
Acta Informatica (2020) 57:513–550
https://doi.org/10.1007/s00236-020-00369-4

ORIG INAL ART ICLE

A linear-time branching-time perspective on interface
automata

Walter Vogler1 · Gerald Lüttgen2

Received: 17 July 2019 / Accepted: 27 January 2020 / Published online: 6 May 2020

Abstract
Over the past two decades, de Alfaro and Henzinger’s interface automata (IA) have become
a popular formal framework for the component-based specification of concurrent systems.
IA’s parallel composition assumes that a component may wait on inputs but never on outputs,
implying that an output must be consumed immediately or a communication error occurs.
By now, the literature contains a number of semantics for IA: linear-time semantics based on
traces observing communication errors, quiescence and/or divergence, as well as branching-
time semantics based on alternating simulation. This article surveys these semantics from
Rob vanGlabbeek’s linear-time branching-time perspective, which does not consider settings
with communication errors. We shed light onto the subtleties implied by IA’s pruning of all
behaviour that might lead a component to autonomously enter an error state, and investigate
when exactly de Alfaro and Henzinger’s restriction of input-determinism is needed. In addi-
tion, we introduce several new semantics for IA, in particular the linear-time ready semantics
and the branching-time ready simulation.

1 Introduction

Modern software systems are assembled from components that need to interoperate prop-
erly in order to ensure a system’s correctness. Behavioural interfaces allow one to specify
contracts between concurrent components [5] and, thus, to statically reason about compo-
nent compatibility. This is of particular relevance during early system design and also when
integrating legacy components.

The theoretical foundations of such interfaces have been studied intensively in the concur-
rency theory community [4,9–11,19,21,29,35,38], especially since the inception of interface

This work was partially supported by the DFG-project Foundations of Heterogenous Specifications Using
State Machines and Temporal Logic (Grant Nos. LU 1748/3-2 and VO 615/12-2).

B Gerald Lüttgen
gerald.luettgen@swt-bamberg.de

Walter Vogler
walter.vogler@informatik.uniaugsburg.de

1 Institute for Computer Science, The University of Augsburg, Augsburg, Germany

2 Software Technologies Research Group, The University of Bamberg, Bamberg, Germany

123

© The Author(s) 2020, corrected publication (2021)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-020-00369-4&domain=pdf
https://creativecommons.org/licenses/by/4.0/

514 W. Vogler, G. Lüttgen

automata (IA) by de Alfaro and Henzinger [12,13]. These automata are based on labelled
transition systems but distinguish a component’s input and output actions, and define a par-
allel composition whereby a component may wait on inputs but never on outputs. Therefore,
a communication error occurs if one component receives a message for which it is not ready.
In case no potential system environment may restrict the system components’ behaviour so
that all errors are avoided, the components are deemed to be incompatible.
Behavioural preorders for IA Over the years, IA have been equipped with a number of
behavioural relations for interface refinement and implementation. Originally, de Alfaro and
Henzinger presented the IA-setting with branching-time preorders based on co-inductive
notions of alternating simulation [12,13]: a component satisfies an interface if it implements
all input behaviour prescribed by the interface and if the interface permits all output behaviour
executed by the implementing component, thereby preserving compatibility wrt. arbitrary
system environments. Later, Göhrle [21] studied preorders that vary the degree to which
internal behaviour surrounding input and output actions is abstracted and that lie in-between
the two preorders proposed by de Alfaro and Henzinger.

More recently, various fully-abstract, linear-time preorders based on decorated traces have
been developed for IA: the error semantics of [10,11], the quiescence and the divergence
semantics of [38], and the CJK-semantics of [11]. Strictly speaking, these preorders have
been studied in the setting of Error-IO Transition Systems (EIO) [10,38], which are input-
enabled interface automata with explicit error states. EIO and IA are essentially the same
model: the error states in EIO are eliminated in IA by pruning locally reachable errors, i.e.,
states from which a component can autonomously reach some error state via output and
internal transitions only.

Contributions This article surveys and extends the above works and is intended for concur-
rency theoreticians to gain an overview and better understanding of the subtle semantic issues
introduced by the notions of communication errors and component compatibility. We first
recall the above preorders on EIO and IA, together with their precongruence properties and,
where applicable, full-abstraction properties. Then, we study these preorders for a general
notion of parallel composition that considers multicast synchronization and enables action
internalisation via a separate hiding operator, whereas some of the preorders, e.g., the original
IA-preorders proposed by de Alfaro and Henzinger [12,13] have so far been studied only for
a binary, internalising parallel composition operator.

As a first contribution, we arrange all these preorders in a linear-time branching-time
spectrum, as inspired by van Glabbeek’s seminal works on the spectrum for behavioural
relations onordinary labelled transition systems [41–43].Weadd to the IA-spectrumanumber
of new preorders: ready semantics to the linear-time part, as well as ready simulation and
several bi-variant variations [3] of alternating simulation, including IA-bisimulation, to the
branching-time part. Our final IA-spectrum (see Figs. 6, 13) depicts all implications between
the studied 16 preorders, and counterexamples are provided wherever implications fail to
hold.

As a second contribution, we discuss various design decisions and properties of the pre-
orders. For the linear-time preorders, we show that the pruning of locally reachable errors
does not change an interface’s semantics. We also take a closer look at the CJK-semantics
and a variation of quiescence semantics. Regarding the branching-time preorders, we present
characterizations of both IA-preorders by de Alfaro and Henzinger in terms of standard
simulations.

The main insight is that the original preorder for IA, to which we refer as IA-refinement
[12], also supports associativity for parallel composition, even for interfaces that are not

123

A linear-time branching-time perspective on interface… 515

input-deterministic. That associativity fails in [12] is solely owed to the incomplete notion
of pruning employed therein. Hence, there is no need to restrict IA to input-deterministic
interfaces as is done, e.g., in [13], and we recommend future investigations into IA to be
based on the coarser IA-refinement preorder rather than on the alternating simulation of [13].
For those who prefer the latter preorder, we show how it can be generalized to arbitrary, i.e.,
not necessarily input-deterministic IA.

Related work A linear-time branching-time spectrum for behavioral specification theories
is presented by Fahrenberg and Legay [18]. They employ disjunctive modal transition sys-
tems [28] to define a spectrum of refinement preorders, including failure semantics [7] and
ready simulation [6], each giving rise to a specification theory for some equivalence—but
not preorder—in van Glabbeek’s Linear-Time Branching-Time Spectrum I (without inter-
nal actions) [41,43]. Moreover, Fahrenberg and Legay do not specifically consider interface
theories: neither IA and its parallel composition, nor a notion of communication error, nor
alternating simulation and related behavioural relations are studied.

Structure of this article The next section introduces IA informally, and points out the main
aspects of parallel composition, communication error, pruning and compatibility. Sect. 3 then
defines the formal framework considered by us, i.e., Interface Automata and Error-IO Tran-
sition Systems and their parallel and hiding operators. The subsequent Sects. 4 and 5 develop
the linear-time and resp. branching-time part of our IA-spectrum, as announced above, and
explores how exactly these two parts are connected. Finally, Sect. 6 briefly discusses two
fields closely related to IA, namely interface theories and certain parts ofmodel-based testing,
while Sect. 7 presents our conclusions and suggestions for future work.

2 Interface automata by example

We introduce IA by an example that demonstrates the utility of de Alfaro and Henzinger’s
setting [12,13] for reasoning about component compatibility in concurrent systems. The
essential feature of the setting is that, in the definition of parallel composition, one identifies
error states and removes them in a suitable manner. If this leads to the removal of the initial
state of the composition, the components are deemed to be incompatible, i.e., they cannot be
used in combination in any system environment.

Consider the example depicted in Fig. 1, which is taken from [30] and adapted from [13].
It shows a simple networking protocol consisting of a Client that repeatedly sends messages
(output action send!) and expects to receive a positive response (input action ok?). While

ok!

Client TryOnce TryOnceClient

send!

ok?

reset!

trnsm
t!

send?

reset!

trnsm
t!

trnsm
t!

Client TryOnce

E

retry!

ack?ack?nack?ack?nack?

send!

send!

ok! ok!

Fig. 1 Example illustrating IA-parallel composition, where component TryOnce has inputs {send, ack, nack}
and outputs {trnsmt, ok, reset, retry}, while Client has inputs {ok, retry} and output {send}

123

516 W. Vogler, G. Lüttgen

ok!

Lower

trnsm
t?

τ
ack!nack!

reset?send?

TryOften

retry!

ack?nack?

trnsm
t!

reset!

nack?

ok!

TryOftenClient

ack?

send!

nack?

trnsm
t!

Fig. 2 Component TryOften (with the same inputs and outputs as TryOnce) and its parallel composition with
Client, using the pruning of [12], and component Lower (with inputs {trnsmt, reset} and outputs {ack, nack}

Client can also listen to retry messages (input retry?), it always ignores these. The transport
layer protocol ismodelled by componentTryOnce that receivesmessages (input send?), sends
themover the network (output trnsmt!), and receives either a positive acknowledgement (input
ack?) and relays this (output ok!), or a negative acknowledgement (input nack?) after which
the component resets the lower layer (output reset!) and sends a retry request to the client
(output retry!).

We now consider the parallel composition Client|TryOnce of Client and TryOnce. For
this, one first carries out a standard composition Client ⊗ TryOnce, called product, where
an output action synchronizes with an equally named input action, resulting in the output
action. This way, a third component can listen to and synchronize with the same output, i.e.,
a multicast synchronization is possible. Then, in our example, state E is identified as an error
state because TryOnce sends a retry, which Client refuses to accept. Such a communication
mismatch has to be avoided and, because a component controls its output actions, the source
of transition reset! has to be avoided as well. In general, a state is deemed illegal if it can
reach an error state autonomously, i.e., by locally controlled actions. The idea of pruning
in [12,13] is to obtain Client|TryOnce by removing all illegal states, whereby also the input
transition nack? is cut. The resulting pruned automaton can also be seen as an operating
guideline on how to use the two components working in parallel. Here, the guideline states
that this automaton should not be confronted with input nack? after trnsmt!.

Unfortunately, the pruning of de Alfaro and Henzinger [12] leads to an associativity
problem of parallel composition. To see this, we extend TryOnce to TryOften by adding
a second transition nack?, as shown in Fig. 2. Thereby, TryOften can nondeterministically
decide how often to re-transmit a message before forcing a reset. Furthermore, we add a
lower-level component Lower that forwards a transmission to the communication medium,
returns a positive or negative acknowledgement after some internal activity (non-observable
action τ), and accepts reset requests in its initial state. If we composeClient and TryOften, we
obtain the same systems as in Fig. 1 as the product and also as the parallel composition, except
for the additional nack?-transition. We use the operator̂| in Client̂| TryOften to indicate that
this composition is unsatisfactory. If we further add Lower as third component, there are no
error states (see Fig. 3, left), i.e., Client, TryOften and Lower are deemed to be compatible.
However, when we first compose TryOften with Lower, we obtain the error-free IA depicted
in the middle of Fig. 3 and, then, the product with Client as shown on the right-hand side
of the figure. Here, the initial state can reach the error state autonomously by local actions;
note that τ is locally-controlled, too. Thus, with this bracketing, the three components are
incompatible and their parallel composition is undefined. Consequently,̂| is not associative.

123

A linear-time branching-time perspective on interface… 517

Client

send!

ack!

nack!

ok!

trnsm
t!

τ

LowerTryOften)(Client LowerTryOften

send?

retry!

ack!nack!

reset!

nack!

ok!

trnsm
t!

τ

send!

ack!nack!
reset!

nack!

ok!

trnsm
t!

τ

E

Lower) (TryOften

Fig. 3 Completing our example to illustrate the associativity defect of the pruning of [12]

This associativity defect, which was first discovered in [10], is rooted in the non-
deterministic choice on input nack?, which was avoided by de Alfaro and Henzinger in their
later work [13] by restricting the IA-setting to input-deterministic components. Additionally,
they replaced the original refinement relation of [12] by a stricter one, which is however
unrelated to the associativity defect. In fact, the restriction to input-deterministic compo-
nents in [13] is unnecessary, because the conceptual mistake lies in the notion of pruning.
Recall that cutting the nack?-transition in Client⊗TryOnce, and similar in Client⊗TryOften
(not shown in the figures), should indicate that the environment must refrain from send-
ing nack in the state after trnsmt!. However, the pruning of [12] incompletely reflects this
requirement, because the second nack?-transition in Client ⊗ TryOften is not pruned. To
obtain a proper pruning, one must always prune all transitions of an input at a state, if
one prunes one transition of this input at the state. In our example, the nack?-transition
remaining in Fig. 2 in the middle is then also pruned, so that the composition with the
third component Lower is incompatible due to that component’s output nack!. In the fol-
lowing, we use the ordinary symbol | for the parallel composition with proper pruning.
Observe that, in Fig. 1, the kind of pruning does not matter and one may use either | or̂|
there.

To conclude, the above discussion leads to the following understanding of paral-
lel product and composition. The product of, e.g., Client and TryOnce describes how
the two automata interact with each other, while their composition is more concise
and describes the behaviour only as far as needed. At the same time, the compo-
sition captures more clearly the requirements imposed upon the system environment,
in which the composition may be placed. For fundamental studies of this specifica-
tion setting, the EIO variant of IA with explicit error states was introduced (cf. [10,
11]).

3 The interface automata setting

This section presents the formal framework in which the linear-time and branching-time
preorders studied in the literature were developed: the interface automata (IA) of de Alfaro
and Henzinger [12] and the equally expressive Error-IO Transition Systems (EIO) of Bujtor
and Vogler [10] (cf. also [11]). A particular focus is placed on the parallel composition of
such automata and the pruning in IA; as just explained, our pruning subtly but importantly
deviates from the one employed in [12]. Generalizing the standard definition, we also equip
IA with an associative multicast parallel operator; our additional hiding operator allows for
the internalization of actions that implicitly occurs in [12,13] when actions synchronize.

123

518 W. Vogler, G. Lüttgen

Definition 1 (Interface automata) An Interface Automaton (IA) is a tuple (P, I , O,

−→, p0), where

– P is the set of states;
– I and O are disjoint sets of input and output actions, resp., not containing the special,

non-observable action τ , where A =df I ∪ O is called the automaton’s action set or
alphabet and (I , O) its signature;

– −→ ⊆ P × Aτ × P is the transition relation, where Xτ =df X ∪ {τ } for X ⊆ A;
– p0 ∈ P is the initial state.

An IA is input-deterministic if (p, i, p′), (p, i, p′′) ∈−→ with i ∈ I implies p′ = p′′.

Note that the IAs studied by us are not by definition input-deterministic. In the following,
we denote an IA as above also by P , i.e., we identify an IA by its state set. We often use
p and p′ as representatives of the state set P , as well as i , o, ω, a and α as representatives
of the action sets I , O , Oτ , A and Aτ , resp. If α = τ , then α̂ =df ε; otherwise, α̂ =df α.
In addition, we let p

α−→ p′ denote the transition (p, α, p′) ∈−→, while p
α−→ means

that such a transition exists for some p′, i.e., α is enabled at p. A state is stable if it does
not enable τ . Unless defined otherwise, an IA P always has the components P , I , O , −→,
and p0, and similarly P1 has components P1, I1, etc. In figures, we sometimes display i? for
an input i and o! for an output o.

Extending our transition notation to action sequences, we write p
w−→ p′ if there exists

a run p
α1−→ p1

α2−→ p2 · · · αn−→ pn = p′ such that w = α1α2 · · · αn where αi ∈ Aτ for
1 ≤ i ≤ n; analogously, a run can also be infinite. A state p is reachable if p0

w−→ p for
some w; it is locally reachable if it is reachable by local actions only, i.e., if w ∈ O∗

τ . The
projectionw|B ofw onto B ⊆ A arises by deleting fromw all actions that are not in B. Now,

p
w
⇒ p′ if w ∈ A∗ and ∃w′ ∈ A∗

τ . w′|A = w and p
w′−→ p′; we say that the run according

to p
w′−→ p′ underlies p

w
⇒ p′, or just w if the context is clear. As above, we write p
w−→

for ∃p′. p
w−→ p′ and p

w
⇒ for ∃p′. p
w
⇒ p′. The language L(P) of P consists of all

traces of P and is the set {w ∈ A∗ | p0
w
⇒}.

Error-IO transition systems are input-enabled IA with explicit error states, for which we
adopt the conventions above:

Definition 2 (Error-IO transition system) An Error-IO Transition System (EIO) is a tuple
(P, I , O,−→, p0, E), where (P, I , O,−→, p0) is an IA and E ⊆ P is the set of error
states. In addition, we require that P is input-enabled, i.e., for all p ∈ P and i ∈ I , there

exists some p′ ∈ P with p
i−→ p′.

In essence, EIO and IA are the same model: a missing input transition at a state in an IA
corresponds in EIO to an input transition to an error state. IA is convenient for simulation-
based semanticswhere, simply, amissing input does not have to bematched.However,making
errors explicit in EIO removes any prejudice present in the IA-setting as to how exactly
error states arising in a parallel composition are avoided. This is why linear-time semantics
with their full-abstraction results have been based on EIO. Furthermore, adopting input-
enabledness in EIO (as in [11]) lends itself to an easier description of linear-time semantics.
Observe that input-transitions to an error state in an EIO do not have to be implemented, and
in fact cannot be implemented; this differs from the treatment of input-enabledness in the
IO-automata model of Lynch [31].

We now introduce (proper) pruning for EIO, which enables one to translate between EIO
and IA:

123

A linear-time branching-time perspective on interface… 519

Definition 3 (Pruning) Let P be an EIO. Then, e ∈ E is canonical if it is the only error state,
has exactly a loop for each input as its outgoing transitions and, if p

α−→ e, then α ∈ I and p
has no other α-transitions.

A state p is illegal if an error state can be locally reached from p, i.e., reached via output-
and τ -transitions only. We obtain EIO prune(P) from P in two steps: first, we remove all

illegal states and, additionally, each input transition p
i−→ p′ for which there is some illegal

state p′′ with p
i−→ p′′. Second, we add a new error state e with ingoing transitions that

ensure input-enabledness and make e canonical. If p0 is illegal, then e is also initial.

In [10], it is shown that, when applying this proper pruning, each EIO P is equivalent
to prune(P) according to our first linear-time refinement (cf. Sect. 4.2). We prove in Sect. 4
that this also holds for the other linear-time refinements.

Remark 4 (Translating between EIO and IA) IAs can be understood as special EIOs by adding
a canonical error state as above. Thus, an input i missing at some state p of an IA is translated

to the transition p
i−→ e. Conversely, one can normalise an EIO P to prune(P) and then

remove the canonical error state and the adjacent transitions to get a corresponding IA. If
prune(P) only consists of the error state, it corresponds to the “undefined IA” that arises
from an undefined parallel composition.

All previously known linear-time preorders (see Sect. 4) have been defined on EIOs in
the literature, while all branching-time preorders (see Sect. 5) are defined on IAs. By the
above remark, we may still compare linear-time to branching-time preorders, by lifting the
preorders from IA to EIO or vice versa.

Definition 5 (Hiding) For an EIO (P, I , O,−→, p0, E) and H ⊆ O , the hiding of H in P
is the EIO P\H =df (P, I , O\H ,−→H , p0, E), where

1. p
α−→H p′ if p

α−→ p′ and α /∈ H ;
2. p

τ−→H p′ if p
o−→ p′ for some o ∈ H .

We now define parallel composition on EIO, which is a multicast because an output of
one EIO can synchronize with inputs from several other EIOs in its environment. This differs
from broadcast in that all potential receivers must be ready to synchronize. Naturally, the
receivers synchronize on their common inputs.

Definition 6 (EIO-parallel composition) Two EIOs P1 and P2 are composable if O1 ∩ O2 =
∅. In this case, the EIO-parallel composition P12 =df P1‖P2 is (S, I , O,−→, s0, E), where
S =df P1 × P2, I =df (I1\O2) ∪ (I2\O1), O =df O1 ∪ O2, s0 =df (p01, p02), E =df

(E1 × P2) ∪ (P1 × E2), and the transition relation −→ is the least relation satisfying the
following rules:

(p1, p2)
α−→ (p′

1, p2) if p1
α−→1 p′

1 and α /∈ A2;
(p1, p2)

α−→ (p1, p′
2) if p2

α−→2 p′
2 and α /∈ A1;

(p1, p2)
a−→ (p′

1, p′
2) if p1

a−→1 p′
1 and p2

a−→2 p′
2 for some a.

We call P1 a partner of P2 if I2 ⊆ O1 and O2 = I1; intuitively, P1 fully synchronizes with P2

but might have additional outputs.

The definition of IA-parallel composition is given in two steps, as usual [12,13]:

123

520 W. Vogler, G. Lüttgen

Definition 7 (IA-parallel composition) The parallel product ⊗ on composable IAs P1, P2 is
defined as the EIO-parallel composition above, except that E =df {(p1, p2) ∈ P1× P2 | ∃a ∈
O1 ∩ I2. p1

a−→1 and p2 � a−→2 or ∃a ∈ I1 ∩ O2. p1 � a−→1 and p2
a−→2}, i.e., one

component of an error state offers an output to the other that the other cannot receive. The
IA-parallel composition P1|P2 is obtained by applying the pruning of Definition 3 without
adding an error state. If the initial state is illegal, then the parallel composition is undefined.
Otherwise, we call P1 and P2 compatible.

The defined parallel operators are obviously commutative wrt. isomorphism, and they are
associative, too:

Proposition 8 (Associativity) (P1‖P2)‖P3 and P1‖(P2‖P3) are isomorphic, for all pairwise
composable EIOs P1, P2, P3. The analogous holds for | if P1, P2, P3 are IAs – provided one
of the two composed IAs is defined, in which case the other is as well.

Proof Associativity onEIOs canbe established by adapting the proof ofTheorem16 in [10]. If
the parallel compositions are defined, associativity on IAs is a consequence of a corresponding
result in the setting of Modal Interface Automata (MIA) [9, Thm. 12]: one translates every
IA-transition into a must-transition in the MIA-setting and adds a disconnected error state.
(Note that this does not preserve refinements.)

In more detail, consider (P1|P2)|P3 and let P ′
1, P ′

2 and P ′
3 be the resp. translations toMIA.

P ′
1|P ′

2 is the same as P1|P2 except for the error state and the fact that, in the former, if some
input i is cut at a state p1|p2, then there is a so-called may-transition with label i from p1|p2
to the error state. Thus, we get P1|P2 back from P ′

1|P ′
2 by omitting such may-transitions and

the error state.
The same is true for (P1|P2)|P3, as we argue now. The only additional problem is that

p1|p2 has the above i-may-transition in the MIA and no i-transition in the IA. If state p1|p2
of P ′

1|P ′
2 is composed with some p3 of P ′

3, there are several cases to consider. First, if i ∈ A3

is not enabled at p3, then (p1|p2, p3) as state of (P ′
1|P ′

2) ⊗ P ′
3 has no i-transition, which

fits (P1|P2) ⊗ P3. Second, if i ∈ I3 is enabled at p3 or i /∈ A3, then (p1|p2, p3) has an
i-may-transition to the error state, which fits (P1|P2) ⊗ P3 after the translation back. Third,
if i ∈ O3 is enabled at p3, then (p1|p2, p3) is an error state as in the IA-case.

Thus, associativity for IA follows because one can translate the two isomorphic
MIA-compositions back to the two IA-compositions by removing the corresponding may-
transitions and error states, so the latter two are isomorphic as well. ��
Remark 9 For all IAs P1, P2, we have that P1|P2, if defined, is identical to the IA obtained
in the following way. First, we consider P1, P2 as EIOs according to Remark 4, apply EIO-
parallel composition to obtain P12, and translate this result back into an IA by pruningwithout
adding the canonical error state.

To see this coincidence, consider a transition (p1, p2)
a−→ (p′

1, p′
2) ∈ E12 entering an

error state in P12. The first case is that a is an input. W.l.o.g. assume p1
a−→ e1 ∈ E1 and

either a /∈ A2 or a ∈ I2. Then, p1 cannot perform a in the IA P1 and, thus, (p1, p2) cannot
perform a in P1|P2. The same holds in the pruned P12. The second case is that a is an output.

W.l.o.g. a ∈ O1 ∩ I2, p1
a−→ p′

1 and p2
a−→ e2. In this case, (p1, p2) is illegal in P12 and

an error in P1 ⊗ P2. Consequently, the illegal states in the IA-setting are the illegal states in
the EIO-setting without the error states. This shows that ‖ on EIO coincides with | on the
subclass IA of EIO.

In the original papers on IA [12,13], parallel composition is only applied to strongly
composable IAs P1, P2—i.e., they are composable and I1 ∩ I2 = ∅—and immediately

123

A linear-time branching-time perspective on interface… 521

followed by hiding of the synchronized actions. This can be expressed in our setting as
(P1|P2)/H , where H =df (I1 ∩ O2) ∪ (I2 ∩ O1). Thus, the precongruence results for
IA-parallel composition and hiding imply the precongruence property for the original IA-op-
erator. In contrast to IA-parallel composition, observe that, with the original operator, only
two components synchronize on a common action.

4 Linear-time preorders

This section investigates the linear-time spectrum for EIO.We largely follow [38] by studying
the error semantics of [10,11], the quiescence and divergence semantics of [38] and the CJK-
semantics of [11], and we also consider our new ready semantics. For each case, we show
how to determine the semantics for a parallel composition and for an application of hiding
from the semantics of the underlying components. This implies that the refinement preorders
accompanying the semantics are precongruences; indeed, full-abstraction results are known
for error, quiescence and divergence semantics [38]. New contributions by us are, besides the
addition of ready semantics (see Sect. 4.6), the equivalence results on pruning, a closer look
at the CJK-semantics (see Sect. 4.5) and a variation of quiescence semantics (see Sect. 4.3).

4.1 Basic requirements, preorders and properties

The preorders to be considered for our linear-time spectrum compare EIOs having the same
signature and, thus, the same interaction potential. Our basic requirement of a preorder is that
a refinement, i.e., the smaller EIO, avoids errors whenever the specification, i.e., the larger
EIO, avoids errors; here, avoiding an error means that an error state is not locally reachable,
as discussed above. We write �B

E for the basic preorder that obeys just this preservation
property.

In addition, for a preorder to be practically applicable, one expects that it enables compo-
sitional reasoning, i.e., that it is a precongruence. Ideally, a refinement precongruence does,
at the same time, not unnecessarily distinguish EIOs, i.e., it is fully-abstract wrt. the initial,
basic preorder and the EIO operators. Mathematically, this means with regards to �B

E that
the desired fully-abstract preorder characterizes the coarsest precongruence �C

E contained
in �B

E . Below we first establish full-abstraction wrt. parallel composition, and then show the
precongruence property wrt. hiding, i.e., full abstraction also holds for full EIO.

While avoiding errors is obviously the basic observable on which a system designer
wishes to base a preorder for interfaces, one may also consider two further observables that
are extensively studied in the concurrency literature [42]: quiescence and divergence. This
leads to the two basic preorders �B

Qui and �B
Div and their fully-abstract counterparts �C

Qui

and �C
Div, resp., which are studied below for EIO. Intuitively, a state avoids quiescence, if it

cannot locally reach a state that has only input transitions, i.e., in which the system cannot
progress on its own. The state avoids divergence, if it cannot locally reach a state that is
divergent, i.e., in which an infinite run of τ -transitions starts. Hence, we obtain the following
definition [38]:

Definition 10 (Faults and preorders) In addition to the errors contained in the definition of
EIO, we consider the two following sets of observable faults for an EIO P: the set Qui(P)

of quiescent states given by {p ∈ P | ∀ω ∈ Oτ . p � ω−→} and the set Div(P) of divergent

123

522 W. Vogler, G. Lüttgen

states defined by {p ∈ P | p has an infinite run of τ -transitions}. We say that P avoids
errors/quiescence/divergence, if no error/quiescent/divergent state is locally reachable.

For EIOs P1, P2 with the same signature, we write (i) P1 �B
E P2, (ii) P1 �B

Qui P2 and

(iii) P1 �B
Div P2 whenever P1 avoids (i) errors, (ii) errors and quiescence, (iii) errors and

quiescence and divergence, resp., provided P2 does. As explained above,�C
E ,�C

Qui and�C
Div

are the fully-abstract preorders for EIO-parallel composition and �B
E , �B

Qui and �B
Div, resp.

The characterizations of the desired fully-abstract preorders rely on traces that are often
obtained via pruning and continuation operations [10]:

Definition 11 (Pruning and continuation functions) Let P be an EIO, ε the empty word
and P(M) the power set of a set M .

– prune() : A∗ → A∗, uv �→ u with v ∈ O∗ and either u = ε or u ∈ A∗ · I ;
– cont() : A∗ → P(A∗), w �→ {wu | u ∈ A∗};
– cont() : P(A∗) → P(A∗), L �→ ⋃{cont(w) | w ∈ L}.

Intuitively, pruning is needed because a trace reaching an error state directly is as good as
a trace that reaches a state that can locally reach an error state. Another operation on traces
required in the sequel is parallel composition:

Definition 12 (Parallel composition on action sequences) Let P1, P2 be EIOs.

– The parallel composition w1‖w2 of words w1 ∈ A∗
1 and w2 ∈ A∗

2 is defined to be the set{w ∈ (A1 ∪ A2)
∗ | w|A1 = w1 and w|A2 = w2}.

– The parallel composition W1‖W2 of two languages, i.e., sets of words, W1 ⊆ A∗
1 and

W2 ⊆ A∗
2 is the set

⋃{w1‖w2 | w1 ∈ W1 and w2 ∈ W2}.
Obviously, the traces of a parallel composition are in close correspondence with the traces
of each parallel component:

Lemma 13 Let P1, P2 be composable EIOs and P12 be their parallel composition.

1. Let w ∈ A∗
12, w1 = w|A1 , w2 = w|A2 , and consider (p1, p2), (p′

1, p′
2) ∈ P12. Then,

(p1, p2)
w
⇒ (p′

1, p′
2) if and only if p1

w1
⇒ p′
1 and p2

w2
⇒ p′
2;

2. L(P12) = L(P1) ‖ L(P2).

We call the second and third (underlying) run in the above first part the projections of the
first run.

4.2 Preserving freedom from errors

Our technical considerations start offwith the basic case of error avoidance, reciting the results
of [10,38] (cf. also [11]). The following trace languages are required for characterizing the
fully-abstract precongruence �C

E :

Definition 14 (Error semantics) Let P be an EIO. We define the following:

– Strict error traces: StET(P) =df {w ∈ A∗ | ∃p′. p0
w
⇒ p′ ∈ E};

– Pruned error traces: PrET(P) =df {prune(w) | w ∈ StET(P)};
– Error traces: ET(P) =df cont(PrET(P));
– Error-flooded language: EL(P) =df L(P) ∪ ET(P).

123

A linear-time branching-time perspective on interface… 523

We call (ET(P),EL(P)) the error semantics of P . For EIOs P1, P2 with the same signature,
we write P1 �E P2 if ET(P1) ⊆ ET(P2) and EL(P1) ⊆ EL(P2). From the semantics’
name, we derive that P1 is an error-refinement of P2, and EIOs error-refining each other are
error-equivalent, and similarly for the other linear-time semantics.

The error semantics adds to the error traces only the error-flooded language. Thus, �E

corresponds to language inclusion in the standard linear-time branching-time spectrum [41–
43]. As a purely denotational model, error semantics has already been introduced by Dill
[16]. Note that �E strictly refines �B

E : on the one hand, we show below that �C
E and �E

coincide. On the other hand, consider the EIO consisting of a single, initial, non-error state
with an o-loop and a similar EIO without any transition. Obviously, the former is related to
the latter according to �B

E but not according to �E .
The above definition reflects our intuitive understanding of a refinement semantics that

preserves error avoidance, where both the direct reachability of errors (cf. strict error traces)
and their indirect reachability via states that can locally reach error states (cf. pruned error
traces) are relevant. Once some error manifests itself, any further behaviour does not matter,
so that all continuations of error traces must also be considered to be error traces, leading to
an error-flooded language and a notion of error semantics for which the following properties
and, in particular, full-abstraction hold [10]:

Theorem 15 (Error semantics for EIO-parallel composition) For composable EIOs P1, P2

and their parallel composition P12:

1. ET(P12) = cont(prune((ET(P1)‖EL(P2)) ∪ (EL(P1)‖ET(P2))));
2. EL(P12) = (EL(P1)‖EL(P2)) ∪ ET(P12).

Hence, �E is a precongruence wrt. EIO-parallel composition. Furthermore, �E is fully-
abstract, i.e., it coincides with �C

E .

The precongruence result is implied by the first two items since cont(), prune() and ‖ are
monotonic on languages. The same argument applies in analogous situations below.We leave
out the full-abstraction proof here; an example of such a proof is given below for the more
involved quiescence semantics (see Theorem 21).

Theorem 16 (Error precongruence for hiding) Let P be an EIO and H ⊆ O. Then,

1. L(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ L(P). w′|A\H = w};
2. ET(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ ET(P). w′|A\H = w};
3. EL(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ EL(P). w′|A\H = w}.

Hence, �E is a precongruence wrt. hiding, too.

This precongruence result is implied by the fact that hiding turns outputs into internal τ s and,
thus, preserves local reachability. The next theorem has been shown in [10]; we prove it here
for the present variant of EIOs that requires input-enabledness:

Theorem 17 (Pruning) Each EIO P is error-equivalent to prune(P).

Proof Assume that p0 is not illegal; otherwise, the claim is clear. To show ET(P) ⊆
ET(prune(P)), it suffices to consider a prefix-minimal w ∈ ET(P), because both sides
are continuation-closed. Obviously, w ∈ PrET(P) and a suitable underlying run ends with

p
i−→ p′, where i ∈ I and p′ is illegal while p is not. Because all i-transitions exiting p

123

524 W. Vogler, G. Lüttgen

are removed to obtain prune(P), we get a new p
i−→ e. Thus, w ∈ ET(prune(P)) and the

first inclusion is established. Next, consider some w ∈ L(P). Either, some run underlying w

is still in prune(P) and w ∈ L(prune(P)). Or, some transition of the run is missing and
redirected to e; then, some prefix of w and, thus, also w is in EL(prune(P)).

For the reverse inclusions, first consider a prefix-minimal w ∈ ET(prune(P)). An under-

lying run ends with p
i−→ e, where i ∈ I and p �= e. This run also exists in P up to the

last transition and p
i−→ p′ for some illegal p′, implying w ∈ ET(P). Second, each run of

prune(P) exists in P as well, except if some transition along the run ends in e in prune(P)

and in some illegal p′ in P . This implies L(prune(P)) ⊆ EL(P). ��
Consequently, we may essentially work on EIOs without error states.

We conclude by remarking on how component compatibility is reflected in linear-time
semantics. In fact, this notion is not so relevant for EIO, because parallel composition is
always defined for composable EIOs. In Sect. 2, we have explained that components are
incompatible if the initial state of their composition is illegal. Here, we have that the initial
state of anEIO P is illegal if and only if ε ∈ ET(P). Error-refinement preserves compatibility:
if P1 �E P2 and P2, Q are compatible, then ε /∈ ET(P2‖Q) ⊇ ET(P1‖Q); hence, P1, Q
are compatible, too.

4.3 Preserving freedom from quiescence

This section adds quiescence as an observable fault [38], which requires us to extend error
semantics by quiescence traces, or qsc-traces for short. Analogous to our various kinds of
error traces, we consider strict qsc-traces and error-flooded qsc-traces:

Definition 18 (Quiescence semantics) Let P be an EIO. We define the following:

– Strict qsc-traces: StQT(P) =df {w ∈ A∗ | ∃p′. p0
w
⇒ p′ ∈ Qui(P)};

– (Error-flooded) qsc-traces: QET(P) =df StQT(P) ∪ ET(P).

We call (ET(P),QET(P),EL(P)) the quiescence semantics of P . For EIOs P1, P2 with the
same signature, we write P1 �Qui P2 if P1 �E P2 and QET(P1) ⊆ QET(P2).

For this refinement preorder, we now show some details how to prove full abstraction. The
following lemma is easily seen with Lemma 13. Observe that if, say, p1 enables an output o,
so does (p1, p2) by input-enabledness.

Lemma 19 Let P1, P2 be EIOs and P12 be their parallel composition.

1. A state (p1, p2) in the parallel composition P12 is quiescent if and only if the states p1
and p2 are quiescent in P1 and P2, resp.

2. Let w ∈ A∗
12, as well as w1 = w|A1 and w2 = w|A2 . Then, w ∈ StQT(P12) if and only

if w1 ∈ StQT(P1) and w2 ∈ StQT(P2).

This lemma is essential for proving that �Qui is compositional for parallel composition [38]:

Theorem 20 (Quiescence semantics for EIO-parallel composition)For composable EIOs P1,
P2 and their composition P12:

1. ET(P12) = cont(prune((ET(P1)‖EL(P2)) ∪ (EL(P1)‖ET(P2))));
2. QET(P12) = (QET(P1)‖QET(P2)) ∪ ET(P12);

123

A linear-time branching-time perspective on interface… 525

3. EL(P12) = (EL(P1)‖EL(P2)) ∪ ET(P12).

Hence, �Qui is a precongruence wrt. EIO-parallel composition.

Proof The first and the third part have been shown already for the previous setting in [38]; we
recall the proof for the second part and note that ET(P12) is contained in both sides. For the
inclusion, we only have to consider some w ∈ StQT(P12), and this is in QET(P1)‖QET(P2)

by Lemma 19(2). For the reverse inclusion, it suffices to consider some w1 ∈ QET(P1) and
w2 ∈ QET(P2). If w1, say, is an error trace, then w1‖w2 is in ET(P1)‖EL(P2) ⊆ ET(P12)

by the first part. Otherwise, w1‖w2 consists of strict qsc-traces, again by Lemma 19(2).
The precongruence result follows by monotonicity of cont(), prune() and ‖. ��
It is relatively easy to show that �Qui is as fine as �C

Qui, see the treatment of the reverse
implication in the next proof. What is missing then is a proof that a precongruence wrt.
EIO-parallel composition that refines �B

Qui is as fine as �Qui, i.e., that �Qui is fully-abstract.
What we prove is actually stronger: it suffices to be interested in a relation that is composi-
tional wrt. ‖ just for partners and that refines �B

Qui just on systems without inputs. On such
systems, which result from the composition with a partner, local reachability coincides with
reachability. That we do not want to introduce a reachable error or quiescence in a refinement
step if there was none initially, is possibly even more convincing than the same for local
reachability. To prove the implication, we only use that �C

Qui has the two properties just
declared to be sufficient [38]:

Theorem 21 (Full abstraction for quiescence semantics) For EIOs P1, P2 with the same
signature, (1) P1 �C

Qui P2 if and only if P1 �Qui P2. Further, (2) P1 �Qui P2 holds if

U‖P1 �B
Qui U‖P2 for all partners U.

Proof (1) “⇐
”: If P1 �Qui P2 and P1 can reach an error locally, we have ε ∈ ET(P1);
hence, ε ∈ ET(P2) and P2 can reach an error locally. If P1 �Qui P2 and P1 can reach a
quiescent state locally with some w ∈ QET(P1), i.e., w ∈ O∗

1 , then w ∈ QET(P2) and P2

can reach a quiescent or error state locally. Thus, �Qui is contained in �B
Qui. Because �Qui

is a precongruence wrt. ‖ and �C
Qui is the coarsest precongruence wrt. ‖, �Qui is contained

in �C
Qui.

(1) “
⇒”: For this part, we use the second statement, which we prove below. Due to�C
Qui

being a precongruence, we have U‖P1 �C
Qui U‖P2 for all partners U . Because �C

Qui is con-

tained in �B
Qui, this implies U‖P1 �B

Qui U‖P2 for all partners U . With the second statement,
we get P1 �Qui P2.

(2)Next,we give an impression of how to prove the second statement.We restrict ourselves
to partners with IU = O1 and OU = I1 ∪ {o} for a fresh action o. This action allows the
partner to prevent quiescence. In fact, ET(P1) ⊆ ET(P2) and EL(P1) ⊆ EL(P2) are shown
in [38] with partners that enable o in each state such that quiescence does not play a role. We
only recall the proof for QET(P1) ⊆ QET(P2) [38]:

Due to ET-inclusion, it suffices to prove that any w = a1 · · · an ∈ StQT(P1) with n ≥ 0
is also in QET(P2). We construct the partner EIO U as shown in Fig. 4, where EU = ∅.
Clearly, w reaches a quiescent state in U‖P1 and consists of outputs only. By assumption,
also U‖P2 can locally reach an error state or quiescent state.

(a) If an error is reached locally, U and P2 each perform some a1 · · · ai u with some u ∈
I ∗
U = O∗

1 in the respective run. With this, P2 reaches a state in E2, because U does not
have any errors. Thus, prune(a1 · · · ai u) = prune(a1 · · · ai) ∈ PrET(P2) ⊆ ET(P2).
This implies that a1 · · · ai and also w are in ET(P2) ⊆ QET(P2).

123

526 W. Vogler, G. Lüttgen

Fig. 4 Partner EIO U in the proof
of Theorem 21, where a? �= ai
represents all a ∈ IU \{ai } and q
is the only quiescent state

...

a? in IU

1a? = a , o!

q in QuiU
a? = a , o! 2

a? in IU

2a1a naU

, o!

(b) If a quiescent state is reached locally, P2 performs w and reaches a quiescent state
itself. Hence, w ∈ StQT(P2) ⊆ QET(P2). ��

Quiescence is the counterpart of deadlock in standard LTS, and quiescence semantics
and failure semantics [7] are just right to avoid these in the resp. settings. Hence, we can
regard the former semantics as the counterpart of the latter. In failure semantics, each trace is
combined with a set of visible actions that are impossible in some state that can be reached by
the trace. Such a set is not needed here, because synchronization is of a different nature in the
IA-setting. More precisely, the above semantics corresponds to stable failures, where sets are
only considered for stable states. Quiescence semantics can also be seen as the counterpart
of completed traces as defined by van Glabbeek [42].

Because hiding transforms one local action to another, the quiescence status of a state is
not changed. Therefore, the following result holds (cf. Theorem 17 and [38]):

Theorem 22 (Quiescence precongruence for hiding) For EIO P and H ⊆ O:

1. ET(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ ET(P). w′|A\H = w};
2. EL(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ EL(P). w′|A\H = w};
3. StQT(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ StQT(P). w′|A\H = w};
4. QET(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ QET(P). w′|A\H = w}.

Hence, �Qui is a precongruence wrt. hiding.

Analogous to the situation in error semantics, we add to the results of [38] that pruning
an EIO preserves its quiescence semantics:

Theorem 23 (Pruning) Each EIO P is quiescence-equivalent to prune(P).

Proof In view of Theorem 17, we only have to deal with the QET-sets. As in the proof of that
theorem, we assume that p0 is not illegal. For a strict qsc-trace w of P , a suitable underlying
run still exists in prune(P), or it is cut because a prefix of w can lead to an illegal state.
Thus, w ∈ QET(prune(P)). Conversely, a run in prune(P) underlying a strict qsc-trace
w /∈ ET(prune(P)) also exists in P . ��

The authors of [11] use the same definition of quiescent state as we do, but regard it as
necessary to consider divergence when dealing with quiescence. Their intuition could be
that a system can be stuck in a divergent state, just as it can be in a state with only inputs.
This view could be supported by the notion of complete traces in [44], which includes strict
div-traces. With such a view, divergence and our quiescence are regarded as faults, and the
coarsest precongruence is �Div, presented in Sect. 4.4.

Another variant is to define a state p ∈ P as quiescent if there is no output o with
p

o
⇒. Due to τ -transitions, such a p might not be quiescent in our sense, so we call it
weakly quiescent. Let wQui(P) be the set of these states. Starting from wQui(P), we can
modify the definitions of StQT(P), QET(P) and �Qui to obtain wStQT(P), wQET(P)

123

A linear-time branching-time perspective on interface… 527

Fig. 5 EIO demonstrating the
precongruence defect wrt. hiding
for the alternative quiescence
semantics

o

o

o
o’

P
o
o

o

o
o’

P’ o

and�wQui. Similarly, we can define weak versions of�B
Qui and�C

Qui. Because we have given
all quiescence-relevant proofs for Theorems 20 and 21, it should not be hard to check that
the easy Lemma 19 as well as the ‘weak versions’ of the two theorems hold. Thus, we have
also a full-abstraction result for this variant of quiescence. Unfortunately, this is not really
satisfactory, because �wQui is not a precongruence for hiding, as can be seen from P , P ′ in
Fig. 5. Both EIOs have no errors and the same traces, as well as wStQT(P) = wStQT(P ′).
After hiding o, however, ε ∈ wStQT(P) but ε /∈ wStQT(P ′). Developing a fully-abstract
precongruence for parallel composition and hiding with this variant of quiescence is an open
problem.

4.4 Preserving freedom from divergence

Lastly, we add divergence as a third observable for a fault in EIO and, therefore, consider
divergent traces, too [38]. Note that divergent behaviour of some component cannot be
prevented when placing the component in any environment and, thus, not only errors but
also divergences are catastrophic. Consequently, in addition to strict divergent traces, their
pruned and continuation variants are also of interest:

Definition 24 (Divergent traces) Let P be an EIO. We define the following:

– Strict div-traces: StDT(P) =df {w ∈ A∗ | ∃p′. p0
w
⇒ p′ ∈ Div(P)};

– Pruned div-traces: PrDT(P) =df {prune(w) | w ∈ StDT(P)};
– Div-traces DT(P) =df cont(PrDT(P)).

This leads to the definition of divergence semantics [38], for which the quiescence seman-
tics from above needs to be modified by flooding with div-traces:

Definition 25 (Divergence semantics) Let P be an EIO. We define the following:

– Error-div-traces: EDT(P) =df DT(P) ∪ ET(P);
– Flooded qsc-traces: QDT(P) =df StQT(P) ∪ EDT(P);
– Flooded language: EDL(P) =df L(P) ∪ EDT(P).

We call (EDT(P),QDT(P),EDL(P)) the divergence semantics of P . For EIOs P1, P2 with
the same signature, we write P1 �Div P2 if EDT(P1) ⊆ EDT(P2), QDT(P1) ⊆ QDT(P2)

and EDL(P1) ⊆ EDL(P2).

The divergence semantics here is the counterpart to the failure-divergence semantics of [7].
Although the new refinement is closely related to the previous ones, the sets in the semantics
above are all different from the previous sets because of the flooding due to divergence. We
now report on compositionality and full abstraction for �Div [38]:

Theorem 26 (Divergence semantics for EIO-parallel composition)For composable EIOs P1,
P2 and their composition P12:

1. EDT(P12) = cont(prune((EDT(P1)‖EDL(P2)) ∪ (EDL(P1)‖EDT(P2))));

123

528 W. Vogler, G. Lüttgen

2. QDT(P12) = (QDT(P1)‖QDT(P2)) ∪ EDT(P12);
3. EDL(P12) = (EDL(P1)‖EDL(P2)) ∪ EDT(P12).

Hence, �Div is a precongruence wrt. EIO-parallel composition. Furthermore, �Div is fully-
abstract, i.e., it coincides with �C

Div.

In a divergence-sensitive setting, precongruence for hiding usually needs some finite-
ness condition. For simplicity, we restrict ourselves to finite EIOs and to the hiding of
single outputs as in [38]. Hiding of finite sets can be obtained by repeating such hiding.
We write P/o for P/{o}, where o ∈ O . Note that, in the following result, EDT(P/o) is
obtained from EDL(P); it is larger than just {w | ∃w′ ∈ EDT(P). w′|A\{o} = w}. Due to the
latter, the other two sets need a new flooding:

Theorem 27 (Divergence precongruence for hiding) Let P be a finite EIO and o ∈ O. Then,

1. EDT(P/o) = cont(prune({w | ∃w′. w′|A\{o} = w and ∀n ≥ 0. w′on ∈ EDL(P)}));
2. EDL(P/o) = {w | ∃w′ ∈ EDL(P). w′|A\{o} = w} ∪ EDT(P/o);
3. QDT(P/o) = {w | ∃w′ ∈ QDT(P). w′|A\{o} = w} ∪ EDT(P/o).

Hence, �Div is a precongruence wrt. hiding.

The finiteness requirement on EIO P in this theorem may be replaced by the weaker require-
ment that P is image-finite. We have chosen finiteness because this is also assumed in [38]
and, throughout, in [11].

Divergence semantics yields a new, analogous theorem regarding pruning insensitivity as
above for error semantics and quiescence semantics:

Theorem 28 (Pruning) Each EIO P is divergence-equivalent to prune(P).

Proof Again, we assume that q0 is not illegal. For the EDT-semantics, we already know that
pruning preserves the ET-semantics. For a prefix-minimalw ∈ DT(P), a suitable underlying
run still exists in prune(P), or it is cut because a prefix ofw can lead to an illegal state. Thus,
w ∈ EDT(prune(P)). A run in prune(P) underlying a strict div-trace w /∈ ET(prune(P))

also exists in P . Together, pruning preserves the EDT-semantics.
For a strict qsc-trace w of P , we can argue as in the proof of Theorem 23 that w ∈

QET(prune(P)) ⊆ QDT(prune(P)). A run in prune(P) underlying a strict qsc-trace w /∈
ET(prune(P)) also exists in P , and preservation of the QDT-semantics follows.

The arguments for preservation of the L-semantics are the same as in the proof of Theo-
rem 17, again because the ET-semantics is contained in the EDT-semantics. ��

We end this section by discussing the implications of the weak quiescence variant on the
divergence semantics; recall the definitions at the end of Sect. 4.3.

Remark 29 Adapting the divergence semantics to this weak variant, we let QDT(P) be built
upon wStQT(P) instead of StQT(P), resulting in wQDT(P). This semantics can only differ
from divergence semantics, if there is some w ∈ wStQT(P)\StQT(P) due to some p0

w
⇒
p ∈ wQui(P). Because p /∈ Qui(P) by choice of w, it has a τ -transition to some p′.
However, due to p ∈ wQui(P), it cannot reach by τ -transitions a state that enables an
output. The same applies to p′, so we have p0

w
⇒ p′ ∈ wQui(P). Repeating this argument,
p is seen to be divergent. We conclude that w ∈ QDT(P), so the weak variant of divergence
semantics coincides with the one of Definition 25. Similarly, �B

Div does not change for weak
quiescence, and full abstraction holds for the variant because we would only change the text
of the definitions but not the relations.

123

A linear-time branching-time perspective on interface… 529

4.5 CJK-semantics

Another quiescence- and divergence-sensitive precongruence is presented by Chilton et
al. [11] and denoted here by �CJK. This is based on sets like ET(·) and EL(·), too, but
ET(·) is not closed under pruning, and this difference carries over to the other semantic sets
like EL(·). To compensate this, refinement is not component-wise inclusion. Here, we give
a new characterization of �CJK in the style of the above precongruences:

Definition 30 (CJK-semantics) Let P be an EIO. We define the following:

– Error-flooded strict div-traces: ESDT(P) =df StDT(P) ∪ ET(P);
– ESD-flooded strict qsc-traces: ESDQ(P) =df StQT(P) ∪ ESDT(P).

(ET(P),ESDT(P),ESDQ(P),EL(P)) is the CJK-semantics of P . For EIOs P1, P2 with
the same signature, we write P1 �CJK P2 for the resp. component-wise inclusion.

Observe that, as CJK-refinement works with strict div-traces, it is finer than �Div where
div-traces are closed under pruning and continuation. Our new characterization leads to new
equations in the next theorem; they look quite similar to those in [11], but the proof obligations
are a bit different so that we provide the theorem’s proof.

Theorem 31 (CJK-semantics for EIO-parallel composition) For two composable EIOs P1,
P2 and their composition P12:

1. ESDT(P12) = (ESDT(P1)‖EL(P2)) ∪ (EL(P1)‖ESDT(P2)) ∪ ET(P12);
2. ESDQ(P12) = (ESDQ(P1)‖ESDQ(P2)) ∪ ESDT(P12).

Hence, �CJK is a precongruence wrt. EIO-parallel composition.

Proof We start with the first equation and note that both sides contain ET(P12). For inclusion,
consider a strict div-trace of P1‖P2. It projects to a strict div-trace of one component and a
trace of the other, so it is contained in the right-hand side. For the reverse inclusion, consider
w.l.o.g. some w ∈ ESDT(P1)‖EL(P2) that is not an error trace. Then, w|A1 is a strict div-
trace andw|A2 is a trace, sow is a strict div-trace. The proof of the second equation is similar,
except that a strict qsc-trace projects to two strict qsc-traces, and w is not an error trace or a
strict div-trace. ��

At this stage, we can discuss the patterns that appear when determining the semantic sets
of a parallel composition. A strict error trace (div-trace) of the composition projects to a strict
error trace (div-trace) of one component and a trace of the other. This explains subsets such
as ET(P1)‖EL(P2), EDT(P1)‖EDL(P2) and ESDT(P1)‖EL(P2). The resulting sets are not
necessarily closed under pruning, so EDT(P12) and ET(P12) have to be closed under pruning
and then under continuation. For a trace or strict qsc-trace, both projections must be traces
or strict qsc-traces, leading to EL(P1)‖EL(P2), EDL(P1)‖EDL(P2), QET(P1)‖QET(P2),
QDT(P1)‖QDT(P2) and ESDQ(P1)‖ESDQ(P2).

The resp. semantic sets are flooded with the pruning- and continuation-closed sets ET(·)
orEDT(·). But though, e.g., EL(P1)‖EL(P2) contains (ET(P1)‖EL(P2))∪(EL(P1)‖ET(P2)),
it might fail to contain all pruned error traces of the composition. Hence, ET(P12) (EDT(P12))
has to be added to get EL(P12) (EDL(P12)), and the case of ESDT(P12) is similar. For
QET(P12) and QDT(P12), even some strict error or div-traces may be missing, because these
semantic sets might not cover the language. The same argument (for strict div-traces) shows
that, for ESDQ(P12), adding ET(P12) might not suffice.

123

530 W. Vogler, G. Lüttgen

Hiding can be handled similarly to the resp. results above; see [11] for details. Again,
pruning of an EIO preserves the semantics. For the proof, one can argue for strict div- and
qsc-traces as for strict qsc-traces in the proof of Theorem 23.

Theorem 32 (Pruning) Each EIO P is CJK-equivalent to prune(P).

4.6 Ready semantics

This section adds to the class of linear-time refinements for IA a counterpart to standard
ready semantics [42]. In that semantics, for each run, its trace is combined with the set of
visible actions offered in the state that is reached by the run. Due to input-enabledness, only
local actions are relevant here. But also without the assumption, one should proceed this
way: inputs that are missing in a state give rise to error traces and, thus, have some visibility
already. Inputs that are possible in a state but missing in another state reached by the same
trace, are not so relevant, because the environment would risk an error when providing such
an input; we assume that the environment does not do this. Thus, and consistent with the
above notion of quiescence, we include all actions that, in the resp. state, can prevent such a
quiescence.

Definition 33 (Ready semantics) Let P be an EIO. We define the following:

– Strict ready pairs: StRP(P) =df {(w, X) ∈ A∗ × P(Oτ) | ∃p′. p0
w
⇒ p′ and X =

R(p′)}, where R(p′) =df {ω ∈ Oτ | p′ ω−→} is called the ready set of p′;
– (Error-flooded) ready pairs: RP(P) =df StRP(P) ∪ {(w, X) | w ∈ ET(P), X ⊆ Oτ }.

We call (ET(P),RP(P)) the ready semantics of P . Note that EL(P) can be derived as
{w ∈ A∗ | ∃X ⊆ Oτ . (w, X) ∈ RP(P)}. For EIOs P1, P2 with the same signature, we write
P1 �Rd P2 if ET(P1) ⊆ ET(P2) and RP(P1) ⊆ RP(P2).

Ready semantics allows for compositional reasoning, too:

Theorem 34 (Ready semantics for EIO-parallel composition) For composable EIOs P1, P2

and their composition P12:

1. ET(P12) = cont(prune((ET(P1)‖EL(P2)) ∪ (EL(P1)‖ET(P2))));
2. RP(P12) = ET(P12) ∪ {(w, X) | ∃X1, X2. X = X1 ∪ X2, (w|A1 , X1) ∈ RP(P1) and

(w|A2 , X2) ∈ RP(P2)}.
Hence, �Rd is a precongruence wrt. EIO-parallel composition.

Proof For the second equation, consider some (w, X) in the left-hand side and the projec-
tions w1 and w2 of w. If w ∈ ET(P12), all possible pairs with w are contained in both sides.
Otherwise, (w, X) ∈ RP(P12) due to some (p01, p02)

w
⇒ (p1, p2). Then, p01
w1
⇒ p1 and

p02
w2
⇒ p2 by Lemma 13. Because the ready set X of (p1, p2) is the union of the ready sets

of p1 and p2 by input-enabledness, (w, X) is contained in the right-hand side as well.
If (w1, X1) and (w2, X2) satisfy the conditions on the right-hand side, each wi is

contained in the resp. flooded language. If one of them is an error trace, then w is as well.
Otherwise, there are suitable runs p01

w1
⇒ p1 and p02
w2
⇒ p2 and, in both cases, we are

done as above. ��
Because only outputs are hidden when applying our hiding operator, each ready set is

modified by deleting hidden outputs and adding τ if some output is deleted. This also works
for a ready pair in which the trace is an error trace; adding τ is not necessary here.

123

A linear-time branching-time perspective on interface… 531

Theorem 35 (Ready precongruence for hiding) Let P be an EIO and H ⊆ O. Then,

1. ET(P/H) = {w ∈ (A\H)∗ | ∃w′ ∈ ET(P). w′|A\H = w};
2. RP(P/H) = {(w, X) | ∃(w′, X ′) ∈ RP(P). w′|A\H = w, and X = (X ′\H) ∪

{τ }, if X ′ ∩ H �= ∅, and X = X ′\H , otherwise}.
Hence, �Rd is a precongruence wrt. hiding.

Again, pruning of an EIO preserves the semantics:

Theorem 36 (Pruning) Each EIO P is ready-equivalent to prune(P).

Proof Analogously to above, we just have to deal with the strict ready pairs and assume
that p0 is not illegal. Also, it suffices to consider a pair in which the trace is not an error trace.
The underlying runs are the same in both EIOs, and the transitions exiting from the reached
state are only modified if they are inputs. ��

4.7 The linear-time IA-spectrum

The resulting overall spectrum of linear-time preorders on EIO is shown in Fig. 6:

Theorem 37 (Linear-time IA spectrum) All inclusions between �E , �Qui, �Div, �CJK

and �Rd are depicted in Fig. 6 as arrows; note that these inclusions are strict.

Proof The inclusions of the preorders except for �Rd have been established in [38]. In
case an inclusion holds, this is because the semantic sets needed in the larger preorder can
be determined from the sets employed by the smaller preorder. This is also the case for
the inclusion of �Rd in �Qui: from RP(P), one can read off EL(P) as noted above, and
QET(P) = {w | (w, ∅) ∈ RP(P)}.

The proofs that the missing inclusions fail to hold, are by example. In particular, �Qui is
not included in �Rd as can be seen from EIOs Q1 and Q2 in Fig. 7, for which Q1 �Qui Q2

but Q1 ��Rd Q2 due to the ready pair (ε, {o}). Observe that no state is quiescent or an error.
To check that no other preorder implies �Rd, it suffices to show that �CJK is not included
in �Rd. Consider EIOs Q3 and Q4 in Fig. 7, for which Q3 �CJK Q4 because the additional
strict quiescent trace ε in Q3 is covered by the divergence ε. However, Q3 ��Rd Q4 due to
the ready pair (ε,∅). It remains to show that �Rd is not included in �Div. For this, we refer
to the EIOs Q5 and Q6 in Fig. 7, where Q5 �Rd Q6 but Q5 ��Div Q6. Note that Q6 also has
the ready pair (ε, {τ }) by staying in its initial state.

ready simulation

ready semantics

quiescence semantics

CJK−semantics

divergence semantics

error semantics

(see upper spectrum)
IA−simulation

(see upper spectrum)

Fig. 6 Linear-time spectrum: lower half of the IA-spectrum

123

532 W. Vogler, G. Lüttgen

τ

τ

τ
o

o, o’

1
Q

Q
5 τ

o, o’τ
2

Q o

τ

oQ
4

τQ
6

o

τ

3
Q o

Fig. 7 Example EIOs for comparing the linear-time preorders. (No state above is an error state.)

The other counterexamples for failing inclusions are given in [38]. It might be instructive
to recall why �Div is not included in any of the other preorders. Simply take Q5 and the
div-equivalent EIO consisting of a single, initial error-state. ��

5 Branching-time preorders

This section develops the branching-time spectrum for IA. It first recalls de Alfaro and Hen-
zinger’s original IA-refinement [12], as well as their notion of alternating simulation that
they adopted four years later in [13]. Whereas the former preorder is defined on general IA,
the latter requires input-determinism in order to be a precongruence for parallel composi-
tion. Possibly, the former preorder was abandoned by de Alfaro and Henzinger as parallel
composition is not associative in the setting of [12], unless our proper pruning is applied or,
alternatively, the setting is restricted to input-deterministic IA as in [13] (cf. Sect. 2). Below,
we first characterize both preorders in terms of standard simulations (see Theorems 42, 45),
discuss a couple of preorders studied by Göhrle [21] that lie in-between, and adapt ready
simulation to the IA-setting.We then introduce several bi-variant variations [3] of alternating
simulation, including IA-bisimulation. We conclude this section by proving that (almost) all
considered preorders are precongruences for IA, possibly under some restrictions, and by
presenting the branching-time IA-spectrum, for which we also study its relationships with
the linear-time spectrum of Sect. 4.

We start off by introducing several kinds of initial action set for a state p in a given IA P ,
which are needed in the definitions of the branching-time preorders:

I(p) =df {i ∈ I | p
i−→};

I∀(p) =df {i ∈ I | ∀p′. p
⇒ p′ implies p′ i−→};
O∃(p) =df {o ∈ O | ∃p′. p
⇒ p′ and p′ o−→}.

Intuitively, I∀(p) and O∃(p) capture the guaranteed inputs and possible outputs of p, resp.,
while I(p) ⊇ I∀(p) contains all inputs that are immediately enabled at p.

5.1 Original IA-refinement

We revisit the first refinement preorder devised by de Alfaro and Henzinger for IA [12],
which we call IA-refinement �IA. Our definition adopts the phrasing employed by Chilton
et al. [11]:

123

A linear-time branching-time perspective on interface… 533

Definition 38 (IA-refinement) For IAs P , Q with the same signature, R ⊆ P × Q is an
IA-simulation if the following conditions hold for all (p, q) ∈ R:

1. I∀(q) ⊆ I∀(p);
2. O∃(p) ⊆ O∃(q);
3. p
⇒ a−→ p′ implies ∃q ′. q
⇒ a−→ q ′ and (p′, q ′) ∈ R, for all a ∈ I∀(q) ∪ O∃(p).

P IA-refines Q, in signs P �IA Q, if (p0, q0) ∈ R for some IA-simulation R.

IA-refinement is a preorder and defined on the basis of a simulation with a couple of non-
standard features. First, the step of the implementation side requires one to also consider steps
with leading τ s; although τ -transitions do not have to be matched explicitly, in general many
more matches have to be found than is usual for a simulation. Furthermore, the step on the
specification side does not allow trailing τ s. Second, there is an unusual superset inclusion
on I∀(·). The idea is that I∀(·) contains the guaranteed inputs, and only the guaranteed inputs
in the specification are simulated. This is because the environment cannot rely on other inputs,
i.e., those that can be dropped after some τ -transitions. The environment does not send such
an input in order not to cause an error and, thus, the implementation does not have to provide
it. Finally, observe that the second condition follows from the third, so we ignore the former
in the following. We can also ignore O∃(p), replacing it by the output alphabet O in the third
condition.

Next, we define a standard simulation combined with the idea of guaranteed inputs, called
(input) acceptance refinement �acc, which turns out to characterize IA-simulation. Our def-
inition closely resembles I4-refinement �4

sacc of Göhrle’s Master’s thesis [21]. Indeed, his
definition differs only in the first condition from ours, where he demands I∀(q) ⊆ I(p).

Definition 39 (Acceptance refinement) For IAs P , Q with the same signature, R ⊆ P × Q
is an (input) acceptance simulation if the following conditions hold for all (p, q) ∈ R:

1. I∀(q) ⊆ I∀(p);

2. p
i−→ p′ implies ∃q ′. q
⇒ i−→
⇒ q ′ and (p′, q ′) ∈ R, for all i ∈ I∀(q);

3. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→
⇒ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P acc-refines Q, in signs P �acc Q, if (p0, q0) ∈ R for some acceptance simulation R.

The term acceptance refinement uses acceptance sets, which is the name Hennessy adopted
for ready sets in the following context with standard labelled transition systems [23]: he
requires that an implementation state has a larger ready set than the specification state that it
refines. Hence, if the implementation refuses an action set, then the specification also refuses
this action set. This leads to a compact representation for checking failures inclusion [7].

For the proof of the coincidence of IA-refinement and acceptance refinement, we employ
a saturation on simulation relations:

Definition 40 (Saturation) For IAs P , Q and R ⊆ P × Q, we define:

RL =df {(p′′, q) | p
⇒ p′′ and (p, q) ∈ R};
RR =df {(p, q ′′) | q ′′
⇒ q and (p, q) ∈ R}.

RL and RR are called the left-saturation and right-saturation of R, resp.

Lemma 41 If R is an IA-simulation, then so are RL and RR.

123

534 W. Vogler, G. Lüttgen

Proof Regarding RL , consider: (1) I∀(q) ⊆ I∀(p) ⊆ I∀(p′′); (3) if p′′
⇒ a−→ p′, then
p
⇒ a−→ p′. An analogous proof works for RR . ��

We can now prove the desired characterization result, which was not noticed by Göhrle
[21]:

Theorem 42 (Coincidence I) �IA = �acc.

Proof For inclusion “⊆”, consider some IA-simulationR and its saturationRL according to
Definition 40. Assume (p′′, q) ∈ RL due to (p, q) ∈ R and further p′′ α−→ p′. For α �= τ ,
a suitable match exists due to the third condition of Definition 38. If α = τ , then p
⇒ p′
and (p′, q) ∈ RL by saturation. Hence, RL is an acceptance simulation.

Regarding inclusion “⊇”, let R be an acceptance simulation and consider its right-
saturation RR . Assume (p, q ′′) ∈ RR due to (p, q) ∈ R. First, we note that I∀(q ′′) ⊆
I∀(q) ⊆ I∀(p). Now, let p
⇒ p′′′ a−→ p′ for a ∈ I∀(q) ∪ O . By repeated application of

acceptance simulation, one obtains q
⇒ q ′′′
⇒ a−→ q ′′′′
⇒ q ′ for some q ′′′, q ′′′′ and
q ′ with (p′′′, q ′′′), (p′, q ′) ∈ R. Note that a ∈ I∀(q ′′′) if a ∈ I∀(q). Hence, q ′′
⇒ a−→ q ′′′′
and (p′, q ′′′′) ∈ RR , and RR is an IA-simulation. ��

5.2 Standard IA-refinement

Today’s understanding of the IA-setting considers alternating simulation �alt [13] as the
refinement preorder on IA:

Definition 43 (Alternating simulation) For input-deterministic IAs P , Q with the same sig-
nature, R ⊆ P × Q is an alternating simulation if the following conditions hold for all
(p, q) ∈ R:

1. q
i−→ q ′ implies ∃p′. p

i−→ p′ and (p′, q ′) ∈ R, for all i ∈ I ;

2. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P alt-refines Q, in signs P �alt Q, if (p0, q0) ∈ R for some alternating simulation R.

Note that this preorder is only defined on input-deterministic IA. This is because, otherwise,
alt-refines is not a precongruence for parallel composition, independent of the pruning used.
As an example, consider the IAs P , Q, R in Fig. 8 (cf. [30]), where P violates input-
determinism in its initial state. We would have P �alt Q because P can obviously match
Q’s i?-transition. However, the additional i?-branch of P means that P|R is undefined due
to backward propagation, whereas Q|R is defined.

We show how compositionality can be fixed by providing an alternative definition, which
yields a preorder that coincides with alternating simulation on input-deterministic IAs, but
is a precongruence for all IAs. The trick is to define a pure simulation that matches only the
inputs that are enabled in the specification, as demanded by the first condition of alternating

i? Q i? i!RP o!

i?

Fig. 8 Example illustrating the need for input-determinism in alt-refines. P and Q have the input alphabet {i}
and the output alphabet {o}, and the converse for R

123

A linear-time branching-time perspective on interface… 535

simulation. Our resulting strict acceptance refinement �sacc does this by adding a condition
on initial input action sets, this time concerning all initial input actions I(·) instead of only
the guaranteed input actions I∀(·) as above. We call our preorder strict, because more inputs
have to be matched than in acceptance refinement.

Definition 44 (Strict acceptance refinement) For IAs P , Q with the same signature, R ⊆
P × Q is a strict acceptance simulation if the following conditions hold for all (p, q) ∈ R:

1. I(q) ⊆ I(p);

2. p
i−→ p′ implies ∃q ′. q

i−→ q ′ and (p′, q ′) ∈ R, for all i ∈ I(q);

3. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P sacc-refines Q, in signs P �sacc Q, if (p0, q0) ∈ R for some strict acceptance simula-
tion R.

This definition was studied by Göhrle [21] under the name I1-refinement, where also the
desired coincidence result was proved:

Theorem 45 (Coincidence II) �alt = �sacc on input-deterministic IAs.

Proof Weshow that the two types of simulations are the same. For establishing inclusion “⊆”,
the first condition of alternating simulation implies the first condition of strict acceptance

simulation. Further, let p
i−→ p′ be the i-transition of p for some i ∈ I(q); this transition

is unique due to input-determinism. Then, q has a unique i-transition q
i−→ q ′. Hence, the

first condition of alternating simulation also implies the second condition of strict acceptance
simulation.

Regarding inclusion “⊇”, let q
i−→ q ′ be the unique i-transition of q. The first condition

of strict acceptance simulation implies that p has a (unique) i-transition p
i−→ p′; these

match each other by the second condition. ��

5.3 Further simulations: I2-, I3-refinement and ready simulation

Göhrle also introduced the preorders I2-refinement and I3-refinement [21], which lie in-
between I1- and I4-refinement. In the definitions of his refinements, he successively replaced
the conditions of I1 (sacc-simulation) by those of I4 (acc-simulation). This time, a more
generous use of τ s when matching a transition makes a difference.

Definition 46 (I2-refinement) For IAs P , Q with the same signature, R ⊆ P × Q is an
I2-simulation if the following conditions hold for all (p, q) ∈ R:

1. I(q) ⊆ I(p);

2. p
i−→ p′ implies ∃q ′. q

i−→ q ′ and (p′, q ′) ∈ R, for all i ∈ I(q);

3. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→
⇒ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P I2-refines Q, in signs P �2
sacc Q, if (p0, q0) ∈ R for some I2-simulation R.

Hence, I2-refinement is defined analogously to sacc-simulation, but it allows an ω-transition
to be matched by a weak ω-transition that does not only permit leading but also trailing τ s.
I3-refinement now relaxes the matching of inputs by permitting leading and trailing τ s:

123

536 W. Vogler, G. Lüttgen

Fig. 9 Example illustrating the
strict inclusion of I3-refinement
in I4-refinement [21]

ii oP

τ

Q

τ

Definition 47 (I3-Refinement) For IAs P , Q with the same signature, R ⊆ P × Q is an
I3-simulation if the following conditions hold for all (p, q) ∈ R:

1. I(q) ⊆ I(p);

2. p
i−→ p′ implies ∃q ′. q
⇒ i−→
⇒ q ′ and (p′, q ′) ∈ R, for all i ∈ I(q);

3. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→
⇒ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P I3-refines Q, in signs P �3
sacc Q, if (p0, q0) ∈ R for some I3-simulation R.

The following result was established in [21], when considering the coincidence of �acc

with �4
sacc (cf. Theorem 58):

Theorem 48 �sacc � �2
sacc � �3

sacc � �acc .

Göhrle showed that all these inclusions are indeed strict. Most important for our branching-
time spectrum is the fact that�sacc � �acc. To demonstrate this, we state in Fig. 9 an example
that highlights the difference between I3- and I4-refinement; note that I(q0) = {i} and
I∀(q0) = ∅.

Finally, we adapt ready simulation �rs [6] to our IA-setting, which requires related states
to have the same ready sets. In particular, all branching-time preorders discussed so far allow
one to omit any specified output in an implementation. This is often unsatisfactory in practice,
and ready simulation is our first proposal of a preorder that remedies the shortcoming:

Definition 49 (Ready simulation) For IAs P , Q with the same signature, R ⊆ P × Q is a
ready simulation if the following conditions hold for all (p, q) ∈ R:

1. I∀(q) ⊆ I∀(p);
2. R(p) = R(q);

3. p
i−→ p′ implies ∃q ′. q
⇒ i−→
⇒ q ′ and (p′, q ′) ∈ R, for all i ∈ I∀(q);

4. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→
⇒ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P rs-refines Q, in signs P �rs Q, if (p0, q0) ∈ R for some ready simulation R.

This preorder refines acc-refinement by adding the condition on ready sets, which are defined
as in Sect. 4. So far, outputs could be removed in a refinement step, whereas here we require
the same outputs (and τ s) to be enabled, without insisting that all subsequent behaviour is
preserved. Inclusion of τ in a ready set fits our notion of quiescence, so that rs-refinement
refines the linear-time ready semantics.

5.4 Bivariant simulations and IA-bisimulation

In the τ -free setting of [3], simulations are studied where some actions are simulated in one
direction, some in the opposite direction, and others in both directions; the latter are called
bivariant. As another proposal for not losing desired outputs during refinement, we define
the new preorders (strict) output-bivariant refinement that strengthen (strict) acceptance
refinement by requiring that specified outputs are kept; in contrast to rs-refinement, also their

123

A linear-time branching-time perspective on interface… 537

subsequent behaviour must be preserved. Observe that strict output-bivariant refinement
differs from output-bivariant refinement in the same way that sacc-refinement differs from
acc-refinement.

Definition 50 (Output-bivariant refinement) For IAs P , Q with the same signature, R ⊆
P × Q is an output-bivariant simulation if the following conditions hold for all (p, q) ∈ R:

1. I∀(q) ⊆ I∀(p);

2. p
i−→ p′ implies ∃q ′. q
⇒ i−→
⇒ q ′ and (p′, q ′) ∈ R, for all i ∈ I∀(q);

3. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→
⇒ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ ;

4. q
ω−→ q ′ implies ∃p′. p
⇒ ω̂−→
⇒ p′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P obs-refines Q, in signs P �obs Q, if (p0, q0) ∈ R for some output-bivariant simulationR.

Definition 51 (Strict output-bivariant refinement) For IAs P , Q with the same signature,
R ⊆ P × Q is a strict output-bivariant simulation if the following conditions hold for all
(p, q) ∈ R:

1. I(q) ⊆ I(p);

2. p
i−→ p′ implies ∃q ′. q

i−→ q ′ and (p′, q ′) ∈ R, for all i ∈ I(q);

3. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ ;

4. q
ω−→ q ′ implies ∃p′. p
⇒ ω̂−→ p′ and (p′, q ′) ∈ R, for all ω ∈ Oτ .

P sobs-refines Q, in signs P �sobs Q, if (p0, q0) ∈ R for some strict output-bivariant
simulation R.

In [37], sobs-refinement was studied in a restricted Petri net setting, which adopts certain
determinism requirements, and was called correct STG-decomposition. This decomposition
allows efficient asynchronous circuits to be developed from large, monolithic specifications.
Here, the compatibility as in IA is crucial, because asynchronous circuits cannot deal with
unexpected inputs [16].

Analogously to output-bivariance, we define a version where inputs are bivariant. This is
essentially sacc-refinementwith the additional condition onmatching a specification’s inputs.
Because the matching of such inputs should be direct, i.e., without leading and trailing τ s,
we only define a strict variant, called input-bivariant refinement �ibs. Note that the added
condition is stronger than the condition I(q) ⊆ I(p) of sacc-refinement, which can thus be
omitted. Obviously, �ibs ⊆�sacc.

Definition 52 (Input-bivariant refinement)For IAs P , Q with the same signature,R ⊆ P×Q
is an input-bivariant simulation if the following conditions hold for all (p, q) ∈ R:

1. p
i−→ p′ implies ∃q ′. q

i−→ q ′ and (p′, q ′) ∈ R, for all i ∈ I(q);

2. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→ q ′ and (p′, q ′) ∈ R, for all ω ∈ Oτ ;

3. q
i−→ q ′ implies ∃p′. p

i−→ p′ and (p′, q ′) ∈ R, for all i ∈ I .

P ibs-refines Q, in signs P �ibs Q, if (p0, q0) ∈ R for some input-bivariant simulation R.

Observe that allowing trailing τ s in the third condition above would not only deviate from
alternating simulation, the resulting refinement would also fail to be transitive and, thus, to
be a preorder. Consider the example in Fig. 10: input i of P matches the first i of Q, and Q

123

538 W. Vogler, G. Lüttgen

RiQ iτiP

i

i
i

iτ

Fig. 10 Problem regarding the allowance of trailing τ s in the third condition of Definition 52

matches with the lower branch of R. Now, the first i in the upper branch of R is matched
by iτ in Q, but cannot be matched in P . Hence, if additional τ s are allowed to match some
action in one direction, also single τ s should be matched in this direction.

The strongest behavioural relation typically studied in a linear-time branching-time spec-
trum [42] is the equivalence bisimilarity a.k.a. observation equivalence [32,34], i.e., a
mutually recursive simulation. Our variant ≈ of bisimilarity does not permit extra τ s when
matching inputs and only leading τ swhenmatching outputs, so that≈ refines sacc-refinement
and our bivariant refinements:

Definition 53 (IA-bisimilarity) For IAs P , Q with the same signature, R ⊆ P × Q is an
IA-bisimulation if the following conditions hold for all (p, q) ∈ R:

1. p
i−→ p′ implies ∃q ′. q

i−→ q ′ and (p′, q ′) ∈ R;

2. p
ω−→ p′ implies ∃q ′. q
⇒ ω̂−→ q ′ and (p′, q ′) ∈ R;

3. q
i−→ q ′ implies ∃p′. p

i−→ p′ and (p′, q ′) ∈ R.

4. q
ω−→ q ′ implies ∃p′. p
⇒ ω̂−→ p′ and (p′, q ′) ∈ R.

P is IA-bisimilar to Q, in signs P ≈ Q, if (p0, q0) ∈ R for some IA-bisimulation R.

5.5 Precongruence results

We now give a concise proof that the branching-time preorders presented above are (mostly)
precongruences. The precongruence results for de Alfaro and Henzinger’s preorders were
stated in [12,13], resp., for a binary parallel composition where synchronized actions are
hidden. The precongruence proofs can be found, e.g., in Göhrle’s work [21] for a slightly
different but equivalent characterization of IA-refinement (cf. Theorems 42, 58), and in
[30] for alternating simulation. These results are re-proved here for our multicast parallel
operator |, and the result for alternating simulation is extended to our notion of sacc-refinement
(cf. Theorem 45). Because of Theorems 42 and 45, we do not consider IA-refinement and
alternating simulation in the following theorem:

Theorem 54 (Precongruence for IA-parallel composition) Let � be any one of the preorders
except for �3

sacc and �obs. Then, for all IAs P, Q, R, where Q, R are composable and
compatible and P � Q, we have that P, R are composable and compatible and that P|R �
Q|R. For �sobs, this only holds if Q is input-deterministic.

Before proving this theorem, we first note that Göhrle also showed that I2- and I3-refinement
are precongruences for the binary parallel operator [21]. However, I3-refinement is only a
precongruence, if the pruning involved is further strengthened (cf. also [8]); it also fails to be
a precongruence for the operator | studied here. This can be seen in Göhrle’s example that is
reproduced in Fig. 11, where P �3

sacc Q since P’s i?-transition can be matched by the τ - and
the i-transition of Q. However, when composing both IAs with IA R that has no behaviour

123

A linear-time branching-time perspective on interface… 539

RP i?

RP | i?

i? i’?Q

τ i? o!

RQ| i? i’?

τ

Fig. 11 Example illustrating the precongruence defect for I3-refinement for general IAs, where the only action
in the alphabet of R is output o

Rb!P a? Q
1

a?

a?

b!

Q
3

τ

a?

a? b!Q
2

τ b!a?

τ

R|P b!a! Q
1

R| a!

a!

b!

a!

Fig. 12 Example illustrating the precongruence defects for the output-bivariant preorders

but input alphabet {o}, the o!-transition raises an error and, thus, the preceding i?-transition
is cut by pruning. Hence, P|R ��3

sacc Q|R.
Regarding our output-bivariant preorders, the example IAs P , Q1, R in Fig. 12 testify

to the precongruence defect of �sobs (and �obs) in the general case. The problem is that
the choice between the initial a?-transitions of Q1 does not matter for �sobs (and �obs);
however, after synchronization, these inputs are essentially turned into outputs and the lower
a!-transition has to be matched. While this defect disappears for �sobs when restricting the
specification side to input-deterministic IAs, the same is not true for �obs. This can be seen
(a) from IAs P , Q2, R, where Q2 matches P’s a?-transition by the a- and the upper trailing
τ -transition of Q2, and (b) from IAs P , Q3, R, where Q3 matches P’s a?-transition by
the leading τ - and the upper a-transition of Q3. To avoid this problem, one would need to
significantly change the second condition of Definition 50, which seems to be too drastic to
us.

The proof of Theorem 54makes use of the following two lemmas. The first lemma collects
properties that are shared among several preorders, for ease of reference:

Lemma 55 Let � be any one of the preorders except for �3
sacc and �obs, and let R be a

�-simulation for IAs P, Q such that (p, q) ∈ R.

1. If p
ω−→ p′ then, in all cases, ∃q ′. q
⇒ ω̂−→
⇒ q ′ with (p′, q ′) ∈ R.

2. If p
i−→ p′ then, in all cases, ∃q ′. q
⇒ i−→
⇒ q ′ with (p′, q ′) ∈ R or, alternatively,

∃q ′. q
⇒ q ′ � i−→.

3. If p � i−→, then ∃q ′. q
⇒ q ′ � i−→.

123

540 W. Vogler, G. Lüttgen

4. If � is �2
sacc or requires one to match p

ω−→ p′ with some q
⇒ ω̂−→ q ′, then it also

requires one to match p
i−→ p′ with q

i−→ q ′ for i ∈ I(q).

If � is not �2
sacc and the first match is some q
⇒ ω̂−→
⇒ q ′, then the second one is

some q
⇒ i−→
⇒ q ′ for i ∈ I∀(q).

5. If I∀(·) matters, then a transition p
i−→ p′ with i ∈ I∀(q) is matched with some

q
⇒ i−→
⇒ q ′; otherwise, the match is some q
i−→ q ′ for i ∈ I(q).

Proof Let �, R and (p, q) ∈ R be as stated in the lemma.

1. Obvious. (Note that this claim also holds for the preorders that do not allow trailing τ s.)
2. We could have i /∈ I(q) if I(·) matters, or i /∈ I∀(q) if I∀(·) matters. In both cases,

the second alternative holds. Otherwise, there exists some q ′ such that q
i−→ q ′ or

q
⇒ i−→
⇒ q ′ with (p′, q ′) ∈ R, so the first alternative holds.

3. We have q � i−→ if I(q) ⊆ I(p) or Definition 52(3) or 53(3) applies. Otherwise, we get

q
⇒ q ′ � i−→ for some q ′ due to I∀(q) ⊆ I∀(p).

4. For ≈ and the first part of the statement, observe that p
i−→ p′ implies i ∈ I(q) by

Definition 53(1).
5. See the proof for (4). ��

Lemma 56 Let � be any one of the above preorders except for �3
sacc and �obs, and let P,

Q, R be IAs with P � Q due to the �-simulation R and such that Q, R are composable. If
((p, r), (q, r)) ∈ ̂R =df {((p, r), (q, r)) | (p, q) ∈ R} and (p, r) is illegal, then so is (q, r).

Proof First observe that P , R are composable because P , Q have the same signature (I , O).
We now proceed by induction on the length of a run from (p, r) to an error state of P ⊗ R.
In the base case, (p, r) is an error state and there are two sub-cases to distinguish:

– p
a−→ and r � a−→ with a ∈ O ∩ IR : Then, q
⇒ q ′ a!−→ for some q ′ by Lemma 55(1).

Hence, (q, r)
⇒ (q ′, r) and (q ′, r) is an error. Thus, (q, r) is illegal.

– p � a−→ and r
a−→ with a ∈ I ∩ OR : By Lemma 55(3), there exists some q ′ such that

q
⇒ q ′ � a?−→, and (q, r) is illegal as above.

For the induction step, consider the first transition (p, r)
ω−→ (p′, r ′) of a run of local

transitions to an error state, i.e., (p′, r ′) is illegal due to a shorter run. There are three sub-
cases:

– p
ω−→ p′, r ′ = r and ω ∈ Oτ\AR : Then, q
⇒ ω̂−→
⇒ q ′ for a q ′ with (p′, q ′) ∈ R

by Lemma 55(1). Hence, (q, r)
⇒ ω̂−→
⇒ (q ′, r) with ((p′, r), (q ′, r)) ∈ ̂R. State
(q ′, r) is illegal by induction hypothesis, and so is (q, r).

– p′ = p, r
ω−→ r ′ and ω ∈ ORτ\A: Then, (q, r)

ω−→ (q, r ′) and ((p, r ′), (q, r ′)) ∈ ̂R,
and we are done as above.

– p
a−→ p′, r

a−→ r ′, a ∈ O ∪ OR : Here, we have to distinguish two sub-cases.

– a ∈ O ∩ IR : q
⇒ a!−→
⇒ q ′ for some q ′ and (p′, q ′) ∈ R by Lemma 55(1). Hence,

(q, r)
⇒ a!−→
⇒ (q ′, r ′) and ((p′, r ′), (q ′, r ′)) ∈ ̂R, so we are done as above.

– a ∈ I ∩ OR : By Lemma 55(2), we might have q
⇒ a?−→
⇒ q ′ and (p′, q ′) ∈ R

for some q ′. Then, (q, r)
⇒ a!−→
⇒ (q ′, r ′) with ((p′, r ′), (q ′, r ′)) ∈ ̂R, and we

123

A linear-time branching-time perspective on interface… 541

are done. Otherwise, q
⇒ q ′ � a−→ for some q ′, and (q, r) is illegal as in the second
base case. ��

Proof of Theorem 54 The following proof mainly works for �obs and �sobs, too. In each of
these cases, one proof part fails as indicated below; for �sobs, the defect disappears when
requiring input-determinism of the specification Q. Now, let � be one of the refinements
mentioned in the theorem and consider R and ̂R as in Lemma 56. The theorem’s state-
ment on composability is trivial because P , Q have the same signature (I , O). Further, we
write (IQ R, OQ R) for the signature of Q ⊗ R. Lemma 56 shows the theorem’s statement
regarding compatibility.

Now, we restrict ̂R to those pairs ((p, r), (q, r)) where q|r , and hence p|r , is defined; we
call the restriction R′. The sequel considers some ((p, r), (q, r)) ∈ R′ and has a sub-case
for each requirement appearing in the definition of at least one of our relations:

(Pω) Assume p|r ω−→ p′|r ′. Then, � requires q|r
⇒ ω̂−→ q ′|r ′ (or q|r
⇒ ω̂−→
⇒
q ′|r ′, which can mostly be handled analogously) for some q ′ with (p′, q ′) ∈ R. There
are four sub-cases needed to show this:

– p
ω−→ p′, r ′ = r and ω /∈ AR : Then, we have q
⇒ ω̂−→ q ′ for some q ′ with

(p′, q ′) ∈ R, implying q|r
⇒ ω̂−→ q ′|r , where all states on this run are defined
since q|r is.

– r
ω−→ r ′, p′ = p and ω /∈ A: Easier.

– p
ω−→ p′, r

ω−→ r ′ and ω ∈ O ∩ IR : Similar to the first sub-case.
– p

ω−→ p′, r
ω−→ r ′ and ω ∈ I ∩ OR : If q
⇒ q ′ � ω−→, then we would have

(q, r)
⇒ (q ′, r). The latter state would be an error, contradicting that q|r is defined.
Thus, ω ∈ I∀(q) ⊆ I(q).

By Lemma 55(4), there is q
ω−→ q ′ with (p′, q ′) ∈ R. Hence (also for �2

sacc), we

have q|r ω̂−→ q ′|r ′ (cf. the first sub-case) and are done.

In the case in brackets, there is some q ′ with q
⇒ ω−→
⇒ q ′ and (p′, q ′) ∈ R.

Thus, we obtain q|r
⇒ ω̂−→
⇒ q ′|r ′ (cf. the first sub-case).

(I∀(·)) Assume that � requires I∀(q|r) ⊆ I∀(p|r). In a product like P ⊗ R, we have
I∀((p, r)) = ((I∀(p)\IR ∪ I∀(r) \ I) ∩ IQ R) ∪ (I∀(p) ∩ I∀(r)); in particular, note that
some i ∈ I∀(p)\IR could be an output of the composition, so we need to intersect
with IQ R . Therefore, I∀(q|r) ⊆ I∀(p|r) could only fail for some i ∈ IQ R if p|r
⇒
p′|r ′ � i−→ due to pruning, although i ∈ I∀((p, r)) ⊆ I∀((p′, r ′)). This only happens if

(p′, r ′) i−→ (p′′, r ′′) for some illegal (p′′, r ′′). From (Pω), we get q|r
⇒ q ′|r ′ with
(p′, q ′) ∈ R. Further, consider the following three sub-cases:

– If the i-transition is due to r ′ only, we have p′′ = p′ and (q ′, r ′) i−→ (q ′, r ′′).
Because (p′, r ′′) is illegal and ((p′, r ′′), (q ′, r ′′)) ∈ ̂R, the latter pair is also illegal
and also i /∈ I∀(q|r).

123

542 W. Vogler, G. Lüttgen

– If the i-transition is due to p′ only, i.e., if r ′′ = r ′ and p′ i−→ p′′, we may have

q ′
⇒ q ′′ � i−→ by Lemma 55(2). Then, q ′|r ′
⇒ q ′′|r ′ � i−→ and i /∈ I∀(q|r).

Otherwise, q ′
⇒ i−→
⇒ q ′′ and (p′′, q ′′) ∈ R. Hence, (q ′, r ′)
⇒ i−→
⇒
(q ′′, r ′) and ((p′′, r ′), (q ′′, r ′)) ∈ ̂R. Again, (q ′′, r ′) is illegal, and so is the state
after the i-transition. The state before the i-transition is not illegal because q ′|r ′ is
defined. Thus, i /∈ I∀(q|r).

– If p′ i−→ p′′ and r ′ i−→ r ′′, we can argue as in the previous sub-case.

(I(·)) Assume � requires I(q|r) ⊆ I(p|r). This case is similar but much simpler than
Case (I∀(·)) above, because p = p′, r = r ′ and, in the second and third sub-case of (I∀(·)),
one just has to apply Lemma 55(5) instead of (2), leading directly to the “otherwise” case.

(Pi) Let p|r i−→ p′|r ′, and assume that � requires the proof that q|r
⇒ i−→
⇒ q ′|r ′

for i ∈ I∀(q|r) (or just q|r i−→ q ′|r ′ for i ∈ I(q|r)) by Lemma 55(5), for some q ′ with
(p′, q ′) ∈ R. There are three sub-cases:

– p
i−→ p′, r ′ = r and i /∈ AR : We have i ∈ I∀(q) by i ∈ I∀(q|r), and further

q
⇒ i−→
⇒ q ′ with (p′, q ′) ∈ R. Then, q|r
⇒ i−→
⇒ q ′|r . The states before
the i-transition exist because q|r is defined, and the states after because i ∈ I∀(q|r).

Theother variantwithq|r i−→ q ′|r is easier,where the latter state exists by i ∈ I(q|r).

– r
i−→ r ′, p′ = p and i /∈ A: Then, (q, r)

i−→ (q, r ′) and state q|r ′ is defined by
i ∈ I(q|r) ⊇ I∀(q|r).

– p
i−→ p′ and r

i−→ r ′: Essentially as in the first sub-case.

(Qω) Assume q|r ω−→ q ′|r ′ and that, as in �obs, preorder � requires p|r
⇒ ω̂−→
⇒
p′|r ′ (or p|r
⇒ ω̂−→ p′|r ′, for �sobs and ≈) for some p′ with (p′, q ′) ∈ R. We
distinguish four sub-cases:

– q
ω−→ q ′, r ′ = r and ω /∈ AR : Then, p
⇒ ω̂−→
⇒ p′ with (p′, q ′) ∈ R (the other

case is almost the same). Thus, p|r
⇒ ω̂−→
⇒ p′|r and (p′|r , q ′|r) ∈ R′, and all
states are defined since p|r is.

– r
ω−→ r ′, q ′ = q and ω /∈ A: Easier.

– q
ω−→ q ′, r

ω−→ r ′ and ω ∈ O ∩ IR : As in the first sub-case.
– q

ω−→ q ′, r
ω−→ r ′ and ω ∈ I ∩ OR : For ≈, we have p

ω−→ p′ with (p′, q ′) ∈ R;
hence, p|r ω−→ p′|r ′ as above. For �sobs, in case that P is input-deterministic, p

has an ω-transition, and this must match q
ω−→ q ′ in the same way. (Note that this

sub-case fails for �sobs in general and also for �obs.)

(Qi) Let q|r i−→ q ′|r ′ and assume, as is the case for �ibs and ≈, that � requires

p|r i−→ p′|r ′ for some p′ with (p′, q ′) ∈ R. Hence, we have three sub-cases:

– q
i−→ q ′, r ′ = r and i /∈ AR : Then, there exists some p′ such that p

i−→ p′ and
(p′, q ′) ∈ R. Thus, p|r i−→ p′|r ′ and the latter state is defined by Lemma 56.

– r
i−→ r ′, q ′ = q and i /∈ A: Obvious.

– q
i−→ q ′, r

i−→ r ′ and i ∈ I ∩ IR : Similar to the first sub-case.

123

A linear-time branching-time perspective on interface… 543

(R(·)) For �rs, observe that R(q|r) = R(q) ∪ R(r) because, if an output o of, say, Q
is in R(q) and I(r), then r must provide its input o; otherwise, (q, r) would be an error
state. Now, R(q|r) = R(q) ∪ R(r) = R(p) ∪ R(r) = R(p|r). ��
We finish this section by establishing the precongruence property for hiding:

Theorem 57 (Precongruence for hiding) Let � be any one of the above branching-time
preorders. Then, P/H � Q/H for all IAs P, Q with P � Q and all H ⊆ O.

Proof Assume that P � Q holds due to �-simulation R. We show that R is also suitable
to prove the theorem’s statement. First observe that all conditions, except for condition
I∀(q) ⊆ I∀(p), are obviously preserved. Hence, we establish this remaining condition:

If i ∈ I∀(p) is lost in P/H , then there is some run in P from p to p′ with actions in H ∪{τ }
such that p′ � i−→. This run is matched by q to reach some state q ′ with (p′, q ′) ∈ R. By

Lemma 55(3), there exists some q ′′ such that q ′
⇒ q ′′ � i−→. Thus, i /∈ I∀(q) in Q/H . ��

5.6 The branching-time IA-spectrum

Overall, our spectrum of branching-time preorders on IA is as shown in Fig. 13; again, arrows
display inclusions between the preorders. I4-refinement is not depicted, because it coincides
with acc-refinement. Recall that the definition of Göhrle’s �4

sacc [21] only differs from �acc

in the first condition, where he demands I∀(q) ⊆ I(p).

Theorem 58 �4
sacc =�acc on all IAs.

Proof Clearly, each acceptance simulation is an I4-simulation. Conversely, consider some
I4-simulation R with (p, q) ∈ R and some input i ∈ I∀(q)\I∀(p). Then, there is some p′

input−

input−bivariant refinement

output−bivariant refinement ready simulation

IA−simulation

alternating simulation

strict output−bivariant refinement

acceptance refinement

I2−refinement

I3−refinement

strict acceptance refinement

IA−bisimilarity

determinism

Fig. 13 Branching-time spectrum: upper half of the IA-spectrum

123

544 W. Vogler, G. Lüttgen

such that p
⇒ p′ but p′ � i−→. Now, p
⇒ p′ can be matched according to I4-simulation
by q
⇒
⇒ · · ·
⇒ q ′ for some q ′ satisfying (p′, q ′) ∈ R. Hence, i ∈ I∀(q) ⊆ I∀(q ′)
but i /∈ I(p′), which is a contradiction to the first condition of I4-simulation. Thus, R is an
acceptance simulation. ��

The strict inclusions between sacc- and acc-refinement have been the subject of Theo-
rem 48 above. The other implications follow because, in each case, a condition is added
for the finer refinement. The only exception is the implication from sobs-refinement to obs-
refinement:

Theorem 59 �sobs ��obs .

Proof For the proof, we define an OB4-simulation just as an output-bivariant simulation,
except that we require I∀(q) ⊆ I(p) in the first condition. Clearly, each strict output-bivariant
simulation R is an OB4-simulation, because the allowed matchings are more generous and
I∀(q) ⊆ I(q); the latter also implies that fewer inputs have to be matched in the OB4-
simulation. Now, we repeat the arguments in the proof of Theorem 58 for OB4 in place of I4,
obtaining that R is an output-bivariant simulation. Inequality follows from Lemma 60(d)
below. ��

Also the other inclusions omitted in Fig. 13 fail:

Lemma 60 (Failing implications) The following properties hold:

(a) �rs is not included in �3
sacc;

(b) �rs is not included in �obs;
(c) ≈ is not included in �rs;
(d) �obs is not included in �3

sacc;
(e) �ibs is not included in �obs;
(f) �sobs is not included in �ibs.

Proof First, we prove Parts (a)–(c): (a) Consider P , Q of Fig. 9, where P �rs Q due to
i /∈ I∀(q0), such that the i-transition of p0 does not have to bematched. However, P ��3

sacc Q,
as pointed out before. (b) Let P1, P2 as in Fig. 14. Then, P1 �rs P2 due to the upper branch
of P2, but P1 ��obs P2 since the lower branch cannot be matched. (c) For IAs P3, P4 in
Fig. 14, P3 ≈ P4, but P3 ��rs P4 because o /∈ R(p0).

Second, we consider Parts (d) and (e): (d) The same example as in Part (a) applies;
P �obs Q holds for the same reason. (e) Consider the example of Part (b) again, which does
not have any inputs.

Last, for Part (f) and P5, P6 in Fig. 14, obviously P5 �sobs P6, but P5 ��ibs P6 due to the
lower branch of P6. ��

i

P
3

τ o P
4

oP
1

o o

i oP
5

P
2

o o

o

P
6

i o

Fig. 14 Example IAs for comparing the branching-time preorders

123

A linear-time branching-time perspective on interface… 545

The above properties of our preorders yield the branching-time spectrum for IA:

Theorem 61 (Branching-time IA spectrum) All inclusions between our branching-time pre-
orders are depicted in Fig. 13 as arrows; in particular, these inclusions are strict.

Proof We have shown above that the indicated implications hold. Parts (a)–(c) of Lemma 60
settle themissing implications around�rs. Parts (d) and (e) testify to themissing implications
for �obs, but Part (e) also shows that �ibs is not included in �sobs. By Part (f), the proof is
finished. ��

Finally, we remark that, when restricting ourselves to input-deterministic IAs, strict accep-
tance refinement and input-bivariant refinement coincide:

Proposition 62 �sacc = �ibs on input-deterministic IAs.

5.7 Completing the spectrum

We conclude the technical part of this article by connecting our branching-time spectrum for
IA to the linear-time spectrum studied in Sect. 4, recalling that any IA can be understood as
an EIO (see Remark 4).

Theorem 63 �acc ⊆ �E .

Proof Let P , Q be IAs satisfying P �acc Q, and let P ′, Q′ be the corresponding EIOs with
an additional, canonical error state. Consider a prefix-minimal error trace wi of P ′, which
must end with an input transition to the error state. The same run exists in P , except for the
last i-transition. In principle, due to acc-refinement, a run with the same w exists in Q. This
fails only if an intermediate i ′-transition along the run in P is not matched in Q because it
is not guaranteed in the resp. state q in Q. In this case, we extend the run in Q from q to
a state q ′ that does not enable i ′. Thus, q ′ has an i ′-transition to the error state of Q′, and
we have a prefix w′ of w that is an error trace in Q′. If the translated run exists, i cannot be
guaranteed in the last state, because i is missing in P . Now, we repeat the argument for this
last state and obtain that wi is an error trace of Q′.

A similar argument holds for the languages: for a trace w in P ′, we either find the same
trace in Q′ or an error trace that is a prefix of w. ��

Next, we consider our two ready preorders:

Theorem 64 (IA-spectrum) �rs ⊆ �Rd .

Proof Let P �rs Q due toR, and considerwi ∈ StET(P) = PrET(P) due to p0
w
⇒ p

i−→
e. We proceed by induction on the length of the underlying run. Assume that p0

v
⇒ p′ due
to a prefix of this run, and we have q0

v
⇒ q ′ for some q ′ with (p′, q ′) ∈ R due to induction
or because p′ = p0 and q ′ = q0. Let p′ α−→ p′′ be the next transition. If α ∈ Oτ , then

q ′ α̂
⇒ q ′′ for some q ′′ satisfying (p′′, q ′′) ∈ R. The same holds for α ∈ I , except if
α /∈ I∀(q ′). In the latter case, vα ∈ ET(Q) for the prefix vα of w, and we are done. If the
latter never happens, we get q0

w
⇒ q with (p, q) ∈ R, and i /∈ I∀(q) due to i /∈ I∀(p).

Thus, q
⇒ i−→ e and wi ∈ ET(Q). Now, it suffices to consider some (w, X) ∈ StRP(P)

due to p0
w
⇒ p. As above, (w, X) ∈ RP(Q) due to flooding or q0

w
⇒ q with (p, q) ∈ R
and R(q) = R(p) = X . ��

123

546 W. Vogler, G. Lüttgen

o

R i

i

o

o’

i
5

i

i

o’

oi

i

R
6

R τ1
R τ

2

i

i
R

o’

o

4
R i

3

o’

Fig. 15 Example IAs (EIOs) for comparing the linear-time and branching-time preorders

However, many inclusions between the preorders presented in this article are invalid, due
to following lemma:

Lemma 65 (Failing implications) The following properties hold:

(a) �rs is not included in �Div;
(b) ≈ is not included in �Div;
(c) ≈ is not included in �Qui;
(d) �CJK is not included in �acc;
(e) �Rd is not included in �acc.

Proof Regarding Parts (a)–(c), consider IAs R1, R2 in Fig. 15. These are bisimilar, and
R1 �rs R2 due to R2 staying put in the initial state. However, R1 ��Div R2 due to R1 being
divergent, and R2 ��Qui R1 because only R2 has a quiescent trace.

Regarding Part (d), examine IAs R3, R4 of Fig. 15. They have the same language and
quiescent traces, no (strict) divergent traces, and the same error traces due to the missing
input transitions to the implicit canonical error state. Hence, they are CJK-equivalent, but the
i-transition of R3 cannot be properly simulated by R4, i.e., R3 ��acc R4.

Regarding Part (e), the IAs R5, R6 in Fig. 15 satisfy R5 �Rd R6 but R5 ��acc R6, analogous
to the argument above for Part (d). ��

This lemma now allows us to conclude this section with the desired theorem for corrob-
orating our IA-spectrum:

Theorem 66 (IA-spectrum)All inclusions between the linear-time and branching-time refine-
ment are depicted using dashed arrows in Fig. 6; in particular, these inclusions are strict.

Proof The positive statements are proved in Theorems 63 and 64. Furthermore, �rs does not
imply any other linear-time preorders by Lemma 65(a). The other branching-time preorders
do not imply any linear-time preorder except �E , and the linear-time preorders do not imply
any branching-time preorder. ��

6 Discussion

De Alfaro and Henzinger’s IA-setting and its preorders IA-simulation and alternating sim-
ulation have influenced the field of interface theories and are closely related to a research
direction in model-based testing. In the former field, the majority of recent interface theo-
ries are based on Modal Transition Systems (MTS) and the modal refinement preorder [28],

123

A linear-time branching-time perspective on interface… 547

which is more expressive than IA [29]. In the latter field, the ioco approach [39] uses a
trace-comparing relation not unlike alternating simulation.

MTS-based interface theories Refinement in the IA-setting is characterized by allowing
the addition of inputs and the removal of outputs, which implies that, e.g., the single-state
interface with a self-loop for every input action and no further transition refines any interface.
Thus, output actions in IA specify permitted but not required behaviour. This is why recent
research [4,9,19,29,35] has focused on combining IA [13] and Modal Transition Systems
(MTS) [28]; MTS allows one to specify required and optional behaviour, for any action.
Taking stepwise decisions on the optional behaviour permits a component-based, incremental
design, which is supported in MTS by the compositional modal refinement preorder.

This research on combining IA and MTS has led to Modal Interface Automata (MIA) [9],
which resolves the conflict between unspecified inputs being allowed in IA but forbidden
in MTS and does away with the input-determinism requirement of IA. MIA fixes various
shortcomings of earlier works: modal refinement in the IOMTS-setting of Larsen et al.
[29] is not a precongruence for parallel composition; the MI-setting of Raclet et al. [35]
considers deterministic interfaces only; theMIO-setting of Bauer et al. [4] adopts pessimistic
compatibility that deems a composition undefined as soon as some error can potentially
occur in some system environment. Not unlike EIO [10,38], there is also an error-aware
variant EMIA [19] of MIA, which leaves error states explicit and does not prune them
away. Thereby, one may distinguish potential errors that can be resolved by refinement, from
actual, unresolvable errors that arise when an output is required but the corresponding input
is forbidden.

Finally, it should be noted that all MTS-based theories mentioned above are interface
theories in the sense that they are equipped also with a conjunction and a quotienting oper-
ator. Conjunction is necessary when reasoning about a component that must satisfy several
interfaces, while quotienting enables one to calculate residual interfaces when given some
partial system implementation.

The ioco approach This approach [39] for model based testing is somewhat related to
interface automata, because it allows one to implement unspecified inputs and to ignore
specified outputs, at least to some degree. One difference is that the ioco-relation compares
an implementation to a specification, i.e., the approach does not aim at stepwise refinement.
Furthermore, an implementation is required to be input-enabled. Another and essential dif-
ference is that it suffices to provide an input via some preceding τ s; there is no concept
of communication error and, in particular, no concern about an input not being provided
immediately (cf. [40]).

An additional feature of the ioco-setting is that each quiescent state is decorated with a
δ-labelled loop. (Usually, these loops are left implicit.) For δ-decoratedmodels without τ , it is
shown in [1], for an input-deterministic implementation P and adeterministic specification Q,
that P ioco-implements Q if and only if P �alt Q. Conceptually, the ioco-relation compares
traces of P and Q and, under the restrictions mentioned, it coincides with quiescence-,
divergence- and CJK-refinement due to the δ-transitions. This does not hold without deter-
minism, because our strict quiescence traces just end in a quiescent state, whereas a trace in
the ioco-approach can additionally inform about quiescent states passed along the way.

Motivated by the ioco-approach, a refinement based on alternating simulation is introduced
in [22] under the name of iocos, which stands for ioco-simulation. The referenced paper
considers δ-decorated IAs without τ as models (and without distinguishing implementations
and specifications) and defines a natural variation of ioco for these models. The new iocos

123

548 W. Vogler, G. Lüttgen

coincides with �IA, except for the additional discrimination due to δ. It is shown in [22] that
iocos is finer than ioco and that it can be characterized with a testing scenario; a general
parallel composition is not considered.

The very recent paper [26] also looks at stepwise refinement in relation to the ioco-
approach and alternating simulation in a setting without parallel composition, precongruence
results and internal actions. It introduces input-failure refinement, which is another character-
ization of error-refinement as in [10,11], although this result is not formally stated or proven.
Taking also δ into account, this refinement fits another variant of ioco in the literature called
uioco.

7 Conclusions and future work

De Alfaro and Henzinger’s Interface automata (IA) [12] are a popular framework for for-
mally reasoning about the compatibility of concurrently interacting components, for which
a sizeable number of behavioural preorders have been proposed in the literature over the
years. In this article, we characterized and compared these preorders, both trace-based and
simulation-based preorders, so as to arrive at a linear-time branching-time spectrum for IA,
in analogy to the linear-time branching-time spectrum of van Glabbeek for ordinary labelled
transition systems [42]. This was done via a uniform and general notion of parallel composi-
tion that constitutes a multicast communication mechanism for synchronizing components,
as well as a hiding operator for action scoping. Alongside, we also explored several new
preorders for IA, based on ready semantics, ready simulation and bi-variant simulation.

An important insight obtained by our workwas that the problem in the original publication
on IA [12], namely that parallel composition is not associative, disappears if a proper pruning
of states that can locally reach an error state is applied, even for interfaces that are not
input-deterministic. Complementing the work of Göhrle [21], we characterized this original
preorder of [12], which is coarser than strict acceptance refinement, as a simulation-preorder
called acceptance refinement. Thereby, our framework of general interface automata and
acceptance refinement paves the way for further investigations into semantic theories for
interface automata, without the need for input-determinism.

Future work We propose to complete the presented IA-spectrum by using van Glabbeek’s
Linear-Time Branching-Time Spectrum II [42] as guidance. Our spectrum is currently miss-
ing, among other behavioural relations, ready trace semantics [33] and possible futures
semantics [36] in the lower, linear-time half and branching bisimulation [45] in the upper,
branching-time half. These have not yet been considered in the IA-literature.

Some of the linear-time preorders studied in this article, namely error semantics, quies-
cence semantics and divergence semantics, are supported by full-abstraction results. Such
results are closely related to observational justifications via testing or button pushing sce-
narios [15,41,42], which are missing for the remaining linear-time and all branching-time
preorders. It would be nice to improve the situation, e.g., using ideas of Abramsky [2].

Concerning the applicability of interface theories, we note that reasoning about communi-
cation errors is already employed in the design of asynchronous circuits, which are vulnerable
to unexpected inputs (see, e.g., [16,17]). We suggest that IA is developed further towards
practical applications in software engineering, for which one would need to consider at least
extensions of the model with data (see, e.g., [14,20,24]). As a final note, programming lan-
guages such as Go have been extended with session types; these check for communication
safety, which is related to communication error in IA [25,27].

123

Dedication We dedicate this article to Rob van Glabbeek, an exceptional researcher and
outstanding colleague, on the occasion of his 60th birthday. Foremost, we thank him for
the many fruitful discussions that we had on various topics in concurrency theory. We are

A linear-time branching-time perspective on interface… 549

also grateful for Rob’s strong dedication to the scientific community, which led him to
establish,with his own time andfinancial resources, theElectronic Proceedings in Theoretical
Computer Science (EPTCS) series, an international, refereed open access venue for the rapid
electronic publication of workshop and conference proceedings and other scientific works.

Acknowledgements We thank Ayleen Schinko and Simon Göhrle for their past contributions to a number of
results presented in this article. Moreover, we are grateful to the reviewers for their insightful suggestions.

References

1. Aarts, F., Vaandrager, F.: Learning I/O automata. In: CONCUR, volume 6269 of LNCS, pp. 71–85.
Springer (2010)

2. Abramsky, S.: Observation equivalence as a testing equivalence. Theoret. Comput. Sci. 53, 225–241
(1987)

3. Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino, M.: On the specification of
modal systems: a comparison of three frameworks. Sci. Comput. Program. 78(12), 2468–2487 (2013)

4. Bauer, S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refinement, and the
MIO Workbench. In: TACAS, volume 6015 of LNCS, pp. 175–189. Springer (2010)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinkemeier, P., Sangiovanni-
Vincentelli, A., Damm, W., Henzinger, T.A., Larsen, K.G.: Contracts for system design. Found. Trends
EDA 12(2–3), 124–400 (2018)

6. Bloom, B.: Ready Simulation, Bisimulation, and the Semantics of CCS-like Languages. PhD thesis, MIT
(1990)

7. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM
31(3), 560–599 (1984)

8. Bujtor, F.: Modal Interface Automata: A Theory for Heterogeneous Specification of Parallel Systems.
PhD thesis, Univ. Augsburg, Germany (October 2018). https://opus.bibliothek.uni-augsburg.de/opus4/
files/43805/Bujtor_Diss.pdf. Accessed 2 Feb 2020

9. Bujtor, F., Fendrich, S., Lüttgen, G., Vogler, W.: Nondeterministic modal interfaces. Theoret. Comput.
Sci. 642(C), 24–53 (2016)

10. Bujtor, F., Vogler, W.: Error-pruning in interface automata. Theoret. Comput. Sci. 597, 18–39 (2015)
11. Chilton, C., Jonsson, B., Kwiatkowska, M.: An algebraic theory of interface automata. Theoret. Comput.

Sci. 549, 146–174 (2014)
12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE, pp. 109–120. ACM (2001)
13. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of Software Intensive

Systems, pp. 83–104. Springer (2005)
14. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable interfaces. In: FroCoS,

volume 3717 of LNCS, pp. 81–105. Springer (2005)
15. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput. Sci. 34, 83–133

(1984)
16. Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. MIT

Press, Cambridge (1989)
17. Ebergen, J.C.: Arbiters: an exercise in specifying and decomposing asynchronously communicating com-

ponents. Sci. Comput. Program. 18(3), 223–245 (1992)
18. Fahrenberg, U., Legay, A.: A linear-time–branching-time spectrum for behavioral specification theories

(May 2019). Preprint submitted to J. Log. Algebr. Meth. Program. Available as arXiv:1604.06503v4
19. Fendrich, S., Lüttgen, G.: A generalised theory of interface automata, component compatibility and error.

Acta Inf. 56(4), 287–319 (2019)
20. Gareis, J., Lüttgen, G., Schinko, A., Vogler, W.: Interface automata for shared memory. In: Models,

Mindsets, Meta: The What, the How, and the Why Not? Essays Dedicated to Bernhard Steffen on the
Occasion of His 60th Birthday, volume 11200 of LNCS, pp. 151–166. Springer (2018)

123

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included in the

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://opus.bibliothek.uni-augsburg.de/opus4/files/43805/Bujtor_Diss.pdf
https://opus.bibliothek.uni-augsburg.de/opus4/files/43805/Bujtor_Diss.pdf
http://arxiv.org/abs/1604.06503v4

550 W. Vogler, G. Lüttgen

22. Gregorio-Rodríguez, C., Llana, L., Martínez-Torres, R.: Input-output conformance simulation (iocos) for
model based testing. In: FMOODS/FORTE, volume 7892 of LNCS, pp. 114–129. Springer (2013)

23. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
24. Holík, L., Isberner, M., Jonsson, B.: Mediator synthesis in a component algebra with data. In: Correct

System Design, volume 9360 of LNCS, pp. 238–259. Springer (2015)
25. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIGPLAN Not. 43(1),

273–284 (2008)
26. Janssen,R.,Vaandrager, F.W., Tretmans, J.: Relating alternating relations for conformance and refinement.

In: IFM, volume 11918 of LNCS, pp. 246–264. Springer (2019)
27. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for message passing in Go

using behavioural types. In: ICSE, pp. 1137–1148. ACM (2018)
28. Larsen, K.G.: Modal specifications. In: Automatic Verification Methods for Finite State Systems, volume

407 of LNCS, pp. 232–246. Springer (1990)
29. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and product line theories. In:

ESOP, volume 4421 of LNCS, pp. 64–79. Springer (2007)
30. Lüttgen, G., Vogler, W.: Modal interface automata. Log. Methods Comput. Sci. 9(3:4), 1–28 (2013)
31. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
32. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)
33. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating processes. Acta Inf.

23(1), 9–66 (1986)
34. Park, D.: Concurrency and automata on infinite sequences. In: Theoretical Computer Science, volume

104 of LNCS, pp. 167–183. Springer (1981)
35. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Amodal interface theory

for component-based design. Fundam. Inform. 108(1–2), 119–149 (2011)
36. Rounds, W.C., Brookes, S.D.: Possible futures, acceptances, refusals, and communicating processes. In:

FOCS, pp. 140–149. IEEE (1981)
37. Schäfer, M., Vogler,W.: Component refinement and CSC-solving for STG decomposition. Theoret. Com-

put. Sci. 388(1–3), 243–266 (2007)
38. Schinko, A., Vogler, W.: Fault-free refinements for interface automata. Sci. Ann. Comp. Sci. 28, 289–337

(2018)
39. Tretmans, J.: Model-based testing and some steps towards test-based modelling. In: SFM, volume 6659

of LNCS, pp. 297–326. Springer (2011)
40. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with IOCO. In: FATES, volume 2931

of LNCS, pp. 86–100. Springer (2004)
41. van Glabbeek, R.: The linear time—branching time spectrum. In: CONCUR, volume 458 of LNCS, pp.

278–297. Springer (1990)
42. van Glabbeek, R.: The linear time—branching time spectrum II. In: CONCUR, volume 715 of LNCS,

pp. 66–81. Springer (1993)
43. van Glabbeek, R.: The linear time—branching time spectrum I. In: Handbook of Process Algebra, pp.

3–99. North-Holland/Elsevier (2001)
44. vanGlabbeek, R.: The coarsest precongruences respecting safety and liveness properties. In: TCS, volume

323 of IFIP Advances in Information and Communication Technology, pp. 32–52. Springer (2010)
45. van Glabbeek, R., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM

43(3), 555–600 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

21. Göhrle, S.: Input-Verweigerungs-Simulation für Interface-Automaten. Master’s thesis, Univ. Augsburg,
Germany (2014)

	A linear-time branching-time perspective on interface automata
	Abstract
	1 Introduction
	2 Interface automata by example
	3 The interface automata setting
	4 Linear-time preorders
	4.1 Basic requirements, preorders and properties
	4.2 Preserving freedom from errors
	4.3 Preserving freedom from quiescence
	4.4 Preserving freedom from divergence
	4.5 CJK-semantics
	4.6 Ready semantics
	4.7 The linear-time IA-spectrum

	5 Branching-time preorders
	5.1 Original IA-refinement
	5.2 Standard IA-refinement
	5.3 Further simulations: I2-, I3-refinement and ready simulation
	5.4 Bivariant simulations and IA-bisimulation
	5.5 Precongruence results
	5.6 The branching-time IA-spectrum
	5.7 Completing the spectrum

	6 Discussion
	7 Conclusions and future work
	Acknowledgements
	References

