
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348971909

Dyadic Deontic Logic in HOL: Faithful Embedding and Meta-Theoretical

Experiments

Chapter · February 2021

DOI: 10.1007/978-3-030-70084-3

CITATIONS

2
READS

56

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Normative Reasoning and Machine Ethics View project

Studies in Computational Metaphysics View project

Christoph Benzmüller

Otto-Friedrich-Universität Bamberg

420 PUBLICATIONS   3,728 CITATIONS   

SEE PROFILE

Ali Farjami

University of Luxembourg

14 PUBLICATIONS   74 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Christoph Benzmüller on 02 February 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348971909_Dyadic_Deontic_Logic_in_HOL_Faithful_Embedding_and_Meta-Theoretical_Experiments?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348971909_Dyadic_Deontic_Logic_in_HOL_Faithful_Embedding_and_Meta-Theoretical_Experiments?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Normative-Reasoning-and-Machine-Ethics?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Studies-in-Computational-Metaphysics?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph-Benzmueller?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph-Benzmueller?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Otto-Friedrich-Universitaet-Bamberg?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph-Benzmueller?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Farjami-4?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Farjami-4?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Luxembourg?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Farjami-4?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph-Benzmueller?enrichId=rgreq-39c3b12f279284cc52c66ffd2ffe567f-XXX&enrichSource=Y292ZXJQYWdlOzM0ODk3MTkwOTtBUzo5ODY3NTg3Nzg5ODI0MDBAMTYxMjI3MzAzNDE4NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Chapter 1
Dyadic Deontic Logic in HOL: Faithful
Embedding and Meta-Theoretical Experiments

Christoph Benzmüller, Ali Farjami, and Xavier Parent

Abstract A shallow semantical embedding of a dyadic deontic logic by Carmo and
Jones in classical higher-order logic is presented. The embedding is proven sound
and complete, that is, faithful. This result provides the theoretical foundation for the
implementation and automation of dyadic deontic logic within o�-the-shelf higher-
order theorem provers and proof assistants. To demonstrate the practical relevance
of our contribution, the embedding has been encoded in the Isabelle/HOL proof
assistant. As a result a sound and complete (interactive and automated) theorem
prover for the dyadic deontic logic of Carmo and Jones has been obtained. Experi-
ments have been conducted which illustrate how the exploration and assessment of
meta-theoretical properties of the embedded logic can be supported with automated
reasoning tools integrated with Isabelle/HOL.

1.1 Introduction

Dyadic deontic logic is the logic for reasoning with dyadic obligations (“it ought
to be the case that ... if it is the case that ..."). A particular dyadic deontic logic,
tailored to so-called contrary-to-duty conditionals, has been proposed by Carmo
and Jones [1, 2]. We shall refer to it as DDL in the remainder. DDL comes with
a neighbourhood semantics and a weakly complete axiomatisation over the class
of finite models. The framework is immune to the well-known contrary-to-duty
paradoxes, like Chisholm’s paradox, and other related puzzles.

Christoph Benzmüller
Freie Universität Berlin, Berlin, Germany, e-mail: c.benzmueller@fu-berlin.de

Ali Farjami
University of Luxembourg, Esch-sur-Alzette, Luxembourg e-mail: ali.farjami@uni.lu

Xavier Parent
University of Luxembourg, Esch-sur-Alzette, Luxembourg e-mail: xavier.parent@uni.lu

1



2 C. Benzmüller, A. Farjami and X. Parent

However, the question of how to mechanise and automate reasoning tasks in DDL
has not been studied yet.

This article adresses this challenge. We essentially devise a faithful semantical
embedding of DDL in classical higher-order logic (HOL). The latter logic thereby
serves as an universal meta-logic [3]. Analogous to successful, recent work in the
area of computational metaphysics (cf. Kirchner et al. [4] and the references therein),
the key motivation is to mechanise and automate DDL on the computer by reusing
existing theorem proving technology for the meta-logic HOL. The embedding of
DDL in HOL as devised in this article enables just this.

The present work is part of the larger LogiKEy project [5], which aims at de-
veloping a reasoning infrastructure flexible enough to “host" a large spectrum of
deontic formalisms, including the dyadic deontic logic of Carmo and Jones. Existing
approaches are usually tied to a specific logical system. However, we do not think
that there is a single, uniquely correct (deontic) logical system, but there may be
many equally qualified choices, so that a particular choice of a logic, respectively,
logic combination, is left to the user.

Due to the improved flexibility and expressivity as o�ered in the LogiKEy ap-
proach, highly non-trivial natural language arguments can now be more easily mech-
anised and assessed on the computer. A recent example is Alan Gewirth’s argument
for the Principle of Generic Consistency (PGC) [6, 7]. It was successfully encoded
and verified on the computer [8, 9] via utilising a suitable extension of the semantic
embedding described in this paper.

The meta-logic HOL [10], as employed in this article, was originally devised by
Church [11], and further developed by Henkin [12] and Andrews [13, 14, 15]. It
bases both terms and formulas on simply typed _-terms. The use of the _-calculus
has some major advantages. For example, _-abstractions over formulas allow the
explicit naming of sets and predicates, something that is achieved in set theory
via the comprehension axioms. Another advantage is that the complex rules for
quantifier instantiation at first-order and higher-order types is completely explained
via the rules of _-conversion (the so-called rules of U-, V-, and [-conversion) which
were proposed earlier by Church [16, 17]. These two advantages are exploited in our
embedding of DDL in HOL.

Di�erent notions of semantics for HOL have been thoroughly studied in the
literature [18, 19]. In this article we assume HOL with Henkin semantics (cf. the
detailed description by Benzmüller et al. [18]). For this notion of HOL, which does
not su�er from Gödel’s incompleteness results, several sound and complete theorem
provers have been developed in the past decades [20]. We propose to reuse these
systems for the automation of DDL. The semantical embedding as devised in this
article provides both the theoretical foundation for the approach and the practical
bridging technology that is enabling DDL applications within existing HOL theorem
provers.

The article is structured as follows: Section 2 outlines the syntax and semantics
of DDL, as far as needed for this article. Section 3 provides a comparably detailed
introduction into HOL; this is needed to keep the article su�ciently self-contained.
The semantical embedding of DDL in HOL is then devised and studied in Sec. 4.
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This section also presents the respective soundness and completeness proofs for the
embedding; i.e. the embedding’s faithfulness is shown. Section 5 then depicts and
discusses the implementation of the devised embedding in the proof assistant system
Isabelle/HOL and presents examples of meta-theoretical experiments.1 Section 6
concludes the paper.

1.2 The Dyadic Deontic Logic of Carmo and Jones

This section provides a concise introduction of DDL, the dyadic deontic logic pro-
posed by Carmo and Jones. Definitions as required for the remainder are presented.
For further details we refer to the literature [1, 2].

To define the formulas of DDL we start with a countable set % of propositional
symbols, and we choose ¬ and _ as the only primitive connectives.

The set of DDL formulas is given as the smallest set of formulas obeying the
following conditions:

• Each ? 9 2 % is an (atomic) DDL formula.
• Given two arbitrary DDL formulas i and k, then

¬i — classical negation,
i _ k — classical disjunction,
�(k/i) — dyadic deontic obligation: “it ought to be k, given i”,
2i — in all worlds,
20i — in all actual versions of the current world,
2?i — in all potential versions of the current world,
�0i — monadic deontic operator for actual obligation, and
�?i — monadic deontic operator for primary obligation
are also DDL formulas.

Further logical connectives can be defined as usual: i ^ k := ¬(¬i _ ¬k), i !
k := ¬i _ k, i  ! k := (i ! k) ^ (k ! i), 3i := ¬2¬i, 30i := ¬20¬i,
3?i := ¬2?¬i, > := ¬@ 9 _ @ 9 , for some propositional symbol @ 9 , ? := ¬>, and
�i := �(i/>).

A DDL model is a structure " = h(, 0E, ?E, >1,+i, where ( is a non-empty set
of items called possible worlds, + is a function assigning a set of worlds to each
atomic formula, that is, + (? 9 ) ✓ (. 0E: ( ! ®((), where ®(() is the power set
of (, is a function mapping worlds to sets of worlds such that 0E(B) < ;. 0E(B) is
the set of actual versions of the world B. ?E: ( ! ®(() is another, similar mapping
such that 0E(B) ✓ ?E(B) and B 2 ?E(B). ?E(B) is the set of potential versions of the
world B. >1: ®(() ! ®(®(()) is a function mapping sets of worlds to sets of sets
of worlds. >1( -̄) is the set of propositions (propositions are associated with sets of

1 The sources of our Isabelle/HOL encoding of the embedding and of the conducted experiments
can be found at the website of the LogiKEy project: logikey.org.
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worlds) that are obligatory in context -̄ ✓ (. The following conditions hold for >1
(where -̄ , .̄ , /̄ designate arbitrary subsets of ():

1. ; 8 >1( -̄).
2. If .̄ \ -̄ = /̄ \ -̄ , then .̄ 2 >1( -̄) if and only if /̄ 2 >1( -̄).
3. Let V̄ ✓ >1( -̄) and V̄ < ;. If (\V̄) \ -̄ < ;

(where \V̄ = {B 2 ( | for all /̄ 2 V̄ we have B 2 /̄}), then (\V̄) 2 >1( -̄).
4. If .̄ ✓ -̄ and .̄ 2 >1( -̄) and -̄ ✓ /̄ , then (/̄ r -̄) [ .̄ 2 >1(/̄).
5. If .̄ ✓ -̄ and /̄ 2 >1( -̄) and .̄ \ /̄ < ;, then /̄ 2 >1(.̄ ).
Satisfiability of a formula i for a model " = h(, 0E, ?E, >1,+i and a world B 2 (

is expressed by writing that" , B |= i and we define+" (i) = {B 2 ( | " , B |= i}. In
order to simplify the presentation, whenever the model " is obvious from context,
we write + (i) instead of +" (i). Moreover, we often use “i�” as shorthand for “if
and only if”.

" , B |= ? 9 i� B 2 + (? 9 )
" , B |= ¬i i� " , B 6|= i (that is, not " , B |= i)
" , B |= i _ k i� " , B |= i or " , B |= k
" , B |= 2i i� + (i) = (
" , B |= 20i i� 0E(B) ✓ + (i)
" , B |= 2?i i� ?E(B) ✓ + (i)
" , B |= �(k/i) i� + (k) 2 >1(+ (i))
" , B |= �0i i� + (i) 2 >1(0E(B)) and 0E(B) \+ (¬i) < ;
" , B |= �?i i� + (i) 2 >1(?E(B)) and ?E(B) \+ (¬i) < ;

Our evaluation rule for�(_/_) is a simplified version of the one used by Carmo and
Jones. Given the constraints placed on >1, the two rules are equivalent (cf. [2, result
II-2-2]).

As usual, a DDL formula i is valid in a DDL model " = h(, 0E, ?E, >1,+i, i.e.
" |=⇡⇡! i, if and only if for all worlds B 2 ( we have " , B |= i. A formula i is
valid, denoted |=⇡⇡! i, if and only if it is valid in every DDL model.

1.3 Classical Higher-order Logic

In this section we introduce classical higher-order logic (HOL). The presentation,
which has partly been adapted from [21], is rather detailed in order to keep the article
su�ciently self-contained.

1.3.1 Syntax of HOL

For defining the syntax of HOL, we first introduce the set ) of simple types. We
assume that ) is freely generated from a set of basic types ⌫) ◆ {>, 8} using the
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function type constructor �. Type > denotes the (bivalent) set of Booleans, and 8 a
non-empty set of individuals.

For the definition of HOL, we start out with a family of denumerable sets of typed
constant symbols (⇠U)U2) , called the HOL signature, and a family of denumerable
sets of typed variable symbols (+U)U2) .2 We employ Church-style typing, where
each term CU explicitly encodes its type information in subscript U.

The language of HOL is given as the smallest set of terms obeying the following
conditions.

• Every typed constant symbol 2U 2 ⇠U is a HOL term of type U.
• Every typed variable symbol -U 2 +U is a HOL term of type U.
• If BU�V and CU are HOL terms of types U � V and U, respectively, then
(BU�V CU)V , called application, is a HOL term of type V.

• If -U 2 +U is a typed variable symbol and BV is a HOL term of type V, then
(_-UBV)U�V , called abstraction, is a HOL term of type U � V.

The above definition encompasses the simply typed _-calculus. In order to extend
this base framework into logic HOL we simply ensure that the signature (⇠U)U2)
provides a su�cient selection of primitive logical connectives. Without loss of
generality, we here assume the following primitive logical connectives to be part
of the signature: ¬>�> 2 ⇠>�>, _>�>�> 2 ⇠>�>�>, ⇧(U�>)�> 2 ⇠(U�>)�> and
=U�U�U2 ⇠U�U�U, abbreviated as =U. The symbols ⇧(U�>)�> and =U�U�U are
generally assumed for each type U 2 ) . The denotation of the primitive logical
connectives is fixed below according to their intended meaning. Binder notation
8-U B> is used as an abbreviation for ⇧(U�>)�>_-UB>. Universal quantification in
HOL is thus modelled with the help of the logical constants ⇧(U�>)�> to be used in
combination with lambda-abstraction. That is, the only binding mechanism provided
in HOL is lambda-abstraction.

HOL is a logic of terms in the sense that the formulas of HOL are given as the
terms of type >. In addition to the primitive logical connectives selected above,
we could assume choice operators n (U�>)�U 2 ⇠(U�>)�U (for each type U) in the
signature. We are not pursuing this here.

Type information as well as brackets may be omitted if obvious from the context,
and we may also use infix notation to improve readability. For example, we may
write (B _ C) instead of ((_>�>�>B>)C>). Moreover, we implicitly employ currying3

and uncurrying, and we associate sets with their characteristic functions.
From the selected set of primitive connectives, other logical connectives can be

introduced as abbreviations.4 For example, we may define B ^ C := ¬(¬B _ ¬C),

2 For example in Section 4 we will assume constant symbols 0E , ?E and >1 with types 8 � 8 � >,
8 � 8 � > and (8 � >) � (8 � >) � > as part of the signature.
3 Currying converts a function that takes multiple arguments into a nested application of functions
that each take a single argument; e.g., the curried representation of the term +(3, 2) is (+(3)) (2) .
By uncurrying we mean the reverse transformation.
4 As demonstrated by Andrews [10], we could in fact start out with only primitive equality in the
signature (for all types U) and introduce all other logical connectives as abbreviations based on it.
Alternatively, we could remove primitive equality from the above signature, since equality can be
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B ! C := ¬B _ C, B  ! C := (B ! C) ^ (C ! B) , > := (_-8-) = (_-8-), ? := ¬>
and 9-UB := ¬8-U¬B.

The notions of free variables, U-conversion, V[-equality (denoted as =V[) and
substitution of a term BU for a variable -U in a term CV (denoted as [B/-]C) are
defined as usual.

1.3.2 Semantics of HOL

The semantics of HOL is well understood and thoroughly documented. The intro-
duction provided next focuses on the aspects as needed for this article. For more
details we refer to the previously mentioned literature [18].

The semantics of choice for the remainder is Henkin semantics, i.e., we work with
Henkin’s general models [12]. Henkin models (and standard models) are introduced
next. We start out with introducing frame structures.

A frame ⇡ is a collection {⇡U}U2T of non-empty sets ⇡U, such that ⇡> = {) , �}
(for truth and falsehood). The ⇡U!V are collections of functions mapping ⇡U into
⇡V .

A model for HOL is a tuple " = h⇡, �i, where ⇡ is a frame, and � is a family
of typed interpretation functions mapping constant symbols ?U 2 ⇠U to appropriate
elements of ⇡U, called the denotation of ?U. The logical connectives ¬, _, ⇧ and =
are always given their expected, standard denotations:5

• � (¬>!>) = =>C 2 ⇡>!> such that =>C ()) = � and =>C (�) = ) .
• � (_>!>!>) = >A 2 ⇡>!>!> such that >A (0, 1) = ) i� (0 = ) or 1 = )).
• � (=U!U!>) = 83 2 ⇡U!U!> such that for all 0, 1 2 ⇡U, 83 (0, 1) = ) i� 0 is
identical to 1.

• � (⇧(U!>)!>) = 0;; 2 ⇡ (U!>)!> such that for all B 2 ⇡U!>, 0;; (B) = ) i�
B(0) = ) for all 0 2 ⇡U; i.e., B is the set of all objects of type U.

Variable assignments are a technical aid for the subsequent definition of an inter-
pretation function k.k" ,6 for HOL terms. This interpretation function is parametric
over a model " and a variable assignment 6.

A variable assignment 6 maps variables -U to elements in ⇡U. 6[3/,] denotes
the assignment that is identical to 6, except for variable, , which is mapped to 3.

The denotation kBUk" ,6 of an HOL term BU on a model " = h⇡, �i under
assignment 6 is an element 3 2 ⇡U defined in the following way:

defined in HOL from these other logical connectives by exploiting Leibniz’ principle, expressing
that two objects are equal if they share the same properties. Leibniz equality ⌘U at type U is thus
defined as BU ⌘U CU := 8%U�> (%B  ! %C) . The motivation for the redundant signature as
selected here is to stay close to the choices taken in implemented theorem provers such as LEO-II
and Leo-III; see also the article [18], which is recommended for further details.
5 Since =U!U!> (for all types U) is in the signature, it is ensured that the domains ⇡U!U!>

contain the respective identity relations. This addresses an issue discovered by Andrews [14]: if
such identity relations did not exist in the ⇡U!U!>, then Leibniz equality in Henkin semantics
might not denote as intended.



1 Dyadic Deontic Logic in HOL 7

k?Uk" ,6 = � (?U)
k-Uk" ,6 = 6(-U)

k (BU!V CU)V k" ,6 = kBU!V k" ,6 (kCUk" ,6)
k (_-UBV)U!V k" ,6 = the function 5 from ⇡U to ⇡V such that

5 (3) = kBV k" ,6 [3/-U ] for all 3 2 ⇡U

A model " = h⇡, �i is called a standard model if and only if for all U, V 2 )
we have ⇡U!V = { 5 | 5 : ⇡U �! ⇡V}. In a Henkin model (general model)
function spaces are not necessarily full. Instead it is only required that for all U, V 2
) , ⇡U!V ✓ { 5 | 5 : ⇡U �! ⇡V}. However, it is required that the valuation
function k · k" ,6 from above is total, so that every term denotes. Note that this
requirement, which is calledDenotatpflicht, ensures that the function domains⇡U!V

never become too sparse, that is, the denotations of the lambda-abstractions as
devised above are always contained in them.

Corollary 1 For any Henkin model " = h⇡, �i and variable assignment 6:

1. k (¬>!> B>)>k" ,6 = ) i� kB>k" ,6 = �.
2. k ((_>!>!> B>) C>)>k" ,6 = ) i� kB>k" ,6 = ) or kC>k" ,6 = ) .
3. k ((^>!>!> B>) C>)>k" ,6 = ) i� kB>k" ,6 = ) and kC>k" ,6 = ) .
4. k ((!>!>!> B>) C>)>k" ,6 = ) i� (if kB>k" ,6 = ) then kC>k" ,6 = )).
5. k (( !>!>!> B>) C>)>k" ,6 = ) i� (kB>k" ,6 = ) i� kC>k" ,6 = )).
6. k>k" ,6 = ) .
7. k?k" ,6 = �.
8. k (8-UB>)>k" ,6 = ) i� for all 3 2 ⇡U we have kB>k" ,6 [3/-U ] = ) .
9. k (9-UB>)>k" ,6 = ) i� there exists 3 2 ⇡U such that kB>k" ,6 [3/-U ] = ) .

Proof We leave the proof as an exercise to the reader. ⇤
An HOL formula B> is true in a Henkin model " under assignment 6 if and

only if kB>k" ,6 = ) ; this is also expressed by writing that " , 6 |=HOL B>. An HOL
formula B> is called valid in " , which is expressed by writing that " |=HOL B>, if
and only if " , 6 |=HOL B> for all assignments 6. Moreover, a formula B> is called
valid, expressed by writing that |=HOL B>, if and only if B> is valid in all Henkin
models " . Finally, we define ⌃ |=HOL B> for a set of HOL formulas ⌃ if and only if
" |=HOL B> for all Henkin models " with " |=HOL C> for all C> 2 ⌃.

Any standard model is obviously also a Henkin model. Hence, validity of a HOL
formula B> for all Henkin models implies validity of B> for all standard models.

1.4 Modelling DDL as a Fragment of HOL

This section, the core contribution of this article, presents a shallow semantical
embedding of DDL in HOL and proves its soundness and completeness. In contrast
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to a deep logical embedding, where the syntax and semantics of logic ! would
be formalised in full detail (using structural induction and recursion), only the core
di�erences in the semantics of both DDL andmeta-logic HOL are explicitly encoded
here.

1.4.1 Semantical Embedding

DDL formulas are identified in our semantical embedding with certain HOL terms
(predicates) of type 8 � >. They can be applied to terms of type 8, which are
assumed to denote possible worlds. That is, the HOL type 8 is now identified with
a (non-empty) set of worlds. Type 8 � > is abbreviated as g in the remainder.
The HOL signature is assumed to contain the constant symbols 0E8�g , ?E8�g and
>1g�g�>. Moreover, for each propositional symbol ?8 of DDL, the HOL signature
must contain the corresponding constant symbol ?8g . Without loss of generality, we
assume that besides those symbols and the primitive logical connectives of HOL, no
other constant symbols are given in the signature of HOL.

The mapping b·c translates DDL formulas i into HOL terms bic of type g. The
mapping is recursively6 defined:

b? 9c = ? 9
g

b¬ic = ¬g�g bic
bi _ kc = _g�g�g bic bkc
b2ic = 2g�g bic
b�(k/i)c = �g�g�g bic bkc
b20ic = 20

g�g bic
b2?ic = 2

?
g�g bic

b�0ic = �0
g�g bic

b�?ic = �?
g�g bic

¬g�g , _g�g�g , 2g�g , �g�g�g , 20
g�g , 2?

g�g , �0
g�g and �?

g�g thereby
abbreviate the following HOL terms:

¬g�g = _�g_-8¬(� -)
_g�g�g = _�g_⌫g_-8 (� - _ ⌫ -)
2g�g = _�g_-88.8 (�. )
�g�g�g = _�g_⌫g_-8 (>1 � ⌫)
20

g�g = _�g_-88.8 (¬(0E - . ) _ �. )
2

?
g�g = _�g_-88.8 (¬(?E - . ) _ �. )

�0
g�g = _�g_-8 ((>1 (0E -) �) ^ 9.8 (0E - . ^ ¬(�. )))

�?
g�g = _�g_-8 ((>1 (?E -) �) ^ 9.8 (?E - . ^ ¬(�. )))

6 A recursive definition is actually not needed in practice. By inspecting the equations below it
should become clear that only the abbreviations for the logical connectives of DDL are required in
combination with a type-lifting for the propositional constant symbols; cf. also Fig. 1.1.
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Analysing the truth of a translated formula bic in a world represented by term F8

corresponds to evaluating the application (bic F8). In line with previous work [22],
we define vldg�> = _�g8(8 (� (). With this definition, validity of a DDL formula
i in DDL corresponds to the validity of formula (vld bic) in HOL, and vice versa.

1.4.2 Soundness and Completeness

To prove the soundness and completeness, that is, faithfulness, of the above embed-
ding, a mapping from DDL models into Henkin models is employed.

Definition 1 (Henkin model �" for DDL model ")
For any DDL model " = h(, 0E, ?E, >1,+i, we define a corresponding Henkin

model �" . Thus, let a DDL model " = h(, 0E, ?E, >1,+i be given. Moreover,
assume that ? 9 2 %, for 9 � 1, are the only propositional symbols ofDDL.Remember
that our embedding requires the corresponding signature of HOL to provide constant
symbols ? 9

g such that b? 9c = ? 9
g for 9 = 1, . . . ,<.

A Henkin model �" = h{⇡U}U2) , �i for " is now defined as follows: ⇡8

is chosen as the set of possible worlds (; all other sets ⇡U�V are chosen as (not
necessarily full) sets of functions from ⇡U to ⇡V . For all ⇡U�V the rule that every
term CU�V must have a denotation in ⇡U�V must be obeyed (Denotatpflicht). In
particular, it is required that ⇡g , ⇡8�g and ⇡g�g�> contain the elements � ? 9

g ,
�0E8�g , � ?E8�g and �>1g�g�>. The interpretation function � of �" is defined as
follows:

1. For 9 = 1, . . . ,<, � ? 9
g 2 ⇡g is chosen such that � ? 9

g (B) = ) i� B 2 + (? 9 ) in " .
2. �0E8�g 2 ⇡8�g is chosen such that �0E8�g (B, D) = ) i� D 2 0E(B) in " .
3. � ?E8�g 2 ⇡8�g is chosen such that � ?E8�g (B, D) = ) i� D 2 ?E(B) in " .
4. �>1g�g�> 2 ⇡g�g�> is such that �>1g�g�> ( -̄ , .̄ ) = ) i� .̄ 2 >1( -̄) in " .
5. For the logical connectives ¬, _, ⇧ and = of HOL the interpretation function �

is defined as usual (see the previous section).

Since we assume that there are no other symbols (besides the ?8 , 0E, ?E, >1 and
¬, _, ⇧, and =) in the signature of HOL, � is a total function. Moreover, the above
construction guarantees that�" is a Henkin model: h⇡, �i is a frame, and the choice
of � in combination with the Denotatpflicht ensures that for arbitrary assignments 6,
k.k�" ,6 is a total evaluation function.

Lemma 1 Let �" be a Henkin model for a DDL model " . In �" we have for all
B 2 ⇡8 and all -̄ , .̄ , /̄ 2 ⇡g (cf. the conditions on DDL models as stated on page 3):
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(av) �0E8�g (B) < ;.
(pv1) �0E8�g (B) ✓ � ?E8�g (B).
(pv2) B 2 � ?E8�g (B).
(ob1) ; 8 �>1g�g�> ( -̄).
(ob2) If .̄ \ -̄ = /̄ \ -̄ , then (.̄ 2 �>1g�g�> ( -̄) i� /̄ 2 �>1g�g�> ( -̄)).
(ob3) Let V̄ ✓ �>1g�g�> ( -̄) and V̄ < ;.

If (\V̄) \ -̄ < ;, where \V̄ = {B 2 ( | for all /̄ 2 V̄ we have B 2 /̄},
then (\V̄) 2 �>1g�g�> ( -̄).

(ob4) If .̄ ✓ -̄ and .̄ 2 �>1g�g�> ( -̄) and -̄ ✓ /̄ ,
then (/̄ \ -̄) [ .̄ 2 �>1g�g�> (/̄).

(ob5) If .̄ ✓ -̄ and /̄ 2 �>1g�g�> ( -̄) and .̄ \ /̄ < ;,
then /̄ 2 �>1g�g�> (.̄ ).

Proof See Appendix 1.6

Lemma 2 Let �" = h{⇡U}U2) , �i be a Henkin model for a DDL model " . We
have �" |=HOL ⌃ for all ⌃ 2 {�+ , %+1, %+2,$⌫1, ...,$⌫5}, where
AV is 8,89+8 (0E8�g,8+8)
PV1 is 8,88+8 (0E8�g,8+8 ! ?E8�g,8+8)
PV2 is 8,8 (?E8�g,8,8)
OB1 is 8-g¬>1g�g�>-g (_-g?)
OB2 is 8-g.g/g ( (8,8 ((.g,8 ^ -g,8)  ! (/g,8 ^ -g,8)))

! (>1g�g�>-g.g  ! >1g�g�>-g/g))
OB3 is 8Vg�g�>8-g

( ((8/g (Vg�g�>/g ! >1g�g�>-g/g)) ^ 9/g (Vg�g�>/g))
! ( (9.8 (((_,88/g (Vg�g�>/g ! /g,8)).8) ^ -g.8))

! >1g�g�>-g (_,88/g (Vg�g�>/g ! /g,8))))
OB4 is 8-g.g/g

( (8,8 (.g,8 ! -g,8) ^ >1g�g�>-g.g ^ 8-g (-g,8 ! /g,8))
! >1g�g�>/g (_,8 ((/g,8 ^ ¬-g,8) _ .g,8)))

OB5 is 8-g.g/g

( (8,8 (.g,8 ! -g,8) ^ >1g�g�>-g/g ^ 9,8 (.g,8 ^ /g,8))
! >1g�g�>.g/g)

Proof See Appendix 1.6

Lemma 3 Let �" be a Henkin model for a DDL model " . For all DDL formulas
X, arbitrary variable assignments 6 and worlds B it holds:

" , B |= X if and only if kbXc (8 k�
" ,6 [B/(8 ] = )

Proof See Appendix 1.6

Lemma 4 For every Henkin model � = h{⇡U}U2) , �i such that � |=HOL ⌃ for all
⌃ 2 {AV, PV1, PV2, OB1,..., OB5}, there exists a corresponding DDL model " .
Corresponding means that for all DDL formulas X and for all assignments 6 and
worlds B, kbXc(8 k� ,6 [B/(8 ] = ) if and only if " , B ✏ X.
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Proof Suppose that � = h{⇡U}U2) , �i is a Henkin model such that � |=HOL ⌃ for
all ⌃ 2 {AV, PV1, PV2, OB1,..,OB5}. Without loss of generality, we can assume
that the domains of � are denumerable [12]. We construct the corresponding DDL
model " as follows:

1. ( = ⇡8 ,
2. D 2 0E(B) for B, D 2 ( i� �0E8�g (B, D) = ) ,
3. D 2 ?E(B) for B, D 2 ( i� � ?E8�g (B, D) = ) ,
4. .̄ 2 >1( -̄) for -̄ , .̄ 2 ⇡8 �! ⇡> i� �>1g�g�> ( -̄ , .̄ ) = ) , and
5. B 2 + (? 9 ) i� � ? 9

g (B) = ) .

Since � |=HOL ⌃ for all ⌃ 2 {AV, PV1, PV2, OB1, .., OB5}, it is straightforward
(but tedious) to verify that 0E, ?E and >1 satisfy the conditions as required for a
DDL model.

Moreover, the above construction ensures that � is a Henkin model �" for DDL
model " . Hence, Lemma 3 applies. This ensures that for all DDL formulas X, for
all assignments 6 and all worlds B we have kbXc(8 k� ,6 [B/(8 ] = ) if and only if
" , B ✏ X. ⇤

Theorem 1 (Soundness and Completeness of the Embedding)

|=DDL i if and only if {AV, PV1, PV2, OB1,..,OB5} |=HOL vld bic

Proof (Soundness,  ) The proof is by contraposition. Assume 6|=⇡⇡! i, that is,
there is a DDL model " = h(, 0E, ?E, >1,+i, and world B 2 (, such that " , B 6|= i.
Now let �" be a Henkin model for DDL model " . By Lemma 3, for an arbitrary
assignment 6, it holds that kbic (8 k�

" ,6 [B/(8 ] = �. Thus, by definition of k.k, it
holds that k8(8 (bic ()k�

" ,6 = kvld bick�" ,6 = �. Hence, �" 6|=HOL vld bic.
Furthermore,�" |=HOL ⌃ for all ⌃ 2 {AV, PV1, PV2, OB1,. . . ,OB5} by Lemma 2.
Thus, {AV, PV1, PV2, OB1,..,OB5} 6|=HOL vld bic.

(Completeness, !) The proof is again by contraposition. Assume
{AV, PV1, PV2, OB1,..,OB5} 6|=HOL vld bic, that is, there is a Henkin model
� = h{⇡U}U2) , �i such that � |=HOL ⌃ for all ⌃ 2 {AV, PV1, PV2, OB1,..,OB5},
but kvld bick� ,6 = � for some assignment 6. By Lemma 4, there is a DDL model
" such that " 2 i. Hence, 6|=⇡⇡! i. ⇤

Each DDL reasoning problem thus represents a particular HOL problem. The
embedding presented in this section, which is based on simple abbreviations, tells
us how the two logics are connected.

1.5 Implementation and Experiments in Isabelle/HOL

The semantical embedding from Section 1.4.1 has been implemented in the higher-
order proof assistant Isabelle/HOL [23]. Figure 1.1 displays the entire encoding. We
provide some explanations:
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Fig. 1.1 Shallow semantical embedding of DDL in Isabelle/HOL.

• Line 4: the primitive type 8 for possible words is introduced.
• Line 5: a type abbreviation g for type 8 � > is declared; g is the type of DDL
formulas, which are encoded as predicates on worlds in HOL.

• Lines 6–7: further type abbreviations W and r for (g-lifted) unary and binary
DDL connectives in HOL are introduced.

• Line 9: the constants 0E, ?E and >1 are declared; they denote accessibility
relations, resp. neighbourhood relations, and they are used below to define the
operators 20, 2? and �(_/_).

• Line 10: a designated constant for the actual/current world (2F) is introduced.
• Lines 12–22: the axioms for 0E, ?E and >1 are postulated.
• Lines 24–30: the (g-lifted) Boolean connectives are defined in the usualway [22].
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• Lines 31–33: the three necessity operators2,20 (“in all actual worlds”) and2?

(“in all possible worlds”) are introduced; the former is declared as a universal
(S5)modal operator and the latter two use 0E and ?E as guards in their definitions.

• Lines 34–36: the dual possibility operators 3, 30 and 3? are introduced.
• Line 37: using the neighbourhood relation >1, the dyadic obligation operator �
(“it ought to be . . . , given . . . ”) is defined.

• Lines 38–39: using 0E, ?E and >1, the actual and primary obligation operators
�0 (actual obligation) and �? (primary obligation) are defined.

• Lines 41–42: the notions of global validity (i.e, truth in all worlds) and local
validity (truth at the actual world) are introduced.

• Line 45: a monadic obligation operator is defined based on dyadic obligation.
• Line 48: themodel finder Nitpick [24] confirms the consistency of the introduced
theory; the reported model (not displayed here) consists of a single world 81,
which is self-connected via the accessibility relations 0E and ?E, whereas the
neighbourhood relation >1 is the empty relation.

Figure 1.2 reports on some meta-theoretical experiments. We briefly explain them:
• Lines 4–7: it is shown that the rules of modus ponens and necessitation for DDL
are implied by the semantic embedding as provided in Fig. 1.1; their validity is
automatically proved here by Isabelle/HOL’s simplifier “simp”.7

• Lines 10–12: it is proved that 2 is a S5 modal operator.
• Line 15: it is proved that2? validates the T axiom;2? is hence a modal operator
of type KT (in Chellas [26]’s nomenclature).

• Lines 16–17: it is confirmed that 2? is not a S4 nor S5 modality; Nitpick finds
countermodels for the axioms 4 and B.

• Line 20: it is shown that20 validates the D axiom;20 is hence a modal operator
of type KD. Lines 21–23: it is confirmed that20 is not a S4 (nor a S5) modality;
Nitpick finds countermodels for the axioms T, S4 and B.

• Lines 26–27: inclusion relations for 2, 20 and 2? are confirmed.
• Lines 30–31: the observation II-2-1 of Carmo and Jones [1] is proved.
• Lines 34–44: the validity of a number of laws involving the dyadic obligation
operator are verified.

Figure 1.3 continues the meta-theoretical experiments:
• Lines 47–50: the validity of a number of laws involving �0, �? , 20 and 2? is
verified.

• Lines 53–54: it is proved that the so-called law of factual detachment holds in
two versions.

7 The proofs in our experiments have actually been provided by first calling the “sledgehammer”
tool [25] in Isabelle/HOL, which then, after automatically proving the goals with state-of-the-art au-
tomated theorem proving systems, suggested the use of more trusted tactics, such as Isabelle/HOL’s
simplifier “simp”, to close the proof goals. Only occasionally sledgehammer failed to directly prove
the given statements. In such cases, some intermediate proof steps may be interactively provided
by the user to assist the automated theorem provers. An example is given in lines 41–44, where
one intermediate proof step (line 42) is stipulated in order to help the automated reasoning tools to
prove the lemma stated in line 40.
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Fig. 1.2 Experiments (meta-theory) with the embedding of DDL in Isabelle/HOL.

• Line 57–63: the observation II-3-1 of Carmo and Jones [1], which is required
for the proof of their soundness theorem, is proved.

• Lines 66–93: a number of observations and results as reported by Carmo and
Jones [1] are proved automatically.

1.6 Conclusion

A shallow semantical embedding of Carmo and Jones’s dyadic deontic logic of
contrary-to-duty conditionals in classical higher-order logic has been presented and
shown to be faithful (sound an complete). This embedding has been implemented
in the proof assistant Isabelle/HOL, resulting in the first interactive and automated
theorem prover for this logic that we are aware of. Moreover, the work reported
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Fig. 1.3 Experiments (meta-theory) with the embedding of DDL in Isabelle/HOL (cont’d from
Fig. 1.2).

in this paper has provided important inspiration and impetus for the development
of the larger LogiKEy [5] framework and methodology for pluralistic, expressive
normative reasoning. In the context of this larger project further case studies with
extensions of the logic by Carmo and Jones have successfully been conducted [8, 9],
which in turn motivates much further work towards the practical employment of the
presented approach.

Acknowledgements We want to thank David Fuenmayor, Sebastian Reiche and Lucca Tiemens
for their comments and for proof reading this document.
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Appendix

Proof of Lemma 1

Proof Each statement follows by construction of �" for " .

(av) By definition of 0E for B 2 ( in " , 0E(B) < ;; hence, there is D 2 ( such that
D 2 0E(B). By definition of �" , �0E8�g (B, D) = ) , so D 2 �0E8�g (B) and hence
�0E8�g (B) < ; in �" .

(pv1) By definition of 0E and ?E for B 2 ( in " , 0E(B) ✓ ?E(B); hence, for every
D 2 0E(B) we have D 2 ?E(B). In �" this means, if �0E8�g (B, D) = ) , then
� ?E8�g (B, D) = ) . So, �0E8�g (B) ✓ � ?E8�g (B) in �" .

(pv2) This case is similar to (av).
(ob1) By definition of >1, we have ; 8 >1( -̄); hence, in�" , �>1g�g�> ( -̄ , ;) = �,

that is ; 8 �>1g�g�> ( -̄).
(ob2) Suppose .̄ \ -̄ = /̄ \ -̄ . In " we have .̄ 2 >1( -̄) i� /̄ 2 >1( -̄). By

definition of �" we have �>1g�g�> ( -̄ , .̄ ) = ) i� �>1g�g�> ( -̄ , /̄) = ) .
Hence, .̄ 2 �>1g�g�> ( -̄) i� /̄ 2 �>1g�g�> ( -̄) in �" .

(ob3) Suppose V̄ ✓ �>1g�g�> ( -̄) and V̄ < ;. If (\V̄) \ -̄ < ;, by definition of
>1 in " we have (\V̄) 2 >1( -̄). Hence, in �" , �>1g�g�> ( -̄ , (\V̄)) = ) and
then (\V̄) 2 �>1g�g�> ( -̄).

(ob4) and (ob5) are similar to (ob2).

Proof of Lemma 2

Proof We present detailed arguments for most cases.

AV: For all B 2 ⇡8: �0E8�g (B) < ; (by Lemma 1 (av))
, For all B 2 ⇡8 , there exists D 2 ⇡8 such that �0E8�g (B, D) = )
, For all assignments 6, for all B 2 ⇡8 , there exists D 2 ⇡8 such that

k0E, + k�" ,6 [B/,8 ] [D/+8 ] = )

, For all 6, all B 2 ⇡8 we have k9+ (0E, +)k�" ,6 [B/,8 ] = )

, For all 6 we have k8,9+ (0E, +)k�" ,6 = )
, �" |=HOL �+

PV1: Given an arbitary assignment 6, and arbitary B, D 2 ⇡8 such that
k0E, + k�" ,6 [B/,8 ] [D/+8 ] = )

, �0E8�g (B, D) = )
) � ?E8�g (B, D) = ) (�0E8�g (B) ✓ � ?E8�g (B), by Lemma 1 (pv1))
, k?E, + k�" ,6 [B/,8 ] [D/+8 ] = )
Hence by definition of k.k, for all 6, for all B, D 2 ⇡8 we have:

k0E, + k�" ,6 [B/,8 ] [D/+8 ] = ) implies k?E, + k�" ,6 [B/,8 ] [D/+8 ] = )
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, For all 6, all B, D 2 ⇡8 we have k0E, + ! ?E, + k�" ,6 [B/,8 ] [D/+8 ] = )

, For all 6, all B 2 ⇡8 we have k8+ (0E, + ! ?E, +)k�" ,6 [B/,8 ] = )

, For all 6 we have k8, 8+ (0E, + ! ?E, +)k�" ,6 = )
, �" |=HOL %+1

PV2: This case is analogous to AV.
OB1: For all -̄ 2 ⇡g : ; 8 �>1g�g�> ( -̄) (by Lemma 1 (ob1))

, For all 6, all -̄ 2 ⇡g we have k¬>1 - (_- .?)k�" ,6 [-̄/-g ] = )

, For all 6 we have k8- ¬(>1 - (_-g?))k�
" ,6 [-̄/-g ] = )

, �" |=HOL $⌫1
OB2: Given an arbitary assignment 6, and arbitary -̄ , .̄ , /̄ 2 ⇡g such that

k8, ((. , ^ - ,)  ! (/ , ^ - ,))k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )
, For all B 2 ⇡8 we have

k (. , ^ - ,)  ! (/ , ^ - ,)k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] [B/,8 ] = )

, For all B 2 ⇡8 we have k. , ^ - , k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] [B/,8 ] = ) i�
k/ , ^ - , k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] [B/,8 ] = )

, For all B 2 ⇡8 we have B 2 .̄ \ -̄ i� B 2 /̄ \ -̄
, .̄ \ -̄ = /̄ \ -̄
) �>1g�g�> ( -̄ , .̄ ) = ) i� �>1g�g�> ( -̄ , /̄) = ) (by Lemma 1 (ob2))
, k>1 - . )k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = ) i�

k>1 - / k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )

, k>1 - .  ! >1 - / k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )
Hence, by definition of k.k, for all 6, for all -̄ , .̄ , /̄ 2 ⇡g we have:

k (8, ( ((. , ^ - ,)  ! (/ , ^ - ,)) !
(>1 - .  ! >1 - /))k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )

, For all 6 we have k8-./ (8, ( ((. , ^ - ,)  ! (/ , ^ - ,)) !
(>1 - .  ! >1 - /))k�" ,6 = )

, �" |=HOL $⌫

OB3: Given assignment 6, and V̄ 2 ⇡g�>, -̄ 2 ⇡g such that k8/ (V / !
>1 - /)k�" ,6 [V̄/Vg�> ] [-̄/-g ] = ) and k9/ (V /)k�" ,6 [V̄/Vg�> ] = ) and
k9. (((_,8/ (V / ! / ,)). ) ^ - . )k�" ,6 [V̄/Vg�> ] [-̄/-g ] = )

, For all /̄ 2 ⇡g we have kV / k�" ,6 [V̄/Vg�> ] [-̄/-g ] [/̄//g ] = ) implies
k>1 - / k�" ,6 [V̄/Vg�> ] [-̄/-g ] [/̄//g ] = ) and there exists /̄ 2 ⇡g such
that kV / k�" ,6 [V̄/Vg�> ] [/̄//g ] = ) and there exists B 2 ⇡8 such that
k (_,8/ (V / ! / ,)). ^ - . k�" ,6 [V̄/Vg�> ] [-̄/-g ] [B/.8 ] = )

, For all /̄ 2 ⇡g we have /̄ 2 V implies /̄ 2 �>1g�g�> ( -̄) and there exists
/̄ 2 ⇡g such that /̄ 2 V̄ and there exists B 2 ⇡8 such that B 2 \V̄ and B 2 -̄
(see Justification *)8

, V̄ ✓ �>1g�g�> ( -̄) and V̄ < ; and (\V̄) \ -̄ < ;
) �>1g�g�> ( -̄ , (\V̄)) = ) (by Lemma 1 (ob3))
, k>1 - (_,8/ (V / ! / ,))k�" ,6 [V̄/Vg�> ] [-̄/-g ] = )
Hence by definition of k.k, for all 6, all V̄ 2 ⇡g�>, all -̄ 2 ⇡g we have:
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k ((8/ (V / ! >1 - /)) ^ (9/ (V /))) ! ((9. (((_,8/ (V / ! / ,)). ) ^
- . )) ! >1 - (_,8/ (V / ! / ,)))k�" ,6 [V̄/Vg�> ] [-̄/-g ] = )

, For all 6, we have k8V8- (((8/ (V / ! >1 - /)) ^ (9/ (V /)))
! ((9. (((_,8/ (V / ! / ,)). ) ^ - . )) ! >1 - (_,8/ (V / !
/ ,))))k�" ,6 = )

, �" |=HOL $⌫3
OB4: Given assignment 6, and -̄ , .̄ , /̄ 2 ⇡g such that k8, (. , ! - ,)^>1 - .^

8, (- , ! / ,)k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )

, k8, (. , ! - ,)k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = ) and
k>1 - . k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = ) and
k8, (- , ! / ,)k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )

, For all B 2 ⇡8 we have (B 2 .̄ implies B 2 -̄) and .̄ 2 �>1g�g�> ( -̄) and
(B 2 -̄ implies B 2 /̄)

, .̄ ✓ -̄ and .̄ 2 �>1g�g�> ( -̄) and -̄ ✓ /̄
) (/̄ \ -̄) [ .̄ 2 �>1g�g�> (/̄) (by Lemma 1 (ob4))
, k>1 / (_, ((/ , ^ ¬- ,) _ . ,))k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = ) (see Justi-

fication **)9
Hence by definition of k.k for all 6, all -̄ , .̄ , /̄ 2 ⇡g we have:

k (8, (. , ! - ,) ^ >1 - . ^ 8, (- , ! / ,)) ! >1 / (_, ((/ , ^
¬- ,) _ . ,))k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] = )

, For all 6 we have k8-./ ((8, (. , ! - ,) ^ >1 - . ^ 8, (- , ! / ,))
! >1 / (_, ((/ , ^ ¬- ,) _ . ,)))k�" ,6 = )

, �" |=HOL $⌫4
OB5: This case is analogous to OB4.

Proof of Lemma 3

Proof The proof of the lemma is by induction on the structure of X.
In the base case we have X = ? 9 for some ? 9 2 %:

kb? 9c(k�" ,6 [B/(8 ] = )

, k? 9
g(k�

" ,6 [B/(8 ] = )

8 Justification *:By definition of k. k, k_,88/g (Vg�>/g ! /g,8) k�
" ,6 [V̄/Vg�> ] [-̄/-g ] [B/.8 ]

is denoting the function 5 from ⇡8 to ⇡> such that for all 3 2 ⇡8 ,
5 (3) = k8/g (Vg�>/g ! /g,8) k�

" ,6 [V̄/Vg�> ] [-̄/-g ] [B/.8 ] [3/,8 ] . By definition of k. k,
k8/g (Vg�>/g ! /g,8) k�

" ,6 [V̄/Vg�> ] [-̄/-g ] [B/.8 ] [3/,8 ] = ) i� for all /̄ 2 V̄ we have 3 2
/̄ . Thus, 5 is the characteristic function of the set \V̄. By the Denotatpflicht, which is obeyed in
�" , we know that 5 (= \V̄) 2 ⇡g .
9 Justification **: Similar to justification *, we can convince ourselves that k_, ( (/ , ^
¬- , ) _. , ) k�" ,6 [-̄/-g ] [.̄ /.g ] [/̄//g ] [/̄//g ] is denoting the characteristic function 5 of the
set (/̄ \ -̄ ) [.̄ . By the Denotatpflicht, which is obeyed in �" , we have 5 (= (/̄ \ -̄ ) [.̄ ) 2 ⇡g .
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, � ? 9
g (B) = )

, B 2 + (? 9 ) (by definition of �" )
, " , B ✏ ? 9

For proving the inductive cases we apply the induction hypothesis, which is for-
mulated as follows: For all X0 that are structurally smaller than X, for all assignments
6 and all B we have kbX0c(k�" ,6 [B/(8 ] = ) if and only if " , B ✏ X0.

We consider each inductive case in turn:
X = ¬i:

kb¬ic(k�" ,6 [B/(8 ] = )

, k (¬g�g bic)(k�
" ,6 [B/(8 ] = )

, k¬(bic()k�" ,6 [B/(8 ] = ) (since (¬g�g bic)( =V[ ¬(bic())
, kbic(k�" ,6 [B/(8 ] = �
, " , B 2 i (by induction hypothesis)
, " , B ✏ ¬i
X = i _ k:

kbi _ kc(k�" ,6 [B/(8 ] = )

, k (bic _g�g�g bkc)(k�" ,6 [B/(8 ] = )

, k (bic() _ (bkc()k�" ,6 [B/(8 ] = )
(since (bic _g�g�g bkc)( =V[ ((bic() _ (bkc()))

, kbic(k�" ,6 [B/(8 ] = ) or kbkc()k�" ,6 [B/(8 ] = )
, " , B ✏ i or " , B ✏ k (by induction hypothesis)
, " , B ✏ i _ k

X = 2i:
kb2ic(k�" ,6 [B/(8 ] = )

, k (_-8. (bic. ))(k�" ,6 [B/(8 ] = )

, For all 0 2 ⇡8 we have kbic. k�
" ,6 [B/(8 ] [0/.8 ] = )

, For all 0 2 ⇡8 we have kbic. k�
" ,6 [0/.8 ] = ) (( 8 5 A44(bic))

, For all 0 2 ( we have " , 0 |= i (by induction hypothesis)
, " , B |= 2i

X = 20i:
kb20ic(k�

" ,6 [B/(8 ] = )

, k (_-8. (¬0E - . _ bic. )) (k�" ,6 [B/(8 ] = )

, For all 0 2 ⇡8 we have k¬0E (. _ bic. k�" ,6 [B/(8 ] [0/.8 ] = )

, For all 0 2 ⇡8 we have k0E (. k�
" ,6 [B/( ] [0/. ] = � or

kbic. k�" ,6 [B/(8 ] [0/.8 ] = )
, For all 0 2 ⇡8 we have �0E8�g (B, 0) = � or

kbic. k�" ,6 [0/.8 ] = ) (( 8 5 A44(bic))
, For all 0 2 ( we have 0 8 0E(B) or

" , 0 |= i (by induction hypothesis)
, " , B |= 20i
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X = 2?i.
The argument is analogous to X = 20i.

X = �(k/i):10
kb�(k/i)c(k�" ,6 [B/(8 ] = )

, k (_- (>1bkc bic))(k�" ,6 [B/(8 ] = )

, k>1bkc bick�" ,6 [B/(8 ] = )

, �>1g�g�> (kbkck�
" ,6 [B/(8 ] ) (kbick�" ,6 [B/(8 ] ) = )

, kbick�" ,6 [B/(8 ] 2 �>1g�g�> (kbkck�
" ,6 [B/(8 ] )

, + (i) 2 �>1g�g�> (+ (k)) (see Justification ***)
, + (i) 2 >1(+ (k))
, " , B |= �(k/i)
X = �0 (i):

kb�0 (i)c(k�
" ,6 [B/(8 ] = )

, k (_- (>1 (0E -)bic ^ 9. (0E - . ^ ¬(bic. )))(k�" ,6 [B/(8 ] = )

, k>1 (0E ()bic ^ 9. (0E (. ^ ¬(bic. ))k�" ,6 [B/(8 ] = )

, k>1 (0E ()bick�" ,6 [B/(8 ] = ) and
k9. (0E (. ^ ¬(bic. ))k�" ,6 [B/(8 ] = )

, k>1 (0E ()bick�" ,6 [B/(8 ] = ) and
there exists 0 2 ⇡8 such that k0E (. ^ ¬(bic. )k�" ,6 [B/(8 ] [0/.8 ] = )

, �>1g�g�> (k0E (k�
" ,6 [B/(8 ] ) (kbick�" ,6 [B/(8 ] ) = ) and

there exists 0 2 ⇡8 such that
k0E - . k�" ,6 [B/(8 ] [0/.8 ] = ) and kbic. k�" ,6 [B/(8 ] [0/.8 ] = �

, kbick�" ,6 [B/(8 ] 2 �>1g�g�> (k0E (k�
" ,6 [B/(8 ] ) and

there exists 0 2 ⇡8 such that
k0E - . k�" ,6 [B/(8 ] [0/.8 ] = ) and kbic. k�" ,6 [B/(8 ] [0/.8 ] = �

, + (i) 2 �>1g�g�> (k0E (k�
" ,6 [B/(8 ] ) and (similar to ***)

there exists 0 2 ⇡8 such that
k0E - . k�" ,6 [0/.8 ] = ) and kbic. k�" ,6 [0/.8 ] = �

, + (i) 2 �>1g�g�> (0E(B)) and (similar to ***)

10 Justification ***: We need to show that k bic k�" ,6 [B/(8 ] is identified with + (i) = {B 2
( | " , B |= i } (analogous for k). By induction hypothesis, for all assignments 6 and world B, we
have k bic( k�" ,6 [B/(8 ] = ) if and only if " , B ✏ i. We expand the details of this equivalence.
For all assignments 6 and all worlds B 2 ⇡8 we have

B 2 k bic k�" ,6 [B/(8 ] (charact. functions are associated with sets)
, k bic k�" ,6 [B/(8 ] (B) = )

, k bic k�" ,6 [B/(8 ] ( k( k� ,6 [B/(8 ] ) = )

, k bic( k�" ,6 [B/(8 ] = )
, " , B ✏ i (induction hypothesis)
, B 2 + (i)

Hence, B 2 k bic k�" ,6 [B/(8 ] if and only if B 2 + (i) . By extensionality we thus know that
k bic k�" ,6 [B/(8 ] = + (i) . Moreover, since �" obeys the Denotatpflicht we have + (i) 2 ⇡g .



22 C. Benzmüller, A. Farjami and X. Parent

there exists 0 2 ⇡8 such that
k0E - . k�" ,6 [0/.8 ] = ) and kbic. k�" ,6 [0/.8 ] = � (( 8 5 A44(bic))

, + (i) 2 >1(0E(B)) and
there exists 0 2 ( such that
0 2 0E(B) and " , 0 6|= i (by induction hypothesis)

, + (i) 2 >1(0E(B)) and
there exists 0 2 ( such that 0 2 0E(B) and 0 8 + (i)

, + (i) 2 >1(0E(B)) and
there exists 0 2 ( such that 0 2 0E(B) \+ (¬i)

, + (i) 2 >1(0E(B)) and 0E(B) \+ (¬i) < ;
, " , B |= �0 (i)
X = �? (i):

The argument is analogous to X = �0 (i). ⇤
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