and deadlock events. E1 and E3 also stressed the
importance of statistics (e.g., number of trains that reached the
destination). The need to focus on trains that did not reach their
destination was mentioned by E2.

G1 – Overview of Schedules: Get an overview of events
and actions (e.g., departure time, junctions crossed, movement,
etc.) for each agent. Also, inspect important statistics for an
individual episode.

E2 highlighted the need to analyze the use of resources in the rail
network, for example, finding out the busiest routes in the network.

E3 used specific environments to judge the scheduling behavior
through resource utilization of a scheduling technique where the
best-case scenario is known beforehand. The expert mentioned
relying on playback, focusing on a lower number of trains, and
observing the behavior by following individual trains.

G2 – Resource Utilization: Analyze the utilization of re-
sources in the network: tracks connecting distant places, crit-
ical junctions, and areas with a high number of stations or
unusual agent behavior.

E2 also mentioned the need to assess the efficiency of train sched-
ules, for instance, how delayed trains were in reaching their destina-
tion. Since this assessment needs some reference, the expert usually
compared the actual path of the train with the shortest path, assum-
ing there is no other train in the rail network. E3 also mentioned that
the shortest path plays an important role in deciding rewards, which
is crucial for reinforcement-learning-based scheduling approaches.

G3 – Path Efficiency: Assess the efficiency of the actual
paths taken by agents.

Understanding the cause of issues (e.g., deadlocks, malfunctions,
and bottlenecks) is important to improve a scheduling technique.
E2 highlighted the need to understand what has happened in the
immediate past to investigate the reasons leading to a deadlock.
Adding further, E2 and E3 mentioned that it is important to see how
other trains reacted to these issues and to be able to observe which
areas in the rail network were affected.

G4 – Issues: Investigate the cause and effect of issues, e.g.,
deadlocks, malfunctions, and bottlenecks.

Finally, E1 and E2 highlighted the need to explore scheduling
strategies exhibited by the collective and simultaneous movement be-
havior of a group of trains globally and in local areas. Since Flatland
promotes experimentation with different scheduling techniques (e.g.,
reinforcement learning, operations research, hybrid approaches), the
exploration of scheduling strategies should be model-agnostic. Such
exploration is required to understand whether trains are collaborating
by reacting to the actions taken by other trains, or not. The experts
gave two examples: 1) using parallel tracks for one-way traffic and
2) trains following each other with minimal gaps.

G5 – Scheduling Strategies: Explore the scheduling
strategies through collective and simultaneous movement be-
havior of a group of agents.

An additional requirement resulted from later expert feedback
(cf. Section 6) and was taken into consideration for a revised ver-
sion of the approach. Participants suggested a comparison between
two episodes (different scheduling methods or variants of the same
method) on the same network. Such comparison would help de-
velopers experiment with new ideas and understand the differences
between their approach and past top-performing solutions. It would
also help organizers of the competition to explore and report qualita-
tive differences in the scheduling behavior of different submissions.

G6 – Comparing Schedules: Compare agent schedules,
resource utilization, efficiency, and strategies between two
different episodes.

To better understand the interests of the Flatland community
and observe the setup of the Flatland 2020 NeurIPS Competition,
the first author of the paper—having a background in visualization
research—regularly attended the weekly community meetings held
online for 3 months. Likewise, a person from the Flatland commu-
nity collaborated with us, attended our meetings, and co-authored
the paper.
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Figure 3: Screenshot of the proposed approach comparing the train schedules produced by an operations research technique by team old driver
and a reinforcement learning technique by team jbr hse on a selected Flatland episode (Level 19, Map 2).

5 OUR VISUALIZATION APPROACH

Based on the analysis goals, we propose a visualization approach
to help analyze the train movement behavior in Flatland episodes.
The approach consists of three linked views providing different
perspectives on the train movement data. Figure 1 and Figure 3
shows the full interface of the proposed approach.

The approach was developed in two iterations. We implemented
the first version during the Flatland 2020 NeurIPS Competition and
collected feedback from a diverse group of experts. Based on the
results, the approach was further extended in the second iteration
after the competition ended.

5.1 The Episode Selection Panel
On top of the interface (Figure 1a), a line chart shows the percentage
of trains that reached their destination along various test levels for
each scheduling technique. Since there are several maps in each
level, the line chart shows circles to mark performances on each map
for all levels. A level, map, and a scheduling technique for an episode
can be selected by clicking on the circles in the line chart or via
drop down lists on the left. Once selected, we show statistics about
the number of trains in the episode that needed to be scheduled, the
percentage of trains that reached their destination, and the number
of trains based on their end status ( reached destination, on-
track, and did not start) (G1). For comparing schedules from two
episodes on the same map (G6), we use two colors—blue ( ) and
orange ( )—consistently across the interface to identify the unique
characteristics of the selected scheduling methods in episode A and
episode B, respectively (Figure 3).

5.2 The Timeline View
To provide an overview of an individual episode (G1) and compare
two episodes (G6), we integrate a timeline view (Figure 1b). Posi-
tioned at the left, the timeline view visualizes the trains in different
rows, with time progressing from left to right (Figure 1b1). The
developers usually analyze the trains based on their end status, for
instance, assessing path efficiency of the group of trains that reached
their destination ( ) vs. exploring the reasons behind the group

of trains that started and were still on-track ( ) until the end of
the episode. Hence, in the timeline view, the trains are grouped
according to their end status. Within each group, trains are ordered
based on their starting time.

For each train, we show the important events that occurred during
its journey (G1). The departure of a train is encoded as a black
ring ( ), while a filled gray circle ( ) denotes arrival. Since trains
mainly make route decisions at junctions, we also encode reaching
a junction by a diamond shape ( ). Movement is depicted as a
colored line ( , ). Malfunctions are represented by a colored
cross with a tail ( , ), where the length of the tail denotes the
duration of the malfunction (G4). Aiming to visualize issues in the
movement of trains, we use the only direct agent interactions present
in the data: head-on collisions. We detect simple cases of deadlocks
where trains on a track are moving towards each other, without
having their destinations on tiles of the track between them, and no
alternate routes to pursue. We represent detected deadlock events
(G4) as colored squares ( , ) for individual trains at the position
when the train was blocked and connect it to deadlock events of
other trains involved in the same deadlock via colored horizontal
and vertical lines (cf. last 5 rows in Figure 1b1).

At the right of the timeline, the destination station of each train
is shown in a column, together with statistics of the path taken
(Figure 1b2). Since the origin of trains in the Flatland environment
is not a station but an unlabeled location on a track, we do not
specify the train origin in the timeline view. Furthermore, to assess
the efficiency of a train’s route (G3), we calculate the length of the
actual path taken and compare it with the shortest possible path
between the origin and destination, assuming that all tracks are
available for movement. The actual path length is shown by a
horizontal bar in the color of the respective episode, while the bars
for the shortest path length are colored in green ( , ). For
trains that did not reach their destination at the end of the episode,
the actual path length might be less than the shortest path length. To
avoid confusion, we show the actual path length of trains on track
by an unfilled bar ( , ).



To provide a temporal overview aggregated across all trains (G5),
we include a histogram at the bottom of the timeline view (Fig-
ure 1b3). The height of each bar in the histogram represents the
summed value of a selected metric, aggregated across ten timesteps.
In case of comparison (G6), colored bars extend in opposite vertical
directions with a common horizontal axis ( ). Available met-
rics, which can be selected by clicking on the gear icon ( ), are (i)
distance travelled (default selection), number of trains (ii) depart-
ing, (iii) arriving, (iv) experienced malfunctions, and (v) number of
crossed junctions.

5.3 The Map View
Positioned at the top right of the interface (Figure 1c), the map view
provides a spatial perspective of train movement in the rail network.
Instead of using the original map representation, which contains a
lot of graphical sugar (e.g., irrelevant elements such as trees, cf.
Figure 2), we decided to design a more abstracted representation fo-
cusing on the rail tiles. The stations are labeled (e.g., S1), while each
train is represented by a numbered circle, with a white dot showing
its direction of movement. Since the size of the rail networks in
Flatland episodes can be large, the map view supports zooming and
panning interactions. Movement of trains on the rail network are
shown using animations, which can be enabled through playback
controls at the bottom of the view. To highlight the utilization of each
rail tile (G2), we show on demand the occupancy time as a heatmap
(Figure 1c) on a reddish sequential scale ( ).
When comparing two episodes (G6), occupancy difference distribu-
tion is shown as a heatmap on a sequential scale from blue to orange
( ).

For analyzing utilization of specific resources in the network
(G2) and details of train movements (G5), it becomes important to
focus on specific regions. Since different regions can be of interest
during the exploratory analysis, with different strategies of defining
regions, we opted for a flexible selection of the regions-of-interest.
We provide two modes of the selection in the map view, which can
be activated by the two icon buttons at the left of the view. The first
mode is a rectangular selection through mouse drag ( ). With this,
also, a single tile can be selected as a region by left-clicking. The
second mode selects a clicked rail segment between two junctions
( ). The selected regions are assigned a label and are highlighted
by semi-transparent gray rectangles (Figure 1c). All selected regions
can be cleared by clicking the respective button ( ).

5.4 The Graph View
To analyze movement of agents between selected regions (G5), we
integrate a graph view in our approach. Positioned at the bottom
right of the interface (Figure 1d), it contains a directed node-link
diagram, where a node represents a selected region, while movement
between regions is represented by the links between the nodes. The
size of a node indicates the number of trains that have been in the
corresponding region at least once. A train can move between two
regions multiple times, and the width of a link represents the number
of such transitions across all trains. Regions not traversed by any
train are represented by unfilled circles. The node-link diagram is
drawn using a force-directed layout, where the initial position of the
nodes is set to the position of the selected region in the map view.

Two variants of the graph are selectable. First, the aggregated
graph, as shown in Figure 1d, provides an overview across all
timesteps highlighting the collective movement of agents in a static
visualization. In the comparison mode (G6), as shown in Figure 3d,
a pie chart is drawn inside each node of the aggregated graph to
compare the number of trains in the selected region among the two
episodes. Similarly, a pie chart for each link is added (positioned at
the middle of each link) in order to compare the number of trains
moving between the regions. Second, the animated graph, available
in case only a single episode is selected for analysis, shows the
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Figure 4: Linked interactions across the timeline, map, and graph view.
Hovering highlights (a) an individual train (e.g., Train 009), (b) trains
that visited the selected region (e.g., R1), and (c) trains with a common
destination (e.g., S1) in all the three views.

trains moving between regions for the current timestep. For instance,
an excerpt of an animated graph is shown in Figure 6a. The blue
colored node R3 indicates that there are trains in the corresponding
region, while a small circle on the link from R4 to R3 indicates a
train moving between the regions.

5.5 Interactively Linked Views
With selection of a single episode, it can be played with the play-
back controls below the map view (G3, G4, and G5). This not
only moves the trains on the map view and the graph view (if the
animated graph is active), but also the dark blue time-slider on the
timeline view. Furthermore, we integrate highlighting consistently
across the views as illustrated in Figure 4. Hovering over a train in
any of the views highlights the corresponding row and circles with a
yellow background in all views. For example, in Figure 4a, the row
of Train 009 was hovered in the timeline view, hence, the train was
also highlighted in the map and the animated graph. Accordingly,
hovering over a region in the map or graph view highlights all the
trains that have visited the region. For instance, in Figure 4b, hov-
ering over the rectangular region R1 reveals that nine trains visited
the region. Additionally, a semi-transparent gray rectangle in the
timeline shows the periods spent in the region by the corresponding
train (G2). Hovering over a station label in the timeline or map
view highlights the trains heading to this station (Figure 4c). A
supplemental video [2] demonstrates these interactions.

5.6 Dataset
In the first version, we included the schedules generated by the two
leading reinforcement learning and operations research approaches
at the beginning of the competition. The schedules were on four
different maps of the Flatland environment. Hence, we obtained
data of eight episodes that can be selected by a drop-down list in the
episode selection panel (Figure 1a). The name of an episode reflects
the scheduling technique used: RL for reinforcement learning and
OR for operations research. In the second version, we included the
data from the top four winners of the competition across twenty test
levels, each containing ten maps [24]. Hence, we added the data of
(4×20×10 =) 800 episodes.

6 EXPERT FEEDBACK

We collected expert feedback on the first version of our approach in
a questionnaire study providing the tool online. The first version did
not contain the comparison features (which were added as a result of
the study), the additional dataset from winning submissions, or the
line chart showing summary statistics (Supplementary Figure 1 [2]).
The survey was advertised on the Flatland forum, through social
media and personal email, calling specifically for experts in artificial
intelligence and visualization. For this study, the tool contained data



of eight sample episodes from two scheduling techniques on four
maps of the Flatland environment.

6.1 Questionnaire
At the start of the questionnaire, demographic information of par-
ticipants was gathered such as their self-rated expertise in artificial
intelligence, information visualization, and operations research (on
a 5-point scale anchored by 1 = no knowledge and 5 = expert), and
their background with the Flatland environment (cf. Figure 5b).
Next, the participants were asked to freely explore and familiarize
themselves with the visualization. An optional video explaining
the available features and interactions was also provided to assist in
getting accustomed with the tool. This was followed with questions
regarding insights gained. Participants were invited to name and de-
scribe up to three insights they found most interesting. Specifically,
we also asked them to elaborate on if they found any differences
between reinforcement learning and operations research approaches.
Then, for each of the three views, participants were asked to rate
how useful and complementary to the other views it was on a 5-point
scale anchored by 1 = strongly disagree and 5 = strongly agree as
well as to provide feedback on what they liked and disliked about it.
Next, the survey inquired about the system as a whole, asking to rate
its helpfulness with respect to the analysis goals (cf. Section 4) using
the same scale as above and to reflect what they generally (dis)liked
about it. Lastly, we obtained general feedback for which tasks the
visualization was deemed helpful and if any important information
or features were missing or unnecessary.

6.2 Participants
In total, 12 participants took part. For analysis, we required par-
ticipants to have good knowledge in at least one of the three fields
(artificial intelligence, information visualization, or operations re-
search). Hence, we include only responses from participants who
rated themselves as 4 or higher on our expertise scale in at least one
of the areas, resulting in 10 participants referred to as P1 to P10 in
the following. As shown in Figure 5(a-b), seven participants (P1, P2,
P3, P4, P6, P9, and P10) were experienced in artificial intelligence
(AI), three (P3, P4, and P5) in operations research, and five (P6, P7,
P8, P9, and P10) in information visualization. Six participants had
some background with the Flatland environment, such as helping
in organizing the Flatland competitions (P1, P2, P4, P5, and P6),
participating in the competitions (P3, P5, and P6), or developing
scheduling techniques in the Flatland environment (P1, P2, P3, P4,
and P5).

6.3 Feedback Analysis Results
A summary of the feedback results can be found in Figure 5 (c-k).
In the following, we report the results of feedback analysis along the
structure of the questionnaire.

Insights Discovered: Four experts (P1, P2, P3, P6) reported
observing the occurrence of deadlocks. Two of them (P1, P6) found
it insightful to see the trains linked to a deadlock, and P2 remarked
to have been able to investigate situations in which a deadlock
occurred. P3 liked “that the moment of a deadlock is shown at
the time it becomes inevitable, rather than when the trains actually
stop moving.” P7 used the histograms at the bottom of the timeline
view and observed that the occurrence of malfunctions was spread
over an entire episode’s length. Regarding the efficiency of paths, P1
reported comparing the lengths of the actual path and the shortest
path of the trains. Furthermore, P7 observed that trains with a high
number of junctions in their timeline have a much longer actual path
length than the shortest path. P2 described to “see the density of
traffic over time.”

Strategies for Defining Regions: The experts reported selecting
rectangular regions (P2), single tiles of the grid (P7, P9), and individ-
ual rail segments in different combinations (P7) for further in-depth

exploration. The experts also mentioned some of the important areas
in the railway network that affect the scheduling. These include,
individual stations (P7, P9), dense area with many junctions (P3)
or nearby stations (P2), long single railway lines (P3), and single
tracks at central positions (P1). An expert (P9) elaborated on using
the heatmap to identify the most occupied parts of the network and
selected them as regions.

Differences in Scheduling Behavior: Four experts (P6, P7, P8,
P9) reported that, unlike the reinforcement learning solution, train
schedules from the operations research had no deadlocks. Hence,
the latter approach is able to schedule all the trains to their des-
tination station (P6, P7, P8, P9). Highlighting a key difference
between the two approaches, two experts (P3, P6) mentioned that
the operations research approach shows a clear pre-planning of train
paths until their destination. In addition, four experts (P1, P7, P8,
P9) mentioned that the starting times in the train schedules of the
reinforcement learning approach are spread across the entire episode
length. P9 also reported that trains cross fewer junctions in the
reinforcement learning approach.

Timeline View: Experts reported that they liked the timeline
view as it provides an overview (P7, P10) and contains necessary
information such as start/end events and duration of train movements
(P8), deadlocks (P1, P6, P8), path lengths (P1, P4, P8), and density
(P1), along with the distribution of the trains over time (P2). Two
experts (P6, P9) liked the linking of the timeline view with the
other views and P9 appreciated the sorting of trains based on their
starting times. Experts disliked the inability to zoom in on a specific
timespan (P1), reserved white space for trains that did not even start
(P7), and the lack of a multi-selection feature for comparison (P8).
P4 suggested extending the design to allow comparing schedules
from two solutions in the same view, while P10 remarked that the
view contains too many details.

Map View: Nine experts (all except P5) rated the statement that
the map view is useful for analysis and complements well the other
views as 4 or higher (Figure 5d). The experts liked the heatmap (P5),
the ability to follow individual trains exactly (P2, P7), the capability
to define regions of interest (P3, P6), and to see the hovered region
on the timeline of trains (P6). P1 stated to like the view because
it “allows to investigate in more detail situations like deadlocks
identified in the timeline view”, which was also mentioned by P8.
P9 was fond of the abstraction of railways, while P10 appreciated
the simplicity of the map view. With respect to shortcomings, two
experts (P1, P8) thought that the view is too small to show big rail
networks. P3 suggested including a more flexible shape for defining
regions in addition to rectangles.

Graph View: Four experts agreed to (rating of 4 or 5), five
experts were undecided (rating of 3), and one expert disagreed
(rating of 2) with the statement that the graph view (aggregated +
animated) is useful for analysis and complements well the other
views (Figure 5e). Four of the neutral or negative replies (P2, P4, P5,
P7) did not contain further details to explain the rating. However, P3
mentioned that it was unclear what was happening in the graph view,
while P8 highlighted that deleting one region is currently not possible
in the tool. On the other hand, three experts (P1, P2, P8) liked the
abstract representation of train movement through graphs, a feature
which P3 considered innovative. In addition, P7 mentioned that “it
was good to get the flow and amount of traffic between any two or
more regions of tracks.” Furthermore, the experts liked that the view
can be used to investigate frequent routes (P6) or situations in which
trains visit regions multiple times (P4). P8 and P9 appreciated the
animation in the graph view. P9 reported the inability to select a
time range for the aggregated graph.

Analysis Goals: Except for one analysis goal (G3), ratings of the
others reflect that the experts tend to agree with the statements that
the system helps to achieve the respective analysis goals, as shown in
Figure 5(f-j). Investigating the responses to understand the relatively
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Figure 5: Experience of the experts in the three areas (a) and their background with the Flatland environment (b). Expert ratings of the three
views of the visualization (c-e), analysis goals (f-j), and the overall system (k).

low ratings for analysis goal G3 (Figure 5h), P4, who gave a rating
of 2, did not provide any details. The experts commented about the
small size of the map view (P1, P9) and suggested to include more
linking between the timeline and map views (P7).

Overall System: All but one expert agreed with the overall state-
ment that the system supports detailed analysis of train schedules
(Figure 5k). Experts liked that the system is intuitive (P3, P8), in-
teractive (P8, P10), provides the ability to analyze multiple aspects
of the data (P2, P6, P9), and is useful for extracting insights (P1,
P4, P7). However, experts also mentioned that comparing differ-
ent scheduling approaches is difficult (P9) and highlighted that the
agent observations (what each train saw; specific to reinforcement
learning) are missing (P1, P3). Five experts (P1, P2, P3, P4, P5)
commented that the visualization is helpful to diagnose specific
situations (e.g., deadlocks) and debug scheduling solutions. Four
experts (P4, P8, P9, P10) reported the usefulness of the visualization
in analyzing the scheduling strategies and unexpected behaviors. In
addition, P1 mentioned that the visualization is useful to experiment
with new reinforcement learning solutions, while P7 highlighted
its usefulness for improving agent performance. The experts also
listed several missing features they would use such as filtering ca-
pabilities to analyze only specific trains (P1), the ability to select a
time range for analysis (P9), the need of overview to select specific
episodes (P9), and especially the ability to compare two scheduling
approaches (P4, P6, P7, P8).

6.4 Limitations and Discussion
Due to the online setup of the feedback study, experts explored
the tool freely without being monitored by us. However, given
the informed answers they provided to the qualitative questions,
we do not have reasons to believe that they did not sufficiently

engage with the tool to make an informed judgement. Generally,
the recruitment through connections to the community and personal
invitation might have biased the results as experts potentially replied
more positively and compliant, although we tried to counterbalance
by asking directly for criticism and options to improve.

The expert feedback indicate that the proposed visualization ap-
proach fulfills the analysis goals, while addressing the specific chal-
lenges of the Flatland environment. However, the experts also
suggested valuable features to enrich the analysis of scheduling tech-
niques. Acting on the expert feedback, we extended our approach
to include summary statistics and comparison features. Since the
experts requested a detailed simultaneous comparisons among two
scheduling techniques (P4, P6, P8), we focused on enabling com-
parison between two episodes in the extension. Since the data logs
in Flatland do not include agent observations, it was not possible to
add this feature in our approach.

7 APPLICATION: Flatland 2020 NeurIPS Competition
To illustrate one specific use case, we apply our approach to analyze
the submissions to the Flatland NeurIPS 2020 Competition. We used
the second version of the tool, which includes comparison features.
The competition was won by an operations research (OR) technique
by team old driver. The next three ranks were awarded to three
reinforcement learning (RL) based solutions: 2nd position: jbr hse,
3rd : netcetera, and 4th: marmot. For evaluation, the competition
organizers used different levels with varying grid sizes. Within
each level, ten maps with different rail network layouts and rates
of malfunctions were used. Each team’s submission was evaluated
and compared on the mean normalized score to determine the final
ranking. Generally, completing more levels with higher percentage
of trains that reach their destination in lesser time leads to a higher
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Figure 6: (a) The animated graph shows movement of trains between
the selected regions in step 133, while the map view (b) shows the
occurrence of a deadlock between two trains (episode Level 11,
Map 1 by team marmot).

mean normalized score, among other variables that affect the score,
such as, local rewards for each agent (see [15] for details). Next,
we present the insights found while analyzing the winning solutions
with our approach.

Deadlock Propagation: Selecting an individual episode, Fig-
ure 1 shows the train schedules by team marmot on Level 11,
Map 1. Overall statistics at the top shows that ∼81% of trains (21
out of the total 26) reached their destination, with 5 trains being still
on-track until the end of the episode (G1). From the timeline view
(Figure 1b1), showing the group of trains on track at the bottom, we
can see that all 5 trains were involved in a deadlock (blue square
boxes connected with blue lines). We also infer that the deadlock
first occurred between trains 010 and 015 having different destina-
tions (S2 and S5 respectively). Focusing on the two trains, using
the playback controls, we navigate to the time before the deadlock.
The two trains headed towards each other in opposite directions on
a single track, leading to a deadlock, as shown in Figure Fig. 6b.
Knowing about this ineffective coordination in a specific scenario,
suitable techniques can be used to improve the performance, e.g.,
better agent observations or communication among agents. Later,
the deadlock propagated and affected the trains 001, 017, and 013,
all heading towards station S2 (G4).

Inefficient Paths: Investigating the path efficiency between
distant stations, we select a single railway line between station S5
and stations S1 and S4 as region R2, as shown in Figure 1c1 (G2).
Assessing trains that reached their destination, we focus on the first
group of trains ( Reached) in the timeline view. From Figure 1b2,
we observe that seven trains (008, 009, 019, 007, 011, 022, and
020) had a much longer actual path length than the shortest possible
path length (G3). Then, analyzing the trains that did not reach
their destination ( ), we see that trains 010 and 001 have followed
a much longer path than the shortest path length. The inefficient
movement can be explained as both experienced malfunctions that
could have altered their orginally intended route twice.

Assessing Parallel Tracks Usage: Parallel tracks have several
benefits that can be utilized by the scheduling techniques. For
example, considering them as one-way tracks avoids the possibility
of a head-on collision, or they can be used as temporary parking
spots giving priority to other trains. To assess the parallel track
usage, we need aggregated information on the direction and the
movement of trains on the parallel tracks. We select three regions:
two tiles on each of the parallel tracks (R4 and R5) and a tile on a
railway line common to trains using either parallel tracks (R3), as
shown in Figure 1c2. From the aggregated graph (Figure 1d), we
observe that the reinforcement learning approach inefficiently used
only one of the two parallel tracks (one with region R4) to move
trains in both directions.

Comparing Usage of Parallel Tracks: To analyze the differ-
ences in parallel track utilization among the two scheduling tech-
niques, we select three single tile regions on a parallel track in the
map (Figure 3c). From the pie charts on the links between regions
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Figure 7: Trains stuck by waiting forever (not a deadlock) in Level 19,
Map 2 scheduled by the RL approach of team jbr hse.

R2, R3, and R4 in Figure 3d, we observe that OR strictly uses the
two parallel tracks to move trains in the two directions. The RL
technique also demonstrates this, but in few instances it used the left
track from R3 to R2 (orange slice in pie chart) to move trains in an
upward direction rather than the track on the right from R4 to R2
(G2 and G6). This was a specific way in which the RL approaches
improved towards the end of the competition. Observing the data
from the first iteration, the leading RL submission in the early phase
of the competition shows both the parallel tracks being used for
moving trains in both directions (Supplementary Figure 2 [2]) (G5).

Frozen, Unable to Recover: Next, we compare the winning OR
and RL scheduling approach of the competition. In episode A, we
select the OR-based approach by team old driver, as episode B
we select the RL solution by team jbr hse, and Level 19, Map 2.
From the statistics at the top of Figure 3, we observe that 90 trains
had to be scheduled. The OR approach was able to successfully
schedule all the trains to their destination. However, using the RL
approach, only 69 trains reached their destination, while 5 trains
were still on-track and 16 trains were still waiting to be scheduled
before the episode timed out. Focusing on the group of trains in
the RL approach that were still on-track ( ), we observe that
five trains (014, 039, 060, 054, and 016) were not blocked (absence
of colored squares and connecting lines), but stood still for a long
period of time (white gaps) after showing some movement (orange
lines) (G1). Continuing the investigation in the map view, from the
occupancy difference heatmap, we observe (three) orange colored
tiles ( ) on the top of the rail network, indicating that the trains
from episode B occupied these tiles for a much larger amount of
time than trains in episode A. Among them, to analyze the usage of
a region in the rail network (G2), we select a tile that had a junction
( ), resulting in a region-of-interest labelled R1. Examining usage
of the region for individual trains, we hover over the region and
observe that one of the five on-track trains (train 016) spent a lot of
time staying on top of the tile, until the episode ended (Figure 3a).
This is intriguing as more trains in the OR passed through the tile
than in the RL approach (pie chart inside R1 in Figure 3d and tooltip
in Figure 3b) (G2 and G6). In Figure 7, we see that the trains got
delayed (not blocked) because train 060 froze due to obstacles on
the two possible paths ahead, bringing three other trains (016, 039,
and 054) to a standstill (G4). The observations suggest that the RL
approach is unable to plan a conflict free path for all the trains in
certain scenarios, e.g., when there are obstacles on all possible paths
ahead (G5).

Recovering from Malfunctions: Overall, the OR approach took
much less time (colored lines in the episode timeline ticks at the
top) (G1 and G6). Considering the fact that in the episode, the OR
approach witnessed more number of malfunctions in the beginning
(histograms at the bottom), it shows that the approach was able
to deal with unplanned malfunctions effectively. The actual path
lengths of the trains that reached their destination in both episodes
seem to be similar (orange and blue bars on the right of the timeline
view), demonstrating a similar path efficiency of the two approaches
(G3). However, for the OR approach, we observe huge differences
between actual and shortest possible path lengths in some trains with
white gaps in their timeline, e.g., train 042, 048, and 072 (longer
blue bars than the green ones). This suggests that some trains in OR
had to wait long and had to move far to reach their destination (G5).



Failing Cases in RL: We investigated the failing cases of agent
coordination among winning RL approaches and documented our
findings (Supplementary Table 1 [2]). For analysis, eight episodes
were selected in which not all trains reached their destination. The
analysis revealed that jbr hse often runs out of time (due to episode
timeout), has indefinite waiting times in areas with high number of
junctions, and trains often just stay on top of junctions (G1 and G2).
In contrast, trains in netcetera often simply head towards another
train from opposite direction without waiting for them (G5). Trains
scheduled by marmot also exhibit a similar behavior many times.
In addition, sometimes, marmot moves the trains from their origin
towards another train coming from opposite direction on the same
track, leading to a deadlock (G4).

8 SCALABILITY AND GENERALIZABILITY

As demonstrated, the timeline view is able to represent ∼30 trains
without scrolling (a typical number in mid-size networks of Flat-
land). With grouping the trains based on their status and using
vertical scrolling in the timeline view, the approach was found useful
to analyze episodes with up to 90 trains (Section 7). However, the
details in the map view can become too small in case of large rail
networks. The approach is limited to comparing two episodes only.
One reason is that the timeline groups the trains based on their end
status ( , , ) and their combinations would grow exponentially
with the number of episodes to compare.

While our approach has been developed for the Flatland environ-
ment, we see potential of its use in related scenarios. The proposed
timeline representation, interactive region definition, and the graph
abstraction can be applied similarly for analyzing agent behavior
in other scenarios with movement on constrained route networks.
For instance, in analyzing coordination failures in multi-agent driv-
ing [18], e.g., identifying accident prone areas, deadlocks, etc. The
approach can also be used to understand path planning efficiency,
delays, and coordination of airport surface operations (e.g., fuelling,
passenger boarding, luggage transit, etc.) through their movement
on fixed paths connecting runways and the airport [16].

9 LESSONS LEARNED

Based on our experience gained designing the approach and col-
lected expert feedback, we reflect upon lessons learned that can
be helpful for researchers building visual analytics solutions for
analyzing multi-agent movement behavior:

Preserve a Static Map of Temporal Behaviors. For analyz-
ing the interdependent behavior from spatio-temporal attributes in
multi-agent scenarios, relying on animation does not work well as it
demands a high cognitive load. Analysts need to remember a lot of
information that changes quickly, e.g., tracking the movement of a
group of agents. Also, common spatio-temporal visualizations, e.g.,
3D space-time cubes, enable the users to change the point-of-view
leading to new insights. However, a change in point-of-view chal-
lenges the mental map of the analyst. As a result, during the analysis,
it becomes difficult to remember the spatio-temporal attributes of
multiple agents simultaneously. We used a fixed timeline to show
actions of each agent in rows, grouped the rows based on the agent
status at the end of an episode, and ordered them based on their
starting times within each group. This helped the users to construct
a mental map about multi-agent behavior (e.g., blocked agents early
in the episode), while interactions with the interface provided details
without changing the overview of their actions.

Interactively Define Spatial Focus and Map it to Time. Com-
bining spatial and temporal information in a single visualization is
challenging. However, an in-depth analysis of both is required to
understand complex simultaneous behavior of agents. To support
this, many spatio-temporal visualizations—including our approach—
have separate views for each attribute with simple linked interactions,

e.g., brushing and linking of agents. However, to study group be-
havior in multi-agent scheduling scenarios, they are not enough. We
learned two things. First, domain specific encodings and interactions
help the analysts to focus on specific regions, e.g., selection of a
railway line between two junctions. Second, showing the effect
of spatial selection on the temporal dimension helps reveal unex-
pected insights. For instance, on hovering over the selection of a
region-of-interest in the map view, gray semi-transparent rectangular
boxes are drawn in the timeline view. This helps in discovering
extended stays in a region (e.g., Train 016 in region R1 in Figure 3a)
or leads to insights such as cyclic movement of agents through a
region-of-interest (e.g., Train 010 through region R2 in Figure 1).

Abstract Space and Aggregate Multi-Agent Movements. To
analyze the multi-agent specific scheduling behaviors, e.g., usage
of parallel tracks, experts need to analyze the collective movement
of agents through specific regions. We learned that abstracting
the exact movement of agents over user-defined regions-of-interest
helps to focus on movements between selected regions and to gain
insights about the scheduling technique (Section 7). This lesson
aligns with the idea of spatial and temporal abstraction proposed
by Andrienko et al. [4] to analyze patterns in mass mobility data.
Generally, the abstracted and aggregated representations are put
first in top-down exploration. However, in multi-agent scheduling
behavior analysis, we realized that a bottom-up exploration was first
necessary to identify relevant specific agents and regions-of-interest.
In a different context, van den Elzen and van Wijk [26] describe a
similar bottom-up approach as Detail to Overview via Selections
and Aggregations.

10 CONCLUSIONS AND FUTURE WORK

We presented a visualization approach to analyze complex spatio-
temporal train scheduling behavior on virtual rail networks for the
Flatland environment. We interviewed three experts from the Flat-
land community to formulate the analysis goals of the visualization.
Then, we designed our approach in an iterative process, based on the
analysis goals and the feedback of ten experts. The discovered in-
sights confirm that the proposed views give different perspectives on
the train movements and the applied scheduling techniques. Finally,
we presented lessons learned to help future research visualizing
multi-agent movement on fixed-track networks. The close collabo-
ration with the Flatland community helped us to approach the key
community members, to identify the research challenges, to facili-
tate development and evaluation of the system. The encouragement
and support from the community prompted us to release the tool
for all competition participants, during which it was awarded the
first prize in the community contributions category [1]. Future work
includes integrating the planned modifications in future Flatland
competitions, e.g., time windows to start the trips and varying speed
of trains.

ACKNOWLEDGMENTS

We thank Florian Laurent for helping with queries related to the Flat-
land NeurIPS 2020 Competition, the Flatland community members,
and all experts who contributed to this research. This work is partly
funded by MERCUR (project: “Vergleichende Analyse dynamischer
Netzwerkstrukturen im Zusammenspiel statistischer und visueller
Methoden”).

REFERENCES

[1] NeurIPS 2020 Flatland Winners, 2020. https://bit.ly/3K7wljR
Accessed: March, 2021.

[2] S. Agarwal, G. Wallner, J. Watson, and F. Beck. Supplementary mate-
rial: Spatio-temporal analysis of multi-agent scheduling behaviors on
fixed-track networks, 2022. doi: 10.17605/OSF.IO/R2YZA

[3] G. Andrienko, N. Andrienko, W. Chen, R. Maciejewski, and Y. Zhao.
Visual analytics of mobility and transportation: State of the art and

https://bit.ly/3K7wljR
https://doi.org/10.17605/OSF.IO/R2YZA
https://doi.org/10.17605/OSF.IO/R2YZA
https://doi.org/10.17605/OSF.IO/R2YZA
https://doi.org/10.17605/OSF.IO/R2YZA
https://doi.org/10.17605/OSF.IO/R2YZA
https://doi.org/10.17605/OSF.IO/R2YZA
https://doi.org/10.1109/TITS.2017.2683539
https://doi.org/10.1109/TITS.2017.2683539


further research directions. IEEE Transactions on Intelligent Trans-
portation Systems, 18(8):2232–2249, 2017. doi: 10.1109/TITS.2017.
2683539

[4] G. Andrienko, N. Andrienko, G. Fuchs, and J. Wood. Revealing
patterns and trends of mass mobility through spatial and temporal
abstraction of origin-destination movement data. IEEE Transactions
on Visualization and Computer Graphics, 23(9):2120–2136, 2017. doi:
10.1109/TVCG.2016.2616404

[5] S. S. Bae, F. Rossi, J. V. Hook, S. Davidoff, and K.-L. Ma. A visual
analytics approach to debugging cooperative, autonomous multi-robot
systems’ worldviews. In IEEE Conference on Visual Analytics Science
and Technology, pp. 24–35, 2020. doi: 10.1109/VAST50239.2020.
00008
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