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Abstract

The National Educational Panel Study (NEPS) set up a panel cohort of stu-
dents starting in grade 5 and grade 9. To realize the corresponding samples
of students NEPS applied a complex stratified multi-stage cluster sampling
approach. To allow for generalizations from the sample to the universe es-
pecially aspects of complex sample designs have to be considered and are
reflected by design weights.

When applying multi-stage sampling approaches unit nonresponse, that
is, units refuse to participate, may occur on each stage where decisions to-
wards participation are made. To correct for potential bias induced by re-
fusals of schools and students the derived design weights need to be ad-
justed. Since participation decisions differ in many ways, for example by
stage (school- or student-level), time (in the forerun of or during the panel)
or reasons (school-level: workload or participation in other studies, student-
level: not interested in the study, resentment to testing), design weights
need to be carefully adjusted to reflect the participation decisions made on
each stage properly. Participation decisions on the school level take informa-
tion from sampling and the school recruitment process into account and are
modeled using binary probit models with random intercept considering the
federal-state-specific recruitment.

Schools participating are subsampled providing access to students in
grade 5 and 9. Subsampling within schools provides a sample of two classes
if at least three are present, otherwise all classes are selected. In creating de-
sign weights this subsampling needs again to be incorporated in the weights.
The students decision process on the next stage has to be accounted for in
providing unit nonresponse adjusted weights. These decision processes take
clustering at the school level as well as information on the initial sample, that
is, respondents and nonrespondents, into account. The resulting net sample
forms the panel cohorts of students in grade 5 and 9.

Based on the panel cohorts each student can again decide whether to
participate or not for each successive wave. Providing additional informa-
tion obtained in a parental interview with one parent this multi-informant
perspective makes consideration of an additional participation decision nec-
essary. Since participation decisions of a student and a parent are unlikely
independent they should be modeled appropriately using bivariate models.
To again account for a cluster structure these models are extended with a
random intercept on the school level.

All these aspects of complex sample and survey designs as well as the
different participation decisions involved need to be considered in weighting
adjustments. The results point at typical characteristics influencing partic-



ipation decisions of schools, students and parents. Besides that the results
stress the need to account for sample design and the nature of decision pro-
cesses involved resulting in the actual participation.
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Chapter 1

Introduction

The National Educational Panel Study (NEPS) provides data on various
aspects of competence development, educational decisions, learning environ-
ments, migrational background and returns to education. The design of
the National Educational Panel Study focuses on the life course perspective
as introduced by Baltes, Reese, and Lipsitt (1980) and extended by Elder,
Johnson, and Crosnoe (2003). Therefore the NEPS adapted a multicohort
sequence design (Blossfeld & Maurice, 2011), shown in Figure 1.1.

This stringent commitment to the longitudinal focus is most central for
the design of the NEPS. The cohorts are positioned at central stages within
the educational system as well as at transitions relevant for educational ca-
reers. Since this definition of cohorts differs from others they are referred
to as starting cohorts. This design allows to quickly provide data to the
scientific community for each of the starting cohorts. Starting Cohorts are
samples of a special cohort that will be followed over time. These six Starting
Cohorts (SC) cover the entire lifespan and comprise Farly Childhood (SC1),
Kindergarten children (SC2), Grade 5 and grade 9 students in primary and
secondary schools (SC3 and SC4), First- Year Students (SC5) as well as Adults
(SC6).

The starting cohorts positioned at key transitions are kindergarten chil-
dren and students in the ninth grade of secondary schools. Grade 5 students
as well as the freshmen cohort are positioned at the beginning of a new ed-
ucational stage. Besides that the adults cohort focuses on the educational
careers in adulthood and the early childhood cohort studies the infant de-
velopment (Blossfeld, Maurice, & Schneider, 2011). Each starting cohort is
followed up so that target persons can be studied in different stages as well
as in different developmental statuses of their individual careers throughout
the entire lifespan. The longitudinal design not only permits the analysis
of dynamics but also the determinants of individual behaviour. In contrast

1
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Figure 1.1: The multicohort sequence design of the National Educational
Panel Study.

to cross-sectional designs this further allows to study decisions within polit-
ical, familiar and social contexts (Trivellato, 1999). In order to provide a
rich database allowing for analyses of different educational topics, the NEPS
uses a multi-informant survey approach. Adapting such a survey design,
the NEPS enriches for example data obtained from testing and surveying
students with information obtained within a parental telephone interview as
well as information provided by teachers and institution heads.

Since this design is complex and to account for particularities of each
starting cohort sophisticated sampling designs are applied. Focusing on stu-
dents surveyed and tested in the school cohorts in grade 5 and grade 9, that
is, Starting Cohorts 3 and 4, complex survey designs and their consequences
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for sampling designs and weighting strategies will be thoroughly discussed.
The emphasis is on complex sampling designs that are applied respecting
the stratified and hierarchical school system in Germany as well as deriving
design weights and adjusting them to compensate for unit nonresponse.

In the phase of planning the samples of schools for grade 5 and 9 several
issues arose concerning stratification, sample sizes, and allocation of sample
size within a stratified multistage cluster sampling design. Clusters are sam-
pling units that are grouped together for example in an institution. In an
educational context schools or classes within schools form such clusters of
students. These clusters (schools as well as classes) are commonly of unequal
size. Multistage (cluster) sampling can be applied to hierarchically struc-
tured clusters such as students within classes within schools. In this case a
school could be sampled on the first stage (on the top level of the hierarchy)
and classes could be sampled on the second stage (on a lower level of the hi-
erarchy). From this example it can be seen that in multistage cluster designs
the sample size (for example the number of students) on the ultimate stage
becomes a random variable (see Kish (1995, pp. 217ff) or Sdrndal, Swensson,
and Wretman (2003, p. 127)). Following Kish (1995) appropriate measures
such as stratification by cluster size, splitting or combining clusters or prob-
ability proportional to size sampling exist to achieve an approximate control
of ultimate stages’ sample size. To determine a sufficient sample size of clus-
ters on the first stage appropriate measures were adopted. Furthermore the
number of clusters, that is, schools, to sample on the first stage was derived
by means of simulation to achieve a desired number of units of the ultimate
stage, that is, students.

The Starting Cohorts 3 and 4 focus on students in grade 5 and 9 within
secondary schools. Schools were grouped in strata according to their school
type to account for the heterogeneity of educational degrees achievable in
the different school types. Within each stratum a two-stage cluster sampling
approach was adopted. On the first stage schools (as clusters of classes) were
sampled providing access to the students clustered in classes within these
schools. On the second stage classes (as clusters of students) were sampled
and all students therein were asked for participation.

Sampling schools for Starting Cohorts 3 and 4 was done in school year
2009/10 using information on schools from the school year 2008/09. Survey-
ing and testing students took place in school year 2010/11. Within these
two years fluctuation (students repeating a class or leaving school), ongoing
school reforms or closing down of schools reshape the population of schools.
In probability proportional to size (pps) sampling (as one measure to achieve
an approximate control of sample size) the measure of size is the characteris-
tic to which the probability for sampling is proportional to. When choosing
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the number of students or the number of classes per school this characteristic
might change over time. Using an appropriate measure of size in pps sam-
pling on the first stage, that allows for an inverse pps on the second stage
results in a sample where each individual has the same design weight, that is,
a self weighting sample.! Since the characteristic for a measure of size in pps
sampling based on information from school year 2008/09 and an inverse pps
based on the same characteristic two years later which might change during
that period, an exact self weighting sample can only be realized having a con-
stant characteristic. Due to the changes induced by this gap in time different
characteristics for constructing the measure of size were evaluated. The aim
was to find a measure of size that is stable over this period to get as close as
possible to a self weighting sample. The evaluation uses the actual sampling
frame from school year 2008/09 and the one from the previous school year
2007/08. The measure of size for sampling was chosen to yield minimum
variation of design weights induced by changes due to the gap in time.
Applying the above described stratified two-stage cluster sampling design
schools and classes were sampled and corresponding design weights were de-
rived for schools and students. The sampled schools (also referred to as orig-
inal schools) were contacted by the survey research institute and asked for
participation. Since participation is voluntary and schools could refuse each
sampled school was assigned up to four replacement schools and if necessary
contacted in a fixed order to counteract a reduction of sample size. Within
each participating school two classes were sampled if at least three were
present, otherwise all classes were sampled. One teacher within each school
responsible for communication with the survey research institute (coordina-
tor) was asked to list all students in the sampled classes on the so called
Schiiler-Teilnahme-Liste (engl.: student participation list, see Table B.2).
Each student willing to participate had to return an informed consent signed
by a parent if the student was not of legal age. This participation status
was recorded on the list and it further contained information on the initial
sample such as sex, month and year of birth, school type, etc. One part of
this list was returned to the survey research institute and later on to the
methods department of the NEPS. The other parts remained in the school.
The derived design weights apply to the initial sample of original schools
and their students. They would be applicable if participation in the study
is mandatory. Since schools as well as students have the possibility to refuse
participation the derived design weights need to be adjusted to compensate
for refusal (i.e., unit nonresponse). Due to the two-stage sampling design and

IThis is true under certain circumstances discussed in more detail in Sections 3.4 and
3.5.
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the successive decision processes on each stage unit nonresponse can occur on
each stage. Therefore the derived design weights were adjusted on each level,
that is, school and student level, successively to correct for unit nonresponse.
Adjustments on the school level utilized information from sampling (for ex-
ample strata, number of classes, etc.) as well as information arising from the
recruitment process of schools (for example number of schools recruited per
federal state). Adjustments on the student level utilized information pro-
vided by the coordinator on the students participation list. The adjustments
of the initial sample were done respecting the structure of the school system,
two-stage decision processes and the clustering of students within schools.
These adjusted design weights apply to students willing to participate in the
panel, that is, the panel cohort, and will be referred to as panel entry weight.

At the day of surveying and testing students in schools students were
absent due to illness, weather conditions or other reasons although they were
willing to participate. The absence of students at 'test days’, referred to as
temporary drop-out, can occur in each wave of the panel. This makes further
adjustments for wave-specific unit nonresponse necessary. These are based
on information available for the entire panel cohort. Adjusted weights for the
panel cohort are provided for different groups. These groups include wave-
specific participants (cross sectional weights), all-time-participants (panel co-
hort members participating in each wave up to the actual wave) or subgroups
of interest (for example students and parents or participants with available
tests from each second wave).

Wave-specific adjustments correct for unit nonresponse in the correspond-
ing wave. Therefore participation decisions are modeled using available infor-
mation which is mostly not varying over time. To account for the clustering
of students a random intercept model is adopted using a probit link function.?
The models will become more sophisticated in the progress of the panel, since
more information arises. Information that is missing or not available in the
first wave may arise in the second wave so that the model for the first wave
can be updated and becomes more accurate.

The group of panel cohort members participating in each wave up to the
actual wave, that is, the all-time-participants, is modeled almost analogously
to the cross sectional adjustment models. The models are conditioned on the
participation status in previous waves and extended by information arising
in the progress of the panel.

Finally, models for weighting adjustments in the subgroup of the panel
cohort students in grade 5 and their parents have to consider two possibly

2The probit specification is used to be consistent with extensions of the model intro-
duced later on.
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correlated decisions. Thereby both, the students and the parental survey are
subject to nonresponse. To provide unit nonresponse adjusted weights for
the relevant group of participating students and parents, a bivariate probit
with random intercept allowing for clustering at the school level is used. Yet
there is no implementation of this model for the statistical software package
R (R Core Team, 2014) available. Thus it is provided in the Appendix D.
The model is estimated using a simulated maximum likelihood procedure
based on the importance sampler of Geweke, Hajivassiliou and Keane (GHK-
simulator) documented in Geweke and Keane (2001).

The empirical results of the adjustment models point at significance of
typical explaining factors of unit nonresponse and reveal the importance to
consider a clustering structure as well as a correlation parameter regarding
the possibly correlated participation processes of parents and students.

This dissertation proceeds along the order of events. Chapter 2 will give a
review on sampling and weighting as basis for the description in the following
chapters. Chapter 3 gives detailed insights on the sampling design of SC3
and SC4. The weighting procedures applied to SC3 and SC4 are discussed
in Chapter 4. The bivariate probit model with random intercepts and its
application to weighting adjustments in SC3 is shown in Chapter 5. A sum-
mary and an outlook to future research in the field of weighting longitudinal
cohorts with complex survey designs will be given in Chapter 6.

The Appendix A contains the lists of abbreviations and symbols used
throughout the following chapters. Appendix B includes the tables in order
of their appearance within the text. An illustration of the GHK-simulator
is given in Appendix C. The syntax of the code used for estimation of the
bivariate probit model with random intercept as introduced in Chapter 5 is
displayed in Appendix D. Finally Appendix E gives R’s session information.



Chapter 2

Reviewing sampling and
weighting techniques

Chapter outline:

Reviewing the basic sampling techniques this chapter will serve as theoretical
basis for the thorough description of the samples in the subsequent chap-
ter. The review deals with the preparation of the sampling frame, a general
description of sampling as well as a formal description of deriving design
weights. This is followed by a summary of the sampling techniques applied
in SC3 and SC4. It finishes with aspects of weighting adjustments.

This chapter is in parts based on the work published in earlier papers by
Afmann et al. (2011) and Afimann et al. (2012).

2.1 The sampling frame

The starting point for each sampling design is the definition of the target
population in terms of temporal and regional restriction as well as further
characteristics describing the population. The basis for sampling is most
often provided in form of a complete list of population elements® containing
available information for each element. This complete listing is referred to as
sampling frame. Sampling frames usually are obtained from administrative
data bases, for example registration offices and their registers or complete
lists of schools, universities and communities provided by the States Bureaus
of Statistics (Statistische Landesdmter).

When requesting administrative listings the frames provided (for exam-
ple for schools or communities) cannot always be up to date since ongoing

IThe terms element and unit will be used synonymously.
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reforms, closing and merging of institutions, deaths and births as well as mi-
gration and immigration reshape populations. Therefore any sampling frame
available can only be a snapshot of the population at a certain point in time.
This in fact has an impact on designing a sampling strategy. Furthermore
frames are provided by states in different formats, quality and informational
content. So the aim to construct a nationwide frame can become a challeng-
ing task. For more details on the provision and harmonization of a frame see
Afmann et al. (2012).

2.2 Sampling techniques

There exist different methods to draw a sample from a target population
(also universe) if a sampling frame is available. Let U denote the universe
consisting of N units U = {uy,...,u;,...,unx}. Let further the set of all
samples S contain all possible samples s of size n for a given selection scheme
so that s € S. The probability p to draw one certain sample s € S is given
by the function p : S — [0;1] with p(s) > 0 and > ,cqp(s) = 1 (see Sarndal
et al., 2003, pp. 27f). The tuple (S, p) is called sample design. For a given
sample design the first order inclusion probability ; is the probability that
the i'" element v; is sampled (see Sirndal et al., 2003, p. 31):

m = Pu; € S) = ZAp(s).

The probability that the units u; and u; (i # j) are sampled jointly into the
sample is given by the second order inclusion probability ;;

T = P({’LL“U,]} € S) == Z p(S)
s2{uijuy}
The summation is over all samples s that do contain the element u;. The
design weight d; for unit wu; is usually given by the inverse of its first order
inclusion probability

di:* VZ:L,H

With respect to the design (.S, p) for each sampled unit u; the design weight
d; can be derived. The design weight (or also base weight) can (in some
designs) be interpreted as the number of population elements represented
by a sampled unit (see Wolter, 2007, p. 18). In simple random sampling
without replacement the first order inclusion probability arises as
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Hence the design weight is (see Tillé (2006, p. 45) or Sarndal et al. (2003,
p. 66))

being constant for all sampled units. In case of simple random sampling
without replacement the design weight d; gives the number of units repre-
sented in the population by the sampled unit. That is, the sum of the design
weights results in the population size N, since

Ba- () 5 (0) s -

i—1 T

This is not necessarily the case for all sampling designs. Such is the usual
case in sampling with replacement or under consideration of ordering. In
statistical inferences constant design weights (as above) can be ignored. In
contrast, nonconstant design weights cannot be ignored, since they arise from
complex designs such as stratified, multistage or cluster sampling (Snijders
& Bosker, 2012). The design weights are commonly used for estimation of
population parameters (for example totals, means, ratios) for some variable of
interest y. Applying the Horvitz-Thompson estimator (Horvitz & Thompson,
1952) the estimated population total Y is computed as the sum of weighted
observations of y; for unit u; € s

?HT = Zyidz‘ = %-

i=1 i=1 "

For a probability distribution p on S and a general estimator 7 the tuple
(p, ) is referred to as strategy. One main focus of sample selection theory
therefore is to find sample designs well interacting with estimators, which
means finding appropriate strategies. To achieve this aim it is necessary in
advance to be aware of analyses of interest when the sample is realized and
information is available.

But designing a sampling scheme also has to take practical and econom-
ical aspects into account. Complex survey designs often do not allow for
sampling units by simple random sampling. Economic reasons finally drive
decisions towards certain sampling designs, even if those result in more com-
plex methods of data analysis. The aim of providing accurate estimates for a
population of interest is often achieved by choosing other designs than simple
random sampling.
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2.2.1 Explicit Stratification

Explicit stratification assigns each population element u; to distinct non-
overlapping strata. After stratifying the population U in h =1, ..., H strata
Ui,..., Uy with population sizes N = S>F_| N, samples of size nj, are taken
independently from each stratum. Explicit stratification serves several
aspects as discussed in Kish (1995, pp. 76-77) and Sérndal et al. (2003,
p. 100).

It can be used to gain precision in estimates (i.e. decrease their vari-
ance).

o By sampling independently from each stratum different sampling de-
signs can be applied to the strata. This is especially useful when the
populations are extremely heterogeneous or their elements differ by
nature.?

« Stratification by cluster size is one possibility to control sample size in
case of clusters with unequal size.?

o When samples are drawn from several frames of different quality strat-
ification may become necessary. Characteristics that are relevant for
sampling may be measured differently, provided in a different way or
even be missing.?

» Subpopulations can be of special interest for a study and separate esti-
mates are needed. Dividing the population in strata serves this aspect.’

o Administrative reasons may be a further argument for stratification.

Figure 2.1 illustrates explicit stratification of schools. The schools in the
population (Subfigure 2.1a) are assigned to the strata h = 1,...,5. Thereby
each stratum can contain a different number of schools. The schools within
each stratum are in this example identical with respect to the stratification
characteristic color of the school building® (Subfigure 2.1b) but still different
with respect to other characteristics (for example color of the roof). When

2This aspect applies in sampling students. The samples were stratified by school type
to account for heterogeneity between different school types; especially between regular and
special schools.

3See also Section 2.2.2 for further details.

4This issue is addressed in Section 3.4 and 3.5 for sampling students in regular (allge-
meinbildende Schulen) and special (Forderschulen) schools.

5This is shown in Section 3.4 when oversamplings of students in vocational tracks are
considered.

6Tt could have been any other characteristic such as Federal State or school type.
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(a) Population of schools. (b) Stratified population of schools.

Figure 2.1: Explicit stratification of schools by color of the school building.

using explicit stratification sample size (for example n = 10) needs to be
allocated to the strata. The allocation of the total sample size n to the H
strata can be achieved in several ways whereas it always has to be ensured
that n = S5 nj, (Cochran, 1977, p. 89). In equal allocation sample size
per stratum n;, = 7 is equal across strata n; = ng = ... = ny (for example
sample n;, = 2 blue, red, green, purple and orange schools). Allocating
the total sample size proportional to the size of the population of stratum h
results in unequal sample sizes per stratum n, = n- % (for example 3 blue, 2
red, 2 green, 1 purple and 2 orange schools) and equal sampling fractions f =
Z—Z. To gain precision in estimates for small strata the sample size is increased
resulting in unequal sampling fractions. This is called oversampling of strata.
To ensure a minimum (and maximum) number of sampling units per stratum
Gabler, Ganninger, and Miinnich (2012) derived an allocation algorithm with
respect to bounded design weights while considering optimality in allocation
for stratified random sampling.” For a numerical solution see Miinnich, Sachs,
and Wagner (2012)

Explicit stratification results in independent samples. If this is not de-
sired or possible implicit stratification, that is, sorting the sampling frame
by characteristics available, together with systematic selection can—to some
extend-help to ensure having elements of implicit strata within the sample.
The result will be similar to that of a proportionate stratified sample (Kish,
1995, p. 85). Implicit stratification will not be useful for small strata (for
example purple schools in Subfigure 2.1b), since they may not be sampled or
only in small numbers.

"This approach was discussed in sampling the Starting Cohort 1 — Early Childhood of
the NEPS.
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Besides explicit and implicit stratification it is also possible to stratify
the sample after its realization. When information is not available for sam-
pling but is collected during the field period (for example individual char-
acteristics such as age, sex, occupation) these information can be used for
post-stratification.

2.2.2 Multistage and multistage cluster sampling

Multistage sampling is used to get access to hierarchical structured or clus-
tered populations. Sometimes it is not possible to sample individuals directly,
since no frame is available on the individual level. In this case clusters of
individuals can be sampled instead if the individuals are grouped or clus-
tered (and there is an available frame). In cluster sampling a cluster (for
example a school) contains a set of units (students) and within a cluster all
units can be surveyed (Sérndal et al., 2003, p. 124). If further samples are
drawn within the cluster, sampling is done on multiple stages and is therefore
referred to as multistage sampling. In two-stage sampling units on the first
stage are referred to as primary sampling units (PSU, e.g. schools) and those
on the second stage are called secondary sampling units (SSU, e.g. classes).
The primary sampling units on the first stage are disjoint sub-populations
of grouped secondary sampling units. In multistage designs this hierarchy
is extended to the ultimate stage (Sérndal et al., 2003, p. 125) and sam-
pling selection processes can differ at each stage so that the variety of designs
increases rapidly.

Except for the case of equal sized clusters on each stage the resulting
sample size becomes a random variable and is not under control (see Kish,
1995, pp. 217ff or Sarndal et al., 2003, p. 127). Controlling sample size
is essential to most surveys because there are variable costs increasing the
total costs by each sampled unit. Kish (1995, p. 217) points out that "Exact
control of sample size is unnecessary and impossible in most situations. |...|
We should aim at an approximate control that is both feasible and desirable."

To achieve this approximate control in the case of unequal cluster size
Kish recommends not to use uncontrolled random sampling procedures and
to stratify by cluster size. Another way is to split or combine clusters of
unequal size to clusters of a more similar size. On the second stage also size
stratified sampling can be applied with different sampling fractions or a fix
number of elements can be sampled. Finally probability proportional to size
sampling of units (no matter on which stage) can help to get less variation in
the initial sample size (Kish, 1995, pp. 219f). In probability proportional to
size sampling each sampling unit is assigned a measure of size (mos) which
can be a natural characteristic of that unit (for example number of students



REVIEWING SAMPLING AND WEIGHTING TECHNIQUES 13

of a school) or any value assigned to it (Kauermann & Kiichenhoff, 2011,
pp. 104f).

Mehrotra, Srivastava, and Tyagi (1987) show another way for controlling
sample size by discarding an excess number of clusters randomly from the
sampled clusters. The advantages of the proposed procedure are convergence
of planned and realized sample sizes and thereby a reduction of survey costs.
But discarding clusters from the sampled clusters therefore results in less effi-
cient estimators. Discarding clusters can be done if information about cluster
size is reliable or can be estimated accurately. When sampling and survey-
ing is done at different points in time cluster size can change significantly
and though discarding clusters can become a challenging task.® Furthermore
Aliaga and Ren (2006) determine the optimal number of clusters to sample
in a two-stage design for a given linear cost function.
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Figure 2.2: Two-stage cluster sampling.

Figure 2.2 illustrates clusters of students (i.e., classes) in schools. The
classes indicated by colored smileys are located within schools. In two-stage
cluster sampling a number m! of primary sampling units C? (e.g. schools)
is sampled on the first stage (denoted by the superscript). Within a sam-

8In NEPS sampling schools was based on a frame of the school year 2008/09. Sampling
was done in 2009 and surveying and testing of students followed in school year 2010/11.
See Section 3.4 for further details.
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pled first stage cluster C]I a number m!! of secondary sampling units C!/
(e.g. classes, colored smileys) is sampled. To demonstrate the problem of
unequal cluster sizes let the yellow smileys be classes of 20 students, the
green smileys be classes of size 25 and the brown smileys classes of size 30.
Having sampled two schools (e.g. the first and the second in the top row)
and sampling one class per school the sample sizes can vary. Sampling a
yellow and brown smiley will result in the same sample size as sampling two
green smileys. But any other combination will either yield smaller sample
sizes (green and yellow, yellow and yellow) or larger sample sizes (green and
brown, brown and brown). So, depending on the samples drawn, the sample
sizes can be n € {40;45;50;55;60}.

2.2.3 Systematic and systematic unequal probability
sampling

Systematic sampling is an alternative to random selection of units. In sys-
tematic sampling with equal probabilities each unit is assigned an interval
of length 1 (for illustration see Figure 2.3). The selection interval length
k= % is the population size N divided by the sample size n. Starting from
a randomly drawn starting point r € {1,...,k} (i.e. within the first interval)
every k" unit is selected. The units u; selected by systematic sampling are
then

§ = {uT7 Upsky Ur42ky s Ur43k; - - - 7ur+(n—1)k‘}

and the inclusion probability for each unit ¢ is the same m; = % (Madow,
1949). The only unit sampled randomly is the first one. Since the rest of
the sample is determined by the first unit sampled. Systematic selection can
be seen as single stage cluster sampling where only one cluster is selected
(Kauermann & Kiichenhoff, 2011, p. 172).

One drawback of systematic selection is that some units u;, and w; do
not have a second order inclusion probability m;;. For example let u; and
u; be neighbours, than there is no chance for them to end up together in
a sample. This drawback mainly effects variance estimation, for example
for the Horvitz-Thompson estimator. An overview of variance estimation
methods that can be applied in this and other cases is given in Miinnich
(2008). A more details can be found in Wolter (2007).

Figure 2.3 illustrates sampling n = 12 units from a population of size
N = 120 via systematic sampling with a random start value 0 < r < 12.
The N units of the population are ordered on the axis, where each tick mark
indicates one unit. The interval length between to neighbouring units is
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Figure 2.3: Systematic selection of units with random start.

equal to 1. Let »r = 3 and k£ = % = 10 then the sample would consist of
the units s = {ug, uy3,...,u13} (indicated by the larger tick marks and the
arrows). This selection procedure is easily applicable but also can become
more sophisticated for example when it comes to selection with probability
proportional to size or when k is not an even number. For a brief discussion of
systematic sampling procedures see Madow and Madow (1944) and Madow
(1949, 1953). For extension to circular methods as solution to non-integer k
see Uthayakumaran (1998) or Kish (1995, p. 116)

In systematic sampling (as well as other random sampling procedures)
units can be sampled with unequal selection probabilities. When systematic
sampling is performed with pps each unit wu; is assigned a measure of size
mos;. The total measure of size is

N i
MOS = Z mos; and MOS; = Z mos;

i=1 j=1

is the cumulative measure of size and the selection interval length k& changes
to k = M98 (see Kish (1995, pp. 234ff) or Héjek and Dupa¢ (1981, p. 113)).
The inclusion probability for unit ¢ then arises as m; = 575, see Tillé (1996)
or Wolter (2007, pp. 332ff).

Table 2.1: Example for systematic probability proportional to size sampling.

Uy U2 U3 Ug Us Ug U7 U U9 U0 U1 U2

mos; 13 3 1 1 1 1 2 1 1 2 3
Mos;, 1 4 7 8 9 10 11 13 14 15 17 20

Note: Systematic pps sampling is performed using ppss() implemented in the package pps (Gambino, 2012). Use this

function with care, since it can not handle m; > 1.

Table 2.1 shows a simple example for a universe consisting of 12 units.
From this universe a sample of size n = 4 is taken using systematic probabil-
ity proportional to size sampling. With random start point » = 1.8812 and
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interval length £ = 5 the units us, u3, ug and uy; are sampled. Using system-
atic unequal probability sampling two neighbouring units can be selected,
see Figure 2.4.

Figure 2.4: Graphical illustration for pps sampling according to Kish (1995,
pp. 230, 234ff).

Figure 2.4 gives the graphical illustration of the example above. The
cumulative measure of size MO.S; is given along the axis. The first unit
selected is the unit which includes the random start r in its interval. From
this starting point each element is chosen, whose interval includes r plus a
multiple of k.

2.3 Design weights and their adjustment

Since non-mandatory surveys are typically affected by nonresponse. Nonre-
sponse may occur for several reasons. Lepkowski and Couper (2002) separate
the process leading to participation or nonparticipation into location of units,
contacting units (given location) and cooperation of units (given location and
contact). Therefore sampled units can end up as nonrespondents in each of
the three steps. For example a sampled unit has moved and thus cannot
be located. Other units might—for whatever reason—not be contactable. For
example they can be in a hospital because of illness or have moved abroad.
Thus these persons can not be contacted and asked for participation. Some
of the sampled, located and contacted units will refuse to participate in the
survey. Reasons for refusal vary between countries, survey topics, etc., see
for example Lugtig (21.10.2013) These groups of people, that is those people
that could not be located, contacted and those that refuse to participate,
form the set of nonrespondents. This so called unit nonresponse might make
adjustments of the design weights necessary, depending on the type of the
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missing data mechanism. The derivation of final weights is, according to
Kalton and Kasprzyk (1986), in general done in three steps:

1. Derivation of design weights
2. Sample weighting adjustments
3. Population weighting adjustments

In the first step design weights (also known as base weights) are usually
computed as the inverse of the inclusion probability (as shown in Section
2.2). Thus, for most designs they are directly available after sampling. De-
sign weights compensate for unequal probabilities of selection, unequal sam-
pling fractions in stratified samples, that is, oversampling, or for subsampling
(Kish, 1990, 1992).

In the second step the design weights are adjusted to correct for unit non-
response. Kalton and Kasprzyk (1986) refer to this step as sample weighting
adjustment. In multistage sampling procedures this step needs to be con-
sidered on each stage where nonresponse occurs. Sample weighting adjust-
ments correcting for unit nonresponse usually result in increasingly varying
weights and thereby lower the precision of survey estimates (Kalton & Flores-
Cervantes, 2003).

The third step, referred to as population weighting adjustment, calibrates
weights so that estimates conform to known parameters (for example totals
or ratios) of the population. This last step corrects for potential bias due to

incomplete coverage or non-coverage of the population and sampling error
(Brick, 2013).

2.3.1 Sample weighting adjustment

After the sample is realized the sampled units have to be contacted and are
asked to participate in the survey. This two stage process gives rise to two rea-
sons why sampled persons might not be surveyed. Survey response depends
on contact and cooperation. First, the sampled unit needs to be contacted.
Second, given contact the unit decides to cooperate or not. Failing to estab-
lish contact as well as noncooperation will result in unit nonresponse, but
for different reasons (Groves, 1998). Survey response therefore can become
a threefold variable of participation, refusal and noncontact.When modeling
unit nonresponse the two components, that is noncontact and refusal, should
be modeled to avoid bias (Steele & Durrant, 2011). For both components
of unit nonresponse the resulting sample will be biased if the persons not
participating form a selective group.
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The need for adjustments of the design weights depends on the missing
data mechanism. The terminology originates from item nonresponse and
multiple imputation, see Rubin (1987) or Little and Rubin (2002). But it is
also applicable in the context of weighting adjustments. Therefore we need
to come back to the strategy. The aim of every survey is to investigate on a
variable of interest (y, for example educational aspirations) and use auxiliary
information (z, for example educational degree of parents). Unit nonresponse
causes both variables to be missing.

A unit is said to be missing completely at random (MCAR) if the prob-
ability of responding is depending neither on observed nor on unobserved
characteristics. An extreme MCAR case would be if any person in the sam-
ple has the same response probability (Valliant, Dever, & Kreuter, 2013).
In this case the responding part of the sample is a random subsample of
the entire sample that allows for valid inferences. An example would be a
student being ill at the day of the survey or a computer crash in computer
based assessments.

Unit nonresponse is missing at random (MAR) if the probability of re-
sponse depends on the data but only the auxiliary information available for
respondents and nonrespondents. This information can either be marginal
distributions from a census or individual-level data available for the entire
sample. If this auxiliary information is at hand, a model for response propen-
sities can be estimated. Lohr (2010) describes this as ignorable nonresponse.
That is if a model can explain the mechanism of nonresponse and that it
can be ignored if it is accounted for. This approach does not only allow for
re-weighting the initial sample but also for documenting effects significantly
influencing participation decisions. Therefore it is used in later re-weighting.
Here it is not that nonresponse can be ignored and complete data methods
can be applied. In the example MAR would be if the probability of response
would depend on the educational degree of the parents which is observed.

When the probability of nonresponse depends on the variable of interest
(y, for example educational aspirations) and cannot be accounted for by
modeling the response based an the auxiliary information (x) units are not
missing at random (NMAR). (Valliant et al., 2013, p. 319) also term this
nonignorable nonresponse. This type of missing data mechanism is—if at all-
hard to detect. One way of finding out about NMAR would make follow-ups
necessary.

To correct for potential bias arising through unit nonresponse there are a
variety of procedures available. Weighting is one of the most commonly used
methods to correct for unit nonresponse in surveys (Little & Vartivarian,
2003). A general overview on weighting methods to correct for unit nonre-
sponse is given by Kalton and Flores-Cervantes (2003). A more technical
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overview is given by Holt and Elliot (1991).
One way is to adjust the number of participants to the initial sample size.
That is the weight is multiplied by an adjustment factor ¢§

w; = d; - 0, with § = 2 (2.1)
ny

Here n, denotes the number of participants and n,, the number of nonpar-
ticipants. This approach implicitly assumes that unit nonresponse occurs
completely at random. It can be extended in two directions. First the ad-
justment factor can be derived as the fraction of the sum of weights for
all units divided by the sum of weights for the respondents. This is more
appropriate in probability proportional to size samples. Second the above
approach and the first extension can be modified by adjusting the weights
within certain cells. These cells are formed by characteristics of the units
themselves or of higher level units. For example the cells can be defined by
sex, age group and cluster. This approach is referred to as cell weighting and
is one of the most commonly used approaches to correct for unit nonresponse
in (sample) weighting adjustments (Réssler & Riphahn, 2006; Réssler &
Schnell, 2003).

Table 2.2: Example for cell weighting.

women men

sampled 500 1200 500 1100
responding 400 700 250 650
4] 1.250 1.714  2.000 1.692

Assume the realization of a sample of size n = 1000 (shown in Table 2.2)
with an equal ratio of women and men (i.e. n,, = n,,, of course just for conve-
nience), whereas n,, = 400 women and n,, = 250 men respond to the survey.
A naive approach would be adjusting the design weights neglecting infor-
mation on sex resulting in an adjustment factor § = % ~ 1.538. Making
use of the information on sex results in gender specific participation rates of
P = % = 0.8 and p,, = % = 0.5 and the corresponding adjustment factors

(see Equation (2.1)) 0, = p;! = 22 = 1.25 and §,, = p;,} = 22 = 2.0. Bas-

400 m 250
ing the adjustments on the sum of weights would lead to adjustment factors
for women 6, = 2% ~ 1.714 and men 6,, = 2% ~ 1.692.

700 650
A more sophisticated approach is to adjust the respondents by the in-

verse of their estimated response propensity. The basic idea (harking back



20 REVIEWING SAMPLING AND WEIGHTING TECHNIQUES

to Rosenbaum and Rubin (1983)) is to find a sampled element that is most
similar to the refusing. Now this similar element has to "represent" more pop-
ulation elements. To do so the response propensity is most often estimated
using logit? models for binary data, which need information on participants
as well as non-participants. The inverse of the estimated response propensity
\; for element i is multiplied by the design weight and finally the adjusted
design weight is (Rendtel & Harms, 2009)

Frameworks that can be applied to estimate these response propensities are
more thoroughly discussed in Section 4.2. Note that d; is a fixed value de-
pending on the sample design (.5, p) only. The value of w;, since multiplied by
X,L-_ ! estimated from a model, in contrast is an estimate based on the realized
sample. Asymptotic properties of estimators using nonresponse adjusted de-
sign weights w; based on the estimated response propensity are discussed by
Holt and Elliot (1991), Kim and Kim (2007) and Henry and Valliant (2012).

2.3.2 Population weighting adjustment

The idea behind population weighting adjustments is to make sample dis-
tributions and parameters conform to known distributions and parameters
of the population. For population weighting adjustment most of the meth-
ods used in sample weighting adjustment can be applied as well (Kalton &
Flores-Cervantes, 2003). Unlike sample weighting adjustments population
weighting adjustments do not need information for nonrespondents (Brick &
Kalton, 1996). For population weighting adjustments distributions or pa-
rameters of the population need to be known. Further methods for popula-
tion weighting adjustments include calibration, general regression estimation
(GREG), raking or post stratification.

Post stratification can make use of data collected in the survey that was
not available before (for example age or sex). For known totals of subgroups
of the population the weights for units are adjusted within subgroups (or
classes, poststrata) so that the estimate conforms to the total within this
class. This method therefore reduces bias induced by undercoverage. One
problem with this approach arises if the characteristics used in forming the
poststrata are not measured in the same way for the sample and the popula-
tion (for example migrational background). Never the less post stratification

9Laaksonen (2005) finds the logit link function to be used most often and further
discusses the characteristics of probit, log-log and clog-log. In his findings the choice of
link functions only differs slightly in estimated propensities.
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is, according to Brick and Kalton (1996), one of the most frequently used
population weighting adjustments.

For a large number of characteristics available for the sample and the
population together with parameters of interest post stratification may suffer
from small number of cases within the poststrata. In this case an iterative
approach called raking is superior. It iteratively adjusts the weights in a way
that marginal distributions of auxiliary information conform to those of the
data (Brick & Kalton, 1996). The approach, also referred to as iterative
proportional fitting, was suggested by Deming and Stephan (1940)

The calibration approach systematically incorporates auxiliary informa-
tion into the procedure (Sarndal, 2007). Calibration thereby is not only
a procedure for population weighting adjustment, but also incorporates the
estimation of population parameters. The weighting adjustment computes
weights using auxiliary information. These adjustments are—at the same
time-restrained to one or more calibration equations, see Sarndal (2007).

General regression estimation is another way to incorporate auxiliary in-
formation in the estimation step. Deville and Sarndal (1992) note that the
GREG can be derived also from calibration by focusing on the weights. They
show that the weights used in GREG are closely to those derived by calibra-
tion according to a given distance measure. A disadvantage of using GREG
is that negative weights can occur (Deville & Sarndal, 1992).

In the later application we refrain from population weighting adjustments,
since there are either no known population parameters (yet) available to
adjust to or these are based on non-matching definitions.
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Chapter 3

Sampling grade 5 and grade 9
students

Chapter outline:

The samples for students in grade 5 and 9 in secondary schools (Starting
Cohorts 3 and 4) will be thoroughly described in this chapter. The populations
of students in grade 5 and 9 are described using available information from
the sampling frame. On the basis of this information the planning phase
with simulations and their corresponding results are presented. The final
description of the samples for grade 5 and grade 9 students is then associated
by the derivation of design weights. The sampling design of NEPS can be
summarized as a stratified multistage cluster sampling design. The selection
scheme, that is, the rule of how to select units from the universe, for sampling
PSUs is systematic selection with probability proportional to size and the SSUs
are sampled using simple random sampling. The focus therefore will be on
the particularities of each Starting Cohort.

This chapter is in parts based on the work published in earlier papers by
Afmann et al. (2011) and Afimann et al. (2012).

3.1 Population

The target population of the NEPS SC3 and SC4 include all students attend-
ing primary or secondary schools in grade 5 or grade 9 within the Federal
Republic of Germany in the school year 2010/11. Access to the popula-
tion of students was gained via the corresponding set of schools. This set
of schools includes all officially recognized and state-approved educational
institutions within the Federal Republic of Germany providing schooling for
students in grade 5 and / or grade 9. Excluded from the population were

23
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students attending vocational schools or schools with a predominant foreign
teaching language that would hinder the realization of a complete survey
procedure with the test instruments available. Further, students attending
regular schools being unable to follow normal testing procedures were ex-
cluded.! Additionally, the NEPS comprises a sample of students attending
special schools with main emphasis on special educational needs in the area
of learning. Access to this population was gained via special schools with
Federal-State-specific provisions explicitly for students with special educa-
tional needs in the area of learning. Overall, 80% of students attending
special schools have a diagnosed learning disability — constituting the largest
group of students in these schools. For more details see also Amann et al.
(2011).

Table 3.1 shows the population of regular schools by school type and
schools having classes in grade 5 and 9. The population of schools consists
in total of 29346 schools from which 16273 are of no interest for sampling
students in grade 5 or 9 since they neither have any classes in grade 5 nor
any in grade 9 (row: Neither grade). Although these schools can have classes
in any other grade from 1 to 4 and from 6 to 8. The middle rows give the
number of schools having only classes in grade 5 and none in grade 9 (row:
Grade 5 only) and vice versa. That is the number of schools having classes
only in grade 9 but none in grade 5 (row: Grade 9 only). Schools having only
classes in grade 5 are in total 1459 and schools having only classes in grade 9
are 1281. The majority of schools relevant for sampling students in SC3 and
SC4 consists of secondary schools having classes in grade 5 and grade 9 are
in total 10333 (row: Grade 5 and 9).

Table 3.1: Population of regular schools by school type and schools providing
classes in grades 5 and 9 (school year 2008/09).

School type

GS HS MB RS IG Gy SU FW E
Neither Grade 16109 17 72 14 4 44 4 9 16273
Grade 5 only 913 89 75 25 58 62 222 15 1459
Grade 9 only 0 447 163 346 84 230 0 11 1281
Grade 5 and 9 0 3656 1044 2211 541 2708 0 173 10333

17022 4209 1354 2596 687 3044 226 208 29346

Notes: Abbreviations of school types are GS: Grundschule, HS: Hauptschule, M B: Schule mit mehreren Bildungsgan-
gen, RS Realschule, IG: Integrierte Gesamtschule, GY: Gymnasium, SU: Schulartunabhingige Orientierungsstufe and

FW:: Freie Waldorfschule.

'Regular schools are all allgemeinbildende Schulen according to the definition of Kul-
tusministerkonferenz (2012); special schools (Forderschulen) excluded.
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Later on the school types Integrierte Gesamtschule (IG) and Freie Wal-
dorfschule (FW) will be joined in one stratum since the degrees achievable
are similar. Further school types Grundschule (GS) and Schulartunabhdngige
Orientierungsstufe (SU) will be joined in one stratum because these schools
educate students in grade 5. The school type G .S summarizes primary schools
normally educating students in grade 1 to 4. The 913 schools having grade 5
too are schools in Berlin and Brandenburg educating students from grade 1
to grade 6. School type SU educates students only in grade 5 and 6 in Hesse
and Hamburg.

For the population of schools displayed in Table 3.1 the number of stu-
dents within these schools are given in Table 3.2. The table is twofold since
the number of students in grade 5 and 9 needs to be reported separately. That
is because grade 5 students can be in schools providing either classes in
grade 5 only or they can be in schools providing classes in grade 5 and 9.
For example there are 2708 Gymnasia (GY') providing access to students in
grade 5 and students in grade 9. These 2708 schools educate 294624 students
in grade 5 (Table 3.2 upper half) and 253929 (Table 3.2 lower half) students
in grade 9. Further there are 62 Gymnasia providing access to 3093 students
in grade 5 only and 230 Gymnasia educating 14724 in grade 9 only.? In total
there are 794317 students in schools providing at least one class in grade 5.
The corresponding number of students in schools providing at least one class
in grade 9 is 806964.

The zeros in the table are due to the fact that the group of schools pro-
viding access to classes in grade 5 and 9 do not have students in grade 5
for school types G'S and SU (upper half of the table). These school types
educate students only in grades from one to four (G\S) and five and six (SU)
respectively. So there are no classes in grade 9. In the lower half of the table
the zeros arise from school types GS and SU not providing any classes in
grade 9.

3.2 Summarizing sampling for school cohorts
The variety of Federal-State-specific school systems is challenging for sam-

pling grade 5 and grade 9 students. Several school types related to differ-
ent transitions between elementary and secondary school institutions form

2Suppose a Gymnasium has one class in grade 5 having 17 students and one class in
grade 9 having 33 students. This school is reported together with the 2708 Gymnasia
having classes in grade 5 as well as in grade 9 in Table 3.1. In Table 3.2 the 17 students
in grade 5 are reported among the 294624 fifth grade students and the 33 ninth grade
students are reported among the 253929 students in grade 9.
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Table 3.2: Population of Students in grade 5 and 9 by school type and schools
providing classes in grades 5 and 9 (school year 2008/09).

Population of grade 5 students
School type

School provides GS HS MB RS 1G GY SU FW Z
Grade 5 only 43374 2079 2791 653 1824 3093 13919 301 68034
Grade 5 and 9 0 120816 50303 186621 67301 294624 0 6619 726284
Z 43374 122895 53094 187274 69125 297717 13919 6920 794317

Population of grade 9 students
School type

School provides GS HS MB RS 1G GY SU FW Z
Grade 9 only 0 15967 8251 19928 9672 14724 0 319 68861
Grade 5 and 9 0 162171 48470 198815 68576 253929 0 6142 738103
Z 0 178138 56721 218743 78248 268653 0 6461 806964

Notes: Abbreviations of school types are GS: Grundschule, HS: Hauptschule, M B: Schule mit mehreren Bildungsgan-
gen, RS Realschule, IG: Integrierte Gesamtschule, GY: Gymnasium, SU: Schulartunabhingige Orientierungsstufe and

FW: Freie Waldorfschule.

the set of schools providing access to the target population of grade 5 and
grade 9 students. To reflect this variety, seven explicit strata have been de-
fined to sample schools. The first stratum comprises all Gymnasien (stratum
GY': Gymnasien), the second stratum consists of all Hauptschulen (stratum
HS: Hauptschulen), the third stratum refers to all Realschulen (stratum
RS: Realschulen), the fourth to comprehensive schools (stratum /G: Inte-
grierte Gesamtschulen, Freie Waldorfschulen), the fifth includes schools with
several courses of education (stratum M B: Schulen mit mehreren Bildungs-
gangen). The sixth explicit stratum comprises schools offering schooling to
students with special educational needs in the area of learning (stratum F'S:
Forderschule). The seventh explicit stratum comprises all schools providing
schooling to grade 5 students, but not to grade 9 students (stratum N5).
The definition of these seven explicit strata allows fulfilling two important
aspects.

1. A requisite of NEPS is to establish a sample of grade 9 students as the
starting point of a longitudinal survey of young adults entering voca-
tional education over the coming years. In order to ensure sufficient
sample sizes for statistical analyses within this heterogeneous popula-
tion, who, to a large extent, come from Hauptschulen, Gesamtschulen,
and Schulen mit mehreren Bildungsgangen, NEPS comprises an over-
sampling of grade 9 students attending these school types.

2. Most secondary schools offer schooling to grade 5 and grade 9 students,
so that they can be reached via the same set of schools and, thus,
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reducing administrative survey costs.

In addition to the explicit stratification according to school types, an implicit
stratification, that is, sorting the frame by certain characteristics, based on
Federal States, regional classification, and sponsorship was used. Given the
first-stage sample of regular schools, on the second stage two school classes
within each school were sampled randomly, if at least three classes were
present, otherwise all classes were surveyed. In special schools a census for
all students was held.

3.3 Planning samples for school cohorts

3.3.1 Sample design

For sampling of students in Germany a sampling frame containing a com-
plete listing of all students is not available. In contrast a complete listing
of schools providing access to students is available through the Statistical
Offices. Access to the target population is gained via the corresponding in-
stitution, so that cluster sampling is appropriate. Furthermore the entire age
group or only a part of it can be surveyed. When subsampling of age group
within a school is performed this is referred to as two-stage (in more general
multistage) sampling. One more aspect to consider is stratification since the
landscape of school systems in Germany is heterogenous. The population
of schools and students was stratified by the school type-more precisely the
degree a student can achieve at the school. Lastly there are several selection
schemes (i.e., the rules of how to select units from the universe) for sampling
units in stratified or multistage designs including simple random sampling
(with or without replacement), systematic selection and unequal probability
designs. Because the context of the learning environment, that is classes,
should be reflected in the data later on cluster sampling of a certain num-
ber classes was applied in regular schools. In special schools a census was
preferred.

3.3.2 Determining the measure of size

As discussed in Subsection 2.2.2 sampling clusters of unequal size, for exam-
ple schools or classes, leads to a random sample size on the level of students.
One way of achieving an approximate control of sample size on the student
level is probability proportional to size sampling. For pps sampling a measure
of size is assigned to each unit. Using such a sampling design larger schools
can be preferred over smaller by assigning them a larger measure of size.
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This allows for reducing survey costs by sampling fewer schools to achieve
an equal sample size compared to simple random sampling. On the school
level characteristics such as total number of students per school, number of
students per grade or number of classes per grade were directly available from
the frame. The information provided by the frame from school year 2008/09
were used in sampling SC3 and SC4 in 2009. Since reporting information on
schools and the preparation of these data by the Statistical Offices is time
consuming this was the most actual sampling frame available. So the current
situation in schools is not mirrored to the full extent by this frame. Students
were surveyed and tested in school year 2010/11. To evaluate how much
uncertainty in sample sizes and resulting weights is induced by the lag of
time (i.e., two years) between sampling and surveying a simulation was set
up. Therefore another frame from the year 2007/08 was made available so
that it was possible to simulate several scenarios.

ear 2008100

(a) Number of students. (b) Average class size. (¢) Number of classes.

Figure 3.1: Changes from school year 2007/08 to 2008/09 for certain char-
acteristics.

Figure 3.1 shows the changes for a one year difference for selected charac-
teristics. The angle bisector indicates no changes from one year to another.
The points above indicate an increase, whereas points below the angle bi-
sector indicate a decrease in the corresponding characteristic. The number
of students (Subfigure 3.1a) is varying from school year 2007/08 (x-axis) to
school year 2008/09 (y-axis) with a covariance of p = 1725.3211 and a corre-
lation of p = 0.9796. The average class size (Subfigure 3.1b) is varying from
school year 2007/08 (x-axis) to school year 2008/09 (y-axis) with a covari-
ance of p = 19.0445 and a correlation of p = 0.7808. The smallest covariance
can be found for the number of classes changing only slightly from school
year 2007/08 (x-axis) to school year 2008/09 (y-axis) with a covariance of
o = 1.8597 and a correlation of p = 0.9332. The combinations along the
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angle bisector show those schools with no changes in the number of classes
from one year to another. This case is most common. The radius of the
circles around the combinations of x and y values in Subfigure 3.1c¢ is propor-
tional to the number of this specific combination of x and y values, that is,
the larger the radius around (x,y) pairs the more often this (x,y) pair exists.
From the subfigure it can be seen that the number of classes does not change
in the majority of schools. It also can be seen that small changes from one
school year to another are also common. These are the (x,y) pairs near the
angle bisector. A large change in the number of classes can occur if schools
are merged or if a school has several locations and is once reported with one
location an in the next year with several locations. These schools are found
on the top right part of the subfigure. Both have only one class in school
year 2007/08 but have eight and ten in school year 2008/09 respectively.

For the following simulation the intersection of schools in the frames of the
school years 2007/08 and 2008/09 was used, that is, the set of schools which
is contained in the frames of both school years. Due to ongoing reforms,
closing or merging of schools a small number of schools had to be discarded.
For the remaining schools the primary sampling units were selected based on
the frame of the school year 2007/08. Sampling of secondary sampling units
was based on the frame of the school year 2008/09. Thus this simulation
covers the variation induced by a time lag of one year.

For sampling schools a systematic probability proportional to size sam-
pling was applied. Therefore a measure of size needed to be assigned to
each unit. The objective of the simulation was to find a measure of size for
which the resulting inclusion probabilities (and thus design weights) yield
the least variation. For selection of schools the measures of size evaluated in
the different scenarios were (among others):

T the number of students in grade 9
A the average number of students per class in grade 9 (i.e. T/C')

M the minimum of the number of classes (C') in grade 9 and 2 classes

(i.e., min{C;2})

Scenario T' uses the number of students in grade 9 as a measure of size which
is highly correlated as can be seen from Subfigure 3.1a. The second scenario
A uses the average class size as a measure of size. The average class size is
also positively correlated but not as strong. Further the variation is higher.
The last scenario M uses min{C;2}, that is the minimum of the existing
number of classes and two classes. As shown in Subfigure 3.1c the number
of classes does not vary strongly and is also highly correlated. Figure 3.2a
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shows boxplots for the inclusion probabilities on the school level by scenario.
Sampling proportional to the average number of students (A) yields least
variation in design weights on the school level. In contrast scenario M yields
least variation in design weights on the level of students (see Figure 3.2b).
This result is due to the fact that within each school two classes out of at
least three were sampled (otherwise all were chosen).
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Figure 3.2: Inclusion probabilities for different scenarios.

When sampling two classes (if available) within each school, scenario M
results in a self weighting sample, that is a sample where each unit is assigned
the same design weight. This result holds if and only if the number of classes
does not change within the time lag between sampling and surveying. That
the number of classes do change between two school years can be seen from
Figure 3.2b. The Outliers are schools in which the number of classes changed
between school year 2007/08 and 2008/09.

The comparison of the two frames (see Figure 3.1) and the following
simulation (see Figure 3.2) showed that the variation of the number of classes
was much lower from one year to another than the variation of any student
number related characteristic. Due to fewer changes in this characteristic
a measure of size based on the number of classes induces less variation in
design weights over time. Due to this result any sampling design based on
the number of classes should be favoured in sampling proportional to size
when sampling PSU and SSU fall apart in time over at least one school year.
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3.3.3 Determining the first stage sample size

Since sampling is done on two stages containing unequal sized clusters in each
cohort the resulting ultimate stages’ sample size becomes a random variable
(see Kish, 1995, p. 183). This makes sample sizes (on the student level) less
predictable (see also the corresponding paragraph in Subsection 2.2.2 for a
more detailed discussion) in two-stage cluster sampling with unequal cluster
sizes. Besides this other topics should be kept in mind:

o Unit nonresponse, that is, sampled units are not willing to participate.
This problem can possibly occur on several stages within multistage
designs.

e A minimum net sample size may be desired and this is closely related
to the topic before.

e A budget for a survey giving the financial restriction or in other words
a maximum net sample size.

When thinking about these topics it is straightforward that there may be
trade-offs between sample size and the budget. To overcome the trade-off
between a random sample size and a fixed budget another simulation was set
up.

To determine the number m! of primary sampling units (PSU) that need
to be sampled to realize a sample of an approximate size n the idea is as
follows: Sample m! PSUs on the first stage and then sample m!! secondary
sampling units (SSU) on the second stage.> Given that the sizes of the PSUs
and SSUs are either known from a frame (see Section 2.1) or can be estimated
by an average size (for example an average class size) the initial sample size
can be calculated. The number of targets participating in the survey can be
calculated for a given value or range of a participation rate p. The resulting
net sample size n,.; = n - p can be translated into a number of test groups
(t) or an interviewer field (i.e., the financial restriction or a budget). For
a specific sample the net sample size (n,, that is the number of targets
participating) should be least equal to the desired minimum net sample size
(no). At the same time the number of resulting test groups (¢) should not
exceed the number of financed test groups (to).

To calculate the net sample size and to allow for refusals different partic-
ipation rates p are assumed. For a given value of the participation rate p the
number of participating students n,,.; in school j is

nnet’j = Ln] ’ pJ :

3The corresponding stage is denoted by the superscripts.
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Here | -] denotes the floor function that rounds downwards, that is, [5.9] = 5.
Rounding the number downwards implicates a conservative measure of the
number of students participating. Surveying and testing students is done in
groups of size

30 ifh=GY
T =
25  else

and so the number of test groups needed per school arises as

pan.
ti=1 TJT

Here [-] denotes the ceiling function that rounds values upwards, that is,
[1.2] = 2. Again the rounding (in this case upwards) indicates a conservative
measure for the number of test groups. For a drawn sample with given m/!
and p the net sample size is

m! m!
Npet = Z Nnet,j = ZL”] ' pJ
j=1 j=1

and the total number of test groups is

mT mT

t=>1 Zpr'an-

T

For given values of m! (see Table 3.3 for their value and the allocation to
different strata) and p (e.g., p € [0.4;0.8]) these steps are repeated R = 1000
times realizing a distribution for the net sample size and the number of test
groups.  The distributions obtained from the replications (see Table B.1
in Appendix B) can be evaluated for the different combinations of m! and
p with respect to the desired minimum net sample size and the budget in
terms of a maximum number of test groups.

The combinations of the number of primary sampling units m?! and par-
ticipation rate p, simultaneously fulfilling the conditions that (over R repli-
cations) the average number of students participating (p.,,.,) is least equal
to the desired minimum net sample size (ng = 12500) and — at the same time
— the average number of resulting test groups (u) does not exceed the max-
imum number of financed test groups (to = 840), are referred to as favorable
samples and shown in Table 3.4. This table therefore is just a simplified
representation of Table B.1 in Appendix B.
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Table 3.3: Allocation of first stage’s sample sizes m/?.

I milz
HS MB RS IG QGY

450 120 39 102 45 144
460 123 40 104 46 148
470 125 41 106 47 151
480 128 42 108 48 154
490 131 43 111 49 157
500 133 44 113 50 160

For example, sampling m! = 480 schools on the first stage and two classes
(if available) on the second stage yields pu; = 782 test groups (on average)
for a participation rate of p = 0.6. At the same time this combination of
m! and p yields on average a number of participants p,,., = 12986. So the
simulation gives a basis for decision making when having a trade-off between
a desired minimum sample size and a fixed budget. In our application we
used the participation rates from pilot studies as reasonable estimates.

When taking institutional refusals into account predefined replacement
schools were asked to participate instead of the originally sampled schools.
When they decide to take part in the survey, estimates in the simulation
change due to different numbers of classes and students. This topic can be
taken into account within this simulation setting as well. Reasonable partic-
ipation rates on the school level were not available at that time. These were
first available after the first wave and were incorporated in later simulations
serving as a basis for decision making in subsequent samples.

3.3.4 Replacing nonparticipating schools

Preventing institutional refusals is an important topic since the participation
for schools as well as for students is not mandatory in the NEPS. In order
to prevent from reduction of sample size and introduction of potential bias
a replacement strategy was designed. This is supposed to compensate for
nonparticipating institutions and the corresponding reduction of sample size
on the student level. Thereby a sampled and nonparticipating institution is
replaced by an institution that is most similar in structure with respect to
explicit, implicit stratification (i.e., sorting the frame by certain characteris-
tics) and sampling characteristics (i.e., school type and Federal State, spon-
sorship regional classification, measure of size). A similar approach is used
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Table 3.4: Favorable samples.

mI p /J[’t Mnnet

470 0.60 766 12724
480 0.60 782 12986
490 0.60 799 13284
500 0.60 815 13532
450 0.65 766 13194
460 0.65 784 13521
470 0.65 799 13784
480 0.65 816 14068
490 0.65 835 14391
450 0.70 788 14209
460 0.70 808 14562
470 0.70 823 14845
480 0.70 840 15151
450 0.75 803 15224
460 0.75 823 15602
470 0.75 838 15905
450 0.80 821 16239

in the Programme for International Student Assessment (PISA) as well as in
Progress in International Reading Literacy Study (PIRLS) and in Trends in
International Mathematics and Science Study (TIMSS), see OECD (2012),
Martin, Mullis, and Kennedy (2007) and Olson, Martin, and Mullis (2008).
This is especially important for schools, since there is a large variety of studies
(mandatory and non mandatory) surveying students in institutional contexts
which put additional workload on the schools’ staff. The replacement strat-
egy cannot rule out potential bias and therefore needs to be evaluated after
the realization of the institutional sample. Few schools cannot be replaced
because they were shut down or there were no institutions similar in structure
available.

Baker et al. (2013) give a review on the topic non-probability sampling
which provides some frameworks, including the adopted matching, that might
serve as a basis to develop a more sophisticated framework for replacing
nonparticipating schools.
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3.4 Sampling for grade 9

The complete list, that is, the frame, of schools in the school year 2008/09
was used in sampling schools. It was by that time the most actual one avail-
able and via the sampled schools access was provided to grade 9 students in
the school year of 2010/11. The population of regular schools was stratified
into H = 5 strata. Thereby the stratum GY consists of Gymnasien, stra-
tum HS of Hauptschulen, stratum IG includes (Integrierte) Gesamtschulen
and Freie Waldorfschulen*, stratum M B consists of Schulen mit mehreren
Bildungsgdingen, and stratum RS includes all Realschulen. The sample of
regular schools was selected via systematic probability proportional to size
sampling. The measure of size was chosen proportionally to the number of
classes of seventh grade in 2008/09 as the best available proxy for the number
of classes in the ninth grade two years later (see Subsection 3.3.2 or ABmann
et al. (2012)). Simulation studies as described earlier, found 629 out of a
population of 11570 regular schools with seventh classes to be sufficient for
providing intended sample sizes. Another stratum F'S contained 1488 spe-
cial schools with a focus on learning disabilities. For this stratum a separate
frame was available containing information on schools also from the school
year 2008/09, These were selected using systematic pps with measure of size
proportional to the squared number of students reported in grade 9.° This
measure of size allows handling the trade-off between sample size in this stra-
tum and the number of special schools that need to be sampled by sampling
large schools with higher probabilities. Let M} denote the total number of
schools in stratum h and mj the number of schools sampled in stratum h,
where h € {GY, HS,IG, M B, RS, F'S}. The measure of size for sampling a
school j in stratum h is then defined as

. if h € {GY, HS,IG, MB, RS},
mos?h = " (3.1)
(59)%, it h e {FS}.

C}h denotes the number of classes in grade 7 in school j in stratum A in the
school year of 2008/09. SJ9 denotes the approximated number of students

4These two school types were put together in one stratum because the achievable degree
is similar.

5In most special schools students in grade 7, 8, and 9 attend the same courses. That
is, in the majority of cases no number of students in grade 9 can be reported. Instead the
total number of students in grades 7 to 9 is reported. Therefore, the number of grade 9
students is approximated by one third of the reported number of students in grades 7 to
9.
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attending grade 9 in special schools. The strata-specific total measure of size
is
My
MOS; :Zmos?h, for h € {GY,HS,IG,MB, RS, FS}. (3.2)
ih

For each stratum the considered values of M}, m), mos), and MOS; are
given in Table 3.5 in the following section. In special schools all students
were asked to participate, that is a census took place. In regular schools a
subsample of classes was drawn. That is, if in a school j in stratum h the
number of classes in grade 9 C’?h in school year 2010/11 was larger than two,
a random sample of two classes in grade 9 C’Jgh was drawn. If the number
of classes in grade 9 was two or less all available classes were selected. This
selection scheme results in the following inclusion probabilities W?jh for a
student ¢ in secondary school j in stratum h

mi - 2o MOV g e (GY, HS, IG, MB, RS}
h MOSZ C;’h y b ) b b b
W?jh = (59)2 (33>
mi-ﬁsg: if h e {FS}.

When the number of classes in grade 7 used in constructing the measure
of size mos?h is the same number of classes in grade 9 two years later this
would lead to a self weighting sample within the strata of regular schools
that were not oversampled. Self weighting sample means that each sampled
unit is assigned the same design weight. The inclusion probability (and thus
the design weight) would only depend on the number of schools sampled and

the total measure of size MOS.

3.5 Sampling for grade 5

In Germany there is a Federal-State-specific timing of transition from primary
to secondary education. Most Federal States offer four years of primary
schooling followed by secondary schooling. Other States offer six years of
primary education and start secondary schools afterwards. Lastly few states
have a four year primary school, followed by two years of transition system
and start secondary education afterwards (see also Section 3.1). The sample
of grade 5 students accounts for this Federal-State-specific timing via explicit
stratification. It is based on seven explicit strata. Here the strata are the
same as for the grade 9 sample of schools, namely GY', HS, IG, M B, RS, and
F'S. The stratum N5 comprises schools that are mainly elementary schools
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educating students in grades 1 to 6 in Berlin and Brandenburg as well as
schools in Hesse and Hamburg educating students in grades 5 and 6 only (so
called Schulartunabhdingige Orientierungsstufen). To ensure little variation
in design weights across the considered strata, the number of schools that
were sampled per stratum was, again, calibrated via simulation studies. To
reach the intended sample sizes for grade 5 students 240 regular schools and
65 special schools were found to be sufficient. The sample of grade 5 schools
for the strata GY', HS, RS, IG, M B, and F'S was established as a subsample
of the realized grade 9 school sample to reduce administrative survey costs.
In stratum F'S, subsampling of schools was performed via simple random
sampling (srs). A srs design was found to be sufficient because the number
of students in grade 9 was positively correlated with the number of grade 5
students.

Table 3.5: Population sizes (M} and M})), sample sizes (m) and mj), and
total measures of size (MOS}; and MOS}) for schools with classes in grade 5
and 9 by strata (h € {N5,GY, HS,IG, MB, RS, FS}).

SC4 SC3
Stratum m) M} MOS; mj M MOS;
N5 - - 0.000 26 1383 1914.500
GY 154 2970 5589.500
HS 233 3990 4641.500
IG 70 822 1727.500 214 480" 559.060
MB 64 1288 1524.000
RS 108 2500 3936.500
FS 110 1488 489128.264 65 110 -

Note: * For h € {GY,HS,IG, MB, RS} the population of 480 schools with fifth classes is a subsample of the realized
grade 9 school sample.

Schools in stratum N5 contained in the frame and referring to school year
2008/09 were selected randomly using systematic pps sampling. Let M} de-
note the stratum-specific total number of schools with classes in grade 5 con-
sidered for sampling and m; denotes the stratum-specific number of schools
in the grade 5 sample. The measure of size mos?h in stratum N5, for sampling
a school j is computed analogously to the measure of size for a comparable

regular school in the grade 9 sample. It is

Con

mm{ 37 if h € {N5}

5
mosjy, =
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where C’g’h is the number of classes in grade 5 hosted by school j in stratum
N5 in school year 2008/09. For a regular school j in stratum h the measure
of size is
cs,
min{C?h;2}
cT,
min{CJ?h;Q}

if h e {GY, HS,IG, MB, RS}

5 _
mos’, =

where C?, is the number of classes in grade 5 and CJ, the number of classes in
grade 7 in school j in stratum A in school year 2008/09. The corresponding
stratum-specific total measure of size is

M
MOS; =3 mos},, for he{GY,HS,IG, MB,RS, N5}.
jh

For the grade 5 sample, the strata-specific values of M7, m}, mos;, and
MOS; are also shown in Table 3.5. Sampling grade 5 students in strata h €
{GY,HS,IG, MB, RS, N5} was performed similarly to sampling students in
regular schools for the grade 9 sample: If at least three classes in grade 5
were available in a sampled school in the school year of 2010/11, a random
sample of two classes in grade 5 was drawn; otherwise all classes were selected.
Finally, the inclusion probability ﬂfjh for a grade 5 student i in school j in
stratum h is

min{C?}L;Z}

M o et if h € {N5}
S J if h e {FS}
ijh jh my’
9 5 mos?h min{Ci’h;Q} .

(3.4)

Here W?h denotes the probability that a school j in stratum A is part of the
grade 9 sample, h € {GY,HS,IG, MB, RS, FS}. Again, if the number of
classes in school year 2008/09 used for the measure of size is the same as the
actual number of classes in grade 5 in school year 2010/11 this design would
yield a self weighting sample for strata h € { N5, GY, HS, IG, M B, RS}. The
corresponding design weight of a grade 5 student ¢ in school j in stratum h
is then the inverse of the inclusion probability: d;;, =1/ 7ri5j B

The sample of grade 5 students was enriched by a supplement of 214
students with a Turkish migration background or a migration background
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related to the former Soviet Union. As no frame information was available
that allowed for direct identification of the relevant groups, a two-stage se-
lection was applied. On the first stage, 500 schools from 10 groups of Federal
States (50 schools per group) were sampled systematically proportional to
the number of students with foreign citizenship attending grade 5. Foreign
citizenship was available for all schools in the actual frame. For Hamburg
a frame was available that further provided information on students with a
migration background. In finding a good predictor for schools with a large
number of students with a migration background the information on foreign
citizenship outperformed the others.

For this sample of 500 schools, the educational ministries of the Federal
States were asked to quantify the number of students related to the two
migration backgrounds of interest. This quantification took different forms
based on the amount of information available in the Federal-State-specific
school statistics. Some Federal States reported the number of students with
migration background directly, other Federal States provided a ranking of
schools attended by the highest number of students with the two migration
backgrounds. With this informational content, a five categorical ordinal scale
for the measure of size was defined for a probability proportional to size
sampling of schools with a high number of Turkish migrants as well as those
schools with students with a migration background from the former Soviet
Union. Within the sampled schools all students with the Turkish migration
background or a migration background related to the former Soviet Union
were asked to participate in the NEPS.
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Chapter 4

Weighting adjustments

Chapter outline:

The previous chapter derived the "pure’ design weights for grade 5 and grade 9
students. Section 2.3 already pointed out the need for further adjustments.
In multistage samples decisions to participate take place on multiple stages.
Therefore weighting adjustments have to be considered on each stage. In case
of the NEPS this is due to nonparticipation on the institutional as well as on
the individual level. Thus multiple adjustments of the design weights are nec-
essary. This chapter considers the weighting adjustments on the institutional
level as well as on the individual level. The adjustments on the individual
level include adjusting the initial sample to the panel cohort and afterwards
additional adjustment to wave specific participation patterns.

4.1 Decision processes involved

Because participation is neither mandatory for schools nor for students, both
can refuse to participate. The actions and decisions that are relevant to form
a sample out of the population are stylized in Figure 4.1. Starting from a
defined target population to the corresponding panel cohorts, that is, the
part of the initial sample participating in the panel, there are three steps (or
four stages).

The first step is drawing a sample of schools from the defined target
population using the sample design described in the previous chapter. The
recruitment of sampled schools started in April 2010 and ended in October
the same year. During this time each originally sampled school was invited
to participate in the NEPS. For those schools not willing to participate, the
first replacement school was invited. If the first replacement school was also
unwilling to participate the second replacement school was asked to partici-

41
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pate and so on. In case of nonparticipation of the originally sampled school
and all available replacement schools there was no further recruitment possi-
ble. For later adjustments of design weights on the school level information
was available from the sampling frame as well as information arising from
the recruitment process. This information was used to model the schools
decision to participate. So the decision to participate on the school level is
the first to be kept in mind for later adjustments. Step two is sampling two

Population
of schools

Sampling PSU

Nonparticipating Participating

schools schools

Sampling SSU

Initial Sample
of Students

Panel consent

Participating
students
(panel cohort)

Nonparticipating
students

Figure 4.1: Flowchart of decision processes ranging from the population to
the panel cohort.
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classes (if available) within each participating school. In each school partic-
ipating sampling of two classes (if available) was performed without refusal
of classes. This sample of classes than yields the initial sample of students.
The teacher responsible for correspondence with NEPS and the survey re-
search institute was provided a students participation list with three parts
(left, middle, right, see Table B.2 in Appendix B) to fill in information on
the students in the sampled classes. The information was provided regardless
of the students’ participation decision. That is, information is provided on
respondents as well as on nonrespondents. On the left part (remaining in the
school) there was information on the school name and identifier, the sam-
pled classes name and identifier as well as the students names and identifier.
The middle part (returned to the survey research institute and later on to
NEPS) contained information on the students, such as nationality (German,
Non-German), language spoken at home (German, other), grades in Maths
and German, special educational needs, dyslexia, gender, month and year of
birth and participation status. Further information was provided on school
type, sampled age group and Federal State. The right part (handed out to
the interviewer on the test day) contains information on the participation
decision of the student (if necessary on the parental consent), gender, month
and year of birth, grades in Maths and German, information relevant for
testing and the identifier of the student, the school, the class and the test
group.!

In the last step all sampled students again have to choose to participate or
not. This is the second decision process that has to be regarded for sample
weighting adjustments. The information provided on the middle part of
the students participation list on the initial sample, that is, responding and
nonresponding students, form the set of information available for modeling
the students’ decisions to participate. Those students finally deciding to
participate in the panel form the so called panel cohort.

The process of school recruitment and subsequently the student recruit-
ment process is consecutive by nature and thus reflected by sequential mod-
eling. That is, first school nonresponse is modeled. Second, the panel cohort
sample is established on the basis of the active consent to participate in the
panel. This consent is provided by parents, since a student is possibly not
of legal age. Such is the case for a grade 5 student. Otherwise the students
consent is sufficient (for example students in grade 9 that are of legal age).
After correcting for unit nonresponse on the school and student level each
student of the panel cohort is assigned an adjusted design weight; the panel

!Test groups were of size 25 students each (30 in Gymnasien). If one (or two classes)
were larger than this they were split up into two (or more) test groups.
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entry weight. On the institutional level nonresponse adjustments take sam-
pling information as well as information from the recruitment process into
account. On the individual level we take clustering on school level into ac-
count by specification of random intercepts to account for correlation within
schools.

Third, given the panel consent provided, actual participation in each suc-
cessive wave of the panel survey needs again to be analyzed. The decision
processes leading to actual participation within the following waves are hence
modelled subsequently on the basis of the panel cohort. In contrast to the ad-
justments for the initial sample we have further information available arising
from surveying and testing students in wave 1.

Section 4.3 will give further insights on the adjustments performed on
the school level and on the student level of the initial sample. The students
participating in the panel (further referred to as panel cohort or panel cohort
sample) then can decide to participate in each wave again. These wave-
specific adjustments are based on the available information on the panel
cohort, so that the user can reproduce and modify the weighting adjustment
provided with the scientific use files (or other versions of the data).

4.2 Frameworks for decision modeling

The literature on modeling participation decisions stems to a large extend
from household surveys. Some of the methods applied there are directly
applicable to educational surveys, for example modeling decisions using sta-
tistical frameworks, such as (binary or multinomial) logit or probit regres-
sions. Also respecting cluster structures such as a household can directly
be transferred to educational surveys where students are clustered in schools
and classes. In educational surveys focusing on schools some of the methods
need to be adjusted.

Lepkowski and Couper (2002) separate the process ending in participa-
tion of sampled units into three subprocesses. Locating of sampled units is
the first field operation. Without having located sampled units there is no
way to contact them. Establishing contact with sampled units (given loca-
tion) is the second step considered. Lastly units decide to cooperate or not
given contact and location. This three step process applies to the different
stages in educational surveys, too. Locating students by gaining access via
the corresponding schools makes location easier, since in Germany schools
are registered at the Ministries of Education. This also eases the second
step since the Ministries provide contact information on the schools. What
remains are the decisions to participate (i.e., cooperation) on the school and
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student level. The decision processes involved from a sample of schools to the
final realized panel cohort involve aspects not covered by household survey
methods. Also the sequential processes of location, contact and cooperation
as described by Lepkowski and Couper (2002) and applied in Tannacchione
(2003) can either be directly applied or transferred to educational surveys. In
a household survey one person living in this household might decide whether
or not the entire (or parts of the) household participates in the survey. In
contrast, the schools’ decision to participate in the survey is made by the
schools head (and probably other teaching staff of the school) so that the
decision on the higher level is not made by the target persons of the survey
(i.e., the students). Further, adopting a multi-informant perspective? in edu-
cational surveys to enrich data on the students’ environments (class, school,
home, etc.) opens a wide field of interesting research questions focusing on
subgroups (for example students and parents).

Re-approaching panel members in the second wave of a survey is different
from the first contact. The differences arise from panel members moving out
of household. Getting into contact with them again might make locating
them first necessary. Factors influencing the mobility in household surveys
are mostly related to household or individual life stage and cohort effect
(Lepkowski & Couper, 2002). In case of students this is more important
to grade 9 students than to grade 5 students, because they leave school to
enter the vocational track or change school to achieve a university entrance
certificate. In grade 5 the necessity to re-locate students will become more
important in the case of schools closing or age groups expiring within a
school.3

In educational studies such TIMSS and PIRLS conducted by the Inter-
national Association for the Evaluation of Educational Achievement (IEA,
see Olson et al. (2008) and Martin et al. (2007)) as well as in PISA done
by the OECD (see Rust, Krawchuk, & Monseur, 2013, pp. 87f) the decision
processes in multistage sample designs are reflected by sequential modeling.

In weighting adjustments for household surveys addressing the differences
between noncontact and refusal is stressed by various authors, such as Groves
(1998), Durrant and Steele (2009), and Steele and Durrant (2011). Distin-
guishing between non-contactability and refusal allows for consideration of
differences in characteristics determining the two components of nonresponse.
To analyse the determinants of these response processes several statistical

?Different informants such as the target person, parents, teachers, etc. are asked to
provide information on the same topic (for example occupational status of the students
parents).

3An age group expires for example if too few students are within an age group and are
thus handed over to a school nearby.
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frameworks are at hand.

Recent work analyzes the determinants of this three categorical response
process using sequential univariate models, bivariate sample selection mod-
els, multinomial models and their extensions to multilevel models (Durrant
and Steele (2009), O’Muircheartaigh and Campanelli (1999) or Steele and
Durrant (2011)).

O’Muircheartaigh and Campanelli (1999) apply multilevel logistic regres-
sion and multilevel multinomial regression to investigate the influence of the
interviewer over those of a geographic region on household nonresponse in the
British Household Panel Study (BHPS). Their findings indicate that good
interviewers reduce refusal as well as noncontacts, since variance is induced
by differences between interviewers rather than between geographic regions.

Durrant and Steele (2009) use the 2001 UK Census Link Study incorpo-
rating response outcomes for six household surveys.? They apply multilevel
multinomial models to explore the effects of household characteristics on non-
contact and refusal, as well. The multilevel structure allows for correlation
in response probabilities for households allocated to the same interviewer.
Their findings, according to the interviewer effects, are in line with those of
O’Muircheartaigh and Campanelli (1999). Further results indicate that non-
contact is related to household and lifestyle characteristics, that is, variables
related to the propensity of being at home. In contrast, refusal is found to
be a "complex social phenomenon that is explained by individual character-
istics|...]" (Durrant & Steele, 2009, p. 378).

Steele and Durrant (2011) focus on alternatives in modeling noncontact,
refusal and cooperation. They review sequential models, sample selection
models and their extensions with a random effect and multinomial models,
too. The authors find the sequential model (modeling contact first and refusal
second) to be the most commonly used although sometimes only one of the
two is estimated. The sequential modeling approach is also appealing since
it separates the process of contact and participation, assuming independence
of noncontact and nonparticipation. Besides that coefficients are more easy
to interpret than in the multinomial model; although Steele and Durrant
(2011) find the coefficients to be very similar. Furthermore they apply sample
selection models allowing for residual correlation between the equations for
noncontact and refusal.® Throughout their paper Steele and Durrant choose
a probit link function in their analysis. For easing computational burden

4These are: Expenditure and Food Survey (EFS), the Family Resources Survey (FRS),
the General Household Survey (GHS), the Omnibus Survey, the National Travel Survey
(NTS) and the Labour Force Survey (LFS).

SWith zero correlation the sample selection modeling approach would decompose into
the sequential modeling approach.
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a logit link is used in their simulation study. They find little difference in
estimates using the multinomial and the sequential model. This fact is due
to different sets of variables significantly effecting noncontact and refusal.

Also Nicoletti and Peracchi (2005) use a bivariate probit model to account
for possible correlations between the ease of contact and the willingness to
participate. After controlling for personal and household characteristics on
the one hand and data collection characteristics on the other hand they find
no residual correlation.

Skinner and D’Arrigo (2011) point out that nonresponse is commonly
correlated within clusters since the access to the sampled targets is depending
on authorities at the cluster level (as is in educational surveys within schools).
This is mostly the case when multistage sampling designs are applied. Yuan
and Little (2007) state that using random effects models in adjusting for unit
nonresponse can yield biased estimates if the cluster-specific response rates
vary across clusters. Skinner and D’Arrigo (2011) further show via simulation
that for small cluster sizes a little negative relative bias is induced on the
inverse probability weighted estimator.

Besides individual characteristics, household composition, social environ-
ment or survey design features most of these models use para data (Couper,
1998; Groves & Heeringa, 2006) in modeling response processes. For exam-
ple these models incorporate interviewer characteristics (O’Muircheartaigh &
Campanelli, 1999), level of effort measures (Biemer, Chen, & Wang, 2013)
or the number of (failed) contact attempts (Wood, White, & Hotopf, 2006).

In the later applications probit models are used to model participation
decisions. We decide for the probit link function to be consistent with later
extensions of the probit model. This is because one extension to a bivari-
ate binary probit model with random intercept will allow for estimation of a
correlation parameter, which is not possible within a logit framework. The
univariate probit framework describing the participation decisions for indi-
viduals within clusters can be described as follows. Let j = 1,...,m denote
the cluster indicator and i« = 1,...,n; the indicator for individuals within
clusters. The dichotomous participation decision y;; can then be modelled
using the probit framework given as

1 if y;; >0, i _
Yij = ! Yij with Yij = Xijﬂ + Q; + €ij, (41)
0 else

where y;; denotes the latent variable, X;; the regressors, 8 the coefficients,
€ij ~ N(0,1) denotes the disturbance, and «; ~ N(0,w) denotes the random

intercept. Note that the standard probit framework occurs if a; is not taken
into account. Both frameworks are implemented in standard statistical soft-
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ware packages.® We base all adjustments on the individual level on response
propensity reweighting, harking back to Rosenbaum and Rubin (1983). In
unit nonresponse adjustments using auxiliary information the set of vari-
ables is often small, since information on nonrespondents is sparse. When
modeling nonresponse the available variables should be good predictors for
nonresponse to adjust the weights so that the nonresponse bias of the esti-
mate is reduced. In a recent comment Little (2013) states that "attempting
to address unit nonresponse without modeling the outcome is [...] like trying
to tie a shoelace with one hand behind one’s back." (Little, 2013, p. 363).
This statement refers to the fact that weighting adjustments become most
effective, that is, reduce nonresponse bias without increasing variance, when
the variables used in adjusting the weights are also predictive for the variable
of interest, as demonstrated by Little and Vartivarian (2003, 2005).

As noted by Kreuter et al. (2010) and Kreuter and Olson (2011) the selec-
tion of variables in nonresponse adjustments faces on one hand the problem
of sparse information on nonrespondents and on the other hand the only few
(if any) variables that are related to the response propensity and the key
outcome variables. For example Rust et al. (2013) report that for student
level adjustments in PISA information is limited to school, gender, month
of birth and grade.” In TIMSS adjustment factors are mostly derived by
dividing the number of sampled units by the number of responding units
(Joncas, 2008). That is, unconditionally re-weighting by the inverse of the
participation rate. Hawkes and Plewis (2006) use age, birth weight, sex, a
dummy for being born in Wales and a dummy for mother stayed at school
for modeling unit-nonresponse in a panel setting of the National Child De-
velopment Study (NCDS). Within the National Assessment of Educational
Progress (NAEP) cell weighting is applied. The cells are formed by PSU,
age, grade (modal or higher vs. lower than modal), see Rust and Johnson
(1992). The NEPS has information on the students, the classes and the in-
stitutions provided by teachers that help to organize the test procedures in
school. Besides that there is para data (Couper, 1998; Groves & Heeringa,
2006) available arising from test and telephone interview protocols during
field work.

6The probit model implementation in R is given by the function glm(formula, family

= binomial(link = ’probit’), ...) included in the stats package (R Core Team,
2014). The extension to the multilevel probit model by glmer (formula, data, family
= binomial(link = ’probit’), ...) provided by the lme4 package (Bates, Maechler,

& Bolker, 2012).
"Since PISA focuses on students at the age of 15 years there is no need for information
on the year of birth.
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4.3 Adjusting design weights for nonresponse

Lugtig (21.10.2013) states that "[...] in survey methods, nonresponse is one
of the phenomena that is contextual. Nonresponse always occurs, but the
predictors of nonresponse differ across countries, survey topics, time, survey
mode, and subpopulations. In other words, that is what makes building a
theory about nonresponse so difficult." Due to this fact nonresponse adjust-
ments have to account for particularities of the various contexts. For this
reason the adjustments performed on the design weights are separated by
the stages of the sampling design, that is schools as clusters of students and
the students themselves. This is in line with methods commonly used in
educational studies such as TIMSS (Olson et al., 2008), PIRLS (Martin et
al., 2007), PISA (OECD, 2012; Rust et al., 2013) or the National Survey
of Student Engagement (NSSE, Pike (2008)). These surveys also apply an
unconditional cell weighting on the student level and adjust their weights by
the inverse of the participation rate within each cell. In the context of educa-
tional surveys Porter and Whitcomb (2005) use an ordered logistic regression
model because in the Cooperative Institutional Research Program (CIRP)
first-year students had up to four opportunities to participate in the survey.
We model school- and student-level participation processes separately. On
both levels we take clustering into account. Schools are clustered by fed-
eral states because in Germany they are in charge of providing access to
the schools. Further, the clustering by federal states accounts for different
levels of effort in recruitment of the schools as well as for support by the
different federal states. In contrast to the studies mentioned above we ac-
count for clustering on the school level via random intercepts when modeling
individual participation decisions.

4.3.1 Adjusting for nonparticipation on the institu-
tional level

When analyzing school participation, the replacement rule (see Subsection
3.3.4) implemented to address school nonresponse in advance has to be con-
sidered, see also Afmann et al. (2011). Most often, schools refused partici-
pation in order to avoid additional workload that arises from participation
in other studies. To counteract the resulting sample size reduction on the
level of students as strongly as possible, replacement schools were defined
in advance. However, the implemented replacement strategy was unable to
prevent the nonparticipation of schools completely.

Table 4.1 shows the sampled and realized schools per stratum. The rates
of schools refusing participation by strata varies from 1.81% in stratum F'S



50 WEIGHTING ADJUSTMENTS

Table 4.1: Sampled vs. realized regular and special schools after replacement.

Realized

Sampled

Refused FS GY HS IG MB N5 RS Y
FS 2 108 0 0 0 0 0 0 110
GY 5 0 149 0 0 0 0 0 154
HS 52 0 0 181 0 0 0 0 233
1G 15 0 0 0 55 0 0 0 70
MB 8 0 0 0 0 56 0 0 64
N5 5 0 0 0 0 0 21 0 26
RS 4 0 0 0 0 0 0 104 108

> 91 108 149 181 55 56 21 104 765

Notes: Table is based on process information from the school recruitment.

to 22.75% in stratum H.S. Participation rates in the other strata are 15.38%
in stratum N5, 3.25% for Gymnasien, 21.43% in stratum IG which is almost
as high as in HS. Stratum M B has a refusal rate of 12.5% and for stratum
RS it is 3.7%. The overall refusal rate for schools is 11.9%. In summary the
replacement strategy seemed not to be able to compensate refusals of schools
to the full extend.

We checked via probit regressions (see Equation (4.1)) whether the avail-
able variables influenced school participation. To model school participation
of all the contacted schools, their participation status was regressed on ex-
plaining factors reflecting the response burden for schools, the efforts involved
in recruiting schools, and all variables defining the considered explicit stra-
tum and implicit strata. The effort of recruiting schools is measured by the
number of schools contacted per Federal State. A corresponding dummy
variable separates the efforts by the median. As the legal basis for school
participation differs across Federal States, a Federal-State-specific random
intercept was considered. For schools not related to the migrants’ supple-
ment, the estimated random intercept models are shown in Table B.3 in
Appendix B. The results indicate the significance of variables defining the
explicit and implicit strata.® The results of the regression model describing
the participation propensity of schools contacted during the supplement of
migrants are given in Table B.4 in Appendix B.

For the model estimating the participation of special schools the dummy

8Note that some variables are stratum-specific and can only be considered in certain
models, for example number of classes in grade 7 cannot be considered in stratum N5.
Besides, collinearity within the N5 stratum does not allow for the consideration of the
variable effort made in recruitment in the associated stratum-specific model.
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for the effort measurement is significant. For the schools sampled in the sup-
plement of students with migrational background this dummy could not be
formed. Furthermore, here the state-specific random intercept is not signifi-
cant. For each of the strata models for the regular schools (except for strata
HS and RS) as well as for special schools the effort made in school recruit-
ment (if in the model) is significant. In the case of Hauptschulen (h = HS),
the dummy indicating public funding is significant. To adjust the design
weights on the school level cell weighting is applied. The cells are formed by
strata, Federal States and sponsorship. The weight of school j in weighting
cell f was adjusted by the factor

.:m;—l—m’}

J; forje f

7} )
where m’; denotes the number of participating schools and m} the number
of nonparticipating schools in weighting cell f. The nonresponse adjusted
design weight for school j in adjustment cell f then finally arises as

m}—i—m?

wj:dj-éj:dj~ fOI'jef.

my
The adjustment on the school level had to be done only once at the start of
the panel because the participation of schools is the necessary condition for
getting access to the students on the second stage.

The panel entry weight on the school level resulting from this adjustments
can be found in the scientific use files of SC3 and SC4 under w_i. This
denotes the weight for the institutions, which is corrected for institutional
nonresponse.

4.3.2 Adjusting for nonparticipation on the individual
level

As we gain access to the sampled targets via the participating schools, the
decision to participate in the survey is made at the student level. At the
time of the survey most students were not of legal age, thus, they needed the
permission of their parents to participate in the panel survey. As panel con-
sent from students and their parents was obtained before the actual survey,
nonparticipation is a two-phase process. First, students and (if underage)
also their parents, agree to participate in the panel. Second, nonresponse
may occur in the actual wave due to temporary drop-out. Within NEPS a
panel cohort member not participating is considered as a temporary drop-
out. After two years without any information about the target she or he
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is considered as final drop-out. Considering the decision to participate in
the panel cohort Table 4.2 shows the percentages of students willing to par-
ticipate per test group.’ The table shows that in each starting cohort and

Table 4.2: Distribution of participation rates per test group by starting co-
hort.

Pmin  DPo.25 Po.s Hp P05 PMax

REG 0 0410 0.542 0.543 0.688 1

SC3 FOE 0 0423 0.636 0.601 0.800 1
MIG 0 0.142 0.229 0.300 0.431 1
S04 REG 0 0.463 0.667 0.627 0.826 1
FOE 0 0.392 0.571 0.567 0.750 1

Note: REG: regular schools, FOE: special schools, MIG: migrants supplement.

each subgroup there were test groups in which no student was willing to
participate (i.e., the minimum pyz, = 0 in all groups). On the other hand
there were also test groups throughout all groups in which all students were
willing to participate (i.e., the maximum pys,, = 1 in all groups). On aver-
age (u,) the participation rate per test group is highest in regular schools of
SC4 (66.7%), followed by special schools in SC3 (63.6%). The lowest average
participation rate per test group is found within the supplement of migrants.
The participation rate of 30% on average shows the challenging task of re-
cruiting hard to reach respondents and minorities. These findings are in line
with the literature showing that active parental consent lowers participation
rates towards a range of 40% to 60%, see Esbensen, Miller, Taylor, He, and
Freng (1999).

More detailed pictures are given by the Tables 4.3 and 4.4. They show
the participation status of the initial samples by strata. In both tables the
minority of the initial sample has a undetermined participation status, that is
at the day the students participation list was returned to the survey research
institute the students did not hand back a informed consent to participate.
Differences to the number of students in the panel cohort are due to this
group. Students handing back a consent form after the students participation
list was sent back to the survey research institute the student was allowed
to participate.!® Also students willing to participate revised their decision.

9To bring it to the readers mind again: A test group is a group of students tested
together. These groups are mostly neither equal to classes nor to schools. The only case
in which a test group is identical to school and class is when the school has only one class
with less students then the maximum size of the test group.

10Unfortunately the participation status could not be updated since the returned part
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For some returned students participation lists the school type needed to be
anonymized (column NA), so that re-identification is not possible. This
is due to the fact that information on nonrespondents come under the law
of informational self-determination, derived from Article 2 (1) together with
Article 1 of the Basic Constitutional Law of the Federal Republic of Germany
(GG: Grundgesetz). It further appears in German Federal Data Protection
Act (BDSG: Bundesdatenschutzgesetz) as well as in Data Protection Acts in
each Federal State. For more detailed information on data protection issues
in the NEPS see Meixner, Schiller, Maurice, and Engelhardt-Wélfler (2011).
In SC3 the participation rates by strata range from 29.50% (stratum MIG)

Table 4.3: Participation status of the initial sample by strata for SC3.

N5 GY HS IG MB NA RS FS MIG

participant 278 2187 666 270 292 416 1082 584 290
nonparticipant 219 1463 611 260 238 285 814 378 546
undetermined 77 100 35 8 38 14 105 74 147
> 574 3750 1312 538 568 715 2001 1036 983

Notes: Abbreviations of strata are N5: Grundschule & schulartunabhingige Orientierungsstufen, GY: Gymnasium,
HS: Hauptschule, IG: Integrierte Gesamtschule & Freie Waldorfschule, M B: Schule mit mehreren Bildungsgingen,

N A: not available, RS: Realschule, F'S: Férderschule and MIG: schools of the migrants supplement.

to 58.32% (stratum GY'). In most strata (h € {N5; HS;IG;MB}) the
participation rate is around 50%. For the other strata (h € {NA; RS; FS})
it is above 50%.

In SC4 participation rates vary from 54.22% (stratum F'S) to 68.12%
(stratum GY') across strata. In stratum N A the participation rate is about
56% whereas the participation rates in the other strata are above 60%.

These figures reveal a more detailed difference in participation rates that
are lower throughout the strata in SC3 than in SCA4.

For some students the participation status could not be determined, be-
cause the did not return their consent form by the time the lists were sent
to the survey research institute. Having no information on wether or not
these students are willing to participate in the panel they were excluded in
estimating the propensities to participate. The propensity of students to par-
ticipate in the panel cohort is modeled via probit models (see Equation (4.1))
regressing the participation status (participant, nonparticipant) on charac-
teristics available for the initial sample of students (that is, information from
the students participation list, see Table B.2 in Appendix B).

did not allow for re-identification.
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Table 4.4: Participation status of the initial sample by strata for SC4.

GY HS IG MB NA RS FS

participant 4974 3753 1394 1032 1000 3174 1286
nonparticipant 2125 2070 738 580 669 1818 860
undetermined 203 211 33 51 119 285 226
> 7302 6034 2165 1663 1788 5277 2372

Notes: Abbreviations of strata are GY: Gymnasium, HS: Hauptschule, IG: Integrierte Gesamtschule & Freie Waldorf-

schule, M B: Schule mit mehreren Bildungsgingen, N A: not available, RS: Realschule and FS: Foérderschule.

Starting-cohort-specific models were estimated with a further distinction
between students attending regular and special schools. In this way the differ-
ent sets of information available for the different starting cohorts were taken
into account. For example, grades from the previous year were provided by
teachers for students in grade 9, but they were not necessarily available for
students in grade 5. For SC3 a separate model for the supplement of migrants
was estimated. In addition to the information available on student charac-
teristics, random intercepts were considered to reflect the cluster structure
of the initial samples of students. The complete models by starting cohorts
and samples are given in Table B.5 in Appendix B.

For SC3, models were estimated for the sample of students in regular
and special schools as well as for the sample of students with migration
background. For all three samples the propensity to participate is signif-
icantly negatively influenced by a language other than German spoken at
home and also by missing values in characteristics related to competencies,
that is, competencies in maths and reading, dyslexia, special educational
needs, and attention deficit hyperactivity disorder. For students in regular
schools the participation propensity is positively influenced by good compe-
tencies in maths and reading and negatively influenced by missing values in
personal attributes, that is, gender, year of birth, and migration characteris-
tics, that is, language spoken at home, nationality.

For all five subgroups of the starting cohorts considered (students in
grade 5 and 9 in regular schools and special schools, as well as migrants’
supplement of fifth graders) some of the findings can be generalized. In each
subgroup the participation propensity of the students is effected in the same
way: Male students and students speaking a language other than German at
home have a lower propensity to participate. Furthermore, missing values in
personal, migrational, and competence characteristics are strong predictors
negatively influencing participation. A positive effect was found for good
grades in maths and, except for the students with migration background,
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younger students are more willing to participate.

For students in special schools, mathematical competence has a signif-
icant positive effect on the participation propensity, and for students with
a migration background the dummy indicating a Turkish migration back-
ground is highly significant and negatively influences response propensity.
The size of the test groups yields different effects throughout the three sam-
ples. Whereas it is insignificant in regular schools, it is significantly negative
for special schools and positive for students with a migration background,
see also Table B.5 in Appendix B.

In SC4 the effects of gender, grades in math, and the missing values in
competence characteristics are of similar kind. Male students and students
with at least half of the competence characteristics missing are less willing to
participate, whereas students with good grades in math are more willing. Of
the students in regular schools the younger students are significantly more
willing to participate; also, good grades in German have a positive effect on
participation propensity. Negative effects are found for students with special
educational needs and for those with missing values in personal characteris-
tics.

The inverse of the participation propensities derived by these models
constitute adjustment factors for the computation of nonresponse adjusted
design weights of students.!’ In more detail, the nonresponse adjusted weight
w5, of a student ¢ in school j in stratum h entering the panel is the product
of the design weight d;;;,, the institution participation adjustment factor d;,
and the estimated participation propensity X,-j of a student estimated from
the models displayed in Table B.5 in Appendix B), that is

3—1
wijh = dz’jh . (Sj . )‘ij .

The panel entry weight on the student level w;j;;, is the basis for all further
adjustments of the panel cohorts and can be found in the scientific use files
of SC3 and SC4 (also SC2) under w_t. This denotes the 'design weight’ for
the target persons, that is, the students, which is corrected for individual
nonresponse within the participating schools.

4.4 Adjustments of the panel cohort for suc-
cessive waves

The adjustments described in the previous sections were necessary to adjust
the initial sample of schools and students to the final panel cohort. For each

1 To simplify notation, some of the super- and subscripts are omitted.
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member of the panel cohort there are subsequent decisions for participating
in each wave of the panel. When panel members participate in different
waves of the survey this will result in several participation patterns.

panel cohort wave 1 wave 2

participants

wave 2

students

participants
wave 2

nonparticipants

wave 2

Figure 4.2: Participation patterns for panel cohort members.

Figure 4.2 somewhat simplifies these different patterns for two waves.
Since panel cohort members are those that decide to participate in the panel,
there are no nonparticipants. This is due to the fact that there was a small
lag in time between the panel consent and the test days for wave 1. In the first
wave there are again students that participate in surveying and testing and
others that do not (for example because of illness or bad weather conditions
that did not make it possible for them to show up). The same is true for wave
two. Here each member of the panel cohort can participate (again) or not
participate (again). Figure 4.2 simplifies also according to the declaration of
nonparticipants. Within the NEPS any target person not participating in a
wave is defined as temporary drop-out, whereas final drop-outs are defined as
target persons for which over a time of two years no information was given. So
nonparticipants in the figure summarize temporary and final drop-outs. The
decision to participate in the second wave might be independent of the first
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wave participation status. Students not participating a wave are considered
as temporary drop-outs. Students that do not provide any information in
surveying or testing within a two year period are considered as final drop-
outs, that is, panel attrition. The figure shows on the top track of the pattern
the ’all-time-participants’ and on the lower track what might become panel
attrition in wave three. All other tracks might be considered as irregular
participation patterns. Others categorize the all-time-participants simply
as 'respondents’ and the irregular participants as non-attriters’, see Kalton
(1986) and Lepkowski (1989). The number of participation patterns increases
with each wave, whereas at wave T there can be 27 different participation
patterns. For a survey running for three waves this makes 22 = 8 different
patterns, including the permanent nonrespondents pattern. To comply with
the situation of drop-outs, the panel entry weights of the students need to be
adjusted again for unit nonresponse among the panel cohort. As this would
yield within only a few waves an enormous number of available weights,
these published weights are selected on the basis of groups. These groups are
either defined by a participation pattern (for example ’all-time-participants’
or participant in the actual wave) or subgroups of the panel cohort that are of
special interest in analyses. The latter is discussed in the succeeding chapter.

Table 4.5: Participation status for starting cohorts by wave.

SC3 SC4
n=6112 n = 16425
Wave 1  Wave 2 Wave 1 Wave 2
participant 5774 5790 15629 16017
temporary drop-out 338 308 796 408
final drop-out 0 14 0 0

Table 4.5 shows the distribution for participation status of the panel
cohorts of grade 5 and 9 students by waves. In SC3, n" = 5778 students (of
the n = 6112 students in the panel) participated in the first wave yielding
a participation rate of 94.54%. In the second wave of SC3 the participation
rate is slightly higher with 94.73% and n” = 5790 students participating. Of
n = 16425 students in the SC4 panel, 15629 student took part in the first
wave and 16017 students in the second wave, yielding participation rates
of 95.15% and 97.52%. For the participation in the first wave of SC3 and
SC4 and for the participation in the second wave of SC4 response propensity
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models were estimated. In doing so, the participation propensity in the
second wave of SC4 was modelled conditioned on a student’s participation in
the first wave. A cross tabulation of the participation status of SC4 students
by wave is given in Table 4.6. The relevant models and their outcomes can
be found in Table B.6 in Appendix B.

Table 4.6: Participation status by Starting Cohort and wave.

Wave 2
drop-out

Wave 1 participant temporary final

Starting Cohort 3

participant 5473 287 14
temporary drop-out 317 21 0
final drop-out 0 0 0
Starting Cohort 4
participant 15308 321 0
temporary drop-out 709 87 0
final drop-out 0 0 0

As shown in Table 4.6 the majority of 15308 (93.20%) students in SC4
participated in both waves. Whereas respectively 709 (4.32%) students par-
ticipated in wave 2 and 321 (1.95%) in wave 1 only. The smallest fraction
of 0.53% (87 students) participated neither in wave 1 nor in wave 2. The
participation rate for both waves in SC3 is with 85.55% lower than in SCA4.
Thus the fractions of students participating in SC3 in one of the two waves
only is higher with 5.19% (wave 2) and 4.70% (wave 1) respectively. Further-
more in the second wave of SC3 14 students refused further participation in
the panel cohort, that is result in panel attrition.

Again the participation propensity for students is modelled using random
intercept models with a probit link function (see Equation (4.1)). Models for
wave 1 are based on information collected in the first wave. The informa-
tion is provided by different informants. Mainly information arises from the
students survey. But also information on the school or on classes are made
available by the institution heads and teachers. In contrast, models for wave 2
can be based on more information since some of the students not participat-
ing in wave 1 provide information in wave 2 (see Table 4.6). In this case the
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estimated models for wave 1 need to be updated as soon as new information
arises. In SC4 information from wave 1 and wave 2 became available in the
same time so that missing information in wave 1 could directly be edited if
made available in wave 2. In SC3 new information from wave 2 was made
available some time after wave 1. Here the new information was used in the
second release for SC3.

Modeling students’ participation decisions in SC3 is based on information
on the first and second wave. In contrast to SC4 the time between wave 1
and wave 2 was about a year in SC3. In SC4 the time between the waves
was about half a year. Since there are only 14 final drop-outs in wave 2 in
SC4 the model is estimated based on 6098 remaining observations. On the
one hand these 14 final drop-outs will for sure attrite for different reasons
than those student temporarily dropping out. On the other hand extending
models for these 14 cases cannot use much information. Therefore these
cases are considered separately by unconditional modeling, see Table B.6 in
Appendix B columns Wave 1 and Wave 2 for Starting Cohort 3.

In SC3 the decision to participate is negatively influenced by missing val-
ues in personal characteristics, that is, sex as well as month and year of birth.
The same is the case for wave 1 in SC4, whereas the effect losses strength
and significance in wave 2. Furthermore, students educated in schools of
stratum /G and in schools in stratum M B have lower propensities to par-
ticipate in wave 1 of SC3. This effect is not significant for wave 2 anymore.
Instead the effect of being educated in special schools becomes negative and
highly significant in wave 2. The decision to participate in wave 2 of SC3 is
mostly negative influenced by not being in the context of a school anymore,
that is being in the field for individual re-tracking. In this field the students
are sent the survey and test questionnaires to their home instead of filling
them out in their school. This is because 17 schools are not willing or able
to cooperate, since the workload of the study organization is to high, the
age group is expired, there are to few students willing to participate or the
school was closed (reasons in descending order with respect to frequencies of
occurrence).

A common characteristic positively influencing the participation decision
across both starting cohorts and in each wave is speaking German as native
language. Furthermore being schooled in special schools not only lowers
participation propensities in wave 2 of SC3 but also in both waves of SC4.
Visiting a special school has a significantly negative effect in both waves,
though; in the second wave, students in special schools show an even lower
participation propensity than in the first wave.

Students’ propensity to participate in the first and second wave of SC4 is
negatively influenced by having missing values in migration characteristics,
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that is, native language and Nationality. The effects of being in a school of
stratum H S as well as being German both negatively influence the students’
propensity of participation but do not remain stable over the two waves.
The influence of belonging to the younger half of the age cohort stays positive
while growing stronger, and it becomes significant in the second wave. Surely,
participating in the first wave is a strong predictor for participation in the
second wave, exerting a highly significant positive effect.

In both starting cohorts the variance estimate for the random intercept
at the school level increases from wave 1 to wave 2.

Having the information that arose in wave 2 of SC3 and SC3 the model
for wave 1 participation was re-estimated making use of new information.
Comparing the models for wave 1 based on the different sets of information
they yield similar estimates.

The weight w;;;, for individual ¢ in school j in stratum h is now adjusted
again by a factor 3\; ! that comes from the appropriate model specification
relying on the starting cohort and on the specific situation.!? Hence any
weight for individual ¢ in the first wave of the panel will be computed as
w! = wi% and for wave 2 as w!! = wi%, respectively.

The vxlfeight resulting from these adjlustments can be found in the scien-
tific use files of SC3 and SC4 under w_t1. This denotes the weight for the
target persons (i.e., the students) in wave 1, which is corrected for individual
nonresponse within the first wave.

12 Again, we will skip further indices to simplify notation.



Chapter 5

Weighting multi-informant
surveys in institutional contexts

Chapter outline:

After showing how we deal with wave-specific unit nonresponse this chap-
ter focuses on weighting adjustments for special subgroups of interest. The
NEPS adapts a multi-informant (also: multi-actor) perspective and enriches
the data for students arising in the tests and surveys by an additional tele-
phone interview with one parent. Thus one interesting subgroup is students
and parents participating jointly, because the parents provide background in-
formation on the students environment. This widens the range for interesting
analysis. Therefore we provide additional weighting adjustments accounting
for monresponse within this group. Because the participation decisions for
students and parents are unlikely to be independent these decisions are mod-
eled jointly resulting in a bivariate probit model allowing for the estimation
a correlation parameter. Finding a correlation in a bivariate binary pro-
bit model motivated an extension for random intercepts. As in the previous
chapter the random intercept respects the cluster structure of students within
schools. Thus we adapt a bivariate probit model with random intercepts al-
lowing for clustering at the school level to model jointly the (possibly) cor-
related participation processes of students and parents. The model results in
a complex likelihood function with evaluations of the bivariate normal distri-
bution. Therefore the approach developed by Geweke (1991), Hajivassiliou
(1990) and Keane (1994) (the GHK-simulator) is suitable to estimate the

model by means of simulation.

61
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5.1 Students and parents participation deci-
sions

Applying a multi-informant or multi-actor design can validate information
given by the ’key-informant’, that is, students, enrich information on their
formal learning environment (for example information given by teachers on
the context of the class or by the institutions head on the school) and their
social background (for example parents providing further information on liv-
ing conditions, socioeconomic status, etc.), see Wagner, Rau, and Lindemann
(2010) for more details.! Maaz, Kreuter, and Watermann (2006) discuss the
problems that can occur in multi-informant designs. For the PISA 2000
and the PISA-E (extension study surveying the student’s parents, German:
PISA-Erweiterung; see Baumert et al. (2002)) the authors show that students
can provide reliable information on their parents educational school-leaving
qualification and their occupation (Maaz et al., 2006).

Problems resulting in unit-nonresponse in multi-informant surveys occur
for example when one or more informants refuse to participate. When en-
riching students data by information provided by their parents this may be
the result of nonparticipation of the student or the parent (or both). The
clear advantage of this multi-informant perspective is that in case of one in-
formant not providing information on the topic of interest the information
of the other informant can be used (Maaz et al., 2006).

The data collected in SC3 (and SC4 as well) is enriched by information on
the school, the classes (especially for German and Maths) and the educators
to allow for consideration of learning environments of students. Furthermore
a computer assisted telephone interview (CATI) with one parent (if will-
ing to participate in the survey as well) provides information on the social
background of the student.

For example analysis of social disparity in educational participation or
competence acquisition make use of characteristics on the social background
provided multiple informants (Maaz et al., 2006). This is why students and
parents participating together (stemming from the multi-informant design)
form an interesting population for analysis. Therefore nonresponse adjusted
weights need to be provided for this subgroup as well.

The participation processes resulting in the final panel cohort are embed-
ded in the sampling and recruitment process as follows. The panel cohort
sample has been established using a stratified two-stage cluster sampling ap-

IMulti-informant and multi-actor design describe the same design, whereas multi-
informant is more prominently used in economic studies while multi-actor is predominantly
used in family research.
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proach. Stratification reflects the different school systems in Germany via
seven explicit strata, see ABmann et al. (2011) for details. Access to the
target cohort, that is, students in grade 5, is gained via schools ensuring thus
the contactability of students in sampled classes. In NEPS, participation is
not mandatory and thus unit nonresponse can occur on each level, that is,
schools, students, and parents. The process of school recruitment and sub-
sequently the student recruitment process is consecutive by nature and thus
reflected by sequential modeling (see previous chapter for details).

That is, first the participation decisions of schools are modeled as shown
in Subsection 4.3.1. Second, the panel cohort is established by parents al-
lowing their children to participate via an active consent, since a fifth grade
student is not of legal age. After correcting for unit nonresponse on the
school and student level each student of the panel cohort is assigned a panel
entry weight, as shown in Subsection 4.3.2. These steps are, due to the na-
ture of the decision process of schools and students, done using sequential
adjustments applying appropriate model specifications. Since the students
need their parents permission (granted by a parents’ signature) to partici-
pate in the NEPS, a first contact with the parents is already established in
the forerun of the survey. The provided consent to participate in the panel
survey establishes the panel cohort for SC3. Third, given the panel consent
provided by parents for their children, actual participation in each wave in-
cluding testing of students in schools and the telephone interview of parents
needs to be analyzed. The decision processes leading to actual participation
within wave 1 are hence modeled subsequently.

However, data availability on students of the cohort depends on actual
first wave participation. Further availability of data provided by parents on
the student does depend on the participation decision of parents. This is to a
larger extend embedded in the threefold process (location, contact and coop-
eration) leading to cooperation described by Lepkowski and Couper (2002),
since not all parents provided sufficient contact information. Given the de-
coupled participation decisions, that is parents may grant their children to
participate but refuse participation for themselves, the participation deci-
sion of parents realizes either when they provide consent for their children or
during the contact procedure of the telephone interview.

The decision processes described above result in the joint participation
statuses shown in Table 5.1. The table gives the participation statuses for
students and parents by wave. The panel cohort consists of 6112 students
from which 5774 participated in wave 1 (participation rate: 94.47%) and 338
were classified as temporary drop-outs due to illness, bad weather conditions,
etc. Students participation rates in SC3 by institution range from 30.77%
up to 100% (with median of 96.67%). The parents of the students were
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Table 5.1: Participation statuses for students in SC3 and their parents by
wave.

parents
drop-out

students participant temporary final

Wave 1
participant 3974 462 1338
temporary drop-out 177 28 133
final drop-out 0 0 0

Wave 2
participant 3727 636 1427
temporary drop-out 92 104 112
final drop-out 1 2 11

less likely to participate in the CATI. Altogether 4151 parents participated
in wave 1. The other 1961 parents did not participate in the first wave
due to temporary drop-out or refusal. For the subgroup of 3974 of wave 1
participants an additional interview with one parent is available.

In wave 2 there are fewer students and parents participating together.
The subgroup consists of 3727 students and parents in wave 2. For one
student of SC3 who finally dropped out, an interview with one parent is
available. For the other 13 students the parents could not be contacted or
refused to participate in wave 2.

5.2 Model specifications for decision model-
ing

The following model specifications focus on appropriately modeling the two
distinct participation decisions of students and parents. Therefore a bivariate
binary probit model is set up and extend by random intercepts. A random
intercept on the institutional level is chosen in modeling the students and
parents participation decision accounting for clustering. This is in line with
the model framework introduced in Equation (4.1) and used for analyzing
participation decisions as discussed in the previous chapter.

According to Laaksonen (2005) binary regression models using a logit link
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function seem to be dominant in modeling participation decisions in social
research (and also in other fields). We decide for the probit link function
because it allows for the estimation of a correlation parameter, which is not
straightforward within a logit framework.

The bivariate model setting allows to consider possible correlations in
the decision processes of students and parents and is therefore not a sample
selection model in the sense of Heckman (1979) as in the literature discussed
in Section 4.2. Steele and Durrant (2011) use a multilevel extension of the
sample selection model to model non-contact and refusal.

5.2.1 Univariate probit model

The univariate probit model for ¢ = 1, ..., n individuals (for example students
or parents) with dichotomous participation decisions y; is given by

1 if ~i > 0, . _
=4 =Y with ;= X8 + &, (5.1)
0 else

where y; denotes a latent variable, X; the regressors, 5 the coefficients and
g; ~ N(0,0) denotes the disturbance (with ¢ = 1). The univariate probit
model estimates the probability for y; = 1 by
P(y; =1) =P(y; > 0)
=P(X;f+¢ >0)

= P(gz > —Xzﬁ)

X 400 (5.2)
= / o(ei)de; =1 — / o(;)de;

—00 —Xip

= ‘I)(Xiﬁ) =1- ‘I)(—Xzﬂ),

with ¢ denoting the density function of the normal distribution and ® the
distribution function of the normal distribution, see Greene (2012, p. 728).2
Thus the contribution of an individual ¢ to the likelihood L is

Dy
Li(8) = PV = il Xi, 8) = [ olei)de; = @(X.8), (5.3)
Dir
where D;; = (—oo' ™% — X, %) denotes the lower and Dy, = (—X;3' ¥, +00%)
the upper integration limits corresponding to y; = (0, 1).3

2Because of the symmetry of the normal distribution 1 — ®(X;3) = ®(—X;f3).
3Because P(y; > 0|X) = P(g; > —X,;8|X) and the symmetry of the normal distribution
it is P(y; > 0|X) = P(e; < X;8|X) = (X, ), see Greene (2012, p. 726).
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Finally the likelihood for the model results in
£8) = T1 £(8). (5.4)

This model framework can be extended with a random intercept. More
precisely: to a random intercept probit model. This extension allows to
take clustering on a higher level (for example school level) into account.
Individuals (denoted by i) are clustered in groups j = 1,...,m of size n;.
Therefore the error term from Equation (5.1) is decomposed into

Eij = O + €ij- (55)

Inserting Equation (5.5) in Equation (5.1) the extended model can be rewrit-
ten as

1 if gy, >0, . _
0 else —

where a; ~ N(0,w?) denotes the random intercept and €;; ~ N(0,0) is the
disturbance (again with o = 1).* This model is equal to the model already
given in Equation (4.1). Summarizing model parameters as 6 = (3, w?) the
contribution to the likelihood by cluster j is the joint probability for all n;
individuals within the cluster, that is

L;(0) = P(Y; = y;|X,,0)
= P(}/l] = ylj; . >Ynjj = yan|X1J, N 7anj7 6)
DljZ/{ Dnjju
= / ¢nj(€1j7€2j>-'-75njj>d€1jd€2j---dgnjj

Dije Dnjjc

| ——
nj

We get the joint density of ¢; integrating a; out of the joint density of
(€1, €25, - - - ,5njj), that is

¢nj (€1j, Ejy v 75njj> = ¢nj (61]', €25y ,Enjj’@j) ¢<&j). (58)

"

[T ¢(eijley)

i=1

4For further simplification in notation of the likelihood functions it is € = Yij — (X 8+

Otj).
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Because the errors are uncorrelated given the cluster we can rewrite the multi-
variate normal distribution as the product of univariate normal distributions.
Inserting this in Equation (5.7) yields

Li(0) =P(Y;=y;/X;,0)

+oo [ Dyu  Prjiu,, (5.9)
= [ [ - | Hoteslajde; | ola;)da,
—o0 \Dy,z Dnjjc =

In the above equation the order of the integrals can be rearranged because
the ranges of the integration are independent. Further e conditioned on «;
is independent so we can rewrite the above equation to

L;(0)=P(Y,; =y,;|X,,0)
+oo [ n; Diju
— / H / P(eijlag)des; | | dlay)day.

Al

(5.10)

Butler and Moffitt (1982) derived this simplification for a one-factor multino-
mial probit model. A general derivation is given in Greene (2012, pp. 758 ff.).
In this case the likelihood arises the product of the likelihood contributions
from each of the clusters j, that is

aw:ﬁg@. (5.11)

5.2.2 Bivariate probit model

The probit model given in Equation (5.1) can further be extended to allow
for modeling two (possibly) correlated decisions. Let ¢ € {s,p} denote a
couple of a student s and a parent p. Further suppose the two decisions
are somehow correlated.® This is measured via the correlation parameter p.
Extending the univariate to the bivariate binary probit model Equation (5.1)
changes to

1 if y7>0

p=q, T with g = X8+
0 else

(5.12)

with g7 = XP@P + &

)

» 1 if g’ >0,
0 else

5Slightly abusing the notational conventions some symbols are defined different than
in previous chapters. The substitutes will become clear at appropriate places in the text.
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The correlation parameter p enters via the correlation matrix 3 of the resid-
uals so that

€l = ( ; ) ~ N(0,%) with ¥ = (/1) ;T) . (5.13)
The bivariate probit model estimates the regression coefficients 3¢ = (5%, 5P)
and the correlation coefficient p using the dependant variables y¢ = (y*, y?),
the latent variables y¢ = (77, 9) and the characteristics X{ = (X7, X7). The
disturbance parameter is given by ¢ (see Greene, 2012, p. 778). Denoting
the bivariate normal density by ¢9, the bivariate normal distribution function
by @, y© = (y°,97), ¢¢ = 2y° — 1, p° = (p°,pP) = (X°4° XPpP), and
0 = (8%, B, p) the probabilities entering the likelihood are

L(0) = P(Y® = y7, VP = 7| X*, XP) = P(Y" = 4| X°)

D, DY, D
= / /qﬁg(ss,e”)dssdsp: (o (£°)de” (5.14)
D3 DP D&

= Oy (¢° 1%, 4" i) = Po(q 1),

with
Di = [D;, Df]
= [(Djz, Diyy) % (Dig, Diyy)l
(=00, —p7) x (=00, =), if yi = 0,57 = 0 (5.15)
(=g 400) X (—pf, +o0), iy =1,y =1
| (=00, =) X (—pl +o0), i yf =047 =1
(—p7, +00) x (=00, —p7), if yi = 1,47 =0

see Greene (2012, pp. 758f). Note that the set of regressors X does not
necessarily have to be identical, that is, X7 # XP. Furthermore for p = 0
the bivariate binary probit decomposes into two separate univariate binary

probit models (Greene, 2012, p. 782).

The bivariate binary probit can also be extended to a bivariate binary
probit model with random intercept. Therefore we will have to model two
of the Equations given in (5.6). Again it is possible to decompose the er-
ror term as in Equation (5.5), see Greene (2012, pp. 784f). This changes
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Equation (5.12) to
1 if y7>0
P = ' , Wlth e = XS S + QS + 65' and
yl {O else y” 2.75 7 i
€5
] (5.16)
~—_——

P
Eij

, )1 if gl >0,
%= 0 else

Here a; = (a3, af), with a; ~ N(0,Q = diag(w?,w?)) denotes the bivariate
normal distributed random intercept for students and parents grouped in
clusters j = 1,...,m of size n;. Note that the random intercepts are uncor-
related because he off-diagonal elements of the covariance matrix are zero.

The vector of disturbances given by € is bivariate normal distributed with

s

c [ G5 )~ : _ (L »p
€ ( o > N(0,%Y) with X (p 1) . (5.17)
The model stated in Equation (5.16) therefore characterizes the joint prob-
ability of all couples ¢ € {s;p} within cluster j, that is,

P(Y§ = y5|X5.0), (5.18)

where Y and X denote stacked vectors containing all information on the
couple of students an parents in cluster j and 0 = {3, §,, p, diag(£2) } summa-
rizes all parameters of the model. This formulation is similar to the formu-
lation of the likelihood contribution for individual i of the random intercept
probit given Equation (5.7). The difference is in the superscript denoting the
student parent couple c. In order to provide individual participation proba-
bilities serving as the basis for the derivation of adjustment factors one has
to sum over the corresponding joint probabilities, that is

P(Y5 = y5| X5, 0) = Y _P(Y§ = y51X5,0), (5.19)
A

where j = 1,...,m and A; denotes the set of combinations of participa-
tion decisions for all students and parents within cluster j. That is, the
power set of the individual participation patterns of a student-parent couple
y© = (v°,y°) = {(0,0); (1,0); (0,1); (1,1)} for n; — 1 individuals. This set is
required for each cluster j for marginalization of the considered individual
participation probability. As |A;| consists out of 4%~! combinations, compu-
tation becomes prohibitively burdensome for n; > 20. To ensure computa-
tional feasibility the probabilities conditional on expected random intercepts



WEIGHTING MULTIFINFORMANT SURVEYS IN INSTITUTIONAL
70 CONTEXTS

are considered, that is,
P(Yi; = yiy| X5, 0, Elog|Y 5, X5, 0]), (5.20)

where a; = FEloy|Y$, X4, 0] is an estimate of the cluster-specific random
intercept arising as conditional mean and provided as a byproduct of the
estimation routine described below.

5.2.3 Parameter estimation

Summarizing all parameters of the bivariate binary probit model with ran-
dom intercept given in Equation (5.16) as 6 = {f;, 5,, p, diag(€2)}, the cor-
responding likelihood contribution of cluster j results in a 2 - n; dimensional
integral over the composite error term €. Again this likelihood can be rear-
ranged using Equation (5.8) and thus the likelihood contribution of cluster j
results in a 2 - n; 4+ 2 dimensional integral over the decomposed error terms
e;; = (€5, €;) and the random intercepts oy = (a3, o). Using the decompo-
sition of the error terms the complete likelihood can be written as

+oo 400 [ n; Dy (a5) Dy (@)

:l’j [l [ e (5.21)

=1
100 —00 Dgp(a3) DY (a?)

Po(arj, o )dadal de;;del.

Note that the term ¢ (e}, Z]) in the inner integral is not conditioned on
the random intercepts. This is because the random intercepts enter via the

integration limits given in Equations (5.24) and (5.25). Now summarizing

c _ s D 3 — s P
the error terms as €; = (€}, €;;) and the random intercepts as a; = (a3, )

the likelihood can be is shortened to
fju(aj)

= ﬁ /Oo ﬁ / ¢2(€z¢j) ¢2(04j)d04jd€fj (5.22)

j=1 1
oo \ = ijﬁ( i)

L£;(0)
and explicitely given by
m +00 n; ’?ju(a]) 1
1
L(0) = / 11 / 2—|E|_5 exp{—e Ntel }defj
. : T
3:1—00 i=1 ijg(a,j) (523)



WEIGHTING MULTI-INFORMANT SURVEYS IN INSTITUTIONAL
CONTEXTS 71

where n; is the number of individuals i in cluster j, see Greene (2012, p. 785).9
Because the distributions of the random intercepts are uncorrelated (a; ~
N(0,diag(£2))) they could also be rewritten as the product of two separate
univariate normal distributions. The integration regions for the inner integral
(including the random intercept, see Equation (5.25)7) over the bivariate
normal distribution in Equation (5.21) are limited by

Di; = [Dj;, Djj]
= [(Djjz: Die) x (D Di)]
(=00, —u3;) x (—o0, — i), if Yy = 0,95, =0 (5.24)
) (=piy00) X (—piy, +00), i gy = Ly =1
(=00, —p3;) X (—pfy, +oo), if yi; = 0,yf =1
(_ij7+oo> X (—oo, lj’f]) if Yii = 17?/% =0

according to the different possible combinations of participation decisions of
a student and its parent with

pi = X50°+ o and gy = X750+ of. (5.25)

The limits for the integrals in Equation (5.24) and (5.15) are identical except
for the consideration of the random intercept term «; in yg;. The likelihood
of the model stated in Equation (5.21) can be calculated by the means of
simulation.

To estimate the model the general idea is to use Monte Carlo integration
and arrange the integral to take the form

/v g(0) f(v)dv, (5.26)

where f(v) denotes a regular density of a random variable v (for example a
normal density) and g(v) is a smooth function. The Monte Carlo approxi-
mation for the integral is expressed as a mean

[ o) f@)do = Brlge)] = 5 - g(), (5.27)

where vs, s = 1,...,5 denote random draws from the density f(v), see for
example Jones, Maillardet, and Robinson (2009, p. 367). Based on the law of

5The R syntax for the implementation of the likelihood function as well es the estima-
tion routine can be found in Appendix D. The code might help a reader familiar with R
to understand the derivation of the likelihood.

"In the remaining equations we will skip the explicit conditioning on «; so that
D; j( ]) Dy;

7"
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large numbers this approximation converges in probability to the expectation,
see Greene (2012, p. 665).

Because the computation of the likelihood given in Equation (5.21) in-
volves evaluations of the distribution function of the bivariate normal distri-
bution, the approach developed by Geweke (1991), Hajivassiliou (1990) and
Keane (1994) (GHK-simulator, documented in Geweke and Keane (2001))
can be adapted.® In general the GHK-simulator provides an approximation
to the integral I over a K-variate normal distribution

Dz/{ Dl/l
Ix = | ¢ = /(2#) 12(\2\*2 exp {—E’Zle} de
Pe e (5.28)
1 S K -
~3 STTI®(vswe) = P(vaic)] = 1
s=11=1

with € ~ N(0,3) as the K x 1 dimensional vector of error terms truncated in
the region given by D, and D,,. The approximation is based on the property
that any multivariate normal distribution can be factored into a set of corre-
sponding conditional distributions given as univariate normal distributions.
These univariate normal distributions are truncated at lower (vy,) and upper
() truncation points corresponding to a transformation of the integration
regions D, and Dy, using the Cholesky decomposition of X..

The likelihood stated in Equation (5.21) basically involves evaluation of
n; bivariate normal distributions (K = 2) within each cluster j. The GHK-
simulator thus in our application approximates an integral over a rectangular
region of the bivariate normal distribution for each individual ¢ in cluster j.
That is, we do not solve the 2 - n; dimensional integral over a multivariate
normal distribution within an entire cluster j but instead we solve the n; in-
tegrals for each couple within a cluster over the bivariate normal distribution.
The bounds for the integration regions are given by Df;. Now s =1,...,5
random draws v, from truncated normals are generated using

T, = O U FO()) + (1 - F)e())], (5.29)

8 An illustrative example can be found in Appendix C. The example given differs slightly
but should be helpful to understand what the importance sampler does.
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with F' ~ U[0; 1], see Greene (2012, p. 648). Whereas the truncation points
are given by

s Diiiy — Lig—1 - Drats
71(/1):< UL L:i-1, VL 1,) and

L
- (5.30)
(s) _ (Dijﬁ,l — Lyg1,- Ul:l—Ls)
Voo = I :
N

Here L denotes the Cholesky decomposition of ¥, that is ¥ = LL’. Further
Lig-1y,0 =1,..., K denotes the vector of elements in columns [ up to row
[—1. Finally {9, ,}5_, denotes a matrix of S draws for each of thel = 1,..., K
dimensions from a normal distribution truncated in the region [7(;), z(j )] cor-
responding to the transformation of Df; according to Equation (5.30) and
U1.-1,s denotes a vector stacking of these draws.

Using the above described GHK-simulator the approximated contribution

of cluster j to the likelihood is given by

L;(0) = P(YS = y5]X5,0)

+oo [y [ Piju

:/ 11 /¢2(€fj) Pa(avj)dorde;.

=\ e (5.31)
i hoo

- / (1_[1¢2<€zcg)> P2 (aj)doydey;

De oo Ni=

The integration regions Df; enter the truncation regions 725) and fyéf ) for

the GHK-simulator and include the random intercepts c;. The truncation
regions are given for n; all couples ¢ within the cluster so that the likelihood
contribution of cluster j arises as

S
£;0) = g > | T [20w”) — e(r)] | - (5.32)

I(sa$*)=g(v)

The term T (s|a§-s)) = g(v) here refers to the Monte Carlo approximation
stated in Equation (5.27) using the GHK-simulator to approximate the inte-
gral given in Equation (5.28) for K = 2. Thus f(x) is the remaining part of
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the likelihood, so that the simulated likelihood finally arises as

m m

S
£0) = TT£0); = 11 (;;f(s\af))) | (5.33)

7=1

where the conditioning on ay), r =1,..., R enters via the lower and upper
bounds, that is, Df; = (D}, D) corresponding to Df;. Rearranging the
likelihood this way for each individual 7 in cluster j only a two dimensional
integral has to be evaluated using the GHK-simulator. R here denotes the
number of random draws. The cluster specific expected random intercept
a; = Ela;]Y$§, X5, 0] (see Equation 5.20) needed for efficient computation of
participation probabilities is numerically approximated by

aj ~ &j _ r=1 nI':l Sszl : (534>
i £ (14 5 760a)

see Greene (2004) or Train (2009, p. 263). Since the model described above
is—by now-not available in The R Project for Statistical Computing (R Core Team,
2014) the estimation routine is implemented. The source code of the imple-
mentation in R is given in the Appendix D.

5.2.4 Simulation based evaluation

To assess the quality of the estimation procedure we need to check the sta-
tistical precision and the numerical precision. Both are assessed within two
separate simulation studies. Both use R = 1000 replications. To check for
statistical precision each of the replications include m = 50 clusters each
of size n; = 30, so that the total number of cases for each replication is
N = 1500. The parameters of the model given in Equation (5.16) and the
data generating process for each replication are specified as follows. The
regression coefficients for the parent equation are f? = (1,0.4,0.6)" and the
auxiliary variables are

XP = (2l ah, k) with

o =(1,...,1),

xh = (xh,,...,25 5) ~ N(0,3) and
af = (25,25 5) ~ N(O,
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For the equation of students regression parameters are 3° = (—1,0.5, —1.5)’
and the auxiliary variables are

X = (a1, x5, x3) with

i =(1,...,1),

Ty = (xg,p , T3 N) ~ N(0,3) and
73 = (231, st) ~ N(0,3).

Further the error terms are correlated with p = 0.4 and the variances for
the random intercepts are Q = diag(w?,w;) = diag(0.8*1.2%). Within each
replication the bivariate binary probit with random intercepts is estimated.
Each of the replications is based on a different seed for the random number
generator giving the X? and X* but on the same for {;,}5_,. Thus vari-
ation is only induced by the different replications generating the data but
not by the random numbers used in the estimation procedure. The results
produced by the R = 1000 replications are then averaged. Table 5.2 gives
these averaged results for statistical precision. The true parameters 6 of the
data generating process are given in the first column 6. The further columns
report the average estimated parameter 5, the average standard deviation
of the parameter estimates ASE(0), average bias ABias(f) as well as the
average mean squared error AMSE(0). The four columns give standard de-
viations o for the estimated parameters 6 and their standard errors SE (é)
The last column gives the coverage rates I(GECI for 95%-confidence intervals.
Standard errors are computed by inversion of the Hessian matrix.

Table 5.2: Statistical precision for R = 1000 replications.

0 0 ASE(®) ABias(d) AMSE(®) % oepn R

f 1.0 1.010 0.18019 0.00981 0.03838 0.19576  0.02371 0.92
g 0.4 0.402 0.02673 0.00186 0.00076  0.02758 0.00175 0.95
g 0.6 0.603 0.03478 0.00254 0.00132 0.03633 0.00257 0.95
f -1.0 -0.950 0.14405 0.05042 0.02291  0.14278 0.01827 0.92
5 0.5 0.476 0.04300 -0.02366 0.00234 0.04220 0.00484 0.89
ﬂj -1.5  -1.428 0.11202 0.07160 0.01725 0.11017 0.01410 0.88
p 0.4 0.364 0.11805 -0.03635 0.01440 0.11440 0.01929 0.95
wWp 1.2 1.190 0.14403 -0.00981 0.02347 0.15295 0.02108 0.93
Ws 0.8 0.667 0.15593 -0.13250 0.04276  0.15885  0.03257 0.87

Note: Simulation sample size for the GHK-simulator S = 1000.

The results show for all parameters a low bias. Coverage rates are as
expected indicating good statistical precision. The largest bias is found for
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ABias(ws) = —0.1325 at a coverage rate of w = 0.87. This parameter
also yields the lowest coverage. Table 5.2 shows that the average standard

errors ASE(0) are close to the standard deviations of the estimates ;.

To check for numerical precision another simulation was performed. Ran-
domly choosing one of the data produced in the previous replications for sta-
tistical precision we now estimate the bivariate binary probit with random
intercept using R = 1000 replications. Within each of this replications dif-
ferent sets of random numbers {7, ,}5_,, see Equation (5.30) are used. Thus
variation is now induced by different sets of random numbers in the estima-
tion procedure and not via the data generating process. Again results from
the different replications are averaged and 6 gives the same parameters for

the data generating process as before in Table 5.3. The average estimate is
given in column 7 and column ASE (5) reports the average standard error
for the estimated ¢s. Columns o, and 0 give the according standard
deviations for the estimates and their standard errors.

Table 5.3: Numerical precision for R = 1000 replications.

o~

ASE(0) 7 TsE5E

)l

0

P 1.0 0.897  0.19962  0.05061  0.01366
By 0.4 0.453  0.03239  0.00099  0.00008
? 0.6 0.660  0.04276  0.00133  0.00011
i -1.0 -1.155  0.20087  0.02403 0.00471
5 0.5 0.531  0.06134 0.00622 0.00101
s -1.5  -1.566  0.16648 0.01823  0.00307
p 0.4 0.396  0.14995 0.02297  0.00732
wp 1.2 1.316  0.16846 0.03699 0.01468
ws 0.8 0.829  0.19304 0.03166  0.01040

Note: Simulation sample size for the GHK-simulator S = 1000.

The variation of estimates o and their standard errors o 50) induced by

different sets of random numbers is within reasonable bounds. Comparing the

-~

average standard error ASE/(f) and the standard deviation of the estimate o
they do not overlay although for 57 the ratio is ASE(A) = 0.254. Similar results

were produced when randomly choosing different data from the simulation
for statistical precision.

We performed the simulation studies on a virtual machine with 4 Intel(R)
Xeon(R) CPU X7550 with a 2.00GHz each equipped with 8 cores and a
total of 32GB memory. The simulation for statistical precision lasted 24.5
hours and the simulation for numerical precision lasted 24.2 hours. The
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estimation of the bivariate binary probit with random intercept is executed
on a Intel(R) Core(TM) i3-3220 CPU with 3.30GHz and 8 GB memory in less
than 16 minutes. Times reported here are according to the settings given in
Appendix D.

5.3 Application in grade 5 — re-weighting stu-

dents and parents

Providing weights for this subgroup of special interest their response propen-
sity was modeled having a bivariate probit model or a random intercept
model at hand.

In Starting Cohort 3 of the NEPS (grade 5 students) the surveying and
testing of students is accompanied by a telephone interview with one of the
students’ parents. In this parental interview some information given by the
student are validated and additionally background information on the stu-
dents environment are collected.

The decision processes described above result in the joint participation
statuses shown in Table 5.1. The table gives the participation statuses for
students and parents by wave. The panel cohort consists of 6112 students
from which 5774 participated in wave 1 (participation rate: 94.47%) and 338
were classified as temporary drop-outs due to illness, bad weather conditions,
etc. Students participation rates in SC3 by institution range from 30.77%
up to 100% (with median of 96.67%). The parents of the students were
less likely to participate in the CATI. Altogether 4151 parents participated
in wave 1. The other 1961 parents did not participate in the first wave
due to temporary drop-out or refusal. For the subgroup of 3974 of wave 1
participants an additional interview with one parent is available. In wave 2
there are fewer students and parents participating together. The subgroup
consists of 3727 students and parents in wave 2.

In modeling the response propensities for students and parents the depen-
dent variable is the binary participation status in the corresponding wave.
Regressors included in the model comprise variables related to sampling char-
acteristics such as stratification variables, variables on characteristics describ-
ing the socio demographics, for example sex or migration background and
variables involving para data from call records.

Keep in mind that the variety of Federal-State-specific school systems as
well as different transitions between elementary and secondary school insti-
tutions are respected via seven explicit strata, see Section 3.5. An additional
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supplement of schools providing access to students with a turkish migration
background or a migration related to the former Soviet Union is included as
well and is the reference category.

Besides that information related to the socio demographic and family
background include the age group of the student, gender, native language
and migration background. According to year and month of birth the stu-
dents are split by the median into a younger and an older half of the age
group (reference category). Gender includes female and male, with male be-
ing the reference category. Native language consists of German and other
(reference category) and the migration background is either turkish or re-
lated to the former Soviet Union (reference category). Information on the
migration background of the students was available from the school records
and provided by teachers in the forerun of the survey. A missing indicator is
included for information on missing values in gender or age.

Besides that there is para data (Couper, 1998; Groves & Heeringa,
2006) available arising from test and telephone interview protocols during
field work. The para data is available for those parents that were contacted.
For parents the number of calls to the first contact is recorded as para data.
It is included in the model as a dummy variable if the number of calls is
less than four, with three calls being the median. Models of the second
wave are conditioned on the first waves participation status of students and
parents. Besides that a dummy is included indicating if a student has left the
institutional context of a school and is followed up and surveyed individually.
For all variables used in modeling the participation propensities Table B.7
gives the number of cases (n) an their corresponding proportions (p) for
each category of the variable. Participation statuses are given for students,
parents and students and parents participating jointly in each wave.

For each wave we show the following settings. First separate univariate
models without random intercepts are estimated for students (I) and par-
ents (II). Second a joint bivariate model without random intercepts (III)
is estimated. We then proceed with separate random intercept models for
students (IV) and parents (V). Lastly we model joint participation of par-
ents and students using the bivariate probit with random intercepts (VI) as
stated in Equation (5.16). Each model has an additional suffix correspond-
ing to wave 1 (a) and 2 (b), respectively. The values for the log-likelihood,
AIC and BIC as well as the x? of the likelihood ratio test for model com-
parison can be found in Table B.8. To test the bivariate model against two
univariate models we use x? = 2+ (In £1 2 — (In £1 +1n £y)), see Greene (2012,
p. 782). Testing model specifications for models with random intercept is
non standard, since the variance for the random intercept lies at the bound-
ary of the parameter space. This is a violation of the standard regularity
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conditions that causes the invalidity of the asymptotic x2-distribution of the
likelihood ration test statistic. Gouriéroux, Holly, and Monfort (1982) derive
an asymptotic distribution as a mixture of y?-distributions. This asymptotic
distribution for testing the significance of in general k£ random coefficients
using the likelihood ratio test takes the form ngzow(k,df)XQ(df), where

d,
w(k,df) = (2@ and x%(df) denotes a y?-distribution with df degrees of free-
dom and x?(0) the unit mass at the origin. The resulting critical values are
lower than those of a standard likelihood ratio test. Keeping this in mind
when assessing the significance of random intercepts via standard likelihood
ratio tests provides a test with a significance level reaching at most the an-
nounced one, see also Harvey (1989). Since the model specifications differ in
only one parameter, that is p, the critical value for the test is x?(1) = 3.841.
The value for the asymptotic y2-distribution with one degree of freedom and

1
one random intercept is (2%) -3.841 = 1.921.

The likelihood ratio test clearly stress the importance of considering cor-
relation as well as clustering. In wave 1 and 2 the model settings without
clustering show that the consideration of correlation in error terms are fitting
the data better at a significance level of 5% in wave 1 and at 0.1% at wave 2.
This finding also applies to the consideration of clustering. The model set-
tings that respect the cluster structure, that is, the random intercept models,
fit the data better than those that do not. Besides that the bivariate model
setting with random intercepts, as stated in Equation (5.16), fits the data
significantly better than the two separate random intercept models do. This
finding applies for wave 1 at a significance level of 1% and for wave 2 at a
level of 0.1%.

Focusing on the subgroup of students and parents Table B.9 and B.10
provide the estimated models for the participation propensities of the stu-
dents and parents in wave 1. Table B.11 and B.12 provide the models for
wave 2.

Except for the random intercept the corresponding models are equal with
respect to their covariates. In line with the literature reviewed in Section
4.2 we use the probit link function since it can be easily extended with ran-
dom intercepts and moreover it allows for the estimation of the correlation
parameter p in the bivariate model setting. In contrast we do not apply a
sample selection model since our interest lies in the joint participation de-
cisions of students and parents. The random intercept is for both (parents
and students) specified on the school level. There is no random intercept on
the interviewer level since parents that did not want to participate and did
not provide contact information do not allow for this specification.

The variables used in the analysis are the strata relevant for sampling
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representing also the school type the student is educated in (N5 refers mostly
to primary schools and schools not educating students in grades higher than
six), the migrational background (russian or turkish), the students’ gender
(male or female), their native language (German or other) and the age group
of the student (younger half or older half).? Furthermore a dummy is included
for missing information in personal characteristics of the student, that is,
missing information in gender or age group. For the parents the number of
contacts (if contact attempts were possible) was recorded. Half of the parents
could be contacted using less than four contact attempts (with three being
the median) and the other half needed to be contacted more often (with
a mean 8 calls). Separation problems occur when using variables together
that are missing for nonparticipants, because there is no information on this
group. This problem is eased by information on nonparticipants of wave 1
participating in wave 2 of the panel. Furthermore, information not available
yet (especially for parents, the students environment and competencies) may
be available for weighting adjustments in future waves.

Tables B.9 and B.10 show the estimated coefficients for the different model
specifications in wave 1. The main effects remain stable throughout all spec-
ifications, that is, they do not change in sign and magnitude. This is also
true for the variance parameter of the random intercepts as well as for the
correlation coefficient. Comparing the bivariate probit model without and
with a random intercept the correlation increases slightly when considering
the clustered structure of the data using random intercepts.

The same findings apply to wave 2. The models for wave 2 include 14
observations that are classified as final drop-outs. These students withdraw
their panel consent between wave 1 and wave 2. A more detailed analyses
of these 14 cases is, due to the small number, not possible. An estimation
of the model with and without the final drop-outs did induce only small
changes in the estimated coefficients. A small difference occurs in the variance
parameters of the random intercept model and in the parental equation of
the bivariate probit with random intercept. This parameter slightly reduces.

For wave 1 the bivariate probit with random intercept shows significantly
negative effects for all secondary school types but F'S. Negative effects are
found for students being educated in a comprehensive school (Stratum IG)
and schools offering several tracks of education (Stratum M B). The missing
indicator is also significant and has a large influence on the participation
decision. This is mostly due to the fact that information is missing for
nonparticipants. A positive effect is found for students speaking German

9The students were categorized by their date of birth into the two groups. The younger

half contains all students being younger than the median age.
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as a native language in both participation decisions. Within the parental
participation decision the school types have a positive effect for primary
schools educating students in grade 5 (Stratum N5) and Gymnasien (Stratum
GY'). Parents having a child with a turkish migration background influences
their participation decision positively. Lastly the dummy for the low number
of contact attempts to the first contact indicates that parents that are easy
to reach, that is, have a higher propensity of being at home and contacted,
have a higher propensity to participate. This has to do with what Durrant
and Steele (2009) call lifestyle characteristics, these characteristics influence
the propensity of being at home.

For both, parents and students, a significantly and large variation in the
level of the participation propensity across schools was found. Lastly there
is little, but significant, correlation in the error terms of the model.

For wave 2 Tables B.11 and B.12 show the corresponding models describ-
ing the participation propensities. Students propensity is lowered strongly
if they are educated in special schools (Stratum F'S). The impact of the
missing indicator reduces (compared to wave 1) in wave 2. A negative ef-
fect on the students participation decision is found for students being in
the field of individual re-tracking. Students are handed to that field if the
students cannot be surveyed and tested in their institutional context of the
school. The participation status of the parents also positively influences the
students propensity to participate, whereas the students own participation
status is of negative sign. For parents the participation status of themselves
and their child has a positive effect on wave 2 participation. The number of
calls to the first contact being less than four is again a strong predictor for
participation of the parents. The impact of the different school types remains
stable and increases for comprehensive schools (Stratum /G).

Based on these models according adjustments are derived for the subgroup
of students and parents participating jointly in wave 1 and wave 2 of SC3 in
the NEPS.! Given the design weight d; for student 4 the adjustment yields
an adjusted weight w;” using

$p 3—1

where ) is the estimated participation propensity for the jointly participating
couple of a student s and its parent p derived from the models VIa and VIb
shown in Table B.10 and Table B.12.

10 Again, we skip further indices to simplify notation.
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Chapter 6

Concluding remarks

6.1 Summary

In surveying and testing students in Germany there are clear needs for com-
plex sampling designs. The hierarchical and stratified school system in Ger-
many is regarded using stratified multistage designs within the NEPS SC3
and SC4. To provide sufficient sample sizes for subgroups oversamplings are
applied. To correct for aspects of this complex design in estimation the use
of design weights is necessary. The panel entry weights provided along with
the data do incorporate important features of the sampling design and the
decision processes leading to the actual panel cohorts. Including them in the
analysis will help to avoid bias in estimation of population parameters. Ig-
noring these design features would lead to biased results (Kreuter & Valliant,
2007).

Beside design features unit nonresponse and panel attrition are further
sources of potential bias. This bias can be induced by non participation or
drop-out of specific non-random subgroups and makes adjustments of the
design weights necessary. Within the NEPS complex models to compen-
sate for unit nonresponse in weighting adjustments are applied. The models
are based on random intercept models to account for clustering at the school
level. Further models for reweighting subgroups regard correlation in decision
processes of students and their parents participating in the panel together.
The models estimating participation decisions on different stages, that is,
school and student level, for different waves as well as for different subgroups
(for example student and parents) take the particularities of the design into
account and reveal typical explaining factors of unit nonresponse. Further-
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more they point at the need to consider important aspects of the design,
cluster structures and correlations in modeling decision processes. Finally
analyzing small subgroups, for example migrants, can yield inefficient esti-
mates also adjusted weights are used (Little, 2004).

6.2 Critical assessment

6.2.1 Complex sampling designs

Also a simpler design might have been desirable for users of the data the
stratified two-stage sampling design for regular schools was the only design
that appropriately mirrors the federal and hierarchical structure of the school
system in Germany.

Within the strata of special (and also of regular) schools systematic pps
sampling could have been avoided using a stratification proportional to the
size of schools and applying different sampling fractions to the strata. Using
stratification by school size would have lead to an enormous number of strata,
so that pps sampling was preferred.

Systematic sampling usually does not allow for computing second order
inclusion probabilities. This makes classical variance estimation based on
these inclusion probabilities impossible. Since there is a variety of other ap-
proaches (jackknife, bootstrapping, balanced repeated replication) allowing
for variance estimation pps sampling allowed better controlling sample sizes
than a simple random sampling.

Lastly the supplement related to students having a Turkish migration
background or a migration background related to the former Soviet Union
could have been based on names, as suggested by Schnell et al. (2013). Not
having a list at hand made a two-stage approach necessary anyways. Using
name based approaches would have put additional workload on the schools’
staff. Furthermore the Ministries of Education were able to provide figures
quantifying the (approximate) number of migrants in sampled schools this
approach was implemented. So this approach did not put additional workload
on the schools and sounded promising. In the aftermath schools sampled in
this supplement should not have explicitly been asked to provide access to
migrant groups only. Rather these schools should have been integrated in
the normal design also including students with or without other migration
backgrounds.

Replacing a nonparticipating and originally sampled school by a prede-
fined replacement school assumes the schools to be identical or at least similar
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in characteristics of interest. Besides that there is no inclusion probability for
the replacement school and thus design weights cannot be computed. These
two drawbacks were accepted to counteract against the reduction in sample
size on the school level, because the study is not mandatory. The drawback
of not having inclusion probabilities for replacement schools could have been
eradicated by the pseudo weighting approach documented in Elliott (2009).

6.2.2 Modeling unit nonresponse and weighting ad-

justments

The literature on modeling unit nonresponse stresses the importance to prop-
erly account for differences between refusal and noncontact. The models ap-
plied at different stages and for different participation decisions have through-
out aggregated the variety of manifestations of unit nonresponse to the level
of nonparticipation. On the school level a school could explicitly refuse or
not make a statement towards participation (implicit refusal) resulting in
nonparticipation of the school. The same applies for the initial sample of
students. They also provided either an explicit denial or just did not return
their consent form. These differences have not been addressed by the models
due to the small number of cases.

Adjustments on the school level alternatively could have been based on
the measure of size or in line with other adjustments on response propensity
reweighting. Finding only few explaining factors of school refusals we decided
for cell weighting forming the cells by significant factors. It was based on
the number of schools within the cells yielding almost the same adjustment
factors as if based on the measure of size.

Adjustments on the initial sample of students used all information avail-
able on participants and nonparticipants and therefore result in five different
adjustment models (three in SC3 and two in SC4, see Table B.5) since the
sets of information differed.

In the final panel cohorts the models do not address differences in tempo-
rary or final drop-out. This is—by now—due to the small number of final drop-
outs that only occurred in SC3. In future adjustments multinomial models
will have to be extended to allow for consideration of the cluster structure
to more accurate account for the differences in participation, temporary and
final drop-out.

One extension useful in the bivariate probit model with random effects
would be allowing for two differently specified random effects. The random
effect at the school level is accurate for students as they are surveyed in
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schools but for parents being interviewed in a CATT a random effect at the
interviewer level would be more accurate as discussed by O’Muircheartaigh
and Campanelli (1999) and Durrant and Steele (2009).

Lastly there are yet no population weighting adjustments applied to the
weights. This is because subgroups are by now based on non-matching defi-
nitions for which population weighting adjustments can be applied or due to
the fact that the information needed is not yet available.

6.3 Outlook and future Research

With further progress of the panel cohorts models used in weighting adjust-
ments will become more complex. In SC4 students will leave school and start
vocational training. Others will leave their actual school or change school to
get an university entrance certificate. Together with those staying in their
school this makes three subgroups to consider, whereas it will be more than
this three for sure. In SC3 students finally dropped out in wave 2. Also
just being a small number it will increase in future waves. This will have
to be regarded in modeling leading to a multinomial probit with random
effects. Future research will depend on the educational pathways entered by
SC4 students and participation patterns over different waves. Mostly these
two characteristics together with the data available will give directions for
extending existing models. Extensions do not only include switching from
binary to multinomial models. Students leaving their initial cluster chal-
lenges multilevel models to allow for more flexible cluster structures over
time. Additionally, new information arising in future waves will lead to up-
dates of the models used in previous waves’ adjustments and will further
allow finding predictors for variables of interest to be included in weighting
models.

Besides unit nonresponse future research in the NEPS will also have to ac-
count for re-weighting panel attrition. Raghunathan, Patil, and Shope (2000)
show that separating the contact and cooperation components in weighting
adjustments substantially reduces nonresponse bias in their panel context.

Allowing the use of the panel entry weights multiple imputation for unit
nonresponse in complex survey designs will surely be a topic in future research
already applied for example by Réssler and Schnell (2003) or Peytchev (2012).
Lately this topic has been suggested by Little (2013). The quality of multiple
imputations will be limited when applied in sample weighting adjustments
by information available on respondents and nonrespondents and therefore
suffer the same problem of sparse weakly correlated variables as weighting
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adjustments. In contrast the richer information arising in the progress of a
panel will enrich the possibilities to allow for multiple imputations of unit
nonresponse emerging as temporary (wave-specific) or final drop-out (no in-
formation after a certain wave). Respecting unit nonresponse patterns in
multiple imputation would then allow using the unit nonresponse adjusted
design weights throughout the entire waves of a panel making wave-specific
or longitudinal adjustments of weights obsolete. For a further discussion of
wether to use weighting or imputation for compensation of nonresponse in
panel surveys see Kalton (1986).

And lastly user needs will drive future research (not only) related to
weighting adjustments since the NEPS is set up as a project to provide a
research infrastructure for educational longitudinal research.
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Appendix A

List of Abbreviations and
Nomenclature

List of Abbreviations

ABias  Average bias

AGS Amtlicher Gebietsschliissel
AIC Akaike Information Criterion
AMSE  Average mean square error
ASE Average standard error

BDSG  Bundesdatenschutzgesetz
BHPS  British Household Panel Study

BIC Bayesian Information Criterion
CATI  Computer Assisted Telephone Interview
CI Confidence interval

CIRP  Cooperative Institutional Research Program
EFS Expenditure and Food Survey

FRS Family Resources Survey

FwW School type / stratum Freie Waldorfschule
GHK Geweke, Hajivassiliou, Keane

GHS General Household Survey

GREG General Regression

GS School type Grundschule

GG Grundgesetz

GY School type / stratum Gymnasium
HS School type / stratum Hauptschule
HT Horvitz-Thompson

ID Identifier
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100 LIST OF ABBREVIATIONS AND NOMENCLATURE

IEA International Association for the Evaluation of
Educational Achievement
IG School type / stratum Integrierte Gesamtschule
LFS Labour Force Survey
LR Likelihood ratio
MAR  Missing at random
MB School type / stratum Schule mit mehreren Bildungsgéngen

MCAR Missing completely at random
MIG Migrants supplement

mos Measure of size
MOS  Total measure of size
N5 Stratum schools providing classes in grade 5 but none in 9

NCDS National Child Development Study

NMAR Not missing at random

NEAP National Assessment of Educational Progress

NEPS National Educational Panel Study

NSSE  National Survey of Student Engagement

NTS National Travel Survey

OECD  Organisation for Economic Co-operation and Development
PIRLS Progress in International Reading Literacy Study

PISA Programme for International Student Assessment

pps probability proportional to size

PSU Primary sampling units

RS School type / stratum Realschule

SC Starting cohort

SE Standard error

STS Simple random sampling

SSU Secondary sampling units

SU School type Schulartunabhéngige Orientierungsstufe

TIMSS Trends in International Mathematics and Science Study
UK United Kingdom



Nomenclature

(S,p) Sample design

« Random intercept

6] Regression coefficients

x?>  Chi square distribution

A Set of all possible participation patterns
) Adjustment factor

€ Disturbance

\4 for all

Ve Lower truncation
Yy Upper truncation
A Response propensity for element ¢
z Indicator function

L Likelihood

W Mean

Q Covariance Matrix

w Standard deviation

) Distribution function of the normal distribution
0] Density function of the normal distribution

P, Distribution function of the bivariate normal distribution
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02 Density function of the bivariate normal distribution
s Inclusion probability

p Correlation

)y Covariance Matrix

o Standard deviation

T General estimator

T Test group size

0 Parameter vector

€ Error term

0 Covariance

v Trajectory of draws from a normal distribution
U Latent variable

C Cluster (e.g., schools or classes)

c Couple of a student s and a parent p

C; Number of classes in school j

d Design weight

D¢ Integration regions for individual ¢

Dy, Integration regions for individual ¢ in cluster j
df Degrees of freedom

F Uniform distributed random numbers

f Index for a weighting cell

f(w) Regular density

g(v) Smooth function

H Number of strata

h Index for strata
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I Value of an integral
0 Index for individuals
K Number of dimensions for the multivariate normal distribution
k Interval length

k Number of parameters

L Cholesky decomposition of X

[ Index for columns

M Number of clusters in the population

m Number of clusters in the sample

MOS Total measure of size

MOS Total measure of size

mos Measure of size

mos Measure of size

MOS; Cumulative measure of size up to element i

mos; Measure of size for element ¢

N Population size

n Sample size

N(p,0) Normal distribution with mean p and standard error o

ng Minimum net sample size

N, Stratum-specific population size

np Stratum-specific sample size

n; Number of elements ¢ in cluster j

Nnnet  Net sample size

P Probability

D Parent
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P Participation rate

P p-distribution

R Number of random draws

R Number of replications

r Random start

S Set of samples

S Simulation sample size for the GHK-simulator
S Index for simulation sample size

S Sample

S Student

S; Number of students in school j

T Total number of waves in the panel

t Number of test groups

to Maximum number of test groups

U Universe / Population

u; Unit / Element i

w Adjusted design weight

x, X Auxiliary information

y,Y  Characteristic of interest

Yij

Participation status of student ¢ in cluster j



Appendix B
Tables

To not disturb the reading of this thesis some of the tables mentioned in the
text are put separately in this section of the appendix. Tables are given in
order of appearance within the text.
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Table B.1: Distributions for net sample sizes n,; for different participation
rates p by strata when sampling m! = 480 PSUs.

h T Min 20.05 Ha 20.95 TMaz o

Distribution of net sample size nynet for p = 0.50
GY 4018.62 4063.32 4151.31 4226.93 4254.63 50.49
HS 1727.99 1831.08 1936.19 2024.61 2071.76 59.70
1G 971.61 1025.78 1102.16 1197.33 1256.84 52.24
MB 635.16 666.48 729.97 783.57 806.45 36.15
RS 2697.52 2744.16 2827.16 2925.91 2980.97 55.23
Sample 10365.51 10559.20 10746.78 10933.08 11085.83 113.42

Distribution of net sample size nyne+ for p = 0.55
GY 4420.49 4469.65 4566.44 4649.62 4680.09 55.54
HS 1900.79 2014.19 2129.81 2227.07 2278.94 65.67
1G 1068.77 1128.36 1212.38 1317.06 1382.52 57.46
MB 698.67 733.13 802.96 861.92 887.10 39.77
RS 2967.27 3018.57 3109.87 3218.50 3279.06 60.76
Sample 11402.06 11615.12 11821.46 12026.39 12194.42 124.76

Distribution of net sample size nype+ for p = 0.60
GY 4822.35 4875.98 4981.57 5072.31 5105.55 60.59
HS 2073.59 2197.30 2323.43 2429.53 2486.12 71.64
1G 1165.93 1230.93 1322.59 1436.80 1508.21 62.69
MB 762.19 799.78 875.96 940.28 967.74 43.38
RS 3237.02 3292.99 3392.59 3511.09 3577.16 66.28
Sample 12438.61 12671.04 12896.14 13119.69 13303.00 136.10

Distribution of net sample size nye+ for p = 0.65
GY 5224.21 5282.31 5396.70 5495.00 5531.01 65.64
HS 2246.39 2380.41 2517.05 2632.00 2693.29 77.61
1G 1263.10 1333.51 1432.81 1556.53 1633.89 67.91
MB 825.71 866.43 948.96 1018.64 1048.38 47.00
RS 3506.77 3567.40 3675.30 3803.69 3875.26 71.80
Sample 13475.16 13726.96 13970.82 14213.00 14411.58 147.44

Distribution of net sample size nye+ for p = 0.70
GY 5626.07 5688.65 5811.83 5917.69 5956.48 70.69
HS 2419.19 2563.51 2710.67 2834.46 2900.47 83.58
1G 1360.26 1436.09 1543.02 1676.26 1759.57 73.13
MB 889.22 933.08 1021.96 1096.99 1129.03 50.61
RS 3776.52 3841.82 3958.02 4096.28 4173.35 77.32
Sample 14511.71 14782.88 15045.50 15306.31  15520.17  158.78

Distribution of net sample size nype+ for p = 0.75
GY 6027.94 6094.98 6226.96 6340.39 6381.94 75.74
HS 2591.99 2746.62 2904.28 3036.92 3107.64 89.55
1G 1457.42 1538.66 1653.24 1795.99 1885.26 78.36
MB 952.74 999.73 1094.95 1175.35 1209.67 54.23
RS 4046.28 4116.23 4240.73 4388.87 4471.45 82.85
Sample 15548.27 15838.80 16120.17 16399.62 16628.75 170.12

Distribution of net sample size nye+ for p = 0.80
GY 6429.80 6501.31 6642.09 6763.08 6807.40 80.79
HS 2764.79 2929.73 3097.90 3239.38 3314.82 95.52
1G 1554.58 1641.24 1763.46 1915.73 2010.94 83.58
MB 1016.25 1066.37 1167.95 1253.71 1290.32 57.84
RS 4316.03 4390.65 4523.45 4681.46 4769.55 88.37
Sample 16584.82 16894.72  17194.85 17492.92 17737.33  181.46
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Table B.3: Results of random intercept models for school participation (by strata).

Strata
N5 GY HS I1G MB RS FS
Constant —1.283 —1.065 —1.868*** —0.275 —0.799 —0.999 0.137
(1.041) (0.598) (0.473) (0.529) (1.095) (0.714) (0.224)
Number of students 0.001 0.001 0.001 0.001 —0.002 —0.000
in school (0.001) (0.001) (0.001) (0.001) (0.002) (0.001)
Number of students 0.010 —0.001 —0.001 —0.002 0.000 —0.004
in age group (0.020) (0.002) (0.002) (0.003) (0.005) (0.003)
Number of students —0.002
in grade 9 (squared) (0.021)
Organizing institution 0.762 0.127 1.043** —0.063 —0.348 —0.012
public (0.662) (0.207) (0.372) (0.377) (0.668) (0.304)
Urbanization —0.027 0.233 0.164 —0.179 —0.132 0.088 —0.341
rural (0.661) (0.287) (0.168) (0.459) (0.365) (0.295) (0.311)
Urbanization —0.790 —0.069 0.085 —0.242 —0.430 —0.215 —0.138
urban (0.543) (0.139) (0.123) (0.294) (0.342) (0.158) (0.201)
Number of classes —0.020 0.025 —0.038 —0.026 —0.107 —0.014
in grade 5 (0.087) (0.041) (0.057) (0.051) (0.130) (0.054)
Number of classes 0.021 0.025 —0.079 0.137 0.108
in grade 7 (0.069) (0.032) (0.048) (0.078) (0.096)
Cohorts sampled —0.082
five and nine (0.183)
Effort in recruitment 0.708**
up to 8 (0.253)
Effort in recruitment 0.807*** 0.435 1.011*%* 1.192** 0.295
up to 51 (0.220) (0.478) (0.317) (0.418) (0.538)
Random intercept
w Federal States 0.000 0.084 0.256 0.205 0.379 0.145 0.000
Schools per stratum 54 415 672 218 110 337 203

Notes: ***, ** and * denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in parenthesis. To model school participation,
the glmer function with a probit link provided by 1me4 package (Bates et al., 2012) in R (R Core Team, 2014) was used.
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Table B.4: Results of random intercept model for the participation of schools
contacted for the supplement of migrants. Standard deviations are given in
parentheses.

MIG
Constant -1.538
(0.798)
Number of students 0.001
in school (0.001)
School type -0.039
GY (0.695)
School type 0.407
HS (0.657)
School type -0.368
IG (0.711)
School type 0.951
MB (0.737)
School type -0.327
RS (0.669)
Stratum -0.400
Russian (0.383)
Stratum 0.193
Turkish (0.322)
Urbanization -4.502
rural (146.097)
Urbanization -0.008
urban (0.437)

Random intercept
w Federal States 0.472

Number of schools 198

Notes: *** ** and * denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are
given in parenthesis. To model school participation, the glmer function with a probit link provided by
1me4 package (Bates et al., 2012) in R (R Core Team, 2014) was used.
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Table B.5: Models estimating the individual participation propensity used to derive adjustment factors for sample
weighting adjustment of the initial sample.

SC3 SC4
regular schools special schools migrant supplement regular schools special schools
Intercept 0.416 1.395%* 0.636* 0.922%** 1.257%**
(0.255) (0.469) (0.296) (0.176) (0.309)
Age group 0.109* 0.196 —0.123 0.145*** 0.316*
younger half (0.048) (0.184) (0.118) (0.034) (0.139)
Age group —0.140 0.220 0.271 —0.099* 0.003
older half (0.106) (0.208) (0.192) (0.048) (0.121)
Gender —0.033 —0.364™ —0.156 —0.172*** —0.276**
male (0.046) (0.159) (0.104) (0.032) (0.104)
Language spoken at home —0.293** —0.987*** —0.438** —0.128* —0.238
no German (0.095) (0.287) (0.136) (0.064) (0.194)
Test group size —0.003 —0.042 0.008 —0.012* —0.027*
in number of students (0.008) (0.022) (0.006) (0.006) (0.013)
Competence or grade in math 0.275%** 0.518** 0.209 0.153*** 0.422**
1to3 (A to C) (0.061) (0.196) (0.128) (0.034) (0.133)
Reading competence or grade in German 0.150* —0.029 0.068 0.182%** —0.062
1to 3 (A to C) (0.064) (0.190) (0.130) (0.037) (0.139)
Special educational needs 0.043 —0.152 —0.649***
yes (0.178) (0.276) (0.151)
Missing indicator —3.826%** —3.166***
personal characteristics (0.503) (0.228)
Missing indicator —0.587*** —0.327 0.737* 0.110 —0.344
migration characteristics (0.178) (0.703) (0.309) (0.124) (0.389)
Missing indicator —1.013*** —4.392%** —2.624%** —1.234%** —2.699%**
competence characteristics (0.173) (1.257) (0.350) (0.226) (0.406)
Migrational background —1.054%**

Turkish (0.190)
Random effect

w school level 0.615 1.112 0.736 0.978 1.083
Sample size# 9081 962 845 23327 2146
Initial sample size 9458 1036 983 24229 2372

Notes: ***, ** and * denote significance at the 0.1%, 1% and 5% level, respectively. Standard errors are given in parenthesis. # Number of students providing
valid participation consent forms. To model individual participation, the glmer function with a probit link provided by 1me4 package (Bates et al., 2012) in R
(R Core Team, 2014) was used.
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Table B.6: Models estimating the individual participation propensity used
to derive adjustment factors for sample weighting adjustment of wave 1 and
2, respectively.

Starting Cohort 3 Starting Cohort 4
Wave 1 Wave 2 Wave 1 Wave 2
Intercept 1.233%** 3.901*** 1.814%** 2.079%**
(0.270) (0.508) (0.091) (0.195)
Stratum N5 (SC3) —0.368 —0.486
(0.299) (0.524)
Stratum FS (SC4) 0.117 —2.129%** —0.207* —1.674%**
(0.302) (0.450) (0.088) (0.171)
Stratum GY (SC4) —0.298 —0.542
(0.278) (0.450)
Stratum HS (SC4) —0.331 —0.560 —0.146™ —0.163
(0.288) (0.439) (0.067) (0.172)
Stratum IG (SC4) —0.749% —0.194 —0.108 0.152
(0.310) (0.705) (0.082) (0.250)
Stratum M B (SC4) —0.636™ —0.649 —0.117 —0.120
(0.302) (0.528) (0.094) (0.248)
Stratum RS (SC4) —0.192 —0.444 —0.070 —0.205
(0.284) (0.450) (0.069) (0.180)
Age group —0.055 0.189 0.066 0.284%**
younger half (0.067) (0.127) (0.045) (0.070)
Gender 0.061 0.184 —0.070 0.025
female (0.063) (0.110) (0.038) (0.064)
Migration background —0.169 —0.571
turkish (0.312) (0.492)
Native language 1.140%** 0.415** 0.433%** 0.276™*
German (0.068) (0.148) (0.049) (0.088)
Nationality —0.169™ —0.001
German (0.070) (0.111)
Class size —0.058 0.094
less than 25 (0.050) (0.095)
Missing indicator for —1.323%** —0.705%**
migration characteristics (0.074) (0.126)
Missing indicator for —1.148%** —1.143%** —2.259%** —0.056
personal characteristics (0.116) (0.196) (0.329) (0.477)
Student participating in —0.392 0.566™**
wave 1 (0.268) (0.106)
Individual re-tracking in —3.498***
wave 2 (0.181)
Random intercept
w school level 0.311 0.500 0.276 0.844
Sample size 6112 6098 16425 16425

Notes: *** ** and * denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are
given in parenthesis. To model individual participation, the glmer function with a probit link provided
by 1lme4 package (Bates et al., 2012) in R (R Core Team, 2014) was used.
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Table B.7: Number of cases (n) and proportion (p) for variables in models
by wave.

Wave 1 Wave 2
n p n p

Participation status: participant

students 5774 0.9447 5790 0.9473

parents 4151 0.6792 3820 0.6250

students & parents 3974 0.6502 3727 0.6098
Gender

female 2895 0.4737 2895 0.4737

male 3146 0.5147 3146 0.5147

missing 71 0.0116 71 0.0116
Nationality

German 5112 0.8364 5112 0.8364

other 344  0.0563 344 0.0563

missing 656 0.1073 656 0.1073
Native language

German 5225 0.8549 5225 0.8549

other 717 01173 717 0.1173

missing 170 0.0278 170 0.0278
Number of calls

four or More 2318 0.3793 2231 0.3650

less than four 2435 0.3984 2400 0.3927

no calls 1359 0.2223 1481 0.2423
Tracking status

individual re-tracking 0 0.0000 444 0.0726

in school 6112 1.0000 5668 0.9274
Age group

older half 3253 0.5322 3253 0.5322

younger half 2670 0.4368 2670 0.4368

missing 189 0.0309 189 0.0309
Sampling stratum

MIG 242 0.0396 242 0.0396

N5 458 0.0749 458 0.0749

FS 587 0.0960 587 0.0960

GY 2372 0.3881 2372 0.3881

HS 677 0.1108 677 0.1108

1G 284 0.0465 284 0.0465

MB 352 0.0576 352 0.0576

RS 1140 0.1865 1140 0.1865
Migration background

russian 68 0.0111 68 0.0111

turkish 174 0.0285 174 0.0285

missing 5870 0.9604 5870 0.9604

Missing indicator for
personal characteristics 194 0.0317 226 0.0370
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Table B.8: In £, AIC and BIC for considered model specifications.

information criteria

model specifications InL AIC BIC
Wave 1
no clustering
separate students Ta —1049.599 2125.197 2212.531
parents IIa —3149.145 6320.290 6394.188
Ta+ITa —4198.744
joint IITa —4195.952 8441.904 8609.854
LR test Ia+1Ia vs. IIla x? 5.584*
clustering
separate students IVa —1039.797 2107.595 2201.647
parents Va —3125.542 6275.084 6355.700
IVa+Va —4165.339
joint Via —4161.778 8377.555 8558.942
LR test IVa+Va vs. Via X2 7.122%*
Wave 2
no clustering
separate students Ib —526.426 1082.853 1183.623
parents IIb —1985.893 3997.786 4085.120
Ib+IIb —2411.555
joint IIIb —2483.226 4845.998 5047.538
LR test Ib+IIb vs. IIIb X2 143.342***
clustering
separate students IVb —510.032 886.052 993.503
parents Vb —1983.092 3961.509 4055.529
IVb+Vb —2493.124
joint VIb —2465.790 4816.750 5031.653
LR test IVb+Vb vs. VIb x> 54.668***

Notes: *** **

, and * denote significance at the 0.1%, 1%, and 5% level, respectively and x2(1) = 3.841.
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Table B.9: Alternative models estimating the individual participation
propensity of students and parents for SC3 in wave 1.

No clustering Clustering
Students Parents Students Parents
(Ia) (I1a) (IVa) (Va)
Intercept 1.195%** —0.708%** 1.234%** —0.753***
(0.243) (0.167) (0.270) (0.184)
Stratum N5 —0.361 0.584™* —0.367 0.643**
(0.264) (0.179) (0.299) (0.204)
Stratum F'S 0.098 —0.021 0.116 0.001
(0.271) (0.175) (0.303) (0.196)
Stratum GY —0.297 0.594%** —0.299 0.654%**
(0.248) (0.169) (0.278) (0.189)
Stratum HS —0.339 0.238 —0.331 0.266
(0.256) (0.174) (0.288) (0.196)
Stratum IG —0.772** 0.472* —0.750* 0.484*
(0.265) (0.185) (0.310) (0.218)
Stratum M B —0.602* 0.169 —0.635* 0.218
(0.266) (0.181) (0.302) (0.208)
Stratum RS —0.207 0.389* —0.192 0.447*
(0.253) (0.171) (0.284) (0.193)
Migration background —0.179 0.407* —0.170 0.446™
turkish (0.281) (0.194) (0.313) (0.214)
Native language 1.099%** 0.440™** 1.140™** 0.454%**
German (0.064) (0.050) (0.068) (0.052)
Age group —0.072 —0.055
younger half (0.063) (0.067)
Gender 0.057 0.061
female (0.060) (0.063)
Missing indicator for —1.098*** —1.147*%*
personal characteristics (0.111) (0.116)
Number of calls 1.299*** 1.324%***
less than 4 (0.043) (0.044)
Random intercept
w school level 0.311 0.261
InL —1049.599 —3149.145 —1039.797 —3125.542
AIC 2125.197 6320.290 2107.595 6275.084
BIC 2212.531 6394.188 2201.647 6355.700
Sample size 6112 6112 6112 6112
Notes: ***  ** and * denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in

parenthesis. To model individual participation, the glmer and glm functions with a probit link provided by lme4 (Bates et
al., 2012) and stats package in R (R Core Team, 2014) was used.
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Table B.10: Results for the bivariate probit models without and with random
intercept estimating the individual participation propensities for students

and parents for SC3 in wave 1.

Bivariate probit — no clustering

Bivariate probit — clustering

Parents Students Parents Students
(I11a) (VIa)
Intercept —0.709%** 1.188%** —0.762%** 1.197***
(0.167) (0.242) (0.186) (0.268)
Stratum N5 0.586™* —0.352 0.657** —0.340
(0.179) (0.263) (0.207) (0.297)
Stratum F'S —0.020 0.105 0.010 0.139
(0.175) (0.270) (0.197) (0.299)
Stratum GY 0.596™** —0.287 0.667*** —0.271
(0.169) (0.247) (0.191) (0.276)
Stratum HS 0.239 —0.329 0.274 —0.297
(0.174) (0.255) (0.198) (0.286)
Stratum IG 0.473* —0.768** 0.502* —0.747*
(0.185) (0.264) (0.221) (0.305)
Stratum M B 0.170 —0.596* 0.228 —0.613*
(0.181) (0.265) (0.210) (0.301)
Stratum RS 0.390* —0.201 0.456* —0.164
(0.171) (0.252) (0.195) (0.283)
Migration background 0.409™ —0.175 0.458* —0.157
turkish (0.194) (0.280) (0.216) (0.311)
Age group —0.077 —0.062
younger half (0.063) (0.066)
Native language 0.440%** 1.099%** 0.452%** 1.132%**
German (0.050) (0.064) (0.052) (0.069)
Gender 0.061 0.064
female (0.060) (0.062)
Missing indicator for —1.080*** —1.120%**
personal characteristics (0.111) (0.119)
Number of calls 1.297%** 1.315***
less than 4 (0.043) (0.044)
Correlation 0.097* 0.122%*
p students parents (0.049) (0.044)
Random intercept
w school level 0.261 0.302
In L -4195.952 -4161.778
AIC 8441.904 8377.555
BIC 8609.854 8558.942
Sample size 6112.000 6112.000

ok Kk

Notes: s , and *

denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in

parenthesis. To model individual participation decisions, the zelig function with bprobit link provided by ZeligChoice
package (Owen, Imai, Lau, & King, 2012) in R (R Core Team, 2014) was used. Correlation parameter from the bivariate
probit model without random intercept is transformed according to Honaker, Owen, Imai, Lau, and King (2013).
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Table B.11: Alternative models estimating the individual participation
propensity of students and parents for SC3 in wave 2.

No clustering Clustering
Students Parents Students Parents
(Ib) (IIb) (IVb) (Vb)
Intercept 3.214%** —2.205%** 3.769*** —2.251%%*
(0.4052) (0.236) (0.489) (0.242)
Stratum N5 —0.201 0.565™ —0.345 0.587*
(0.377) (0.231) (0.517) (0.240)
Stratum FS —1.591%** 0.030 —1.861%** 0.047
(0.352) (0.228) (0.438) (0.235)
Stratum GY —0.453 0.702%* —0.624 0.731%*
(0.354) (0.220) (0.437) (0.227)
Stratum HS —0.492 0.225 —0.533 0.230
(0.348) (0.225) (0.436) (0.234)
Stratum IG —0.398 0.724** —0.530 0.755%*
(0.446) (0.239) (0.590) (0.252)
Stratum M B —0.391 0.417 —0.489 0.443
(0.405) (0.235) (0.517) (0.245)
Stratum RS —0.450 0.535™ —0.632 0.557*
(0.351) (0.222) (0.441) (0.230)
Migration background —0.418 —0.049 —0.490 —0.060
turkish (0.400) (0.247) (0.486) (0.255)
Native language 0.246™ 0.121 0.335* 0.117
German (0.116) (0.066) (0.136) (0.068)
Student participating in —0.386 0.216™ —0.483 0.229%
wave 1 (0.214) (0.102) (0.252) (0.103)
Age group 0.100 0.127
younger half (0.097) (0.115)
Gender 0.118 0.138
female (0.087) (0.101)
Missing indicator for —0.999*** —1.135***
personal characteristics (0.155) (0.181)
Individual re-tracking in —2.640*** —3.197***
wave 2 (0.100) (0.140)
Number of calls 0.503%** 0.513%**
less than 4 (0.048) (0.049)
Parent participating in 2.337*** 2.364***
wave 1 (0.051) (0.052)
Random intercept

w school level 0.533 0.173
InL —526.426 —1985.893 —510.032 —1983.092
AIC 1082.853 3997.786 1052.064 3994.184
BIC 1183.623 4085.120 1159.553 4088.236
Sample size 6112 6112 6112 6112

Notes: *** ** and * denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in
parenthesis. To model individual participation, the glmer and glm functions with a probit link provided by 1lme4 (Bates et
al., 2012) and stats package in R (R Core Team, 2014) was used.
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Table B.12: Results for the bivariate probit models without and with random
intercept estimating the individual participation propensities for students
and parents for SC3 in wave 2.

Bivariate probit — no clustering

Bivariate probit — clustering

Parents Students Parents Students
(I1Ib) (VIb)
Intercept —2.163%** 3.018%** —2.212%** 3.368%**
(0.235) (0.395) (0.239) (0.469)
Stratum N5 0.525™ —0.262* 0.554* —0.479
(0.230) (0.370) (0.237) (0.466)
Stratum F'S 0.001 —1.590*** 0.023 —1.836%**
(0.226) (0.347) (0.230) (0.412)
Stratum GY 0.661** —0.439* 0.696** —0.635
(0.219) (0.349) (0.223) (0.406)
Stratum HS 0.186™ —0.519* 0.198 —0.609
(0.224) (0.343) (0.229) (0.405)
Stratum IG 0.685™* —0.332* 0.717** —0.540
(0.238) (0.452) (0.247) (0.525)
Stratum M B 0.376* —0.403* 0.411 —0.567
(0.234) (0.398) (0.242) (0.471)
Stratum RS 0.499* —0.461* 0.524* —0.709
(0.221) (0.346) (0.226) (0.408)
Migration background —0.081 —0.376* —0.088 —0.517
turkish (0.246) (0.396) (0.250) (0.452)
Age group 0.083* 0.092
younger half (0.096) (0.101)
Native language 0.122% 0.243* 0.119 0.296™
German (0.066) (0.115) (0.067) (0.124)
Gender 0.163* 0.177
female (0.087) (0.091)
Missing indicator for —0.933*** —1.006***
personal characteristics (0.153) (0.169)
Student participating in 0.217* —0.379* 0.230* —0.419
wave 1 (0.101) (0.209) (0.104) (0.227)
Individual re-tracking in —2.589*** —2.899***
wave 2 (0.099) (0.162)
Number of calls 0.493*** 0.501***
less than 4 (0.048) (0.048)
Parent participating in 2.337*** 0.308*** 2.361%** 0.327%**
wave 1 (0.051) (0.087) (0.052) (0.093)
Correlation 0.415** 0.434***
p students parents (0.158) (0.052)
Random intercept
w school level 0.181 0.347
In L -2483.226 -2465.790
AIC 5026.452 4995.580
BIC 5227.993 4995.580
Sample size 6112.000 6112.000

Notes: *** ** and *

denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in

parenthesis. To model individual participation decisions, the zelig function with bprobit link provided by ZeligChoice
package (Owen et al., 2012) in R (R Core Team, 2014) was used. Correlation parameter from the bivariate probit model

without random intercept is transformed according to Honaker et al. (2013).
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Appendix C

Illustrating the GHK-simulator

We implement the GHK-simulator (Geweke (1989), Hajivassiliou (1990) und
Keane (1994)) in R (R Core Team, 2014) to approximate the probability of
a bivariate normal distribution (K = 2)

2 2
T—Hxq T—Hxo _ T—Hxq T—Hzo
2

x1,T9) = e
Jwnx) 2704, 04,0/ 1 — p? ’

with parameters p,, = 0,p,, = 0,0,, = 1,0,, = 1 and p = 0.5 (Schaich
& Minnich, 2001). This is computing the volume enclosed by the density
function within the range x; € [—4,0] and 25 € [—4,4]. The density of the
bivariate normal distribution is given in Figure C.1a.

The GHK-simulator will approximate the volume under the red part of
the bivariate normal distribution.

1 R K
Prob[a1 <z < bl,ag < Ty < bg] ~ E Z H Qrk (Cl)
r=1k=1
using univariate probabilities @, Greene (2012, p. 668f.). Therefore we
factor ¥ using the Cholesky decomposition, that is ¥ = LL', where L is
the lower triangular matrix. Its elements I, equal 0 for m > k and for
k=m=11itis o,,.

### Correlation matrix Simga
Sigma

## [,1] [,2]
## [1,] 1.0 0.5
# [2,] 0.5 1.0

119



120 ILLUSTRATING THE GHK-SIMULATOR

1(x1)

fod 1] 420

(a) Density of the bivariate normal distri- (b) Marginal conditional distribution.
bution.

Figure C.1: Bivariate normal distribution (via persp3d from the rgl package
(Adler & Murdoch, 2010)) and its’ marginal distribution.

### Cholesky decomposition
1 <- t(chol(Sigma))
1

## [,11 [,2]
## [1,] 1.0 0.000
# [2,] 0.5 0.866

In the first step of the following recursion the probability of the marginal
distribution with regard to z; € [—4, 0] is computed. The probability is given
by the red area under the distribution in Figure C.1b.

Que = (b1/li1) — (ar/li1), (C.2)

with a; = —4 and b; = 0 denoting the lower and upper truncation points
and it is l11 =01 = 1.

### for k = 1 (first dimension)
H##H#

### bounds

A[,1] <- al1]/1[1,1]

B[,1] <- b[1]/1[1,1]
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### univariate probabilities for dimension k=1
Q[,1] <- pnorm(B[,1]) - pnorm(A[,1])

Since the conditional distribution is a univariate normal distribution the
probabilities ()1 can easily be computed. The first recursion ends with draw-
ing R random numbers ¢,; from a truncated (standard) normal distribution.
A, and B, give the truncation points for sampling from the distribution.
For sampling from truncated normal distributions see Greene (2012, p. 647f.).

### Random numbers for a truncated

### standard normal distribution for k = 2

epsilon <- qnorm(pnorm(al1]) +
(pnorm(b[1]) - pnorm(a[1])) * runif(R)
)

summary (epsilon)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.890 -1.140 -0.672 -0.801 -0.329 -0.001

To approximate the probability Prob[—4 < z; < 0,—4 < x5 < 4] the
truncation points for the second recursion are given by

k—1 k-1
A= [ = Sttt and B = o= S ] 1 (€3)
m=1 m=1

So that the probabilities @, are given as the difference of the distribution
function at the upper and lower truncation points

### for k =2

#i#

### bounds

A[,2] <- (al[2] - 1[2,1] * epsilon)/1[2,2]
B[,2] <- (b[2] - 1[2,1] * epsilon)/1[2,2]
### univariate probabilities of the marginal
### truncated distribution for dimension k=2
Q[,2] <- pnorm(B[,2]) - pnorm(A[,2])

### random numbers from a truncated
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### standard normal distribution for k = 3

epsilon <- gnorm(pnorm(a[2]) +
(pnorm(b[2]) - pnorm(a[2])) * runif(R)
)

For the bivariate setting the example would end here. The extension to
a trivariate normal distribution is illustrated below.

### for k = 3

H###

### bounds

A[,3] <- (al2] - (1[3,1] * epsilon + 1[3,2] + epsilon))/1[3,3]
B[,3] <= (b[2] - (1[3,1] * epsilon + 1[3,2] + epsilon))/1[3,3]

# equal to
# (rowSums(matrix(epsilon,ncol=1) %x% 1[3,1:2,drop=F])/1[3,3]

### univariate probabilities of the marginal
### truncated distribution for dimension k=3
Q[,3] <- pnorm(B[,2]) - pnorm(A[,2])

The probability in Figure C.1a can be approximated by

1 1000 2
Prob[—4 <z < 0,4 < x5 < 4]~ —— > [ Qs = 0.4999. (C.5)
1000 7= ;5

This yields the following result which is identical to using the mvtnorm pack-
age in R, see Genz et al. (2013) and Genz and Bretz (2009).

### GHK-approximation
sum(apply(Q,1,prod))/R

## [1] 0.4999

### standard R implementation
pmvnorm(a, b, Mu, Sigma)

## [1] 0.4999

## attr(,"error"

## [1] 1le-15

## attr(,"msg")

## [1] "Normal Completion"
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R

code

logLikBPRE <- function(param, yyl, yy2, xxl, xx2, k1, k2, m,

#it
#Hit
#it
#i#
#i#
#it
#it
#it
#i#

n_j, S, crnl, crn2, unicrn){
param: initial parameters
1 corresponds to students (s)
2 corresponds to pardents (p)
k1l / k2: number of auxiliary variables in equation 1 / 2
m: number of clusters
n_j: number of inidviduals / size of clusters
S: simulation sample size for GHK-simulator
crnl / crn2: normal random numbers for random intercept
in equation 1 / 2

## unicrn: uniform random numbers / halton sequences for truncated
## normals
## definition of model parameters
betal <- param[1:k1] # parameters for equation 1
beta2 <- param[(k1+1):(k1+k2)] # parameters for equation 2
rho <- param[k1+k2+1] # correlation parameter
sigl <- param[k1+k2+2] # sd for random intercept 1
sig2 <- param[k1+k2+3] # sd for random intercept 2

i #

sig

<- matrix(1, 2, 2) corvariance matrix

sigl1,1] <- 1
sig[2,2] <- 1
sig[1,2] <- rho
sigl[2,1] <- rho

L

<- t(chol(sig)) # Lower triangular of Cholesky
# decomposition

123
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alphal <- sigl * crnl # random intercept 1
alpha2 <- sig2 * crn2 # random intercept 2

## estimation of the LogLikelihood
likeli <- rep(NA, m) # vector for likelihood contributions
# of cluster j
for(j in 1:m){ # looping through the j = 1, ..., m schools
gammaLower <- matrix(NA,S,2+n_j[jl) # Equation 5.30
gammaUpper <- matrix(NA,S,2*n_j[j]l) # Equation 5.30
uniInd <- ((j-1)*S+1):(j*S)
for(i in 1:n_j[jl){ # looping through the i = 1, ..., n_j
# individuals in school j
## mu_ij = {mul, mu2} referring to Equation 5.25
mu_ij <- -cbind(xx1[i, ,j] %*% betal + alphallj, ],
xx2[i, ,j] %*% beta2 + alpha2[j, 1)
## upper integration limits, Equations 5.24
DUpper <- cbind((yy1[j, il * 1000 + mu ij[,1]),
(yy2[j, il * 1000 + mu_ij[,21))
## lower integration limits, Equations 5.24
DLower <- cbind(((1-yy1[j, i]) * (-1000) + mu_ij[,1]),
((t-yy2[j, i1) * (-1000) + mu_ij[,2]))
## random numbers form truncated normal, Equation 5.29
vhat <- matrix(NA,S,2)
ind <- (i-1)*2+1
gammalower [,ind] <- DLower[,1]/L[1,1] # Equation 5.18
gammaUpper [,ind] <- DUpper[,1]/L[1,1] # Equation 5.18
## random numbers form truncated normal
vhat[,1] <- gnorm(unicrn[unilnd,1] *
pnorm(gammaUpper [,ind]) +
(1-unicrnluniInd,1]) =*
pnorm(gammaLower [, ind])
)
## truncation for normal distributions, Equation 5.30
gammal.ower [,ind+1] <- (DLower[,2]-L[2,1]*vhat[,1])/L[2,2]
gammaUpper [,ind+1] <- (DUpper[,2]-L[2,1]*vhat[,1])/L[2,2]
b
## likelihood contribution of cluster j according
## to Eqation 5.32
likeli[j] <- mean(
apply(
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pnorm(gammaUpper) -pnorm(gammalower) ,
1,
prod)
)
+
logLikelihood <- -sum(log(likeli))
return(loglikelihood)
}
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R CODE

library (numDeriv)

BPREoptim <- function(DataRaw, y1, x1, sul, y2, x2, seed=NULL){
## DataRaw: dataframe containing all information
## the rest of the arguments are the variable names

nObs <- nrow(DataRaw) #
Y1 <- DataRaw[ ,yl] #
X1 <- DataRawl[ ,x1] #
SU1 <- DataRaw[ ,sul] #
Y2 <- DataRaw[ ,y2] #
X2 <- DataRaw[ ,x2] #
S <- 1000 #

#

#

#

k1 <- length(x1)
k2 <- length(x2)

total number of observations
participation variable eq 1
includes a vector of 1
grouping variable
participation variable eq 2
includes a vector of 1
simulation sample size

for GHK-simulator

number of variables equation 1
number of variables equation 2

## prepare and arrange data

m <- length(unique(SU1))

# number of clusters

n_j <- as.vector(table(SU1)) # number of individuals in j

## matrices and arrays containing (in-)dependant variables
yyl <- matrix(NA, m, max(n_j)) # dep. variable equation 1
yy2 <- matrix(NA, m, max(n_j)) # dep. variable equation 2

## independend variabled equations 1 and 2
xx1 <- array(NA, dim=c(max(n_j), length(xl), m))
xx2 <- array(NA, dim=c(max(n_j), length(x2), m))

## filling empty matrices and arrays by clusters

for(j in 1:m){

## matrix with yl and y2 for individuals per cluster,

## dimension m x max(n_j)

pos <- which(SU1 == unique(SU1) [jl)

yyllj, 1:n_j[jl] <- as.vector(Yi[pos])

yy2[j, 1:n_j[jl] <- as.vector(Y2[pos])

## array with X1 and X2 for individuals per cluster,

## dimension n_j x k x m (3D)

xx1[1:n_j[j], 1:length(x1), j] <- as.matrix(DataRaw[pos, x1])
xx2[1:n_j[j], 1:length(x2), j] <- as.matrix(DataRaw[pos, x2])

}

## random numbers for simulations

if(is.null(seed))q{
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}e

#it
th
LB
UB
#Hit
er

##
1o
H##
He

## random numbers for evaluation of numerical precision
## no seed -> different random numbers in each replication
## common random numbers for truncated normals

unicrn<- matrix(runif (2*S*m), S*m, 2)

## normal random numbers for random intercept

crnl  <- matrix(rnorm(S*m), m, S)

crn?2 <- matrix(rnorm(S*m), m, S)

1seq{

## random numbers for evaluation of statistical precision
## fixed seed -> no variation in random numbers
set.seed(seed)

unicrn<- matrix(runif (2*S*m), S*m, 2)

crnl <- matrix(rnorm(S*m), m, S)

crn2 <- matrix(rnorm(S*m), m, S)

initial parameters, lower and upper bounds for optimization
eta <- c(rep( , (k1+k2)), O, 0.1, 0.1)
<= c(rep(-5, (ki1+k2)), -0.99, 0.001, 0.001)
<- c(rep( 5, (k1+k2)), 0.99, 5, 5)
optimization
gMin <- nlminb(start=theta,

objective = logLikBPRE,
gradient = NULL,
hessian = NULL,
yyl, yy2, xx1, xx2, k1, k2,
m, n_j, S, crnl, crn2, unicrn,
control = list(trace=1,
iter.max=500,
rel.tol=10"-6),
lower = LB, upper = UB)
log-likelihood
glik <- -ergMin$objective
hessian matrix
sse <- numDeriv:::hessian(func = logLikBPRE,
x = ergMin$par,
method = 'Richardson',
method.args = list(),
yyl, yy2, xx1, xx2, k1, k2,
m, n_j, S, crnl, crn2, unicrn)
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## estimated parameters

## all model parameters (betal, beta2, rho, sigmal, sigma2)
theta  <- ergMin$par

nPar <- length(theta) # number of estimated parameters
## standard errors, t-values, p-values

seTheta <- sqrt(diag(solve(Hesse)))

tValue <- theta/seTheta

pValue <- 2*(1-pt(abs(tValue), nObs-length(tValue)))

sig <- rep(NA, nPar) # significance labels

sig[pValue >= 0.1] <- "'

sig[pValue < 0.1] <= '. !

sig[pValue < 0.05] <- '*x '

siglpValue < 0.01] <= 'sx* !

sig[pValue < 0.001] <- 'skxx'

## putting it all together
Final <- data.frame(theta, seTheta, tValue, pValue, sig,
row.names=c(paste(xl, ':1', sep='"'),
paste(x2, ':2', sep='"),
'rho', 'sigmal', 'sigma2'))
colnames(Final) <- c('Estimate', 'StdError',
'tValue', 'pValue', '')

AIC <- 2xnPar-2*logLik
BIC <- nParxlog(nObs)-2%logLik
## output list

OutList <- list('Coefficients' = Final,
'logLik' = logLik,
"AIC' = AIC,
'BIC' = BIC,
'N' = n0Obs,
'm' =m,
'Hessian' = Hesse,
'Optimization' = ergMin)

return(OutList)
}



Appendix E

R session information

e R version 3.1.1 (2014-07-10), x86_64-w64-mingw32

o Base packages: base, datasets, graphics, grDevices, grid, methods,
splines, stats, stats4, tools, utils

o Other packages: boot 1.3-11, foreign 0.8-61, knitr 1.6, lattice 0.20-29,
lme4 1.1-7, MASS 7.3-33, Matrix 1.1-4, memisc 0.96-9,
mvtnorm 1.0-0, pps 0.94, Rcpp 0.11.2, rgl 0.93.1098, rJava 0.9-6,
sandwich 2.3-1, stringr 0.6.2, ved 1.3-2, VGAM 0.9-4, xIsx 0.5.7,
xlsxjars 0.6.0, xtable 1.7-3, Zelig 4.2-1, ZeligChoice 0.8-1

» Loaded via a namespace (and not attached): car 2.0-20,
colorspace 1.2-4, evaluate 0.5.5, formatR 0.10, highr 0.3, minqga 1.2.3,
nlme 3.1-117, nloptr 1.0.4, nnet 7.3-8, zoo 1.7-11

Analyses presented in this thesis are mostly based on R version 3.1.1 (R Core Team,
2014). Further information on The R Project for Statistical Computing can
be found on the website www.r-porject.org. This document is written
using knitr (combining BTEX and R), see Xie (2012). Data are read using
read.dta or read. x1sx functions provided by packages foreign (R Core Team,
2013) and x1sx (Dragulescu, 2013). Tables of dimensions higher than two
are created using the structable function from the ved package (Meyer,
Zeileis, and Hornik (2013) and Meyer, Zeileis, and Hornik (2006)). Tables are
exported to KTEX using the packages memisc (Elff, 2012) and xtable (Dahl
(2012) and Swinton (2009)). Additionally used packages are cited at appro-
priate positions in text or table notes.
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